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Abstract— As the size of available data sets grows, so too 

does the demand for efficient parallel algorithms that will 

yield the solution to complex combinatorial problems on 

graphs that may be too large to fit entirely in memory. In 

previous work, we have provided a set of out-of-core 

algorithms to solve one of the central examples of such a 

problem, maximum clique. In this paper, we review the 

algorithms and report on our ongoing work to use them as a 

starting point for an optimized, highly scalable implementation 

of a maximum clique solver.  
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I. INTRODUCTION 

Ongoing advances in data collection technologies have led 
to an explosive growth in the size of data sets available to 
researchers in various domains. One need only look to 
transcriptomic data analysis, where the development of array 
platforms capable of targeting sequences at the exon level has 
pushed the size of the associated correlation graphs from 
around 30 thousand vertices and millions of edges to the order 
of 1.2 million vertices and trillions of edges. Further 
complicating the analysis of truly big data graphs, many of 
the problems of interest are difficult to solve on graphs of 
even moderate size. 

One of the central such problems is the much-studied 
maximum clique problem. A clique in a graph is a complete 
subgraph, i.e., a subgraph which is missing none of its possible 
edges. The problem of determining if a graph has a clique of 

size at least k is well-known to be NP-complete. We are 

concerned here with the NP-hard optimization version. 

That is, we seek the largest k for which the decision version 
returns “yes.” 

A collection of parallel algorithms for solving the 
maximum clique problem on graphs too large to fit into core 
memory was presented in [1]. At the time, the primary focus 
was on providing a practical approach to handling the 
immense size of the graphs. These algorithms used the 
existing serialized code, Maximum Clique Solver (MCS) 
[2], as the basis to solve the maximum clique problem on 

datasets that were too large to store in core memory as a 
bit adjacency matrix.  

Although the algorithms were written for distributed 
memory parallel systems, the initial versions focused on 
writing parallel wrappers around serialized code, rather than 
optimizing performance via parallel examination of the 
search space. While other authors have recently introduced 
high-performance parallel algorithms for maximum clique, we 
believe that there is significant room for improvement to 
existing techniques. A MapReduce-based implementation is 
presented in [3], but it suffers from quadratic space overhead, 
since it divides the problem into subgraphs, each pair of which 
requires an overlap graph. It also suffers reduced flexibility 
compared to being written using MPI. The algorithms 
presented in [4] provide good scalability to large graphs, but 
are tuned to leverage aggressive pruning techniques targeted 
specifically to structural characteristics common to social and 
information networks. In previous work on big data clique 
solutions, little attention has been devoted to problem reduction 
through out-of-core preprocessing. 

 In section II, the existing parallel algorithms are 
reviewed. To illustrate the potential of our algorithms to 
operate on big data graphs, the results of using the EOC 
algorithms on two large datasets are presented in section III. 
Finally, in section IV, the ongoing research towards creating an 
optimized, highly scalable implementation of a parallel 
maximum clique solver is presented. 

II. PARALLEL ALGORITHMS 

The first of our  parallel algorithms, termed Edge-in-
Core (EIC), is capable of handling a graph too large to be 
held as an adjacency matrix in core memory, but whose 
edge list can be stored in core memory. The second 
algorithm, termed Edge-Out-of-Core (EOC), can deal with 
graphs so large that the edges cannot be stored as an 
adjacency list in main memory (although the node list must 
still be able to fit in core). Both algorithms were 
implemented with MPI using a master-worker paradigm. 

The two algorithms operate in the same basic manner, 
taking a graph too large to s t o r e  i n  m e m o r y  and 
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carving it into smaller subgraphs. The subgraphs are then 
farmed out to worker nodes where the size of their local 
maximum cliques is determined. I t  i s  e s s e n t i a l  t h a t  
t h e  dissection of the graph be done in such a way as to 
ensure that a clique in the original graph will be maintained 
in some subgraph sent to a worker node. D o in g  so  
g u a r an t e es  t h a t  the size of the largest l o c a l  maximum 
clique reported for a subgraph will be the global maximum 
clique size for the original graph. 

