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Can a cluster structure in a sparse relational data set, i.e., a network, be detected at all by unsupervised
clustering techniques? We answer this question by means of statistical mechanics making our analysis
independent of any particular algorithm used for clustering. We find a sharp transition from a phase in
which the cluster structure is not detectable at all to a phase in which it can be detected with high accuracy.
We calculate the transition point and the shape of the transition, i.e., the theoretically achievable accuracy,
analytically. This illuminates theoretical limitations of data mining in networks and allows for an
understanding and evaluation of the performance of a variety of algorithms.
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Clustering is of fundamental importance in exploratory
data analysis. We ask whether clusters in sparse networks
can be recovered at all and what is the maximum achiev-
able accuracy for any algorithm [1]. For example, consider
clustering the pages of the world wide web thematically.
Pages on common subjects will be linked more densely
than pages on different subjects. Under what circumstances
is it possible to infer these clusters corresponding to differ-
ent topics from the link structure alone?

We study an ensemble of clustered networks. All nodes
i 2 f1; . . . ; Ng are assigned into one of q designed or
‘‘planted’’ clusters of given size ns with

Pq
s ns � N and

carry a hidden variable si 2 f1; . . . ; qg indicating this clus-
ter. The degree distribution ps�k� may differ between clus-
ters, but the average connectivity per node hkis �P
1
k�1 kp

s�k� is finite for all s in accordance with real world
networks [2,3]. Links are distributed randomly yet obeying
ps�k� and a matrix of conditional probabilities p�rjs� pa-
rametrizing the cluster structure. Here, p�rjs� denotes the
conditional probability that given a link with one end in
designed cluster s its other end belongs to designed cluster
r. We only consider parameters which obey p�rjr�>
hkirnr=2M 8 r and p�sjr�< hkisns=2M 8 s � r, i.e., we
want more links within clusters than expected from a
purely random assignment of nodes into clusters. Here,
M is the total number of links in the network.

Clustering means to infer labels for nodes �i 2
f1; . . . ; qg. The accuracy of recovering the hidden cluster
labels is measured by A �

P
i�si;�i=N. Given are only the

links in the network, the number of clusters, and their
respective sizes. With unknown p�rjs�, any algorithm
must partition the nodes of the network into q groups of
given size minimizing the number of links between differ-
ent groups, i.e., search for maximally separated clusters.
This corresponds to a minimum cut partitioning problem.
For p�rjr� � 1 8 r the network consists of q disconnected
components and inference is trivial. For p�sjr� �
hkisns=2M 8 r; s cluster structure is absent and inference
of clusters is impossible.

In this Letter we study the transition from the impossible
to the trivial case as a function of p�rjs�. For simplicity, in
the following we will restrict the analysis to the case of q
equal sized clusters which all have the same degree distri-
bution ps�k� � p�k� 8 s, such that p�rjr� � pin 8 r and
p�sjr� � �1� pin�=�q� 1� 8 s � r. We will find that
feasible inference is only possible if pin is larger than a
critical value pcin. Moreover, this pcin depends crucially on
the degree distribution of the network. We will calculate
this dependence analytically. Finally, we will calculate the
maximum achievable accuracy that any algorithm can
reach on the ensemble of networks we describe.

A minimum cut partition is a ground state of the follow-
ing ferromagnetic Potts Hamiltonian:

 H � �
X
i<j

Jij��i;�j (1)

under the constraint of the given cluster sizes. The con-
straint of an equipartition is enforced by a symmetry
condition on the order parameters of the system (see be-
low). The couplings Jij are the entries of the f0; 1g adja-
cency matrix of the graph. In the ground state, the �i are
the inferred cluster labels. From the energy per node E in
the ground state, one may calculate a number of commonly
used quality functions for clustering such as the modularity
Q � �2E=hki � 1=q of this partition [4].

