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Abstract. Random instances of constraint satisfaction problems (CSPs) appear to be hard for all known
algorithms when the number of constraints per variable lies in a certain interval. Contributing to the general
understanding of the structure of the solution space of a CSP in the satisfiable regime, we formulate a set of
technical conditions on a large family of random CSPs and prove bounds on three most interesting thresholds
for the density of such an ensemble: namely, the satisfiability threshold, the threshold for clustering of the
solution space, and the threshold for an appropriate reconstruction problem on the CSPs. The bounds become
asymptoticlally tight as the number of degrees of freedom in each clause diverges. The families are general
enough to include commonly studied problems such as random instances of Not-All-Equal SAT, k-XOR for-
mulae, hypergraph 2-coloring, and graph k-coloring. An important new ingredient is a condition involving the
Fourier expansion of clauses, which characterizes the class of problems with a similar threshold structure.
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1. Introduction. Given a set of n variables taking values in a finite alphabet, and
a collection ofm constraints, each restricting a subset of variables, a constraint satisfac-
tion problem (CSP) requires finding an assignment to the variables that satisfies the
constraints. A celebrated example is k-satisfiability (k-SAT), whereby variables are bin-
ary and each constraint forbids a subset of k variables to take a specific k-uple of values.
Other examples include Not-All-Equal-SAT, hypergraph bicoloring, and graph (vertex)
coloring with k colors.

An instance of a CSP can be conveniently described through a factor graph. This is a
bipartite graph with m “factor nodes,” corresponding to constraints, and n “variable
nodes,” corresponding to variables. An edge connects variable node i ∈ ½n�≡
f1; : : : ; ng to factor node a ∈ ½m�≡ f1; : : : ;mg if and only if the ith variable partici-
pates in the ath constraint (see Figure 1). The locality structure conveyed by the factor
graph plays a key role in our work as well as in statistical mechanics approaches to
CSPs [MM06].

In this paper we will study random CSP instances, where the number of constraints
scales linearly with the number of variables. A precise definition of the distribution of the
instances is provided in section 2. An important qualitative feature of these random
instances is that the resulting factor graph is a sparse random graph. In particular, such
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graphs are locally tree-like: any neighborhood of bounded depth of a uniformly random
vertex converges in distribution to a well-defined random tree.

For several distributions over CSP instances, the probability that a random in-
stance is satisfiable goes sharply from 1 to 0 when the number of constraints per variable
(the constraint density) crosses a critical threshold [F99], [F05]. This is known as the
“satisfiability threshold” or the “satisfiability phase transition.” A significant effort has
been devoted to the characterization of this phenomenon, and good bounds on the
threshold have been proved in some regimes. The most successful approach exploits
the sharp concentration of a properly weighted number of solutions. It turns out that
this quantity can be controlled using the second moment method when the number of
constraints is sufficiently small (see, e.g., [ANP05]), thus proving that the random in-
stances are satisfiable with high probability. For a significantly larger number of con-
straints, computing the expected number of solutions is sufficient to prove
unsatisfiability. While the resulting upper and lower bounds do not coincide, in several
cases their ratio converges to 1 as the number of variables per constraint1 gets large.

This proof technique is nonalgorithmic in the sense that it does not provide any
efficient algorithm to construct solutions of random CSP instances. A significant effort
has been devoted to the mathematical analysis of polynomial-time algorithms for solving
random CSPs. All algorithms studied so far are able to find a solution with probability
bounded away from zero, provided the constraint density is smaller than an (algorithm-
dependent) threshold. Unfortunately, this threshold appears to be much smaller than
the satisfiability threshold. In summary, for a large interval of the constraint density, we
know that random CSPs have exponentially many soloutions, but we do not have any
efficient algorithm that finds them.

The attempt to understand this universal failure led to studying the geometry of the
set of solutions of random CSPs [MPZ02], [AC08] (see also [Sem08]) as well as the emer-
gence of strong correlations among variables in random satisfying assignments
[KM+07]. These research directions are motivated by two heuristic explanations of
the failure of polynomial algorithms: (1) The space of solutions becomes increasingly
complicated as the number of constraints increases and is not captured correctly by
simple algorithms; (2) when drawing a uniformly random solution, the induced joint
distribution on disjoint subsets of variables becomes increasingly dependent. Local
algorithms cannot unveil such dependencies.
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FIG. 1. Factor graph of a SAT formula: circles represent variable nodes and squares factor nodes.

1As an example, in the case of k-satisfiability, the difference between upper and lower bounds is OðkÞ.
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With respect to the geometry of the space of solutions, nonrigorous statistical me-
chanics analyses conjectured that this be disconnected (in a sense that will be made
more precise in the next sections) above a certain threshold in the constraint density.
This phenomenon is referred to as the “clustering phase transition” [MPZ02].
Several aspects of it were subsequently proven [AC08].

The emergence of strong correlations is instead defined in connection with the dis-
tance structure defined (in the usual way) by the factor graph. Given a satisfiable CSP
instance, consider a uniformly random solution of this instance. One can then ask
whether the value taken by the ith variable in this solution is correlated or not with
the values taken by “far apart” variables (whereby distance is defined with respect
to the factor graph). It was conjectured in [KM+07] that, for random CSP instances,
correlations vanish asymptotically if and only if the constraint density is below a certain
threshold. A precise prediction was provided for this threshold based on statistical me-
chanics methods. Further, this phase transition was conjectured to coincide with the one
in the geometry of the solutions space mentioned above.

The strength of correlations mentioned here can be quantified in many equivalent
ways, an interesting one being provided by the following thought experiment (also
known as “reconstruction problem”). Imagine that a solution of the CSP instance is
sampled uniformly at random and that the values of all variables are revealed, except
for those that are within distance t (in the factor graph) from the ith one. Does this
information allow us to guess the value of the ith variable with success probability sig-
nificantly larger than in the absence of the same information? This reconstruction pro-
blem was studied in some detail in the context of Gibbs measures on trees [MP03] but
not for the random CSPs of interest here (the only exception being proper colorings
of trees).

A first step towards understanding the relation between clustering and reconstruc-
tion was taken in [GM07]. This paper provided an approach to the computation of re-
construction thresholds on sparse random graphs. In the following we will demonstrate
that this approach can be successfully applied to random CSPs, thus providing a rig-
orous foundation for the statistical mechanics picture.

(1) We consider CSPs whose factor graph is a (random) tree. In the case of binary
variables and k-ary constraints, we prove bounds on the reconstruction thresh-
old that are optimal to first order, as k goes to infinity.

(2) For these models, we verify the sufficient condition of [GM07], which enables us
to transfer the reconstruction result from trees to the same on sparse random
graphs.

(3) We establish, for the same class of problems, a concentration result for the num-
ber of solutions. This allows us to determine the clustering threshold to the
same order for large k. We verify that the clustering and reconstruction thresh-
old coincide to this accuracy.

We further prove analogous results for graph coloring with k colors (in this case
point (1) was carried out in [Sly09] and point (3) in [AC08]). Our analysis holds for
a broad class of CSPs with binary variables, which is characterized through a series
of easy-to-check assumptions on the Fourier transform of the constraints. As illustrative
examples, we will present specific bounds (on various thresholds) that follow for
some standard models, such as the NAE k-SAT, k-XOR formulae, and hypergraph bi-
coloring.

These results provide rigorous support for the conjectured identity between cluster-
ing and reconstruction phase transitions [KM+07]. It further validates the general
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methodology of statistical mechanics approaches that—roughly speaking—reduce ques-
tions on the geometry of the space of solutions to tree calculations.

Finally, as a by-product, we extend the applicability of the second moment method
[ANP05] to a rich class of binary CSPs, thereby showing its genericity. Via “planting”
[AC08], this considerably facilitates the study of clustering.

1.1. Related work. As mentioned above, the role played by the geometry of
the set of solutions was put forward by statistical physicists [BMW00], [MPZ02],
[MZ02]. In particular, these papers unveiled the clustering phase transition preceding
the satisfiability phase transitions at smaller constraint density. This result motivated
the development of surprisingly efficient message passing algorithms to solve random
CSPs. For instance, survey propagation has been shown empirically to find solutions
of random 3-SAT extremely close to the SAT-UNSAT transition. Rigorous studies
confirmed—in a certain interval of constraint density—the emergence of an exponential
number of sets (or clusters) of solutions, where solutions within a cluster are closer (in
the sense of Hamming distance, say) compared to the intracluster distance [MMZ05],
[AR11], [AC08]. Although these results hold only for k-SAT with k ≥ 8, the resulting
bounds on the clustering threshold converge to the statistical physics prediction as
k → ∞.

The fact that solutions within a cluster impose long-range correlations among as-
signments of variables motivated the study of the so-called reconstruction problem in
the context of random CSPs. As mentioned, nonrigorous statistical mechanics calcula-
tions imply that the clustering and reconstruction thresholds coincide [MM06],
[KM+07].

Finally, understanding the threshold for (non)reconstruction is also becoming re-
levant, if not crucial, to understanding the limit of the Glauber dynamics to sample from
the set of solutions of a CSP. Indeed, nonreconstructibility was proved in [BK+05] to be
a necessary condition for fast mixing and is expected to be sufficient for a large class of
“sufficiently random” problems. Reconstruction problems were intensively studied on
trees (see, e.g., [MP03]). A recent paper [GM07] provides sufficient conditions under
which the reconstruction problem on locally tree-like graphs is solvable if and only if
it is solvable on the associated random trees.

1.2. Plan of the paper. The organization of the paper is as follows. In section 2,
we give the formal definitions and assumptions of our models. We state our main results
in section 3. In section 4, we state and prove the optimal bounds for the tree reconstruc-
tion problem. In section 5, we verify the sufficient condition (from [GM07]) for the spe-
cific problem of proper graph q-coloring, thus proving one of our main results—optimal
bounds on the (sparse) random graph reconstruction problem for colorings. In
Appendix A, we derive a certain technical second moment bound that is needed to prove
our theorem on the satisfiability threshold. In Appendix B, we prove various technical
results needed to complete the proof of the clustering threshold. In Appendix C, certain
sharp threshold results are derived making use of recent results of [AC08], [CD09] so that
we can extend the high-probability statements derived in the previous appendices to
hold with probability tending to one. Further details on what is proved in these appen-
dices appear in section 3.3, after the precise statement of our main results.

2. Definitions. In this section we define a family of random CSP ensembles:
problems with constraints involving k-tuples of binary variables. We further define
q-ary ensembles as a natural extension of the latter. We finally introduce some analytic
definitions that will be necessary in order to present our results.
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Binary k-CSP ensemble. Given an integer n, α ∈ Rþ, and a distribution
p ¼ fpðφÞg over Boolean functions φ∶fþ1;−1gk → f0; 1g, CSPðn;α; pÞ is the ensemble
of random CSPs over n Boolean variables x ̲ ¼ ðx1; : : : ; xnÞ defined as follows. For each
a ∈ f1; : : : ;m ¼ nαg, draw k indices iað1Þ; : : : ; iaðkÞ independently and uniformly at
random in ½n� and a function φa with distribution pðφÞ. An assignment x ̲ satisfies
the resulting instance if φaðxiað1Þ; : : : ; xiaðkÞÞ ¼ 1 for each a ∈ ½m�. A CSP instance
can be naturally described by a bipartite graph G (often referred to in the literature
as a “factor graph”), including a node for each clause a ∈ ½m� and for each variable
i ∈ ½n�, and an edge ði; aÞ whenever variable xi appears in the ath clause.

q-ary ensembles.A q-ary ensemble is the natural generalization of a binary ensemble
to the case in which variables take q values. For the sake of simplicity, we restrict our
discussion here to the case of pairwise constraints (i.e., k ¼ 2 in the language of the pre-
vious paragraph).

Given an integer n, α ∈ Rþ, and a distribution p ¼ fpðφÞg over Boolean functions
φ∶½q�× ½q� → f0; 1g,CSPqðn;α; pÞ is the collection of random CSPs over q-ary variables
xi for i ¼ 1; 2; : : : ; n defined as follows. For each a ∈ f1; : : : ;m ¼ nαg, draw 2 indices ia,
ja independently and uniformly at random in ½n�, and a function φa with distribution
pðφÞ. An assignment x̲ ¼ ðx1; : : : ; xnÞ satisfies the resulting instance if φaðxia ; xjaÞ ¼ 1
for each a ∈ ½m�.

In this paper, by way of illustrating how the results for binary ensembles could be
(purportedly) extended to q-ary ensembles, we will study the q-coloring model which
consists of ensembles with the single clause φðx; yÞ ¼ I (x ≠ y). This model corresponds
to proper colorings with q colors of a random sparse graph with an edge-to-vertex den-
sity of α > 0.

3. Main results. As mentioned in the introduction, our goal is estimating the
thresholds for satisfiability, clustering, and reconstruction in random CSPs. In general,
one should speak of threshold functions depending on the problem size n. With a slight
abuse of notation, we shall leave implicit the dependence on n of threshold functions
unless necessary.

3.1. Binary k-CSP ensembles.
3.1.1. Assumptions. We will always assume the following basic conditions on the

CSP ensemble.
1. Permutation symmetry. If φπ is the Boolean function obtained from φ by per-

muting its arguments, we require pðφπÞ ¼ pðφÞ. (Notice that this assumption
does not imply any loss of generality in this context. Indeed, in the definition
of the ensemble CSPðn;α; pÞ the indexes of the arguments of clause
φaðxiað1Þ; : : : ; xiaðkÞÞ are independent and uniformly random.)

2. Balance. The distribution p is supported on Boolean functions such that
φðx1; : : : ; xkÞ ¼ φð−x1; : : : ;−xkÞ. This condition implies that the odd Fourier
coefficients of φ are zero. Indeed, this condition can be regarded as the most
restrictive in a structural sense. By introducing it, we rule out well-studied
models such as k-SAT.

3. Feasibility. For each Boolean function φ in the support of p, every partial as-
signment ðx1; : : : ; xk−1Þ can be extended to a satisfying assignment
ðx0; x1; : : : ; xk−1Þ of φ. This condition implies that kφk2 ≥ 1 ∕ 2. (See section 3.4
for the definition of norm.)

We will also make further assumptions that are more conveniently formulated in
terms of the Fourier spectrum of the constraints φ. In order to simplify the exposition,
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we postpone these conditions to section 3.5. These assumptions will be denoted as per
the following definition.

DEFINITION 3.1. We say that the probability distribution p ¼ fpðφÞg over Boolean
functions φ∶fþ1;−1gk → f0; 1g has the property of dominance of balanced assignments
if it satisfies condition 4 in section 3.5.

We say that p ¼ fpðφÞg is consistent if it has properties 1–3 and dominance of
balanced assignments and further satisfies conditions (a) and (b) in section 3.5.

We finally say that p ¼ fpðφÞg is clustering-consistent if it further satisfies condi-
tions (a′) and (b′) in section 3.5.

