Downloaded 11/03/16 to 138.38.106.61. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. DISCRETE MATH. (© 2011 Society for Industrial and Applied Mathematics
Vol. 25, No. 2, pp. 771-808

RECONSTRUCTION AND CLUSTERING IN RANDOM CONSTRAINT
SATISFACTION PROBLEMS®

ANDREA MONTANARI', RICARDO RESTREPO, axo PRASAD TETALT

Abstract. Random instances of constraint satisfaction problems (CSPs) appear to be hard for all known
algorithms when the number of constraints per variable lies in a certain interval. Contributing to the general
understanding of the structure of the solution space of a CSP in the satisfiable regime, we formulate a set of
technical conditions on a large family of random CSPs and prove bounds on three most interesting thresholds
for the density of such an ensemble: namely, the satisfiability threshold, the threshold for clustering of the
solution space, and the threshold for an appropriate reconstruction problem on the CSPs. The bounds become
asymptoticlally tight as the number of degrees of freedom in each clause diverges. The families are general
enough to include commonly studied problems such as random instances of Not-All-Equal SAT, k&-XOR for-
mulae, hypergraph 2-coloring, and graph k-coloring. An important new ingredient is a condition involving the
Fourier expansion of clauses, which characterizes the class of problems with a similar threshold structure.
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1. Introduction. Given a set of n variables taking values in a finite alphabet, and
a collection of m constraints, each restricting a subset of variables, a constraint satisfac-
tion problem (CSP) requires finding an assignment to the variables that satisfies the
constraints. A celebrated example is k-satisfiability (k-SAT), whereby variables are bin-
ary and each constraint forbids a subset of k£ variables to take a specific k-uple of values.
Other examples include Not-All-Equal-SAT, hypergraph bicoloring, and graph (vertex)
coloring with k colors.

An instance of a CSP can be conveniently described through a factor graph. Thisis a
bipartite graph with m “factor nodes,” corresponding to constraints, and n “variable
nodes,” corresponding to variables. An edge connects variable node i€ [n]=
{1, ..., n} to factor node a € [m] ={1, ..., m} if and only if the ith variable partici-
pates in the ath constraint (see Figure 1). The locality structure conveyed by the factor
graph plays a key role in our work as well as in statistical mechanics approaches to
CSPs [MMO6].

In this paper we will study random CSP instances, where the number of constraints
scales linearly with the number of variables. A precise definition of the distribution of the
instances is provided in section 2. An important qualitative feature of these random
instances is that the resulting factor graph is a sparse random graph. In particular, such
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Fic. 1. Factor graph of a SAT formula: circles represent variable nodes and squares factor nodes.

graphs are locally tree-like: any neighborhood of bounded depth of a uniformly random
vertex converges in distribution to a well-defined random tree.

For several distributions over CSP instances, the probability that a random in-
stance is satisfiable goes sharply from 1 to 0 when the number of constraints per variable
(the constraint density) crosses a critical threshold [F99], [F05]. This is known as the
“satisfiability threshold” or the “satisfiability phase transition.” A significant effort has
been devoted to the characterization of this phenomenon, and good bounds on the
threshold have been proved in some regimes. The most successful approach exploits
the sharp concentration of a properly weighted number of solutions. It turns out that
this quantity can be controlled using the second moment method when the number of
constraints is sufficiently small (see, e.g., [ANPO05]), thus proving that the random in-
stances are satisfiable with high probability. For a significantly larger number of con-
straints, computing the expected number of solutions is sufficient to prove
unsatisfiability. While the resulting upper and lower bounds do not coincide, in several
cases their ratio converges to 1 as the number of variables per constraint' gets large.

This proof technique is nonalgorithmic in the sense that it does not provide any
efficient algorithm to construct solutions of random CSP instances. A significant effort
has been devoted to the mathematical analysis of polynomial-time algorithms for solving
random CSPs. All algorithms studied so far are able to find a solution with probability
bounded away from zero, provided the constraint density is smaller than an (algorithm-
dependent) threshold. Unfortunately, this threshold appears to be much smaller than
the satisfiability threshold. In summary, for a large interval of the constraint density, we
know that random CSPs have exponentially many soloutions, but we do not have any
efficient algorithm that finds them.

The attempt to understand this universal failure led to studying the geometry of the
set of solutions of random CSPs [MPZ02], [ACO8] (see also [Sem08]) as well as the emer-
gence of strong correlations among variables in random satisfying assignments
[KM+07]. These research directions are motivated by two heuristic explanations of
the failure of polynomial algorithms: (1) The space of solutions becomes increasingly
complicated as the number of constraints increases and is not captured correctly by
simple algorithms; (2) when drawing a uniformly random solution, the induced joint
distribution on disjoint subsets of variables becomes increasingly dependent. Local
algorithms cannot unveil such dependencies.

'As an example, in the case of k-satisfiability, the difference between upper and lower bounds is O(k).
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With respect to the geometry of the space of solutions, nonrigorous statistical me-
chanics analyses conjectured that this be disconnected (in a sense that will be made
more precise in the next sections) above a certain threshold in the constraint density.
This phenomenon is referred to as the “clustering phase transition” [MPZ02].
Several aspects of it were subsequently proven [ACO8].

The emergence of strong correlations is instead defined in connection with the dis-
tance structure defined (in the usual way) by the factor graph. Given a satisfiable CSP
instance, consider a uniformly random solution of this instance. One can then ask
whether the value taken by the ith variable in this solution is correlated or not with
the values taken by “far apart” variables (whereby distance is defined with respect
to the factor graph). It was conjectured in [KM+07] that, for random CSP instances,
correlations vanish asymptotically if and only if the constraint density is below a certain
threshold. A precise prediction was provided for this threshold based on statistical me-
chanics methods. Further, this phase transition was conjectured to coincide with the one
in the geometry of the solutions space mentioned above.

The strength of correlations mentioned here can be quantified in many equivalent
ways, an interesting one being provided by the following thought experiment (also
known as “reconstruction problem”). Imagine that a solution of the CSP instance is
sampled uniformly at random and that the values of all variables are revealed, except
for those that are within distance ¢ (in the factor graph) from the ith one. Does this
information allow us to guess the value of the ith variable with success probability sig-
nificantly larger than in the absence of the same information? This reconstruction pro-
blem was studied in some detail in the context of Gibbs measures on trees [MPO03] but
not for the random CSPs of interest here (the only exception being proper colorings
of trees).

A first step towards understanding the relation between clustering and reconstruc-
tion was taken in [GMOT7]. This paper provided an approach to the computation of re-
construction thresholds on sparse random graphs. In the following we will demonstrate
that this approach can be successfully applied to random CSPs, thus providing a rig-
orous foundation for the statistical mechanics picture.

(1) We consider CSPs whose factor graph is a (random) tree. In the case of binary
variables and k-ary constraints, we prove bounds on the reconstruction thresh-
old that are optimal to first order, as k goes to infinity.

(2) For these models, we verify the sufficient condition of [GMO07], which enables us
to transfer the reconstruction result from trees to the same on sparse random
graphs.

(3) We establish, for the same class of problems, a concentration result for the num-
ber of solutions. This allows us to determine the clustering threshold to the
same order for large k. We verify that the clustering and reconstruction thresh-
old coincide to this accuracy.

We further prove analogous results for graph coloring with k colors (in this case
point (1) was carried out in [Sly09] and point (3) in [ACO08]). Our analysis holds for
a broad class of CSPs with binary variables, which is characterized through a series
of easy-to-check assumptions on the Fourier transform of the constraints. As illustrative
examples, we will present specific bounds (on various thresholds) that follow for
some standard models, such as the NAE £-SAT, £-XOR formulae, and hypergraph bi-
coloring.

These results provide rigorous support for the conjectured identity between cluster-
ing and reconstruction phase transitions [KM+07|. It further validates the general

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/03/16 to 138.38.106.61. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

774 A. MONTANARI, R. RESTREPO, AND P. TETALI

methodology of statistical mechanics approaches that—roughly speaking—reduce ques-
tions on the geometry of the space of solutions to tree calculations.

Finally, as a by-product, we extend the applicability of the second moment method
[ANPO5] to a rich class of binary CSPs, thereby showing its genericity. Via “planting”
[ACO8|, this considerably facilitates the study of clustering.

1.1. Related work. As mentioned above, the role played by the geometry of
the set of solutions was put forward by statistical physicists [BMWO00], [MPZ02],
[MZ02]. In particular, these papers unveiled the clustering phase transition preceding
the satisfiability phase transitions at smaller constraint density. This result motivated
the development of surprisingly efficient message passing algorithms to solve random
CSPs. For instance, survey propagation has been shown empirically to find solutions
of random 3-SAT extremely close to the SAT-UNSAT transition. Rigorous studies
confirmed—in a certain interval of constraint density—the emergence of an exponential
number of sets (or clusters) of solutions, where solutions within a cluster are closer (in
the sense of Hamming distance, say) compared to the intracluster distance [MMZ05],
[AR11], [ACO08]. Although these results hold only for k&-SAT with k& > 8, the resulting
bounds on the clustering threshold converge to the statistical physics prediction as
k — oo.

The fact that solutions within a cluster impose long-range correlations among as-
signments of variables motivated the study of the so-called reconstruction problem in
the context of random CSPs. As mentioned, nonrigorous statistical mechanics calcula-
tions imply that the clustering and reconstruction thresholds coincide [MMO6],
[KM+07].

Finally, understanding the threshold for (non)reconstruction is also becoming re-
levant, if not crucial, to understanding the limit of the Glauber dynamics to sample from
the set of solutions of a CSP. Indeed, nonreconstructibility was proved in [BK+05] to be
a necessary condition for fast mixing and is expected to be sufficient for a large class of
“sufficiently random” problems. Reconstruction problems were intensively studied on
trees (see, e.g., [MPO03]). A recent paper [GMO07] provides sufficient conditions under
which the reconstruction problem on locally tree-like graphs is solvable if and only if
it is solvable on the associated random trees.

1.2. Plan of the paper. The organization of the paper is as follows. In section 2,
we give the formal definitions and assumptions of our models. We state our main results
in section 3. In section 4, we state and prove the optimal bounds for the tree reconstruc-
tion problem. In section 5, we verify the sufficient condition (from [GMO07]) for the spe-
cific problem of proper graph ¢-coloring, thus proving one of our main results—optimal
bounds on the (sparse) random graph reconstruction problem for colorings. In
Appendix A, we derive a certain technical second moment bound that is needed to prove
our theorem on the satisfiability threshold. In Appendix B, we prove various technical
results needed to complete the proof of the clustering threshold. In Appendix C, certain
sharp threshold results are derived making use of recent results of [ACO08], [CD09] so that
we can extend the high-probability statements derived in the previous appendices to
hold with probability tending to one. Further details on what is proved in these appen-
dices appear in section 3.3, after the precise statement of our main results.

2. Definitions. In this section we define a family of random CSP ensembles:
problems with constraints involving k-tuples of binary variables. We further define
g-ary ensembles as a natural extension of the latter. We finally introduce some analytic
definitions that will be necessary in order to present our results.
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Binary k-CSP ensemble. Given an integer n, o € R,, and a distribution
p = {p(¢)} over Boolean functions ¢ : {+1, —1}¥ — {0,1}, CSP(n, @, p) is the ensemble
of random CSPs over n Boolean variables z = (zy, ..., x,) defined as follows. For each
a€{l,...,m=na}, draw k indices i,(1), ..., i,(k) independently and uniformly at
random in [n] and a function ¢, with distribution p(¢). An assignment z satisfies
the resulting instance if ¢,(z; 1), ..., %;, ) =1 for each a € [m]. A CSP instance
can be naturally described by a bipartite graph G (often referred to in the literature
as a “factor graph”), including a node for each clause a € [m] and for each variable
i € [n], and an edge (7, a) whenever variable z; appears in the ath clause.

g-ary ensembles. A g-ary ensemble is the natural generalization of a binary ensemble
to the case in which variables take ¢ values. For the sake of simplicity, we restrict our
discussion here to the case of pairwise constraints (i.e., & = 2 in the language of the pre-
vious paragraph).

