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A celebrated and controversial hypothesis conjectures that some biological systems –
parts, aspects, or groups of them– may extract important functional benefits from oper-
ating at the edge of instability, halfway between order and disorder, i.e. in the vicinity
of the critical point of a phase transition. Criticality has been argued to provide bio-
logical systems with an optimal balance between robustness against perturbations and
flexibility to adapt to changing conditions, as well as to confer on them optimal com-
putational capabilities, huge dynamical repertoires, unparalleled sensitivity to stimuli,
etc. Criticality, with its concomitant scale invariance, can be conjectured to emerge in
living systems as the result of adaptive and evolutionary processes that, for reasons to
be fully elucidated, select for it as a template upon which higher layers of complexity can
rest. This hypothesis is very suggestive as it proposes that criticality could constitute a
general and common organizing strategy in biology stemming from the physics of phase
transitions. However, despite its thrilling implications, this is still in its embryonic state
as a well-founded theory and, as such, it has elicited some healthy skepticism. From the
experimental side, the advent of high-throughput technologies has created new prospects
in the exploration of biological systems, and empirical evidence in favor of criticality has
proliferated, with examples ranging from endogenous brain activity and gene-expression
patterns, to flocks of birds and insect-colony foraging, to name but a few. Some pieces
of evidence are quite remarkable, while in some other cases empirical data are limited,
incomplete, or not fully convincing. More stringent experimental set-ups and theoretical
analyses are certainly needed to fully clarify the picture but, in any case, time seems
to be ripe for bridging the gap between this theoretical conjecture and its empirical
validation. Given the profound implications of shedding light on this issue, we believe
that it is both pertinent and timely to review the state of the art –with an emphasis on
existing empirical evidence– and to discuss future strategies and perspectives.
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I. INTRODUCTION: STATISTICAL PHYSICS OF
BIOLOGICAL SYSTEMS

One of the greatest challenges of Science is to shed
light on the essence of the phenomenon that we call
“life”, with all its astonishing diversity and complex-
ity. Cells –the basic building-blocks of life– are intricate
dynamical systems consisting of thousand types of in-
teracting molecules, being created, used and destroyed
every minute; multicellular organisms rely on the per-
fectly orchestrated motion of up to trillions of interact-
ing cells, and communities of individuals group dozens of
them, interacting in countless ways, forming entangled
ecosystems, and giving rise to a mind-blowing hierarchy
of “complexity”.

The standard viewpoint in biology, stemming from the
reductionist tradition, is that each molecular component
(protein, nucleic acid, metabolite...) is specific and re-
quires individualized analysis. As stressed by the rapid
advance of the “omics” sciences, this one-at-the-time ap-
proach has successfully identified and quantified most of
the components and many of the basic interactions of
life as we know it. Still, unfortunately, it offers no con-
vincing explanation of how systemic properties emerge
(Sauer et al., 2007). Questions such as (Schrödinger,
1967)“how are those myriads of elements and interac-
tions coordinated together in complex living creatures?”
or “how does coherent behavior emerge out of such a soup
of highly heterogeneous components?” remain largely
unanswered.

A complementary strategy consists in looking at com-
plex biological problems from a global perspective, shift-
ing the focus from specific details of the molecular ma-
chinery to integral aspects1 (Alon, 2006; Bialek, 2012;
Goldenfeld and Woese, 2011; Kaneko, 2006; Sauer et al.,
2007). System approaches to biology rely on the evi-
dence that some of the most fascinating phenomena of
living systems –such as memory and the ability to solve
problems– are collective ones, stemming from the inter-
actions of many basic units, and might not be reducible
to the understanding of such elementary components on
an individual basis. Theoreticians have long struggled to
elucidate whether simple and general principles –such as
those in physics– could be of any help in tackling bio-
logical complexity and, more specifically, have long been
seduced by the idea of adapting concepts and methods
from statistical mechanics to shed light onto the large-
scale organization of biological systems2 (Alon, 2006;

1 The finding that humans have less genes than onions do –but
amazingly more complex features– is suggestively supportive of
the need of an interacting-system approach to genomics, and to
life in general (Koonin, 2011; Sauer et al., 2007).

2 The possibility that biological problems may stretch the frontiers
of physics by uncovering phenomena and mechanisms unknown

Amit, 1992; Anderson et al., 1972; Bialek, 2012; Hop-
field, 1982; Parisi, 1993; Schrödinger, 1967; Smith and
Morowitz, 2016; Sneppen, 2014).

One of the most striking consequences of interac-
tions among elementary constituents of matter (atoms,
molecules, electrons...) is the emergence of diverse
“phases” whose behavior bears little resemblance with
that of their basic components or small groups of them
(Anderson et al., 1972; Chaikin and Lubensky, 2000;
Goldenfeld, 1992; Stanley, 1987). Systems consisting
of very many (microscopic) components may exhibit
rather diverse types of (macroscopic) collective behavior
(phases) with different levels of internal order. Moreover,
slight changes in external conditions (e.g. temperature,
pression...) or in the strength of interactions may induce
dramatic structural rearrangements, i.e. phase transi-
tions.

It is thus tempting to hypothesize that biological states
might be manifestations of similar collective phases and
that shifts between them could correspond to phase tran-
sitions (Anderson et al., 1972; Hopfield, 1994). As a
matter of fact, phase transitions are a common theme
in biology (Pollack and Chin, 2008; Solé, 2011); a non-
exhaustive list of examples includes: (i) synchronization
phase transitions in collective biological oscillators such
as circadian clocks (Garcia-Ojalvo et al., 2004); (ii) per-
colation transitions of fibers in connective tissues such as
collagen (Alvarado et al., 2013; Forgacs et al., 1991; New-
man et al., 2004), (iii) melting phase transition in DNA
strands (Li and Retzloff, 2006); (iv) transitions between
different dynamical regimes (oscillations, bursting,...) in
neuronal networks (Freeman, 2013; Freeman and Holmes,
2005; Friston, 1997; Haken, 2013; Rabinovich et al., 2006;
Werner, 2007), etc. Indeed, life –guided by evolution– has
found its way to exploit very diverse types of order: crys-
talline structures at the basis of bio-mineralized materi-
als (seashells, skeletons...), liquid states (blood, lymph,
sap...), gels (vitreous humor, cell cytoplasm), etc. How-
ever, some aspects of biological systems –the ones of in-
terest here, such as e.g. neural networks or flocks– show
intermediate levels of organization, half way between or-
der and disorder, less regular than perfect crystals but
more structured than random gases. Remarkably, it has
been conjectured that, under some circumstances, living
systems –i.e. parts, aspects, or groups of them– could
draw functional advantages from operating right at the
borderline between ordered and disordered phases, i.e. at
the very edge of a (continuous) phase transition or critical
point3 (Bak, 1996; Beggs, 2008; Chialvo, 2010; Chialvo

in purely physical systems is also inspiring (Frauenfelder, 2014;
Goldenfeld and Woese, 2011).

3 Phase transitions may occur in either a discontinuous/abrupt
fashion (Binney et al., 1993) –with associate bistability of the
two different phases and an abrupt/discontinuous jump at the



3

et al., 2008; Kauffman, 1993; Marro and Chialvo, 2017;
Plenz, 2013; Schuster et al., 2014). For instance, rather
generically, living systems need to achieve a tradeoff be-
tween robustness (resilience of the system state to exter-
nal perturbations, a property of ordered phases) and flex-
ibility (responsiveness to environmental cues and stim-
uli, a feature of disordered phases). An optimal balance
between these two conflicting tendencies can be accom-
plished by keeping the system dynamical state at the
borderline of an order-disorder phase transition, i.e. at
criticality. Aspects of criticality, such as the emergence of
long-range spatio-temporal correlations and the exquisite
sensitivity to stimuli (see below) are also susceptible to
be exploited for functional purposes, e.g. to create co-
ordinated global behavior, as we shall discuss in what
follows. The idea that –in some special circumstances–
evolution might have favored states close to the edge of
a phase transition is certainly tantalizing, as it suggests
that operating near criticality could be an overarching
strategy in biological organization (Bak, 1996; Beggs,
2008; Chialvo, 2010; Kauffman, 1993; Mora and Bialek,
2011; Plenz, 2013; Schuster et al., 2014). 4

Critical points have long been appreciated to exhibit
striking features. Still, given the need of careful fine
tuning for them to be observed, they were long treated
as rarities. The development of some of the most re-
markable intelectual achievements of the second half of
the 20th century, such as the scaling hypothesis and the
renormalization group theory (Amit and Mart́ın-Mayor,
2005; Fisher, 1974; Wilson and Kogut, 1974), changed
this view and led to an elegant and precise theory of
criticality, with unsuspected implications in many fields,
from particle physics to polymer science5. Concepts born
in this context, such as scale-invariance (explaining the
existence of a non-trivial organization across many differ-
ent scales), pervade the way physicists picture the world
today. A chief conclusion is that many features at critical
points are quite robust and largely independent of small-
scale details, giving rise to universality in the large-scale
behavior. Thus, criticality and its concomitant scale-
invariance can be understood through simple stylized
models, where many microscopic details are neglected,
paving the road to the understanding of collective as-
pects of biological systems and the phase transitions they
might experience, transcending specific details.

transition point– or in continuous/progressive way with an asso-
ciated critical point. Our main focus here is on continuous ones,
but we will also encounter discontinuous transitions, which may
also play a relevant role in biology.

4 Let us mention that there have been recent attempts to define
variants of criticality, specifically suited for biological systems
(Bailly and Longo, 2008; De Vincenzo et al., 2017).

5 See, e.g. Binney et al. (1993); Canet et al. (2011); De Gennes
(1979); Delamotte (2012); Goldenfeld (1992); Henkel et al.
(2008); Kardar (2007); Le Bellac et al. (1991); Sethna (2006);
Stanley (1987); Täuber (2014, 2017).

The advent of high-throughput experimental tech-
niques and big data technologies have created new
prospects in the exploration of biological systems. This
is true in fields such as neuroscience where it is now pos-
sible to record activity from individual spiking neurons
to entire brains with previously-unthinkable resolution
(Markus and Freeman, 2015; Sejnowski et al., 2014); in
genomics, where amazingly detailed patterns of activ-
ity in gene regulatory networks can be monitored (Lesk,
2017); or in the study of animal collective motion owing
to novel tracking technologies (Cavagna et al., 2008). As
a result, recent years have witnessed an upsurge of empir-
ical works reporting on putative scale-invariance and/or
criticality in diverse biological systems, supporting the
above theoretical speculations. In some cases the evi-
dence appears to be robust, while in others it is marginal,
incomplete, or, to say the least, doubtful. In any case,
time seems to be ripe for bridging the gap between the-
oretical hypotheses and their empirical validation.

The purpose of the present paper is to briefly review
the main ideas and motivation behind the criticality hy-
pothesis as a possible guiding principle in the collective
organization of living systems and to scrutinize and dis-
cuss in a critical way the existing empirical evidence and
prospects. It also aims at providing the reader with a self-
consistent view of what is criticality and what it is not,
as well as an overview of the literature on this active and
fascinating research field with countless ramifications.

Let us mention that there exist some recent articles
reviewing some of these topics; the list includes an in-
fluential paper on statistical aspects of criticality in liv-
ing systems (Mora and Bialek, 2011), as well as works
focused on neural dynamics (Beggs, 2008; Chialvo, 2010;
Chialvo et al., 2008; Cocchi et al., 2017; Hesse and Gross,
2014; Massobrio et al., 2015; Schuster et al., 2014; Shew
and Plenz, 2013), gene regulation (Roli et al., 2015), and
collective motion (Vicsek and Zafeiris, 2012) respectively.
The present paper aims at overviewing, summarizing and
complementing them, putting the emphasis on dynamical
aspects rather than in purely statistical ones.

II. CRITICALITY AND SCALE INVARIANCE

Many discussions about “criticality” are semantic ones.
Depending on authors and fields rather diverse contents
are assigned to terms such as “critical”, “quasi-critical”,
“dynamically critical”, “generically critical”, and “self-
organized critical”. Given the broad audience this review
paper is aimed at, we esteem that a section devoted to
present a synthetic overview of basic concepts and to fix
ideas and notation is necessary6. Readers familiar with

6 For a more exhaustive introduction to critical phenomena we re-
fer to the standard literature (Binney et al., 1993; Christensen
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these concepts can skip the next section.

1. Scale-invariance and power laws

Before discussing criticality let us introduce the more
general concept of scale-invariance. In a seminal pa-
per entitled “Problems in Physics with many scales of
length” the Nobel laureate K. Wilson emphasized that
“one of the more conspicuous properties of nature is
the great diversity of size or length scales”, and cites
oceans as an example where currents persist for thou-
sand of kilometers and coexist with waves of the or-
der of meters, and with microscopic aggregates of water
molecules (Wilson, 1979). These scales are usually de-
coupled and the “physics” at each one can be separately
studied. However, there are phenomena where events
at many scales make contributions of equal importance.
A remarkable instance of this are the critical points of
continuous phase transitions where structures/processes
at the microscopic, macroscopic, and all intermediate
mesoscopic scales are very similar. These situations with
many equally-relevant scales are known as scale-invariant
or scale-free (Mandelbrot, 1983), and are described sta-
tistically by power-law distributions, as exemplified by
the Guttenberg-Richter equation for the probability dis-
tribution of observing an earthquake of magnitude M ,
P (M) ∝ M−α (see e.g. Corral (2004)). Power-law (or
Pareto) distributions such as P (x) = Ax−α, where α is a
positive real number and A a normalization constant, are
the trademark of scale-invariance. Actually, they are the
only possible probability distribution functions for which
a change of scale from x to Λx, for some constant fac-
tor Λ, leaves the functional form of P (x) unaltered, i.e.
P (Λx) = A(Λx)α = AΛαxα = ΛαP (x), in such a way
that the ratio P (Λx)/P (x) = Λ−α does not depend on
the variable x, i.e. it is scale invariant (Newman, 2005;
Sornette, 2006). Hence, as opposed to e.g. exponential
distributions, power-laws lack a relevant characteristic
scale (besides natural upper and lower cut-offs). In the
next sections we will see that scale-invariance is a fin-
gerprint of critical points but, also, that scale-invariant
systems unrelated to criticality exist.

Power-law distributions (or, more in general, power
laws in the tails of the distributions, i.e. asymptoti-
cally) appear in countless scenarios, including the statis-
tics of earthquakes, solar flares, epidemic outbreaks,
etc. (Mandelbrot, 1983; Newman, 2005; Sornette, 2006;
West, 2017). They are also a common theme in biol-
ogy (Gisiger, 2001; Goldberger, 1992; Goldberger et al.,
2002; Hu et al., 2012; West, 2010; West and Grigolini,

and Moloney, 2005; Goldenfeld, 1992; Henkel et al., 2008; Kar-
dar, 2007; Le Bellac et al., 1991; Marro and Dickman, 1999;
Sethna, 2006; Stanley, 1987).

2010); for example, many physiological and clinical time-
series data have a spectrum that decays as a power of
the frequency. This effect is often called 1/f noise, al-
though powers of the frequency f may appear (Mandel-
brot, 2002). Also patterns of human and animal mo-
bility often exhibit scale-free features (Anteneodo and
Chialvo, 2009; Barabasi, 2005; Brockmann et al., 2006;
Proekt et al., 2012). Moreover, a number of commonly-
observed statistical patterns of natural-world data –such
as Zipf’s law7 (Baek et al., 2011; Marsili and Zhang, 1998;
Mora and Bialek, 2011; Sornette, 2006; Visser, 2013),
Bendford’s law (Benford, 1938; Pietronero et al., 2001),
and Taylor’s law (Taylor, 1961; Xu, 2015)– stem from
underlying scale invariance, i.e. power-law distributions
(Simkin and Roychowdhury, 2011).

Disputes on the validity and possible significance
of power-laws have a long history in many research
fields; for some authors they reveal fundamental mech-
anisms, while some others perceive them as largely un-
informative (Kello et al., 2010; Stumpf and Porter, 2012).
Still, in some cases, there is very robust evidence of scale
invariance and it certainly provides valuable insight8 9.

The detection and statistical characterization of power
laws in real-world data is hindered by sampling problems
as very rare but large events control the tail of the distri-
bution. Indeed, the quality of power-law fits to empirical
data has been scrutinized (Clauset et al., 2009), show-
ing that many claims of scale-invariance actually lack
statistical significance. Improved and stringent statis-
tical tests –combining maximum-likelihood fitting meth-
ods with Kolmogorov-Smirnov quality tests– have been
designed and are now customarily employed to ascertain
whether empirical data actually conform to power laws
(Clauset et al., 2009).

From the mathematical side, a handfull of mechanisms
for the generation of (non-critical) power-law distribu-
tions have been put forward (Marković and Gros, 2014;

7 This states that the frequency with which a given pattern is
observed declines as a negative power law of its rank, i.e. its
position in the list of possible patterns ordered from the most
frequent to the rarest ones. A typical example are words in a
language: the n−thmost frequent word appears with a frequency
that scales according to r−1 where r is its position in the ranking
of most frequent words (Zipf, 2016).

8 An important example are allometric scaling laws, which
are power-law relationships between different measures of
anatomy/physiology; e.g. Kleiber′s law (Kleiber, 1932) links or-
ganism mass M to metabolic rate R as M ∼ R3/4, and applies
across species from bacteria to mammals (Banavar et al., 2014,
2010b; Brown et al., 2004; West et al., 1997). Allometric scaling
has been elegantly shown to stem from the constraint that living
systems have an underlying optimal (e.g nutrient) transportation
network (Banavar et al., 1999; Simini et al., 2010).

9 Another example are (foraging) search strategies which, un-
der some circumstances, have been argued to be optimized by
performing scale-free distributed displacements (Humphries and
Sims, 2014; Viswanathan et al., 1999), i.e. Lévy flights (Metzler
and Klafter, 2000).
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FIG. 1 Random walks, as the one-dimensional one illustrated
in the left panel, lack a characteristic scale. As a conse-
quence the distribution of return times to the origin, T , of one-
dimensional (unbiased) random walkers obeys P (T ) ∼ T−α

with α = 3/2 and the areas/sizes, S, covered by their ex-
cursions before returning to the origin are distributed as
P (S) ∼ S−τ with τ = 4/3 (right panels) (Redner, 2001;
di Santo et al., 2017b). Also, the averaged size as a func-
tion of time 〈S(T )〉 ∼ T γ scales as a power-law with γ = 3/2
(not shown). The above exponents can be related by means of
a very general scaling relationship: γ = (α− 1)/(τ − 1) (Bal-
dassarri et al., 2003). Many biological systems exhibit scaling
stemming from effective random-walk processes (Berg, 1993;
Gerstein and Mandelbrot, 1964).