Intuitively, the condition of dominance of balanced assignments ensures that most
of the assignments satisfying a typical instance from the ensemble are “balanced.” By the
latter we mean that they have roughly half of the variables taking value þ1 and half
taking −1.

The condition of being clustering-consistent is instead related to the fact that each
constraint does not depend mostly on a small subset of its k arguments. Finally, the
condition of being clustering-consistent amounts to a strengthening of the above.

3.1.2. Results. An ensemble of binary k-CSPs will be characterized by the follow-
ing quantities:

1

Ωk

¼def Eφ

2I1ðφÞ
1− 2I1ðφÞ

;
1

Ω̂k

¼def − Eφ logð1− 2I1ðφÞÞ;
1

~Ωk

¼def 2EφI1ðφÞ
1− 2EφI1ðφÞ

:

Here I 1ðφÞ is the influence of constraint φ. “Influence” is a basic notion in discrete
Fourier analysis that describes how much the value of φ is sensitive to any single argu-
ment. For a formal definition we refer the reader to section 3.4.

Notice that Ωk ≤ Ω̂k and that Ωk ≤ ~Ωk. Indeed, the first inequality follows by
using the inequality logðzÞ ≤ z − 1 with z ¼ 1 ∕ ð1− 2I 1Þ, and the second follows by
Jensen’s, noting the convexity of x ↦ ð2xÞ ∕ ð1− 2xÞ. Moreover, Ω̂k ≈ ðe1 ∕ Ω̂k − 1Þ−1 ≤
~Ωk; indeed, denoting 1 ∕ Ω̂k as EðXÞ and using Jensen’s, we have

1

~Ωk

¼ Eð1− e−XÞ
Ee−X

¼ 1

Ee−X
− 1 ≤ eEðXÞ − 1 ¼ e1 ∕ Ω̂k − 1:

PROPOSITION 3.2. A random binary constraint satisfaction instance from the consis-
tent ensemble CSPðn;α; pÞ is satisfiable, with high probability, if α < αs̲ðkÞð1− onð1ÞÞ,
where

Ωk log 2f1þ okð1Þg ≤ αs̲ðk; nÞ:

Vice versa, if α > ᾱsðkÞð1þ onð1ÞÞ, where

ᾱsðk; nÞ ≤ Ω̂k log 2f1þ okð1Þg;

then, with high probability, a CSPðn;α; pÞ instance is unsatisfiable. Further jΩ−1
k −

Ω̂−1
k j ≤ 8EφfI1ðφÞ2g.

As clarified by the last part of the statement, the upper and lower bound approach
each other when the influence of a single variable in a clause becomes smaller.

Given a measure μðx̲Þ over variable assignments in fþ1;−1gV , the reconstruction
problem is said to be unsolvable if correlations with respect to μ decay rapidly with the
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distance r on G. More precisely, if μi;∼r denotes the joint distribution of xi and
fxj∶dGði; jÞ ≥ rg, then limr→∞ lim supn→∞Ekμi;∼r −μiμ∼rkTV ¼ 0.

THEOREM 3.3. Let μðx ̲Þ be the uniform measure over solutions of an instance from
the consistent ensemble CSPðn;α; pÞ. The reconstruction problem is solvable for μ if
α > ᾱrðkÞ, and it is unsolvable for μ if α < α ̲rðkÞ, where

ᾱrðkÞ ¼
Ωk

k
flog kþ oðlog kÞg; α ̲rðkÞ ¼

Ωk

k
flog k− oðlog kÞg:

Given an instance ofCSPðn;α; pÞ, a dmax-cluster of solutions is any equivalence class
of solutions under the (closure of the) relation x ̲ ≃ x ̲ 0 if dHammingð x̲; x ̲ 0Þ ≤ dmax. We say
that the set of solutions is clustered if it is partitioned into exponentially many clusters
for some function dmax ¼ dmaxðnÞ with dmaxðnÞ ↑ ∞ as n → ∞.

THEOREM 3.4. Consider a clustering-consistent ensemble CSPðn;α; pÞ. The set of
solutions of a random instance from this ensemble is clustered, with high probability,
if α > αdðkÞ, where

αdðkÞ ¼
~Ωk

k
flog kþ oðlog kÞg:

Further j ~Ω−1
k − Ω−1

k j ≤ 8EφfI 1ðφÞ2g.
Thus, a key result of the present paper is that, for a large number of ensembles,

αdðkÞ and αr̲ðkÞ (as well as ᾱrðkÞ) differ at most by a quantity whose relative size is
negligible for large k.

3.2. q-ary ensembles: Graph coloring. The following results concerning the col-
orability and clustering of proper colorings were proved by Achlioptas and Naor [AN05]
and Achlioptas and Coja-Oghlan [AC08], respectively.

THEOREM 3.5 (graph q-colorability [AN05]). A random graph with n vertices and
nα edges is satisfiable, with high probability, if α < αsðqÞ, where

αsðqÞ ¼ q½log qþ oqð1Þ�:
Vice versa, if α > αsðqÞð1þ oqð1ÞÞ, such a graph is with high probability uncolorable.

THEOREM 3.6 (clustering of q-colorings [AC08]). The set of proper q-colorings of a
random graph with n vertices and nα edges is clustered with high probability, if
α > αdðqÞ, where

αdðqÞ ¼
q

2
½log qþ oðlog qÞ�:

One of our main results is to prove a corresponding reconstruction theorem for this
model as follows.

THEOREM 3.7 (graph q-coloring reconstruction). Let μðx ̲Þ be the uniform measure
over of proper q-colorings of random graph with n vertices and nα edges. For q large
enough, the reconstruction problem is solvable for μ if α > αrðqÞ, where

αrðqÞ ¼
q

2
½log qþ loglog qþOð1Þ�:

Vice versa, the reconstruction problem is unsolvable, with high probability, if α < αrðqÞ.
3.3. General strategy. The results described in the previous section are of three

types: bounds on the satisfiability thresholds (cf. Proposition 3.2 and Theorem 3.5);
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bounds on the clustering threshold (cf. Theorems 3.4 and 3.6); and bounds on the re-
construction threshold (cf. Theorems 3.3 and 3.7). The proof strategy is as follows.

The satisfiability threshold can be upper-bounded using the first moment of the
number of solutions and lower-bounded using the second moment method. This tech-
nique is discussed in detail in [AM02], [AN05], [ANP05]; we describe its application to
the general CSPðn;α; pÞ ensemble in Appendix A.

The clustering threshold can be upper-bounded through an analysis of the recursive
“whitening” process that associates to each cluster a single configuration in an extended
space [AR11]. This naive estimate of the clustering threshold is, however, far from tight.
Significantly better upper bounds on this threshold were obtained in [AC08] by approx-
imating the CSP ensemble with an appropriate “planted ensemble.” Theorems 3.4 and
3.6 use this approach.

The proof of Theorem 3.4 is presented in Appendix B. While the general approach is
the same developed in [AC08], several technical steps are new and potentially useful in
other contexts: (i) We show that the Fourier spectrum of clauses and the Bonami–
Beckner operator are natural tools for the relevant calculations; (ii) we use a recent re-
sult by Creignou and Daude [CD09] to prove that the property of having more than ean

solutions has a sharp threshold for any constant a (such a sharp threshold result was
established earlier for specific cases [AR11]).

The reconstruction threshold is characterized via a three-step procedure.
(1) Bound the reconstruction threshold for an appropriate ensemble of (infinite)

tree instances, i.e., CSP instances for which the associated factor graph is
an infinite Galton–Watson tree. In the case of proper q-colorings, a sharp char-
acterization was obtained independently by two groups in the past year
[BVV11], [Sly09]. In section 4 we prove sharp bounds on tree reconstruction
for binary CSPs. The proof amounts to deriving an exact distributional recur-
sion for the so-called belief process and carefully bounding its asymptotic
behavior.

(2) Call a solution balanced if each possible variable value is taken on the same
number of vertices. Given two balanced solutions x ̲ð1Þ, xð̲2Þ, define their joint

type νðx; yÞ as the matrix such that the fraction of vertices i with x
ð1Þ
i ¼ x

and x
ð2Þ
i ¼ y is equal to νðx; yÞ. Consider the number ZbðνÞ of balanced solution

pairs f x1̲; x ̲2g, with joint type ν. One has to show that EZbðνÞ is exponentially
dominated by its value at the uniform type ν̄ðx; yÞ ¼ 1 ∕ q2 (with q ¼ 2 for bin-
ary CSPs). More precisely, EZbðνÞ ≐ exp fnΦðνÞg with Φ achieving its unique
maximum at v̄.
This is also a crucial step in the second moment method. It was accomplished in
[AN05] for proper q-colorings of random graphs. In the case of binary CSPs, we
prove this estimate in Appendix A

(3) Prove that step (2) above implies, for the model in consideration, that the set of
solutions of a random instance is, with high probability, roughly spherical. By
this we mean that the joint type ν12 of two uniformly random solutions x̲ð1Þ, x ̲ð2Þ

satisfies kν12 − ν̄kTV ≤ δ with high probability for all δ > 0. Notice that this
implication requires bounding the expected ratio of ZbðνÞ to the total number
of solution pairs. We prove that the implication nevertheless holds in section 5
for q-colorings. The argument for binary CSPs is completely analogous, and we
omit it.
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Finally, it was proved in [GM07] that, under such a sphericity condition, graph re-
construction and tree reconstruction are equivalent, which finishes the proof of
Theorems 3.3 and 3.7.

Notice that the techniques used for the clustering and reconstruction thresholds are
very different. Thus it is a surprising (and arguably deep) phenomenon that they do
coincide as far as the present techniques can tell.

3.4. Fourier analysis of constraints. In this section, we briefly review some well-
known definitions in discrete Fourier analysis. For general background on this material,
the reader may consult any classical textbook on (discrete) Fourier analysis or the lec-
ture notes by Diaconis [Dia88]; for a more breezy introduction and a summary of some
key tools one may also find the recent survey [Odo08] useful.

Functional analysis of clauses.We denote by vθ the measure defined over f−1;þ1gk
such that

vθðxÞ ¼
Yk
i¼1

�
1þ xiθ

2

�
ð1Þ

for every x ∈ f−1;þ1gk. This is just the measure induced by choosing k independent
copies of a random variable that takes values �1 and has expectation θ. Notice that
when θ ¼ 0, vθ corresponds to the uniform measure over f−1;þ1gk.

The inner product induced by this measure, on the space of real functions defined on
f−1;þ1gk, is denoted by ð·; ·Þθ, and the corresponding norm is denoted by k · kθ. If
θ ¼ 0, we drop the subindex and just use ð·; ·Þ and k · k, respectively. Thus, if f ,
g∶f−1;þ1gk → R, then

ðf ; gÞθ ¼
X

x∈f−1;þ1gk
f ðxÞgðxÞvθðxÞ; kfk2θ ¼

X
x∈f−1;þ1gk

f 2ðxÞvθðxÞ;

ðf ; gÞ ¼ 1

2k

X
x∈f−1;þ1gk

fðxÞgðxÞ; kfk2 ¼ 1

2k

X
x∈f−1;þ1gk

f 2ðxÞ:

We denote the Hilbert space of functions f−1;þ1gk → R under the inner product ð·; ·Þ
by Jk.

Fourier transform of clauses. For any Q ⊆ ½k�≡ f1; : : : ; kg, let γQðxÞ ¼def
Q

i∈Qxi.
Under the scalar product defined above (with θ ¼ 0), the functions fγSgS⊆½k� form
an orthonormal basis for Jk. Moreover, they are exactly the algebraic characters of
f−1; 1gk with the group operation of pointwise multiplication. Thus, we define the
Fourier transform of a function f ∈ Jk by letting, for any Q ⊆ ½k�,

fQ ¼def ðγQ; fÞ ¼ 2−k
X

x∈f−1;þ1gk
f ðxÞγQðxÞ:

Noise operator.Given θ ∈ ½−1; 1�, we recall theBonami–Beckner operatorTθ∶Jk →
Jk [Bon70], [Bec75], by

ðTθf ÞðxÞ ¼def
X

y∈f−1;1gk
fðxyÞvθðyÞ;

where xy ¼ ðx1y1; : : : ; xkykÞ. Notice that ðTθf ÞðxÞ corresponds to the expected value
of fðxθÞ, where xθ is obtained from x by flipping each coordinate independently with
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probability ð1− θÞ ∕ 2. Notice that T1 is just the identity operator and T0 sends f to the
constant function ðf ; γ∅Þ.

The Bonami–Beckner operator diagonalizes with respect to the Fourier basis in the
sense that ðTθγQÞðxÞ ¼ θjQjγQðxÞ for any Q ⊆ ½k�.

More generally, given h ∈ ½−1; 1�k, we define ðThf ÞðxÞ ¼def E½fðxhÞ�, where xh is ob-
tained from xby flipping the ith coordinate independently andwith probability 1−hi

2 . Since
Th also diagonalizes with respect to the Fourier basis, one gets ðThγSÞðxÞ ¼ γSðhÞγSðxÞ.

Discrete derivative and influence. Given a function f ∈ Jk, we define its discrete
derivative f ð1Þ ∈ Jk−1 as f ð1ÞðxÞ ¼ 1

2 ½f ð1; xÞ− f ð−1; xÞ�. We define analogously f ðiÞ for
any other variable index. Finally, the influence of the ith variable on f is the norm
of the derivative

IiðfÞ ¼def kf ðiÞk2:
For any Q ⊆ ½k�, f ðiÞQ ¼ fQ∪fig.

3.5. Assumptions on the Fourier spectrum. We now formally state the con-
ditions for consistent and clustering-consistent ensembles. We start with the notion of
dominance of balanced assignments.

4. Dominance of balanced assignments. For every θ ∈ ½−1; 1�,
Eφ log kφkθ ≤ Eφ log kφk

with equality if and only if θ ¼ 0. This condition implies that, in a typical ran-
dom instance, most solutions are balanced in the sense that they have almost as
many þ1’s as −1’s.

While our ultimate goal is to exhibit results as k → ∞, the probability distribution p
over the functionsφ∶f−1; 1gk → f0; 1gmust be defined for every k, and some agreement
should exist between such probability distributions for different k’s. In our work this
agreement is given by two conditions concerning the derivative of the clauses in the
support of p.