Given an integer n, o € R, and a distribution p = {p(¢)} over Boolean functions
¢ :[q] x [¢] = {0.1}, CSP (., a, p) is the collection of random CSPs over g-ary variables
z;fori=1,2, ..., ndefined as follows. For each a € {1, ..., m = na}, draw 2 indices i,,
Ja independently and uniformly at random in [n], and a function ¢, with distribution
p(¢). An assignment = = (1, ..., z,) satisfies the resulting instance if ¢ ,(z; ,z; ) = 1
for each a € [m)].

In this paper, by way of illustrating how the results for binary ensembles could be
(purportedly) extended to g-ary ensembles, we will study the g-coloring model which
consists of ensembles with the single clause ¢ (z,y) = I (z # y). This model corresponds
to proper colorings with ¢ colors of a random sparse graph with an edge-to-vertex den-
sity of o > 0.

3. Main results. As mentioned in the introduction, our goal is estimating the
thresholds for satisfiability, clustering, and reconstruction in random CSPs. In general,
one should speak of threshold functions depending on the problem size n. With a slight
abuse of notation, we shall leave implicit the dependence on n of threshold functions
unless necessary.

3.1. Binary k-CSP ensembles.

3.1.1. Assumptions. We will always assume the following basic conditions on the
CSP ensemble.

1. Permutation symmetry. If ¢™ is the Boolean function obtained from ¢ by per-
muting its arguments, we require p(¢™) = p(¢). (Notice that this assumption
does not imply any loss of generality in this context. Indeed, in the definition
of the ensemble CSP(n,a,p) the indexes of the arguments of clause

@o(Ti,1)s - » 7, (1)) are independent and uniformly random.)
2. Balance. The distribution p is supported on Boolean functions such that
o(z1, ... 2) = ¢(—xq, ..., —x;). This condition implies that the odd Fourier

coefficients of ¢ are zero. Indeed, this condition can be regarded as the most
restrictive in a structural sense. By introducing it, we rule out well-studied
models such as k-SAT.

3. Feasibility. For each Boolean function ¢ in the support of p, every partial as-
signment (zy, ...,2;_;) can be extended to a satisfying assignment
(79, 1, ..., 1) of . This condition implies that ||¢||?> > 1 /2. (See section 3.4

for the definition of norm.)
We will also make further assumptions that are more conveniently formulated in
terms of the Fourier spectrum of the constraints ¢. In order to simplify the exposition,
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we postpone these conditions to section 3.5. These assumptions will be denoted as per
the following definition.

DeriNiTION 3.1. We say that the probability distribution p = {p(¢)} over Boolean
functions ¢ : {+1, —1}* — {0, 1} has the property of dominance of balanced assignments
if it satisfies condition 4 in section 3.5.

We say that p = {p(@)} is consistent if it has properties 1-3 and dominance of
balanced assignments and further satisfies conditions (a) and (b) in section 3.5.

We finally say that p = {p(¢)} is clustering-consistent if it further satisfies condi-
tions (a') and (b’) in section 3.5.

Intuitively, the condition of dominance of balanced assignments ensures that most
of the assignments satisfying a typical instance from the ensemble are “balanced.” By the
latter we mean that they have roughly half of the variables taking value +1 and half
taking —1.

The condition of being clustering-consistent is instead related to the fact that each
constraint does not depend mostly on a small subset of its k arguments. Finally, the
condition of being clustering-consistent amounts to a strengthening of the above.

3.1.2. Results. An ensemble of binary k-CSPs will be characterized by the follow-
ing quantities:

L de 21 1 de 1 gt 2E,I
L def wﬂ’ A_d:f_]E(p log(1 — 21, (¢)), TCQLM'
Q, 1—2L,(p) Q, Q, 1-2E,L(p)

Here I(¢) is the influence of constraint ¢. “Influence” is a basic notion in discrete
Fourier analysis that describes how much the value of ¢ is sensitive to any single argu-
ment. For a formal definition we refer the reader to section 3.4.

Notice that Q, < Q, and that Q, < Q,. Indeed, the first inequality follows by
using the inequality log(z) < z—1 with z=1/(1 —2I,), and the second follows by
Jensen’s, noting the convexity of z ~ (2z) /(1 — 2z). Moreover, Q; ~ (e!/* — 1)71 <
Q,; indeed, denoting 1,/Q; as E(X) and using Jensen’s, we have

X A
L_BU-ed) 1 om0y,

Q_k T Ee X Ee X

ProprosiTioN 3.2. A random binary constraint satisfaction instance from the consis-
tent ensemble CSP(n, «, p) is satisfiable, with high probability, if o < a (k)(1 — 0,(1)),
where

Q log 2{1 + 0,(1)} < ey, ).
Vice versa, if a > a4(k)(1 4+ 0,(1)), where
(k. m) < O log 2{1 + 0,(1)},

zahen, with high probability, a CSP(n,a,p) instance is unsatisfiable. Further |Q;1—
Q| < 8B, {T1(9)*}

As clarified by the last part of the statement, the upper and lower bound approach
each other when the influence of a single variable in a clause becomes smaller.

Given a measure (1) over variable assignments in {+1, —1}", the reconstruction
problem is said to be unsolvable if correlations with respect to u decay rapidly with the
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distance r on G. More precisely, if u;., denotes the joint distribution of z; and
{xj : dG(i7 j) 2 ’I”}, then hm'r'*)oo lim Supn—)ooE||Mi,~r - :u'z'IuNTHTV =0.

TureoreM 3.3. Let u(z) be the uniform measure over solutions of an instance from
the consistent ensemble CSP(n,«, p). The reconstruction problem is solvable for w if
a > a,.(k), and it is unsolvable for p if a < o (k), where

. (F) = 2 log k4 olog K}, e, (k) = = {log k — oflog ).

Given an instance of CSP(n, &, p), a d,,-cluster of solutions is any equivalence class
of solutions under the (closure of the) relation z ~ 2" if dimming(2.7) < dyax. We say
that the set of solutions is clustered if it is partitioned into exponentially many clusters
for some function dp . = dyax(n) with dy.(n) T oo as n — co.

THEOREM 3.4. Consider a clustering-consistent ensemble CSP(n,«, p). The set of
solutions of a random instance from this ensemble is clustered, with high probability,
if @ > aq(k), where

(k) = %{bg k + olog )}

Further |Q;' — QY| < 8E {I,(¢)?}.

Thus, a key result of the present paper is that, for a large number of ensembles,
aq(k) and o, (k) (as well as @,(k)) differ at most by a quantity whose relative size is
negligible for large k.

3.2. g-ary ensembles: Graph coloring. The following results concerning the col-
orability and clustering of proper colorings were proved by Achlioptas and Naor [AN05]
and Achlioptas and Coja-Oghlan [ACO08], respectively.

TureoreM 3.5 (graph g¢-colorability [ANO05]). A random graph with n vertices and
na edges is satisfiable, with high probability, if « < ag(q), where

a,(q) = qllog g+ o, (1)].

Vice versa, if a > ay(q)(14 0,(1)), such a graph is with high probability uncolorable.

THEOREM 3.6 (clustering of g-colorings [ACO08|). The set of proper g-colorings of a
random graph with n vertices and no edges is clustered with high probability, if
a > aq(q), where

q
aa(q) = ;[log ¢ + o(log q)].

One of our main results is to prove a corresponding reconstruction theorem for this
model as follows.

TureoreM 3.7 (graph ¢-coloring reconstruction). Let u(z) be the uniform measure
over of proper q-colorings of random graph with n vertices and na edges. For q large
enough, the reconstruction problem is solvable for u if @ > .(q), where

NN

a,(q) = = [log g+ loglog ¢+ O(1)].

Vice versa, the reconstruction problem is unsolvable, with high probability, if & < a,(q).

3.3. General strategy. The results described in the previous section are of three
types: bounds on the satisfiability thresholds (cf. Proposition 3.2 and Theorem 3.5);
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bounds on the clustering threshold (cf. Theorems 3.4 and 3.6); and bounds on the re-
construction threshold (cf. Theorems 3.3 and 3.7). The proof strategy is as follows.

The satisfiability threshold can be upper-bounded using the first moment of the
number of solutions and lower-bounded using the second moment method. This tech-
nique is discussed in detail in [AMO02], [ANO5], [ANPO5]; we describe its application to
the general CSP(n,«, p) ensemble in Appendix A.

The clustering threshold can be upper-bounded through an analysis of the recursive
“whitening” process that associates to each cluster a single configuration in an extended
space [AR11]. This naive estimate of the clustering threshold is, however, far from tight.
Significantly better upper bounds on this threshold were obtained in [AC08| by approx-
imating the CSP ensemble with an appropriate “planted ensemble.” Theorems 3.4 and
3.6 use this approach.

The proof of Theorem 3.4 is presented in Appendix B. While the general approach is
the same developed in [ACO08|, several technical steps are new and potentially useful in
other contexts: (i) We show that the Fourier spectrum of clauses and the Bonami—
Beckner operator are natural tools for the relevant calculations; (ii) we use a recent re-
sult by Creignou and Daude [CD09] to prove that the property of having more than e
solutions has a sharp threshold for any constant a (such a sharp threshold result was
established earlier for specific cases [AR11]).

The reconstruction threshold is characterized via a three-step procedure.

(1) Bound the reconstruction threshold for an appropriate ensemble of (infinite)
tree instances, i.e., CSP instances for which the associated factor graph is
an infinite Galton—-Watson tree. In the case of proper g-colorings, a sharp char-
acterization was obtained independently by two groups in the past year
[BVV11], [Sly09]. In section 4 we prove sharp bounds on tree reconstruction
for binary CSPs. The proof amounts to deriving an exact distributional recur-
sion for the so-called belief process and carefully bounding its asymptotic
behavior.

(2) Call a solution balanced if each possible variable value is taken on the same

number of vertices. Given two balanced solutions z(), 2, define their joint
(1)

type v(z,y) as the matrix such that the fraction of vertices ¢ with z;/ =z
and 1‘52) = yis equal to v(z, y). Consider the number Z (v) of balanced solution
pairs { z;, x,}, with joint type v. One has to show that EZ} (v) is exponentially
dominated by its value at the uniform type v(z, y) = 1/¢* (with ¢ = 2 for bin-
ary CSPs). More precisely, EZ},(v) = exp {n®(v)} with ® achieving its unique
maximum at v.
This is also a crucial step in the second moment method. It was accomplished in
[ANO5] for proper g-colorings of random graphs. In the case of binary CSPs, we
prove this estimate in Appendix A

(3) Prove that step (2) above implies, for the model in consideration, that the set of
solutions of a random instance is, with high probability, roughly spherical. By
this we mean that the joint type v, of two uniformly random solutions z(!), 2(?)
satisfies ||vy — V||py < 8 with high probability for all § > 0. Notice that this
implication requires bounding the expected ratio of Zy(v) to the total number
of solution pairs. We prove that the implication nevertheless holds in section 5
for g-colorings. The argument for binary CSPs is completely analogous, and we
omit it.
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Finally, it was proved in [GMO7] that, under such a sphericity condition, graph re-
construction and tree reconstruction are equivalent, which finishes the proof of
Theorems 3.3 and 3.7.

