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ABSTRACT: The “classical” random graph models, in particular G(n, p), are “homogeneous,” in
the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs
arising in the real world do not have this property, having, for example, power-law degree distributions.
Thus there has been a lot of recent interest in defining and studying “inhomogeneous” random graph
models.

One of the most studied properties of these new models is their “robustness”, or, equivalently, the
“phase transition” as an edge density parameter is varied. For G(n, p), p = c/n, the phase transition
at c = 1 has been a central topic in the study of random graphs for well over 40 years.

Many of the new inhomogeneous models are rather complicated; although there are exceptions, in
most cases precise questions such as determining exactly the critical point of the phase transition are
approachable only when there is independence between the edges. Fortunately, some models studied
have this property already, and others can be approximated by models with independence.

Here we introduce a very general model of an inhomogeneous random graph with (conditional)
independence between the edges, which scales so that the number of edges is linear in the number of
vertices. This scaling corresponds to the p = c/n scaling for G(n, p) used to study the phase transition;
also, it seems to be a property of many large real-world graphs. Our model includes as special cases
many models previously studied.

We show that, under one very weak assumption (that the expected number of edges is “what it
should be”), many properties of the model can be determined, in particular the critical point of the
phase transition, and the size of the giant component above the transition. We do this by relating our
random graphs to branching processes, which are much easier to analyze.
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4 BOLLOBÁS, JANSON, AND RIORDAN

We also consider other properties of the model, showing, for example, that when there is a giant
component, it is “stable”: for a typical random graph, no matter how we add or delete o(n) edges, the
size of the giant component does not change by more than o(n). © 2007 Wiley Periodicals, Inc. Random
Struct. Alg., 31, 3–122, 2007
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1. INTRODUCTION

The theory of random graphs was founded in the late 1950s and early 1960s by Erdős and
Rényi [47, 48], who started the systematic study of the space G(n, M) of all graphs with n
labelled vertices and M = M(n) edges, with all graphs equiprobable. (Usually, one writes
G(n, M) for a random element of G(n, M).) At about the same time, Gilbert [52] introduced
the closely related model G(n, p) of random graphs on n labeled vertices: a random G(n, p) ∈
G(n, p) is obtained by selecting edges independently, each with probability p = p(n). For
many questions, such as those considered in this paper, the models are essentially equivalent
(if p = M/

(n
2

)
, say). As Erdős and Rényi are the founders of the theory of random graphs,

it is not surprising that both G(n, p) and G(n, M) are now known as Erdős–Rényi random
graphs.

In addition to these two “classical” models, much attention has been paid to the space
of random r-regular graphs, and to the space G(k − out) of random directed graphs where
each vertex has out-degree k, and the undirected graphs underlying these. All these random
graph models are “homogeneous” in the sense that all vertices are exactly equivalent in
the definition of the model. Furthermore, in a typical realization, most vertices are in some
sense similar to most others. For example, the vertex degrees in G(n, p) or in G(n, M) do
not vary very much: their distribution is close to a Poisson distribution.

In contrast, many large real-world graphs are highly inhomogeneous. One reason is that
the vertices may have been “born” at different times, with old and new vertices having very
different properties. Experimentally, the spread of degrees is often very large. In particu-
lar, in many examples the degree distribution follows a power law. In the last few years,
this has led to the introduction and analysis of many new random graph models designed to
incorporate or explain these features. Recent work in this area perhaps started from the obser-
vations of Faloutsos, Faloutsos and Faloutsos [50] concerning scaling in real-life networks,
in particular the power-law distribution of degrees in the “internet graph,” and similar obser-
vations concerning the “web graph” made by Kleinberg, Kumar, Raghavan, Rajagopalan
and Tomkins [66], and by Barabási and Albert [9], who also looked at several other real
world graphs. The latter two groups introduced two of the first models to explain these
observations, using the ideas of “copying” and of “growth with preferential attachment”,
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6 BOLLOBÁS, JANSON, AND RIORDAN

respectively. Observations of and proposed models for other networks followed, includ-
ing protein interaction networks, telephone call graphs, scientific collaboration graphs and
many others. Extensive surveys of the mostly experimental or heuristic work have been
written by Barabási and Albert [3] and Dorogovtsev and Mendes [42].

Some of the first rigorous mathematical results concerning (precisely defined variants of)
these new models are those of Bollobás and Riordan [23], Bollobás, Riordan, Spencer and
Tusnády [26], Buckley and Osthus [29], and Cooper and Frieze [40]. For a partial survey
of the rapidly growing body of rigorous work, see Bollobás and Riordan [21]. Needless to
say, surveys in an active area such as this quickly become dated, and there are already too
many rigorous results in the field to list here.

Perhaps the most striking and important result of Erdős and Rényi concerns the sudden
emergence of the “giant component”, the phase transition in G(n, p) that occurs at p = 1/n:
if c > 0 is a constant, then the largest component of G(n, c/n) has order O(log n) whp if
c < 1, and order �(n) whp if c > 1 (see Section 3 for the notation). In particular, a giant
component of order �(n) exists (with high probability as n → ∞) if and only if c > 1.
Over 20 years later, Bollobás [15] and Łuczak [71] proved considerably sharper results
about the exact nature of this phase transition: in particular, they determined the exact size
of the “window” in which the transition takes place. Further, very detailed results were
proved by Janson, Knuth, Łuczak and Pittel [58]; see Bollobás [16] and Janson, Łuczak and
Ruciński [59] for numerous results and references.

Our main purpose in this paper is to lay the foundations of a very general theory of
inhomogeneous sparse random graphs. To this end

• we shall define a general model that is sufficiently flexible to include exactly many of
the specific spaces of inhomogeneous random graphs that have been studied in recent
years,

• we shall establish a close connection between the component structure of a random
graph in this model, the survival probability of a related branching process, and the
norm of a certain operator,

• we shall use these connections to study the phase transition in our model, examining
especially the numbers of vertices and edges in the giant component, and

• we shall prove results concerning the stability of the giant component under the addition
and deletion of edges.

In addition, we shall study various other properties of our model, including the degree
distribution, the number of paths and cycles, and the typical distance between pairs of
vertices in the giant component. Furthermore, we shall spell out what our results say about
many specific models that have been studied previously.

Although we shall give many examples throughout the paper, to motivate the definitions
it may help to bear in mind one particular example of the general class of models we shall
study. This example is the uniformly grown random graph, or c/j-graph, G1/j

n (c). Here
c > 0 is a parameter that will be kept constant as n varies, and the graph G1/j

n (c) is the
graph on [n] = {1, 2, . . . , n} in which edges are present independently, and the probability
that for i �= j the edge ij is present is pij = min{c/ max{i, j}, 1}, or simply c/j if i < j and
c ≤ 2.

A natural generalization of G(n, p) that includes the example above as a very special
case is obtained by replacing the single parameter p by a symmetric n × n matrix (pij) with
0 ≤ pij ≤ 1. We write G(n, (pij)) for the random graph with vertex set [n] where i and
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j are connected by an edge with probability pij, and these events are independent for all
pairs (i, j) with i < j; see [16], p. 35. We are interested in asymptotics as n → ∞, usually
with (pij) = (pij(n)) depending on n. It seems difficult to obtain substantial asymptotic
results for G(n, (pij)) without further restrictions; the model is too general. (However, for
connectedness, Alon [7] proved a number of results.)

Here we are mainly interested in random graphs where the average degree is �(1); one
of the main cases treated in this paper is pij = κ(i/n, j/n)/n for a suitable function κ on
(0, 1]2. Taking κ(x, y) = c/ max{x, y}, we obtain G1/j

n (c). Many other graphs studied earlier
by different authors can also be obtained by choosing κ(x, y) suitably; see Section 16, and
the forthcoming papers [20,57]. A precise definition of the random graphs treated here will
be given in Section 2, and some simple examples in Section 4.

The rest of the paper is organized as follows. In Section 2 we define the model G(n, κ)

we shall study, along with the branching process Xκ and integral operator Tκ to which we
shall relate its component structure.

In Subsection 3.1 we present our main results on the giant component of G(n, κ): under
certain weak assumptions we obtain necessary and sufficient conditions for G(n, κ) to have
a giant component, show that when the giant component exists it is unique, and find its
normalized size and number of edges. Further results are presented in the following sub-
sections, on the “stability” of the giant component in Subsection 3.2, on small components
in Subsection 3.3, on the degree sequence in Subsection 3.4, and on the typical distance
between vertices of the giant component in Subsection 3.5. In Subsection 3.6 we turn to
the phase-transition in G(n, κ); more precisely, we examine the growth rate of the giant
component as it emerges.

Since our model is very general, and the definition rather lengthy, special cases of the
model play an important role in the paper; we have described one, G1/j

n (c) already. In
Section 4 we give several further simple examples to illustrate the definitions and results of
the previous sections. Towards the end of the paper, we shall discuss several other special
cases more extensively, in particular describing the relationship to other models studied
earlier; we consider these to be applications rather than illustrations of the model, and so
present them after the proofs.

The next several sections are devoted to the proofs of the main results; the reader inter-
ested primarily in the applications may wish to skip straight to Section 16. We start by
analyzing the branching process Xκ , proving results about this process that will help us
relate G(n, κ) to Xκ . The study of Xκ itself is not one of our main aims. In Section 5 we
prove various lemmas needed in Section 6 to prove the results about Xκ that we shall use
throughout the paper.

Next, we turn to preparatory results concerning G(n, κ) itself, starting with simple
approximation lemmas in Section 7; basic results on the number of edges of G(n, κ) are
given in Section 8.

Our main results about the existence and size of the giant component are proved in
Section 9, using material from the previous sections; the reader who is interested only in the
derivations of these results should read Sections 2 to 9. The number of edges in the giant
component is determined in Section 10.

Sections 11 to 15 are devoted to the proofs of the results in Subsections 3.2 to 3.6: broadly
speaking, these proofs rely on the results up to Section 9, but not on each other, so the reader
may safely omit any subset of these sections. The stability result is proved in Section 11, the
results on small components in Section 12, the vertex degrees are studied in Section 13, the
distance between vertices in Section 14, and the phase transition in Section 15. The latter
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8 BOLLOBÁS, JANSON, AND RIORDAN

results may be viewed purely as statements about a branching process, in which case the
proofs need only the results of Sections 5 and 6.