The preassigned partition is guaranteed to be a mini-
mum cut only for pin � 1. Generally, the energy Ep �
�pinhki=2 of the preassigned partition (�i � si) is larger
than the ground state energy of (1). The question we ask is
whether the ground state configuration of (1) is influenced
by the clustered topology of our network and thus overlaps
with the hidden cluster labels. To answer, we need to
calculate the local field distribution at each site in the
ground state of (1) dependent on the preassigned cluster
index. In the limit of pin � 1=q, i.e., without a cluster
structure, this problem has been studied extensively for
Poissonian degree distributions or Bethe lattices with a
fixed valence [5–9].
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To calculate the field distributions we employ the Bethe-
Peirls approach (or cavity method or belief propaga-
tion), directly at zero temperature [10]. The distribu-
tion of local fields Ps�h� is calculated from an integral
over a distribution of cavity biases or ‘‘messages’’ Qs�u�
which are calculated self-consistently. The superscript s 2
f1; . . . ; qg denotes a possible dependence of these distribu-
tions on the cluster index of the preassigned cluster struc-
ture. An easy to follow derivation of these equations can be
found in Refs. [11,12]. The equations read
 

Qs�u� �
X1
d�0

qs�d�
Z Yd

i�1

�dquiQs
in�ui���

�

u� û
�Xd
i�1

ui

��
;

Ps�h� �
X1
k�0

ps�k�
Z Yk

i�1

�dquiQs
in�ui���

�

h�
Xk
i�1

ui

�

: (2)

Here, qs�d� � �d� 1�ps�d� 1�=hkis is the distribution
of the excess degree per node. These equations are solved
by iteration or population dynamics, often called ‘‘message
passing.’’ The topology of the clustered network enters
via the distribution of ‘‘incoming’’ messages Qs

in�u� �Pq
r p�rjs�Qr�u�. Equations (2) are general as the particular

form of the Hamiltonian enters only via the two functions
v�h� and û�h�. For the Hamiltonian (1) the function û is
defined via

 v�h� � max�h1; . . . ; hq�; (3)

 û s�h� � max�h1; hs � 1; . . . ; hq� � v�h�: (4)

This means that û picks the maximum components in h
and sets all corresponding components in u to one and the
rest to zero. Because of possible degeneracy in the com-
ponents of h, the vector u � û�h�may have more than one
nonzero entry and is never completely zero. This observa-
tion is fundamental for all further developments. The com-
ponents of h take only integer values, because we only
have integer couplings Jij.

Under the assumption of replica symmetry, the above
approach is exact on an infinitely large graph. The solu-
tions are hence approximations for the field distributions in
a finite graph with the same degree distribution.

There are 2q � 1 possible messages u. The probabilities
of sending them may depend on the planted cluster from
which they are sent, hence there are q�2q � 1� different
probabilities Qs�u� to determine. We are only interested in
distributions that allow to fulfill the constraint of an equi-
partition and that are symmetric under permutation of the
indices as is our planted cluster structure. These conditions
reduce the number of different probabilities Qs�u� to only
2q� 1 order parameters �cw:

 Qs�u� � �cw; where c� us and w� kuk2� c: (5)

Here, us denotes the sth component of the message vector
u under consideration. Without loss of generality, we have
thus introduced a preferred direction for each planted

cluster. The probability Qs�u� that a node from planted
cluster s sends a message u depends only on whether or not
u has an entry of one in the ‘‘correct’’ component s (c � 1)
and on how many ‘‘wrong’’ components w in u carry an
entry of one (w 2 f1� c; . . . ; q� 1g). For pin ! 1 we
must have �10 ! 1, i.e., only correct messages are sent.
For pin ! 1=q we must have �1;��1 � �0;� � ��, i.e., the
probability of a message depends only on the number � �
w� c of nonzero entries in it. These new order parameters
describing Qs�u� obey

 

X1

c�0

Xq�1

w�1�c

q� 1
w

� �
�cw � 1: (6)

Let us now turn to the case of two clusters. Then, we
only have three possible messages u 2
f�1; 0�; �0; 1�; �1; 1�g and three order parameters �cw. The
equation for Qs�u� can then be written as a set of poly-
nomial equations for the �cw in a simple way:
 

�11 �
X1
n0�0

X1
n�0

q�n0 � 2n�
�n0 � 2n�!
n0!n!n!

��in
10�

n��in
01�

n�n0
11;

�10 �
X1
n0�0

X1
n1>n2

q�n0 � n1 � n2�
�n0 � n1 � n2�!

n0!n1!n2!