Notice that the techniques used for the clustering and reconstruction thresholds are
very different. Thus it is a surprising (and arguably deep) phenomenon that they do
coincide as far as the present techniques can tell.

3.4. Fourier analysis of constraints. In this section, we briefly review some well-
known definitions in discrete Fourier analysis. For general background on this material,
the reader may consult any classical textbook on (discrete) Fourier analysis or the lec-
ture notes by Diaconis [Dia88]; for a more breezy introduction and a summary of some
key tools one may also find the recent survey [Odo08] useful.

Functional analysis of clauses. We denote by vy the measure defined over {—1, +1}*
such that

W vola) = ﬁ (1 —i—;ﬂ)

for every z € {—1,+1}*. This is just the measure induced by choosing & independent
copies of a random variable that takes values +1 and has expectation 8. Notice that
when 6 = 0, vy corresponds to the uniform measure over {—1, +1}*.

The inner product induced by this measure, on the space of real functions defined on
{—1,+1}* is denoted by (-,)y, and the corresponding norm is denoted by || - ||o. If
0 =0, we drop the subindex and just use (-,-) and || - ||, respectively. Thus, if f,
g:{—1,+1}* - R, then

(F9o= Y f@e@uv(@). Iflz= Y F@ul)

ze{-1,+1}F ze{—1,+1}*
1 1

F9=p X f@e@.  IP=y X P
ze{—1,+1}* ze{—1,+1}*

We denote the Hilbert space of functions {—1, +1}* — R under the inner product (-, -)
by J;.

Fourier transform of clauses. For any Q C [k] ={1, ..., k}, let yo(2) dZEineQxi.
Under the scalar product defined above (with & =0), the functions {yg}gcy form
an orthonormal basis for J,. Moreover, they are exactly the algebraic characters of
{—1,1}* with the group operation of pointwise multiplication. Thus, we define the
Fourier transform of a function f € J, by letting, for any @ C [£],

FoE o =2 3 f@yela).

ze{—1,+1}F

Noise operator. Given 8 € [—1, 1], we recall the Bonami—Beckner operator Ty:J, —
J;. [Bon70], [Bec75], by

(Tef) (@)= > flay)vely).

ye{-11}*

where zy = (191, ..., zy;). Notice that (Tyf)(z) corresponds to the expected value
of f(xy), where x4 is obtained from z by flipping each coordinate independently with
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probability (1 — 6) /2. Notice that T is just the identity operator and T sends f to the
constant function (f, y4).

The Bonami—Beckner operator diagonalizes with respect to the Fourier basis in the
sense that (Tyy)(z) = 019y (z) for any Q C [#].

More generally, given h € [—1,1]%, we define (T, f)(z) défE[f(xh)], where x;, is ob-
tained from z by flipping the ith coordinate independently and with probability % Since
T, also diagonalizes with respect to the Fourier basis, one gets (T, ys)(z) = ys(h)ys(x).

Discrete derivative and influence. Given a function f € J;, we define its discrete
derivative f1) € J,_; as fU(z) =1 [f(1,2) — f(—1,2)]. We define analogously f) for
any other variable index. Finally, the influence of the ith variable on f is the norm
of the derivative

L(f) % |02,

For any @ C [], f(é) = Faugy-

3.5. Assumptions on the Fourier spectrum. We now formally state the con-
ditions for consistent and clustering-consistent ensembles. We start with the notion of
dominance of balanced assignments.

4. Dominance of balanced assignments. For every 6 € [—1, 1],

E, log|lelly <E, log| ¢l

with equality if and only if & = 0. This condition implies that, in a typical ran-
dom instance, most solutions are balanced in the sense that they have almost as
many +1’s as —1’s.

While our ultimate goal is to exhibit results as k¥ — oo, the probability distribution p
over the functions ¢ : {—1,1}* — {0, 1} must be defined for every k, and some agreement
should exist between such probability distributions for different £’s. In our work this
agreement is given by two conditions concerning the derivative of the clauses in the
support of p.

(a) ¢1 norm of the Fourier transform grows at most polynomially in k. That is, for

every ¢ € supp(p),
(2) Sl < &
Q

for some constant a not depending on k, and recall that go(é) = (vo o).
(b) “Small-weight’” Fourier coefficients are small. There is a constant C' > 0 (not

depending on k) such that for every ¢ € supp(p),
(3) [Toep@|* < e D)o @|2, @€ [0,1].

Notice that the feasibility condition implies that all the variables of ¢ have the same
influence, namely,

1—lo|?
@ L(p) = 70
In order to prove this, consider, say, i = 1, and let N (¢), a, b € {0, 1}, be the number
of partial assignments iy, ...,z such that ¢(+1,2,...,2,_1) =a and
o(—=1,zy, ...,z;,_1) = b. Then, by definition we have
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5) 912 = 55 [Nox () + Nig() + 2N, (9)],
() 11(9) = g7 Nar () + Nio(o)]

whence our claim (4) follows using Ny, (@) + Nig(¢) + 2N, (¢) = 281
Condition (a) above on the #; norm of the Fourier transform implies, in particular,
that for any fixed I, there exists A; > 0 (independent of k) such that

(7) Z lpgl* < A OF/2 Z lpol*.

1<|Ql<i Q=1
An equivalent formulation of (3), with a possibly different constant C, is
(8) (Top', 91) < e HI0pO2, 6 €0,1].

In order to establish clustering, we require two more conditions:
(a’) First, we have a slightly stronger form of dominance of balanced assignments:

E {llelz} < B {llel}-

(b’) Next we have the following condition on the Fourier transform of clauses:

Z E,{¢0¢0, rgl@lgl@-al < ZE {¢Q}9\Q\
Q1 CQs

holding for all 8 € [-1,+1], 8 € [0,1 — |#|]. In particular, the latter condition
holds whenever p(¢®)) = p(¢) for all s= (s, ...,s,) € {+1,—1}*, where
oWz, ..., 1) = (8121, ..., s,7;), that is, when the ensemble is closed under
polarization [CD0O4].

3.6. Examples. In this section, we apply our results to a few concrete examples.

Ezxample 1: 2-coloring hypergraphs. Let us consider the ensemble of CSPs consist-
ing of clauses of the type ¢, where ¢(zy, ..., z) = 1> x; ¢ {—Fk, k}). The CSP(n,a, p)
in this case corresponds to the distribution of 2-colorings of a random hypergraph on n
vertices and an edges, with edge size k, and each edge chosen independently and uni-
formly at random.

The conditions 1-3 (permutation symmetry, balance, and feasibility) clearly hold
for this model. The dominance of balanced assignments, in its weak and strong form,
follows after checking that [|¢||3 =1 — (2" — (559" is maximized at § = 0. To estab-
lish condition (a) (cf. (2)), notice that

1
0 = —gll — (-1,

which clearly implies that the £; norm of the Fourier transform is bounded. In order to
check condition (b) (cf. (3)), notice that
—_ O\ k-
_ <1T9> Lo k102

(Top", ') (1 + 9) k1
for all @ € [0, 1]. On the other hand, we have that

le 12 2
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Z E(p{@Qlez}g‘Qllé‘Qz‘ilQll
Q1CQ,

—(1-gi) ~ g+ o+ -0y

+ (;)2[(1 + B+ +1 -8+ + 1+ (8-0)+(1—(8-0)",

and the previous expression reaches its maximum for é = 0. Thus,

L 1 I\2[(1+ )%+ (1 — 9)*

Q1CQ,

and the right-hand side of the previous formula is equal to ZQEw{gaQQ}Q'Q', proving
condition (b’). s .

Now, an easy computation shows that @, =, =21—-1 and Q;l =
—log(1 — 27%1): therefore we have the following:

Reconstruction—clustering | Lower bound satisfiability | Upper bound satisfiability

2-coloring | (2! /k)[log k + o(log k)] 261 1og 2[1 + o(1)] 261 1og 2[1 + o(1)]

Ezxample 2: Not-All-Equal-k-SAT. Let us consider now an ensemble of CSPs con-
sisting of clauses of type {¢} e 1 13+, where ¢ (21, ..., 2;) =13 238, ¢ {—k, k}) and
p(¢,) = 27" for each s € {+1, —1}*. In this case, the CSP(n o, p) model corresponds to
the distribution of Not-All-Equal-k-~SAT instances for a random formula in n variables,
consisting of an random clauses, each with & literals.

For this model, the conditions 1-3 are easily verified. The dominance of balanced
assignments in its strong form follows from the fact that

k k
Bl = (1- [ 5 - 11 5) -

i=1 i=1

which, for instance, implies also the dominance of balanced assignments in this weak
form:

2E, log||¢lly < log E,|l¢||5 = log E[l¢|* = 2E, log||¢]|.

On the other hand, the Fourier expansmn of ¢, is given by ¢,o=

Hlrols ) +vo(=9)] (for @ #0) and 0\ = —2"yo(s)[1 = (=1)9]. n particular,

|(pS Q‘ = 27#[1 — (=1)!9] so that both (2) and (3) hold along the same lines as the pre-

vious example, while the condition (b’) follows from the closure under polarization of

this model. Indeed, in this case we get the same values for Q, Qk, and Qk, so that we
have the following;:

Reconstruction—clustering | Lower bound satisfiability | Upper bound satisfiability

NAE-SAT | (2¥!/k)[log k+ o(log k)] 261 1og 2[1 + o(1)] 261 1og 2[1 + o(1)]

Ezample 3: k-XOR formulas. For an even integer k, the k&-XOR ensemble (£ even)
consists of clauses of type {¢}cc(s1,-1}, Where g = 3 (Yo + €yppy)- This set of clauses is
endowed with the uniform probability distribution p(¢,;) = p(¢_;) =1/2. In this
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case, the CSP(n, «, p) model corresponds to a system of ¢n random linear equations in
Z,, in which every equation involves k randomly chosen variables (with replacement)
from a total of n possible variables.

Conditions 1-3 hold for k& even, and the dominance of the balanced assignments
condition in its weak and strong form follows from the fact that E,|¢[3 = E,[l¢|*.
The condition on Fourier expansion of clauses for this model is straightforward: The
Fourier expansion of ¢, is concentrated at @ and [k], so that (2) holds with ¢ =0
and (2) holds with C' = 1. Also, condition (b’) follows from the following calculation:

1 1 .,
Z E(p{(le¢Q2}0|Q1\5\Q2|—\Q1\ — Z+19k _ ZEW{(pz}mQ‘.
QS 0

In this case, we have that Q; = 1, while flk =1/log 2. Therefore, we have the
following:

Reconstruction—clustering | Lower bound satisfiability [ Upper bound satisfiability

XOR-SAT 1[log & + o(log k)] log 2 +o(1) 1+40(1)

We remark here that, in the case of XOR-SAT, the clustering and satisfiability
thresholds can be determined ezactly by exploiting the underlying group structure
[MRZ03], [CD+03] (see [MMO09| for a discussion of the reconstruction problem in
XOR-SAT).

4. Tree ensembles and tree reconstruction for binary k-CSP ensem-
bles. In this section we define tree ensembles and prove estimates about the corre-
sponding tree reconstruction thresholds.

4.1. The tCSP(a,p) ensemble. The ensemble tCSP(a, p) is defined by o € R,
and a distribution p over Boolean functions ¢ : {—1, +1}* — {0, 1}. We assume the con-
ditions on the distribution p introduced in section 3.1. An (infinite) instance from this
ensemble is generated starting by a root variable node ¢, drawing an integer

n z Poisson(ka) and connecting ¢ to n function nodes {1, ..., n}. Each function node
has degree k, and each of its £ — 1 descendants is the root of an independent infinite tree.
Finally, each function node a is associated independently with a random clause ¢ drawn
according to p.