In Section 16 we apply our general model to deduce results about several specific models,
in particular ones that have been studied in recent years, and discuss the relationship of our
results to earlier work.

In Section 17 we give some simple results about paths and cycles in G(n, κ), inspired
by the work of Turova on a special case of the model (described in Section 16), and show
that a conjecture of hers holds under mild conditions. In Section 18 we discuss several (at
least superficially) related models as well as possible future work. Finally, in the appendix
we give some basic results on random measures used throughout the paper.

2. THE MODEL

In this section we define the random graph model that we shall study throughout the paper,
as well as a branching process and an integral operator that will be key to characterizing
the component structure of this random graph. This section also includes various remarks
on the definitions, including descriptions of several minor variants; the formal definitions
may be understood without reference to these remarks. To make sense of the definitions,
the reader may wish to keep in mind the model G1/j

n (c) defined in the introduction.
Our model is an extension of one defined by Söderberg [88]. Let S be a separable metric

space equipped with a Borel probability measure µ. We shall often suppress the measure
µ in our notation, writing, for example, ‖ ‖p for the norm in Lp(S) = Lp(S, µ), and “a.e.
on S” for µ-a.e. on S. Much of the time (for example, when studying G1/j

n (c)), we shall
take S = (0, 1] with µ Lebesgue measure. Throughout the paper, the “kernel” κ will be
a symmetric non-negative function on S × S. Further conditions on κ will be given in
Definitions 2.7 and 2.10.

For each n we have a deterministic or random sequence xn = (x1, . . . , xn) of points in S.
Formally, we should write xn = (x(n)

1 , . . . , x(n)
n ), say, as we assume no relationship between

the ith elements of xn and of xn′ . However, this notation would be rather cumbersome, and
it will always be clear which xn an xi is an element of. Writing δx for the measure consisting
of a point mass of weight 1 at x, and

νn := 1

n

n∑
i=1

δxi (2.1)

for the empirical distribution of xn, we shall assume that νn converges in probability to µ

as n → ∞, with convergence in the usual space of probability measures on S (see, e.g.,
[13]). This condition has a simple down-to-earth description in terms of the number of xi in
certain sets A: a set A ⊆ S is a µ-continuity set if A is (Borel) measurable and µ(∂A) = 0,
where ∂A is the boundary of A. The convergence condition νn

p→ µ means exactly that for
every µ-continuity set A,

νn(A) := #{i : xi ∈ A}/n
p→ µ(A); (2.2)

see Appendix A for technical details.
One example where (2.2) holds is the random case, where the xi are independent and

uniformly distributed on S with distribution µ (as in Söderberg [88]); then (2.2) holds by
the law of large numbers.

Random Structures and Algorithms DOI 10.1002/rsa



THE PHASE TRANSITION IN INHOMOGENEOUS RANDOM GRAPHS 9

We shall often consider S = (0, 1] with the Lebesgue measure µ; in this case, condition
(2.2) has to be verified only for intervals (see Remark A.3). For this pair (S, µ) we shall
have two standard choices for the (xi): the deterministic case xi = i/n, and the random case
where the xi are independent and uniformly distributed on (0, 1]. To express G1/j

n (c) as a
special case of our model, we shall take xi = i/n.

For later formal statements, we gather the preceding assumptions into the following
definitions.

Definition. A ground space is a pair (S, µ), where S is a separable metric space and
µ is a Borel probability measure on S.

Definition. A vertex space V is a triple (S, µ, (xn)n≥1), where (S, µ) is a ground space
and, for each n ≥ 1, xn is a random sequence (x1, x2, . . . , xn) of n points of S, such that
(2.2) holds.

Of course, we do not need (xn)n≥1 to be defined for every n, but only for an infinite set
of integers n.

Definition. A kernel κ on a ground space (S, µ) is a symmetric non-negative (Borel)
measurable function on S × S. By a kernel on a vertex space (S, µ, (xn)n≥1) we mean a
kernel on (S, µ).

From now on, unless otherwise stated, we shall always write a vertex space V as
(S, µ, (xn)n≥1), and xn as (x1, x2, . . . , xn). As noted above, the (distributions of) the indi-
vidual xi depend on n; in the notation we suppress this dependence as it will always be clear
which xn an xi is a member of.

Let κ be a kernel on the vertex space V . Given the (random) sequence (x1, . . . , xn), we
let GV(n, κ) be the random graph GV(n, (pij)) with

pij := min{κ(xi, xj)/n, 1}. (2.3)

In other words, GV(n, κ) has n vertices {1, . . . , n} and, given x1, . . . , xn, an edge ij (with
i �= j) exists with probability pij, independently of all other (unordered) pairs ij. Often, we
shall suppress the dependence on V , writing G(n, κ) for GV(n, κ). We have described one
example already: if we take κ(x, y) = c/ max{x, y}, with S = (0, 1], µ Lebesgue measure,
and xi = x(n)

i = i/n, then (2.3) gives pij = min{c/ max{i, j}, 1}, so GV(n, κ) is exactly
the uniformly grown random graph G1/j

n (c) described in the introduction. We shall discuss
several other examples in Sections 4 and 16.

Remark 2.1. The random graph G(n, κ)=GV(n, κ) depends not only on κ but also on
the choice of x1, . . . , xn. Much of the time, our notation will not indicate how the points xi

are chosen, since this choice is irrelevant for our results as long as (2.2) holds and certain
pathologies are excluded (see (2.9), Lemma 8.1 and Example 8.6). The freedom of choice
of x1, . . . , xn gives our model flexibility, as shown by Proposition 9.3, Theorem 12.1 and
the examples in Sections 4 and 16, but does not affect the asymptotic behavior. Of course,
this asymptotic behavior does depend very much on S and µ.

In order to make our results easy to apply, it will be convenient to extend the definitions
above in two ways, by allowing µ(S) to take any value in (0,∞), and by allowing the number

Random Structures and Algorithms DOI 10.1002/rsa



10 BOLLOBÁS, JANSON, AND RIORDAN

of vertices of GV(n, κ) to be random, rather than exactly n. As we shall see later, this makes
no essential difference, and we shall almost always work with the n vertex model in our
arguments. We shall consider the “generalized” model only for the convenience of a reader
wishing to apply the results in the next section, obviating the need for a separate reduction
to the n vertex model in each case. All other readers may safely ignore the “generalized”
model, including the formal definitions that we now state.

Definition. A generalized ground space is a pair (S, µ), where S is a separable metric
space and µ is a Borel measure on S with 0 < µ(S) < ∞.

Let I ⊂ (0,∞) be any unbounded set, the index set parametrizing our model. Usually, I
is the positive integers, or the positive reals. For compatibility with our earlier definitions,
we write n for an element of I , even though this need not be an integer.

Definition. A generalized vertex space V is a triple (S, µ, (xn)n∈I), where (S, µ) is a
generalized ground space and, for each n ∈ I , xn is a random sequence (x1, x2, . . . , xvn) of
points of S of random length vn ≥ 0, such that (2.2) holds, i.e., such that

νn(A) := #{i : xi ∈ A}/n
p→ µ(A) (2.4)

as n ∈ I tends to infinity for every µ-continuity set A; equivalently, νn
p→ µ.

The definition of a kernel κ on a generalized ground space is exactly as before. Finally,
given a kernel κ on a generalized vertex space, for n ∈ I we let GV(n, κ) be the random graph
on {1, 2, . . . , vn} in which, given xn = (x1, . . . , xvn), each possible edge ij, 1 ≤ i < j ≤ vn,
is present with probability

pij := min{κ(xi, xj)/n, 1}, (2.5)

and the events that different edges are present are independent.
Note that if V is a generalized ground space, then, applying (2.4) with A = S, we see

that GV(n, κ) has µ(S)n + op(n) vertices. In both (2.4) and (2.5) we divide by n, rather
than by the actual number of vertices, or by µ(S)n; this turns out to be most convenient
normalization. Roughly speaking, by conditioning on the sequences (xn), or by adding op(n)

isolated vertices, we may assume without loss of generality that the number of vertices is
deterministic. Furthermore, multiplying κ and the index variable n by some constant factor,
and dividing µ(S) by the same factor, leaves the edge probabilities pij unchanged. As the
condition (2.4) is also unaffected by this transformation, the only effect on the model is to
rescale the parameter n, and we may assume without loss of generality that we have a vertex
space rather than a generalized vertex space; see Subsection 8.1.

Remark 2.2. We regard our random graphs as indexed by n, and consider what happens
as n → ∞. This is for notational convenience only; we could consider graphs indexed by
some other (possibly continuous) parameter, m, say, such that the number of vertices vm of
the graph with parameter m tends to infinity. This superficial modification is covered by the
definitions above: instead of considering graphs on 2n vertices, say, one can always consider
graphs on n vertices with n restricted to an “index set” I consisting of the powers of 2.

The generalized vertex space setting also allows the number of vertices to be random.
In other words, we may let {xi} be a point process on S, for example, a Poisson process of
intensity n; see Examples 4.9 and 4.11 and Subsection 16.5.

Random Structures and Algorithms DOI 10.1002/rsa
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Remark 2.3. Changing κ on a set of measure zero may have a significant effect on the
graph GV(n, κ); see Example 8.6, for instance. Indeed, if the xi are deterministic, then
GV(n, κ) depends only on the values of κ on a discrete set. This means that in our proofs
we cannot just ignore measure zero sets in the usual way. Later we shall impose very weak
conditions to control such effects; see Remark 2.8.

Before turning to the key definitions, giving conditions under which we can prove sub-
stantial results about GV(n, κ), let us make some remarks about some minor variants of the
model.

Remark 2.4. As an alternative to (2.3) (or (2.5)), we could use κ to define the intensities
of Poisson processes of edges, and ignore multiple edges, so the probability pij that there is
an edge between i and j would be given by

pij := 1 − exp(−κ(xi, xj)/n), (2.6)

rather than by (2.3). The results below are valid for this version too; this can be shown either
by checking that all arguments hold with only trivial changes, or by defining κn(x, y) :=
n(1 − exp(−κ(x, y)/n)) and using the setting in Definition 2.9.