� ��in
10�

n1��in
01�

n2�n0
11: (7)

Together with the normalization condition 1 � �10�
�01 � �11 this forms a closed set of equations. We have
used the abbreviations �in

10 � pin�10 � �1� pin��01 and
�in

01 � pin�01 � �1� pin��10. Equations (7) are easily
solved for any value of pin and any degree distribution
p�k� by iteration. For pin � 1=2, we must have �10 �
�01 � �1 and only one independent order parameter
remains.

The ground state energy of the partitioning problem is
given by

 E � �
hki
2
�1� 2�X� �10�01� � �1� pin���10 � �01�

2�;

(8)

where we have introduced X as an abbreviation for

 X�
1

hki

X1
n0�0

X1
n�1

p�n0�2n�
�n0�2n�!
n0!n!�n�1�!

�n0
11��

in
10�

n��in
01�

n:

(9)

In case of a Poissonian degree distribution p�k� �
e���k=k! with mean �, we can express this using
Modified Bessel Functions of the first kind I1�n; x�:

 X� �
���������������
�in

10�
in
01

q
e���1��11�I1�1; 2�

���������������
�in

10�
in
01

q
�: (10)

We denote the ground state energy for pin � 1=q by ERnd

in which case we have �10 � �01.
Once we have the distributions Qs�u� and hence Ps�h�,

we can calculate the �i conditional on the hidden variables
si. Node i is assigned state �i corresponding to the maxi-
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mum component of the effective field h which is distrib-
uted as Ps�h�. In case of degeneracy, �i is chosen with
equal probability among the different maximum compo-
nents. From this the accuracy follows.

Figure 1 shows order parameters, ground state energy,
and achievable accuracy of recovering a planted bisection
as a function of pin in a random Bethe lattice with exactly
three links per node. The order parameters �10 and �01,
i.e., the probabilities of sending a message indicating the
correct or wrong cluster, respectively, are equal until a
critical value of pcin is reached. This bifurcation of the
order parameter pair �1;w�1, �0;w is also observed for
more than two clusters. The ground state energy is equal
to ERnd as long as pin < pcin. The ground state configuration
has only random overlap with the planted partition until
pin > pcin. As long as pin <pcin, the planted partition does
not influence the ground state and is thus not detectable.
The value of pcin � 7=8 at which the planted solution starts
to influence the ground state is smaller than the naı̈ve guess
pnin � �2ERnd=hki � 25=27, the value for which the
planted solution starts to have an energy below ERnd �
�25=18. We also see that the accuracy rises quickly as
soon as E is lower than ERnd.

How does the critical value pcin change with the degree
distribution? At the transition point, we can set �10 �
�01 � � 	 �1. Then we have �in

10 � �10 � �pout and
�in

01 � �10 � �pin. Inserting this into (7) and expanding
for small � we arrive at

 

�pcin � p
c
out�
�1 �

X
n0�0

X
n1>n2

q�n0 � n1 � n2��n1 � n2�

�
�n0 � n1 � n2�!

n0!n1!n2!
�n1�n2�1

1 �n0
2 : (11)

Here, �1 and �2 are the order parameters that we calculate
for pin � 1=2 and that remain valid for all pin 
 pcin.
Expression (11) is easily evaluated for any degree distri-
bution. For a Poissonian degree distribution p�k� �
e���k=k! with mean �, it simplifies to

 �pcin � p
c
out�
�1 � ���2 � X�=�1�: (12)

Figure 2 shows the dependence of pcin on the degree
distribution. With increasing hki we find decreasing pcin.
However, the critical pin for distributions with fat tails is
lower than for networks with a Poissonian degree distribu-
tion. Note the correspondence to the results in Ref. [13] on
the cut-size of these graphs. The critical value of pin is
smaller, i.e., clusters are easier to detect, for net-
works with degree distributions which are harder to cut.
Ref. [13] suggests a universal dependence of ERnd on h

���
k
p
i

based on a replica calculation. Our calculations here sup-
port this result. The middle panel of Fig. 2 shows that the
naı̈ve estimate pcin	p

n
in��2ERnd=hki provides a good,

but conservative, approximation for large hki.
All the results described here analytically for two clus-

ters can be obtained for more than two clusters by an
efficient population dynamics algorithm described else-
where [14]. For example, the right panel of Fig. 2 shows
the maximum attainable accuracy in a commonly used
benchmark in graph clustering or community detection
[15]. Networks consist of 4 groups, the degree distribution
is Poissonian with a mean degree of � � 16. As expected,
our theoretical curve is nicely approached by the data
points as the networks grow in size.