A uniform solution for such an instance is sampled by drawing the root value x,, €
{—1,41} uniformly at random. The values of descendants of each variable node i are
then drawn recursively. If the function node a connects i to 4y, ..., %;_1, then the values
X ,X; . are sampled uniformly from those that satisfy the clause associated with a,
..., ) is equal to 1.

By the balance condition, this procedure can be shown to be equivalent to sampling
a solution according to the “free boundary Gibbs measure.” The latter is a distribution
over solutions of the entire (infinite) tCSP formula defined by considering the
uniform distribution over solutions of the first £ generations of the tree, and then letting
£ — 0.

We notice in passing that the above simplification does in fact hold under a weaker
balance condition as well. Namely, it is sufficient that (for each ¢ € {1, ... %k}) the num-
ber of truth assignments (zi, ...,x;) that make ¢(z;,...,2;) =1 and such that

TR i1

that is, such that the quantity ¢(z;, x;

PEEE
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x; = +1 is equal to the number of assignments that make ¢(zy, ...,z;) =1 and such
that X, = —1.

4.2. Reconstruction. Given any fixed tree ensemble T, let x be a random satisfy-
ing assignment for T according to the distribution described previously. We denote by
X, the value of x at the variables at generation ¢, and in the case that the root degree is 1,
we denote by X1, ...,Xq;_1 the values at the variable nodes connected to the unique
child of the root. Also, we use 1, for the root degree of T If the tree ensemble T has root
degree ng = d, we denote by T;, ¢ =1, ..., d, the subtree generated by the root, its ith
child, and the child’s descendants. If ny = 1, we denote by 7%, i =1, ...,k — 1, the sub-
tree generated by the ith child of the root’s child and its descendants.

Finally, because the tree ensemble T could be random (for instance, we denote by T
a random tCSP(«, p)), we will use E for expectation with respect to T and (-} for ex-
pectation with respect to x (given T = T') and E for expectation with respect to any
other independent random variable (adding, if not in context, a subindex to indicate
such random variable).

Reconstruction: For a fixed tree ensemble T, let w4, be the joint distribution of
(X0, Xz), and let pgy, p be the marginal distribution of x, and x,, respectively.
The reconstruction rate for 7' is defined as the quantity ||pg (<) — g ()pe(-) || py-
We say that the reconstruction problem for T is tree-solvable if

lim infllpg. () = mo (e ()llry > 0.
Analogously, if T is a random tCSP(«, p), we define the reconstruction rate of T as

Elluge() = o me( )y

and we say that the reconstruction problem for T is tree-solvable:

li{’goionfEHM@f(', )= g e()llpy > 0.

Bias, compatibility: Given a satisfying assignment z, for the variables at generation
Z, define the “bias” of the root, restricted to the value of the variables at level £, as

ef
ho(e) = (Xo|Xp = 24) 7.

Throughout the forthcoming proofs we will study hz(z,) for random z;, subject to dif-
ferent kinds of distributions. Notice that under the balance condition |pg (-, )—
to(e(llry =3 (|hr(x)]) - In fact, it is the case that

)

2

1
|hp(ze)lite(ze) = g r(L 2p) — Pg (=1, 27)] = 2‘/1@,,;(1, Tp) — 5 Me(T0)
and similarly,

brColeetar) = 2o (-1.20) - et
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By the balance condition, (1) = ptg(—1) =1 /2. Therefore,

(|hr(x )7 = Z(W@f(L 2) — g(Dpe(@e)| + (kg (—1 27) — ng(—1)me(zs)])

Ze

=2[lpg.r() = mo()peO)llpy-

Now, let Dy (z,) % {2} if hy(z,) = zand Dy(z,) 2 {—1.1}if |hr(z)| < 1. Observe
that Dy(x,) consists of the values of the root that are compatible with the assignment z,
for the variables at generation I.

Domain of clauses: Given a binary function ¢ (g, ..., z;_;), define the partial solu-
tion sets

S+(<ﬂ)d:e£{($1,s$k71)3¢’(1»$1» e Tpy) = 1}»
57(¢)(1:ef{($1’»$A~,71)3‘P(—1,$1, s Tpq) =1},

A (@) E ST (@)\S(9), A (9)E S (9)\ SH().

If the clause ¢ is balanced and feasible, we have that |S*(¢)| =[S~ (¢)| = 2" ||¢|?
and |A*(¢)| = |A”(¢)] = 2", (¢).

THEOREM 4.1. The reconstruction problem for the ensemble tCSP(w,p) is
tree-solvable if and only if & > @ e0(k), where

Q
o) == {log k + o(log K)}.

Proof. Upper bound: Given a tree ensemble T, the rate of “naive reconstruction” for
T is defined as

z2o(T) o (Ihr(x,) =1 p (= (I[hr(x,) = —1]) p by the balance condition),

which indicates the probability that a random assignment for the variables at generation
¢, distributed as x,, fixes the root to be equal to 1 (or —1). We notice in passing that
“naive reconstructibility” (i.e., the property that z,(T) does not vanish as £ — o)
is likely to be related to the appearance of “frozen variables” in random CSPs (see,
e.g., [AR11]). In particular, it is not hard to realize that the naive reconstruction thresh-
old is a lower bound on the threshold for the appearance of ®(n) frozen variables. It is
natural to conjecture that the two thresholds do indeed coincide.

It is easy to see that (|hr(x.)|) > 2,(T). Observe also that for any z,y € {—1,1},

9) (I[hp(xz) = 2l[xg = y) 7 = 22,(T)6,,,.

Thus, our objective is to show that in an appropriate regime of the parameter «, the
quantity E[z,(T)] remains bounded away from zero as £ — oo, implying tree-solvability
of the reconstruction problem in such regime. Indeed, this implies tree-solvability by
“naive reconstruction,” i.e., by the procedure that assigns to the root any value compa-
tible with the values at generation #. By notational convenience, define

ze(a) = 2E[2,(T)] and  z,(a) = 2E[z,(T)|no = 1].
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Now, notice that for a tree ensemble T with root degree ny = d, and any assignment x,
for the variables at generation ¢, hy(z,) = 1 if and only if hy (z,1T;) =1 for some
i=1,...,d, so that

d
22,(T) = <1 [T =Tz, (x 1 To) = 1))xo = 1>
T

=1

I
—

==

I
—

(1 =1I[hr(x,) =1])[%g =1);  (by the tree Markov property)

Il
_

(1= 22,(T7)).

K3

Therefore, averaging over T, we get

n
ze (a0 [ H (1 -2z (x } , n ~ Poisson (ko)
=1—exp(—kazy(a))

On the other hand, given a tree ensemble T with root degree n, = 1 and with the clause
¢ assigned to the root’s child, we have that for any satisfying assignment z, for the
variables at generation ¢, hp(z,) =1 if and only if

k-1
(10) [[ (") € A (o).

i=1
where :L’Ql is the assignment z,| T", for the variables at generation £ — 1 in the subtree
T. Observe that (10) holds, in particular, if for some a = (ay, ..., a;_1) € AT(¢),
hopr (l’(;zl) =a; for i=1, ...,k — 1. Therefore, if y = (y;, -..,¥;_1) denotes a random
uniform vector from S*(¢), we have

k—1 .
1) 25 3 (Tl = alio=1)

wnTp) Vil
1 k-1
=3 Z E, H ([[hg (xp-1) = ai]|xo = yZ-)Tg (by the tree Markov property)
a€A"(p) =1 '
LAY ()| %=
I

This in turn implies, after averaging over T, that

FL(‘P)
lel?

which leads to the recursion z,(a) > 1 — exp (—ka(zy_1(a))*' /Q}). Now, it is standard
to verify that this recursion implies that z,(a) is, for all £, greater than or equal to the
maximum of the fixed points of the function g(z) = 1 — exp (—kaz*~! /Q}) in the inter-
val [0, 1]. The minimum value of & for which such fixed point is positive is given by

(zp—1())F!
Qk ’

f(e) 2 Eq }wl(a»“ -
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. Q4+ u(l+D)
* = Kk—1)

where u is the unique solution of the equation u = (k — 1)log (1 + u). In particular,
asymptotically in k, we have that a* = % (log k + o(log k)), which implies the upper
bound for &,e-

Lower bound: The matching lower bound on (k) requires a more elaborate
proof; we first prove three lemmas before returning to complete the lower bound
proof. 0

Given a tree ensemble T, let x; 2 (x¢|xg =1) and x, z (xz]xg = —1). When the
tree ensemble is not clear in the definition of x} (or x,), we add a subindex indicating
the tree ensemble from where it is defined. Notice that, if ©™ and p~ are the distribu-
tions of x} and x,, respectively, then

du” 1 —hp(zy)

() Tt h(ay)

By the balance condition, it is clear that

(12) he(x) 2 — hp(x;).

Also, it is easy to show that (hp(x})); = ([hr(x/)]*) s (and therefore [Ry(T)]* <
(hp(x}))p < Ry)(T)), so that nonreconstructibility for 7" is equivalent to the condition
limy . (hr(x})) 7 = 0 (see [MPO3]). Similarly, if T is a random tCSP(«, p) ensemble,
nonreconstructibility for T is equivalent to the condition lim, ., E[(hyp(x}))y] = 0.

Levma 4.2.
(a) Given a tree ensemble T with root degree ng = d, we have
1 - hT(X;)] - {1 — Iy 7]
13 —| = =,
(13) L + hp(x)) g T+ hy;

where (h;)L, are independent random variables such that hy; z hy,(x}).
(b) Given a tree ensemble T with root degree ny = 1 and with the clause ¢ assigned
to the unique child of the root, we have that

[Ltutazal] 2 Tye(c1
Lthr(xp)) Tae(s)
where s ~ Unif(S*(¢)) and hy = (hy;)¥=} are independent random variables
such that hy; L hopr (X7).
Proof. This recursion follows straightforwardly from the recursive definition of tree

(14)

formulae. The balance condition on clauses implies

1 — hp(x]) _ (I[x; =x/]|xg = —1);

1+ hyp(x)) (Ix; =x/[xg=1);

Therefore, if the root degree of T is ny = d, we have by the tree Markov property that

(Ix; =x; 1 Tixo = 1),
(Ix; =x 1 Txg=1)7

1+ hT(X?—)

1—he(xf) %
11
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1—uy;
=1 14w,

(x/ M) ¢, are independent random assignments for the variables at generation I of

T,;, such that xfrTigxeri. This proves (13). Now, if the root degree of T is

ny = 1, define (i?’l)f:‘ll to be independent random assignments for the variables at gen-

due to the fact that

and the last expression has the same distribution as []¢

eration [ of the subtrees 7", such that X;, li +2 XTT, By the tree Markov property, we have

that (x/, 1 7)1 = 2 (s;x X )" !, where s ~ UnifS*(¢). Using the tree Markov property

once more, we get

[1_%(,%)] 50 (o) T (Il = & 1o = w0 1
T hr(xi)) 5, 0L ) T (I = &0 = vy,

_ Thl(p(_L S)
T}L[(p(l’ S) ’

which is precisely (14). a

The first step of the above recursion can be analyzed precisely, in terms of its dis-
tribution.