Another alternative, studied by Britton, Deijfen and Martin-Löf [27] in a special case
(see Subsection 16.4), is to let pij/(1 − pij) = κ(xi, xj)/n, i.e., to take

pij := κ(xi, xj)/(n + κ(xi, xj)). (2.7)

Again, the results below remain valid; we now define κn(x, y) := κ(x, y)/(1 + κ(x, y)/n).

Remark 2.5. In this paper we treat only simple graphs. One natural variation that yields
a multigraph is to let the number of edges between i and j have a Poisson distribution with
mean κ(xi, xj)/n. Under suitable conditions (e.g. that κ is bounded), it is easy to see that
whp there are no triple edges, and that the number of double edges is Op(1); more precisely,
it has an asymptotic Poisson distribution with mean 1

4

∫∫
κ2, see Section 17. The underlying

simple graph is just the graph defined in Remark 2.4.
Another variation (which can be combined with the previous one) is to permit loops

by allowing i = j in the definition above. These variations do not affect our results on
component sizes.

Remark 2.6. Our model can be extended to a random graph process on a fixed vertex set
describing an inhomogeneously growing random graph: Start without any edges and, given
xn, add edges at random times given by independent Poisson processes with intensities
κ(xi, xj)/n. (Ignore multiple edges.) At time t, we obtain the version of the random graph
G(n, tκ) given by (2.6); cf. Remark 2.4. Alternatively, we may add edges sequentially, with
each new edge chosen at random with probabilities proportional to κ(xi, xj); this gives the
same process except for a (random) change of time scale.

Without further restrictions, the model GV(n, κ) we have defined is too general for us to
prove meaningful results. Indeed, the entire graph may be determined by the behavior of κ

on a measure zero set. Usually, κ is continuous, so this problem does not arise. However,
there are natural examples with κ discontinuous, so we shall assume that κ is continuous
a.e. rather than everywhere. With this weaker condition, to relate the behavior of GV(n, κ)
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to that of κ we shall need some extra assumptions. The behavior of the total number of
edges turns out to be the key to the elimination of pathologies.

As usual, we write e(G) for the number of edges in a graph G. Note that E e(G(n, (pij))) =∑
i<j pij, so we have

E e(GV(n, κ)) = E

∑
i<j

min{κ(xi, xj)/n, 1}. (2.8)

In well-behaved cases, this expectation is asymptotically n 1
2

∫∫
κ; see, for exam-

ple, Lemma 8.1.

Definition 2.7. A kernelκ is graphical on a (generalized) vertex spaceV = (S, µ, (xn))

if the following conditions hold:

(i) κ is continuous a.e. on S × S;
(ii) κ ∈ L1(S × S, µ × µ);

(iii)

1

n
E e(GV(n, κ)) → 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y). (2.9)

Note that whether κ is graphical on V depends on the sequences xn. Also, as we shall see
in Remark 8.4, if κ is graphical on V , then so is cκ for any constant c > 0. (This statement
would be trivial without the min{·, 1} operation in the right-hand side of (2.8). With this, it
is still not hard to check.)

Remark 2.8. Conditions (i) and (ii) are natural technical conditions; at first sight, condition
(iii) is perhaps unexpected. As we shall see, some extra condition is needed to exclude
various pathologies; see Example 8.6, for example. Condition (iii) is in fact extremely
weak: the natural interpretation of κ is that it measures the density of edges, so the integral
should be the expected number of edges, suitably normalized. Thus, condition (iii) says
that GV(n, κ) has about the right number of edges, so if (iii) does not hold, κ has failed to
capture even the most basic property of the graph. What is surprising, is that this condition
is enough: we shall show that the assumptions above are enough for κ to capture many
properties of the graph.

In fact, in many circumstances, condition (iii) is automatically satisfied. Indeed, one of
the two inequalities implicit in this definition, namely

lim inf
1

n
E e(GV(n, κ)) ≥ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y),

always holds; see Lemma 8.1. This lemma also shows that (iii) holds whenever κ is bounded
and V is a vertex space. It also holds whenever V is a vertex space in which the xi are (pair-
wise) independent and distributed according to µ. Moreover, condition (iii) is likely to hold,
and to be easy to verify, for any particular model that is of interest. Proposition 8.9 shows
that when (iii) does hold, so the normalized number of edges converges in expectation, then
it also converges in probability. Note also that (2.9) holds if and only if the corresponding
relation holds for the variants of GV(n, κ) discussed in Remark 2.4; see Remark 8.4.
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In conjunction with condition (iii), condition (ii) says that the expected number of edges
is O(n), so the (expected) average degree is O(1). There are interesting cases with more
edges, but they will not be treated here; cf. Section 18.

We can be somewhat more general and allow minor deviations in (2.3) by letting κ

depend on n. This will ensure that our results apply directly to the various variations on the
model discussed above. The conditions we shall need on a sequence of kernels are contained
in the next definition.

Definition 2.9. Let V = (S, µ, (xn)) be a (generalized) vertex space and let κ be a
kernel on V . A sequence (κn) of kernels on (S, µ) is graphical on V with limit κ if, for a.e.
(y, z) ∈ S2,

yn → y and zn → z imply that κn(yn, zn) → κ(y, z), (2.10)

κ satisfies conditions (i) and (ii) of Definition 2.7, and

1

n
E e(GV(n, κn)) → 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y). (2.11)

Note that if κ is a graphical kernel on V , then the sequence κn with κn = κ for every n is
a graphical sequence on V with limit κ . Much of the time, members of a graphical sequence
of kernels on V are themselves graphical on V .

Much of the time, the conditions in Definition 2.9 will be all we shall need to prove
results about GV(n, κn). However, when we come to the size of the giant component, one
additional condition will be needed.

Definition 2.10. A kernel κ on a (generalized) ground space (S, µ) is reducible if

∃A ⊂ S with 0 < µ(A) < µ(S) such that κ = 0 a.e. on A × (S\A);

otherwise κ is irreducible. Thus κ is irreducible if

A ⊆ S and κ = 0 a.e. on A × (S\A) implies µ(A) = 0 or µ(S\A) = 0. (2.12)

Roughly speaking, κ is reducible if the vertex set of GV(n, κ) can be split into two parts so
that the probability of an edge from one part to the other is zero, and irreducible otherwise.
For technical reasons, we consider a slight weakening of irreducibility.

Definition 2.11. A kernel κ on a (generalized) ground space (S, µ) is quasi-irreducible
if there is a µ-continuity set S ′ ⊆ S with µ(S ′) > 0 such that the restriction of κ to S ′ ×S ′

is irreducible, and κ(x, y) = 0 if x /∈ S ′ or y /∈ S ′.

Remark 2.12. Given a quasi-irreducible kernel κ and the associated graph Gn = GV(n, κ),
we can consider the irreducible restriction κ ′ of κ to S ′ × S ′, and the corresponding graph
G′

n = GV ′
(n, κ ′) obtained from Gn by deleting the vertices with types in S\S ′; these vertices

are isolated in Gn. This graph is an instance of our model with a generalized vertex space
V ′; note that the number N ′ of vertices of G′

n is random. Thus, we may reduce suitable
questions about quasi-irreducible kernels to the irreducible case. In our main results, the
reader will lose nothing by reading irreducible instead of quasi-irreducible. We state some
of the results for the quasi-irreducible case because this is all we need in the proofs (even
without removing isolated vertices as above), and we sometimes need the quasi-irreducible
case of one result to prove the irreducible case of another.
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2.1. A Branching Process

Let κ be a kernel on a (generalized) ground space (S, µ). To study the component structure
of G(n, κ), we shall use the multi-type Galton–Watson branching process with type space
S, where a particle of type x ∈ S is replaced in the next generation by a set of particles
distributed as a Poisson process on S with intensity κ(x, y) dµ(y). (Thus, the number of
children with types in a subset A ⊆ S has a Poisson distribution with mean

∫
A κ(x, y) dµ(y),

and these numbers are independent for disjoint sets A and for different particles; see, e.g.,
Kallenberg [61].) We denote this branching process, started with a single particle of type x,
by Xκ(x). When µ(S) = 1, so µ is a probability measure, we write Xκ for the same process
with the type of the initial particle random, distributed according to µ.

Let ρk(κ; x) be the probability that the branching process Xκ(x) has a total population of
exactly k particles, and let ρ≥k(κ; x) be the probability that the total population is at least k.
Furthermore, let ρ(κ; x) be the probability that the branching process survives for eternity.
If the probability that a particle has infinitely many children is 0, then ρ(κ; x) is equal to
ρ∞(κ; x), the probability that the total population is infinite; see Remark 5.2.

Set

ρk(κ) :=
∫

S
ρk(κ; x) dµ(x), ρ(κ) :=

∫
S

ρ(κ; x) dµ(x), (2.13)

and define ρ≥k(κ) analogously. Thus, if µ(S) = 1, then ρ(κ) is the survival probability
of the branching process Xκ . Note that multiplying κ by a constant factor c and dividing
µ by the same factor leaves the branching process Xκ(x), and hence ρ(κ; x) and ρk(κ; x),
unchanged. However, ρ(κ), for example, is decreased by a factor of c.

Remark 2.13. As we shall see later, the branching process Xκ(x) arises naturally when
exploring a component of G(n, κ) starting at a vertex of type x; this is directly analogous
to the use of the single-type Poisson branching process in the analysis of the Erdős-Rényi
graph G(n, c/n). In models with a fixed degree sequence, a related “size-biased” branching
process arises, as it matters how we reach a vertex. Here, due to the independence between
edges, there is no size-biasing.

2.2. An Integral Operator

Given a kernel κ on a (generalized) ground space (S, µ), let Tκ be the integral operator on
(S, µ) with kernel κ , defined by

(Tκ f )(x) =
∫

S
κ(x, y)f (y) dµ(y), (2.14)

for any (measurable) function f such that this integral is defined (finite or +∞) for a.e.
x. As usual, we need never consider non-measurable functions; in future, we shall assume
without comment that all functions considered are measurable. Note that Tκ f is defined for
every f ≥ 0, with 0 ≤ Tκ f ≤ ∞. If κ ∈ L1(S × S), as we shall assume throughout, then
Tκ f is also defined for every bounded f ; in this case Tκ f ∈ L1(S) and thus Tκ f is finite a.e.