Both the EIC and the EOC algorithms preprocess the graph 
to eliminate vertices that cannot be members of a clique larger 
than the current maximum clique size (CMCS) by removing 
all vertices that have a degree less than CMCS-1. By default, 
the CMCS is initially set at 2 and increases when a new 
maximum clique size is returned to the master node. The 
master node is responsible for preprocessing the graph and 
constructing workloads to send to the worker nodes. Given N 
worker nodes in our system, each with M bytes of memory, 
there will be N bins, each capable of containing a subgraph 
of the original graph that is less than M bytes in size. Each 
bin may contain a mixture of connected components and any 
number of vertices (along with their neighborhoods), as long 
as the memory constraints are not violated. 

A. Edge-In-Core 

The EIC algorithm begins by reading in the graph and 
storing it as an adjacency list. The preprocessing step involves 
recursively removing all vertices of degree CMCS-1 and any 
isolated vertices. The workloads are then constructed by first 
computing the connected components and identifying their 
size. 

Any connected components that are less than M bytes in 
size are automatically placed into bins to be sent to a worker 
node. No further analyses are needed on the vertices that make 
up these connected components. If, however, a connected 
component is too large to fit into core memory on the worker 
node, it must be split up further. The dissection of individual 
connected components is done by iteratively removing the 
subgraph consisting of a root vertex r and its neighborhood and 
adding it to the current work bin. The algorithm first seeks to 
remove all cut vertices (vertices whose removal disconnects a 
connected component) as a root vertex. After the cut vertices 
are exhausted, if there is still at least one connected component 
that is too large to fit into a work bin, then the vertex of highest 
degree can be chosen as r, so as long as |NG(r)| < mB, where 
mB is the size of available memory in the work bin B. Once a 
root vertex has been selected, the search space is expanded via 
a breadth-first search. Good candidate neighborhoods are those 
that either overlap significantly with the neighborhood of the 
root vertex or those that form totally disjoint neighborhoods. 

As the EIC algorithm has access to the degree structure of 
the graph, the expansion of the search space can be done in a 
manner contingent on the structure of the graph being 
decomposed. In order to expand the search space to include 
overlapping neighborhoods, EIC begins by inserting the 
neighborhood of the root vertex r into the work bin along with 
every NG(w), where w is a neighbor of r and |NG(w)| < mB. 
Note that if NG(w) is contained in NG(r), then we can remove 
both vertices r and w from the search space. Therefore, if the  

 

Algorithm 1 from [1]. The EIC algorithm is used for the case in which 
edge information can be stored in core memory. 

 

induced neighborhood of the root vertex is dense, expanding 
the search space to include the induced neighborhoods of the 
low degree neighbors of the root vertex is preferable, as the 
number of vertices that can be eliminated from the search 
space in a single step is increased. On the other hand, if the 
induced neighborhood of the root vetex is sparse, then 
expanding the search space to include disjoint neighborhoods 
is preferable. This eliminates at least one vertex per disjoint 
neighborhood that is selected, in addition to the root vertex. 
Disjoint neighborhoods are selected by performing a breadth-
first search with the root vertex r as the source node. Any 
vertex w that has a distance of three from vertex r is a 
candidate vertex. The NG(w) is inserted into the worker bin as 
long as |NG(w)| < mB. 

Once the worker bin is filled to capacity, or the vertices of 
G are exhaused, then the worker bin is sent to any available 
worker node. The worker node executes the MCS algorithm on 
its workload and generates a local maximum clique size. The 
results are returned to the master node and a request for more 
work is submitted. After each worker node has processed at 
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least one workload, or each connected component has had at 
least one cut vertex removed, then the master node interleaves 
the preprocessing step and recomputes the connected 
component structure. The process continues until all vertices in 
G have been eliminated from the search space. Pseudocode for 
this algorithm is from [1] and is listed in Algorithm 1. 