Lemma 4.3. If T is a random tCSP(«, p) ensemble, then the random variable hy(x])
takes values in {0,1} and, if o < (1 — 8)(Q;, log k) /k, we have Ehp(x]) < 1 — k7149,

Proof. If T is a tree ensemble with root degree ny =1 and clause ¢ assigned to the

root’s child, from part (b) of Lemma 4.2, we have that - bl ; ¢(—1,s), where

1+h (x
s ~ Unif(S*(¢)). Recall that hg; = 1. Therefore, it follows that hT(xf’) = 1 with prob-
ability ||S+ o)l — =1/Qy and hp(x]) = 0 otherwise. Similarly, if 7' is a tree ensemble with

root degree 170 = d, it follows from part (a) of Lemma 4.2 that Ap(x]) = 1 with prob-
ability 1 — (1 —1/Q;)? and hp(x]) = 0 otherwise. This implies then that hp(x]) has
support in {0, 1} and that Ehy(x]) = 1 — exp (—ke(1 — 1 /Q;)). The conclusion follows
straightforwardly. |

For subsequent steps we track the averages, h"”"C E<hT(Xz ))r and hve e

E[(hy(x]"))x|no = 1], using the following bounds.
Lemma 4.4. For any € > 0 we have

Tave ~avi 1 . 1 .
(15) Bpe S 1= B R < S F(hE) + 5 Re(VIE),
def (oW, TpeW) a o [2L( .
(16) Fi(0)= 2E, {|4”’; Ri(0) = HlHQ S (W, yg)lemeiel
¢ QC[k—1]

Finally, if hy is supported on nonnegative values, then
(a7) B < By,

Proof. We will say that a random variable X € [—1, 41] is “consistent” if E f(—X) =
E[(1=%)/(X)] for every function f such that the expectation values exist. A useful pre-
liminary remark [MMOG6] is that the random variable hy(x;") is consistent (no matter the

tree ensemble). In fact, this follows directly from (11) and (12):
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(=hr(x)) Zf —hy(z)pn* (21) Zf —hr Iz))%ﬂ(xz)
E[f(hﬂx;)ﬁffligﬂ [f(hT< >>1+ZT§’”§].

A number of properties of consistent random variables can be found in [RU08]. Let us
now consider the first inequality. If 7' is a tree ensemble with root degree n, = d, then it
is immediate from (13) that

1—h +\\ 1/2 d 1—hes(xF)\ 172
R (b

L+ hp(x]) i ML+ (X)) Ti
It is possible to show that consistency implies that EX = EX? and E(1 X)l/ 2 =

EV1— X? (through the test functions f(z) = z(1+z) and f(z)= 2(1 + z)'/?(1—
1)~1/?); we thus have

\/1*th1 T*\/1 ([hr(x)) 7

> < 1— [hT(x7)12>T (by Jensen’s ineq.)

(28, (63,

i

d
H 1 —(hp(x >T7) (usingy/z > z, for z € [0, 1]).

This implies, in particular, that if T is a random tCSP(«, p), then

n

I E{he(x]))r > E, [H (1~ El{ha (] ))elno = 11)} 7 ~ Poisson(ka),

i=1

whence the first inequality follows.
Now, from the recursion equation (14), we have for a tree ensemble T with root
degree ng = 1 and random clause ¢ assigned to the child of the root,

2T, 0W(s)

def
T3 Th(s) v(s)=e(l,s)p(-1,s),

hr(x[y) =

X

or alternatively

1- Thﬂ//(s)]

h(x1) = Tp, 0N (s) + (Th, 0 (5)Gi (. 5), g“”[m

where s ~ Ume*( ). Notice that for any antisymmetric function f(s), we have that
Ef(s) = T‘ HQf). Therefore, due to the fact that T; ¢1(s) is antisymmetric and
Gi(hy, s) is symmetric (both in s and h;, actually), we have the formulas
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L2 o TreW(s)
(19) (hr(X(1)) 7 W<(‘p( )’HTiW(S)>>T

and

ey 1) (1) &) )
(20) (hp(X[.) p = <MW>T+ <(<p ,(Thii”Q)gk(hl, ))>

lell? T

. ' . W Ty oW .
In the last expression, the first term is equal to %, while the second term can be
written, using Fourier expansion, as

”(p”g Z W,y oy, [y o(h) G (R, ) (™, vg).
QC[k—1]

iQl odd

Using the fact that E|X| < (EX)!/2 for consistent random variables, we can bound the
terms with |@| > 3 by

M) s
% > oM.yl (HiEQ(th(xl*»Tl) ‘
QC[k-1]

|Q>3 odd

Also, using the fact that for any even function f(z) with 0 < f(z) < 1 and a consistent
random variable X, we have

EXfX))| = [E[2X2f(X) /(1 + X)Lix=0)]| < [E[2X2 /(1 + X)[x=0] = [E[X]];
we can bound the terms with |Q| =1 by

[(e®. 1)|

k-1
Z »V{z} hTf(X;r)>Tl|~

T2
lel =

Therefore, for a random tCSP(«, p) with root degree 5, = 1, we obtain after averaging

7 av (gl)(l) ’ rI‘ha"c % (1)) 2I ave \max
have <E, 12 [ 1 . 2 : (@ ’VQ 58 L2}
el lell =
Q>3 odd

which is precisely the second inequality in the lemma.

Now, suppose that h; is supported on nonnegative values, and let
Ay = {h;:T),¢W(s) > 0}. Notice that the complement of A, is —A, (due to the anti-
symmetry of T}, ¢V (s) with respect to h;). Therefore, using the consistency of the ran-
dom variables h;;, from (19) we get
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+ _ 2 1 Th](pU)(S)
(hr(X)q)) p = el < (‘P( )’HTihll/f(SQ I(h; € As)

T7 (D(s)
o) =P S) N
<¢ ’1+T_w(s)>ﬂ( hleAS)>T

2 T, @M (s) > [ Mli— ]>
- W, =M Vpop e A |1 — .
||§0H2 <<(p 1+ Tmﬁ(s) ( : ) =1 1+ hl.i T
2

Therefore, for a random tCSP(«, p) with root degree 1, = 1, we obtain after averaging
that

(o0, Ty )

B < 2E
i Y lel?

)

which corresponds to the last inequality of the lemma. 0

We now return to completing the proof of Theorem 4.1.

Proof of Theorem 4.1, lower bound. If @ =1, T, is the identity operator whence
(oM, T1pW) =1,(¢). We have therefore F;(1) = 1 /Q;. Now, expanding in Fourier ser-
ies we get

(. TipW) = >~ (W, yg)P 0% = >~ [(pW,yg)? 091,
ar Qclings (i}

By the Fourier expansion condition,
(21) Fi(6) < e M0 /Qy.

Now fix o = (1 — 8)(Q; log k) /k, whence, by Lemma 4.3, h{"® <1 — k~'*% and h, is
supported on nonnegative reals. Using (17), we get hy' < e oK /Qu, and therefore,

hav <1 —exp{—2(1 — 8)e ¥ log k} < e O /2,

On the other hand, from (7), we obtain the following bounds for F;(6), R.(6):

k { 2 —Ck/2 2
II ll || H o)
(o) § 2| g2 2, (¢) (1) 3
Ry(6) < 2K, “ I (W, v 6% + 2K, ol S eyl |6
vl Pl ol
< Aefck,/292 +ka93

= Q,

Therefore, for all £ we have
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2 <1 — e hlP) R < (1 - 6) log K(2Ae CF/2haY + 2ka(hav)?/2),

which implies A% — 0 if, for some # > 0, h?" < k>, thus finishing the proof. O

5. Reconstruction on trees to graphs: The case of proper ¢ colorings. In
this section we prove that the set of solutions of the proper g-coloring ensemble satisfies
the sphericity condition described in section 3.3. Recall that this in turn implies the
equivalence of (sparse random) graph reconstruction and tree reconstruction for the
proper g-coloring model.

Given two assignments (as in two proper colorings) z(!), 2(®) of the variables
Ty, ...,T,, their joint type v, .o is the ¢x ¢ matrix with v e (i, 7) dof %#
{t e G:2W(t) = i and 2®)(¢) = j}. We consider random assignments x(!), x?) taken
uniformly and independently over all the satisfying assignments of a random instance

of the g-coloring model with edge-variable density «. Our purpose is to prove that for all
€>0, [lvgw o — T}HTV < € with high probability, where v is the matrix with all entries

equal to 1 /¢*. More exactly, we have the following.

THEOREM 5.1. Letl(“),l((?) be random assignments taken uniformly and indepen-
dently over all satisfying assignments of a random instance of the g-coloring model with
edge-variable density a. If @ < (¢ — 1)log (¢ — 1), then for any € > 0,

Prob(|| vy g0 — 0| > €) = 0 as n — oc.

The statistic V) x@ samples the correlation between the colors of two random ver-
tices of the graph. The main result in [GMO07] was that concentration of this statistic
implies equivalence of tree and random graph reconstruction (in the diluted regime).

At this point we should recall the so-called transfer theorem introduced in [ACO08],
which says that with the edge-variable density a < ¢ log ¢, the set of events that hold
with high probability at exponential rate in the planted model hold with high probabil-
ity in the uniform model as well; the planted model here is induced by choosing a uniform
random g-partition of the vertices and then a graph with m edges chosen uniformly at
random from among the edges properly colored (as in nonmonochromatic) by the parti-
tion. In particular, the transfer theorem implies that most of the colorings of a random
graph (at edge-variable density o < ¢ log ¢) are “balanced” in the sense that, for any
e >0,

(22) Prob(|luy — @[* > €) = 0 as n — oo,

where w is the vector with ¢ entries such that wy (i) = 2 #{v € G:x, = i} and w is the
vector with all entries equal to 1 /¢. Notice that a similar transfer theorem for pairs of
colorings would imply the result stated in Theorem 5.1. Although we believe that such a
transfer holds in the appropriate regime, rather than proving it in full, we prove instead
just the conclusion that we need in Theorem 5.1. Our argument makes crucial use of the
following estimate for the partition function, also from [ACO08].

LemMA 5.2. Let Z be the number of satisfying assignments of a random instance of
the q-coloring model with edge-variable density @ < q log q. Then, for some function
f(n) of order o(n), we have

Prob(Z < e /™WE[Z]) =0 as n— oco.
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We should point out also the following estimate for the expected value:

erzali) oo

Let us fix some notation first. If vis a ¢ X ¢ matrix, let H and £ denote their entropy
and energy, respectively, where

=D _u(i. j)log v(i. ),

E(v) = log (1 - Z(Zj:u(z,j)f - Z(Zv(z j))2 + ;v(z,jy).

