
Toward an Efficient, Highly Scalable Maximum

Clique Solver for Massive Graphs

Ronald D. Hagan1, Charles A. Phillips1, Kai Wang1, Gary L. Rogers2, Michael A. Langston1

1Department of Electrical Engineering and Computer Science,

University of Tennessee, Knoxville, TN, USA.

2National Institute for Computational Sciences,

 University of Tennessee, Oak Ridge, TN, USA.

Abstract— As the size of available data sets grows, so too

does the demand for efficient parallel algorithms that will

yield the solution to complex combinatorial problems on

graphs that may be too large to fit entirely in memory. In

previous work, we have provided a set of out-of-core

algorithms to solve one of the central examples of such a

problem, maximum clique. In this paper, we review the

algorithms and report on our ongoing work to use them as a

starting point for an optimized, highly scalable implementation

of a maximum clique solver.

Keywords—big data; parallel graph algorithms; out-of-core;

maximum clique

I. INTRODUCTION

Ongoing advances in data collection technologies have led
to an explosive growth in the size of data sets available to
researchers in various domains. One need only look to
transcriptomic data analysis, where the development of array
platforms capable of targeting sequences at the exon level has
pushed the size of the associated correlation graphs from
around 30 thousand vertices and millions of edges to the order
of 1.2 million vertices and trillions of edges. Further
complicating the analysis of truly big data graphs, many of
the problems of interest are difficult to solve on graphs of
even moderate size.

One of the central such problems is the much-studied
maximum clique problem. A clique in a graph is a complete
subgraph, i.e., a subgraph which is missing none of its possible
edges. The problem of determining if a graph has a clique of

size at least k is well-known to be NP-complete. We are

concerned here with the NP-hard optimization version.

That is, we seek the largest k for which the decision version
returns “yes.”

A collection of parallel algorithms for solving the
maximum clique problem on graphs too large to fit into core
memory was presented in [1]. At the time, the primary focus
was on providing a practical approach to handling the
immense size of the graphs. These algorithms used the
existing serialized code, Maximum Clique Solver (MCS)
[2], as the basis to solve the maximum clique problem on

datasets that were too large to store in core memory as a
bit adjacency matrix.

Although the algorithms were written for distributed
memory parallel systems, the initial versions focused on
writing parallel wrappers around serialized code, rather than
optimizing performance via parallel examination of the
search space. While other authors have recently introduced
high-performance parallel algorithms for maximum clique, we
believe that there is significant room for improvement to
existing techniques. A MapReduce-based implementation is
presented in [3], but it suffers from quadratic space overhead,
since it divides the problem into subgraphs, each pair of which
requires an overlap graph. It also suffers reduced flexibility
compared to being written using MPI. The algorithms
presented in [4] provide good scalability to large graphs, but
are tuned to leverage aggressive pruning techniques targeted
specifically to structural characteristics common to social and
information networks. In previous work on big data clique
solutions, little attention has been devoted to problem reduction
through out-of-core preprocessing.

 In section II, the existing parallel algorithms are
reviewed. To illustrate the potential of our algorithms to
operate on big data graphs, the results of using the EOC
algorithms on two large datasets are presented in section III.
Finally, in section IV, the ongoing research towards creating an
optimized, highly scalable implementation of a parallel
maximum clique solver is presented.

II. PARALLEL ALGORITHMS

The first of our parallel algorithms, termed Edge-in-
Core (EIC), is capable of handling a graph too large to be
held as an adjacency matrix in core memory, but whose
edge list can be stored in core memory. The second
algorithm, termed Edge-Out-of-Core (EOC), can deal with
graphs so large that the edges cannot be stored as an
adjacency list in main memory (although the node list must
still be able to fit in core). Both algorithms were
implemented with MPI using a master-worker paradigm.

The two algorithms operate in the same basic manner,
taking a graph too large to s t o r e i n m e m o r y and

41

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE

carving it into smaller subgraphs. The subgraphs are then
farmed out to worker nodes where the size of their local
maximum cliques is determined. I t i s e s s e n t i a l t h a t
t h e dissection of the graph be done in such a way as to
ensure that a clique in the original graph will be maintained
in some subgraph sent to a worker node. D o in g so
g u a r an t e es t h a t the size of the largest l o c a l maximum
clique reported for a subgraph will be the global maximum
clique size for the original graph.

Both the EIC and the EOC algorithms preprocess the graph
to eliminate vertices that cannot be members of a clique larger
than the current maximum clique size (CMCS) by removing
all vertices that have a degree less than CMCS-1. By default,
the CMCS is initially set at 2 and increases when a new
maximum clique size is returned to the master node. The
master node is responsible for preprocessing the graph and
constructing workloads to send to the worker nodes. Given N
worker nodes in our system, each with M bytes of memory,
there will be N bins, each capable of containing a subgraph
of the original graph that is less than M bytes in size. Each
bin may contain a mixture of connected components and any
number of vertices (along with their neighborhoods), as long
as the memory constraints are not violated.