We define

‖Tκ‖ := sup{‖Tκ f ‖2 : f ≥ 0, ‖f ‖2 ≤ 1} ≤ ∞. (2.15)
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When finite, ‖Tκ‖ is the norm of Tκ as an operator on L2(S, µ); it is infinite if Tκ does not
define a bounded operator on L2. Trivially, ‖Tκ‖ is at most the Hilbert–Schmidt norm of Tκ :

‖Tκ‖ ≤ ‖Tκ‖HS := ‖κ‖L2(S×S) =
(∫∫

S2
κ(x, y)2 dµ(x) dµ(y)

)1/2

. (2.16)

We also define the non-linear operator �κ by

�κ f := 1 − e−Tκ f (2.17)

for f ≥ 0. Note that for such f we have 0 ≤ Tκ f ≤ ∞, and thus 0 ≤ �κ f ≤ 1. We
shall characterize the survival probability ρ(κ; x), and thus ρ(κ), in terms of the non-linear
operator �κ , showing essentially that the function x �→ ρ(κ; x) is the maximal fixed point
of the non-linear operator �κ ; see Theorem 6.2.

3. MAIN RESULTS

In this section we present our main results describing various properties of the general
model GV(n, κn); some further general results will be given in the later sections devoted to
individual properties. In Section 16, we shall present results for special cases of the model,
including several that have been studied previously.

All our results are asymptotic, and all unspecified limits are taken as n → ∞. We use the
following standard notation: for (deterministic) functions f = f (n) and g = g(n), we write
f = O(g) if f /g is bounded, f = �(g) if f /g is bounded away from zero, i.e., if g = O(f ),
and f = �(g) if f = O(g) and g = O(f ). We write f = o(g) if f /g → 0.

Turning to sequences of events and random variables, we say that an event holds with
high probability (whp), if it holds with probability tending to 1 as n → ∞. (Formally, it is
a sequence En of events that may hold whp, but the n is often suppressed in the notation.)

We write
p→ for convergence in probability. Thus, for example, if a ∈ R, then Xn

p→ a if
and only if, for every ε > 0, the relations Xn > a − ε and Xn < a + ε hold whp.

We shall use Op, op and �p in the standard way (see e.g. Janson, Łuczak and
Ruciński [59]); for example, if (Xn) is a sequence of random variables, then Xn = Op(1)

means “Xn is bounded in probability” and Xn = op(1) means that Xn
p→ 0. Given a function

f (n) > 0, we shall write Xn = O(f (n)) whp if there exists a constant C < ∞ such that
|Xn| ≤ Cf (n) whp. (This is written Xn = OC(f (n)) in [59].) Note that this is stronger than
Xn = Op(f (n)); the two statements can be written as ∃C∀ε lim supn P(|Xn| > Cf (n)) < ε

and ∀ε∃C lim supn P(|Xn| > Cf (n)) < ε, respectively. We shall use Xn = �(f (n)) whp
similarly.

We denote the orders of the components of a graph G by C1(G) ≥ C2(G) ≥ . . . , with
Cj(G) = 0 if G has fewer than j components. We let Nk(G) denote the total number of
vertices in components of order k, and write N≥k(G) for

∑
j≥k Nj(G), the number of vertices

in components of order at least k.
We shall write a ∧ b and a ∨ b for min{a, b} and max{a, b}, and use the same notation

for the pointwise minimum or maximum of two functions.
As noted in the previous section, a reader who wishes to understand the following results,

rather than apply them to a specific model, may safely ignore all references to generalized
vertex spaces.
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3.1. Existence, Size, and Uniqueness of the Giant Component

Our first result gives a necessary and sufficient condition for the existence of a giant
component in our model.

Theorem 3.1. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with limit κ .

(i) If ‖Tκ‖ ≤ 1, then C1(GV(n, κn)) = op(n), while if ‖Tκ‖ > 1, then C1(GV(n, κn)) =
�(n) whp.

(ii) For any ε > 0, whp we have

1

n
C1(G

V(n, κn)) ≤ ρ(κ) + ε. (3.1)

(iii) If κ is quasi-irreducible, then

1

n
C1(G

V(n, κn))
p→ ρ(κ). (3.2)

In all cases ρ(κ) < µ(S); furthermore, ρ(κ) > 0 if and only if ‖Tκ‖ > 1.

This result will be proved in Section 9, along with an additional result, Theorem 9.10,
concerning the distribution of the types of the vertices in the giant component. We have
included the final statement about ρ(κ) for ease of future reference, even though it is purely
a statement about the branching process Xκ . As remarked above, ρ(κ) can be found from
the solutions of the non-linear equation f = �κ(f ); see Theorem 6.2.

Theorem 3.1 has several immediate consequences. As customary, we say that a sequence
of random graphs Gn (with �(n) vertices in Gn) has a giant component (whp) if C1(Gn) =
�(n) whp. For simplicity we state these results in the form where the kernel κn is independent
of n.

Corollary 3.2. Let κ be a graphical kernel on a (generalized) vertex space V , and
consider the random graphs GV(n, cκ) where c > 0 is a constant. Then the threshold for
the existence of a giant component is c = ‖Tκ‖−1. More precisely, if c ≤ ‖Tκ‖−1, then
C1(GV(n, cκ)) = op(n), while if c > ‖Tκ‖−1 and κ is irreducible, then C1(GV(n, cκ)) =
ρ(cκ)n + op(n) = �p(n).

Corollary 3.3. Let κ be a graphical kernel on a (generalized) vertex space V . Then the
property that GV(n, cκ) has whp a giant component holds for every c > 0 if and only if
‖Tκ‖ = ∞. Otherwise it has a finite threshold c0 > 0.

The corollaries above are immediate from Theorem 3.1, the observation that ‖Tcκ‖ =
c‖Tκ‖, and the fact that κ graphical on V implies cκ graphical on V (see Remark 8.4). In
the light of the results above, we say that a kernel κ is subcritical if ‖Tκ‖ < 1, critical if
‖Tκ‖ = 1, and supercritical if ‖Tκ‖ > 1. We use the same expressions for a random graph
G(n, κ) and a branching process Xκ .

The next result shows that the number of edges in the graph at the point where the giant
component emerges is maximal in the classical Erdős–Rényi case, or the slightly more
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general “homogeneous case” described in Example 4.6; see Section 15 for the proof. (In
this result we do need µ(S) = 1 as a normalization.)

Proposition 3.4. Let κn be a graphical sequence of kernels on a vertex space V with

limit κ , and assume that κ is critical, i.e. ‖Tκ‖ = 1. Then 1
n e(GV(n, κn))

p→ 1
2

∫∫
κ ≤ 1/2,

with equality in the uniform case κ = 1; more precisely, equality holds if and only if∫
S κ(x, y) dµ(y) = 1 for a.e. x.

We can also determine the asymptotic number of edges in the giant component. As this
is not always uniquely defined, for any graph G, let C1(G) be the largest component of G,
i.e., the component with most vertices, chosen according to any fixed rule if there is a tie.
In order to state the next result concisely, let

ζ(κ) := 1

2

∫∫
S2

κ(x, y)(ρ(κ; x) + ρ(κ; y) − ρ(κ; x)ρ(κ; y)) dµ(x) dµ(y). (3.3)

Note that the bracket above is the probability that, given independent branching processes
Xκ(x) and Xκ(y), at least one survives. Intuitively, given that a certain edge is present in
GV(n, κn), this edge is in the giant component if, when exploring the rest of the graph from
its end-vertices, there is at least one from which we can reach many vertices.

Theorem 3.5. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with quasi-irreducible limit κ . Then

1

n
e(C1(G

V(n, κn)))
p→ ζ(κ). (3.4)

This result will be proved in Section 10, together with some properties of ζ(κ).
Under our assumptions, the giant component is whp unique when it exists; the second

largest component is much smaller. Indeed, as we shall show in Section 9, only op(n) vertices
are in “large” components other than the largest.

Theorem 3.6. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with quasi-irreducible limit κ , and let Gn = GV(n, κn). If ω(n) → ∞ and ω(n) = o(n),
then ∑

j≥2: Cj(Gn)≥ω(n)

Cj(Gn) = op(n). (3.5)

In particular,
C2(Gn) = op(n). (3.6)

Remark 3.7. If κ is reducible and the xi are (absolutely) continuous random variables, then
GV(n, κ) decomposes into two (or more) disjoint parts that can be regarded as GVi(ni, κi),
for suitable Vi, ni and κi. By considering the parts separately, many of our results for the
irreducible case can be extended to the reducible case; note, however, that each of the parts
may contain a giant component, so it is possible to have C2 = �p(n). The restriction to
the case where the xi are continuous, which includes the Poisson case of Example 4.9, is
necessary unless we impose a further restriction on κ: in general there may be a subset
A ⊂ S of measure zero which always contains some xi, and this can link the subgraphs
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GVi(ni, κi). Worse still, such an A may contain an xi with probability bounded away from 0
and 1, so 1

n C1(GV(n, κ)) need not converge in probability.

Remark 3.8. If κ and κ ′ are two kernels on the same vertex space with κ ≤ κ ′, then
GV(n, κ) and GV(n, κ ′) are random graphs on the same vertex set, and there is a nat-
ural coupling between them in which GV(n, κ) is always a subgraph of GV(n, κ ′), i.e., a
coupling with GV(n, κ) ⊆ GV(n, κ ′). Similarly, one can couple the corresponding branch-
ing processes so that every particle present in one is present in the other, i.e., so that
Xκ ⊆ Xκ ′ . Thus ρ(κ) ≤ ρ(κ ′). If κ is irreducible and ρ(κ) > 0, then it follows from
Theorem 6.2 and Lemma 5.12 that ρ(κ ′) > ρ(κ) unless κ ′ = κ a.e. Similarly, the threshold
c0(κ

′) := ‖Tκ ′ ‖−1 is at most c0(κ) := ‖Tκ‖−1. Here, however, somewhat surprisingly, we
may have c0(κ

′) = c0(κ) even if κ ′ > κ; see Subsection 16.3. On the other hand, it is easily
seen that if Tκ is compact, κ is irreducible, and κ ′ > κ on a set of positive measure, then
‖Tκ ′ ‖ > ‖Tκ‖ and thus c0(κ

′) < c0(κ).