 

B. Edge-Out-of-Core 

While the EOC algorithm is similar in nature to the EIC 
algorithm, some necessary adjustments must be made to 
process graphs that are too large for their edge list to be stored 
in core memory on the worker node. The EOC algorithm 
requires that only the vertex list and graph metadata be stored 
in core memory. In order to process graph metadata, the master 
node must make multiple external passes over the graph in 
order to compute degree structure and connected component 
information. These graphs are generally stored on hard disks, 
which are orders of magnitude slower than core memory. This 
time penalty must be taken into account when balancing the 
gains of preprocessing against the accrued I/O costs. Also, 
without quick access to the edge information of a particular 
vertex, the ability to tune the workload construction based on 
significantly overlapping neighborhoods, or disjoint 
neighborhoods, is no longer a viable option. 

The EIC algorithm requires that only the master node needs 
access to the external file. The EOC algorithm requires that 
every worker node will need access to the file since the master 
node does not have the graph stored in core memory. On 
smaller clusters, each worker node typically has some type of 
local storage on which a copy of the graph can be stored. On 
larger systems, it is common to find a single shared high 
performance file system, such as Lustre, to which all of the 
worker nodes must share access. Regardless of the storage 
solution chosen, the amount of time spent on disk I/O is the 
limiting performance factor for the EOC algorithm.  

The roles of the master and worker nodes in the EOC 
algorithm are slightly changed compared to EIC, as the worker 
nodes take on increased responsibility. The master node now 
sends only the root vertices of neighborhoods in the worker 
bins. The size of the bins are decreased by the degree of the 
root vertex plus the root vertex itself. Given that the master 
node does not have any edge information, the two root vertices 
that are selected can be neighbors, but must have no other 
neighbors in common.  

To track changes in the search space, the master node 
maintains a list of vertices that have been eliminated, called the 
do-not-read (DNR) list. The DNR list is passed to each worker 
node when it is sent a new workload. The worker nodes use 
both their respective work bins and the DNR list to filter out 
edges from the graph when they parse the file on disk. This 
reduces the number of vertices that each worker node needs to 
store in core memory. Once the worker node has completed its 
workload, the local maximum clique size is returned to the 
master node and a request for more work is submitted. 
Pseudocode for the EOC algorithm from [1] appears in 
Algorithm 2. 

 

 

Algorithm 2 from [1]. The EOC algorithm is used for the case in which 

edge information will not fit into core memory. 

 

III. RESULTS 

Tests were performed on Darter, a Cray XC30, that is 
housed and operated by the National Institute for 
Computational Sciences (NICS). Each compute node contains 
two 8-core Intel Xeon E5-2600 processors, 32GB of main 
memory, and is connected via Cray’s Aries interconnect. The 
MCS algorithm that is used as the main compute engine 
requires that the subgraph be stored on a worker node in an 
efficient bitmatrix, at most a 500K square matrix. 

Two different datasets were examined. The first dataset is a 
California road network with 1.9 million nodes, 2.7 million 
edges, and a maximum clique size of 4[5]. Nodes in this 
dataset represent intersections and destinations. Edges 
represent the roads that connect the intersections and/or 
destinations[6]. The second dataset is derived from the 
Youtube social network. It has 1.1 million nodes, 2.9 million 
edges, and a maximum clique size of 17. Nodes in this dataset 
represent users, while edges connect users who are identified 
as friends or are members of the same user-defined group. The 
run times of the EOC algorithm on both datasets are listed in 
Table 1. 
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Dataset| 2 nodes 5 nodes 25 nodes 75 nodes 

California 
Road 

10980 3823 256 153 

  Youtube 13860 4451 878 417 

 

Table 1. Execution times (in seconds) of the EOC algorithm. Individual 

execution runs were conducted using 2, 5, 25, and 75 processor nodes for 

each graph. 

 

 

IV. ONGOING WORK 

 The primary focus of the development of the original OOC 
algorithms was to provide a practical set of tools to work with 
graphs too large to fit into core memory. With the algorithms 
described in the previous sections in hand, focus is now turned 
to their optimization. There are three areas of ongoing research 
that, when completed, will provide a state-of-the-art exact 
maximum clique solver for truly enormous graphs.  

A. Improved Processor Utilization 

The first area to undergo optimization is the underlying 
MCS compute engine. Once a workload is sent from the master 
node to the compute node, given that these problems are 
typically memory bound and not CPU bound, a single core is 
used by MCS to solve the local maximum clique problem. A 
hybrid OpenMP/MPI approach is currently being investigated 
to determine if multiple cores on a single node can work 
concurently on the same data, without needing multiple copies 
of the data in memory at the same time. 