A. Edge-In-Core

The EIC algorithm begins by reading in the graph and
storing it as an adjacency list. The preprocessing step involves
recursively removing all vertices of degree CMCS-1 and any
isolated vertices. The workloads are then constructed by first
computing the connected components and identifying their
size.

Any connected components that are less than M bytes in
size are automatically placed into bins to be sent to a worker
node. No further analyses are needed on the vertices that make
up these connected components. If, however, a connected
component is too large to fit into core memory on the worker
node, it must be split up further. The dissection of individual
connected components is done by iteratively removing the
subgraph consisting of a root vertex r and its neighborhood and
adding it to the current work bin. The algorithm first seeks to
remove all cut vertices (vertices whose removal disconnects a
connected component) as a root vertex. After the cut vertices
are exhausted, if there is still at least one connected component
that is too large to fit into a work bin, then the vertex of highest
degree can be chosen as r, so as long as |NG(r)| < mB, where
mB is the size of available memory in the work bin B. Once a
root vertex has been selected, the search space is expanded via
a breadth-first search. Good candidate neighborhoods are those
that either overlap significantly with the neighborhood of the
root vertex or those that form totally disjoint neighborhoods.

As the EIC algorithm has access to the degree structure of
the graph, the expansion of the search space can be done in a
manner contingent on the structure of the graph being
decomposed. In order to expand the search space to include
overlapping neighborhoods, EIC begins by inserting the
neighborhood of the root vertex r into the work bin along with
every NG(w), where w is a neighbor of r and |NG(w)| < mB.
Note that if NG(w) is contained in NG(r), then we can remove
both vertices r and w from the search space. Therefore, if the

Algorithm 1 from [1]. The EIC algorithm is used for the case in which
edge information can be stored in core memory.

induced neighborhood of the root vertex is dense, expanding
the search space to include the induced neighborhoods of the
low degree neighbors of the root vertex is preferable, as the
number of vertices that can be eliminated from the search
space in a single step is increased. On the other hand, if the
induced neighborhood of the root vetex is sparse, then
expanding the search space to include disjoint neighborhoods
is preferable. This eliminates at least one vertex per disjoint
neighborhood that is selected, in addition to the root vertex.
Disjoint neighborhoods are selected by performing a breadth-
first search with the root vertex r as the source node. Any
vertex w that has a distance of three from vertex r is a
candidate vertex. The NG(w) is inserted into the worker bin as
long as |NG(w)| < mB.

Once the worker bin is filled to capacity, or the vertices of
G are exhaused, then the worker bin is sent to any available
worker node. The worker node executes the MCS algorithm on
its workload and generates a local maximum clique size. The
results are returned to the master node and a request for more
work is submitted. After each worker node has processed at

42

least one workload, or each connected component has had at
least one cut vertex removed, then the master node interleaves
the preprocessing step and recomputes the connected
component structure. The process continues until all vertices in
G have been eliminated from the search space. Pseudocode for
this algorithm is from [1] and is listed in Algorithm 1.

B. Edge-Out-of-Core

While the EOC algorithm is similar in nature to the EIC
algorithm, some necessary adjustments must be made to
process graphs that are too large for their edge list to be stored
in core memory on the worker node. The EOC algorithm
requires that only the vertex list and graph metadata be stored
in core memory. In order to process graph metadata, the master
node must make multiple external passes over the graph in
order to compute degree structure and connected component
information. These graphs are generally stored on hard disks,
which are orders of magnitude slower than core memory. This
time penalty must be taken into account when balancing the
gains of preprocessing against the accrued I/O costs. Also,
without quick access to the edge information of a particular
vertex, the ability to tune the workload construction based on
significantly overlapping neighborhoods, or disjoint
neighborhoods, is no longer a viable option.

The EIC algorithm requires that only the master node needs
access to the external file. The EOC algorithm requires that
every worker node will need access to the file since the master
node does not have the graph stored in core memory. On
smaller clusters, each worker node typically has some type of
local storage on which a copy of the graph can be stored. On
larger systems, it is common to find a single shared high
performance file system, such as Lustre, to which all of the
worker nodes must share access. Regardless of the storage
solution chosen, the amount of time spent on disk I/O is the
limiting performance factor for the EOC algorithm.