Mitzenmacher, 2002; Newman, 2005; Simkin and Roy-
chowdhury, 2011; Sornette, 2009). An incomplete list is:
(i) the statistics of random walks as illustrated in Fig.1.
(ii) the statistics of multiplicative processes (Reed and
Hughes, 2002; Richmond and Solomon, 2001; Sornette,
1998; Sornette and Cont, 1997), (iii) preferential attach-
ment processes (Barabási and Albert, 1999; Simon, 1955;
Yule, 1925), (iv) optimization and constrained optimiza-
tion (Carlson and Doyle, 2000; Seoane and Solé, 2015),
(v) marginalization over un-observed relevant variables
(Aitchison et al., 2016; Macke et al., 2011; Schwab et al.,
2014). Still, in many physical and biological systems with
many degrees of freedom, a more general explanation for
the generation of spatio-temporal scale-invariance exists:
it can emerge as a collective phenomenon stemming from
the system sitting close to the critical point of a contin-
uous phase transition.

2. Criticality in equilibrium systems and beyond

The concept of criticality was born in the context of
systems at thermodynamic equilibrium. A paradigmatic
example are ferromagnets, which can become perma-
nently magnetized (i.e. with a net magnetization re-
sulting from individual spins pointing predominantly in
a preferred direction) at temperatures below the criti-
cal Curie temperature, Tc, but not for larger temper-
atures, for which thermal noise precludes such an or-
dering. A continuous/second-order phase transition oc-
curs right at the critical point Tc below which the ori-

entational symmetry of spins is broken, a preferred di-
rection emerges spontaneously –i.e. the a symmetry
is spontaneously broken– and a progressively more or-
dered/magnetized state emerges as the temperature is
lowered. This change in the collective state is usually en-
coded in an “order parameter” (the overall magnetization
in ferromagnets) which measures the degree of order as
the phase transition proceeds, shifting from 0 in the dis-
ordered/symmetric state to a progressively larger value
within the ordered/symmetry-broken phase.

Symmetry-breaking is a collective phenomenon that
requires a system-wide coordination for the global re-
organization to emerge. This implies that the correlation
length among individual components needs to span the
whole systems at criticality and also that, as the system
is incipiently becoming ordered, it is also highly fluctu-
ating in choosing which direction to be selected. For ex-
ample, classical experiments with liquid-gas transitions
(e.g. with CO2) show that, right at criticality, light of
many different wavelengths scatter with internal struc-
tures of the mixture (density fluctuations of all possible
length scales), causing the normally transparent liquid
to appear cloudy in a phenomenon called critical opales-
cence; see, e.g. (Binney et al., 1993; Wilson, 1979). The
way in which macroscopic order emerges is scale-invariant
and mostly independent of microscopic details; as already
mentioned, a remarkable finding is that, properties at
criticality are universal, as they depend only on general
features such as symmetries and dimensionality.

Importantly, the concepts and methods developed in
the context of equilibrium systems were soon extended
to time-dependent (Hohenberg and Halperin, 1977) and
non-equilibrium problems (Henkel et al., 2008; Hinrich-
sen, 2000; Kamenev, 2011; Ma, 2000; Marro and Dick-
man, 1999; Ódor, 2004, 2008; Schmittmann and Zia,
1995; Täuber, 2014, 2017). All along this paper, we
adopt a view of criticality and phase transitions focused
on dynamical and non-equilibrium aspects. This seems
to be the most natural choice to analyze living systems,
which are dynamical entities kept away from thermal
equilibrium by permanently exchanging energy and mat-
ter with their surroundings. It is important to underline
that there exists an alternative “statistical-criticality”
approach to the analysis of biological data. It focuses
on the statistics of patterns/configurations rather than
on dynamical/non-equilibrium aspects, and we discuss it
only in passing10.

10 It can be argued that many fundamental questions in biology
can be formulated in a probabilistic setting; e.g., deciphering
the neural coding might require knowing the statistics of neural
spiking patterns under given sets of stimuli (Rieke et al., 1995).
An approach to analyze biological data-rich problems relies on
equilibrium statistical physics and information theory. It con-
sists in analyzing the statistics of the observed configurations,
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3. Non-equilibrium phase transitions: an example

In order to turn the foregoing wordy explanations into
a more formal approach, we describe in detail –as a
guiding example– one of the simplest possible dynamical
models exhibiting a non-equilibrium phase transition.

The contact process (CP) (Harris, 2002; Henkel et al.,
2008; Hinrichsen, 2000; Marro and Dickman, 1999) is a
prototypical toy model to study the dynamics of propaga-
tion of some type of “activity” (as e.g. infections in epi-
demic spreading). At any given time, each of the nodes
i of a given network (which in particular can be a lat-
tice, a fully connected network, or one with a more com-
plex architecture, describing the pattern of connections
among units/nodes) is in a state si that can be either
occupied/active (si = 1) or empty/quiescent (si = 0).
The (Markovian) dynamics consists in the following pro-
cesses: occupied sites are emptied at rate µ = 1 and new
active nodes are created at (empty) randomly-selected
nearest neighbors of active ones at rate λ. Considering,
for the sake of simplicity, a fully connected network with
N nodes and performing a large-N expansion of the cor-
responding Master equation (Gardiner, 2009; Van Kam-
pen, 1992), one readily obtains:

ρ̇(t) = λρ(t)(1− ρ(t))− ρ(t) = (λ− 1)ρ(t)− λρ2(t) (1)

where the dot stands for time derivative of the activity
density ρ =

∑N
i=1 si/N .

This simple one-variable, “mean-field”, or determinis-
tic approximation already illustrates some of the essen-
tial features of criticality. Inspection of Eq.(1) reveals
the presence of a bifurcation (see e.g. Strogatz 2014) at
a value λc = 1, separating a subcritical/absorbing phase
(λ < 1) in which transient activity decays to the only
possible steady-state, ρst = 0, from a supercritical/active
one (λ > 1) with a sustained activity ρst = 1− 1/λ (see
Fig.2). Thus, near the bifurcation/critical point, ρst ∼ δ
for small δ, where δ = |λ−1| is the distance to criticality.
In the quiescent (or absorbing) phase11, an initial den-
sity decays exponentially, ρ(t) = ρ(0) exp(−δt), implying
that there is a characteristic time scale proportional to
δ−1, that diverges at criticality, i.e. it takes a (diver-
gently) long time for the system to “forget” its initial

assuming that it encodes key relevant features. Given that huge
data sets from biological systems are now available, reconstruc-
tions of the possible underlying network of interactions between
constitutive units from observed statistical patterns have become
feasible. Probabilistic models can be constructed such that they
match the statistics of observed empirical data, and among these
models one selects the one that makes the smaller number of as-
sumptions. Remarkably, such probabilistic models for biological
data have been found to have parameters close to the edge of
a phase transition, i.e. to be critical. See the Appendix for an
extended discussion of this approach.

11 A similar argument holds in the active phase.

state, reflecting a generic feature of criticality: the, so-
called “critical slowing down”. Indeed, right at the crit-
ical point, ρ(t) = ρ(0)/(1 + ρ(0)t), which decays asymp-
totically as a power-law, ρ(t) ∼ t−1.

Introducing an external field that creates activity at
empty sites at rate h, the overall response or “suscepti-
bility”, defined as Ξ = ∂ρst

∂h |h→0, is Ξ ∝ δ−1 that, again,
diverges right at δ = 0, (i.e. λ = 1), illustrating the di-
verging response to infinitesimal perturbations, another
important generic feature of criticality.

A useful tool to analyze this type of transitions con-
sists in performing “spreading experiments” in which the
evolution of a single localized seed of activity in an other-
wise absorbing/quiescent state is monitored (see Fig.2C).
In this case, given the small number of active sites,
the dynamics is chiefly driven by fluctuations and can-
not be analyzed within the deterministic approximation
above. Stochastic cascades of spatio-temporal activity,
or “avalanches” of variable sizes and durations can be
generated from the initial seed before the system reaches
the quiescent state (extinction). In this framework the
critical point separates a regime of sure extinction (ab-
sorbing phase) from one of non-sure extinction (active
phase), and is characterized by highly variable shapes,
sizes, and durations (as illustrated in Fig.2C). Indeed,
right at the critical point, the sizes and durations of
avalanches are scale-free, i.e. distributed as power-laws
with anomalously large (formally “infinite”) variance12.
To understand this mathematically, one needs the next-
to-leading correction to Eq.(1) in the large-N expansion
to include the effect of “demographic” fluctuations. This
leads to an additional term +

√
ρη(t), where η(t) is a

Gaussian white noise of variance σ2 = (λ + 1)/N . This
square-root noise term stems from the central limit theo-
rem (Van Kampen, 1992). A simple (first-return-time to
the origin) analysis of the resulting stochastic equation
shows that right at the critical point, the time required
to return to the quiescent state, i.e. the avalanche dura-
tions t are distributed as power laws: F (t) ∼ t−α with
α = 2; similarly, avalanches sizes s obey P (s) ∼ s−τ ,
with τ = 3/2 13. These mean-field exponents coincide
with those of the (Galton-Watson) unbiased branching
process (Harris, 2002; Liggett, 2004; Watson and Gal-
ton, 1875), introduced to describe the statistics of family-

12 The large variability of possible patterns is a generic key feature
of criticality; for instance, in systems at thermodynamic equilib-
rium, spatial variability results in the divergence at criticality of
the specific heat, which is a good predictor of the microscopic
variability of the underlying configurations (Mora and Bialek,
2011).

13 See di Santo et al. (2017b) for a pedagogical derivation of these
results. In finite-dimensional lattices, the associated critical
point as well as the critical exponents (i.e. the exponents of
the power-law dependences) deviate from the mean-field predic-
tions above (Hinrichsen, 2000). For a compendium of exponent
values and scaling relationships, see (Muñoz et al., 1999).
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FIG. 2 Sketch of the main aspects of the contact process. (A)
Dynamical rules. (B) Phase diagram. (C) Temporal raster
plots of activity (avalanches) in the different regimes, illus-
trating the fractal-like complex patterns emerging at critical-
ity. (D) Avalanche size distributions in the different phases
(main) and, right at the critical point for different system
sizes (inset), illustrating finite-size scaling, i.e. the emergence
at criticality, of a straight line in a double-logarithmic plot,
as corresponds to scale invariance. (see also Fig.3).

names, and often employed to illustrate the statistics of
critical avalanches. Away from criticality, as well as in
finite systems, cut-offs appear in the avalanche distribu-
tions (see Fig.2). In particular, as a reflection of the
underlying scale-invariance at criticality, the finite-size
cut-offs obey scaling laws such as

P (s,N) ∼ s−τG(s/N) (2)

where the power-law s−τ is cut-off by an unspecified func-
tion, G, at an N -dependent scale (Binder, 1981; Binney
et al., 1993; Stanley, 1987). This enforces that plotting
P (s,N)sτ as a function of s/N at the critical point should
give a unique curve into which all individual curves for
different sizes N collapse. This finite-size scaling method
constitutes an important tool for analyzing critical phe-
nomena (both in computer simulations and in experi-
ments) as perfect power-laws/divergences can only ap-
pear in the infinite-size limit, not possibly reached in bi-
ological problems. While in finite systems true criticality
does not exist, still, these may exhibit a progressive tran-
sition between order and disorder. This can be charac-
terized by the existence of a peak in some quantity such
as the susceptibility or the correlation length that usu-
ally diverge at (true) criticality; this is used as a proxy
for “approximate” criticality in finite systems14.

As a result of universality, all models exhibiting a phase
transition to an absorbing/quiescent phase (without any
additional symmetry or conservation law) share the same
set of critical exponents and scaling functions –i.e. the
same type of scale-invariant organization– with the con-
tact process (Henkel et al., 2008)15.

Even if the simple contact processes is not intended
as a faithful description of the actual dynamics of any
specific biological system, in some cases –such as neu-
ral and gene regulatory networks– it can constitute an
adequate effective representation of “damage spreading”
experiments, defined as follows. Two identical replicas of

14 Similarly, systems in the presence of an external driving force
are not truly critical; in these cases, the Widom line –signaling
e.g. the position of maximal susceptibility or correlation– can be
taken as a surrogate of criticality (Williams-Garćıa et al., 2014).

15 To analytically study spatial effects one needs to replace ρ(t)
in Eq.(1) by a field ρ(x, t) and to introduce a diffusive coupling
term, leading to

ρ̇(x, t) = δρ(x, t)− λρ2(x, t) +D∂2xρ(x, t) +
√
ρ(x, t)η(x, t), (3)

where D is a diffusion constant and ∂x stands for spatial deriva-
tives (Henkel et al., 2008; Hinrichsen, 2000; Ódor, 2008). Mean-
field results hold only above four spatial dimensions; below such
a dimension, fluctuations cannot be neglected. A detailed com-
putation of critical exponents can only be achieved by employ-
ing renormalization group techniques (Amit and Mart́ın-Mayor,
2005; Binney et al., 1993; Delamotte, 2012; Fisher, 1974; Wilson
and Kogut, 1974); a complete perturbative calculation for Eq.(3)
can be found e.g. in Henkel et al. (2008); see also Grinstein and
Muñoz (1996) for a simple discussion.



8

the same system are considered; a localized perturbation
in the state of one unit/node is introduced in one of the
two, and the difference between both replicas is moni-
tored as a function of time (Derrida and Pomeau, 1986).
Depending on the the system dynamical state, such per-
turbations may grow (active phase), shrink (quiescent
phase), or fluctuate marginally (critical point), provid-
ing a practical tool to gauge the level of internal orga-
nization/order16. Even if the actual dynamics might be
much more complicated, the resulting damage spreading
process is susceptible to be described by a much sim-
ple model –such as the contact process– if local effective
error “propagation” and error “healing” rates can be es-
timated. This approach is often employed in e.g. gene
regulatory networks as we shall see.

4. Families of criticality

Importantly, not all phase transitions of relevance in
biology occur between quiescent and active phases, nor
can be described by an associated activity-propagation
process, such as the contact process. Other important
families of phase transitions to be found across this pa-
per are: (i) synchronization transitions, at which co-
herent behavior of oscillators emerges, as described by
the prototypical Kuramoto model (Acebrón et al., 2005;
Kuramoto, 1975); (ii) transitions to collective ordered
motion, as represented for instance by the Vicsek model
(Vicsek et al., 1995; Vicsek and Zafeiris, 2012)) and its
variants; (iii) static percolation transitions (Christensen
and Moloney, 2005). Each of these classes has its own
type of emerging ordering and its own set of critical ex-
ponents and scaling features. However, all of them share
the basic features that constitute the fingerprints of crit-
icality, such as diverging correlations and response, large
variability, scale invariance, etc.

5. Phase transitions on complex networks

The peculiarities of phase transitions on heterogeneous
complex networks have been the focus of many analyses
after the seminal works of Barabási and Albert (1999)
and Watts and Strogatz (1998). In many systems, in-
cluding biological ones, it has been observed that the ar-
chitecture of the underlying network of connections may
be highly heterogeneous (actually scale free), with a few
highly connected nodes and many loosely connected ones
(Barabási and Albert, 1999); this fact has profound im-
plications on the dynamics of processes running on such

16 The precise relationship between the damage spreading threshold
and the system’s actual critical point is an important and subtle
issue (Coniglio et al., 1989; Grassberger, 1995a,b; Hinrichsen and
Domany, 1997).

scale-free networks and on the phase transitions they ex-
hibit; for instance, the quiescent phase can disappear
and synchronization transitions proceed in a way differ-
ent from that of networks (Albert and Barabási, 2002;
Arenas et al., 2008; Barrat et al., 2008; Boccaletti et al.,
2006; Caldarelli, 2007; Dorogovtsev et al., 2008; Newman,
2003, 2010; Pastor-Satorras et al., 2015).

Another important concept in this context is network
modularity (Newman, 2006). Biology is “modular” in
many aspects (Alon, 2006; Barabasi and Oltvai, 2004;
Ravasz et al., 2002), meaning that some components in
biological networks (nodes) are connected among them-
selves more often or more strongly that they do with the
rest (Newman, 2003). This property has been argued to
confer robustness and stability on networks (Alon, 2003)
and, more in general, it can severely affect the features of
dynamical processes; for instance, synchronization tran-
sitions occur first within moduli and then across them
(Arenas et al., 2008; Barrat et al., 2008). In particular,
if network modules are heterogeneous, extended critical-
like regions can emerge (Muñoz et al., 2010) with impor-
tant implications in e.g. in neuroscience (Moretti and
Muñoz, 2013) (see Sect4).

6. Self-organized criticality

Many different natural phenomena –from earthquakes
to type-II superconductors, and Barkhausen noise, to
name but a few– exhibit features of criticality as if they
were sitting in the vicinity of a continuous phase tran-
sition in a spontaneous self-organized way, i.e. without
any apparent need for parameter fine tuning. Aimed at
understanding how possibly this comes about, Bak and
collaborators introduced the concept of “self-organized
criticality” (SOC) through a series of archetypical mod-
els (Bak, 1996; Bak et al., 1990; Bak and Tang, 1989;
Corral et al., 1995; Dhar, 1999; Drossel and Schwabl,
1992; Frette et al., 1996; Olami et al., 1992), including
its most famous representative, the Bak-Tang-Wiesenfeld
sandpile model (Bak et al., 1987).

Although the sandpile model is an oversimplification
of real sandpiles, it illustrates very important and useful
concepts, so that we discuss it here in some detail. In
the sandpile model a type of “stress” or “energy” (sand-
grains) accumulates at a very slow timescale at the sites
of a (two-dimensional) lattice. When the accumulated
stress overcomes a local instability threshold, it is in-
stantaneously redistributed among nearest neighbor sites
–and, possibly, released/dissipated at the open bound-
aries of the system. This possibly creates a cascade or
“avalanche” of further instabilities, which finishes when
all sites are stable. After that, the slow charging process
restarts. In the limit in which these accumulation and
release processes occur at well separated timescales, the
durations and sizes of such avalanches turn out to be dis-
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tributed as power laws, i.e. the system becomes critical
without any apparent need for fine tuning17 (Bak, 1996;
Bak et al., 1987; Christensen and Moloney, 2005; Dick-
man et al., 2000; Jensen, 1998; Pruessner, 2012; Turcotte,
1999; Watkins et al., 2015).