(a) l1 norm of the Fourier transform grows at most polynomially in k. That is, for
every φ ∈ suppðpÞ, X

Q

jφðiÞ
Q j ≤ kað2Þ

for some constant a not depending on k, and recall that φðiÞ
Q ¼ ðγQ;φ

ðiÞÞ.
(b) “Small-weight” Fourier coefficients are small. There is a constant C > 0 (not

depending on k) such that for every φ ∈ suppðpÞ,

kTθφ
ðiÞk2 ≤ e−Ckð1−θÞkφðiÞk2; θ ∈ ½0; 1�:ð3Þ

Notice that the feasibility condition implies that all the variables of φ have the same
influence, namely,

IiðφÞ ¼
1− kφk2

2
:ð4Þ

In order to prove this, consider, say, i ¼ 1, and let NabðφÞ, a; b ∈ f0; 1g, be the number
of partial assignments x1; : : : ; xk−1 such that φðþ1; x1; : : : ; xk−1Þ ¼ a and
φð−1; x1; : : : ; xk−1Þ ¼ b. Then, by definition we have
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kφk2 ¼ 1

2k
½N 01ðφÞ þ N 10ðφÞ þ 2N 11ðφÞ�;ð5Þ

I1ðφÞ ¼
1

2kþ1
½N 01ðφÞ þ N 10ðφÞ�;ð6Þ

whence our claim (4) follows using N 01ðφÞ þ N 10ðφÞ þ 2N 11ðφÞ ¼ 2k−1.
Condition (a) above on the l1 norm of the Fourier transform implies, in particular,

that for any fixed l, there exists Al > 0 (independent of k) such thatX
1≤jQj≤l

jφQj2 ≤ Ale
−Ck ∕ 2

X
jQj≥1

jφQj2:ð7Þ

An equivalent formulation of (3), with a possibly different constant C , is

ðTθφ
ðiÞ;φðiÞÞ ≤ e−Ckð1−θÞkφðiÞk2; θ ∈ ½0; 1�:ð8Þ

In order to establish clustering, we require two more conditions:
(a′) First, we have a slightly stronger form of dominance of balanced assignments:

Eφfkφk2θg ≤ Eφfkφk2g:

(b′) Next we have the following condition on the Fourier transform of clauses:X
Q1⊆Q2

EφfφQ1
φQ2

gθjQ1jδjQ2j−jQ1j ≤
X
Q

Eφfφ2
QgθjQj

holding for all θ ∈ ½−1;þ1�, δ ∈ ½0; 1− jθj�. In particular, the latter condition
holds whenever pðφðsÞÞ ¼ pðφÞ for all s ¼ ðs1; : : : ; skÞ ∈ fþ1;−1gk, where
φðsÞðx1; : : : ; xkÞ ¼ φðs1x1; : : : ; skxkÞ, that is, when the ensemble is closed under
polarization [CD04].

3.6. Examples. In this section, we apply our results to a few concrete examples.
Example 1: 2-coloring hypergraphs. Let us consider the ensemble of CSPs consist-

ing of clauses of the type φ, where φðx1; : : : ; xkÞ ¼ IðP xi ∈= f−k; kgÞ. The CSPðn;α; pÞ
in this case corresponds to the distribution of 2-colorings of a random hypergraph on n

vertices and αn edges, with edge size k, and each edge chosen independently and uni-
formly at random.

The conditions 1–3 (permutation symmetry, balance, and feasibility) clearly hold
for this model. The dominance of balanced assignments, in its weak and strong form,
follows after checking that kφk2θ ¼ 1− ð1þθ

2 Þk − ð1−θ
2 Þk is maximized at θ ¼ 0. To estab-

lish condition (a) (cf. (2)), notice that

φ
ðiÞ
Q ¼ −

1

2k
½1− ð−1ÞjQj�;

which clearly implies that the l1 norm of the Fourier transform is bounded. In order to
check condition (b) (cf. (3)), notice that

ðTθφ
ðiÞ;φðiÞÞ

kφðiÞk2 ¼
�
1þ θ

2

�
k−1

−
�
1− θ

2

�
k−1

≤ e−kð1−θÞ ∕ 2

for all θ ∈ ½0; 1�. On the other hand, we have that
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X
Q1⊆Q2

EφfφQ1
φQ2

gθjQ1jδjQ2j−jQ1j

¼
�
1−

1

2k−1

�
−

1

2k
½ð1þ δÞk þ ð1− δÞk�

þ
�
1

2k

�
2

½ð1þ ðδþ θÞÞk þ ð1− ðδþ θÞÞk þ ð1þ ðδ− θÞÞk þ ð1− ðδ− θÞÞk�;

and the previous expression reaches its maximum for δ ¼ 0. Thus,X
Q1⊆Q2

EφfφQ1
φQ2

gθjQ1jδjQ2j−jQ1j ≤
�
1−

1

2k−2

�
þ
�
1

2k

�
2
�ð1þ θÞk þ ð1− θÞk

2

�
;

and the right-hand side of the previous formula is equal to
P

QEφfφ2
QgθjQj, proving

condition (b′).
Now, an easy computation shows that Ωk ¼ fΩk ¼ 2k−1 − 1 and Ω̂−1

k ¼
− logð1− 2−kþ1Þ; therefore we have the following:

Reconstruction–clustering Lower bound satisfiability Upper bound satisfiability

2-coloring ð2k−1 ∕ kÞ½log kþ oðlog kÞ� 2k−1 log 2½1þ oð1Þ� 2k−1 log 2½1þ oð1Þ�

Example 2: Not-All-Equal-k–SAT. Let us consider now an ensemble of CSPs con-
sisting of clauses of type fφsgs∈fþ1;−1gk , where φsðx1; : : : ; xkÞ ¼ IðP xisi ∈= f−k; kgÞ and
pðφsÞ ¼ 2−k for each s ∈ fþ1;−1gk. In this case, the CSPðn;α; pÞ model corresponds to
the distribution of Not-All-Equal-k–SAT instances for a random formula in n variables,
consisting of αn random clauses, each with k literals.

For this model, the conditions 1–3 are easily verified. The dominance of balanced
assignments in its strong form follows from the fact that

Eskφk2θ ¼ Es

�
1−

Yk
i¼1

1þ siθ

2
−
Yk
i¼1

1− siθ

2

�
¼ Eskφk2;

which, for instance, implies also the dominance of balanced assignments in this weak
form:

2Es log kφkθ ≤ log Eskφk2θ ¼ log Eskφk2 ¼ 2Es log kφk:

On the other hand, the Fourier expansion of φs is given by φs;Q ¼
−2−k½γQðsÞ þ γQð−sÞ� (for Q ≠ ∅) and φ

ðiÞ
s;Q ¼ −2−kγQðsÞ½1− ð−1ÞjQj�. In particular,

jφðiÞ
s;Qj ¼ 2−k½1− ð−1ÞjQj� so that both (2) and (3) hold along the same lines as the pre-

vious example, while the condition (b′) follows from the closure under polarization of
this model. Indeed, in this case we get the same values for Ωk, fΩk, and Ω̂k, so that we
have the following:

Reconstruction—clustering Lower bound satisfiability Upper bound satisfiability

NAE-SAT ð2k−1 ∕ kÞ½log kþ oðlog kÞ� 2k−1 log 2½1þ oð1Þ� 2k−1 log 2½1þ oð1Þ�

Example 3: k-XOR formulas. For an even integer k, the k-XOR ensemble (k even)
consists of clauses of type fφϵgϵ∈fþ1;−1g, where φϵ ¼ 1

2 ðγ∅ þ ϵγ½k�Þ. This set of clauses is
endowed with the uniform probability distribution pðφþ1Þ ¼ pðφ−1Þ ¼ 1 ∕ 2. In this
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case, the CSPðn;α; pÞ model corresponds to a system of αn random linear equations in
Z2, in which every equation involves k randomly chosen variables (with replacement)
from a total of n possible variables.

Conditions 1–3 hold for k even, and the dominance of the balanced assignments
condition in its weak and strong form follows from the fact that Eφkφk2θ ¼ Eφkφk2.
The condition on Fourier expansion of clauses for this model is straightforward: The
Fourier expansion of φϵ is concentrated at ∅ and ½k�, so that (2) holds with a ¼ 0
and (2) holds with C ¼ 1. Also, condition (b′) follows from the following calculation:

X
Q1⊆Q2

EφfφQ1
φQ2

gθjQ1jδjQ2j−jQ1j ¼ 1

4
þ 1

4
θk ¼

X
Q

Eφfφ2
QgθjQj:

In this case, we have that Ωk ¼ 1, while Ω̂k ¼ 1 ∕ log 2. Therefore, we have the
following:

Reconstruction—clustering Lower bound satisfiability Upper bound satisfiability

XOR-SAT 1
k ½log kþ oðlog kÞ� log 2þ oð1Þ 1þ oð1Þ

We remark here that, in the case of XOR-SAT, the clustering and satisfiability
thresholds can be determined exactly by exploiting the underlying group structure
[MRZ03], [CD+03] (see [MM09] for a discussion of the reconstruction problem in
XOR-SAT).

4. Tree ensembles and tree reconstruction for binary k-CSP ensem-
bles. In this section we define tree ensembles and prove estimates about the corre-
sponding tree reconstruction thresholds.

4.1. The tCSP�α;p� ensemble. The ensemble tCSPðα; pÞ is defined by α ∈ Rþ
and a distribution p over Boolean functions φ∶f−1;þ1gk → f0; 1g. We assume the con-
ditions on the distribution p introduced in section 3.1. An (infinite) instance from this
ensemble is generated starting by a root variable node ϕ, drawing an integer

η¼D PoissonðkαÞ and connecting ϕ to η function nodes f1; : : : ;ηg. Each function node
has degree k, and each of its k− 1 descendants is the root of an independent infinite tree.
Finally, each function node a is associated independently with a random clause φ drawn
according to p.

A uniform solution for such an instance is sampled by drawing the root value xϕ ∈
f−1;þ1g uniformly at random. The values of descendants of each variable node i are
then drawn recursively. If the function node a connects i to i1; : : : ; ik−1, then the values
xi1 ; : : : ;xik−1

are sampled uniformly from those that satisfy the clause associated with a,
that is, such that the quantity φðxi; xi1 ; : : : ; xik−1

Þ is equal to 1.
By the balance condition, this procedure can be shown to be equivalent to sampling

a solution according to the “free boundary Gibbs measure.” The latter is a distribution
over solutions of the entire (infinite) tCSP formula defined by considering the
uniform distribution over solutions of the first l generations of the tree, and then letting
l → ∞.

We notice in passing that the above simplification does in fact hold under a weaker
balance condition as well. Namely, it is sufficient that (for each i ∈ f1; : : : kg) the num-
ber of truth assignments ðx1; : : : ; xkÞ that make φðx1; : : : ; xkÞ ¼ 1 and such that
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xi ¼ þ1 is equal to the number of assignments that make φðx1; : : : ; xkÞ ¼ 1 and such
that xi ¼ −1.

4.2. Reconstruction. Given any fixed tree ensemble T , let x be a random satisfy-
ing assignment for T according to the distribution described previously. We denote by
xl the value of x at the variables at generation l, and in the case that the root degree is 1,
we denote by x0;1; : : : ;x0;k−1 the values at the variable nodes connected to the unique
child of the root. Also, we use η0 for the root degree of T . If the tree ensemble T has root
degree η0 ¼ d, we denote by Ti, i ¼ 1; : : : ; d, the subtree generated by the root, its ith
child, and the child’s descendants. If η0 ¼ 1, we denote by T  0

i, i ¼ 1; : : : ; k− 1, the sub-
tree generated by the ith child of the root’s child and its descendants.

Finally, because the tree ensemble T could be random (for instance, we denote by T

a random tCSPðα; pÞ), we will use E for expectation with respect to T and h·iT for ex-
pectation with respect to x (given T ¼ T) and E for expectation with respect to any
other independent random variable (adding, if not in context, a subindex to indicate
such random variable).

Reconstruction: For a fixed tree ensemble T , let μ∅;l be the joint distribution of
ðx0;xlÞ, and let μ∅, μl be the marginal distribution of x0 and xl, respectively.
The reconstruction rate for T is defined as the quantity kμ∅;lð·; ·Þ− μ∅ð·Þμlð·ÞkTV.
We say that the reconstruction problem for T is tree-solvable if

lim inf
l→∞

kμ∅;lð·; ·Þ− μ∅ð·Þμlð·ÞkTV > 0:

Analogously, if T is a random tCSPðα; pÞ, we define the reconstruction rate of T as

Ekμ∅;lð·; ·Þ− μ∅ð·Þμlð·ÞkTV;

and we say that the reconstruction problem for T is tree-solvable:

lim inf
l→∞

Ekμ∅;lð·; ·Þ− μ∅ð·Þμlð·ÞkTV > 0:

Bias, compatibility: Given a satisfying assignment xl for the variables at generation
l, define the “bias” of the root, restricted to the value of the variables at level l, as

hT ðxlÞ ¼def hx0jxl ¼ xliT :

Throughout the forthcoming proofs we will study hT ðxlÞ for random xl, subject to dif-
ferent kinds of distributions. Notice that under the balance condition kμ∅;lð·; ·Þ−
μ∅ð·Þμlð·ÞkTV ¼ 1

2 hjhT ðxlÞjiT . In fact, it is the case that

jhT ðxlÞjμlðxlÞ ¼ jμ∅;lð1; xlÞ−μ∅;lð−1; xlÞj ¼ 2

����μ∅;lð1; xlÞ−
1

2
μlðxlÞ

����;
and similarly,

jhT ðxlÞjμlðxlÞ ¼ 2

����μ∅;lð−1; xlÞ−
1

2
μlðxlÞ

����:
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By the balance condition, μ∅ð1Þ ¼ μ∅ð−1Þ ¼ 1 ∕ 2. Therefore,

hjhT ðxlÞjiT ¼
X
xl

ðjμ∅;lð1; xlÞ− μ∅ð1ÞμlðxlÞj þ jμ∅;lð−1; xlÞ−μ∅ð−1ÞμlðxlÞjÞ

¼ 2kμ∅;lð·; ·Þ− μ∅ð·Þμlð·ÞkTV.

Now, letDT ðxlÞ ¼def fxg if hT ðxlÞ ¼ x andDT ðxlÞ ¼def f−1; 1g if jhT ðxlÞj < 1. Observe
thatDT ðxlÞ consists of the values of the root that are compatible with the assignment xl
for the variables at generation l.

Domain of clauses: Given a binary function φðx0; : : : ; xk−1Þ, define the partial solu-
tion sets

SþðφÞ ¼def fðx1; ; xk−1Þ∶φð1; x1; : : : ; xk−1Þ ¼ 1g;
S−ðφÞ ¼def fðx1; ; xk−1Þ∶φð−1; x1; : : : ; xk−1Þ ¼ 1g;
ΛþðφÞ ¼def SþðφÞ \S−ðφÞ; Λ−ðφÞ ¼def S−ðφÞ \ SþðφÞ.

If the clause φ is balanced and feasible, we have that jSþðφÞj ¼ jS−ðφÞj ¼ 2k−1kφk2
and jΛþðφÞj ¼ jΛ−ðφÞj ¼ 2kI1ðφÞ.