The roles of the master and worker nodes in the EOC
algorithm are slightly changed compared to EIC, as the worker
nodes take on increased responsibility. The master node now
sends only the root vertices of neighborhoods in the worker
bins. The size of the bins are decreased by the degree of the
root vertex plus the root vertex itself. Given that the master
node does not have any edge information, the two root vertices
that are selected can be neighbors, but must have no other
neighbors in common.

To track changes in the search space, the master node
maintains a list of vertices that have been eliminated, called the
do-not-read (DNR) list. The DNR list is passed to each worker
node when it is sent a new workload. The worker nodes use
both their respective work bins and the DNR list to filter out
edges from the graph when they parse the file on disk. This
reduces the number of vertices that each worker node needs to
store in core memory. Once the worker node has completed its
workload, the local maximum clique size is returned to the
master node and a request for more work is submitted.
Pseudocode for the EOC algorithm from [1] appears in
Algorithm 2.

Algorithm 2 from [1]. The EOC algorithm is used for the case in which

edge information will not fit into core memory.

III. RESULTS

Tests were performed on Darter, a Cray XC30, that is
housed and operated by the National Institute for
Computational Sciences (NICS). Each compute node contains
two 8-core Intel Xeon E5-2600 processors, 32GB of main
memory, and is connected via Cray’s Aries interconnect. The
MCS algorithm that is used as the main compute engine
requires that the subgraph be stored on a worker node in an
efficient bitmatrix, at most a 500K square matrix.

Two different datasets were examined. The first dataset is a
California road network with 1.9 million nodes, 2.7 million
edges, and a maximum clique size of 4[5]. Nodes in this
dataset represent intersections and destinations. Edges
represent the roads that connect the intersections and/or
destinations[6]. The second dataset is derived from the
Youtube social network. It has 1.1 million nodes, 2.9 million
edges, and a maximum clique size of 17. Nodes in this dataset
represent users, while edges connect users who are identified
as friends or are members of the same user-defined group. The
run times of the EOC algorithm on both datasets are listed in
Table 1.

43

Dataset| 2 nodes 5 nodes 25 nodes 75 nodes

California
Road

10980 3823 256 153

 Youtube 13860 4451 878 417

Table 1. Execution times (in seconds) of the EOC algorithm. Individual

execution runs were conducted using 2, 5, 25, and 75 processor nodes for

each graph.

IV. ONGOING WORK

 The primary focus of the development of the original OOC
algorithms was to provide a practical set of tools to work with
graphs too large to fit into core memory. With the algorithms
described in the previous sections in hand, focus is now turned
to their optimization. There are three areas of ongoing research
that, when completed, will provide a state-of-the-art exact
maximum clique solver for truly enormous graphs.

A. Improved Processor Utilization

The first area to undergo optimization is the underlying
MCS compute engine. Once a workload is sent from the master
node to the compute node, given that these problems are
typically memory bound and not CPU bound, a single core is
used by MCS to solve the local maximum clique problem. A
hybrid OpenMP/MPI approach is currently being investigated
to determine if multiple cores on a single node can work
concurently on the same data, without needing multiple copies
of the data in memory at the same time.

B. Improved Preprocessing

 In the parlance of fixed-parameter tractibility, the
maximum clique problem is W[1]-hard. On the other hand, it’s
complementary dual, minimum vertex cover, is fixed
parameter tractable, or FPT. Our original out-of-core
algorithms used the custom compute engine, MCS, based on
algorithms for vertex cover derived from work reported in
[7,8]. Two tenets of FPT are kernelization, in which an input of
size n is reduced to a compute core with size depending only
on the parameter, and branching, by which an efficient tree
structure is used to explore the solution space. The
kernelization process in MCS occurs during preprocessing.

 Recent work has investigated the role of kernelization vs.
branching in a parallel implementation of FPT vertex cover
using an expanded set of reduction rules for kernelization [9].
During testing, it was discovered that some classes of our test
graphs tended to kernelize exceedingly well, reducing to the
point that the time needed in branching was negligible. In
several cases, the graph was solved completely through
kernelization alone. See Table 2.

 The Road graph is derived from the California road
network, as reported in section III. The Airport graph is based
on direct flight connectivity in the United States. The Power
graph was obtained from the high voltage power grid for the
western United States. The arXiv graph is a high energy
physics collaboration network. All of the graphs were obtained
from the Stanford Large Network Dataset Collection [10].

C. Targeted Solvers

 The third area of optimization is in the efficiency of the
MCS compute engine. Currently, MCS has the same type of
approach for all graphs. However, recent findings have
suggested that a dynamic approach to analyzing different types
of graphs is needed in order to get the best use out of MCS. In
addition to the FPT vertex cover based codes, three other
implementations have been investigated to solve maximum
clique.