B. Improved Preprocessing 

 In the parlance of fixed-parameter tractibility, the 
maximum clique problem is W[1]-hard. On the other hand, it’s 
complementary dual, minimum vertex cover, is fixed 
parameter tractable, or FPT. Our original out-of-core 
algorithms used the custom compute engine, MCS, based on 
algorithms for vertex cover derived from work reported in 
[7,8]. Two tenets of FPT are kernelization, in which an input of 
size n is reduced to a compute core with size depending only 
on the parameter, and branching, by which an efficient tree 
structure is used to explore the solution space. The 
kernelization process in MCS occurs during preprocessing.  

 Recent work has investigated the role of kernelization vs. 
branching in a parallel implementation of FPT vertex cover 
using an expanded set of reduction rules for kernelization [9]. 
During testing, it was discovered that some classes of our test 
graphs tended to kernelize exceedingly well, reducing to the 
point that the time needed in branching was negligible. In 
several cases, the graph was solved completely through 
kernelization alone. See Table 2. 

 The Road graph is derived from the California road 
network, as reported in section III. The Airport graph is based 
on direct flight connectivity in the United States. The Power 
graph was obtained from the high voltage power grid for the 
western United States. The arXiv graph is a high energy 
physics collaboration network. All of the graphs were obtained 
from the Stanford Large Network Dataset Collection [10]. 

C. Targeted Solvers 

 The third area of optimization is in the efficiency of the 
MCS compute engine. Currently, MCS has the same type of 
approach for all graphs. However, recent findings have 
suggested that a dynamic approach to analyzing different types 
of graphs is needed in order to get the best use out of MCS. In 
addition to the FPT vertex cover based codes, three other 
implementations have been investigated to solve maximum 
clique. 

 

Graph Road Airport Power arXiv 

Nodes 30000 1858 4941 12008 

Edges 87628 17215 6594 118521 

Kernel 
Size 

147 126 7 240 

Clique 
Size 

3 56 6 239 

Branching 0.00363 0.00598 - - 

 

Table 1. Graphs for which kernelization excelled. Run times are reported 

in seconds. Both the Power and arXiv graphs were solved completely 

through kernelization. 

 

 
 

Figure 1. Graph instances solved most efficiently by ILP. Run times are 

reported in seconds. MANN_a45 is a DIMACS challenge graph while 

usr7_203-1 and usr7_203-2 are two regular graphs (constructed by union 

of strongly regular graphs) downloaded from 

http://pallini.di.uniroma1.it/library/conauto_dim/usr.zip 

 

 

• A package based on Tomita’s MCS algorithm. This is 
a branch and bound algorithm with improved 
approximate coloring for clique upper bounds [11]. 

• Akmaxsat, A MaxSAT solver. Akmaxsat is a branch 
and bound based propagation algorithm featuring a 
lazy deletion data structure [12]. Instances of the 
maximum clique problem were first transformed to 
partial MaxSAT instances using an encoding based on 
[13]. 
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• Via Integer Linear Programming using IBM ILOG 
CPLEX.  

Extensive experimentation using the algorithms above has 
been conducted on a myriad of both real-world and synthetic 
graphs. The full results will appear in an upcoming paper. The 
ultimate goal is to identify a metric based on structural 
characteristics of a graph that can be used to accurately predict 
the best algorithm to use for its solution.  

Although in general we have seen that Tomita’s MCS 
algorithm is the fastest, in testing we have encountered groups 
of graphs for which the MaxSAT and ILP approaches 
outperform the others. See Figures 1 and 2. 

 

Figure 2. Graph instances solved most efficiently by MaxSAT. Run times 

are reported in seconds. frb30-15-1.clq, frb30-15-3.clq, and frb30-15-

5.clq are BHOSLIB benchmarks downloaded from 

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-

benchmarks.htm. reg_203_188.txt is a regular graph generated by 

sampling a random graph realizing a given arbitrary degree sequence. 

The generator is available for download from 

http://www2.warwick.ac.uk/fac/sci/maths/people/staff/charo_delgenio/ 
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