3.2. Stability

The giant component of Gn = GV(n, κn) is stable in the sense that its size does not change
much if we add or delete a few edges; this is made precise in the following theorem. Note
that the edges added or deleted do not have to be random or independent of the existing
graph; they can be chosen by an adversary after inspecting the whole of Gn. Also, we may
delete vertices instead of (or as well as) edges.

Theorem 3.9. Let (κn) be a graphical sequence of kernels on a (generalized) vertex
space V with irreducible limit κ , and let Gn = GV(n, κn). For every ε > 0 there is a δ > 0
(depending on κ) such that, whp,

(ρ(κ) − ε)n ≤ C1(G
′
n) ≤ (ρ(κ) + ε)n (3.7)

for every graph G′
n that may be obtained from Gn by deleting at most δn vertices and their

incident edges, and then adding or deleting at most δn edges.

In particular, if G′
n is a graph on V(Gn) with e(G′

n � Gn) = op(n) then

C1(G
′
n) = C1(Gn) + op(n) = ρ(κ)n + op(n).

Theorem 3.9 is proved in Section 11. Clearly, in proving the first inequality in (3.7), we
may assume that G′

n ⊆ Gn, and in proving the second that Gn ⊆ G′
n. The latter case will

be easy to deal with using Theorem 3.6. Proving the first inequality amounts to showing
that, whp, the giant component of Gn cannot be cut into two pieces of size at least �(n) by
deleting o(n) vertices and then o(n) edges. For edge deletion, Luczak and McDiarmid [70]
gave a very simple proof of this result in the Erdős-Rényi case, which adapts easily to the
finite type case and hence (using our general results) to the full generality of Theorem 3.9.
This proof is presented in Section 11.

Another approach to proving Theorem 3.9 involves reducing this statement to an equiv-
alent statement about the two-core, which is very easy to prove in the uniform case. This
reduction involves relating the two-core to the branching process, using results that we
believe are of interest in their own right, presented in Section 11. Unfortunately, while the
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general case of the two-core result can be proved by branching process methods, the proof
is very complicated, so we shall not give it.

Remark 3.10. Theorem 3.9 may be viewed as a statement about the vulnerability of large-
scale networks to attack by an adversary who knows the detailed structure of the network,
and attempts to disconnect the network into small pieces by deleting a small fraction of
the vertices or edges. The vulnerability of “scale-free” networks to such attacks has been
considered by many people; see, for example, [5,24,31,38]; it turns out that such networks
are much more resilient to random failures than G(n, c/n), but also more vulnerable to
attack. In general, the flexibility available to the attacker makes rigorous analysis difficult,
although a result for the Barabási-Albert model was given in [24]. Theorem 3.9 shows in
particular that, for GV(n, κ), the network is at most a constant factor more vulnerable than
a homogeneous network: a constant fraction of the vertices or edges must be deleted to
destroy (or significantly shrink) the giant component.

Remark 3.11. As pointed out by Britton and Martin-Löf [28], in the case of vertex deletion
Theorem 3.9 also has the following interpretation: suppose that Gn represents the network
of contacts that may allow the spread of an infectious disease from person to person,
and that we wish to eliminate the possibility of an epidemic by vaccinating some of the
population. Even if the entire network of contacts is known, if the source of the infection
is not known, a significant (constant, as n → ∞) proportion of the population must be
vaccinated: otherwise, there is still a giant component in the graph on the unvaccinated
people, and if the infection starts at one of its vertices, it spreads to �(n) people.

3.3. Bounds on the Small Components

For the classical random graph G(n, c/n) it is well-known that in the subcritical (c < 1)
case, C1 = O(log n) whp, and that in the supercritical (c > 1) case, C2 = O(log n) whp; see
[16, 59], for example. These bounds do not always hold in the general framework we are
considering here, but if we add some conditions, then we can improve the estimates op(n)

in Theorem 3.1 and (3.6) to O(log n) whp. As before, we write Gn for GV(n, κn).

Theorem 3.12. Let (κn) be a graphical sequence of kernels on a (generalized) vertex
space V with limit κ .

(i) If κ is subcritical, i.e., ‖Tκ‖ < 1, and supx,y,n κn(x, y) < ∞, then C1(Gn) = O(log n)

whp.
(ii) If κ is supercritical, i.e., ‖Tκ‖ > 1, κ is irreducible, and either infx,y,n κn(x, y) > 0

or supx,y,n κn(x, y) < ∞, then C2(Gn) = O(log n) whp.

Theorem 3.12 is proved in Section 12. Note that in part (ii) we draw the same conclusion
from the very different assumptions infx,y,n κn(x, y) > 0 and supx,y,n κn(x, y) < ∞. There is
no similar result for the subcritical case (part (i)) assuming only that infx,y,n κn(x, y) > 0:
[19, Theorems 1 and 2] show that the random graph G1/j

n (c) with 0 < c < 1/4 is subcritical
and satisfies C1(G1/j

n (c)) = n�(1) whp.
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3.4. Degree Sequence

We next turn to the degrees of the vertices of Gn = GV(n, κn), where κn → κ . As we shall
see, the degree of a vertex of a given type x is asymptotically Poisson with a mean

λ(x) :=
∫

S
κ(x, y) dµ(y) (3.8)

that depends on x. This leads to a mixed Poisson distribution for the degree D of a (uniformly
chosen) random vertex of Gn. We write Zk for the number of vertices of Gn with degree k.

Theorem 3.13. Let (κn) be a graphical sequence of kernels on a (generalized) vertex
space V with limit κ , and let Gn = GV(n, κn). For any fixed k ≥ 0,

Zk/n
p→

∫
S

λ(x)k

k! e−λ(x) dµ(x),

where λ(x) is defined by (3.8). Equivalently,

Zk/|V(Gn)| p→ P( = k),

where  has the mixed Poisson distribution
∫

S Po(λ(x)) dµ(x)/µ(S).

In other words, if D is the degree of a random vertex of Gn = GV(n, κn), and we normalize
so that µ(S) = 1, then

L(D | Gn)
p→ L() =

∫
S

Po(λ(x)) dµ(x).

As we shall show in Section 13 and Subsections 16.2 and 16.4, our model includes natural
examples of “scale-free” random graphs, where the degree distribution has a power-law tail.
We believe that when it comes to modelling real-world graphs with, for example, observed
power laws for vertex degrees, our model provides an interesting and flexible alternative
to existing models based on generating graphs with a given degree sequence (e.g., Molloy
and Reed [77, 78]), or given expected degrees (e.g., Aiello, Chung and Lu [1]).

3.5. Distances Between Vertices

Next, we consider the distances between vertices of Gn = GV(n, κn) where, as usual, κn is a
graphical sequence of kernels on V with limit κ . Let us write d(v, w) for the graph distance
between two vertices of Gn, which we take to be infinite if they lie in different components.
Note that

|{{v, w} : d(v, w) < ∞}| =
∑

i

(
Ci(Gn)

2

)
, (3.9)

where {v, w} denotes an unordered pair of distinct vertices of Gn.
Under certain conditions, we can give upper and lower bounds on d(v, w) for almost all

pairs with d(v, w) < ∞.

Theorem 3.14. Let κn be a graphical sequence of kernels on a (generalized) vertex space
V with limit κ , with ‖Tκ‖ > 1. Let Gn = GV(n, κn), and let ε > 0 be fixed.
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(i) If κ is irreducible, then

|{{v, w} : d(v, w) < ∞}| = C1(Gn)
2

2
+ op(n

2) = ρ(κ)2n2

2
+ op(n

2).

(ii) If supx,y,n κn(x, y) < ∞, then∣∣{{v, w} : d(v, w) ≤ (1 − ε) log n/ log ‖Tκ‖
}∣∣ = op(n

2).

(iii) If κ is irreducible and ‖Tκ‖ < ∞, then∣∣{{v, w} : d(v, w) ≤ (1 + ε) log n/ log ‖Tκ‖
}∣∣ = ρ(κ)2n2/2 + op(n

2).

(iv) If κ is irreducible and ‖Tκ‖ = ∞, then there is a function f (n) = o(log n) such that

|{{v, w} : d(v, w) ≤ f (n)}| = ρ(κ)2n2/2 + op(n
2). (3.10)

Note that part (i) is immediate from (3.9) and Theorems 3.1 and 3.6. Related earlier
results are discussed briefly in Section 14.

In the finite-type non-critical case, we can give an asymptotic formula for the “diameter”
of Gn, i.e., for

diam(Gn) := max{d(v, w) : v, w ∈ V(G), d(v, w) < ∞},
the maximum of the diameters of the components of Gn. This turns out to depend not only
on the norm of Tκ , but also on the norm of the operator associated to the “dual kernel” κ̂ .

Definition 3.15. Let κ be a supercritical kernel on a (generalized) ground space (S, µ).
The dual kernel is the kernel κ̂ on the generalized ground space (S, µ̂) defined by κ̂(x, y) =
κ(x, y), with dµ̂(x) = (1 − ρ(κ; x)) dµ(x).

Note that κ̂ and κ are identical as functions on S × S. However, they are defined on
different generalized ground spaces. Hence, the operators Tκ and Tκ̂ have (in general)
different norms. If we wish to consider only ground spaces, we may renormalize, defining
κ̂ ′ on (S, µ̂′) by κ̂ ′(x, y) = (1−ρ(κ))κ(x, y) and dµ̂′(x) = (1−ρ(κ; x))/(1−ρ(κ)) dµ(x).
The choice of normalization does not affect the norm of the operator: ‖Tκ̂‖ = ‖Tκ̂ ′ ‖.

The relevance of the dual kernel is that it describes the “small” components of GV(n, κ);
see Section 12. The distribution of these small components is essentially the same as the
distribution of trees hanging off the two-core of the giant component, which affects the
diameter of GV(n, κ).

Theorem 3.16. Let κ be a kernel on a (generalized) vertex space V = (S, µ, (xn)), with
S = {1, 2, . . . , r} finite and µ({i}) > 0 for each i, and let Gn = GV(n, κ). If 0 < ‖Tκ‖ < 1,
then

diam(Gn)

log n
p→ 1

log ‖Tκ‖−1

as n → ∞. If ‖Tκ‖ > 1 and κ is irreducible, then

diam(Gn)

log n
p→ 2

log ‖Tκ̂‖−1
+ 1

log ‖Tκ‖ ,

where κ̂ is the dual kernel to κ .
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Note that we do not require κ to be graphical on V: if V is a vertex space, then, as S is
finite, any kernel κ on V is graphical; see Remark 4.5. If V is a generalized vertex space, then
κ need not be graphical. However, by conditioning on the sequences (xn), we can reduce to
the vertex space case; see Subsection 8.1.