THEOREM 4.1. The reconstruction problem for the ensemble tCSPðα; pÞ is
tree-solvable if and only if α > αtreeðkÞ, where

αtreeðkÞ ¼
Ωk

k
flog kþ oðlog kÞg:

Proof. Upper bound:Given a tree ensemble T , the rate of “naive reconstruction” for
T is defined as

zlðTÞ ¼def hI½hT ðxlÞ ¼ 1�iT ð¼ hI½hT ðxlÞ ¼ −1�iT by the balance conditionÞ;

which indicates the probability that a random assignment for the variables at generation
l, distributed as xl, fixes the root to be equal to 1 (or −1). We notice in passing that
“naive reconstructibility” (i.e., the property that zlðTÞ does not vanish as l → ∞)
is likely to be related to the appearance of “frozen variables” in random CSPs (see,
e.g., [AR11]). In particular, it is not hard to realize that the naive reconstruction thresh-
old is a lower bound on the threshold for the appearance of ΘðnÞ frozen variables. It is
natural to conjecture that the two thresholds do indeed coincide.

It is easy to see that hjhT ðxlÞjiT ≥ zlðTÞ. Observe also that for any x; y ∈ f−1; 1g,

hI½hT ðxlÞ ¼ x�jx0 ¼ yiT ¼ 2zlðTÞδx;y:ð9Þ

Thus, our objective is to show that in an appropriate regime of the parameter α, the
quantity E½zlðTÞ� remains bounded away from zero as l → ∞, implying tree-solvability
of the reconstruction problem in such regime. Indeed, this implies tree-solvability by
“naive reconstruction,” i.e., by the procedure that assigns to the root any value compa-
tible with the values at generation l. By notational convenience, define

zlðαÞ ¼ 2E½zlðTÞ� and bzlðαÞ ¼ 2E½zlðTÞjη0 ¼ 1�:
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Now, notice that for a tree ensemble T with root degree η0 ¼ d, and any assignment xl
for the variables at generation l, hT ðxlÞ ¼ 1 if and only if hTi

ðxl↾TiÞ ¼ 1 for some
i ¼ 1; : : : ; d, so that

2zlðTÞ ¼
�
1−

Yd
i¼1

ð1− I½hTi
ðxl↾TiÞ ¼ 1�Þjx0 ¼ 1

�
T

¼ 1−
Yd
i¼1

hð1− I½hTi
ðxlÞ ¼ 1�Þjx0 ¼ 1iTi

ðby the tree Markov propertyÞ

¼ 1−
Yd
i¼1

ð1− 2zlðTiÞÞ:

Therefore, averaging over T , we get

zlðαÞ ¼ Eη

�
1−

Yη
i¼1

ð1− bzlðαÞÞ
�
; η∼ PoissonðkαÞ

¼ 1− exp ð−kα bzlðαÞÞ
On the other hand, given a tree ensemble T with root degree η0 ¼ 1 and with the clause
φ assigned to the root’s child, we have that for any satisfying assignment xl for the
variables at generation l, hT ðxlÞ ¼ 1 if and only if

Yk−1

i¼1

DT  0
i
ðxðiÞl−1Þ ⊆ ΛþðφÞ;ð10Þ

where xðiÞl−1 is the assignment xl↾T  0
i for the variables at generation l− 1 in the subtree

T  0
i. Observe that (10) holds, in particular, if for some a ¼ ða1; : : : ; ak−1Þ ∈ ΛþðφÞ,

hT  0
i
ðxðiÞl−1Þ ¼ ai for i ¼ 1; : : : ; k− 1. Therefore, if y ¼ ðy1; : : : ; yk−1Þ denotes a random

uniform vector from SþðφÞ, we have

zlðTÞ ≥ 1

2

X
a∈ΛþðφÞ

�Yk−1

i¼1

I½hT  0
i
ðxðiÞ

l−1Þ ¼ ai�jx0 ¼ 1

�
T

¼ 1

2

X
a∈ΛþðφÞ

Ey

Yk−1

i¼1

hI½hT  0
i
ðxl−1Þ ¼ ai�jx0 ¼ yiiT  0

i

ðby the tree Markov propertyÞ

¼ 1

2

jΛþðφÞj
jSþðφÞj

Yk−1

i¼1

2zl−1ðT  0
iÞ ðby ð9ÞÞ:

This in turn implies, after averaging over T , that

bzlðαÞ ≥ Eφ

�
2I1ðφÞ
kφk2

�
ðzl−1ðαÞÞk−1 ¼ ðzl−1ðαÞÞk−1

Ωk

;

which leads to the recursion zlðαÞ ≥ 1− exp ð−kαðzl−1ðαÞÞk−1 ∕ ΩkÞ. Now, it is standard
to verify that this recursion implies that zlðαÞ is, for all l, greater than or equal to the
maximum of the fixed points of the function gðzÞ ¼ 1− exp ð−kαzk−1 ∕ ΩkÞ in the inter-
val [0, 1]. The minimum value of α for which such fixed point is positive is given by
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α� ¼ Ωkð1þ uð1þ 1
uÞk−2Þ

kðk− 1Þ ;

where u is the unique solution of the equation u ¼ ðk− 1Þ log ð1þ uÞ. In particular,
asymptotically in k, we have that α� ¼ Ωk

k ðlog kþ oðlog kÞÞ, which implies the upper
bound for αtree.

Lower bound: The matching lower bound on αtreeðkÞ requires a more elaborate
proof; we first prove three lemmas before returning to complete the lower bound
proof. ▯

Given a tree ensemble T , let xþ
l ¼D ðxljx0 ¼ 1Þ and x−

l ¼D ðxljx0 ¼ −1Þ. When the
tree ensemble is not clear in the definition of xþ

l (or x−
l ), we add a subindex indicating

the tree ensemble from where it is defined. Notice that, if μþ and μ− are the distribu-
tions of xþ

l and x−
l , respectively, then

dμ−

dμþ ¼ 1− hT ðxlÞ
1þ hT ðxlÞ

:ð11Þ

By the balance condition, it is clear that

hT ðxþ
l Þ¼D − hT ðx−

l Þ:ð12Þ

Also, it is easy to show that hhT ðxþ
l ÞiT ¼ h½hT ðxlÞ�2iT (and therefore ½RlðTÞ�2 ≤

hhT ðxþ
l ÞiT ≤ RlðTÞ), so that nonreconstructibility for T is equivalent to the condition

liml→∞hhT ðxþ
l ÞiT ¼ 0 (see [MP03]). Similarly, if T is a random tCSPðα; pÞ ensemble,

nonreconstructibility for T is equivalent to the condition liml→∞ E½hhTðxþ
l ÞiT� ¼ 0.

LEMMA 4.2.
(a) Given a tree ensemble T with root degree η0 ¼ d, we have�

1− hT ðxþ
l Þ

1þ hT ðxþ
l Þ
�
¼D

Yd
i¼1

�
1− hl;i
1þ hl;i

�
;ð13Þ

where ðhl;iÞdi¼1 are independent random variables such that hl;i ¼D hTi
ðxþ

l Þ.
(b) Given a tree ensemble T with root degree η0 ¼ 1 and with the clause φ assigned

to the unique child of the root, we have that�
1− hT ðxþ

lþ1Þ
1þ hT ðxþ

lþ1Þ
�
¼D Thlφð−1; sÞ

Thlφð1; sÞ
;ð14Þ

where s∼UnifðSþðφÞÞ and hl ¼ ðhl;iÞk−1
i¼1 are independent random variables

such that hl;i ¼D hT  0
i
ðxþ

l Þ.
Proof. This recursion follows straightforwardly from the recursive definition of tree

formulae. The balance condition on clauses implies

1− hT ðxþ
l Þ

1þ hT ðxþ
l Þ

¼ hI½xl ¼ xþ
l �jx0 ¼ −1iT

hI½xl ¼ xþ
l �jx0 ¼ 1iT

:

Therefore, if the root degree of T is η0 ¼ d, we have by the tree Markov property that

1− hT ðxþ
l Þ

1þ hT ðxþ
l Þ

¼
Yd
i¼1

hI½xl ¼ xþ
l ↾Ti�jx0 ¼ −1iTi

hI½xl ¼ xþ
l ↾Ti�jx0 ¼ 1iTi

;
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and the last expression has the same distribution as
Q

d
i¼1

1−ul;i

1þul;i
, due to the fact that

ðxþ
l ↾TiÞdi¼1 are independent random assignments for the variables at generation l of

Ti, such that xþ
l ↾Ti ¼D xþ

l;Ti
. This proves (13). Now, if the root degree of T is

η0 ¼ 1, define ð ~xþ
l;iÞk−1

i¼1
to be independent random assignments for the variables at gen-

eration l of the subtrees T  0
i, such that ~xþ

l;i ¼
D
xþ
l;T  0

i
. By the tree Markov property, we have

that ðxþ
lþ1↾T

 0
iÞk−1
i¼1 ¼

D ðsi ~xþ
l;iÞk−1

i¼1
, where s∼ UnifSþðφÞ. Using the tree Markov property

once more, we get

�
1− hT ðxþ

lþ1Þ
1þ hT ðxþ

lþ1Þ
�
¼

P
yφð−1; yÞQk−1

i¼1 hI½xl ¼ si ~x
þ
l;i�jx0 ¼ yiiT  0

iP
y φð−1; yÞQk−1

i¼1 hI½xl ¼ si ~x
þ
l;i�jx0 ¼ yiiT  0

i

¼ Thlφð−1; sÞ
Thlφð1; sÞ

;

which is precisely (14). ▯
The first step of the above recursion can be analyzed precisely, in terms of its dis-

tribution.
LEMMA 4.3. If T is a random tCSPðα; pÞ ensemble, then the random variable hTðxþ

1 Þ
takes values in f0; 1g and, if α < ð1− δÞðΩk log kÞ ∕ k, we have EhTðxþ

1 Þ ≤ 1− k−1þδ.
Proof. If T is a tree ensemble with root degree η0 ¼ 1 and clause φ assigned to the

root’s child, from part (b) of Lemma 4.2, we have that 1−hT ðxþ
1 Þ

1þhT ðxþ
1 Þ

¼D φð−1; sÞ, where

s∼ UnifðSþðφÞÞ. Recall that h0;i ≡ 1. Therefore, it follows that hT ðxþ
1 Þ ¼ 1 with prob-

ability jΛþðφÞj
jSþðφÞj ¼ 1 ∕ Ωk and hT ðxþ

1 Þ ¼ 0 otherwise. Similarly, if T is a tree ensemble with

root degree η0 ¼ d, it follows from part (a) of Lemma 4.2 that hT ðxþ
1 Þ ¼ 1 with prob-

ability 1− ð1− 1 ∕ ΩkÞd and hT ðxþ
1 Þ ¼ 0 otherwise. This implies then that hTðxþ

1 Þ has
support in f0; 1g and that EhTðxþ

1 Þ ¼ 1− exp ð−kαð1− 1 ∕ ΩkÞÞ. The conclusion follows
straightforwardly. ▯

For subsequent steps we track the averages, havel ¼defEhhTðxþ
l ÞiT and ĥavel ¼def

E½hhTðxþ
l ÞiTjη0 ¼ 1�, using the following bounds.

LEMMA 4.4. For any l ≥ 0 we have

havel ≤ 1− e−2kαĥavel ; ĥavelþ1 ≤
1

2
Fkðhavel Þ þ 1

2
Rkð

ffiffiffiffiffiffiffiffi
havel

p Þ;ð15Þ

FkðθÞ ¼def 2Eφ

�ðφð1Þ;Tθφ
ð1ÞÞ

kφk2
�
; RkðθÞ ¼def 2Eφ

�
2I1ðφÞ
kφk2

X
Q⊆½k−1�

jðφð1Þ; γQÞjθmaxðjQj;2Þ
�
.ð16Þ

Finally, if hl is supported on nonnegative values, then

ĥavel ≤ Fkðhavel Þ:ð17Þ

Proof. Wewill say that a random variableX ∈ ½−1;þ1� is “consistent” ifEf ð−XÞ ¼
E½ð1−X

1þX
ÞfðXÞ� for every function f such that the expectation values exist. A useful pre-

liminary remark [MM06] is that the random variable hT ðxþ
l Þ is consistent (no matter the

tree ensemble). In fact, this follows directly from (11) and (12):

788 A. MONTANARI, R. RESTREPO, AND P. TETALI

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

3/
16

 to
 1

38
.3

8.
10

6.
61

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Ef ð−hT ðxþ
l ÞÞ ¼

X
xl

fð−hT ðxlÞÞμþðxlÞ ¼
X
xl

fð−hT ðxlÞÞ
1þ hT ðxlÞ
1− hT ðxlÞ

μ−ðxlÞ

¼ E

�
f ð−hT ðx−

l ÞÞ
1þ hT ðx−

l Þ
1− hT ðx−

l Þ
�
¼ E

�
f ðhT ðxþ

l ÞÞ
1− hT ðxþ

l Þ
1þ hT ðxþ

l Þ
�
.

A number of properties of consistent random variables can be found in [RU08]. Let us
now consider the first inequality. If T is a tree ensemble with root degree η0 ¼ d, then it
is immediate from (13) that��

1− hT ðxþ
l Þ

1þ hT ðxþ
l Þ
�

1∕ 2�
T

¼
Yd
i¼1

��
1− hT iðxþ

l Þ
1þ hTi

ðxþ
l Þ

�
1∕ 2�

T i

.ð18Þ

It is possible to show that consistency implies that EX ¼ EX2 and Eð1−X
1þXÞ1 ∕ 2 ¼

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− X2

p
(through the test functions f ðxÞ ¼ xð1þ xÞ and f ðxÞ ¼ xð1þ xÞ1 ∕ 2ð1−

xÞ−1∕ 2); we thus haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− hhT ðxþ

l ÞiT
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− h½hT ðxþ

l Þ�2iT
q

≥
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ½hT ðxþ
l Þ�2

q �
T

ðby Jensen’s ineq.Þ

¼
��

1− hT ðxþ
l Þ

1þ hT ðxþ
l Þ
�

1 ∕ 2�
T

¼
Yd
i¼1

��
1− hTi

ðxþ
l Þ

1þ hTi
ðxþ

l Þ
�

1∕ 2�
Ti

¼
Yd
i¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ½hTi

ðxþ
l Þ�2

q �
Ti

≥
Yd
i¼1

ð1− hhTi
ðxþ

l ÞiTi
Þ ðusing ffiffiffi

x
p

≥ x; for x ∈ ½0; 1�Þ:

This implies, in particular, that if T is a random tCSPðα; pÞ, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− EhhTðxþ

l ÞiT
q

≥ Eη

�Yη
i¼1

ð1−E½hhTðxþ
l ÞiTjη0 ¼ 1�Þ

�
; η∼ PoissonðkαÞ;

whence the first inequality follows.
Now, from the recursion equation (14), we have for a tree ensemble T with root

degree η0 ¼ 1 and random clause φ assigned to the child of the root,

hT ðxþ
lþ1Þ ¼

2Thlφ
ð1ÞðsÞ

1þ ThlψðsÞ ; ψðsÞ ¼defφð1; sÞφð−1; sÞ;

or alternatively

hT ðxþ
lþ1Þ ¼ Th1φ

ð1ÞðsÞ þ ðTh1φ
ð1ÞðsÞÞGkðhl; sÞ; Gkðhl; sÞ ¼def

�
1− ThlψðsÞ
1þ ThlψðsÞ

�
;

where s∼ UnifSþðφÞ. Notice that for any antisymmetric function f ðsÞ, we have that
Esf ðsÞ ¼ ðφð1Þ;fÞ

kφk2 . Therefore, due to the fact that Th1φ
ð1ÞðsÞ is antisymmetric and

Gkðhl; sÞ is symmetric (both in s and hl, actually), we have the formulas
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hhT ðxþ
lþ1ÞiT ¼ 2

kφk2
��

φð1Þ;
Thlφ

ð1ÞðsÞ
1þ ThlψðsÞ

��
T

ð19Þ

and

hhT ðxþ
lþ1ÞiT ¼

�ðφð1Þ;Thlφ
ð1ÞÞ

kφk2
�

T

þ
�ðφð1Þ; ðThlφ

ð1ÞÞGkðhl; ·ÞÞ
kφk2

�
T

.ð20Þ

In the last expression, the first term is equal to
ðφð1Þ;T hhliTφð1ÞÞ

kφk2 , while the second term can be
written, using Fourier expansion, as

1

kφk2
X

Q⊆½k−1�
jQj odd

ðφð1Þ; γQEhl ½γQðhlÞGkðhl; ·Þ�Þðφð1Þ; γQÞ.