In a nutshell, the mechanism for self-organization to
criticality in sandpile models works as follows18(Dickman
et al., 2000). Imagine a system with a phase transition
into an absorbing or quiescent state (see Fig.3), without
driving nor dissipation; i.e. with a well-defined control
parameter. Assume now that the control parameter (e.g.
the total amount of energy/stress/sandgrains) is itself a
dynamical variable, whose dynamics depends crucially on
the system’s state (as illustrated in Fig.3). If the system
is in an absorbing/quiescent state then the control pa-
rameter increases (“slow driving” mechanism), while if
the system is in the active phase, then it decreases at
the boundaries (“dissipation” mechanism); the alterna-
tion of these two opposing forces operating at infinitely
separated timescales makes the system self-organize to
the very critical point, as can be analytically shown19

within the mean-field approach to systems with absorb-
ing states.

The described mechanism for self-organization to the
edge of a phase transition, characterized by a dynam-
ical feedback that acts differentially depending on the
actual system state, is just an example of a broader class
that has been extensively analyzed in the context of con-
trol theory (Magnasco et al., 2009; Moreau and Sontag,
2003; Sornette, 1994). In particular, this type of mech-
anism can also account for the self-organization to the
edge of a discontinuous phase transition with bistability
(rather than a continuous one with a critical point). This
has been dubbed “self-organized bistability” (SOB) and
could be relevant e.g. in neuroscience (di Santo et al.,
2016).

17 Stochastic variants of the original sandpile model, such as the one
in Manna (1991) and the Oslo ricepile (Christensen et al., 1996)
show much cleaner scaling behavior that the original sandpile
with deterministic rules, which present some scaling anomalies
(Bagnoli et al., 2003; De Menech and Stella, 2000; Ktitarev et al.,
2000; Tebaldi et al., 1999).

18 For more details see Bonachela and Muñoz (2009); Vespignani
et al. (1998, 2000); Vespignani and Zapperi (1998); and Zapperi
et al. (1995).

19 Indeed, using Eq.(1), ρ̇(t) = (λ − 1)ρ − λρ2, and expressing the
control parameter λ − 1 as a + E (where “a” is a constant and
E is an “energy” or “stress” variable; for sandpiles, E represents
the total density of sandgrains while ρ is the density of “active”
sites above the instability threshold), so that the critical point,
λ = 1 corresponds Ec = −a. Assuming that E has a slow driving
dynamics as described above: Ė(t) = +h − ερ, where h stands
for the driving rate and ε is the dissipation rate coupled to the
activity, then in the limit h, ε → 0 with h/ε → 0 (i.e. slow-
driving and small dissipation at infinitely separated timescales)
the only steady-state solution is ρ = 0 with E = −a = Ec, i.e.
the system self-organizes exactly to its critical point.

FIG. 3 The self-organization-to-criticality (SOC) mechanism
works by establishing a feedback loop between the dynamics
of the activity and that of the control-parameter (total ac-
cumulated energy/stress/sandgrains) at separated timescales.
In particular, the control parameter itself becomes a dynami-
cal variable that operates in opposite ways depending on the
system’s state: dissipative dynamics (negative force) domi-
nates while the control parameter lies within the active phase
and by slow driving dynamics (positive force) dominates in
the absorbing/quiescent phase. This feedback self-organizes
the system to the critical point of its second-order phase tran-
sition (of the transition obtained for a fixed control parame-
ter) if the separation between slow and fast timescales is in-
finitely large and the dynamics is conservative; otherwise the
system is just self-organized to the neighborhood of the crit-
ical point with excursions around it (Bonachela and Muñoz,
2009; Dickman et al., 2000).

In spatially-extended systems (i.e. beyond mean-field)
the self-organization to criticality achieved by the above
SOC mechanism is exact if the bulk dynamics is con-
servative (dissipation occurring only at the boundaries),
but it is only approximate for non-conservative systems
or if the separation of timescales is not perfect (Grinstein,
1995). In these latter cases, the self-organization mecha-
nism drags the system back and forth around the critical
point without sitting exactly at it; still, power-laws and
effective scale-invariance can be observed across quite a
few scales (Bonachela and Muñoz, 2009). This type of
dynamics organizing the system to a relatively broad
neighborhood around a critical point has been named
“self-organized quasi-criticality” (SOqC) (Bonachela and
Muñoz, 2009). This seems more likely to apply to bio-
logical systems (such as e.g. neural networks) than stan-
dard SOC, given that biological systems are not usually
conservative nor do they exhibit perfect separation of
timescales.

A concept similar to SOC has appeared in recent
years under the name of adaptive criticality (Bornholdt
and Rohlf, 2000; Dorogovtsev and Mendes, 2002; Droste
et al., 2012; Gros, 2008; Gross and Blasius, 2008; Kuehn,
2012; MacArthur et al., 2010; Meisel and Gross, 2009;
Perotti et al., 2009; Rohlf, 2008; Rybarsch and Born-
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holdt, 2014; Saito and Kikuchi, 2013; Solé et al., 2002b).
This is a variant of SOC from a network perspective, in
which connections among nodes in a network are suscep-
tible to be added, removed, or rewired depending on the
system’s dynamical state, creating a feedback loop be-
tween network architecture and dynamics in a sort of co-
adaptive process, similar to the one sketched in Fig.3 but
operating on the network architecture. Under some con-
ditions, this can drive the dynamics to criticality (Bian-
coni and Marsili, 2004; Dorogovtsev et al., 2008; Liu and
Bassler, 2006) and the network architecture may become
highly structured, capturing the non-trivial coupling be-
tween structure and dynamics in biological systems.

7. Generic scale invariance I

We have presented the paradigm of a critical point –
with its concomitant spatio-temporal scale-invariance–
separating two alternative phases. However, in some
systems with peculiar symmetries or conservation laws,
critical-like features may appear in extended regions in
the phase space and not just at the edge of phase transi-
tions. This is called generic scale invariance (Grinstein,
1991). This type of scenarios –that we discuss in what
follows– can in some cases account for empirically re-
ported scale-invariance without the need to invoke crit-
icality. We refer to Grinstein (1991, 1995) for insightful
discussions of mechanisms for generic scale invariance.
A well-known example is the breaking of a continuous
symmetry in low-dimensional systems, as it happens e.g.
in some models of magnetism (such as the so-called XY
model) in which each spin can point in any arbitrary di-
rection in a plane (Binney et al., 1993). These systems,
instead of an usual ordered phase at low temperature, ex-
hibit a whole quasi-ordered phase characterized by local
order together with generic power-law decaying correla-
tions (Grinstein, 1995). This type of ordering is relevant
for bacterial-colony patterns (Ramos et al., 2008) and
will be briefly discussed here in the context of collective
motion (section IV.D).

8. Generic scale-invariance II: Heterogeneity & Griffiths phases

An essential aspect of living systems is heterogeneity.
For instance, there are dozens of neuron types intercon-
nected in extremely inhomogeneous ways. Thus, models
of biological collective properties need to address what is
the role of diversity among their basic components. In
statistical physics, one refers to “quenched disorder” as
the form of spatial-dependent heterogeneity which is in-
trinsic to the microscopic components and remains frozen
in time, reflecting structural inhomogeneities (see Fig.4).
This form of disorder can alter the nature of phase transi-
tions (see e.g.Villa Mart́ın et al. (2014) and Vojta (2006)),
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FIG. 4 Schematic representation of the phase diagram of a
homogeneous (top) and a heterogeneous (bottom) system ex-
hibiting an absorbing state phase transition. The second one
is represented by a disordered two-dimensional lattice but
other possible heterogeneous networks could have been con-
sidered. An intermediate (Griffiths) phase –with generic scale
invariance– emerges in the neighborhood of the phase transi-
tion of (some) heterogeneous systems. In particular, a fully
occupied system ρ = 1 decays as a power law only at the crit-
ical point of the pure system, but it does so in a whole region
in parameter space of the heterogeneous one.

and can also induce novel phases absent in homogeneous
systems. For instance, in the contact process, quenched
disorder can be implemented by assuming a disordered
lattice (such as that sketched in Fig.4b), a more complex
(disordered) network, or considering a node-dependent
propagation rate λ (Cafiero et al., 1998; Moreira and
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Dickman, 1996). In all these cases, a novel phase called
a Griffiths phase (Griffiths, 1969) emerges. This novel
phase stems from the existence of arbitrarily large, even
if rare, local regions characterized by parameter values
which differ significantly from their corresponding sys-
tem averages. For example, for the disordered contact
process, some tightly connected regions have an inherent
tendency to be locally active, while other more loosely-
connected ones have more propensity to become inac-
tive. Thus, even if the system is globally in its absorbing
phase, activity can linger for extremely long times con-
fined to locally active regions giving rise to asymptotic
power-law decay of the global activity (as illustrated in
Fig.4b) and very large responses (Cafiero et al., 1998;
Vojta, 2006). This critical-like features appear generi-
cally, all across the so-called Griffiths phase. Thus, it
is as if the critical behaviour extended to a stretched fi-
nite region in parameter space (see Fig.4). This type of
phase can be very relevant for inhomogeneous biological
systems exhibiting phase transitions; for example, em-
pirically observed scale-invariance in heterogeneous brain
networks (see below) may be easier to rationalize in terms
of Griffiths phases than in terms of standard criticality
(Moretti and Muñoz, 2013; Villegas et al., 2016a, 2014),
justifying the observation of broad critical-like regions
in large-scale models of neural dynamics (Friedman and
Landsberg, 2013; M. Kaiser, 2010; Rubinov et al., 2011;
Wang et al., 2011a; Wang and Zhou, 2012).

9. Generic scale-invariance III: Neutral theories

We discuss “neutral theories” as they can produce a
type of generic scale-invariance which has been recently
discovered to be important in biological systems (see be-
low). Neutral theories play a fundamental role in popula-
tion genetics (Kimura, 1984), population ecology (Azaele
et al., 2016; Hubbell, 2001), epidemics (Pinto and Muñoz,
2011), etc. They all have in common the fact that they
neglect differences among possible coexisting “species”
(let them be alleles of a gene, types of trees, bacterial
strains,...) and assume they are all dynamically equiv-
alent, i.e. neutral (Blythe and McKane, 2007). Usually
neutral dynamics is represented in terms of the so-called
voter model (Dornic et al., 2001; Liggett, 2004), but here
–for the sake of coherence with examples above– we dis-
cuss a variant of the contact process that includes differ-
ent species or “colors” (i.e. a multispecies contact pro-
cess). We consider an arbitrary parameter λ > 1, such
that the model sits anywhere within its active phase, and
introduce also a small rate for spontaneous creation of ac-
tivity, h. Every time a particle is spontaneously created,
it is defined as a novel species and a new “color” or label
is assigned to it; this color is inherited by all its possible
offspring and their progeny. Individuals have the same
rates regardless of their color, and thus they are “neu-

tral”; the overall dynamics is blind to colors and thus
it is exactly as in the standard contact process. How-
ever, some colors may proliferate more than others owing
solely to demographic fluctuations. Even if the system is
in its steady state, species can spontaneously disappear
owing to fluctuations in particle numbers, and others can
emerge out of spontaneous creation, giving rise to inva-
sions or “avalanches”. It has been shown that the sizes
and durations of such avalanches are generically scale-
free, regardless the precise value of λ, i.e. without the
need for the system to be at the critical point (λc = 1)
(Martinello et al., 2016). The reason behind this appar-
ently surprising fact is that the dynamics of each sin-
gle species is marginal with respects to the others (ow-
ing to neutrality), and thus it does not have a net ten-
dency to either grow or shrink, resulting in an effectively
marginal dynamics and thus into scale-free avalanche dis-
tributions without any need for parameter fine tuning
(Lopez-Garcia et al., 2010; Martinello et al., 2016).

III. FUNCTIONAL ADVANTAGES OF CRITICALITY

Given that –as we shall profusely illustrate in the next
section– scale-invariance and putative criticality are em-
pirically observed within a wealth of biological systems,
it seems pertinent to ask: what are the potential virtues
of criticality, susceptible to be exploited by living systems
to enhance their functionality and performance?

To shed light onto this question, we first describe a re-
markably well-understood case in which both theoretical
and empirical evidence match, and where the essential
and beneficial role played by criticality in a biological
system is clear and illuminating. Later on we discuss a
number of other possible functional advantages.

A. Criticality in the auditory and other sensory systems

The inner ear of vertebrates is able to detect acoustic
stimuli with extraordinary sensitivity and exquisite fre-
quency selectivity across many scales (Hudspeth, 2014).
At the basis of these exceptional features, there are hair
cells, the ear’s sensory receptors that, as proposed in
Gold (1948), oscillate spontaneously even in the absence
of stimuli (Choe et al., 1998; Martin et al., 2001) and are
able to resonate with acoustic inputs. Such oscillations
are damped if the concentration of Calcium ions is low,
but as such a concentration increases there is a Hopf bi-
furcation above which oscillations are self-sustained (see
e.g. Strogatz (2014)).

Empirical evidence reveals that, by regulating the ion
concentration20, hair cells operate in a regime very close

20 Self-regulation to the instability point is achieved by using a local



12

to the Hopf bifurcation (Ospeck et al., 2001), and this has
been argued to entail important consequences for signal
processing as we discuss now (Choe et al., 1998; Egúıluz
et al., 2000; Hudspeth et al., 2010; Martin et al., 2001).

A hair cell can be effectively described as Hopf oscilla-
tor (Hudspeth, 2014):

φ̇(t) = (a+ iω̃)φ(t)− |φ|2φ(t) (4)

where the phase φ is a complex number, ω̃ a resonance
frequency, and a the control parameter (ion concentra-
tion) setting the dynamical regime. Eq.(4) exhibits self-
sustained oscillations of the form φ(t) =

√
aeiω̃t if a > 0,

while if a < 0 oscillations are damped21. Introducing
stimuli of the characteristic frequency ω = ω̃ and am-
plitude F (i.e. adding +Feiω̃t to Eq.(4)), and writing
φ(t) = R(t)eiωt, one finds

Ṙ(t) = R(t)[a−R2(t)] + F. (5)

In the stationary state, for a > 0 and small F , the linear-
response regime holds, i.e. the response R is propor-
tional to F . However, at the bifurcation point, a = 0,
the response R is strongly non-linear, as R = F 1/3 and,
consequently, the ratio response-to-force R/F = F−2/3

exhibits an essential singularity as F → 0, implying a
diverging response to tiny signals of the characteristic
frequency. Given that the response decays abruptly as
the frequency deviates from the resonance, i.e. as ω 6= ω̃,
this entails an extremely efficient frequency-selection and
amplification mechanism, vividly illustrating the advan-
tage of working close to the instability point.

The described phenomenon involves a single hair-cell
with a specific intrinsic frequency and it is thus not a
collective critical phenomenon. However, the Cochlea
is arranged in such a way that it involves an (almost
uni-dimensional) array of diverse and coupled hair cells.
When coupling many different Hopf oscillators, collec-
tive phenomena –such as a phase transition– emerge,
leading to sharpened frequency response (Duke and
Jülicher, 2003; Magnasco, 2003), increased input sensi-
tivity (Gomez et al., 2015; Kern and Stoop, 2003), as
well as to power-law distributed avalanches of hair-cell
co-activations (Stoop and Gomez, 2016).

Summing up, a criticality-based mechanism (combined
with other important effects not discusse here) has been
shown to constitute the basis for all the extraordinary
features of vertebrate hearing, even the most intricate
ones (Stoop and Gomez, 2016). Similar phenomena have
been explored in the olfactory system (Bushdid et al.,
2014) and the visual cortex (Shew et al., 2015), and in
the cortex as a whole (Shew and Plenz, 2013) (see also
Chialvo (2006) and Friston et al. (2012)).

feedback control mechanism (Camalet et al., 2000; Moreau and
Sontag, 2003).

21 See Kern and Stoop (2003) from where this discussion is adapted.
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FIG. 5 Sketch of the behavior of the dynamic range near a
critical point. (Left) Steady state as a function of the driving
h (in log scale) for a given value of the control parameter λ;
∆ –the dynamic range– signals the interval where distinguish-
able responses (steady states, characterized by their activity
density ρ) can be measured. (Right) ∆ exhibits a pronounced
peak (a divergence) at criticality.

B. Exploiting criticality

1. Maximal sensitivity and dynamic range

An important trademark of critical points is the diver-
gence of the response or susceptibility which is likely to
be exploited in biological sensing systems, as discussed
above. A related quantity, dubbed dynamic range, was
introduced in Kinouchi and Copelli (2006). These au-
thors considered a model for activity propagation (similar
to the contact process) with a critical point (λc = 1) run-
ning on a random network. If the system was additionally
exposed to an external stimulus/driving, h, able to spon-
taneously create activity at empty nodes then the dy-
namic range –∆ = 10 log[h(ρ = 0.9)/h(ρ = 0.1)]– gauges
the range of diverse stimuli intensities (in log scale) where
variations in h can be robustly coded by variations in the
stationary density ρ (i.e. the response), discarding stim-
uli that give a too-weak response (ρ < 0.1) or too close
to saturation (ρ > 0.9) (see Fig.5)22. ∆ turns out to have
a marked peak at the critical point λc = 1 (see Fig.5),
indicating that the system can respond distinctively to a
very large variety of inputs. Instead, away from critical-
ity it is only in a much smaller window of h values that
the system is able to produce discriminative outputs.

2. Large correlations

The emergence of arbitrarily large correlation lengths
at criticality is an important feature susceptible to be ex-
ploited by living systems in order to induce coordinated
behavior of individual units across space and time. This
can be relevant in e.g. neural systems where coherent
behavior across extended areas is observed (Tagliazucchi

22 The choice of the interval is arbitrary; it does not affect signifi-
cantly the behavior.
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et al., 2012) and flocks of birds or insect swarms for coor-
dination purposes (Cavagna et al., 2010), as we shall dis-
cuss. Similarly, the divergence of correlation times and
critical slowing down may provide systems with a use-
ful mechanism for the generation of long-lasting and/or
slow-decaying memories at multiple timescales (see e.g.
Deco and Jirsa (2012)).