The assumptions of Theorem 3.16 are much more restrictive than those of our other
results: we require the type space to be finite. Note, however, that even the single type case
of this result, concerning the classical random graph G(n, c/n), is non-trivial; it answers
in the negative a question of Chung and Lu [33]. This special case of Theorem 3.16 was
proved independently by Fernholz and Ramachandran [51], again as a special case of a
result for a more general model. The nature of their model makes their proof much more
difficult than that of Theorem 3.16; see Subsection 14.2.

3.6. The Phase Transition

Finally, we turn to the phase transition in GV(n, κ), where the giant component first emerges.
As usual, to study the transition, we should vary a single density parameter. Here, it is most
natural to fix a graphical kernel κ on a vertex space V , and to study GV(n, cκ) for a real
parameter c > 0, as in Corollary 3.2. Instead, we could consider random subgraphs of
GV(n, κ) obtained by keeping each edge, or edge vertex, independently with probability p,
and use p as the parameter; as we shall see in Examples 4.10 and 4.11, all three approaches
are equivalent, so we shall use the first.

By Theorem 3.1, the size of the largest component of GV(n, cκ) is described by the
function ρ(cκ), which is 0 for c ≤ c0 := ‖Tκ‖−1 and strictly positive for larger c. With V
and κ fixed, let us denote this function by ρ(c), c > 0. We shall see (from Theorem 6.4)
that ρ(c) is continuous on (0,∞).

Since ρ(c) = 0 for c ≤ c0 but not for larger c, the function ρ is not analytic at c0; in
physical terminology, there is a phase transition at c0.

For the classical Erdős–Rényi random graph G(n, c/n) (obtained with κ = 1), it is well-
known that ρ is continuous but the first derivative has a jump at c0 = 1; more precisely, ρ ′

jumps from 0 to ρ ′
+(c0) = 2. For finite k, we shall say that the phase transition in GV(n, κ)

has exponent k if ρ(c0 + ε) = �(εk) as ε ↘ 0. As we have just noted, in G(n, c/n) the phase
transition has exponent 1. If ρ(c0 + ε) = o(εk) for all k, we say that the phase transition
has infinite exponent. We are deliberately avoiding the physical term “order”, as it is not
used in a consistent way in this context. In other contexts, discontinuous phase transitions
are possible; see, for example, Aizenman, Chayes, Chayes and Newman [2].

It was shown in [19] (see also Dorogovtsev, Mendes and Samukhin [43] and Durrett [44])
that in the case S = (0, 1] and κ(x, y) = 1/(x ∨ y), the phase transition “is of infinite
order”, i.e., has infinite exponent (see Subsection 16.1 for more details). We shall see in
Subsection 16.4 that it is also possible to have a phase transition with any finite exponent
larger than 1 (including non-integer values).

The next theorem shows that the phase transition has exponent 1 for a wide class of
kernels κ , including all bounded κ . We also prove that for this class there is no other phase
transition: as ρ = 0 on (0, c0), it is trivially analytic there, and we shall prove that ρ is
analytic on (c0,∞). As ρ is defined in terms of the branching process, rather than a graph,
we do not need a vertex space for the statement of the next result; to deduce conclusions
for graphs of the type we consider, we should let κ be an irreducible graphical kernel on
a vertex space V , satisfying the additional condition (3.11) below. (Also, there is no need
to consider generalized ground spaces, as we may trivially normalize so that µ(S) = 1 by
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multiplying κ by µ(S) and dividing µ by the same factor – this leaves the branching process
unchanged.) When we say that a function f defined on the reals is analytic at a point x, we
mean that there is a neighbourhood of x in which f is given by the sum of a convergent power
series; equivalently, f extends to a complex analytic function in a complex neighbourhood
of x.

Theorem 3.17. Let κ be a kernel on a ground space (S, µ). Suppose that κ is irreducible,
and that

sup
x

∫
S

κ(x, y)2 dµ(y) < ∞. (3.11)

(i) The function c �→ ρ(c) := ρ(cκ) is analytic except at c0 := ‖Tκ‖−1.
(ii) The linear operator Tκ has an eigenfunction ψ of eigenvalue ‖Tκ‖ < ∞, and every

such eigenfunction is bounded and satisfies

ρ(c0 + ε) = 2c−1
0

∫
S ψ

∫
S ψ2∫

S ψ3
ε + O(ε2), ε > 0, (3.12)

so ρ ′
+(c0) = 2c−1

0

∫
S ψ

∫
S ψ2/

∫
S ψ3 > 0 and ρ has a phase transition at c0 with

exponent 1.

The proof is given in Section 15. Note that (3.11) implies that κ ∈ L2 ⊆ L1. Theorem 3.17
has an easy consequence concerning the extremality of the Erdős–Rényi random graphs,
also proved in Section 15.

Corollary 3.18. Let κ be an irreducible kernel on a ground space (S, µ) such that
(3.11) holds, and let c0 := ‖Tκ‖−1 > 0. Then c0ρ

′
+(c0) ≤ 2, with equality in the classical

Erdős–Rényi case; more precisely, equality holds if and only if c0

∫
S κ(x, y) dµ(y) = 1 for

a.e. x.

Let κ be an irreducible graphical kernel on a vertex space V; let us assume (3.11) and, as a
normalization, that c0 = 1. Letting c increase from the threshold c0, Corollary 3.18 says that
the giant component of GV(n, cκ) has maximal growth-rate in the Erdős–Rényi case, and,
more generally, in the “homogeneous” case treated in Example 4.6 below. In this example,
the vertex degrees are more or less the same, so there is no first-order inhomogeneity in the
graph; any inhomogeneity in vertex degrees leads to a slower growth.

Remark 3.19. By Theorem 3.5, the number of edges in the giant component of G(n, cκ)

near the phase transition is asymptotically determined by the behavior of the function ζ(cκ)

as c ↘ c0. As we shall show in Proposition 10.1, if ‖Tκ‖ < ∞, then ζ(cκ)/ρ(cκ) → 1
as c ↘ c0 := ‖Tκ‖−1. In particular, under the conditions of Theorem 3.17, there is a phase
transition of exponent 1 in ζ too. (In addition, the proof of Theorem 3.17 will show that
c �→ ζ(cκ) is also analytic except at c0.) In the case ‖Tκ‖ = ∞, when c0 = 0, it is not always
true that ζ(cκ) ∼ ρ(cκ) as c ↘ c0: this will be shown by Example 4.13. An important case
when this does hold is described in Subsection 16.4.

4. EXAMPLES

In this section we give several simple examples of the random graph model we study; these
examples are chosen to illustrate the definitions and the scope of the model, as well as
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various pathologies that may occur. In subsequent sections we shall refer to several of these
examples; in particular, many of our proofs will be based on the “finite-type” case. Further
examples of interest in their own right are discussed at length in Section 16, as applications
of our results. We often suppress the dependence on V , writing G(n, κ) for GV(n, κ).

Example 4.1. The Erdős-Rényi random graph. If κ = c is constant, then the edge
probabilities pij given by (2.3) are all equal to c/n (for n > c). Thus any choice of vertex
space gives the classical Erdős–Rényi random graph G(n, c/n). The simplest choice is
to let S consist of a single point. Then the operator Tκ is simply multiplication by c, so
‖Tκ‖ = c and Corollary 3.2 yields the classical result that there is a phase transition at
c = 1. Furthermore, the function ρ(c; x) reduces to the single value ρ(c), and the survival
probability ρ(c) of the branching process Xc is given by the formula

ρ(c) = 1 − e−cρ(c), with ρ(c) > 0 if c > 1; (4.1)

this classical branching process result is the simplest case of Theorem 6.2 below. Returning
to the graph, in this case Theorem 3.1 reduces to the classical result of Erdős and Rényi [47].

Example 4.2. The homogeneous bipartite random graph. Set S = {1, 2}, µ({1}) =
µ({2}) = 1, and let V = (S, µ, (xn)) be a generalized vertex space in which xn consists of
n vertices of type 1 and n vertices of type 2. Let κ be defined by κ(1, 1) = κ(2, 2) = 0
and κ(1, 2) = κ(2, 1) = c. Then GV(n, κ) is the random bipartite graph G(n, n; c/n) with n
vertices in each class, where each possible edge between classes is present with probability
c/n, independently of the other edges. While it is natural to use a generalized vertex space
to describe this example, it is not necessary: the same graph can be written as GV(n, κ) in
another way: take µ({1}) = µ({2}) = 1/2, and let V be a vertex space where xn is defined
only for n even, and then consists of m = n/2 vertices of each type. Letκ(1, 1) = κ(2, 2) = 0
as before, and κ(1, 2) = κ(2, 1) = 2c, so the edge probabilities are 2c/n = c/m.

Example 4.3. The finite-type case. Let S = {s1, . . . , sr} be finite. Then κ is an r × r
matrix. In this case, G(n, κ) has vertices of r different types (or colors), say ni vertices of
type i, with two vertices of types i and j joined by an edge with probability n−1κ(i, j) (for
n ≥ max κ). The condition (2.2) means that ni/n → µi for each i (in probability if the ni

are random), where µi := µ({i}) ≥ 0.
This case has been studied by Söderberg [88–91], who noted our Theorem 3.1 in this

case (with κn = κ for all n).

Most of our proofs will be based on a disguised form of this case, described by the
following definition.

Definition 4.4. A kernel κ on a (generalized) ground space (S, µ) is regular finitary
if S has a finite partition into sets S1, . . . , Sr such that κ is constant on each Si × Sj, where
each Si is a µ-continuity set, i.e., is measurable and has µ(∂Si) = 0.