Also, given €, 8 > 0, let S(8, €) denote the set of all ¢ x ¢ matrices v with nonnegative
entries such that

lw- DI <8, 170-DP<s and (v-DIP >e,

where 1 is the ¢ x 1 vector of all 1’s. Before returning to the proof of Theorem 5.1, we
introduce estimates concerning an additive functional depending on the energy and en-
tropy of matrices in S(8, €); for this purpose, we define (8, €) as the upper limit of the
interval (indeed, it is easy to see that this is an interval) consisting of the values ¢ such
that

sup H(v) + c€(v) < H(v) + a&(v).
veS(8.€)
To motivate, let us recall that an important part of the second moment argument of
Achlioptas and Naor [AN05, Theorem 7] (in showing that the chromatic number
x[G(n, d/n)] concentrated on two possible values) relied on an optimization of the ex-
pression H(v) + a&(v) over the Birkoff polytope B, of the ¢ x ¢ doubly stochastic ma-
trices. In particular, they proved that, as long as a < (¢ — 1) log(¢ — 1), one has

(24) sup H(v) + a&(v) = H(v) + a&(D).

vEB g
In particular, since S(0,€) C B,y,, we have k(0,¢) > a, = (¢ — 1) log (¢ — 1). This im-
plies also, due to the continuity of x(6, €), that whenever o < a,, for every € > 0 there is

some 6 > 0 such that «(8,¢) > a.
LeEMMA 5.3. Suppose that v € S(8,¢€), wheree > 28; then ifk(8,€) > «, we have that

) +a0)] < ) + )] - KL= e 20)
Proof. Indeed,
[H(v) + a&(v)] — [H

(v) + a&(v)]
= [H(V) + &(8.€)E(D)

0+
()] — H(v >+x<6 OE(W)] + (k(5.¢) — a)E() — ED)
> (k(b.6) —a [log( gl TP = ol = o= B 1)}

(k(8,€) —a)(e — 28)
2(1-1/9)*

>
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Proof of Theorem5.1. Given a property P, denote by Z(?)(P) the number of pairs of
satisfying assignments for which P holds. Now, choose § < ¢ /2, such that x(8,¢) > a

(see the comment previous to Lemma 5.3), and let & = W. We have that

ZO(|Jvgn yo — 0]* > €)

PI‘Ob(H’U_X(l)i‘(Q) — ’7)”2 > 6) =E Z2

Now, according to Lemma 5.2 and Eq. (22), the events Z < e ™E[Z],
| (vg & — 0)1]|* > €, and [|1*(vyw g — 0)||* > € are negligible. Therefore, to show that

Prob(||vym yo — vl|* > €) — 0 is sufficient to prove that the term

E[Z(Q)(U}(l)ﬁ(z) S Bzfq)]
e 2E[Z)?

vanishes. Now, consider the set G, 5 of ¢ X ¢ matrices L, with nonnegative integer entries,
such that L/n € S(8,€), and denote by Q, the set of pairs of colorings z;, z, such that
Vg, 3, 18 equal to the matrix v; then

E[Z(2>('Ul((l)§(2) € Bg;q)]

= Z Z Prob(z; and z, are satisfying assignments)

LeG, 5 11,2,€Q

| on 2 2 an
> TnL; L ﬁ J (1 - (Z% /n> -> (ZL,;]- /n> +) (Ly /n)2>
Leg, L Lvg 770t i j j i i,J

> 3¢V exp (n[H(L/n) + a&(L/n))).

Leg, s

IN

Now, we can invoke Lemma 5.3 to get that
[H(L/n) +a&(L/n)] < [H(V) + a&(v)] — &
Therefore,

E[Z<2>(vx<1)ﬁ<z> € B?fq)] < poly(n) x [¢(1 —1/q)%]*" exp (—n&),

so by applying (23) we get that

E[Z@)(’Ul‘(])é(z) S Bgfq)]
672n§E[Z]2

< poly(n) x exp (—né&).
The result follows. O

Appendix A. Proof of Proposition 3.2. Given a random instance from the en-
semble CSP(n, p, ), let {¢,}2", be its set of clauses and consider the symmetrized sta-
tistic

(25) La(p) = — S #{a € [nalig, = ¢7).

0ESy
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It is convenient to introduce two slightly modified ensembles. We denote by
CSP(n, p,a; p,) the ensemble CSP(n, p,«) conditioned on L, = p,.

A binary configuration z is said to be balanced if |z - 1] < 1. We will use Z and Z,
to denote the variable that counts the number of satisfying assignments and balanced
satisfying assignments, respectively, of a random CSP ensemble. Given two binary
assignments (1), 22), we define their overlap as

)

def 1 1
(26) Q™ ~gV . 2@ = 23 a0,

In other words, (1 — Qy) /2 is the normalized Hamming distance of (") and z(?).

Proof of Proposition 3.2, upper bound. The upper bound in Proposition 3.2 follows
from a first moment calculation. Let Z be the number of solutions of a random instance
from the ensemble CSP(n, p,a). We will show that, for @ > (1 + €)Q; log 2, E[Z] — 0
as n — oo. First fix p,, such that ||p, — p|lrv < 1/n'/>77. Notice that the probability
that a random clause of type ¢ is satisfied by the assignment z with z - 1 = n@ is || ¢ 3.
This implies

E[Z|L, = p.| = Z P (zis a satisfying assignment|L, = p,,)
ze{-1,1}"

< n sup Z P (zis a satisfying assignment|L, = p,,)
0c[-1.1] ;. 7=ng

n 2~n oxn
n2'[Tlels
4

IA

IN

n exp (n{log 210 plg) o g2 + 0<n-1/2+y>})
(2

IN

n exp (n{log 2 +a2p(q))log llol> + O(nl/”’”)}),
¢

where in the last step we used the condition of dominance of balanced assignments. By

taking expectation over p,, we obtain E[Z] — 0 whenever o > (1 —l—e)fzk log 2, as
claimed. 0
To establish the corresponding lower bound, we use the second moment method,
but first we need a few preliminary lemmas.
We define by IC,(p; a, A, y) to be the set of probability distributions {p(¢)} over
clauses ¢ :{+1, -1} — {0,1} such that
(i) supp(p) = supp(p);
(ii) p satisfies conditions 1-4 and (a), (b) stated in section 3 with constants a, 4;
and finally,
(iii) [|p, — pllpv < 1/n'/?77 for some y > 0. Then we have the following.
Lemma A.1. Let L, be the statistics defined in (25) for a random formula from the
CSP(n,p,a) ensemble. Then there exists constants a, A such that for any y > 0, with
high probability

(27) L,eK,(p;a, A,y).
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Proof. Notice that for each permutation 7 L,(¢") = L,(¢) and that, for each
e{-1,+1}* = {0,1}, k!L,(¢) is distributed as a binomial with parameters no, and
K'p(¢). In particular, L,(¢) = 0if p(¢) = 0 and L,(¢) > 0 with high probability other-
wise. This implies item (i) in the definition of I, (p; a, A, y).

Item (iii), that || L, — p|lpv < 1/n'/>77, follows immediately from the central limit
theorem.

Consider finally item (ii). Condition 1 is enforced by the symmetrization procedure
in (25). Conditions 2 and 3 depend only on supp(Z,,) and thus hold with high probability
by the above argument.

Dominance of balanced assignments (condition 4) is the statement that

(28) E, logllelly — E, log|le]l <0

for all 8 +#0, 6 € [—1,1]. Notice that the left-hand side is a polynomial in 6 whose
coefficients are continuous function of the quantities {L,(¢)}. Hence this condition
is of the form L, € A for A, an open set in R?, D = 22", Since p € A and ||L, — p||py <
n~1/2*7 with high probability, we conclude L, € A.

Finally conditions (a) and (b) depend only on supp(L,) and therefore follow from
the above. |

Lemma A2, Given p, € K,(p;a, A, y), consider a random instance from the
CSP(n, p,a;p,) ensemble. For 8 € {—1,—1 +2/n o 1=2/n,1}, let Zy(Qro = 6)
be the number of balanced solution pairs V), z(?) € {—|—1 —1}" with overlap 6. Then,

E[Z,(Q12 = 0)]

AL < Cn /2% exp {n®(6)},

where C' is bounded uniformly in 6 and

def . T
®0) = H(0) +aE,.; log{%}.

Here H(0) = — 12 log(1 4 0) — 152 log(1 — 0) is the binary entropy function.

Proof. For snrnphaty take n to be even (the argument is analogous for n odd). Let ¢
be a Boolean function, and let i:[k] — [n] be a uniform random choice of the indexes of
the variables in ¢ (i.e. i(l), ..., i(k) are independent and uniform in [n]). Given two
balanced vectors zV, 2(® € {41, —1}", with Q5 = 6, we have

1 2
E, [90(935(1)), ’37503)) (37((>)’ s »$§<£>)] = (¢, Typ).
Therefore,

EZ,(|Q12] = 0) = Z P (M, 2% are satisfying assignments)
2. —ng

Yo T (e Tyg)mterme

z(')-g(z):na ¢
C 1+0 1+60 1-60 1—
S—n3/2 exp<n{H( R > +a2pn ) log(g, T(,<p)})

where H is the entropy function

IN
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d
(29) H(O1. ....00) =~ 0;log 0,

=1
and we used the following bound on binomial coefficients (valid for 8; > 0, 8,4+ ---
+6d = 1)

n! < C
[T, (no)) — nld-/2

(30) exp{H(0,, ....0,)).

By the very same argument, for some positive C’,

EZ,= 3 ]l

zbalanced ¢
(o 11 -
> o ({5 5) +a§wjp,,,<¢>1og||¢|2}).
It is straightforward now to check that

EZ =0 c”
?izsz)Q V< explnolo))

(31)

which implies the claim. O
Lemma A.3. Given p, € K, (p;a, A,y), consider a random instance from the
CSP(n,p,a;p,) ensemble, and define

det 21, ()
32 Q.- =E, ; ——————.
( ) kP $~Pn 211(<p)

Ifa <(1—6)Qy; log 2, then there exists a constant Cy = Cy(p; a, A, y,&) > 0 (inde-
pendent of p, € K,(p;a,A,y)) and an absolute constant C such that for any
0e{-1,-14+42/n,...,1—-2/n,1}

EZ,(Qu=0] _ C _cp
(EZb)Q — pl/2 :

(33)

Proof. In view of the previous lemma, it is sufficient to prove that there exists a
constant Cy = Cy(p; a, A, y,e) > 0 (independent of p, € KC,,(p; a, 4,y)) such that

(34) () < — 0.

Since throughout this proof p, is fixed, it will be understood that ¢ ~ p, whenever
we take expectation over the clause distribution. Also, dependence of Q;; and €5
(defined analogously) upon p,, will be dropped.

Fix o < (1—¢)Q; log 2 < (1 —¢)Q; log 2. We will prove the thesis claim by con-
sidering three different regimes for 8: 0 <8< ek ek <@9<1—¢e/2 and
1 —¢'/2 <@ <1, where ¢ is a small constant. In the first two intervals we will prove
that the derivative of ®(6) with respect to @ is strictly negative. Recalling that
lol? > 1/2, we have
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4o (0D, TypM)
< AT e
0 = atanh@ + kalE, H(P||4
Sl P [PE
_ L=l IVl 3
< —0+ 2kalE, ||‘P||2 0+ 2kalE, H§0||2 0
o o
< =0+ Ae “F—0 4 2k— 62
Q. Q.
1
< f§9+4k92,

where we used (from (3)) the hypothesis on low weight Fourier coefficients. The last
expression is strictly negative if 0 < @ < e~ for any ¢ > 0 and all k large enough.
Integrating the last expression over 0, we get ®(0) < —C,6°.

Next assume e “*<@<1—e. Using the hypothesis (o1, ThoM) <

e= M=) oW |12 we have
do le D1
— < —atanh@ + 4kaE e~ Che
do “ollel?
< —atanh@ + Qk% e~ OWe < _atanhd + 2(log 2)ke~Cke,
k

which is strictly negative if @ > ¢~ with, say, ¢ = (Ce?) /2.

Finally, we notice that, for 1 —¢2 <6< 1, any & small enough we have
H(0) < —log 2 + & /10. Further, using the fact that (¢, Tpp) = || Tg 2 ¢|* is nonde-
creasing in 0

)

& & o log 2
®0) < —log2+-——0aE, 1 2= —log2+—+~<-—
(6) < —log 2+ o5 — @k, log|l¢| 0g +1O+Qk_ £
which finishes the proof. g
Proof of Proposition 3.2, lower bound. Fix p, € K,(p;a,A,y), a<(1-—
€)Q; log 2, and let Z), be the number of balanced solutions of a random instance
from the CSP(n, p,«; p,) ensemble. From Lemma A.3 we have that, for U, ={-1,

-142/n,...,1-2/n,1},

{Ezb}2 0eU, {EZb}2
C 2
(36) < /2 Z e~ ot
0cU,
! 00 )
(37) <A / e O do < C)

for some new constant C, = Cf(p; a, A,y,€) > 0.