3. Computation exploiting criticality

By “computation” it is usually meant an algorithm or
system that –aiming at performing some tasks– assigns
outputs to inputs following some internal logic; and the
computational power of a given device/system is quan-
tified by estimating the complexity and diversity of as-
sociations of inputs to outputs that it can support. It
was conjectured long ago that the extraordinary compu-
tational power of living systems could be the result of
collective behavior, emerging out of a large number of
simple components (Amari, 1972; Carpenter and Gross-
berg, 2016; Grossberg, 1982; Hopfield, 1982). In par-
ticular, it was shown that networked systems operat-
ing at criticality can have exceptionally high computa-
tional capabilities, as first suggested in (Ashby, 1960;
Turing, 1950) and much further developed in the con-
text of machine learning (Crutchfield and Young, 1988;
Langton, 1990; Li et al., 1990; Packard, 1988). In par-
ticular, Langton formulated the question: under what
conditions will physical systems support the basic opera-
tions of information transmission, storage, and modifica-
tion, required to support computation?’ His answer was
that systems23 at the “edge of chaos” are especially suit-
able to perform complex computations24. The “edge of
chaos” or critical point (as we rather call it here) is the
borderline between two distinct phases or regimes: the
chaotic/disordered one in which perturbations and noise
propagate unboundedly (thereby corrupting information
storage) and the frozen/ordered phase whereas changes
are rapidly erased (hindering the possibility for the sys-
tem to react and limiting enormously its capability of
transmitting meaningful information). Thus, the critical
point confers on computing devices an optimal tradeoff
between information storage and information transmis-
sion, two of the key ingredients proposed by Turing as
indispensable for universal computing machines (Turing,
1950).

Aspects of criticality can be particularly useful in the
context of “reservoir computing” (Lukoševičius et al.,
2012; Szary et al., 2011; Verstraeten et al., 2007). This
type of computation was developed independently in

23 Cellular automata in this case (Wolfram, 2002).
24 This proposal triggered a heated debate; see, e.g. Crutchfield

(2012); Crutchfield and Young (1988); and Mitchell et al. (1993).

the fields of machine learning (“echo state networks” of
Jaeger (2001)) and computational neuroscience (“liquid
state machine” in Maass et al. (2002)). These artificial-
intelligence machines are a type of networks of nodes and
links, “the reservoir”, where each node represents an ab-
stract neuron and links between them mimic the connec-
tivity of actual biological circuits. An input signal is fed
into the network and the dynamics of the system projects
it into a higher-dimensional space. A simple mechanism
is trained to read out the state of the reservoir and map
it to the desired output, without affecting the reservoir
itself, which is a very convenient computational strategy.
A series of seminal papers showed that such machines can
perform real-time computations in a coherent yet flexible
way –in the sense of responding in real-time to time vary-
ing input signals by generating time-dependent outputs–
if they operate near a critical point (Bertschinger and
Natschlager, 2004; Boedecker et al., 2012; Legenstein and
Maass, 2007; Legenstein, 2005; Maass et al., 2002). Also,
recent work reveals that a mechanism akin to reservoir
computing enables neuronal networks of the cerebellum
to perform highly complex tasks in an efficient way by
operating at criticality (Rössert et al., 2015).

Let us finally mention that the relationship between
recent and spectacular developments in machine learn-
ing, i.e. the so-called deep learning machines (see e.g.
LeCun et al. (2015)) and criticality has been recently in-
vestigated (Lin and Tegmark, 2016; Mehta and Schwab,
2014; Oprisa and Toth, 2017a,b; Song et al., 2017).

4. Statistical complexity and large repertoires

In systems at equilibrium, the divergence of the spe-
cific heat at criticality reflects the huge variability of pos-
sible internal states (Binney et al., 1993). Similarly, in
dynamical problems the variability of dynamical tran-
sitory patterns is maximal at criticality (as illustrated
above for the contact process), allowing for a very wide
spectrum of possible responses, sometimes called “dy-
namical repertoire”. This is consistent with the finding
that e.g. models for brain activity reach highest signal
complexity, with a variety of attractors and multista-
bility when operating near criticality (Deco and Jirsa,
2012; Haimovici et al., 2013). Similarly, (i) the num-
ber of metastable states (Haldeman and Beggs, 2005),
(ii) the amount of response patterns (Rämö et al., 2007,
2006), (iii) the variability of phase synchrony structures
(Yang et al., 2012), (iv) the variability of attractors to
support memories in neural systems (de Arcangelis and
Herrmann, 2010) or cellular genetic regulatory networks
(Krawitz and Shmulevich, 2007), and (v) the diversity in
structure-dynamics relationships (Nykter et al., 2008b)
have been shown to be maximized at criticality. All this
suggests that in order to spontaneously generate complex
patterns, required e.g. to store highly diverse tokens of
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information, operating near criticality can be an excellent
solution.

5. Optimal information transmission

Information transmission is usually quantified in terms
of mutual information among internal parts of the sys-
tems or between the system and external sources (Cover
and Thomas, 1991; Mezard and Montanari, 2009). Mu-
tual information measures the amount of information
that the knowledge of one variable provides about an-
other and, hence, can be used as an estimator of the infor-
mation transfer between them (Prokopenko et al., 2009;
Ribeiro et al., 2008). Several studies have unveiled that
the overall transmission of information between units is
maximal if the underlying dynamical process is critical
(Beggs, 2008; Li et al., 1990; Luque and Ferrera, 2000;
Prokopenko, 2013; Rämö et al., 2007; Ribeiro et al.,
2008). Similarly, information transfer and transfer en-
tropy (Lizier et al., 2008b; Shriki and Yellin, 2016; Solé
and Miramontes, 1995; Solé and Valverde, 2001), Fisher
information (Wang et al., 2011b) and, more in general,
statistical complexity (as discussed above) (Krawitz and
Shmulevich, 2007; Lizier et al., 2008a; Rämö et al., 2007)
have been thoroughly analyzed and shown to be maximal
at criticality is critical25.

C. Adaptation and evolution towards criticality

In the preceding paragraphs we have discussed a num-
ber of properties that are optimal at criticality. It re-
mains to be clarified how do adaptive (GellMann, 1994;
Gros, 2008) and/or evolutionary (Nowak, 2006) mech-
anisms –characteristic of life26– lead biological systems
toward critical states.

Aimed at shedding light on this, Goudarzi et al. (2012)
considered an ensemble of individuals or “agents”, each
of them represented as a dynamical network, with a bi-
nary variables defined at each node, with some input
nodes (reading information from the environment) and
some readout nodes, providing an output or response.
The states of nodes are updated following random bi-
nary (Boolean) functions which allot a specific output
to a set of inputs. Larger “fitness” values are assigned
to networks that are able to perform better a series of
computational tasks, each one consisting in having to
assign a specified output to a series of different inputs.
Diverse tasks are alternated in time. By allowing for ran-
dom “mutations” in their internal structure, i.e. in the

25 Some authors suggest that the maxima are not exactly at criti-
cality (Barnett et al., 2013; Toyoizumi and Abbott, 2011).

26 This is, beyond purely self-organization mechanisms, such as
SOC, also exhibited by inanimate systems.

binary functions connecting the agents can explore dif-
ferent network states and dynamical regimes. Employing
a genetic algorithm (Goldberg and Holland, 1988) it was
shown that the agents converge to a state close to crit-
icality. In other words, critical dynamics emerge as the
optimal solution under the combined selective pressures
of having to learn different tasks (i.e. having to produce
different outcomes/attractors) and being able to readily
shift among them, following changes in the inputs.

In a similar setting, it has been found that the overall
dynamics of networks that have already learnt to per-
form a given set of tasks is very close to criticality and
that the adaptive learning process leads nodes to become
heterogeneous: those receiving inputs become locally su-
percritical (in the sense of propagation of perturbations)
allowing for large reactivity, while those in the network
core –where, in order to to successfully perform the task,
information has to flow more reliably/deterministically–
become subcritical locally (Villegas et al., 2016b). This
opens promising research avenues, as it distinguishes dif-
ferent dynamical states in different parts of the network.
Also, in the presence of strong external noise -which ran-
domly modifies the states of nodes– optimal networks
tend to be slightly subcritical, rather than critical, thus
compensating for extrinsic sources of variability (Villegas
et al., 2016b).

Hidalgo et al. (2014) showed –relying on an
information-theoretic approach– that communities of
similar adaptive agents trying to communicate with each
other, converge to a peak of the (generalized) suscep-
tibility (which, in particular, may be a critical state).
More specifically, the task consists in being able to infer
the state of other agents in an efficient way, thus creat-
ing a “common language”. This approach was argued to
provide a parsimonious mechanism for the emergence of
critical-like behavior in groups of individuals needing to
coordinate themselves as an ensemble (see also, Hidalgo
et al. (2016)).

IV. EMPIRICAL EVIDENCE OF CRITICALITY IN LIVING
SYSTEMS

In what follows we present some of the most-
remarkable existing empirical evidence of criticality in
biological systems. We warn the reader that –even if the
aim is to present a collection as extensive and exhaustive
as possible– the selection of topics as well as the extent
in which they are discussed might be biased by our own
experience. Also, importantly, even if some of the exper-
iments and findings to be discussed are very appealing,
evidence in many cases is not complete and conclusions
should be always taken with caution. Indeed, for many of
the forthcoming examples, we also discuss existing criti-
cisms and potential technical or interpretative problems.
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A. Spontaneous neural activity

1. Endogenous cortical activity

An adult human brain consists of almost 1011 neurons
and up to 1015 synaptic connections among them, form-
ing an amazingly complex network through which electric
signals propagate (Keenan et al., 2007). Remarkably, the
cerebral-cortex of mammalians is never silent, not even
under resting conditions nor in the absence of stimuli.
Instead, it is in a state of ceaseless spontaneous electro-
chemical activity (Arieli et al., 1996; Fox and Raichle,
2007; Raichle, 2011; Yuste et al., 2005). Neurons inte-
grate presynaptic excitatory and inhibitory inputs from
other neurons, and fire an action potential when a given
threshold is overcome, stimulating further ongoing ac-
tivity. This generates irregular outbursts –i.e. the syn-
chronization events during which many neurons fire co-
herently within a short time– interspersed by quiescent
periods, as empirically observed both in vitro (Eytan
and Marom, 2006; Sanchez-Vives and McCormick, 2000;
Segev and Ben-Jacob, 2001; Segev et al., 2001; Tabak and
Latham, 2003) and in vivo (Meister et al., 1991; Steriade
et al., 1993), and as sketched in Fig.6. Understanding the
genesis and functionality of spontaneous cortical activity
– which accounts for about 20% of the total oxygen con-
sumption of a person is at rest– is key to shedding light
onto how the cortex processes information and computes,
and ultimately on how the brain works (Arieli et al., 1996;
Deco et al., 2011, 2013a; He, 2014). Criticality might
play a relevant role in this context as we discuss in what
follows.

2. Neuronal avalanches

Beggs and Plenz (2003), in a remarkable breakthrough,
succeeded at resolving the internal spatio temporal orga-
nization of individual bursts of activity. They analyzed
mature cultures as well as acute slices of rat cortex, and
recorded spontaneous local field potentials (LFP) –which
provide coarse-grained measurements of electrochemical
activity– in different locations as a function of time. Lo-
cal events of activity are defined as (negative) peaks of
the LFP signals, which are indicative of local popula-
tion spikes (Beggs and Plenz, 2003). As illustrated in
Fig.6, events at different sites have a tendency to cluster
in time in a close-to-synchronous way, producing “net-
work spikes”; but each of these peaks of synchrony, when
temporally resolved, consists in a cascade of succesive lo-
cal events, organized as neuronal avalanches interspersed
by periods of quiescence (Beggs and Plenz, 2003, 2004).
The avalanche sizes (i.e. number of local events each one
includes) and durations were found to be distributed as
power-laws with exponents τ ≈ 3/2 and α ≈ 2, respec-
tively, with cut-offs that increase with system size. These
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FIG. 6 Sketch illustrating how neuronal avalanches are mea-
sured. (top) Local field potential (LFP) are measured at dif-
ferent locations; negative peaks of a LFP timeseries correlate
with local population spikes of the underlying neurons. (Mid-
dle) Raster plot illustrating the times at which peaks of the
LPF occurs for different measurement sites. Observe that
these events are clustered in time; i.e. they occur in a close
to synchronous fashion. (Bottom) Enhancing the temporal
resolution, it is possible to resolve the spatio-temporal orga-
nization of local events; they occur in the form of “neuronal
avalanches” (shaded columns) interspersed by periods of qui-
escence (white columns).

exponents are in agreement with the (mean-field) the-
ory of critical contact/branching processes as described
in Section I. Importantly, this conclusion breaks down
when data are temporally reshuffled, which results in ex-
ponential avalanche distributions, i.e. large events disap-
pear and long-ranged temporal correlations are washed
away. Furthermore, the averaged branching ratio, i.e.
the expected value of the quotient between the number
of active sites at a given time and at its preceding time,
was found to be very close to unity, consistent with crit-
icality of the underlying activity-propagation process27

(Beggs and Plenz, 2003; Plenz and Thiagarajan, 2007).
Consistent results have been obtained in vitro (Mazzoni
et al., 2007; Pasquale et al., 2008) and in vivo for different
species (Gireesh and Plenz, 2008; Hahn et al., 2010; Pe-
termann et al., 2009; Ribeiro et al., 2010; Yu et al., 2011)
and across resolution scale, from single neuron spikes

27 Also, inter-avalanche correlations have been analyzed, revealing,
e.g. that avalanche sizes are significantly correlated with the
duration of the preceding quiescence time (Lombardi et al., 2012,
2014, 2016; Pittorino et al., 2017).



16

to rather coarse-grained measurements28. The fact that
at quite different resolution scales similar results are re-
ported is, by itself, strongly supportive of the existence
of underlying scale-invariant dynamical processes29.

Not only critical exponents but also other generic fea-
tures of spatio-temporal scale-invariance have been em-
pirically reported. In particular, avalanche distributions
for different sample sizes obey finite-size scaling Eq.(2),
as they can be collapsed into a unique re-scaled curve
(Beggs and Plenz, 2003; Mazzoni et al., 2007; Petermann
et al., 2009). Similarly, the mean temporal profile of neu-
ronal avalanches of widely varying durations is quanti-
tatively described by a single universal scaling function
(Friedman et al., 2012; Sethna et al., 2001), and scaling
relationships between the measured exponents are ful-
filled (Friedman et al., 2012).

All this seems to make a strong case in favor of criti-
cality. However, some caveats exist. Some of them are:

(i) Thresholding: A source of ambiguities in extracting
(discrete) events from (continuous) time-series analyses
comes from thresholding; i.e. from the fact that activity
at any given spatio-temporal location needs to overcome
some threshold to be declared an “event”. Petermann
et al. (2009) compared results for different thresholds
in LFPs timeseries; obviously, avalanches can split into
smaller ones as the threshold is raised and some events
may disappear. Remarkably, avalanche (size and dura-
tion) distributions were reported to remain unaffected
by this process, suggesting the existence of an under-
lying scale-invariant organization of events (Petermann
et al., 2009). Thus, thresholding can be viewed as a sort
of coarse-graining procedure that –if properly performed–
should preserve universal properties such as exponents of
truly scale invariant processes. A word of caution is re-
quired as recent works have underlined the “perils” asso-
ciated with thresholding, which in some controlled cases
has been shown to generate effective avalanche exponents
(at least for small sizes/times) as well as correlations in
the timings of consecutive avalanches (Font-Clos et al.,
2015; Janićević et al., 2016; Laurson et al., 2009). Ad-
vancing along these research lines remains an important
task.

(ii) Time binning: Avalanches can only be defined
by employing a criterion to establish when an avalanche

28 This includes single unit recordings (Bellay et al., 2015), local
field potentials (LFP) (Beggs and Plenz, 2003; Petermann et al.,
2009), electroencephalography (EEG) (Allegrini et al., 2010;
Freeman et al., 2003; Meisel et al., 2013) and electrocorticog-
raphy (ECoG) (Solovey et al., 2012), magnetoencephalography
(MEG) (Novikov et al., 1997; Palva et al., 2013; Poil et al., 2012;
Shriki et al., 2013), and functional magnetic resonance imaging
(fMRI) (Haimovici et al., 2013; Tagliazucchi et al., 2012), among
others.

29 Some studies suggest that even single neurons can be intrinsi-
cally critical to optimize e.g. their inherent excitability (Gal and
Marom, 2013; Gollo et al., 2013).

starts and when it ends. This requires setting a discrete
time binning to be applied to the data: an avalanche
starts when a time-bin with some activity within it fol-
lows a series of preceding consecutive quiescent ones, and
ends when a new quiescent time-bin appears (Beggs and
Plenz, 2003) (see Fig.6). This introduces some ambi-
guity, and the measured avalanche exponents have been
shown to be sensitive to the choice of the time-bin. How-
ever, taking this to coincide with the mean inter-event in-
terval, the mean-field branching process exponents seem
to be systematically recovered (Beggs and Plenz, 2003;
Haimovici et al., 2013; Petermann et al., 2009; Tagliazuc-
chi et al., 2012). Still, in our opinion, further work is
needed to clarify the effect of time binning in the analy-
sis of avalanches.

(iii) Sub-sampling: A closely related issue is that of
sub-sampling as a result of technological resolution limi-
tations. The effects of sub-sampling have been carefully
discussed in Priesemann et al. (2009, 2013, 2014), where
it was argued that empirical data are better character-
ized by a slightly sub-critical dynamics rather than by a
critical one; see also Tomen et al. (2015).

(iv) Limited scales: In general, no more than two, at
most three, orders of magnitude in avalanche statistics
have been reported which is somehow unsatisfactory. Ob-
taining much broader regimes of scale invariance is tech-
nically challenging, but this would make a stronger case
for actual scale-invariance (Yu et al., 2014).

(v) Alternative explanations: Some authors sup-
port different interpretations of the observed power-laws
(Touboul and Destexhe, 2010, 2017) or claim that they
are not power-laws whatsoever30.

However, additional experimental signatures of criti-
cality, beyond scale-free avalanches, have been also re-
ported in cortical networks, as we describe in what fol-
lows.