Clearly, if κ is regular finitary on (S, µ) then the random graph GV(n, κ) has the same
distribution as a finite-type graph GV ′

(n, κ ′), V ′ = (S ′, µ′, (yn)): take S ′ = {1, . . . , r}, let
yk = i whenever xk ∈ Si, and define µ′{i} and κ ′(i, j) in the obvious way. Let ni = #{l : xl ∈
Si} = nνn(Si), where νn is as in (2.1). The numbers ni may be random, but since each Si is a

µ-continuity set, (2.2) yields ni/n = νn(Si)
p→ µ(Si), so V ′ is a (generalized) vertex space.
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Remark 4.5. Let us note for later that a finite-type or regular finitary kernel κ on a vertex
space V is automatically graphical on V; conditions (i) and (ii) of Definition 2.7 are trivial
in this case, while condition (iii) holds in the much more general case of κ bounded; see
Lemma 8.1. This observation does not extend to generalized vertex spaces: there may be a
very large number of vertices with some small probability, so the expectation in (2.9) need
not converge, or even exist; see Remark 8.2.

Example 4.6. The homogeneous case. Generalizing the Erdős-Rényi and homoge-
neous bipartite cases above, let (S, µ) be an arbitrary (generalized) ground space, and let κ

be such that
∫

S κ(x, y) dµ(y) is essentially independent of x ∈ S, i.e., that∫
S

κ(x, y) dµ(y) = c for a.e. x, (4.2)

for some constant c. (This says roughly that, asymptotically, all vertices have the same
average degree.) Then Tκ1 = c a.e., so the constant function 1 is a positive eigenfunction
with eigenvalue c, and thus ‖Tκ‖ = c, and by Theorem 3.1 there is a giant component (and
ρ(κ) > 0) if and only if c > 1.

Normalizing (if necessary) so that µ(S) = 1, in the branching process, apart from
particles with types in a measure zero set, which arise in Xκ with probability 0, the number
of children of each particle has a Po(c)distribution. Hence, ignoring the types of the particles,
the distributions of the process Xκ and the single-type process Xc are the same. In particular,
ρ(κ) = ρ(c), so ρ(κ) = ρ(c) is given by (4.1) in this case too. If κ is irreducible, the global
behavior of G(n, κ) is thus exactly the same as that of G(n, c/n), at least in terms of the size of
the giant component. The local behavior can be quite different, though. For example, G(n, κ)

may have many more triangles or other small cycles than G(n, c/n); see Example 17.4. On
the other hand, by Theorem 3.13, the vertex degrees have an asymptotic Po(c) distribution
just as in G(n, c/n).

A natural example of such a homogeneous κ is given by taking S as (0, 1] (now better
regarded as the circle T), µ as Lebesgue measure, and κ(x, y) = h(x − y) for an even
function h ≥ 0 of period 1. For example, h can be constant on a small interval (−δ, δ)
and vanish outside it; this gives a modification of G(n, c/n) where only “short” edges are
allowed.

More generally, S can be any compact homogeneous space, for example a sphere, with
Haar measure µ and an invariant metric d, and κ(x, y) a function of the distance d(x, y).

Example 4.7. Take S = (0, 1] with µ the Lebesgue measure, and let xi = i/n. Set
κ(x, y) = 1[x + y ≤ 1] and consider the kernel cκ , so that

pij =
{

c/n, i + j ≤ n;

0, i + j > n.

Thus G(n, cκ) can be obtained from the random graph G(n, c/n) by deleting all edges ij
with i + j > n.

The operator Tκ is compact, and it easy to see that it has eigenvalues (−1)kω−1
k and

eigenfunctions cos(ωkx), with ωk = (k + 1/2)π , k = 0, 1, . . . . Hence ‖Tκ‖ = 2/π and
the critical value is c0 = π/2. Theorem 3.17 shows that at the critical value we have
c0ρ

′
+(c0) = 3/2.
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Example 4.8. I.i.d. vertices. For any ground space (S, µ), we can obtain a vertex
space by taking x1, . . . , xn to be i.i.d. random points in S with distribution µ. (This has been
proposed by Söderberg [88].) In this case

E e(G(n, κ)) = n(n − 1)

2

∫∫
S2

κ(x, y) ∧ n

n
dµ(x) dµ(y)

<
n

2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

Hence, by Lemma 8.1 below, (2.9) always holds, and to verify that a kernel κ is graphical,
we only have to check conditions (i) and (ii) in Definition 2.7. Similarly, for a sequence of
kernels, (2.11) holds provided

∫∫
κn → ∫∫

κ .

Example 4.9. Poisson process graph. For any generalized ground space (S, µ) and
any λ > 0, let xλ = (x1, . . . , xvλ

) be the points of a Poisson process on S with intensity
measure λµ. In other words, vλ has a Poisson distribution Po(λµ(S)), and, given vλ, the
points xi are i.i.d. as in Example 4.8. Then (S, µ, (xλ)) is a generalized vertex space. Here,
it is natural to write λ rather than n for an element of the index set I = (0,∞). Note that
(2.4) holds because λνλ(A) ∼ Po(λµ(A)). This is the canonical example of a generalized
vertex space, and one of the main reasons for allowing a random number of vertices.

Let κ be a kernel on (S, µ), so, given xλ, the edge probabilities in the graph GV(λ, κ)

are given by
pij = min{κ(xi, xj)/λ, 1},

for 1 ≤ i < j ≤ vλ. As in Example 4.8, (2.9) always holds. To see this, let V ′ =
(S, µ′, (yn)n≥1), where µ′ = µ/µ(S) is the normalized version of µ, and yn consists of n i.i.d.
points of S chosen with distribution µ′. Given that vλ = n, the distribution of GV(λ, κ) is
exactly that of GV ′

(n, (n/λ)κ). In particular, as (2.9) holds for the latter graph,

E(e(GV(λ, κ)) | vλ = n) ∼ n

2

∫∫
S2

nκ

λ
dµ′(x) dµ′(y)

= n2

2λµ(S)2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

As λ → ∞ we have E(v2
λ) ∼ (λµ(S))2, and (2.9) follows. Hence, as in Example 4.8, a

kernel κ on (S, µ) is graphical on V if and only if conditions (i) and (ii) of Definition 2.7
hold.

In this Poisson process example, it is easy to see that allowing a random number of vertices
makes the model only superficially more general. Indeed, renormalizing so that µ(S) = 1,
since vλ ∼ Po(λ), we can regard vλ as a random function of λ, which is increasing (a
Poisson process), and then vλ/λ

a.s.→ 1 as λ → ∞. It follows that if we condition on the
process vλ(λ), then Theorem 3.1 applies a.s. to the corresponding graphs GV ′

(vλ, (vλ/λ)κ)

on the (ungeneralized) vertex space V ′. Thus, conditioning on vλ(λ),

λ−1C1(G
V(λ, κ))

p→ ρ(κ) as λ → ∞ (4.3)

holds a.s. It follows that (4.3) holds unconditionally too. Other properties can be treated
similarly. We shall see later, in Subsection 8.1, that all our results for generalized vertex
spaces can be reduced to the vertex space case.
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Example 4.10. Edge percolation. Let κ be an irreducible graphical kernel on a
(generalized) vertex space V with ‖Tκ‖ > 1, and let 0 < p ≤ 1. Independently of everything
else, keep each edge in G(n, κ) with probability p and delete it with probability 1−p. Denote
the resulting graph by G〈p〉(n, κ).

This random graph G〈p〉(n, κ) is nothing but G(n, κ̃n), where

κ̃n(x, y) := p(κ(x, y) ∧ n).

Clearly, xn → x and yn → y imply κ̃n(xn, yn) → pκ(x, y), provided (x, y) is a point of
continuity of κ . Furthermore, 1

n E e(G〈p〉(n, κ)) = p
n E e(G(n, κ)) → p 1

2

∫∫
κ . Hence, (κ̃n)

is a graphical sequence with limit pκ , so Theorem 3.1 applies with κ replaced by pκ , and

n−1C1(G
〈p〉(n, κ))

p→ ρ(pκ).

In particular, G〈p〉(n, κ) has whp a component of order �(n) if and only if ‖Tpκ‖ > 1, i.e., if
p > ‖Tκ‖−1. Thus, as expected, we obtain the same threshold for edge percolation in G(n, κ)

(meaning that there remains a giant component) as for the existence of a giant component
in G(n, pκ); see Corollary 3.2.

Of course, the same conclusions follow if we start with the more general setting of
Definition 2.9.

Example 4.11. Vertex percolation. Again, let κ be an irreducible graphical kernel
on a vertex space V = (S, µ, (xn)) with ‖Tκ‖ > 1, and let 0 < p ≤ 1. Independently of
everything else, keep each vertex in GV(n, κ) with probability p and delete it with probability
1−p. Denote the resulting graph by G[p](n, κ). This graph is again an instance of our model
with a generalized vertex space. Indeed, writing yn for the subsequence of xn corresponding
to the vertices that were not deleted, V ′ = (S, pµ, (yn)) is a generalized vertex space, and
G[p](n, κ) has exactly the distribution of GV ′

(n, κ). Since the kernel κ is graphical on V , and
E(e(G[p](n, κ))) = p2

E(e(GV(n, κ))), the kernel κ is also graphical on V ′, so our results
apply to GV ′

(n, κ) and hence to G[p](n, κ).
Here, one must be a little careful with the normalization: the norm of Tκ defined with

respect to (S, pµ) is p times ‖Tκ‖, the norm defined with respect to (S, µ). In particular,
Theorem 3.1 tells us that G[p](n, κ) has whp a component of order �(n) if and only if
p‖Tκ‖ > 1, i.e. if p > ‖Tκ‖−1. We thus obtain the same threshold for vertex percolation in
G(n, κ) as for edge percolation in Example 4.10.

Once again, we could have started with the setting of Definition 2.9; we could also have
started with a generalized vertex space.

Note that we can obtain the Poisson graph G̃λ(κ) in Example 4.9 as a limit of the vertex
percolation model G[p](n, κ) in Example 4.11 if we take p = λ/n and let n → ∞.

Our next example shows that even in the supercritical, irreducible case, the second largest
component may be rather large – certainly much larger than O(log n) as in the Erdős–Rényi
case.