Using the fact that EjXj ≤ ðEXÞ1 ∕ 2 for consistent random variables, we can bound the
terms with jQj ≥ 3 by

jðφð1Þ; 1Þj
kφk2

X
Q⊆½k−1�
jQj≥3 odd

jðφð1Þ; γQÞj
�Y

i∈QhhTi
ðxþ

l ÞiTi

�
1 ∕ 2

:

Also, using the fact that for any even function fðxÞ with 0 ≤ f ðxÞ ≤ 1 and a consistent
random variable X, we have

jE½Xf ðXÞ�j ¼ jE½2X2fðXÞ ∕ ð1þXÞIfX≥0g�j ≤ jE½2X2 ∕ ð1þXÞIfX≥0g�j ¼ jE½X�j;

we can bound the terms with jQj ¼ 1 by

jðφð1Þ; 1Þj
kφk2

Xk−1

i¼1

ðφð1Þ; γfigÞjhhTi
ðxþ

l ÞiTi
j.

Therefore, for a random tCSPðα; pÞ with root degree η0 ¼ 1, we obtain after averaging

ĥavelþ1 ≤ Eφ

ðφð1Þ;Thave
l
φð1ÞÞ

kφk2 þ Eφ

�
2I1ðφÞ
kφk2

X
Q⊆½k−1�
jQj≥3 odd

jðφð1Þ; γQÞjð
ffiffiffiffiffiffiffiffi
havel

p Þmax fjQj;2g
�
;

which is precisely the second inequality in the lemma.
Now, suppose that hl is supported on nonnegative values, and let

As ¼ fhl∶Thlφ
ð1ÞðsÞ > 0g. Notice that the complement of As is −As (due to the anti-

symmetry of Thlφ
ð1ÞðsÞ with respect to hl). Therefore, using the consistency of the ran-

dom variables hl;i, from (19) we get
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hhT ðxþ
lþ1ÞiT ¼ 2

kφk2
��

φð1Þ;
Th1φ

ð1ÞðsÞ
1þ ThlψðsÞ

�
Iðhl ∈ AsÞ

−
�
φð1Þ;

T−h1φ
ð1ÞðsÞ

1þ T−hlψðsÞ
�
Ið−hl ∈ AsÞ

�
T

¼ 2

kφk2
��

φð1Þ;
Th1φ

ð1ÞðsÞ
1þ ThlψðsÞ

�
Iðhl ∈ AsÞ

�
1−

Yk−1

i¼1

1− hl;i
1þ hl;i

��
T

≤
2

kφk2
�
ðφð1Þ;Th1φ

ð1ÞðsÞÞIðhl ∈ AsÞ
�
1−

Yk−1

i¼1

1− hl;i
1þ hl;i

��
T

¼ 2ðφð1Þ;Thh1iφ
ð1ÞðsÞÞ

kφk2 :

Therefore, for a random tCSPðα; pÞ with root degree η0 ¼ 1, we obtain after averaging
that

ĥavelþ1 ≤ 2Eφ

ðφð1Þ;Thave
l
φð1ÞÞ

kφk2 ;

which corresponds to the last inequality of the lemma. ▯
We now return to completing the proof of Theorem 4.1.
Proof of Theorem 4.1, lower bound. If θ ¼ 1, T1 is the identity operator whence

ðφð1Þ;T1φ
ð1ÞÞ ¼ I1ðφÞ. We have therefore Fkð1Þ ¼ 1 ∕ Ωk. Now, expanding in Fourier ser-

ies we get

ðφð1Þ;T1φ
ð1ÞÞ ¼

X
Q⊆½k−1�

jðφð1Þ; γQÞj2 θjQj ¼
X

Q⊆½k�;Q∋fig
jðφð1Þ; γQÞj2 θjQj−1:

By the Fourier expansion condition,

FkðθÞ ≤ e−Ckð1−θÞ ∕ Ωk:ð21Þ

Now fix α ¼ ð1− δÞðΩk log kÞ∕ k, whence, by Lemma 4.3, have1 ≤ 1− k−1þδ, and h1 is
supported on nonnegative reals. Using (17), we get ĥav2 ≤ e−Ckδ ∕ Ωk, and therefore,

hav2 ≤ 1− expf−2ð1− δÞe−Ckδ log kg ≤ e−Ckδ ∕ 2:

On the other hand, from (7), we obtain the following bounds for FkðθÞ, RkðθÞ:

FkðθÞ ≤ 2Eφ

�Pk−1
i¼1 jðφð1Þ; γfigÞj2

kφk2
�
θ þ 2Eφ

�
I1ðφÞ
kφk2

�
θ2 ≤

Ae−Ck∕ 2θ þ θ2

Ωk

;

RkðθÞ ≤ 2Eφi

�
2I1ðφÞ
kφk2

Xk−1

i¼1

jðφð1Þ; γfigÞj2
�
θ2 þ 2Eφ

�
2I1ðφÞ
kφk2

X
Q⊆½k−1�

jðφð1Þ; γQÞj
�
θ3

≤
Ae−Ck∕ 2θ2 þ kaθ3

Ωk

:

Therefore, for all l we have
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havlþ1 ≤ 1− e−kα½Fkðhavl ÞþRkðhavl Þ� ≤ ð1− δÞ log kð2Ae−Ck ∕ 2havl þ 2kaðhavl Þ3 ∕ 2Þ;

which implies havl → 0 if, for some l > 0, havl ≤ k−5a, thus finishing the proof. ▯

5. Reconstruction on trees to graphs: The case of proper q colorings. In
this section we prove that the set of solutions of the proper q-coloring ensemble satisfies
the sphericity condition described in section 3.3. Recall that this in turn implies the
equivalence of (sparse random) graph reconstruction and tree reconstruction for the
proper q-coloring model.

Given two assignments (as in two proper colorings) xð̲1Þ, xð̲2Þ of the variables

x1; : : : ; xn, their joint type vxð̲1Þ;x ̲ð2Þ is the q× q matrix with vxð̲1Þ;x ̲ð2Þ ði; jÞ ¼def 1
n#

ft ∈ G∶xð̲1ÞðtÞ ¼ i and xð̲2ÞðtÞ ¼ jg. We consider random assignments x̲ð1Þ, x̲ð2Þ taken
uniformly and independently over all the satisfying assignments of a random instance
of the q-coloring model with edge-variable density α. Our purpose is to prove that for all
ϵ > 0, kvxð̲1Þ;xð̲2Þ − v̄k

TV
≤ ϵ with high probability, where v̄ is the matrix with all entries

equal to 1 ∕ q2. More exactly, we have the following.
THEOREM 5.1. Let x ̲ð1Þ, x ̲ð2Þ be random assignments taken uniformly and indepen-

dently over all satisfying assignments of a random instance of the q-coloring model with
edge-variable density α. If α < ðq− 1Þ log ðq− 1Þ, then for any ϵ > 0,

Probðkvx̲ð1Þ;x̲ð2Þ − v̄k2 > ϵÞ → 0 as n → ∞:

The statistic vxð̲1Þ;xð̲2Þ samples the correlation between the colors of two random ver-
tices of the graph. The main result in [GM07] was that concentration of this statistic
implies equivalence of tree and random graph reconstruction (in the diluted regime).

At this point we should recall the so-called transfer theorem introduced in [AC08],
which says that with the edge-variable density α < q log q, the set of events that hold
with high probability at exponential rate in the planted model hold with high probabil-
ity in the uniformmodel as well; the planted model here is induced by choosing a uniform
random q-partition of the vertices and then a graph with m edges chosen uniformly at
random from among the edges properly colored (as in nonmonochromatic) by the parti-
tion. In particular, the transfer theorem implies that most of the colorings of a random
graph (at edge-variable density α < q log q) are “balanced” in the sense that, for any
ϵ > 0,

Probðkwx̲ − w̄k2 > ϵÞ → 0 as n → ∞;ð22Þ

where w is the vector with q entries such that wx ̲ðiÞ ¼ 1
n#fv ∈ G∶x ̲v ¼ ig and w̄ is the

vector with all entries equal to 1 ∕ q. Notice that a similar transfer theorem for pairs of
colorings would imply the result stated in Theorem 5.1. Although we believe that such a
transfer holds in the appropriate regime, rather than proving it in full, we prove instead
just the conclusion that we need in Theorem 5.1. Our argument makes crucial use of the
following estimate for the partition function, also from [AC08].

LEMMA 5.2. Let Z be the number of satisfying assignments of a random instance of
the q-coloring model with edge-variable density α < q log q. Then, for some function
f ðnÞ of order oðnÞ, we have

ProbðZ < e−f ðnÞE½Z �Þ → 0 as n → ∞:
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We should point out also the following estimate for the expected value:

EZ ≥ Ω
�

1

nðq−1Þ∕ 2

��
q

�
1−

1

q

�
α
�
n

:ð23Þ

Let us fix some notation first. If v is a q× qmatrix, letH and E denote their entropy
and energy, respectively, where

HðvÞ ¼ −
X
i;j

vði; jÞ log vði; jÞ;

EðvÞ ¼ log

�
1−

X
i

�X
j

vði; jÞ
�

2

−
X
j

�X
i

vði; jÞ
�

2

þ
X
i;j

vði; jÞ2
�
:

Also, given ϵ, δ > 0, let Sðδ; ϵÞ denote the set of all q× q matrices v with nonnegative
entries such that

kðv− v̄Þ1k2 ≤ δ; k1T ðv− v̄Þk2 ≤ δ and ðv− v̄Þk2 ≥ ϵ;

where 1 is the q× 1 vector of all 1’s. Before returning to the proof of Theorem 5.1, we
introduce estimates concerning an additive functional depending on the energy and en-
tropy of matrices in Sðδ; ϵÞ; for this purpose, we define κðδ; ϵÞ as the upper limit of the
interval (indeed, it is easy to see that this is an interval) consisting of the values c such
that

sup
v∈Sðδ;ϵÞ

HðvÞ þ cEðvÞ ≤ Hðv̄Þ þ αEðv̄Þ:

To motivate, let us recall that an important part of the second moment argument of
Achlioptas and Naor [AN05, Theorem 7] (in showing that the chromatic number
χ½Gðn; d∕ nÞ� concentrated on two possible values) relied on an optimization of the ex-
pressionHðvÞ þ αEðvÞ over the Birkoff polytope Bq×q of the q× q doubly stochastic ma-
trices. In particular, they proved that, as long as α ≤ ðq− 1Þ logðq− 1Þ, one has

sup
v∈Bq×q

HðvÞ þ αEðvÞ ¼ Hðv̄Þ þ αEðv̄Þ:ð24Þ

In particular, since Sð0; ϵÞ ⊆ Bq×q, we have κð0; ϵÞ ≥ αq ¼ ðq− 1Þ log ðq− 1Þ. This im-
plies also, due to the continuity of κðδ; ϵÞ, that whenever α < αq, for every ϵ > 0 there is
some δ > 0 such that κðδ; ϵÞ > α.

LEMMA 5.3. Suppose that v ∈ Sðδ; ϵÞ, where ϵ > 2δ; then if κðδ; ϵÞ > α, we have that

½HðvÞ þ αEðvÞ� ≤ ½Hðv̄Þ þ αEðv̄Þ�− ðκðδ; ϵÞ− αÞðϵ− 2δÞ
2ð1− 1 ∕ qÞ2 :

Proof. Indeed,

½Hðv̄Þ þ αEðv̄Þ�− ½HðvÞ þ αEðvÞ�
¼ ½Hðv̄Þ þ κðδ; ϵÞEðv̄Þ�− ½HðvÞ þ κðδ; ϵÞEðvÞ� þ ðκðδ; ϵÞ− αÞ½EðvÞ− Eðv̄Þ�

≥ ðκðδ; ϵÞ− αÞ
�
log

�
1þ 1

ð1− 1 ∕ qÞ2 ½kv− v̄k2 − kv− v̄k2 − k1tðv− v̄Þk2�
��

≥
ðκðδ; ϵÞ− αÞðϵ− 2δÞ

2ð1− 1 ∕ qÞ2 : ▯
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Proof of Theorem 5.1. Given a property P, denote by Z ð2ÞðPÞ the number of pairs of
satisfying assignments for which P holds. Now, choose δ < ϵ ∕ 2, such that κðδ; ϵÞ > α

(see the comment previous to Lemma 5.3), and let ξ ¼ ðκðδ;ϵÞ−αÞðϵ−2δÞ
2ð1−1 ∕ qÞ2 . We have that

Probðkvxð̲1Þ;x̲ð2Þ − v̄k2 > ϵÞ ¼ E

�
Z ð2Þðkvxð̲1Þ;xð̲2Þ − v̄k2 > ϵÞ

Z2

�
.