Graph Road Airport Power arXiv

Nodes 30000 1858 4941 12008

Edges 87628 17215 6594 118521

Kernel
Size

147 126 7 240

Clique
Size

3 56 6 239

Branching 0.00363 0.00598 - -

Table 1. Graphs for which kernelization excelled. Run times are reported

in seconds. Both the Power and arXiv graphs were solved completely

through kernelization.

Figure 1. Graph instances solved most efficiently by ILP. Run times are

reported in seconds. MANN_a45 is a DIMACS challenge graph while

usr7_203-1 and usr7_203-2 are two regular graphs (constructed by union

of strongly regular graphs) downloaded from

http://pallini.di.uniroma1.it/library/conauto_dim/usr.zip

• A package based on Tomita’s MCS algorithm. This is
a branch and bound algorithm with improved
approximate coloring for clique upper bounds [11].

• Akmaxsat, A MaxSAT solver. Akmaxsat is a branch
and bound based propagation algorithm featuring a
lazy deletion data structure [12]. Instances of the
maximum clique problem were first transformed to
partial MaxSAT instances using an encoding based on
[13].

44

• Via Integer Linear Programming using IBM ILOG
CPLEX.

Extensive experimentation using the algorithms above has
been conducted on a myriad of both real-world and synthetic
graphs. The full results will appear in an upcoming paper. The
ultimate goal is to identify a metric based on structural
characteristics of a graph that can be used to accurately predict
the best algorithm to use for its solution.

Although in general we have seen that Tomita’s MCS
algorithm is the fastest, in testing we have encountered groups
of graphs for which the MaxSAT and ILP approaches
outperform the others. See Figures 1 and 2.

Figure 2. Graph instances solved most efficiently by MaxSAT. Run times

are reported in seconds. frb30-15-1.clq, frb30-15-3.clq, and frb30-15-

5.clq are BHOSLIB benchmarks downloaded from

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-

benchmarks.htm. reg_203_188.txt is a regular graph generated by

sampling a random graph realizing a given arbitrary degree sequence.

The generator is available for download from

http://www2.warwick.ac.uk/fac/sci/maths/people/staff/charo_delgenio/

References

[1] G. L. Rogers, A. D. Perkins, C. A. Phillips, J. D. Eblen, F. N. Abu-

Khzam and M. A. Langston. Using out-of-core techniques to produce
exact solutions to the maximum clique problem on extremely large
graphs. Proceedings of the ACS/IEEE International Conference on
Computer Systems and Applications, Rabat, Morocco, May 2009.

[2] J. D. Eblen. The maximum clique problem: algorithms, applications, and
implementations. PhD dissertation., University of Tennessee, 2010.

[3] J. Xiang, C. Guo, A. Aboulnaga. Scalable maximum clique computation
using MapReduce. Proceedings of 29th IEEE International Conference
on Data Engineering (ICDE) 74-85, 2013.

[4] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. A. Patwary. Fast
maximum clique algorithms for large graphs. Proceedings of the

Companion Publication of the 23rd International Conference on World
Wide Web Companion (WWW Companion) 365-366, 2014.

[5] J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. Community structure
in large networks: natural cluster sizes and the absence of large well-
defined clusters. Internet Mathematics 6(1) 29-123, 2009.

[6] J. Yang and J. Leskovec. Defining and evaluating network communities
based on ground-truth. Proceedings of 2012 IEEE International
Conference on Data Mining (ICDM), 2012.

[7] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H.
Suters, and C. T. Symons. Kernelization algorithms for the vertex
cover problem: Theory and experiments. Proceedings, Workshop on
Algorithm Engineering and Experiments, pages 62–69, 2004.

[8] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons.
Scalable parallel algorithms for fpt problems. Algorithmica, 45:269–
284, 2006.

[9] R. D. Hagan, C. Lowcay, C. A. Phillips, G. L. Rogers, K. Wang and M.
A. Langston. On the relative significance of kernelization versus
branching for parallel FPT implementations. Proceedings, International
Conference on Parallel and Distributed Computing and Networks, 2013

[10] SNAP: Stanford Network Analysis Platform. http://snap.stanford.edu.

[11] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A
simple and faster branch-and-bound algorithm for finding a
maximum clique. In Md.Saidur Rahman and Satoshi Fujita, editors,
WALCOM: Algorithms and Computation, volume 5942 of Lecture

Notes in Computer Science, pages 191–203. Springer Berlin
Heidelberg, 2010.

[12] A. Kugel. Improved exact solver for the weighted max-sat problem. In
Daniel Le Berre, editor, POS-10, volume 8 of EPiC Series, pages
15–27. EasyChair, 2012.

[13] C. M. Li and Z. Quan. An efficient branch-and-bound algorithm based
on maxsat for the maximum clique problem. In AAAI’10. AAAI Press,
2010.

45