3. Neural synchronization

Much attention has been historically devoted to brain
rhythms observed in EEG, MEG, and LFP measurements
(Buzsaki, 2009). These rhythms emerge owing to the
transient synchronization (Pikovsky et al., 2003) between
different neural regions/circuits, and they play a key role
in neural function (Steriade et al., 1996). Indeed, clus-
ters of neurons with coherent neural activity have a much
stronger coordinated effect on other neuronal assemblies
than asynchronous neurons do (Brunel and Hakim, 2008;

30 For more details, see Bédard et al. (2006); Dehghani et al. (2010);
Destexhe (2009); Destexhe et al. (2007); Touboul and Destexhe
(2010, 2017), as well as Yu et al. (2014) for a criticism to some
of these works.
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Kelso et al., 1986; Scholz et al., 1987). Thus, phase syn-
chrony is essential for large-scale integration of informa-
tion (Varela et al., 2001), and abnormalities in the level
of synchronization –either by excess or by defect– are
a signature of pathologies such as epilepsy, Parkinson’s,
schizophrenia, or autism (Yang et al., 2012). Empiri-
cally, the measured level of synchronization across brain
regions and across time has been found to be highly vari-
able and with strong long-range correlations. This can
be interpreted as a template for variability in the possi-
ble responses to stimuli and, hence, as a basis of a large
dynamical repertoire (Arieli et al., 1996) and to achieve
a balance between integration and segregation (Tononi
et al., 1994). The role that criticality might play in
keeping intermediate and variable levels of synchrony has
been empirically analyzed.

Spontaneous bursts of coordinated activity (much as
in Fig.6) have been detected in cortical slice cultures
(Yang et al., 2012). The overall level of phase synchrony
between different electrodes was recorded under differ-
ent pharmacological conditions, ranging from excitation-
dominated to inhibition-dominated regimes. It was ob-
served that there is a transition point where excitation
and inhibition balance. At such a point –i.e. “the edge of
synchrony” (Brunel, 2000; Deco et al., 2014; Palmigiano
et al., 2017)– the level of synchronization variability is
maximal and scale-free avalanches of activity are con-
comitantly observed (Gireesh and Plenz, 2008; di Santo
et al., 2017a; Yang et al., 2012).

4. Diverging correlations and responses

Here we summarize diverse features characteristic of
criticality that have been empirically identified in the
awake/healthy brain.

Analyses of different timeseries (e.g. measurements
of cortical activity oscillations in EEG and MEG anal-
yses) reveal the emergence of power-laws in the form of
1/f power spectra of amplitude fluctuations, reflecting
an intricate composition of frequencies across many dif-
ferent timescales (Allegrini et al., 2009; He, 2011; Miller
et al., 2009; Novikov et al., 1997; Pritchard, 1992; Zare
and Grigolini, 2013). 1/f power spectra can be taken
as evidence that ongoing neural dynamics is strongly au-
tocorrelated (West and Grigolini, 2010), meaning that
timeseries carry a long-range memory of their own dy-
namics across time, as directly verified in EEG data using
a variety of analyses (Hardstone et al., 2012; Linkenkaer-
Hansen et al., 2001), and this might be suggestive of
criticality. However, evidence based on 1/f spectra by
itself does not make a strong case to support criticality,
as a large variety of alternative mechanisms –not rely-
ing on criticality– have been proposed to explain 1/f
power spectra, both in general terms (Amaral et al.,
2004; De Los Rios and Zhang, 1999; Hausdorff and Peng,

1996; Mandelbrot, 2002; Manneville, 1980) and specifi-
cally for neural systems (Bédard et al., 2006; Dehghani
et al., 2010; Pettersen et al., 2014). Still, 1/f noise in
concomitance with other empirical signatures of critical-
ity, such as spatial long-range correlations, can reinforce
existing evidence.

Two-point spatial correlation functions (as determined
e.g. from resting-state fMRI data) have been also ana-
lyzed and shown to exhibit self-similarity in both space
and time (Expert et al., 2011; He, 2011). This is done by
the application of successive spatial coarse-graining steps
(space) and by the presence of a 1/f power-spectrum
(time), respectively. Remarkably, correlations are much
larger in the awake than in the anesthetized state sug-
gesting that criticality (at least large correlations) might
be a feature of the awake brain (Bellay et al., 2015).

The dynamic range has been experimentally measured
in cortical neural networks in vitro (Shew et al., 2009)
and in vivo (Gautam et al., 2015). By pharmacologically
altering the ratio of excitation to inhibition –thus tuning
the dynamical state– the authors were able to measure
the stimulus/response curve (see Fig.5) as a function of
the distance to the critical point –as defined by the pre-
cise balance between excitation and inhibition– and to
verify that ∆ exhibits a pronounced peak at the criti-
cal point, which is also where scale-free avalanches are
observed.

Cortical ongoing activity has been vividly shown to be
in a state of high sensitivity/susceptibility (Arieli et al.,
1996). Also, when a stimulus is presented repeatedly, the
variability of the evoked cortical response is often as large
as the response itself (Arieli et al., 1996). Even more re-
markably, it has been reported that experimentally mod-
ifying the state of a single neuron can dramatically alter
the global brain state (Cheng-yu et al., 2009; Houweling
and Brecht, 2007).

5. Global activity at the edge of stability

Solovey et al. (2012) analyzed high-temporal-
resolution electrocorticography (ECoG) data from
recordings in humans, observing time-dependent levels
of activity across different locations. The system state
can be represented a a vector, whose time evolution
can be approximated by employing an auto-regressive
analysis, a commonly-used tool in time-series analyses
which maps the actual continuous-time dynamics to
a series of linear (matricial) transformations between
successive discrete-in-time vector states (Akaike, 1969).
By performing an eigenvector decomposition of each
of the matrices, it is possible to monitor the evolution
of the leading eigenvalues as a function of time. In
awake individuals, eigenvalues turn out to oscillate
closely around the threshold of instability, indicating
that the dynamics is self-regulated at the edge of a
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phase transition. Remarkably, in anesthetized subjects,
eigenvalues become much more stabilized, suggesting
that deviations from the instability point could be used
as a measure of loss of consciousness (Alonso et al.,
2014).

6. Models at criticality and optimal data fits

A series of works have analyzed the performance of
computational models –tuned to operate in their different
possible dynamical regimes– to produce the best possible
fit to empirical data from neural systems.

(i) Aburn et al. (2012) found that tuning a model of
cortical activity to its critical point reproduces strong
auto-correlations of local timeseries, as observed in EEG
measurements (Allegrini et al., 2010; Meisel et al., 2013;
Poil et al., 2012; Van de Ville et al., 2010).

(ii) It has also been found that models of cortico-
thalamic activity need to operate at points of instability
to describe multistability and the emergence of empiri-
cally recorded (α) oscillations (Freyer et al., 2009, 2011).

(iii) Functional magnetic resonance imaging (fMRI)
studies performed in the resting-state –i.e., while the
subject is awake not performing any specific task– reveal
the emergence of spatio-temporal patterns of strongly co-
herent fluctuations in the level of activity. This allows
to determine so-called “resting state networks”, encod-
ing pairwise correlations between different brain regions,
which collectively become active or inactive, and that
are consistently found in healthy individuals31. Running
diverse simple dynamical models on top of the empiri-
cally determined network of physical (neuro-anatomical)
connections of the human brain –i.e. on the “human
connectome network”– it was found that spatio-temporal
correlations similar to the empirically-measured ones, are
reproduced if and only if the models operate at critical-
ity (Cabral et al., 2011; Fraiman et al., 2009; Haimovici
et al., 2013; Plenz, 2013). This suggests that resting-state
spatio-temporal patterns of activity emerge from the in-
terplay between the critical dynamics and the large-scale
underlying architecture of the brain. Thus, resting state
networks reflect structured/critical fluctuations among a
set of possible attractors –among which the brain state
can jump– suggestive of a state of alertness facilitating
rapid task-dependent shifts (Deco and Jirsa, 2012; Deco
et al., 2013b; Ghosh et al., 2008; Ponce-Alvarez et al.,
2015).

(iv) More recent studies have employed the Kuramoto
model for the synchronization of coupled oscillators
(Acebrón et al., 2005; Arenas et al., 2008; Breakspear

31 See the extensive literature on this e.g. (Beckmann et al., 2005;
Biswal et al., 1995; Deco et al., 2011, 2013a; Diez et al., 2015;
Greicius et al., 2003; Raichle et al., 2001).

et al., 2010; Kuramoto, 1975; Strogatz, 2000) on top of
the human connectome network. These models unveil
that, owing to the highly heterogeneous architecture of
brain networks –with a hierarchical modular organiza-
tion32– there can be a broad region in parameter space
where large levels of variability and intermittency in syn-
chrony are observed. This implies that the dynamics
would not require to be exactly critical to reproduce em-
pirical findings, but just to be located in a broad region
in parameter space resembling a Griffiths phase, as de-
scribed in Sect.I (Sadilek and Thurner, 2015; Shanahan,
2010; Villegas et al., 2016a, 2014; Wildie and Shanahan,
2012).

7. A percolation-like phase transition

Tagliazucchi et al. (2012) related cortical dynamics to
a percolation phenomenon (Christensen and Moloney,
2005; Peters and Neelin, 2006). More specifically, by em-
ploying a thresholding method to continuous fMRI time
series in the resting state, the authors derived spatio-
temporal point process (a series of discrete “events”).
Using the density of active sites at a given time as an
effective measure of an “control parameter”, while the
size of the largest connected cluster at each time as a
(percolation-like) “order parameter”, it was found that
there is a value of the control parameter at which both
the total number of clusters and their size-variability ex-
hibit a peak, as happens at the threshold of percolation-
like transitions. Data are observed to stay most of the
times close to such a critical values, but with broad ex-
cursions to both, sub- and super-critical phases, suggest-
ing that regulatory mechanisms keep the system hover-
ing around a percolation transition33. Furthermore, the
cluster-size distribution is a power-law spanning almost
four orders of magnitude when the system is in the crit-
ical region. These model-independent results reveal that
the resting brain spends most of the time near the point
of marginal percolation of activity, neither “too” inactive
nor exceedingly active.

8. Disruptions of criticality and abnormal behavior

Experimental analyses of neural activity under modi-
fied physiological, pharmacological, or pathological con-

32 The network of neuro-anatomical connections, e.g. the human
connectome, turns out to be a network organized in moduli –
characterized by a much larger intra than inter connectivity-
structured in a hierarchical nested fashion across many scales
(Betzel et al., 2013; Breakspear, 2017; Bullmore and Sporns,
2009; Kaiser, 2011; Meunier et al., 2010; Sporns, 2010; Sporns
et al., 2004, 2005).

33 This is similar to what happens in self-organized quasi-criticality;
see Sect.I.
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ditions provide an important piece of evidence that crit-
icality might be specific of awake and healthy brain ac-
tivity. For instance, repressing inhibitory mechanisms
–i.e. breaking the perfect balance between excitation
and inhibition that characterizes functional neural net-
works (Barral and Reyes, 2016; Rosenbaum and Doiron,
2014; van Vreeswijk and Sompolinsky, 1996)– induces a
tendency to super-critical propagation of activity, includ-
ing many large system-spanning avalanches, clearly dis-
rupting scale-invariant behavior (Beggs and Plenz, 2003;
Mazzoni et al., 2007).

Signatures of criticality have been reported to fade
away during epileptic seizures (Hobbs et al., 2010; Meisel
et al., 2012) as well as during anomalously large periods
of wakefulness (Meisel et al., 2013) or while performing
simple tasks (Hahn et al., 2017). Similarly, long-range
temporal correlations –characteristic of the awake state–
break down during deep sleep (Tagliazucchi et al., 2013),
anesthesia (Bellay et al., 2015; Ribeiro et al., 2010), and
under unconsciousness (Tagliazucchi et al., 2016), sug-
gesting that critical dynamics is specific to the state of
wakefulness. In this context, sleep has been proposed as
a mechanism to reset the dynamics to criticality (Pearl-
mutter and Houghton, 2009).

Experimental evidence supports the idea that develop-
ing cortical networks go through different stages in the
process of maturating: they shift from being supercrit-
ical, to subcritical, and then finally, converge towards
criticality only when they become mature (Stewart and
Plenz, 2008; Tetzlaff et al., 2010).

These observations suggest that criticality is the base-
line state of mature, healthy, and awake neural networks
and that deviations from criticality have profound func-
tional consequences (Hobbs et al., 2010; Massobrio et al.,
2015).

9. Models of neuro-criticality

Since the idea that the computational power of the
brain could emerge out of collective properties (Hertz
et al., 1991; Hopfield, 1982), a large and disparate
number of modeling approaches –with varying levels of
sophistication– have been proposed to scrutinize neural
dynamics (Amit, 1992; Amit and Brunel, 1997; Dayan
and Abbott, 2006; Izhikevich, 2004, 2007; Kandel et al.,
2000; Mattia and Sanchez-Vives, 2012). These reveal a
large variety of phases and possible dynamical regimes
such as up and down states (Cortes et al., 2013; Hidalgo
et al., 2012; Holcman and Tsodyks, 2006; Mattia and
Sanchez-Vives, 2012; Mejias et al., 2010; Parga and Ab-
bott, 2007), synchronous and asynchronous phases (Ab-
bott and van Vreeswijk, 1993; Brunel, 2000; Brunel and
Hakim, 2008), as well as phase transitions separating
them. Our aim here is not to review them exhaustively.
Rather, we focus on approaches aimed at justifying the

possible emergence of criticality in actual neural net-
works.

P. Bak34 is to be acknowledged for first proposing that
concepts of criticality and self-organization (i.e. SOC)
could play a role in neural dynamics35. Herz and Hopfield
(1995) readily pointed out that stylized integrate-and-fire
models of neuronal networks were mathematically equiv-
alent to SOC archetypes. Thereafter, some works ex-
plored simple neural-network dynamics similar to SOC
(sandpile) models, in which stress is accumulated and
then released to neighboring units in a conserved way,
i.e. without leakage. de Arcangelis et al. (2006) intro-
duced a conservative neural-network model, inspired by
SOC, but also including a number of physiological fea-
tures such as refractory periods and long-term Hebbian
synaptic plasticity36. This setting, which actually leads
to criticality, gave rise to a number of important studies
on the interplay between critical dynamics, memory and
learning (de Arcangelis, 2011, 2012; de Arcangelis and
Herrmann, 2010, 2012; de Arcangelis et al., 2014).

Levina and collaborators proposed in a series of
seminal works to use short-time synaptic depression
(Markram and Tsodyks, 1996; Sussillo et al., 2007;
Tsodyks and Markram, 1997) as a mechanism to con-
trol neural networks and to auto-organize them to the
edge of a phase transition (Levina et al., 2007, 2009)
(see also (Gómez et al., 2008)). In particular, synaptic
strengths become depressed after firing of pre-synaptic
neurons (due to temporary neurotransmitter depletion)
–thus reducing the level of overall activity– and remain
so for a characteristic recovery period, while they slowly
recover to their baseline level. The alternation of these
activity-dependent mechanisms (i.e. slow charging and
fast dissipation) generate a feedback loop that, allegedly,
guides the networks to criticality, much as in SOC.

Similar models for the self-organization to criticality
relying on diverse regulatory or homeostatic mechanisms
(Cortes et al., 2012) such as spike-timing dependent plas-
ticity (Effenberger et al., 2015; Meisel and Gross, 2009;
Rubinov et al., 2011; Shin and Kim, 2006), retro-synaptic
signals (Hernandez-Urbina and Herrmann, 2017), and
Hebbian plasticity (de Arcangelis, 2011; de Arcangelis
and Herrmann, 2010, 2012; de Arcangelis et al., 2014,
2006; Bienenstock and Lehmann, 1998; Uhlig et al.,
2013), have been analyzed.

34 Together with D. Chialvo and other close collaborators.
35 See e.g. (Bak, 1996; Bak and Chialvo, 2001; Chialvo, 2004;

Chialvo and Bak, 1999; Stassinopoulos and Bak, 1995). Also,
early work by Haken, Kelso and coworkers brought about the
possibility of bifurcations in neural dynamics and stressed the
potential role that critical fluctuations and critical slowing-down
might play (Haken, 1977, 2013; Kelso et al., 1986; Scholz et al.,
1987).

36 Hebbian plasticity is believed to underlie many instances of learn-
ing (Hebb, 1949).
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However, doubts have been cast on the limits of valid-
ity of this type of SOC-like approaches. Actually, they
might be not truly biologically plausible as they rely on
conservative or almost-conservative dynamics (while neu-
rons and synapses are leaky) and, even more importantly,
they require of an unrealistically large (infinite) separa-
tion of timescales to actually self-tune the dynamics to a
critical state (de Andrade Costa et al., 2015; Bonachela
et al., 2010; Bonachela and Muñoz, 2009). If the sepa-
ration of timescales in these models is fixed to moder-
ate/intermediate values, such a self-organization is not
achieved, leading to different possible scenarios (such as,
e.g. the system hovering up and below the critical point
(Bonachela et al., 2010) or not being critical at all).

Another very important and influential model was
claimed to explain self-organized criticality without as-
suming conservative dynamics nor an infinite separation
of timescales (Millman et al., 2010). As a matter of fact,
this model (consisting of a network of leaky integrate-
and-fire neurons with synaptic plasticity) was shown
to exhibit a discontinuous phase transition –lacking a
critical point– between an up and a down state, with
high and low levels of activity, respectively. This is
relevant as similar up and down states are empirically
known to emerge under deep sleep or anesthesia (Hol-
cman and Tsodyks, 2006; Steriade et al., 1993). Re-
markably, the model was also found to display scale-
free avalanches all across its active phase. This is puz-
zling from the view point of models of activity propaga-
tion that –under standard conditions– generate scale-free
avalanches only at criticality. This apparent paradox has
been recently solved (Martinello et al., 2016); it has been
shown that indeed the model exhibits the reported scale-
free avalanches occurring all across its active/up phase,
but these are neutral avalanches (see Sec.II..9) unfolding
in a background of ongoing spontaneous activity. Thus,
such avalanches can only be detected if species labels
are identified; i.e. only by employing information about
causal relationships on which neuron triggers the firing
of which other (Martinello et al., 2016), and this type
of information is usually not accessible in experiments
(see, however, Williams-Garcia et al. (2017)). Further-
more, if avalanches are measured as in experiments (i.e.
employing a temporal binning) they turn out not to be
scale-free (Martinello et al., 2016). Thus, the model fails
to describe the empirical finding on temporally-defined
scale-free avalanches. The same criticism applies also
to other more neuro-physiologically realistic models (see
Stepp et al. (2015)). This observation reveals a gap in the
literature between time-binned defined avalanches (in ex-
periments) and causally defined avalanches (in models).

All the models discussed above have in common that
they identify neural criticality with the edge of an
activity-propagation phase transition. Recently, some
other models have provided theoretical evidence that
neural dynamics should exhibit a synchronization phase

transition, at which neuronal avalanches and incipient
oscillations coexist (Gireesh and Plenz, 2008; Poil et al.,
2012; di Santo et al., 2017a; Yang et al., 2012) (see above
for empirical evidence of this). However, these models
provide no mechanistic explanation of why the dynamics
should operate precisely at the edge of the synchroniza-
tion phase transition.