Now, according to Lemma 5.2 and Eq. (22), the events Z < e−nξE½Z �,
kðvx̲ð1Þ;xð̲2Þ − v̄Þ1k2 > ϵ, and k1tðvx̲ð1Þ;xð̲2Þ − v̄Þk2 > ϵ are negligible. Therefore, to show that

Probðkvxð̲1Þ;x̲ð2Þ − v̄k2 > ϵÞ → 0 is sufficient to prove that the term

E½Z ð2Þðvxð̲1Þ;xð̲2Þ ∈ Bδ;ϵ
q×qÞ�

e−2nξE½Z �2

vanishes. Now, consider the set Gϵ;δ of q× qmatrices L, with nonnegative integer entries,
such that L ∕ n ∈ Sðδ; ϵÞ, and denote by Ωv the set of pairs of colorings x1, x2 such that
vx1;x2 is equal to the matrix v; then

E½Z ð2Þðvx̲ð1Þ;xð̲2Þ ∈ Bδ;ϵ
q×qÞ�

¼
X
L∈Gϵ;δ

X
x1;x2∈ΩL ∕ n

Probðx1 and x2 are satisfying assignmentsÞ

¼
X
L∈Gϵ

n!Q
i;jLij!

�
n

n− 1

�
αn
�
1−

X
i

�X
j

Lij ∕ n
�

2

−
X
j

�X
i

Lij ∕ n
�

2

þ
X
i;j

ðLij ∕ nÞ2
�

αn

≤
X
L∈Gϵ;δ

3q2q
ffiffiffi
n

p
exp ðn½HðL ∕ nÞ þ αEðL ∕ nÞ�Þ:

Now, we can invoke Lemma 5.3 to get that

½HðL ∕ nÞ þ αEðL ∕ nÞ� ≤ ½Hðv̄Þ þ αEðv̄Þ�− ξ.

Therefore,

E½Z ð2Þðvx̲ð1Þ;xð̲2Þ ∈ Bδ;ϵ
q×qÞ� ≤ polyðnÞ× ½qð1− 1 ∕ qÞα�2n exp ð−nξÞ;

so by applying (23) we get that

E½Z ð2Þðvx̲ð1Þ;xð̲2Þ ∈ Bδ;ϵ
q×qÞ�

e−2nξE½Z �2 ≤ polyðnÞ× exp ð−nξÞ:

The result follows. ▯

Appendix A. Proof of Proposition 3.2. Given a random instance from the en-
semble CSPðn; p;αÞ, let fφagαna¼1 be its set of clauses and consider the symmetrized sta-
tistic

LnðφÞ ¼
1

nαk!

X
σ∈Sk

#f a ∈ ½nα�∶φa ¼ φσg:ð25Þ
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It is convenient to introduce two slightly modified ensembles. We denote by
CSPðn; p;α; ~pnÞ the ensemble CSPðn; p;αÞ conditioned on Ln ¼ ~pn.

A binary configuration x ̲ is said to be balanced if jx ̲ · 1 ̲j ≤ 1. We will use Z and Zb

to denote the variable that counts the number of satisfying assignments and balanced
satisfying assignments, respectively, of a random CSP ensemble. Given two binary
assignments x ̲ð1Þ; x ̲ð2Þ, we define their overlap as

Q12 ¼def
1

n
x ̲ð1Þ · xð̲2Þ ¼ 1

n

Xn
i¼1

x
ð1Þ
i x

ð2Þ
i .ð26Þ

In other words, ð1−Q12Þ ∕ 2 is the normalized Hamming distance of xð̲1Þ and x ̲ð2Þ.
Proof of Proposition 3.2, upper bound. The upper bound in Proposition 3.2 follows

from a first moment calculation. Let Z be the number of solutions of a random instance
from the ensemble CSPðn; p;αÞ. We will show that, for α > ð1þ ϵÞΩ̂k log 2, E½Z � → 0

as n → ∞. First fix ~pn such that k ~pn − pkTV ≤ 1 ∕ n1∕ 2−γ. Notice that the probability
that a random clause of type φ is satisfied by the assignment x with x · 1 ¼ nθ is kφk2θ.
This implies

E½Z jLn ¼ ~pn� ¼
X

x∈f−1;1gn
P ðx is a satisfying assignmentjLn ¼ ~pnÞ

≤ n sup
θ∈½−1;1�

X
x·1¼nθ

P ðx is a satisfying assignmentjLn ¼ ~pnÞ

≤ n2n
Y
φ

kφk2 ~pnðφÞαnθ

≤ n exp

�
n

	
log 2þ α

X
φ

pðφÞ log kφk2θ þOðn−1 ∕ 2þγÞ

�

≤ n exp

�
n

	
log 2þ α

X
φ

pðφÞ log kφk2 þOðn−1 ∕ 2þγÞ

�

;

where in the last step we used the condition of dominance of balanced assignments. By

taking expectation over ~pn, we obtain E½Z � → 0 whenever α > ð1þ ϵÞΩ̂k log 2, as
claimed. ▯

To establish the corresponding lower bound, we use the second moment method,
but first we need a few preliminary lemmas.

We define by Knðp; a;A; γÞ to be the set of probability distributions f ~pðφÞg over
clauses φ∶fþ1;−1g → f0; 1g such that

(i) suppð ~pÞ ¼ suppðpÞ;
(ii) ~p satisfies conditions 1–4 and (a), (b) stated in section 3 with constants a, A;

and finally,
(iii) k ~pn − pkTV ≤ 1 ∕ n1 ∕ 2−γ for some γ > 0. Then we have the following.

LEMMA A.1. Let Ln be the statistics defined in (25) for a random formula from the
CSPðn; p;αÞ ensemble. Then there exists constants a, A such that for any γ > 0, with
high probability

Ln ∈ Knðp; a;A; γÞ:ð27Þ
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Proof. Notice that for each permutation πLnðφπÞ ¼ LnðφÞ and that, for each
φf−1;þ1gk → f0; 1g, k!LnðφÞ is distributed as a binomial with parameters nα, and
k!pðφÞ. In particular, LnðφÞ ¼ 0 if pðφÞ ¼ 0 and LnðφÞ > 0 with high probability other-
wise. This implies item (i) in the definition of Knðp; a;A; γÞ.

Item (iii), that kLn − pkTV ≤ 1 ∕ n1 ∕ 2−γ, follows immediately from the central limit
theorem.

Consider finally item (ii). Condition 1 is enforced by the symmetrization procedure
in (25). Conditions 2 and 3 depend only on suppðLnÞ and thus hold with high probability
by the above argument.

Dominance of balanced assignments (condition 4) is the statement that

Eφ log kφkθ − Eφ log kφk < 0ð28Þ

for all θ ≠ 0, θ ∈ ½−1; 1�. Notice that the left-hand side is a polynomial in θ whose
coefficients are continuous function of the quantities fLnðφÞg. Hence this condition
is of the form Ln ∈ A for A, an open set in RD, D ¼ 22

k
. Since p ∈ A and kLn − pkTV ≤

n−1 ∕ 2þγ with high probability, we conclude Ln ∈ A.
Finally conditions (a) and (b) depend only on suppðLnÞ and therefore follow from

the above. ▯
LEMMA A.2. Given ~pn ∈ Knðp; a;A; γÞ, consider a random instance from the

CSPðn; p;α; ~pnÞ ensemble. For θ ∈ f−1;−1þ 2 ∕ n; : : : ; 1− 2 ∕ n; 1g, let ZbðQ12 ¼ θÞ
be the number of balanced solution pairs xð̲1Þ; x ̲ð2Þ ∈ fþ1;−1gn with overlap θ. Then,

E½ZbðQ12 ¼ θÞ�
½EZb�2

≤ Cn−1 ∕ 2 exp fnΦðθÞg;

where C is bounded uniformly in θ and

ΦðθÞ ¼defH ðθÞ þ αEφ∼ ~pn log

	ðφ; T θφÞ
kφk4



:

Here HðθÞ≡− 1þθ
2 logð1þ θÞ− 1−θ

2 logð1− θÞ is the binary entropy function.
Proof. For simplicity take n to be even (the argument is analogous for n odd). Letφ

be a Boolean function, and let i∶½k� → ½n� be a uniform random choice of the indexes of
the variables in φ (i.e., ið1Þ; : : : ; iðkÞ are independent and uniform in ½n�). Given two
balanced vectors xð̲1Þ; x ̲ð2Þ ∈ fþ1;−1gn, with Q12 ¼ θ, we have

Eπ½φðxð1Þið1Þ; : : : ; x
ð1Þ
iðkÞÞφðxð2Þið1Þ; : : : ; x

ð2Þ
iðkÞÞ� ¼ ðφ;TθφÞ:

Therefore,

EZbðjQ12j ¼ θÞ ¼
X

xð̲1Þ·x̲ð2Þ¼nθ

P ðx ̲ð1Þ; x ̲ð2Þ are satisfying assignmentsÞ

≤
X

x̲ð1Þ⋅xð̲2Þ¼nθ

Y
φ

ðφ;TθφÞ ~pnðφÞnα

≤
C

n3∕ 2 exp

�
n

	
H
�
1þ θ

4
;
1þ θ

4
;
1− θ

4
;
1− θ

4

�
þ α

X
φ

~pnðφÞ logðφ;TθφÞ

�

;

where H is the entropy function
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Hðθ1; : : : ; θdÞ ¼ −
Xd
i¼1

θi log θið29Þ

and we used the following bound on binomial coefficients (valid for θi ≥ 0, θ1þ · · ·
þθd ¼ 1):

n!Q
d
i¼1ðnθi!Þ

≤
C

nðd−1Þ∕ 2 expfHðθ1; : : : ; θdÞg:ð30Þ

By the very same argument, for some positive C  0,

EZb ¼
X

x ̲ balanced

Y
φ

kφk2 ~pnðφÞαn

>
C  0

n1 ∕ 2 exp

�
n

	
H
�
1

2
;
1

2

�
þ α

X
φ

~pnðφÞ log kφk2

�

.

It is straightforward now to check that

EZbðQ12 ¼ θÞ
ðEZbÞ2

≤
C  0  0

n1∕ 2 expfnΦðθÞg;ð31Þ

which implies the claim. ▯
LEMMA A.3. Given ~pn ∈ Knðp; a;A; γÞ, consider a random instance from the

CSPðn; p;α; ~pnÞ ensemble, and define

Ωk; ~pn ¼
def

Eφ∼ ~pn

2I1ðφÞ
1− 2I1ðφÞ

:ð32Þ

If α ≤ ð1− εÞΩk; ~pn log 2, then there exists a constant C 0 ¼ C 0ðp; a; A; γ; εÞ > 0 (inde-
pendent of ~pn ∈ Knðp; a;A; γÞ) and an absolute constant C such that for any
θ ∈ f−1;−1þ 2 ∕ n; : : : ; 1− 2 ∕ n; 1g

E½ZbðQ12 ¼ θÞ�
ðEZbÞ2

≤
C

n1∕ 2 e
−nC0θ

2
:ð33Þ

Proof. In view of the previous lemma, it is sufficient to prove that there exists a
constant C0 ¼ C 0ðp; a;A; γ; εÞ > 0 (independent of ~pn ∈ Knðp; a;A; γÞ) such that

ΦðθÞ ≤ −C 0θ
2:ð34Þ

Since throughout this proof ~pn is fixed, it will be understood that φ∼ ~pn whenever
we take expectation over the clause distribution. Also, dependence of Ωk; ~pn and Ω̂k; ~pn
(defined analogously) upon ~pn will be dropped.

Fix α ≤ ð1− εÞΩk log 2 ≤ ð1− εÞΩ̂k log 2. We will prove the thesis claim by con-
sidering three different regimes for θ: 0 < θ ≤ e−ck, e−ck ≤ θ ≤ 1− ε1 ∕ 2, and
1− ε1∕ 2 ≤ θ ≤ 1, where c is a small constant. In the first two intervals we will prove
that the derivative of ΦðθÞ with respect to θ is strictly negative. Recalling that
kφk2 ≥ 1 ∕ 2, we have
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dΦ
dθ

≤ −atanhθ þ kαEφ

ðφð1Þ;Tθφ
ð1ÞÞ

kφk4

≤ −θ þ 2kαEφ

P
k−1
i¼1 jφð1Þ

figj2
kφk2 θ þ 2kαEφ

kφð1Þk2
kφk2 θ3

≤ −θ þ Ae−Ck α

Ωk

θ þ 2k
α

Ωk

θ2

≤ −
1

2
θ þ 4kθ2;

where we used (from (3)) the hypothesis on low weight Fourier coefficients. The last
expression is strictly negative if 0 < θ < e−ck for any c > 0 and all k large enough.
Integrating the last expression over θ, we get ΦðθÞ ≤ −C 0θ

2.
Next assume e−ck ≤ θ ≤ 1− ε. Using the hypothesis ðφð1Þ; T θφ

ð1ÞÞ ≤
e−Ckð1−θÞkφð1Þk2, we have

dΦ
dθ

≤ −atanhθ þ 4kαEφ

kφð1Þk2
kφk4 e−Ckϵ

≤ −atanhθ þ 2k
α

Ωk

e−Ck
ffiffi
ϵ

p
≤ −atanhθ þ 2ðlog 2Þke−Ckϵ;

which is strictly negative if θ > c−ak with, say, c ¼ ðCε2Þ ∕ 2.
Finally, we notice that, for 1− ε2 ≤ θ ≤ 1, any ε small enough we have

HðθÞ ≤ − log 2þ ε ∕ 10. Further, using the fact that ðφ; T θφÞ ¼ kT θ1 ∕ 2φk2 is nonde-
creasing in θ

ΦðθÞ ≤ − log 2þ ε

10
− αEφ log kφk2 ¼ − log 2þ ε

10
þ α

Ω̂k

≤ −ε
log 2

2
;

which finishes the proof. ▯
Proof of Proposition 3.2, lower bound. Fix ~pn ∈ Knðp; a;A; γÞ, α ≤ ð1−

εÞΩk; ~pn log 2, and let Zb be the number of balanced solutions of a random instance
from the CSPðn; p;α; ~pnÞ ensemble. From Lemma A.3 we have that, for Un ≡ f−1;

−1þ 2 ∕ n; : : : ; 1− 2 ∕ n; 1g,

EfZ 2
bg

fEZbg2
¼

X
θ∈Un

EfZbðQ12 ¼ θÞg
fEZbg2

ð35Þ

≤
C

n1 ∕ 2

X
θ∈Un

e−C0nθ
2ð36Þ

≤
C  0

n1 ∕ 2 n

Z
∞

−∞
e−C0nθ

2
dθ ≤ C  0

0ð37Þ

for some new constant C  0
0 ¼ C  0

0ðp; a; A; γ; εÞ > 0.
For ~pn ∈ Knðp; a; A; γÞ, we gave Ωk; ~pn ¼ Ωkð1þOðn−1 ∕ 2þγÞÞ. Let Fn be a random

instance from the CSPðn; p;αÞ ensemble, ~pn ∈ Knðp; a;A; γÞ, α ≤ ð1− 2εÞΩk log 2,
whence α ≤ ð1− εÞΩk; ~pn log 2. By the Paley–Zygmund inequality
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PðFn is satjLn ¼ ~pnÞ ≥
EfZ2

bg
2fEZbg2

> C  0
0 ∕ 2:ð38Þ

By Lemma A.1 we have PðFn is satÞ ≥ C  0
0 ∕ 4. Finally, the fact that the satisfiability

property (of our CSP ensembles) exhibits a sharp transition, thanks to the theorem
of Creignou and Daude [CD09] (see Theorem C.1 in Appendix C here) implies
PðFnis satÞ → 1 as n → ∞. ▯

Appendix B. Proof of Theorem 3.4. In this appendix we introduce the planted
CSP ensemble, clarify its connection to the original ensemble, and use it to prove The-
orem 3.4. Throughout the section, we denote a CSP instance with nα clauses by
F ¼ ðF1; F2; : : : ; FnαÞ. Here

Fa ¼ ðφa; iað1Þ; : : : ; iaðkÞÞð39Þ
denotes the clause labeled a, which is completely specified by the Boolean function
φa∶fþ1;−1gk → f0; 1g and by the choice of k indices iað1Þ; : : : ; iaðkÞ. The number
of solutions of the instance F is denoted by ZðFÞ.