For p, € K,(p;a, A,y), we gave Q;; = Q; (14 O(n~1/2*7)). Let F, be a random
instance from the CSP(n,p,a) ensemble, p, € K,(p;a, A,y), a < (1 —2¢)Q; log 2,
whence o < (1 —¢)Q;; log 2. By the Paley-Zygmund inequality
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- E{Z}
38 P(F, issat|L, = p,) > ——5
( ) ( n 18 ba'| n pn) _Q{EZb}2

> C /2.

By Lemma A.1 we have P(F,, is sat) > C}, /4. Finally, the fact that the satisfiability
property (of our CSP ensembles) exhibits a sharp transition, thanks to the theorem
of Creignou and Daude [CDO09] (see Theorem C.1 in Appendix C here) implies
P(F,issat) — 1 as n — oc. |

Appendix B. Proof of Theorem 3.4. In this appendix we introduce the planted
CSP ensemble, clarify its connection to the original ensemble, and use it to prove The-
orem 3.4. Throughout the section, we denote a CSP instance with no clauses by
F=(F,F,y ...,F,,). Here

(39) Fo=(9aia(1), .. ig(F))

denotes the clause labeled a, which is completely specified by the Boolean function
@, {+1, -1} = {0,1} and by the choice of k indices i,(1), ..., i,(k). The number
of solutions of the instance F' is denoted by Z(F').

Given a distribution p = {p(¢)}, it is also convenient to define the “average clause”
o {+1,-1}" > R

(40) == S S @) - i(h).

i), ke e

Throughout this section, we will assume that the strong balance condition (condition (a)
in section 3.5) holds. We think that this condition can be refined at the price of a more
careful analysis.

B.1. The planted ensemble and a transfer theroem. Given n € N, o > 0, and
a distribution p = {p(¢)} over k-clauses, the planted ensemble pCSP(n, «, p) is a joint
distribution over binary assignments z* = (2, 23, ..., z}) € {0,1}" and random CSP
formulas F' defined as follows. The assignment z* is drawn with distribution

(41) P,(2) = = p(a)™.

EZ(F)
It is easy to check that this is normalized, i.e., that EZ(F) =Y & (z)™.

We will use P, E,, to denote probability and expectation with respect to the planted
model. Sampling z from this distribution is straightforward, since P, (z) is uniform once
we condition on the weight of z (i.e., on z - 1).

Conditional on z*, the clauses F'\,, a = 1,2, ..., na, are independent and distributed
according to

(42) Pp{Fa = ((p(uia(l)’ ”La(k))@*}z L )p((pa)(pu(x:u(l)’ ""xia(k))’

o

where the indices i,(1), ..., i,(k) € [n] are drawn independently and uniformly at ran-
dom. Notice that this is indeed a well-defined distribution over clauses, and in particular
it is normalized thanks to (40). In order to sample from the above clause distribution,
one can proceed as follows. Sample indices 4,(1), ..., %,(k) € [n] independently and
uniformly at random and a Boolean function ¢, with distribution p(-). If

*

(pu(xjau), ey xia(k)) = 1, accept this choice; otherwise reject it and repeat the sampling.
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The joint distribution of the planted assignment and the CSP instance is then

no

(43) P,(F.z") = nkatEZ Hp T} 1y e T )

By construction, the assignment z* satisfies F. It is convenient to compare the planted
distribution with the uniform distribution we have been considering so far. In this case,
an instance is drawn according to the ensemble CSP(n,«, p), and an assignment z* is
drawn uniformly at random from among the ones satisfying F. The joint distribution is
then

no

(44) P,(F, z) P(@)@uT] 1) - T 1)
=1

nka Z

a

By taking the ratio of the above probabilities, we immediately get the follow-
ing lemma.

Lemva B.1. Let F:(F,z*) — R be a function of an instance—solution pair. Its ex-
pectations with respect to the planted and uniform model are related as follows:

Z(F)
EZ(F)

(45) E,F(F.z") = E{ f(F_x*)}

Proof. By a standard change-of-measure argument E,F(F,z*) is equal to

. - L (F.27) .
(%;)PP(F,_Q;) = > P(F, { P(F.o) F(F.x )}

(F.z*)

(16) gPIUCE ) gy FF )

which is nothing but our claim. ]

It is clear that the planted and uniform models are strictly related as soon as Z(F)
concentrates around its expectation EZ(F).

Lemva B.2. Fiza < @ log 2{1 + 0.(1) and let Z(F) be the number of solutions of a
random instance F  from the CSP(n,a«,p) ensemble. Then, for any e >0,
Z(F) > e ™EZ(F) with high probability.

Proof. For any constant A, the property Z(F') > ¢"“ is monotone over the space of
CSP instances (regarded as a product space). Applying, as in [ACO08], a sharp threshold
result (which we prove as Lemma C.2 in Appendix C), it is sufficient to prove that
Z(F) > e ™EZ(F) with probability bounded away from 0 as n — occ.

Let Z,,(F) be the number of balanced solutions (i.e., the number of solutions such
that |z - 1| < 1). Obviously, Z(F) > Zy,(F'). On the other hand, by an argument already
employed in Appendix A (here U,={-1,-14+2/n,...,1—2/n,1}),

nA
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E{Z(F)} = Z P (z is a satisfying assignment)
ze{-1,1}*

: aer:ﬁ < n(1+ 0) /2>E¢{||¢||9}2

JE. Aol

\ N

I /\

Z;( (1+6)/2
( )E {lelly? = nE{Zb,(F)}.

That is, E{Z(F)} and E{Z,(F)} differ at most by a polynomial factor. It is therefore
sufficient to prove that Z),(F) > e " EZ,(F) with probability bounded away from 0

as n — 0.
This follows from the Paley—Zygmund inequality, since
1 E{Z,(F)}’
47 P Z (F)>=-EZ,(F); >
(") {2um) 2 g} 2 L2 > O

for some uniformly bounded C' > 0 by (37). O
THEOREM B.3. Given a sequence of events {A,} and a constant ¢ > 0, assume that
(z*,F) € A, with probability larger than 1— e " wunder the planted model
pCSP(n,a, p). Then (z*, F) € A with high probability under the uniform model.
Proof. Consider the complement of A,, denoted by AS. By Lemma B.1, we have

Pp{(g*,F) € Aj} = {EZZ(( )) Lo, )EA?;}

Z(F)
ZE{EZ(F)]I@ )EA,,]IZ( F)>e mz/zEZ(F)}

> e 2{P{(a", F) € A3} —P{(a". F) € A5, Z < e "/’EZ(F)}}.
By solving for P{(z*, F) € A%}, we get

P{(z*, F) € A5} < eC"/QPp{(g:*,F) € ASY +P{Z < e "/?EZ(F)}.
The first term vanishes by assumption, and the second by Lemma B.2. 1l

B.2. Clustering. The proof of Theorem 3.4 proceeds in two steps. First we con-
sider a pair (z*, F') drawn according to the planted model and show that the planted
solution is isolated from most of the other solutions. Next, we use Theorem B.3 to trans-
fer this statement to the uniform ensemble.

In order to establish the first result, we need the following estimate.

Levva B4, Let (z*, F) be a solution/instance pair distributed according to the
planted model, and denote by Z?)(0) the number of solutions x of F such that

*

a* - x=nb. Then, for any a <1,
(48) E {Z®(0)|lz" - 1| < n"} = exp{n¥(6) + o(n)}.
(49) YO)=HO) +« log{m}.
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Proof. For the sake of simplicity we shall focus on the case z* - 1 = 0 (i.e., n is even
and the planted solution is perfectly balanced). It should be clear from the derivation
that allowing for [z* - 1| < n® produces only a change of order O(n~1*?) in the exponent.

Fix such a planted solution z*, and let x be such that

(50) Z rix; = g&r, Z rix; = g&_,

i =+1 i =+1
with (0, +6_) /2 = 0 (whence z* - x = n). Then
(51) P,(z is a solution ]g:*)z[Pp(goa(xia(l), ...,xia(k)) = 1|z*)]™,
and by the definition of planted ensemble
Pp((pa(xiu(l)v miu(k)) = 1@*)

1
= ko (2 (@)oo el )@ (T 1) - Tiy)
"oz )ia<1>2ia<k> ; L ()7 F T ®

1
- E
@@*) go((pv S€+.€,(p)?

where we introduced the operator Sy, g acting as follows:

k
(52) DRTICIREAEID DI | e OO NA)
ye{+1.-1}F =1
Further
P @*1*0)* ]‘ _(LE*)TW n
R VT3 n/2 )

Combining the above, and after a few algebraic manipulations, we get
1 n/2 n/2
EAZ00) 1=0=—— > ( f )( / )
Q)" o\ n(1+6,)/4) \n(1+6_)/4
x [Ey, (@, 89,0 ¢)]™,

where the sum runs over 6_,6_¢€{-1,-1+4+4/n,...,1—4/n,1}. Now letting
8 = (0, —0_) /2 and passing to the Fourier transform, we get

Ey(@.S0.0 ¢)= Y Eu{0g00,10%161010 <N"E {92109 =E, (9. Sp0).
Qs Q

where we used (2). Also notice that (¢, Spg¢) = (¢, To@). Therefore, the sum over 6,
0_ can be estimated by the 8, = 6_ term, up to a polynomial factor

E,{Z?(0)z" -1=0} = {0@1*)% n0(1)<n(11/§)/4>2[E¢(907 Top)]"™.

The statement follows by noticing that ¢ (z*) = E||¢||? for z* balanced. 0
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Levva B.5. Let (2%, F) be a solution/instance pair distributed according to the
planted model pCSP(n, «, p) and assume

(53) 2 (log k)(1+¢) < a < Qlog 2)(1 — e).
Then there exists constants 0 < 6, < 0y <1 and ¢, ¢’ > 0 such that, with probability at
least 1 — e ", the following happens. The instance F does not admit any solution x with
nd, < x - z* < nby, and the number of solutions with x - * > nb, is at most e’”"/]EZ(F)
(expectation is here with respect to the uniform model).

Proof. In view of Lemma B.4 it is sufficient to show that 8, € (0, 1) such that the
following hold:

(a) ¥(0,) <O0.

(b) supgejp, 1)'¥(0) < log 2 + o log El|¢||*.

In order to prove (a), we first notice that for any ¢ € (0,1 /2),

(54) Eo(o.Tog) 1 L o,
E,l el (14+)Q (1+)Q

provided @ > 1 — ¢. Indeed, both sides equal 1 at § = 1. Further, the derivative of the
left-hand side can be estimated as

d Ey(9. Top) . Eylp" Toe™) Qke”“““’“’%w||<p(”H2
d9 E,ll¢|? E,llel> E,lle|?

— heh1te)(1-6) 2E,1,(9)
1— 2]143(/)11(90)

Zi{l— L _ 4 L _ 6k(1+s)(1€)}‘
do (1+6)Q;  (1+&)y

Here we used the following inequality, valid for any f:{+1,—1}* — {0,1}, provided
0>1—¢:

(55) (f.Tof) =Y _|f P61 > || f]26" > ||f|2e-R0+)1=0),
Q

Let o = (1+¢)(Q;,/k)y log k/k and 6, = 1 — w, /k. Equation (54) implies

(56) W0, =1 w./k) < H(w, /k) — % (log k) +%(log k) e~ (+e)o.

for all & > w,/k. If we fix & = wp,/k and let k— oo, we finally obtain (for
® € (0, ®pay))

(57) Y0, =1-w,/k) <{w,—y+ ye“”*}%Jr O(k™1).