Last but not least, the amazingly detailed computa-
tional model built within the large-scale collaborative
Blue brain project (Markram, 2006) suggests that the
cortical dynamics operates at the edge of a phase transi-
tion between an asynchronous phase and a synchronous
one with emerging oscillations (Markram et al., 2015).
The regulation of calcium dynamics has been cited as
a possible responsible mechanism for keeping the system
close to such a critical state, operating at a point at which
a whole set of empirical results can be quantitatively ex-
plained by the model (Markram et al., 2015).

Finally, let us stress that theoretical approaches not re-
lying on criticality whatsoever have been proposed to ac-
count for the empirically observed scale-free avalanches.
For instance, a novel mechanism providing an alternative
explanation for the emergence of broadly heterogeneous
avalanches away from any phase transition has been re-
cently put forward. This mechanism, called “stochas-
tic amplification of fluctuations”, is able to produce long
tailed avalanche distributions without the need of pre-
cise fine tuning (Benayoun et al., 2010). It relies on the
(approximate but not perfect/critical) balance between
excitatory and inhibitory couplings. Mathematically, it
requires the presence of a stable fixed point of the dynam-
ics, whose associated stability matrix is “non-normal”37

together with inherent stochasticity.
Also, very importantly, it has been argued that

avalanche scale-free statistics can emerge naturally in
networks of neurons operating in self-sustained irregu-
lar regimes away from criticality (Touboul and Destexhe,
2017). Remarkably, they showed that a set of spiking
neurons, described as Poissonian point processes, shar-
ing a common time-dependent irregular firing rate, do
exhibit generically scale-free avalanches. Fully clarifying
these findings and their relevance in connection with em-
pirical observations is a very important current task.

Thus, summing up –even if sound and very interesting
dynamical models, supporting the idea of criticality in
the brain have been proposed– we believe that none of
them provides a definitive theoretical support to the idea
that the real cortex “should” operate at the edge of a

37 Nonnormal matrices are such that their eigenvectors are not mu-
tually orthogonal. If they are used as a basis set, information
deriving from a standard local stability analysis can be deceiv-
ing: even if amplitudes decay to zero in time, strong transitory
growth can appear (Murphy and Miller, 2009; Trefethen and Em-
bree, 2005).
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phase transition. Thus, understanding the nature of the
overall dynamical state of the cortex remains a matter of
debate and constitutes a key open challenge.

B. Genetic and cell networks

Living cells exhibit stable and robust characteristic fea-
tures even under highly variable conditions, while they
also exhibit flexibility allowing them to adapt to radical
environmental changes. This is feasible owing to the fact
that a unique set of genes (i.e. a “genotype”) can give rise
to diverse cellular states (“phenotypes”), consisting of di-
verse gene-expression patterns in which some genes are
differentially expressed, while others are silenced38. Cells
can thus be seen as “machines” executing complex gene-
expression programs that involve the coordinated expres-
sion of thousands of genes39(Alon, 2006; Buchanan, 2010;
Crick, 1970; Kitano et al., 2001; Koonin, 2011; Koonin
et al., 2006).

Since the pioneering proposal of Kauffman (1993), cel-
lular states have been identified as attractors of the dy-
namics of gene regulatory networks, where the genes are
the network nodes and their mutual regulatory (activa-
tion/repression) interactions are represented as directed
links between them. The development of powerful exper-
imental high-throughput technologies in molecular biol-
ogy (such as DNA microarray experiments) paved the
way to the experimental investigation of gene-expression
patterns in large regulatory networks (Filkov, 2005) and,
in particular, provided empirical evidence that, indeed,
sequences of cell states (apoptosis, proliferation, differ-
entiation, etc.) can be viewed as programs encoded in
the dynamical attractors of gene regulatory networks (Al-
bert and Othmer, 2003; Espinosa-Soto et al., 2004; Huang
et al., 2005; Li et al., 2004). Consequently, the study of
information processing in cells shifted progressively from
single genes to increasingly complex circuits/networks of
genes and regulatory interactions, shedding light on col-
lective states (Garcia-Ojalvo, 2011; Hartwell et al., 1999;
Shmulevich and Dougherty, 2010).

1. Models of genetic regulatory networks

Many genes are empirically observed to exhibit bista-
bility, i.e. their gene-expression levels are either “high”
(on) or very “low” (off) depending on conditions. These

38

39 Individual genes are considered the basic information units of the
genetic code and occupy a central role at the basis of biological
inheritance and evolution (Crick, 1970). Gene information is
transcribed into RNA molecules and from them translated into
proteins (i.e. “expressed”) , the final result of gene expression
and the building blocks of functionality (Crick, 1970).
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FIG. 7 The upper panels represent two gene regulatory net-
works: (Left) a large scale one (for E. Coli (Gama-Castro
et al., 2015)) and (Right) a small scale one (mouse embry-
onic stem-cell subnetwork (Parfitt and Shen, 2014)); in both
cases, nodes stand for genes and links between them for (tran-
scriptional) regulatory interactions. The lower panel shows a
sketch of random Boolean networks as simple models of gene
regulation. For low (high) average connectivities they lie in
the ordered (disordered) phase, with a critical point occurring
close to K = 2. The table illustrates a set of logical operations
(relating inputs to outputs) for a given node.

binary states are believed to be the building blocks of
genetic logical circuits (Tyson et al., 2003). Hence,
genetic regulatory networks can be modeled as binary
information-processing systems in which the expression
level of each gene is represented by a Boolean (on/off)
variable and their interactions are modeled as Boolean
functions whose inputs are the states of other genes; see
Fig.7)40 (Kauffman, 1993; Shmulevich and Dougherty,
2010). Boolean descriptions constitute the most basic
and crudest approach to gene regulatory networks; still
they are particularly adequate to analyze large networks
as they reduce the overwhelming complexity of the real
problem to a logical one, and they have been shown to
successfully explain observed cell cycles e.g. growth, di-
vision, apoptosis, etc. (Aldana, 2003; Bornholdt, 2005,
2008; De Jong, 2002; Drossel, 2008; Gros, 2008; Kauff-
man, 1996, 1993; Maćıa et al., 2009; Serra et al., 2007).

In the simplest setup, the network architecture is de-
scribed as a random directed network41 and regulatory

40 Alternatively, it is also standard to use continuous approaches,
based on reaction-kinetics differential equations; see e.g. (Fu-
rusawa and Kaneko, 2012b; Kaneko and Ikegami, 1992). See
De Jong (2002) for a review on modeling approaches to genetic
networks.

41 More realistic network architectures including for example node
heterogeneity and modularity have also been considered (Aldana,
2003; Poblanno-Balp and Gershenson, 2011).
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interactions are described as random Boolean functions
(Albert, 2004; Alon, 2006; De Jong, 2002; Gros, 2008;
Kauffman, 1969, 1993) (see Fig.7). Random Boolean
networks (RBNs) can operate in different regimes, de-
pending on e.g. the averaged connectivity. The ordered
or frozen phase (low connectivity) is characterized by a
small set of stable attractors which are largely robust
to perturbations. In the disordered phase (large connec-
tivity) perturbations rapidly propagate and proliferate
hindering the existence of truly stable states. Separating
these two phases there is a critical point at which per-
turbations propagate marginally (Derrida and Pomeau,
1986). More complex models, with e.g. stochasticity
and/or continuous levels of activity, share a very similar
phenomenology (Rohlf and Bornholdt, 2002).

Kauffman conjectured that models operating at their
critical point might provide the best possible representa-
tion of real biological networks (Kauffman, 1996, 1993),
and that this might entail a large variety of essential
functional advantages (Aldana et al., 2007; Kauffman
et al., 2003; Krawitz and Shmulevich, 2007; Nykter et al.,
2008b; Ribeiro et al., 2008; Torres-Sosa et al., 2012).
In the ordered regime, convergence in state space im-
plies that distinctions between different inputs are readily
erased, precluding reliable discrimination among them.
On the other hand, in the disordered phase, even small
perturbations lead to a very large divergence of trajecto-
ries in state space precluding reliable action (Kauffman
et al., 2003). Hence, criticality might confer on such net-
works an optimal tradeoff between the robustness and
accuracy that biological machinery demands and respon-
siveness to environmental clues (Kauffman et al., 2003).
At larger evolutionary scales, criticality might provide
an optimal balance between robustness and evolvability
under changing conditions (Aldana et al., 2007; Gershen-
son, 2012; Kaneko, 2012; Torres-Sosa et al., 2012; Wag-
ner, 2005).

2. Experimental results

DNA microarrays made it possible to measure the dif-
ference of the expression levels of very many genes in two
cells (Brown and Botstein, 1999). This, combined with
gene knock-out experiments, consisting in silencing the
expression of an individual gene, allow to perform “dam-
age spreading” experiments as defined above (Derrida
and Pomeau, 1986; Rohlf et al., 2007) and to monitor the
difference in gene-expression of a perturbed with respect
to an unperturbed cell. Using empirical gene-expression
data from the yeast (Saccharomyces cerevisae) (Hughes
et al., 2000), the statistics of the size of “avalanches”
caused by single-gene perturbations has been analyzed
(Rämö et al., 2006; Serra et al., 2007, 2004). Comparing
the empirical data with results of a RBN model it came
out that the best correspondence between empirical re-

sults and the model predictions, was obtained for the
model operating close to its critical point (Rämö et al.,
2006; Serra et al., 2007, 2004). Given that expression
levels are noisy, it is necessary to introduce a threshold
expression level to declare when a gene is differentially
expressed in the two cells. An important caveat is that it
is not clear what the influence of thresholding is. Higher
thresholds would reduce the tail of the size distribution
and smaller ones would allow for much larger avalanches,
probably altering the size distribution. More precise em-
pirical measurements are certainly needed to fully eluci-
date the statistics of avalanches after gene knock-out.

Empirical analyses of hundreds of microarray experi-
ments allow to infer the whole network of regulatory in-
teractions among genes, i.e. who regulates whom (Filkov,
2005; Yeung et al., 2011). It has been consistently found
that the in-degree distribution is Poissonian while the
out-degree distribution is scale-free (see Aldana (2003)
and Drossel and Greil (2009) and refs. therein)42. Per-
forming damage-spreading computational analyses of di-
verse dynamical random Boolean models running on top
of networks with the empirically-determined architecture
of diverse organisms (such as Sacharomices cerevisiae
and Escherichia coli (Albert and Othmer, 2003)) it was
concluded that they all are indeed very close to criticality,
in the sense of marginal propagation of perturbations (Al-
dana et al., 2007; Balleza et al., 2008; Chowdhury et al.,
2010; Darabos et al., 2009).

Alternatively to inferring the architecture of the under-
lying network of interactions –which is a difficult problem
(Filkov, 2005)– information-theoretic methods have been
employed to asses the dynamical state directly from em-
pirical measurements from multiarrays. For example, one
such method relies on information-theoretic estimators
of the “complexity” or “information content” of gene-
expression time series in microarrays (those with repeti-
tive or simple patterns have a low complexity, while oth-
ers with a rich pattern structure exhibit larger complexi-
ties) (Benedetto et al., 2002; Ming and Vitányi, 2014; Ziv
and Lempel, 1978). The overall dynamical network state
is identified by computing how the complexity of a set
of timeseries for different genes changes in time (Kauff-
man et al., 2003; Shmulevich et al., 2005). In particu-
lar, empirical measurements of complexity for eukariotic
cells were compared with computational estimations from
random Boolean networks operating in different regimes.
Results are compatible with the actual dynamics being
either ordered or critical but not chaotic (Kauffman et al.,

42 An important avenue for future developments is to better char-
acterize the architecture of actual regulatory networks –which
are highly heterogeneous, modular (Shen-Orr et al., 2002) and
hierarchical (Corominas-Murtra et al., 2013; Lagomarsino et al.,
2007; Treviño III et al., 2012; Yu and Gerstein, 2006). These
structural facts might strongly influence the dynamics on them
(Moretti and Muñoz, 2013).
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2003; Shmulevich et al., 2005). However, similar studies
for the macrophage (in which two cells are transiently
perturbed in different ways) produced results compatible
only with critical (marginal) propagation dynamics in a
model independent way (Nykter et al., 2008a).

Finally, the relevance of criticality in stem-cell decision
making has been theoretically discussed (Garcia-Ojalvo
and Arias, 2012; Halley et al., 2009) and it has been
found experimentally that criticality in the overall gene-
regulatory network emerges as a general mechanism to
coordinate cell-fate change, and in particular, for the de-
velopment of state transitions in cancer cells (Tsuchiya
et al., 2015, 2016).

3. Zipf’s law in gene-expression

Inspection of gene expression databases of diverse or-
ganisms (e.g. yeast) revealed that the abundances of ex-
pressed genes are distributed as a power-law with expo-
nent close to −1, i.e. they obey the Zipf’s law (Furu-
sawa and Kaneko, 2003). Obviously, this problem can-
not be analyzed with the Boolean approximation. Furu-
sawa and Kaneko (2012a) analyzed an abstract dynami-
cal model describing a cellular reaction network –i.e. the
network formed by the set of molecules (nodes) which in-
teract with others to give products within the cell– with
chemical/nutrient uptake, and showed that the Zipf’s law
(which can be taken as a signature of criticality, as dis-
cussed in the Appendix) is a universal feature of self-
regulated cells optimizing their growth rate in nutrient-
rich environments. This suggests that criticality corre-
sponds in this setting to the maximal capacity to assim-
ilate and use nutrients for recursive formation of other
products, and that actual cells adapt to exploit it (Erez
et al., 2017; Furusawa and Kaneko, 2012a; Kaneko, 2006).
See also Hanel et al. (2010) and Stokić et al. (2008).

C. Cells and morphogenesis

We have, so far, discussed the possibility of critical-
ity within individual cells. But, also ensembles of cells
in pluricellular organisms can exhibit collective behavior
and scale invariance (Nadell et al., 2013).

1. Stem cell pluripotency

Clonal populations of unicellular organisms such as
viruses or bacteria often exhibit phenotypic diversity,
and this is believed to constitute a sort of “bet-hedging”
strategy by which diversified communities can rapidly
adapt to changing environmental conditions (Kussell and
Leibler, 2005; Veening et al., 2008; Wolf et al., 2005).
Similarly, large diversity has been observed in the levels
of gene expression in multipotent stem-cell populations

of pluricellular organisms (Goodell et al., 2015). A recent
study has analyzed a particular type of (hematopoietic)
multipotent stem cells. These can differentiate onto ei-
ther erythroid or myeloid blood cells depending on the ex-
pression level of a gene called Sca1 (Ridden et al., 2015).
The empirically measured distribution of expression lev-
els of Sca1 within a population of stem cells turns out
to be very broad and with various maxima. Such a dis-
tribution can be modeled in terms of a Fokker-Planck
equation, capturing not just its steady state but also
time-dependent aspects; as a function of its parameters,
the model can exhibit either a stable low-Sca1 or a sta-
ble high-Sca1. Separating these regimes in the model
there is a line of discontinuous transitions (with bistabil-
ity), which finishes at a critical point. Remarkably, the
best fit to empirical data of gene-expression is obtained
fixing model parameters close to criticality, where maxi-
mal variability of phenotypes is obtained. Thus, it seems
that by adjusting near to criticality, the stem-cell pop-
ulation is prompt to react and produce either erythroid
or myeloid cells in response to changing demands in an
optimal way (Ridden et al., 2015).

2. The progeny of stem cells

The number of stem cells at the basis of human epithe-
lia remains constant in time. Thus, after division, half of
their daughter cells becomes differentiated and migrates
up in the epithelium, and the other half remains as un-
differentiated stem cells (see Lopez-Garcia et al. (2010)
from where this discussion is adapted). An important
question posed to understand how this process works is:
what is the size of the future progeny of a given stem
cell? It has been experimentally observed that the dis-
tribution of sizes of such progenies is scale free. Remark-
ably, the process can be modeled and understood as a
neutral dynamics among diverse but equivalent classes
of stem cells, which –as discussed in Sect.II..9– compete
for limited space (Lopez-Garcia et al., 2010; Yamaguchi
et al., 2017), giving rise to generic scale invariance and
thus a large variability of possible outcomes.

3. Morphogenesis I: Hydra regeneration

Morphogenesis is the biological process at the basis
of the development of multicellular organisms. It is
achieved by a precise control of cell growth, prolifera-
tion, and differentiation. As first suggested in the sem-
inal work of Turing (1952), morphogenesis involves the
creation of self-organized patterns and shapes in the em-
bryo. A prototypical model organism studied in this con-
text is the Hydra polyp, which has a remarkable regen-
eration power, as an entire new individual can be spon-
taneously re-assembled even from dissociated cells of an
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adult (Bosch, 2007). Along such a regeneration process,
first a cell bilayer is formed with a spherical (hollow)
shape. The question remains, how does the spherical
symmetry break down to form a well-defined foot-head
axis in adults? During this process, there is a gene called
ks1 that becomes progressively expressed and that can be
transferred to neighboring cells. It has been empirically
reported that precisely before the spherical symmetry is
broken, the size distribution of ks1 -rich domains across
the sphere becomes scale-free, as in critical percolation
(Soriano et al., 2006). Indeed, when a spanning clus-
ter emerges the symmetry is spontaneously broken and
the head-tail axis is defined at the center of such a clus-
ter. A physical model –based solely on the spontaneous
production and local cellular exchange of ks1 -promoting
factors is able to reproduce in a self-organized way the
experimentally observed spontaneous symmetry break-
ing (Gamba et al., 2012); see also Livshits et al. (2017)
and Mercker et al. (2015). This suggests that a critical
state with collective fluctuations of gene-expression levels
is exploited to break the rotational symmetry, defining a
head-tail axis (Soriano et al., 2006, 2009).