Given a distribution p ¼ fpðφÞg, it is also convenient to define the “average clause”
φ̄∶fþ1;−1gn → Rþ:

φ̄ðx ̲Þ ¼ 1

nk

X
ið1Þ; : : : ;iðkÞ∈½n�

X
φ

pðφÞφðxið1Þ; : : : ; iðkÞÞ:ð40Þ

Throughout this section, we will assume that the strong balance condition (condition (a′)
in section 3.5) holds. We think that this condition can be refined at the price of a more
careful analysis.

B.1. The planted ensemble and a transfer theroem. Given n ∈ N, α ≥ 0, and
a distribution p ¼ fpðφÞg over k-clauses, the planted ensemble pCSPðn;α; pÞ is a joint
distribution over binary assignments x�̲ ¼ ðx�1; x�2; : : : ; x�nÞ ∈ f0; 1gn and random CSP
formulas F defined as follows. The assignment x ̲� is drawn with distribution

Ppðx ̲Þ≡
1

EZðFÞ φ̄ðx ̲Þ
nα:ð41Þ

It is easy to check that this is normalized, i.e., that EZðFÞ ¼ P
x
̲
φ̄ðx ̲Þnα.

We will use Pp,Ep to denote probability and expectation with respect to the planted
model. Sampling x ̲ from this distribution is straightforward, since Ppðx ̲Þ is uniform once
we condition on the weight of x ̲ (i.e., on x ̲ · 1 ̲).

Conditional on x�̲, the clauses Fa, a ¼ 1; 2; : : : ; nα, are independent and distributed
according to

PpfFa ¼ ðφa; iað1Þ; : : : ; iaðkÞÞjx�̲g≡
1

nkφ̄ðx�̲Þ pðφaÞφaðx�iað1Þ; : : : ; x�iaðkÞÞ;ð42Þ

where the indices iað1Þ; : : : ; iaðkÞ ∈ ½n� are drawn independently and uniformly at ran-
dom. Notice that this is indeed a well-defined distribution over clauses, and in particular
it is normalized thanks to (40). In order to sample from the above clause distribution,
one can proceed as follows. Sample indices iað1Þ; : : : ; iaðkÞ ∈ ½n� independently and
uniformly at random and a Boolean function φa with distribution pð·Þ. If
φaðx�iað1Þ; : : : ; x�iaðkÞÞ ¼ 1, accept this choice; otherwise reject it and repeat the sampling.
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The joint distribution of the planted assignment and the CSP instance is then

PpðF; x�̲Þ ¼
1

nnkαEZðFÞ
Ynα
a¼1

pðφaÞφaðx�iað1Þ; : : : ; x�iaðkÞÞ:ð43Þ

By construction, the assignment x�̲ satisfies F . It is convenient to compare the planted
distribution with the uniform distribution we have been considering so far. In this case,
an instance is drawn according to the ensemble CSPðn;α; pÞ, and an assignment x�̲ is
drawn uniformly at random from among the ones satisfying F . The joint distribution is
then

PpðF; x ̲Þ ¼
1

nnkαZðFÞ
Ynα
a¼1

pðφaÞφaðx�iað1Þ; : : : ; x�iaðkÞÞ:ð44Þ

By taking the ratio of the above probabilities, we immediately get the follow-
ing lemma.

LEMMA B.1. Let F∶ðF; x�̲Þ → R be a function of an instance–solution pair. Its ex-
pectations with respect to the planted and uniform model are related as follows:

EpF ðF; x�̲Þ ¼ E

	
ZðFÞ
EZðFÞF ðF; x�̲Þ



:ð45Þ

Proof. By a standard change-of-measure argument EpFðF; x�̲Þ is equal to

X
ðF;x ̲�Þ

PpðF; x�̲ÞFðF; x�̲Þ ¼
X
ðF;x ̲�Þ

PðF; x ̲�Þ
	
PpðF; x̲�Þ
PðF; x ̲�Þ FðF; x�̲Þ




¼
X
ðF;x ̲�Þ

PðF; x ̲�Þ
	

ZðFÞ
EZðFÞF ðF; x̲�Þ



;ð46Þ

which is nothing but our claim. ▯
It is clear that the planted and uniform models are strictly related as soon as ZðFÞ

concentrates around its expectation EZðFÞ.
LEMMA B.2. Fix α < Ωk log 2f1þ okð1Þ and let ZðFÞ be the number of solutions of a

random instance F from the CSPðn;α; pÞ ensemble. Then, for any ε > 0,
ZðFÞ > e−nεEZðFÞ with high probability.

Proof. For any constant A, the property ZðFÞ > enA is monotone over the space of
CSP instances (regarded as a product space). Applying, as in [AC08], a sharp threshold
result (which we prove as Lemma C.2 in Appendix C), it is sufficient to prove that
ZðFÞ > e−nεEZðFÞ with probability bounded away from 0 as n → ∞.

Let ZbðFÞ be the number of balanced solutions (i.e., the number of solutions such
that jx ̲ · 1 ̲j ≤ 1). Obviously, ZðFÞ ≥ ZbðFÞ. On the other hand, by an argument already
employed in Appendix A (here Un ≡ f−1;−1þ 2 ∕ n; : : : ; 1− 2 ∕ n; 1g),
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EfZðFÞg ¼
X

x∈f−1;1gk
P ðx is a satisfying assignmentÞ

≤
X
θ∈Un

�
n

nð1þ θÞ ∕ 2

�
Eφfkφkθg2

≤
X
θ∈Un

�
n

nð1þ θÞ ∕ 2

�
Eφfkφkg2

≤ n

�
n

n ∕ 2

�
Eφfkφkg2 ¼ nEfZbbðFÞg:

That is, EfZðFÞg and EfZbðFÞg differ at most by a polynomial factor. It is therefore
sufficient to prove that ZbðFÞ > e−nεEZbðFÞ with probability bounded away from 0
as n → ∞.

This follows from the Paley–Zygmund inequality, since

P

	
ZbðFÞ ≥

1

2
EZbðFÞ



≥

EfZbðFÞg2
4EfZbðFÞ2g

≥
1

4C
ð47Þ

for some uniformly bounded C > 0 by (37). ▯
THEOREM B.3. Given a sequence of events fAng and a constant c > 0, assume that

ðx�̲; FÞ ∈ An with probability larger than 1− e−cn under the planted model
pCSPðn;α; pÞ. Then ðx�̲; FÞ ∈ A with high probability under the uniform model.

Proof. Consider the complement of An, denoted by Ac
n. By Lemma B.1, we have

Ppfðx ̲�; FÞ ∈ Ac
ng ¼ E

	
ZðFÞ
EZðFÞ Iðx�̲;FÞ∈Ac

n




≥ E

	
ZðFÞ
EZðFÞ Iðx�̲;FÞ∈Ac

n
IZðFÞ≥e−cn∕ 2EZðFÞ



≥ e−cn ∕ 2fPfðx ̲�; FÞ ∈ Ac

ng− Pfðx ̲�; FÞ ∈ Ac
n; Z < e−cn ∕ 2EZðFÞgg.

By solving for Pfðx�̲; FÞ ∈ Ac
ng, we get

Pfðx ̲�; FÞ ∈ Ac
ng ≤ ecn ∕ 2Ppfðx ̲�; FÞ ∈ Ac

ng þ PfZ < e−cn ∕ 2EZðFÞg:
The first term vanishes by assumption, and the second by Lemma B.2. ▯

B.2. Clustering. The proof of Theorem 3.4 proceeds in two steps. First we con-
sider a pair ðx�̲; FÞ drawn according to the planted model and show that the planted
solution is isolated from most of the other solutions. Next, we use Theorem B.3 to trans-
fer this statement to the uniform ensemble.

In order to establish the first result, we need the following estimate.
LEMMA B.4. Let ðx ̲�; FÞ be a solution/instance pair distributed according to the

planted model, and denote by Z ð2ÞðθÞ the number of solutions x ̲ of F such that
x ̲� · x ̲ ¼ nθ. Then, for any a < 1,

EpfZ ð2ÞðθÞjjx�̲ ⋅ 1 ̲j ≤ nag ¼ expfnΨðθÞ þ oðnÞg;ð48Þ

ΨðθÞ≡ HðθÞ þ α log

	
Eφðφ;TθφÞ
Eφfkφk2g



:ð49Þ

RECONSTRUCTION AND CLUSTERING IN RANDOM CSPs 801

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

3/
16

 to
 1

38
.3

8.
10

6.
61

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Proof. For the sake of simplicity we shall focus on the case x ̲� · 1 ̲ ¼ 0 (i.e., n is even
and the planted solution is perfectly balanced). It should be clear from the derivation
that allowing for jx�̲ · 1 ̲j ≤ na produces only a change of orderOðn−1þaÞ in the exponent.

Fix such a planted solution x�̲, and let x ̲ be such thatX
i∶x�i¼þ1

x�i xi ¼
n

2
θþ;

X
i∶x�i¼þ1

x�i xi ¼
n

2
θ−;ð50Þ

with ðθþ þ θ−Þ ∕ 2 ¼ θ (whence x�̲ · x ̲ ¼ nθ). Then

Ppðx ̲ is a solution jx ̲�Þ¼½Ppðφaðxiað1Þ; : : : ; xiaðkÞÞ ¼ 1jx̲�Þ�nα;ð51Þ

and by the definition of planted ensemble

Ppðφaðxiað1Þ; : : : ; xiaðkÞÞ ¼ 1jx�̲Þ

¼ 1

nkφ̄ðx ̲�Þ
X

iað1Þ; : : : ;iaðkÞ

X
φ

pðφÞφðx�iað1Þ; : : : ; x�iaðkÞÞφðxiað1Þ; : : : ; xiaðkÞÞ

¼ 1

φ̄ðx ̲�ÞEφðφ; Sθþ;θ−φÞ;

where we introduced the operator Sθþ;θ− acting as follows:

Sθþ;θ−φðx1; : : : ; xkÞ≡
X

y∈fþ1;−1gk

Yk
i¼1

1þ θxixiyi
2

φðy1; : : : ; ykÞ:ð52Þ

Further

Ppðx ̲� · 1 ̲ ¼ 0Þ ¼ 1

EZðFÞ φ̄ðx
�̲Þnα

�
n

n∕ 2

�
:

Combining the above, and after a few algebraic manipulations, we get

EpfZ ð2ÞðθÞjx�̲ · 1 ¼ 0g ¼ 1

φ̄ðx̲�Þnα
X

θþþθ−¼2θ

�
n ∕ 2

nð1þ θþÞ ∕ 4

��
n∕ 2

nð1þ θ−Þ ∕ 4

�

× ½Eφðφ; Sθþ;θ−φÞ�nα;

where the sum runs over θþ; θ− ∈ f−1;−1þ 4 ∕ n; : : : ; 1− 4 ∕ n; 1g. Now letting
δ ¼ ðθþ − θ−Þ ∕ 2 and passing to the Fourier transform, we get

Eφðφ; Sθþ;θ−φÞ ¼
X

Q1⊆Q2

EφfφQ1
φQ2

gθjQ1jδjQ2j−jQ1j ≤
X
Q

Eφfφ2
QgθjQj ¼ Eφðφ; Sθ;θφÞ;

where we used (2). Also notice that ðφ; Sθ;θφÞ ¼ ðφ; TθφÞ. Therefore, the sum over θþ,
θ− can be estimated by the θþ ¼ θ− term, up to a polynomial factor

EpfZ ð2ÞðθÞjx�̲ · 1 ¼ 0g ¼ 1

φ̄ðx̲�Þnα n
Oð1Þ

�
n ∕ 2

nð1þ θÞ ∕ 4
�

2

½Eφðφ; T θφÞ�nα:

The statement follows by noticing that φ̄ðx̲�Þ ¼ Ekφk2 for x ̲� balanced. ▯
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LEMMA B.5. Let ðx ̲�; FÞ be a solution/instance pair distributed according to the
planted model pCSPðn;α; pÞ and assume

~Ωk

k
ðlog kÞð1þ εÞ ≤ α ≤ Ωkðlog 2Þð1− εÞ:ð53Þ

Then there exists constants 0 < θ1 < θ2 < 1 and c; c 0 > 0 such that, with probability at
least 1− e−cn, the following happens. The instance F does not admit any solution x ̲ with
nθ1 ≤ x ̲ · x̲� ≤ nθ2, and the number of solutions with x̲ · x ̲� ≥ nθ2 is at most e−nc 0EZðFÞ
(expectation is here with respect to the uniform model).