As soon as y > 1, we can find w, such that w, — y + ye™® < 1 (just take w, = log y).
Further, supgep, 1)%(0) = O(1 /k), which is smaller than log 2 + « log E| ¢||? for k large
enough and o < Q;(log 2)(1 — ¢). O

Proof of Theorem 3.4 Consider a random instance from the CSP(n, «, p) ensemble,
and sample a solution z* uniformly at random. By Lemma B.5 and Theorem B.3, with
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high probability there is no solution z such that z - * € [n;, n8,]. Declare the cluster of
¥, C(z*) to be the set of solutions z such that x - * > nf,. It will contain an exponen-
tially small fraction of solutions.

The same operation can be repeated e times. Since each cluster thus constructed is
exponentially small, for § small enough the probability that any of the two clusters in-
tersects is exponentially small. |

Appendix C. Sharp threshold results for CSPs. Recall that in the previous
section, we appealed crucially in two places to certain sharp transition behavior of the
CSPs under consideration. We furnish the requisite references and details here.

Since we are interested in the behavior of binary k-CSPs for large &, in what follows
we may safely assume that k > 3. Once again for simplicity, let F' = F}(n,an) denote a
random binary CSP(n,«, p) on n variables and an clauses, and the distribution p over
clauses satisfying the main conditions 1-4 mentioned in section 3. As is customary, for
the SAT-UNSAT threshold to be meaningful, we also assume that p satisfies the follow-
ing elementary condition.

5. Unsatisfiability of the ensemble. For every ¢ = £1, there is at least one clause g
with p, > 0 such that g(e, ...,e) = 0. (Note that by the balance condition 2,
necessarily g(—e, ..., —€) =0.)

Building on their previous work, Creignou and Daude recently showed [CD09] that
the satisfiability of F(n,an) undergoes a sharp transition, except when the formula
contains a function of one of the following two types.

(i) A Boolean function f strongly depends on one component if there exist ¢ €
{+1,-1} and ¢ with 1 <i<k such that (z,...,z,) € {+1,—1}" and
flzy, ..., z,) =1 imply that z; = €.

(ii) A Boolean function f strongly depends on a 2-XOR-relation if there exist i, j
with 1 <4 # j < ksuch that (z;, ...,z,) € {+1,—1}"and f(z;, ..., z,) =1
imply that z; ® z; = 1.

THEOREM C.1 (see [CD09]). With F = F;(n,an) and p satisfying 5 above, the tran-
sition from SAT(F) to UNSAT(F) is sharp if and only if F contains no function strongly
dependent on one component and no function strongly dependent on a 2-XOR-relation.

Note that we had used this result in completing the proof of the lower bound in
Proposition 3.2 in Appendix A.

We now furnish various details needed to justify that the property of having an
exponential number of solutions has a sharp threshold. Recall that this was needed
to boost Lemma B.2 (see Appendix B) in the proof of the clustering threshold, to show
that the probability once bounded away from 0, is actually tending to 1, as the problem
size n went to infinity.

Let @ be a formula on the variables ¥, ..., y; that can be constructed from our
ensemble, let X = {z, ...,z,} be a set of n variables (disjoint from {yi, ..., y;}),
and let @, denote the set of all formulas that results after substituting / distinct variables
from X and replacing them in ®. Given a CSP ensemble F on n variables, let F' & ® be
equal to F' A ®*, where @* is a random formula chosen uniformly from ®,,.

We say a random ensemble F' has the property Ap = Apg(F) if F has fewer than
%B" satisfying assignments. We want to prove the following.

Lemma C.2. For any B € [1,2) there is a sequence t2 such that for any e > 0,

lir+n P(Fi(n, (1 —€)tl) has property Ag) =0, and
n——+00

lim P(Fj(n, (1 +€)t?) has property Ag) = 1.

n——+0o0

(58)
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Note that Ap is a monotone property, since whenever F' has the property, then
F A F' will have the property for any formula F” on the variables {z, ..., z,}. We will
use the following theorem of Friedgut [F99], [F05] to prove that Ap has a “sharp thresh-
old,” in the sense of Lemma C.2].

THeEOREM C.3 (see [F05]). Suppose that Ap does not have a sharp threshold. Then,
there exists o > 0, a formula ®©, and for any ny > 0, there exist n > ng, m > 0, and a
formula F with variables z;, ..., x, such that all of the following hold:

T1. P(F & @ has the property Ag) > 1 — .

T2. o < P(Fy(n,m) has the property Ag) <1 — 3a.

T3. With probability at least o, a random formula Fj,(n, m) contains an element of ®@,,
as a subformula.

T4. P(F A Fi(n,2 log n) has the property Ag) <1 —2a.

A first observation is the subtle fact that Theorem C.3 is originally stated in terms of
a parametric Bernoulli model, while our model is binomial. But it is the case, by stan-
dard arguments, that we can translate results concerning the existence of a sharp thresh-
old of monotone properties from one model to other, provided that m is of order Q(n).
We will prove that this is the case in step (1) below.

An important fact that we will use throughout is that, because of the feasibility
condition, a pure literal reduction scheme exists: Suppose that z; is a variable that
appears only once in a formula F = C; A---A C,,, say, in the clause C; = f(z,
T, ....7;, ). Then, any satisfying assignment y:[n]\{l} — {£1} of Co A---A C,,
can be extended to a satisfying assignment x :[n] — {£1} of C; A Cy A--- C,, by set-
ting x(!) to the appropriate value (due to feasibility), such that f(x (), x(41), ..,
x(ig-1)) = 1.

Notice that using iteratively a pure literal reduction scheme, we can find a satisfying
assignment for the formula if we can iteratively find a variable contained once in the
formula, eliminate the clause containing the variable, and proceed again with the new
formula, until obtaining an empty formula. This procedure is equivalent to that of find-
ing the 2-core of the associated hypergraph [M05], and, in fact, it is the case that if the
associated hypergraph has an empty 2-core, then this pure literal reduction scheme will
be successful in finding a satisfying assignment.

The approach we will use to prove Lemma C.2 follows that of [AC08], with some
variations that follow the work of Creignou and Daude in [CD02], [CD04], and [CD09].
As is standard in these proofs, in what follows we will assume the existence of o, @, n,
and m satisfying T1-T3, and to conclude that the property Ap has a sharp threshold, we
will prove that T4 cannot hold. Notice that we can always assume that n is large enough
by choosing ng appropriately. We will divide the core of the proof into three steps. In the
first step, we determine the correct scaling of m. In the second step, we prove that the
small formula ® is indeed satisfiable. And, in the last step, we proceed to conclude that
T4 does not hold, completing the contradiction argument.

(1) Scaling of m: Lower bound: Notice that for m = en /k, necessarily (1 — €)n vari-

ables do not appear in F.(n, m), so that if F}(n, m) is satisfiable, it contains at
least 2(1-€)" satisfying assignments. But, following [M05], there is a constant c*
such that if m < ¢*n, then the hypergraph associated to F(n, m) with high
probability does not have a 2-core, and as mentioned before, the pure literal
reduction is successful in finding a satisfying assignment. This proves, by choos-
ing € small enough, that for m = en /k, with high probability, Fi.(n, m) has at
least 207" > 1 B satisfying assignments. Therefore, by T2, it should be the
case that m = Q(n).
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Upper bound: From the first moment estimates in the present paper, we have
that there is a constant ), (depending only on p), such that with high prob-
ability, a random formula F(n, C\n) is not satisfiable. Therefore (by T2), due
to the monotonicity of Ap, it should be the case that m = O(n).
Satisfiability of ®: Given a formula ®, define v(®) to be the number of variables
in @, and w(®) to be the number of clauses in ®. By an easy counting, for any
t > 1, if m = O(n), then the probability that a random formula F(n, m) con-
tains a subformula ® with w(®) < ¢ and such that v(®) < (k— 1)w(®) — 1
goes to zero as n — +o00. Now, if ®@ is unsatisfiable, then it contains a minimal
unsatisfiable formula ¥ with w(y) < ¢, and therefore, by the previous conclu-
sion, by T2 and T3, we have that v(¢) > (k— 1)w(y) with high probability.
Then, using [CD02, Lemma 5.2], ¥ has either a constraint with & — 1 variables
appearing only once, or it is unicyclic. In either case, for k£ > 3, there is at least
one variable appearing only once in the formula; therefore, the pure literal re-
duction operates, contradicting the minimality of .

Contradicting T4:

Step 3a: By T3 and the conclusion of step (1), @ is with high probability sa-
tisfiable. Let {y;,...,y;} be the variables appearing in ®, and let
o:{L, ...,1} = {£1} be a fixed satistying assignment of ®. We say that
a satisfying assignment x of F is compatible with a tuple

(21, ..., 2) € [0V if x(2;) =o(i) for all i =1, ...,I. Furthermore, we say
that the tuple (21, ..., z;) is bad if F has fewer than  B" satisfying assign-
ments compatible with (zq, ..., 2;). Notice that by T1, there are at least

(1 — a)n' bad tuples.

Step 3b: By the Erdds-Simonovits theorem [ES82|, if I k-tuples (wi, ...,
wh), ..., (w}, ..., w}) are chosen uniformly at random and independently
from n*, then with probability at least y/, for every function f:[l] — [k],
the tuple (w{m, e, w{(l)) is a bad tuple. In particular, we have that with
probability at most (1 — py/)1°e /! a random formula F}(n, log n) will not
contain [ clauses Cy, ..., C; satisfying the following:

(i) Ci=g(vl, ..., vf) fori=1, ...,[, where gis the Boolean function whose
existence is implied by condition 5.

(ii) For every function f:[I] — [k], the I-tuple (v{(l), ...,v{m) is bad.
Therefore, by choosing n large enough, the probability that a random
formula Fj(n,log n) contains clauses satisfying (i) and (i) is at
least 1 — a.

Step 3c: Let C4, ..., C; be clauses satisfying (i) and (ii), and let x :[n] — {£1}
be a satisfying assignment of F' A C; A ... A C}. Then note that for every
i=1,...,1, there exists an f(i) such that X(Uif(z)) = 0(4). Otherwise, for
some i, and all j=1, ...,k x(v)) =—0(i), which implies that x does
not satisfy C;, which is a contradiction. It now follows that y is compatible
with (v{(l), ...,vlf (l)). Therefore, we conclude that every satisfying assign-
ment of ' A C; A---A C}is compatible with (v{(l), e, v{m) for some func-
tion f:[I] — [k]. But, by condition (ii), every one of these l-tuples is bad, and
therefore, each one does not have more than % B" satisfying assignments com-
patible with them. As a result, FF A C; A---A C; does not have more than
%le”’ satisfying assignments. Moreover, combining step 2b and step 3c, we
conclude that with probability at least 1 — ¢, F' A F* contains at most % k' Bn
satisfying assignments, where F* is a random F'j(n,log n) formula.
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Step 3d: Given a satisfying assignment x :[n] — {£1}, with probability at least
2!-% the clause g(vy, ...v;), where (v, ..., v;) is chosen uniformly at ran-
dom from [n]*, will not be satisfied by x. In particular, a random clause will
be satisfied by y with probability at most 1 — pg21’k. More generally, a ran-
dom Fj(n,log n) will be satisfied by x with probability at most
(1- pg21*k)1°g "< "%, where ¢, = p921*k. Therefore, if F* is a

F.(n,log n) random formula independent of F*, we have that
1
E {#sat. assign. of F' A F* N\ F** | #sat. assign. of F N\ F* < ile"

1
< len’
— 2n%

and therefore, by Markov’s inequality,

1
P [#sat. assign.of F \ F* A F** > §B" | #sat. assign. of F' A\ F*

1
<%le7'} <i,

< S a
which is less than « /2 for n large enough. Thus, combining the conclusion of
step 2¢ and the previous formula, we obtain

P{#sat. assign. of F AN F* AN F** > —B"| > 3a /2,

1
2

and this contradicts T4, thereby proving that property Ap has a sharp
threshold. 0
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