4. Morphogenesis II: Gap genes in Drosophila

A set of so-called “gap” genes is responsible for the
emergence of spatial gene-expression patterns, that are
at the origin of the formation of different segments along
the head-tail axis in the development of the fruit-fly
(Drosophyla) embryo. Empirical inspection of the ex-
pression levels of gap genes revealed a number of remark-
able features that include: slow dynamics, correlations
of expression-level fluctuations over large distances, and
non-Gaussianity in the distribution of such fluctuations.
Krotov et al. (2014) proposed a simple dynamical model
in which the process is controlled by two mutually re-
pressing gap genes, whose expression levels are called x1
and x2 respectively. Assuming that a fixed point (x∗1, x

∗
2)

exists, and performing a linear stability analysis to de-
scribe the fate of fluctuations, one readily finds that there
is an instability point as the interaction-strength between
the two genes is varied. At this point, an eigen-direction
–linear combination of x1 and x2– becomes marginally
unstable. Krotov et al. (2014) argued that if the dy-
namics of the coupled system is tuned to operate at this
instability point, then it constitutes and excellent qual-
itative description of all the above-mentioned empirical
findings, implying that the gene dynamics operates at
criticality. This suggests that criticality helps defining
patterns without a characteristic scale, as required for
expanding/developing systems. Very similar ideas have
been developed in the context “cell differentiation” (Pal
et al., 2014). On the other hand, recent work has chal-
lenged the above conclusion, arguing that the system ac-
tually operates at the edge of a discontinuous phase tran-

sition where two alternative stable expression-level states
coexist (Weissmann et al., 2015).

D. Collective motion

Collective motion of large groups of individuals is a
phenomenon observed in a variety of social organisms
such as flocks of birds, fish schools, insect swarms, herds
of mammals, human crowds (Bonabeau et al., 1999;
Couzin and Krause, 2003; Krause and Ruxton, 2002;
Sumpter, 2010) and also, at smaller scales, in bacte-
rial colonies (Chen et al., 2012; Peruani et al., 2012)
and groups of cells (Méhes and Vicsek, 2014). Flocking,
schooling, swarming, milling, and herding constitute –
among others– outstanding examples of collective phases
where simple interactions between individuals give rise
to fascinating emergent behavior at larger scales, even in
the absence of central coordination. Flock of birds and
fish schools behave as plastic entities able to exhibit co-
herent motion, including e.g. rapid escape manoeuvres
when attacked by predators, which confers obvious fit-
ness advantages to the group as a whole. The inspiring
concept of collective intelligence vividly encapsulates this
notion (Couzin, 2007, 2009).

Not surprisingly, these collective phenomena have at-
tracted the attention of statistical physicists who have
tackled the problem employing: (i) individual-based
models of self-propelled particles such as the one in Vic-
sek et al. (1995) that models collective motion by assum-
ing that an individual in a group essentially follows the
trajectory of its neighbors, with some deviations modeled
as noise 43, and (ii) continuum theories more amenable
to theoretical analysis (Toner and Tu, 1995, 1998; Toner
et al., 2005). These models have in common the existence
of phase transitions between phases of coherent and in-
coherent motion. E.g. in the Vicsek model a phase tran-
sition from an ordered “flocking phase” to a disordered
“swarming phase” occurs when the density of individuals
goes below a given threshold or, for a fixed density, when
the level of stochasticity is large. This is consistent with
experimental findings; e.g. Buhl et al. (2006) investigated
the behavior of locusts and reported on a density-driven
phase transition from disordered movement of individ-
uals to highly aligned collective motion (Dyson et al.,
2015). More elaborated models (e.g. for fish) exhibit
richer phase diagrams including a swarming phase with
aggregation but no cohesion, a schooling phase in which
individual velocities become aligned; and, also, a milling
phase with individuals rotating around an empty core

43 See Chaté et al. (2008); Chaté et al. (2008); Ginelli (2016);
and Grégoire and Chaté (2004) for detailed statistical-mechanics
analyses of Vicsek models and variants of it.
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(Calovi et al., 2014; Gautrais et al., 2012), all of them
observed in real groups.

At a speculative level, marginally coordinated (crit-
ical) motion can be hypothesized to constitute an op-
timal tradeoff solution to deal with conflicting impera-
tives such as e.g. (i) the need to behave cohesively as a
unique entity and (ii) being highly responsive to informa-
tion from transitorily well-informed individuals, e.g. to
escape from predators (Couzin et al., 2011, 2005). Simi-
lar dichotomies will come up in what follows.

1. Flocks of birds

On the empirical side, pioneering work by Cavagna,
Giardina and collaborators (Ballerini et al., 2008; Cav-
agna et al., 2010) on starling flocks allowed to record
individual trajectories (with purposely devised tracking
technology) and to analyze their statistics. It was empiri-
cally found that interactions between individuals depend
on “topological” rather than “metric” distance, i.e. each
bird seems to modify its velocity according to information
from a fixed number of its neighbors. By analyzing the
fluctuations in flight directions with respect to the aver-
age velocity of the group, these analyses provided strong
evidence that long-range scale-invariant correlations may
be a general feature in systems exhibiting collective mo-
tion. In particular, experimentally measured correlations
–both in orientation fluctuations and speed– were found
to grow with flock size in large flocks, suggesting that a
correlation length much larger than the interaction range,
could be a common trait of self-organized groups need-
ing to achieve large-scale coordination (Cavagna et al.,
2010). Let us note that the scale-free correlations in the
orientation might be attributed to the broken continu-
ous (rotational) symmetry, which as discussed in Sec.II..7
leads to generic scale-invariance without the need to sit
exactly at criticality. However, the presence of scale-free
correlations of the (scalar) speed cannot be explained in
this way, suggesting that the flock may be tuned to a
critical point with maximal susceptibility.

Bialek et al. (2012) constructed a maximum entropy
method to determine a statistical model consistent with
the empirically measured correlations (see Appendix).
They concluded that the interaction strength and the
number of interacting neighbors do not change with flock
size in the optimal model; and, more importantly, the
model was able to reproduce scale-free correlations in ve-
locity fluctuations. It was observed (i.e. inferred from
data) that this occurs as a result of the model’s operating
close to its critical point (Bialek et al., 2014; Mora and
Bialek, 2011)44. Let us remark that –as briefly described

44 For recent developments see Attanasi et al. (2014a); De Vincenzo
et al. (2017); Mora et al. (2016); and Vanni et al. (2011).

in Appendix– criticisms to this type of (purely statisti-
cal) inferred-model approach have been raised (Marsili
et al., 2013; Mastromatteo and Marsili, 2011). On the
other hand, without resorting to inferred models, At-
tanasi et al. (2014a) performed experiments on starling
flocks to measure how the information of the turning of
one individual propagated across the flock, showing that
this occurs in a very fast and efficient way, behaving al-
most as a superfluid, which can be taken as a direct evi-
dence of the existence of scale-free correlations in flocks.

2. Insect swarms

Extensive field analyses of insect (midge) swarms,
which, unlike birds traveling in a flock, hover around
a spot on the ground, have also been performed (At-
tanasi et al., 2014b). Tracking individual trajectories,
velocity fluctuations were measured and, from these, a
correlation length and a susceptibility –determining the
total correlation between insects– were estimated. As
discussed above, true criticality only occurs in infinite
systems, from which biological groups are far away.

To circumvent this difficulty, Attanasi et al. performed
finite-size analyses of swarms, and showed that both the
correlation length and the susceptibility grow with the
swarm size, while the spacing between midges decreases.
Moreover, these changes with swarm size occur as in the
Vicsek model for finite-size systems sitting near the max-
imally correlated point of their transition region at each
finite size45. In particular, midges obey scaling and, to
achieve it, they seem to regulate their average distance or
density (which acts as a control parameter) so as to func-
tion close to criticality (Attanasi et al., 2014b; Chaté and
Muñoz, 2014). Furthermore, not only spatial, but also
spatio-temporal correlation functions in different swarms
can be rescaled by using a single characteristic time, con-
firming the existence of dynamical scale invariance at
least up to some scale (Cavagna et al., 2017). On the
contrary, laboratory experiments of small swarms do not
indicate critical behavior which may signal that it arises
only in “natural conditions” or for larger sizes (Chaté
and Muñoz, 2014; Kelley and Ouellette, 2013; Puckett
and Ouellette, 2014).

3. Social-insect strategies

Groups of mobile animals may exploit collective
sensing/exploring strategies of complex environments

45 The Vicsek model exhibits signatures of a first-order transition
at large sizes. For smaller systems there exists a wide regime
where correlations peak at the transition and finite-size-scaling
holds (Baglietto et al., 2012; Chaté et al., 2008; Grégoire and
Chaté, 2004; Vicsek et al., 1995).
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(Berdahl et al., 2013). Studies of ant foraging and coop-
erative transport strategies (Beekman et al., 2001; Bhat-
tacharya and Vicsek, 2014; Gallotti and Chialvo, 2017; Li
et al., 2014; Loengarov and Tereshko, 2008; Solé, 2011).
For colonies to achieve an efficient foraging strategy, a
tradeoff needs to be reached between exploratory behav-
ior of some individuals and predominant compliance with
the rules (Feinerman and Korman, 2017). It has been re-
cently found by using a combination of experiments and
theory that some ant groups optimize their overall perfor-
mance by sitting at the edge of a phase transition between
random exploration and exceedingly gregarious strate-
gies, thus resulting in effective criticality. This entails
efficient group-level processing of information emerging
out of a optimal amplification of individual information
(Gelblum et al., 2015). Similar ideas are being presently
explored for the design of artificial systems, i.e. in swarm
robotics (Beni, 2004; Erskine and Herrmann, 2014).

4. Mammal herds

A quantitative study of a large group of social herbi-
vores (Merino sheep) in a well-controlled homogeneous
environment suggested the existence of two conflicting
needs to be balanced: (i) the protection from predators
offered by being part of large cohesive group and (ii) the
exploration of foraging space by wandering individuals
(Ginelli et al., 2015). Sheep resolve this conflict by al-
ternating a slow foraging phase, during which the group
spreads out, with fast packing events triggered by indi-
vidual behavioral shifts, leading to intermittent collective
dynamics with packing events of all accessible scales, i.e.
a “near critical” state.

5. Fish schools

Schooling fish constitute a potentially important play-
ground to experimentally explore collective behavior and
phase transitions (Rosenthal et al., 2015; Tunstrøm et al.,
2013; Ward et al., 2008). Recently, the responsiveness to
perturbations (e.g. to the behavior of one specific indi-
vidual) as well as the overall susceptibility (total correla-
tion of velocity fluctuations) in a data-driven model for
fish schools have been analyzed (Calovi et al., 2015). It
was found that these quantities take the largest possible
values at the edge of the transition between schooling and
milling phases (see above); however, empirical evidence
that actual fish in the wild operate at this transition point
is still missing (Makris et al., 2009).

6. Bacterial motion

In colonies of Bacillus subtilis bacteria move collec-
tively, forming dynamic clusters. It has been empirically

found that correlations of velocity and orientation fluctu-
ations are scale invariant in such dynamic bacterial clus-
ters, much as in flocks, as described above46 (Chen et al.,
2012). It has been argued that scale-invariant correla-
tions may give some evolutionary advantages as “infor-
mation of an external stimulus, such as a predator or
food, can propagate quickly through the whole system”
(Chen et al., 2012).

E. A sample of other allegedly critical biological systems

To conclude, we enumerate a sample of some other
biological systems in which some empirical evidence of
criticality has been reported, but for the lack of space we
just mention them rather briefly.

1. Critical fluctuations in cell membranes

Cell membranes are not just rigid impenetrable walls
separating the interior of cells from the outside environ-
ment. They can mediate and/or regulate the kind, di-
rection, and amount of substances that can pass across
them. Cell membranes are permeable at some locations
and, for this, their local composition needs to be hetero-
geneous (Cicuta, 2013; Hyman and Simons, 2012; Lee
et al., 2013). There is compelling empirical evidence
that the mixtures of lipids that constitute the skeleton
of cell membranes operate at temperatures very close to
the demixing phase transition, at which their different
components segregate (Cicuta, 2013; Ehrig et al., 2011;
Honerkamp-Smith et al., 2008; Veatch et al., 2008, 2007).
In this way, composition fluctuations are extremely large,
enabling very diverse structural domains with rather dif-
ferent compositions and properties to emerge sponta-
neously; these domains are variable and transient, pro-
viding the membrane with a large spectrum of possible
local structures, at which different processes may occur,
entailing a rich repertoire of functional possibilities.

2. RNA viruses

RNA viruses are believed to replicate at the edge of an
“error catastrophe”. If the error rates for copying the vi-
ral genome were very small RNA viruses would have little
variability, hindering adaptation and evolution. Instead,
if they were too large then the fidelity of the replica-
tion machinery would be compromised and it would not
be possible to maintain important genetic elements nor
the identity of the (quasi)species itself (Eigen et al., 1988,

46 See (Peruani et al., 2012; Sokolov et al., 2007) for possibly con-
flicting conclusions.



27

1989; Eigen and Schuster, 1979). It was conjectured –and
also partially verified experimentally (Crotty et al., 2001;
Hart and Ferguson, 2015)– that RNA viruses might oper-
ate right at the edge of the catastrophe, providing them
with maximal variability compatible with genotypic ro-
bustness47 (Drake and Holland, 1999; Eigen, 2002; Solé
et al., 1999, 1996).

3. Physiological rhythms

The presence of temporal scale-invariance in physiolog-
ical rhythms of healthy subjects, as well as its break-down
in abnormal conditions, have been long explored (Bass-
ingthwaighte et al., 1994; Glass, 2001; Goldberger et al.,
2002; Losa, 1995; West and Grigolini, 2010). In particu-
lar, to mention one example, the connection between the
complex fluctuations of human heart-rate variability and
criticality has been proposed and analyzed (Ivanov, 2007;
Ivanov et al., 1999; Kiyono et al., 2004, 2005) and, in the
related context of blood-pressure regulation, vaso-vagal
syncopes have been associated with large “avalanches” in
a self-organized cardiovascular regulatory system poised
at criticality (Fortrat and Gharib, 2016). Similarly, the
generator of circadian rhythms in mammals, i.e. the
suprachiasmatic nucleus, which is involved in heart reg-
ulation, also exhibits scale-free fluctuations (Hu et al.,
2012). Such regulation to scale-free behavior seems to
impart health advantages, including system integrity and
adaptability (Goldberger et al., 2002).

4. Miscellanea

Criticality has also been claimed to play a relevant
role in various other important biological contexts, such
as the immune system (Burgos and Moreno-Tovar, 1996;
Mora et al., 2010), cancer and carcenogenesis (Davies
et al., 2011; Rosenfeld, 2013; Solé and Deisboeck, 2004;
Solé, 2003), proteins (Phillips, 2009; Tang et al., 2017),
mitochondria (Aon et al., 2004; Zamponi et al., 2016),
etc. Also, quantum criticality and its relevance for the
origin of life at the microscopic scale has been the sub-
ject of a recent proposal (Vattay et al., 2015). Finally, let
us mention that ecosystems as a whole have been stud-
ied –from a macroevolutionary viewpoint– as dynamical
structures lying at the edge of instability (Adami, 1995;
Bak and Sneppen, 1993; Biroli et al., 2017; Sneppen et al.,
1995; Solé et al., 2002a, 1999; Suweis et al., 2013), illus-
trating that the ideas discussed here can be extended to
larger scales in the hierarchy of biological complexity.

47 Error catastrophe has been considered for treatment of viral in-
fections employing drugs that push the error rate beyond this
threshold; see Summers and Litwin (2006) for a critical review.

V. DISCUSSION

The hypothesis that living systems may operate in
the vicinity of critical points, with concomitant scale-
invariance, has long inspired scientists. From a theoreti-
cal viewpoint this conjecture is certainly appealing, as it
suggests an overarching mechanism exploited by biologi-
cal systems to derive important functional benefits essen-
tial in their strive to survive and proliferate. Through-
out this essay we discussed dynamical aspects of critical-
ity, meaning that in most of the discussed examples it is
assumed –either directly or indirectly– that there is an
underlying dynamical process at work, and that such a
process –susceptible to be mathematically modeled– op-
erates in the vicinity of a continuous phase transition,
at the borderline between two alternative regimes. Such
a dynamical perspective is essentially different from the
purely statistical (or static) one, as described e.g. in
Mora and Bialek (2011). In this latter the focus is on an-
alyzing the statistics of existing patterns, neglecting the
dynamical generative mechanisms behind them. Such
statistical models, describing biological data in an op-
timal way, happen to be close to criticality in a sense
explained in some detail in the Appendix. Even if both
approaches might have deep interconnections, here we
chose to focus on the dynamical one.

At a theoretical (or conjectural) level, a large variety of
possible functional benefits of criticality have been pro-
posed in the literature: unparalleled sensitivity to stim-
uli, huge dynamical repertoires, maximal transmission
and storage of information, optimal computational ca-
pabilities, etc. When living systems are interpreted as
information-processing devices –needing to operate ro-
bustly but, at the same time, having to cope with diverse
environmental changes– the virtues of critical behavior
are undeniable. Criticality represents a simple strategy
to achieve a balance between robustness (order) and flex-
ibility (disorder) needed to achieve functional tasks. Sim-
ilar tradeoffs, as discussed along the paper, underline the
potential of operating at the edge between different types
of order.

Synthesizing (maybe oversynthesizing), one could ar-
gue that the ultimate reason why putative critical-
ity appears so often in the scrutiny of complex bio-
logical systems is that it constitutes the simplest dy-
namical mechanism generating complex spatio-temporal
patterns spanning through many different scales, that
are all correlated, implying system-wide coherence and
large responses to perturbations. From this perspective,
critical-like behavior –and the nested hierarchy of spatio-
temporal structures it spontaneously generates– can be
identified as a scaffold upon which (multiscale) biological
systems may build up further layers of complexity.

Statistical physics teaches us that under some
circumstances–including e.g. systems with some form of
heterogeneity, relevant for the study of brain networks, or
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in systems with continuous symmetries, relevant in col-
lective motion– the standard scenario of a unique critical
point separating diverse phases needs to be replaced by
that of extended critical-like regions where some form of
scale invariance emerges in a generic way. In such cases,
it might suffice for biological systems to operate in such
phases without the need to invoke precise tuning to the
edge of a phase transition to obtain functional benefits
stemming from spatio-temporal scale invariance.

From the experimental viewpoint, along the presen-
tation we tried to summarize existing empirical pieces
of evidence for each of the discussed examples, stress-
ing possible drawbacks and interpretative problems, and
underlining criticisms raised in the literature. Readers
will extract their own conclusions on whether each of the
examples is sufficiently convincing or not. Our general
impression is that, in most of the cases, larger systems,
more accurate measurements, and less ambiguous anal-
yses would be needed to further confirm or disprove the
existence of an underlying dynamical critical process. For
most of the leading examples (i.e. neural systems, genetic
regulatory networks, and collective motion), our opinion
is that, as of today, there is not a fully convincing ex-
ample, where experimental evidence and mathematical
theory/modeling match perfectly; i.e. we still do not
have a “smoking gun”. Still, the existing collection of
remarkable pieces of evidence is certainly very appealing
and hard to neglect.