Proof. In view of Lemma B.4 it is sufficient to show that θ� ∈ ð0; 1Þ such that the
following hold:

(a) Ψðθ�Þ < 0.
(b) supθ∈½θ�;1�ΨðθÞ < log 2þ α log Ekφk2.
In order to prove (a), we first notice that for any ε ∈ ð0; 1 ∕ 2Þ,

Eφðφ;TθφÞ
Eφkφk2

≤ 1−
1

ð1þ εÞ ~Ωk

þ 1

ð1þ εÞ ~Ωk

e−kð1þεÞð1−θÞ;ð54Þ

provided θ > 1− ε. Indeed, both sides equal 1 at θ ¼ 1. Further, the derivative of the
left-hand side can be estimated as

d

dθ

Eφðφ;TθφÞ
Eφkφk2

¼ 2k
Eφðφð1Þ;Tθφ

ð1ÞÞ
Eφkφk2

≥ 2k
e−kð1þεÞð1−θÞEφkφð1Þk2

Eφkφk2

¼ ke−kð1þεÞð1−θÞ 2EφI1ðφÞ
1− 2EφI1ðφÞ

≥
d

dθ

	
1−

1

ð1þ εÞ ~Ωk

þ 1

ð1þ εÞ ~Ωk

e−kð1þεÞð1−θÞ


:

Here we used the following inequality, valid for any f∶fþ1;−1gk → f0; 1g, provided
θ > 1− ε:

ðf ;TθfÞ ¼
X
Q

jfQj2θjQj ≥ kfk2θk ≥ kfk2e−kð1þεÞð1−θÞ:ð55Þ

Let α ¼ ð1þ εÞð ~Ωk ∕ kÞγ log k ∕ k and θ� ¼ 1− ω� ∕ k. Equation (54) implies

Ψðθ� ¼ 1− ω� ∕ kÞ ≤ Hðω� ∕ kÞ−
γ

k
ðlog kÞ þ γ

k
ðlog kÞe−ð1þεÞω�ð56Þ

for all ε > ω� ∕ k. If we fix ε ¼ ωmax ∕ k and let k → ∞, we finally obtain (for
ω ∈ ð0;ωmaxÞ)

Ψðθ� ¼ 1− ω� ∕ kÞ ≤ fω� − γ þ γe−ω�g log k

k
þOðk−1Þ:ð57Þ

As soon as γ > 1, we can find ω� such that ω� − γ þ γe−ω� < 1 (just take ω� ¼ log γ).
Further, supθ∈½θ�;1�ΨðθÞ ¼ Oð1 ∕ kÞ, which is smaller than log 2þ α log Ekφk2 for k large
enough and α < Ωkðlog 2Þð1− εÞ. ▯

Proof of Theorem 3.4 Consider a random instance from the CSPðn;α; pÞ ensemble,
and sample a solution x�̲ uniformly at random. By Lemma B.5 and Theorem B.3, with
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high probability there is no solution x ̲ such that x ̲ · x ̲� ∈ ½nθ1; nθ2�. Declare the cluster of
x�̲, Cðx�̲Þ to be the set of solutions x ̲ such that x ̲ · x ̲� ≥ nθ2. It will contain an exponen-
tially small fraction of solutions.

The same operation can be repeated enδ times. Since each cluster thus constructed is
exponentially small, for δ small enough the probability that any of the two clusters in-
tersects is exponentially small. ▯

Appendix C. Sharp threshold results for CSPs. Recall that in the previous
section, we appealed crucially in two places to certain sharp transition behavior of the
CSPs under consideration. We furnish the requisite references and details here.

Since we are interested in the behavior of binary k-CSPs for large k, in what follows
we may safely assume that k ≥ 3. Once again for simplicity, let F ¼ Fkðn;αnÞ denote a
random binary CSPðn;α; pÞ on n variables and αn clauses, and the distribution p over
clauses satisfying the main conditions 1–4 mentioned in section 3. As is customary, for
the SAT-UNSAT threshold to be meaningful, we also assume that p satisfies the follow-
ing elementary condition.

5. Unsatisfiability of the ensemble. For every ϵ ¼ �1, there is at least one clause g
with pg > 0 such that gðϵ; : : : ; ϵÞ ¼ 0. (Note that by the balance condition 2,
necessarily gð−ϵ; : : : ;−ϵÞ ¼ 0.)

Building on their previous work, Creignou and Daude recently showed [CD09] that
the satisfiability of Fkðn;αnÞ undergoes a sharp transition, except when the formula
contains a function of one of the following two types.

(i) A Boolean function f strongly depends on one component if there exist ϵ ∈
fþ1;−1g and i with 1 ≤ i ≤ k such that ðx1; : : : ; xnÞ ∈ fþ1;−1gn and
f ðx1; : : : ; xnÞ ¼ 1 imply that xi ¼ ϵ.

(ii) A Boolean function f strongly depends on a 2-XOR-relation if there exist i, j
with 1 ≤ i ≠ j ≤ k such that ðx1; : : : ; xnÞ ∈ fþ1;−1gn and fðx1; : : : ; xnÞ ¼ 1
imply that xi � xj ¼ 1.

THEOREM C.1 (see [CD09]). With F ¼ Fkðn;αnÞ and p satisfying 5 above, the tran-
sition from SAT(F) to UNSAT(F) is sharp if and only if F contains no function strongly
dependent on one component and no function strongly dependent on a 2-XOR-relation.

Note that we had used this result in completing the proof of the lower bound in
Proposition 3.2 in Appendix A.

We now furnish various details needed to justify that the property of having an
exponential number of solutions has a sharp threshold. Recall that this was needed
to boost Lemma B.2 (see Appendix B) in the proof of the clustering threshold, to show
that the probability once bounded away from 0, is actually tending to 1, as the problem
size n went to infinity.

Let Φ be a formula on the variables y1; : : : ; yl that can be constructed from our
ensemble, let X ¼ fx1; : : : ; xng be a set of n variables (disjoint from fy1; : : : ; ylg),
and letΦn denote the set of all formulas that results after substituting l distinct variables
from X and replacing them in Φ. Given a CSP ensemble F on n variables, let F �Φ be
equal to F ∧ Φ�, where Φ� is a random formula chosen uniformly from Φn.

We say a random ensemble F has the property AB ¼ ABðFÞ if F has fewer than
1
2B

n satisfying assignments. We want to prove the following.
LEMMA C.2. For any B ∈ ½1; 2Þ there is a sequence tBn such that for any ϵ > 0,

lim
n→þ∞

PðFkðn; ð1− ϵÞtBn Þ has propertyABÞ ¼ 0; and

lim
n→þ∞

PðFkðn; ð1þ ϵÞtBn Þ has propertyABÞ ¼ 1:
ð58Þ
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Note that AB is a monotone property, since whenever F has the property, then
F ∧ F  0 will have the property for any formula F  0 on the variables fx1; : : : ; xng. We will
use the following theorem of Friedgut [F99], [F05] to prove that AB has a “sharp thresh-
old,” in the sense of Lemma C.2].

THEOREM C.3 (see [F05]). Suppose that AB does not have a sharp threshold. Then,
there exists α > 0, a formula Φ, and for any n0 > 0, there exist n > n0, m > 0, and a
formula F with variables x1; : : : ; xn such that all of the following hold:
T1. PðF �Φ has the property ABÞ > 1− α.
T2. α < PðFkðn;mÞ has the property ABÞ < 1− 3α.
T3. With probability at least α, a random formula Fkðn;mÞ contains an element of Φn

as a subformula.
T4. PðF ∧ Fkðn; 2 log nÞ has the property ABÞ < 1− 2α.

A first observation is the subtle fact that Theorem C.3 is originally stated in terms of
a parametric Bernoulli model, while our model is binomial. But it is the case, by stan-
dard arguments, that we can translate results concerning the existence of a sharp thresh-
old of monotone properties from one model to other, provided that m is of order ΩðnÞ.
We will prove that this is the case in step (1) below.

An important fact that we will use throughout is that, because of the feasibility
condition, a pure literal reduction scheme exists: Suppose that xl is a variable that
appears only once in a formula F ¼ C1 ∧ · · ·∧ Cm, say, in the clause C 1 ¼ f ðxl;
xi1 ; : : : ; xik−1

Þ. Then, any satisfying assignment χ∶½n� \ flg → f�1g of C 2 ∧ · · ·∧ Cm

can be extended to a satisfying assignment χ̄∶½n� → f�1g of C 1 ∧ C 2 ∧ · · · Cm by set-
ting χ̄ðlÞ to the appropriate value (due to feasibility), such that fðχ̄ðlÞ;χði1Þ; : : : ;
χðik−1ÞÞ ¼ 1.

Notice that using iteratively a pure literal reduction scheme, we can find a satisfying
assignment for the formula if we can iteratively find a variable contained once in the
formula, eliminate the clause containing the variable, and proceed again with the new
formula, until obtaining an empty formula. This procedure is equivalent to that of find-
ing the 2-core of the associated hypergraph [M05], and, in fact, it is the case that if the
associated hypergraph has an empty 2-core, then this pure literal reduction scheme will
be successful in finding a satisfying assignment.

The approach we will use to prove Lemma C.2 follows that of [AC08], with some
variations that follow the work of Creignou and Daude in [CD02], [CD04], and [CD09].
As is standard in these proofs, in what follows we will assume the existence of α, Φ, n,
andm satisfying T1–T3, and to conclude that the propertyAB has a sharp threshold, we
will prove that T4 cannot hold. Notice that we can always assume that n is large enough
by choosing n0 appropriately. We will divide the core of the proof into three steps. In the
first step, we determine the correct scaling of m. In the second step, we prove that the
small formula Φ is indeed satisfiable. And, in the last step, we proceed to conclude that
T4 does not hold, completing the contradiction argument.

(1) Scaling ofm: Lower bound:Notice that form≡ ϵn∕ k, necessarily ð1− ϵÞn vari-
ables do not appear in Fkðn;mÞ, so that if Fkðn;mÞ is satisfiable, it contains at
least 2ð1−ϵÞn satisfying assignments. But, following [M05], there is a constant c�

such that if m < c�n, then the hypergraph associated to Fkðn;mÞ with high
probability does not have a 2-core, and as mentioned before, the pure literal
reduction is successful in finding a satisfying assignment. This proves, by choos-
ing ϵ small enough, that for m≡ ϵn∕ k, with high probability, Fkðn;mÞ has at
least 2ð1−ϵÞn ≥ 1

2B
n satisfying assignments. Therefore, by T2, it should be the

case that m ¼ ΩðnÞ.
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Upper bound: From the first moment estimates in the present paper, we have
that there is a constant Cp (depending only on p), such that with high prob-
ability, a random formula Fkðn;CpnÞ is not satisfiable. Therefore (by T2), due
to the monotonicity of AB , it should be the case that m ¼ OðnÞ.

(2) Satisfiability ofΦ:Given a formula Φ, define vðΦÞ to be the number of variables
in Φ, and wðΦÞ to be the number of clauses in Φ. By an easy counting, for any
t ≥ 1, if m ¼ OðnÞ, then the probability that a random formula Fkðn;mÞ con-
tains a subformula Φ with wðΦÞ ≤ t and such that vðΦÞ ≤ ðk− 1ÞwðΦÞ− 1
goes to zero as n → þ∞. Now, if Φ is unsatisfiable, then it contains a minimal
unsatisfiable formula ψ with wðψÞ ≤ t, and therefore, by the previous conclu-
sion, by T2 and T3, we have that vðψÞ > ðk− 1ÞwðψÞ with high probability.
Then, using [CD02, Lemma 5.2], ψ has either a constraint with k− 1 variables
appearing only once, or it is unicyclic. In either case, for k ≥ 3, there is at least
one variable appearing only once in the formula; therefore, the pure literal re-
duction operates, contradicting the minimality of ψ.

(3) Contradicting T4:
Step 3a: By T3 and the conclusion of step (1), Φ is with high probability sa-

tisfiable. Let fy1; : : : ; ylg be the variables appearing in Φ, and let
σ∶f1; : : : ; lg → f�1g be a fixed satisfying assignment of Φ. We say that
a satisfying assignment χ of F is compatible with a tuple
ðz1; : : : ; zlÞ ∈ ½n�l if χðziÞ ¼ σðiÞ for all i ¼ 1; : : : ; l. Furthermore, we say
that the tuple ðz1; : : : ; zkÞ is bad if F has fewer than 1

2B
n satisfying assign-

ments compatible with ðz1; : : : ; zlÞ. Notice that by T1, there are at least
ð1− αÞnl bad tuples.

Step 3b: By the Erdös–Simonovits theorem [ES82], if l k-tuples ðw1
1; : : : ;

wk
1Þ; : : : ; ðw1

l ; : : : ; w
k
l Þ are chosen uniformly at random and independently

from nk, then with probability at least γ  0, for every function f∶½l� → ½k�,
the tuple ðwfð1Þ

1 ; : : : ; w
f ðlÞ
l Þ is a bad tuple. In particular, we have that with

probability at most ð1− plgγ
 0Þðlog nÞ ∕ l, a random formula Fkðn; log nÞ will not

contain l clauses C 1; : : : ; C l satisfying the following:
(i) Ci ¼ gðv1i ; : : : ; vki Þ for i ¼ 1; : : : ; l, where g is the Boolean function whose

existence is implied by condition 5.
(ii) For every function f∶½l� → ½k�, the l-tuple ðvf ð1Þ1 ; : : : ; v

f ðlÞ
l Þ is bad.

Therefore, by choosing n large enough, the probability that a random
formula Fkðn; log nÞ contains clauses satisfying (i) and (ii) is at
least 1− α.

Step 3c: Let C 1; : : : ; C l be clauses satisfying (i) and (ii), and let χ∶½n� → f�1g
be a satisfying assignment of F ∧ C 1 ∧ : : : ∧ Cl. Then note that for every
i ¼ 1; : : : ; l, there exists an fðiÞ such that χðvf ðiÞi Þ ¼ σðiÞ. Otherwise, for
some i, and all j ¼ 1; : : : ; k, χðvji Þ ¼ −σðiÞ, which implies that χ does
not satisfy Ci, which is a contradiction. It now follows that χ is compatible
with ðvf ð1Þ1 ; : : : ; v

f ðlÞ
l Þ. Therefore, we conclude that every satisfying assign-

ment of F ∧ C1 ∧ · · ·∧ Cl is compatible with ðvf ð1Þ1 ; : : : ; v
f ðlÞ
l Þ for some func-

tion f∶½l� → ½k�. But, by condition (ii), every one of these l-tuples is bad, and
therefore, each one does not have more than 1

2B
n satisfying assignments com-

patible with them. As a result, F ∧ C1 ∧ · · ·∧ Cl does not have more than
1
2 k

lBn satisfying assignments. Moreover, combining step 2b and step 3c, we
conclude that with probability at least 1− α, F ∧ F� contains at most 1

2 k
lBn

satisfying assignments, where F� is a random Fkðn; log nÞ formula.
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Step 3d: Given a satisfying assignment χ∶½n� → f�1g, with probability at least
21−k, the clause gðv1; : : : vkÞ, where ðv1; : : : ; vkÞ is chosen uniformly at ran-
dom from ½n�k, will not be satisfied by χ. In particular, a random clause will
be satisfied by χ with probability at most 1− pg2

1−k. More generally, a ran-
dom Fkðn; log nÞ will be satisfied by χ with probability at most
ð1− pg2

1−kÞlog n ≤ 1
nck

, where ck ¼ pg2
1−k. Therefore, if F�� is a

Fkðn; log nÞ random formula independent of F�, we have that

E

�
#sat: assign: of F ∧ F� ∧ F�� ∣ #sat: assign: of F ∧ F� ≤

1

2
klBn

�

≤
1

2nck
klBn;

and therefore, by Markov’s inequality,

P

�
#sat: assign:of F ∧ F� ∧ F�� ≥

1

2
Bn ∣ #sat: assign: of F ∧ F�

≤
1

2
klBn

�
≤

kl

nck
;

which is less than α ∕ 2 for n large enough. Thus, combining the conclusion of
step 2c and the previous formula, we obtain

P

�
#sat: assign: of F ∧ F� ∧ F�� ≥

1

2
Bn

�
≥ 3α ∕ 2;

and this contradicts T4, thereby proving that property AB has a sharp
threshold. ▯
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