In summary, motivated by numerical evidence for a uni-
versal limit of cluster detectability across a variety of al-
gorithms [15], we have shown analytically that the sparsity
of a network limits the achievable accuracy. Cluster struc-
ture may be present, but remains undetectable and hidden
behind alternative solutions to the clustering problem that
have zero correlation with the correct solution. We have
given analytical formulas for the energy of these alterna-
tive solutions. To be detectable, any planted configuration
must induce lower minima in the energy landscape of the
partitioning Hamiltonian. While presented for equal sized
clusters, the observed transitions occur in the same quali-
tative manner for more general cluster structures [14].

This is in strong contrast to a rich literature on clustering
multivariate data. The typical behavior of these problems is
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FIG. 1 (color online). Left: Order parameters �cw for the planted bisection on a random Bethe lattice with k � 3 links per node as a
function of pin. The clusters do not influence the ground state configuration until a critical value of pin is reached. Middle: Ground state
energy E of (1) and the energy of the planted cluster structure Ep vs pin. The left vertical line indicates the critical value of pcin beyond
which �10 >�01, E< ERnd, and the clusters do influence the ground state. The right vertical line indicates the naı̈ve guess for pnin �
�2ERnd=hki beyond which Ep < ERnd. Right: The achievable accuracy for recovering the planted clusters. The two vertical lines
indicate pcin and pnin. The inset shows how dramatically the accuracy increases for E< ERnd.
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that given N data points in a space of dimension D, i.e., an
N �D data matrix, there exists a critical value of �c, such
that for N > �cD one can recover the cluster structure in
the data with high accuracy [1,16–19]. Naturally, �c is a
function of the separation of the clusters, but given enough
data points, even for smallest separations we are always
able to infer the correct cluster structure. A similar result
has been derived in the computer science literature by
Onsjö and Watanabe for dense networks. They provide
an algorithmic proof that a cluster structure can be recov-
ered correctly with probability greater than 1� � if p�
r >��N�1=2 log�N=��� [20]. In contrast to our treatment,
they denote by p and r the probabilities that a link exists
between nodes in the same, respectively different clusters.
Similar bounds are provided by other authors [21,22]. Such
bounds are only meaningful if p and r do not scale with the
system size. For the sparse networks considered here,
however, these bound are meaningless since both p and r
scale as 1=N.

The interesting feature of sparse networks is that size
and dimensionality of the data set are not independent.
Adding nodes to the network inevitably increases the
dimensionality of the data. Thus we are dealing with a
qualitatively different phenomenon. Our results may be
valuable for the design of network clustering algorithms
and their benchmarks as well as for a critical assessment of
the amount of information that can be derived from un-
supervised learning or data mining on networks.

We thank David Saad, Wolfgang Kinzel, and Georg
Reents for stimulating discussions.
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FIG. 2 (color online). Left: The critical value of pin beyond which the cluster structure starts to influence the ground state of the
bisection problem, i.e., below which clusters cannot be detected. We compare Erdös Renyi graphs (ER) with a Poissonian degree
distribution p�k� � e���k=k! and two types of scale free degree distributions. The first one being a stretched power law (SF �k) of
form p�k� � �k��k��� with �k 2 �2; 50�, and the second (SF kmin) being of the form p�k� � k�� with a varying minimum degree
kmin with kmin 2 �2; 30�. For both scale free distributions we choose � � 3. Since we are interested only in the behavior of the giant
connected component, we set p�k � 0� � 0 in all cases. Middle: The ratio of pcin and pnin. The naı̈ve estimate for the transition point
pnin � �2ERnd=hki always overestimates the true pcin. Right: Achievable accuracy for the planted partition problem on ER graphs with
N ! 1, hki � 16 and 4 equal sized clusters and numerical results obtained for corresponding finite size test-networks of varying size.
Partitioning was done by simulated annealing.

PRL 101, 078701 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
15 AUGUST 2008

078701-4