Two important aspects should be considered in future
empirical analyses to make solid progress. One is that,
given that biological systems are finite, they cannot be
truly critical in the precise sense of statistical physics;
thus it is important to perform, whenever possible, finite-
size analyses to prove the existence of scale-invariance
within the experimentally accessible ranges. A second
aspect is that the two alternative phases that the al-
leged criticality separates should be clearly identified in
each case. From this view, we find particularly appeal-
ing pieces of evidence (e.g. in neuroscience) in which,
by experimentally inducing alterations to standard con-
ditions, deviations from criticality are measured in oth-
erwise critical-like systems.

A general criticism can be raised to some of the anal-
yses discussed along this work, specifically, to those in
which the evidence relies on the existence of a theoreti-
cal model that provides, when tuned close to its critical
point, the best possible fit to empirical observations. The
criticism –not very different from the one put forward
in the context of statistical criticality (see Appendix)–
consists in the observation that if (interesting) empirical
data are highly structured, with no distinctive charac-
teristic scale, then it could seem almost a tautology to
say that the best fit comes about near the critical point
of the proposed model, as near-criticality is typically the
only region in parameter space where feature-rich pat-
terns, with many characteristic scales are generated. In

contrast, from an opposite perspective, if actual biolog-
ical data are structured across many scales, it does not
seem too far fetched to assume –applying the Occam’s
razor– that a general common mechanism may under-
lie the emergence of such a hierarchy of scales, and the
main candidate mechanism for this consists in operating
at the edge of a continuous phase transition, i.e. be-
ing close to criticality. Thus, we are confronted with
a (epistemological) dichotomy: Is the putative critical-
ity of living systems just a reflection of the limitation
of our models which can possibly resemble large levels
of “complexity” only at criticality? or, on the contrary,
is criticality actually a common organizing principle at
the roots of the generation of many levels of organiza-
tion required for complex biological behavior to emerge?
Providing a satisfactory answer to these questions is a
problem of outmost importance to advance in the the-
oretical understanding and modeling of complex living
systems.

Even if diverse biological systems were finally proved
to be genuinely critical, some researchers might still re-
tain this conclusion as largely uninformative or even ir-
relevant. It could be asked: “so what?”. What prac-
tical implications could be derived from such a knowl-
edge? We believe that, the design of strategies to con-
trol neural/genetic networks based on notions of criti-
cality, the construction of algorithms of artificial intelli-
gence exploiting scale-invariance, and the application of
ideas of collective motion/intelligence to the design of e.g.
swarms of robots, could constitute important avenues to
provide a constructive answer to the above question.

To close, novel advances, both at the experimental and
theoretical sides, will help elucidating what is the actual
role played by criticality and scale invariance in biolog-
ical systems; meanwhile the mere possibility remains as
inspiring as ever.
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APPENDIX: STATISTICAL CRITICALITY

Probabilistic models can be constructed such that
they match the statistics of observed empirical data,
and among these models one selects the one that makes
the smaller number of assumptions (Rieke et al., 1995).
Without loss of generality, an observed pattern can be
codified as a sequence of binary variables of length N :
si = 0, 1 for i = 1, 2, ...N . Denoting P (s) the probability
of finding the system in the state s = (s1, s2, ...sN ) it is
possible to approximate it by a distribution function such
that it reproduces the averaged values of 〈si〉 as well as
the covariances 〈sisj〉 for all i and j, as estimated from
data. Imposing a maximum entropy principle (i.e. select-
ing the model with the smallest number of assumptions
as in statistical physics (Banavar et al., 2010a; Cover and
Thomas, 1991)) it is easy to derive the explicit form of
the optimal distribution

PIsing(s) =
1

Z
exp

∑
i<j

Jijsisj +
∑
i

hisi

 (6)

where Z ensures normalization and which coincides with
the Boltzmann equilibrium distribution of the Ising
model in statistical mechanics. Parameters hi and Jij
need to be fitted, so that the imposed constraints are
maximally satisfied (Ackley et al., 1985). Obtaining the
optimal parameter set –i.e. inferring effective interac-
tions from correlations– is a computationally costly task,
usually referred as “inverse Ising problem” (Aurell and
Ekeberg, 2012; Cocco et al., 2009; Cocco and Monas-
son, 2011; Schneidman et al., 2006). This type of ap-
proach has been successfully applied to many different
situations, from retinal populations (Schneidman et al.,
2006; Tkačik et al., 2014, 2013, 2015) and cortical net-
works (Cocco et al., 2009), to the collective motion of
bird flocks (Bialek et al., 2014, 2012) and the immune
system (Mora et al., 2010). In particular, Bialek and
coworkers introduced a fictitious (inverse) temperature,
β, by replacing each estimated parameter, g, in Eq.(6),
by βg. Varying β there is a relative change of the config-
uration probabilities, generating a family of distributions
P (s|βg) interpolating between the low and high temper-
ature phases. At the critical value βc there is a peak
in the generalized susceptibility, which corresponds to a
(finite-size) critical point. Bialek and coauthors found
that diverse inference problems in biology produce mod-
els in which βc ≈ 1, –or converge to 1 as the system size
is enlarged– i.e. that inferred models appear to be close
to the very critical point, (Mora and Bialek, 2011).

Recently, some doubts on the validity of this approach
have been cast. It has been argued that the approach is
not reliable in analyzing the possible criticality of high-
dimensional data and non-critical data look critical when
inspected with this strategy (Macke et al., 2011; Nonnen-
macher et al., 2016; Saremi and Sejnowski, 2014). Marsili

and collaborators elaborated upon a result in information
geometry that establishes that most distinguishable in-
ferred models are necessarily concentrated in the regions
where the generalized susceptibility (also called “Fisher
information” in this context) peaks, i.e. in vicinity of
critical points. In this way, inferred models fitting real-
world data do, most likely, look near critical within such
a scheme (Marsili et al., 2013; Mastromatteo and Marsili,
2011). In other words, concluding that an inferred model
is near to a critical point can be a potentially mislead-
ing assessment, as the distance from the critical point
should be measured in terms of the number of distin-
guishable models in between (Mastromatteo and Marsili,
2011). Put differently, if structured (non-trivial) empiri-
cal data are fitted to an Ising model, the only possibility
for the fitted model would be to lie “near” the critical
point, without further specification of what “near” means
(Haimovici and Marsili, 2015).

To close, let us briefly mention that a very elegant
calculation allowed Mora and Bialek to map the Zipf’s
law to statistical criticality. Thus, empirical evidence of
Zipf’s law can be traded by empirical evidence of under-
lying statistical criticality in a precise sense (see Mora
and Bialek (2011)). Using this setting, Schwab et al.
(2014) contended that marginalization over hidden rel-
evant variables leads generically to the Zipf’s law, and
thus to statistical criticality. In other words, Zipf’s law
and its concomitant statistical criticality can emerge as
spurious effects stemming from an effective average over
non-observed hidden variables, even in non-critical sys-
tems (Aitchison et al., 2016). Here, we shall not delve
further into the controversy about the meaning and sig-
nificance of this type of purely statistical approaches to
criticality.
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and R. Spigler (2005), Rev. Mod. Phys. 77, 137.

Ackley, D., G. Hinton, and T. Sejnowski (1985), Cognitive
science 9 (1), 147.

Adami, C. (1995), Phys. Lett. A 203, 29.
Aitchison, L., N. Corradi, and P. Latham (2016), PLoS Com-

put. Biol. 12 (12), e1005110.
Akaike, H. (1969), Annals of the Institute of Statistical Math-

ematics 21 (1), 243.
Albert, R. (2004), in Complex networks (Springer) pp. 459–

481.
Albert, R., and A.-L. Barabási (2002), Rev. Mod. Phys. 74,

47.
Albert, R., and H. G. Othmer (2003), J. Theor. Biol. 223 (1),

1.
Aldana, M. (2003), Physica D 185 (1), 45.



30

Aldana, M., E. Balleza, S. Kauffman, and O. Resendiz (2007),
J. Theor. Biol. 245 (3), 433.

Allegrini, P., D. Menicucci, R. Bedini, L. Fronzoni,
A. Gemignani, P. Grigolini, B. J. West, and P. Paradisi
(2009), Phys. Rev. E 80 (6), 061914.

Allegrini, P., P. Paradisi, D. Menicucci, and A. Gemignani
(2010), Front. Physiol. 1, 128.

Alon, U. (2003), Science 301 (5641), 1866.
Alon, U. (2006), An introduction to systems biology: design

principles of biological circuits (CRC press, London).
Alonso, L. M., A. Proekt, T. H. Schwartz, K. O. Pryor, G. A.

Cecchi, and M. O. Magnasco (2014), Front. Neural Circuits
8.

Alvarado, J., M. Sheinman, A. Sharma, F. C. MacKintosh,
and G. H. Koenderink (2013), Nat. Phys. 9 (9), 591.

Amaral, L. A., A. Dı́az-Guilera, A. A. Moreira, A. L. Gold-
berger, and L. A. Lipsitz (2004), Proc. Natl. Acad. Sci.
USA. 101 (44), 15551.

Amari, S. (1972), IEEE Trans. Syst. Man. Cybern. 2, 643.
Amit, D. J. (1992), Modeling brain function: The world of

attractor neural networks (Cambridge University Press).
Amit, D. J., and N. Brunel (1997), Cerebral cortex 7 (3),

237.
Amit, D. J., and V. Mart́ın-Mayor (2005), Field theory, the

renormalization group, and critical phenomena: graphs to
computers (Springer).

Anderson, P. W., et al. (1972), Science 177 (4047), 393.
de Andrade Costa, A., M. Copelli, and O. Kinouchi (2015),

J. Stat. Mech. 2015 (6), P06004.
Anteneodo, C., and D. Chialvo (2009), Chaos: An Interdis-

ciplinary Journal of Nonlinear Science 19 (3), 033123.
Aon, M. A., S. Cortassa, and B. O’Rourke (2004), Proc. Nat.

Acad. of Sci. USA 101 (13), 4447.
de Arcangelis, L. (2011), in J. of Physics: Conference Series,

Vol. 297 (IOP Publishing) p. 012001.
de Arcangelis, L. (2012), Eur. Phys. J. Spec.Top. 205 (1),

243.
de Arcangelis, L., and H. J. Herrmann (2010), Proc. Natl.

Acad. Sci. USA. 107 (9), 3977.
de Arcangelis, L., and H. J. Herrmann (2012), Front. Physiol.

3, 0062.
de Arcangelis, L., F. Lombardi, and H. Herrmann (2014), J.

Stat. Mech. 2014 (3), P03026.
de Arcangelis, L., C. Perrone-Capano, and H. J. Herrmann

(2006), Phys. Rev. Lett. 96, 028107.
Arenas, A., A. Dı́az-Guilera, J. Kurths, Y. Moreno, and

C. Zhou (2008), Physics reports 469 (3), 93.
Arieli, A., A. Sterkin, A. Grinvald, and A. Aertsen (1996),

Science 273 (5283), 1868.
Ashby, W. (1960), Design for a Brain. The origin of adaptive

behaviour (New York, Willey).
Attanasi, A., A. Cavagna, L. Del Castello, I. Giardina, T. S.

Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl, E. Shen,
et al. (2014a), Nat. Phys. 10 (9), 691.

Attanasi, A., A. Cavagna, L. Del Castello, I. Giardina,
S. Melillo, L. Parisi, O. Pohl, B. Rossaro, E. Shen, E. Sil-
vestri, et al. (2014b), Phys. Rev. Lett. 113 (23), 238102.

Aurell, E., and M. Ekeberg (2012), Phys. Rev. Lett. 108 (9),
090201.

Azaele, S., S. Suweis, J. Grilli, I. Volkov, J. R. Banavar, and
A. Maritan (2016), Rev. Mod. Phys. 88, 035003.

Baek, S. K., S. Bernhardsson, and P. Minnhagen (2011), New
J. Phys. 13 (4), 043004.

Baglietto, G., E. V. Albano, and J. Candia (2012), Interface

Focus 2 (6), 708.
Bagnoli, F., F. Cecconi, A. Flammini, and A. Vespignani

(2003), EPL (Europhys. Lett.) 63 (4), 512.
Bailly, F., and G. Longo (2008), J. Biol. Syst. 16 (02), 309.
Bak, P. (1996), How nature works: the science of self-

organized criticality (Copernicus New York).
Bak, P., K. Chen, and C. Tang (1990), Phys. Lett. A 147 (5),

297.
Bak, P., and D. R. Chialvo (2001), Phys. Rev. E 63, 031912.
Bak, P., and K. Sneppen (1993), Physical review letters

71 (24), 4083.
Bak, P., and C. Tang (1989), J. Geophys. Res 94 (15), 635.
Bak, P., C. Tang, and K. Wiesenfeld (1987), Phys. Rev. Lett.

59 (4), 381.
Baldassarri, A., F. Colaiori, and C. Castellano (2003), Phys.

Rev. Lett. 90 (6), 060601.
Ballerini, M., N. Cabibbo, R. Candelier, A. Cavagna, E. Cis-

bani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi,
A. Procaccini, et al. (2008), Proc. Natl. Acad. Sci. USA.
105 (4), 1232.

Balleza, E., E. R. Alvarez-Buylla, A. Chaos, S. Kauffman,
I. Shmulevich, and M. Aldana (2008), PLoS One 3 (6),
e2456.

Banavar, J. R., T. J. Cooke, A. Rinaldo, and A. Maritan
(2014), Proc. Natl. Acad. Sci. USA. 111 (9), 3332.

Banavar, J. R., A. Maritan, and A. Rinaldo (1999), Nature
399 (6732), 130.

Banavar, J. R., A. Maritan, and I. Volkov (2010a), J. of
Phys.: Condensed Matter 22 (6), 063101.

Banavar, J. R., M. E. Moses, J. H. Brown, J. Damuth, A. Ri-
naldo, R. M. Sibly, and A. Maritan (2010b), Proc. Natl.
Acad. Sci. USA. 107 (36), 15816.

Barabasi, A.-L. (2005), Nature 435, 207.
Barabási, A.-L., and R. Albert (1999), Science 286 (5439),

509.
Barabasi, A.-L., and Z. N. Oltvai (2004), Nature Rev. Genet.

5 (2), 101.
Barnett, L., J. T. Lizier, M. Harré, A. K. Seth, and T. Bosso-

maier (2013), Phys. Rev. Lett. 111 (17), 177203.
Barral, J., and A. D. Reyes (2016), Nature Neurosci. 19 (12),

1690.
Barrat, A., M. Barthelemy, and A. Vespignani (2008), Dy-

namical processes on complex networks (Cambridge univer-
sity press).

Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West
(1994), in Fractal physiology (Springer) pp. 11–44.

Beckmann, C. F., M. DeLuca, J. T. Devlin, and S. M. Smith
(2005), Philos. Trans. R. Soc. London, Ser. B 360 (1457),
1001.
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Dickman, R., M. A. Muñoz, A. Vespignani, and S. Zapperi

(2000), Braz. J. Phys. 30 (1), 27.
Diez, I., P. Bonifazi, I. Escudero, B. Mateos, M. A. Muñoz,
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and R. Bon (2015), Proc. Natl. Acad. Sci. USA. 112 (41),
12729.

Gireesh, E. D., and D. Plenz (2008), Proc. Natl. Acad. Sci.
USA 105 (21), 7576.

Gisiger, T. (2001), Biological Reviews of the Cambridge Philo-
sophical Society 76 (02), 161.

Glass, L. (2001), Nature 410 (6825), 277.
Gold, T. (1948), Proc. R. Soc. London, Ser. B 135 (881), 492.
Goldberg, D. E., and J. H. Holland (1988), Machine learning

3 (2), 95.
Goldberger, A. L. (1992), IEEE Engineering in Medicine and

Biology Magazine 11 (2), 47.
Goldberger, A. L., L. A. Amaral, J. M. Hausdorff, P. C.

Ivanov, C.-K. Peng, and H. E. Stanley (2002), Proc. Natl.
Acad. Sci. USA. 99 (suppl 1), 2466.

Goldenfeld, N. (1992), .
Goldenfeld, N., and C. Woese (2011), Annu. Rev. Condens.

Matter Phys. 2 (1), 375.
Gollo, L. L., O. Kinouchi, and M. Copelli (2013), Sci. Rep.

3.
Gomez, F., T. Lorimer, and R. Stoop (2015), arXiv preprint

arXiv:1510.03241.
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and A. Maritan (2014), Proc. Natl. Acad. Sci. USA.
111 (28), 10095.

Hidalgo, J., L. Seoane, J. Cortés, and M. Muñoz (2012),
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Marković, D., and C. Gros (2014), Phys. Rep. 536 (2), 41.
Markram, H. (2006), Nature Rev. Neurosci. 7 (2), 153.
Markram, H., E. Muller, S. Ramaswamy, M. W. Reimann,

M. Abdellah, C. A. Sanchez, A. Ailamaki, L. Alonso-
Nanclares, N. Antille, S. Arsever, et al. (2015), Cell 163 (2),
456.

Markram, H., and M. Tsodyks (1996), Nature 382, 807.
Markus, G., and J. Freeman (2015), “The future of the



36

brain,”.
Marro, J., and D. Chialvo (2017), .
Marro, J., and R. Dickman (1999), Nonequilibrium Phase

Transition in Lattice Models (Cambridge University Press).
Marsili, M., I. Mastromatteo, and Y. Roudi (2013), J. Stat.

Mech. 2013 (09), P09003.
Marsili, M., and Y.-C. Zhang (1998), Phys. Rev. Lett.

80 (12), 2741.
Martin, P., A. Hudspeth, and F. Jülicher (2001), Proc. Natl.
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Massobrio, P., L. de Arcangelis, V. Pasquale, H. J. Jensen,

and D. Plenz (2015), Criticality as a signature of healthy
neural systems: multi-scale experimental and computa-
tional studies , 4.

Mastromatteo, I., and M. Marsili (2011), J. Stat. Mech.
2011 (10), P10012.

Mattia, M., and M. V. Sanchez-Vives (2012), Cognitive neu-
rodynamics 6 (3), 239.

Mazzoni, A., F. D. Broccard, E. Garcia-Perez, P. Bonifazi,
M. E. Ruaro, and V. Torre (2007), PloS one 2 (5), e439.
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4, 5990.

Villegas, P., J. Ruiz-Franco, J. Hidalgo, and M. A. Muñoz
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