Example 4.12. Large second component. Let S = {1, 2, 3, . . . } with µ({k}) = 2−k ,
and let x1, . . . , xn be i.i.d. random points in S with distribution µ. Let (εk)

∞
1 be a sequence

of positive numbers tending to zero, to be chosen below. Set κ(k, k) = 2k+1 for k ≥ 1,
κ(1, k) = κ(k, 1) = εk for k ≥ 2, and κ(i, j) = 0 otherwise. Note that κ ∈ L1(S×S, µ×µ);
as noted in Example 4.8, from our choice of xi it follows that κ is graphical on (S, µ, (xn)n≥1).
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For each k ≥ 1, the graph G(n, κ) contains nk ∼ Bi(n, 2−k) vertices of type k,
forming a random subgraph Hk which has the distribution of the Erdős–Rényi graph
G(nk , 2k+1/n). Each potential edge between H1 and Hk is present with probability εk/n.
Note that nk = n̄k +Op(n̄

1/2
k ), where n̄k = E nk = n/2k , and thus each Hk is (whp) super-

critical. In particular, whp C1(G(n, κ)) ≥ C1(H1) ≥ cn for some c > 0, so G(n, κ) is
supercritical.

Let kn → ∞ with log2 n− kn → ∞, so that n̄kn → ∞. Let us choose the εk so that εkn ≤
n−2. Then the expected number of edges between H1 and Hkn is E(n1nkn)εkn/n ≤ nεkn → 0,
so whp Hkn is isolated in G(n, κ). As nkn = n̄kn + Op(n̄

1/2
kn

), we may couple the G(n, κ) for
different n so that

nkn = n̄kn + O
(
n̄1/2

kn

)
(4.4)

holds a.s. (Here the implicit constant is random.) We may then condition on nkn , assuming
that nkn is deterministic, and that (4.4) holds.

Clearly, Hkn is a uniform Erdős–Rényi random graph G(nkn , 2kn+1/n). As 2kn+1/n ∼
2/nkn , this graph is supercritical (for large n), and has a largest component of order (c +
op(1))nkn for some constant c. Thus,

C1(Hkn) = (c + op(1))nkn = (c + op(1))n̄kn = (c + op(1))n/2kn .

Given any function ω(n) with ω(n) = o(n), we can choose kn so that 2knω(n)/n → 0; it
follows that whp C2(G(n, κ)) ≥ C1(Hkn) > (c/2)n/2kn > ω(n). Thus, the op(n) bound in
Theorem 3.6 is best possible.

The final example in this section shows that when ‖Tκ‖ = ∞, the ratio of the number
of edges to the number of vertices in the giant component of G(n, cκ) need not tend to 1 as
c → 0. In fact, it may even tend to ∞.

Example 4.13. Dense giant component. Let S, µ and xn be as in Example 4.12, and
let κ(1, k) = κ(k, 1) = 1 for k ≥ 1, κ(k, k) = 4k/k2 for k ≥ 2, and κ(i, j) = 0 otherwise.
Again κ ∈ L1, so κ is graphical. Let c > 0 be small but fixed and consider GV(n, cκ). Let
k0 be the smallest integer such that 2k0/k2

0 > 1/c; taking c small enough, we may assume
that k0 ≥ 10.

Using the notation of Example 4.12, if k ≥ 2, then Hk forms a random subgraph of the
type G(nk , c4k/(k2n)). Since nkc4k/(k2n) ≈ c2k/k2, this subgraph is a supercritical Erdős–
Rényi graph if k ≥ k0, and if k ≥ k0 + 1, classical results show that whp Hk contains a
component of order �(nk) = �(2−kn) with �(n2

kc4k/(k2n)) = �(nc/k2) edges; throughout
this example the implicit constants in �(·) and O(·) notation do not depend on c. Each of
these components is whp of order n, so they are subsets of the giant component of GV(n, κ).
Summing over k = k0 + 1, . . . , 2k0, the giant component thus has at least �(nc/k0) edges,
so ζ(cκ) = �(c/k0); see Theorem 3.5.

To bound the number of vertices in the giant component, condition on x1, . . . , xn and
say that a vertex of type k is light if k ≤ k0 − 3, and heavy otherwise. The total num-
ber of heavy vertices is O(n2−k0) whp. Furthermore, it is easy to check that if c is small
enough, then the expected number of edges to light vertices from each heavy vertex is at
most 1/2, as is the expected degree of each light vertex. Each light vertex in the giant
component has to be connected to some heavy vertex by a path whose other vertices
all are light. As the expected number of such paths starting at a given heavy vertex is
at most

∑
l≥1(1/2)l = 1, the expected number of light vertices in the giant component
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is O(n2−k0) too. Hence, the number of vertices in the giant component is Op(n2−k0), so
ρ(cκ) = O(2−k0) = O(c/k2

0). Consequently, ζ(cκ)/ρ(cκ) = �(k0) = �(log(1/c)), as
c → 0. In particular, ζ(cκ)/ρ(cκ) → ∞ as c ↘ c0 = 0; see Remark 3.19.

5. BRANCHING PROCESS LEMMAS

In this section and the next we study the Poisson branching processes Xκ(x) and Xκ defined
in Subsection 2.1, and their survival probabilities. These turn out to be given by the solutions
to a certain non-linear functional equation (5.3). Let us briefly recall some definitions.

Let (S, µ) be a (generalized) ground space. The branching process Xκ(x) is a multi-type
Galton–Watson branching processes with type space S: a particle of type y ∈ S is replaced
in the next generation by its “children”, a set of particles whose types are distributed as a
Poisson process on S with intensity κ(y, z) dµ(z). The zeroth generation of Xκ(x) consists
of a single particle of type x. Note that the distribution of Xκ(x) is unaffected if we multiply
κ by a constant and divide µ by the same constant; thus, we may assume without loss of
generality that µ(S) = 1. We shall make this assumption throughout this section. In this
normalized case, the branching process Xκ is just the process Xκ(x) started with a single
particle whose (random) type is distributed according to the probability measure µ.

Here, we have no need for the metric or topological structure of S; in this section and the
next, S can be any measurable space equipped with a probability measure µ. We assume, as
before, that the kernel κ is a measurable symmetric non-negative function on S2. We shall
also assume that κ ∈ L1(S × S, µ × µ), i.e., that

∫∫
κ < ∞.

Let us recall our notation for the survival probabilities of particles in Xκ(x). We
write ρk(κ; x) for the probability that the total population consists of exactly k particles,
and ρ≥k(κ; x) for the probability that the total population contains at least k particles.
Furthermore, ρ(κ; x) is the probability that the branching process survives for eternity.

We write ρk(κ), ρ≥k(κ) and ρ(κ) for the corresponding probabilities for Xκ , so that, e.g.,
ρk(κ) = ∫

S ρk(κ; x) dµ(x).
We start with a trivial observation that will enable us to eliminate certain pathologies.

Lemma 5.1. If κ = κ ′ a.e., then ρ(κ; x) = ρ(κ ′; x) and ρ≥k(κ; x) = ρ≥k(κ
′; x) hold for

a.e. x; hence ρ(κ) = ρ(κ ′) and ρ≥k(κ) = ρ≥k(κ
′).

Proof. There is a measure zero set N ⊂ S such that if x /∈ N , then κ(x, y) = κ ′(x, y) for
a.e. y. It follows that if we start the processes Xκ and Xκ ′ at the same x /∈ N , the processes
will be identical in distribution. Hence ρ(κ; x) = ρ(κ ′; x) and ρ≥k(κ; x) = ρ≥k(κ

′; x) for all
x /∈ N , and the result follows from (2.13).

For the sake of convenience, in this section we impose one more assumption on κ , namely
that ∫

S
κ(x, y) dµ(y) < ∞ (5.1)

for every x ∈ S. This assumption loses no generality, as (5.1) holds for a.e. x, since
∫∫

κ <

∞. Writing N for the measure zero set of x such that (5.1) does not hold, define κ̄ by setting
κ̄(x, y) = 0 if x ∈ N or y ∈ N , and κ̄(x, y) = κ(x, y) otherwise. Then κ = κ̄ a.e., so by
Lemma 5.1, we have ρ(κ̄) = ρ(κ) and so on.

All the assumptions above apply to all the kernels considered below, denoted κ1, κ ′, etc.
In this section, unless explicitly stated, we do not assume that κ is irreducible.
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Remark 5.2. Condition (5.1) means that a particle of type x has a finite number of children
in the branching process. As we are assuming (5.1) for all x, a particle survives for eternity
(has descendants in all future generations) if and only if it has infinitely many descendants.
In other words, ρ(κ; x) = ρ∞(κ; x).

Remark 5.3. Our process is a very special branching process since we assume that the
children of a particle are distributed according to a Poisson process; in particular, the number
of children has a Poisson distribution. Other branching processes, and other functional
equations, appear when studying random graphs with dependencies between edges, as in
[22, 25, 84], but will not be considered here.

Note also that even with the Poisson assumption, our processes are special. For the
branching process, there is no reason to assume κ to be symmetric; moreover, µ may be
any σ -finite measure, and the hypothesis κ ∈ L1 could be weakened to (5.1) for a.e. x
(or perhaps removed completely). We shall, however, consider only the special case just
defined; this will be useful in the proofs. We have not yet investigated to what extent the
results generalize and remark only that in non-symmetric situations, the norm ‖Tκ‖ should
be replaced by the spectral radius.

There is an abundant literature on branching processes with different types; see, for
example, the book by Mode [76]. However, we have not found the results we need in the
generality required here, so for the sake of completeness we give full proofs, although the
results are only minor extensions of known results; see, for example, see [76, Chapter 6].

We start with the connection between our branching process and the operator �κ defined
in (2.17).

Lemma 5.4. Consider the random offspring of a single particle of type x; let N be the
number of children, and denote their types by (ξi)

N
i=1. If g is a measurable function on S

with 0 ≤ g ≤ 1, then

E

N∏
i=1

(1 − g(ξi)) = e−(Tκ g)(x) = 1 − (�κg)(x). (5.2)

Proof. This is a standard formula for Poisson processes; see, for example, Kallenberg [61,
Lemma 12.2(i)], taking f = − ln(1 − g). For completeness, we include the simple proof.
Indeed, let ν = νx be the measure defined by dν(y) = κ(x, y) dµ(y). Then, N ∼ Po(ν(S))

and, given N , the types ξi of the children are i.i.d. with the renormalized distribution ν ′ =
ν/ν(S). Hence, given N , the conditional expectation of

∏N
i=1(1 − g(ξi)) is just

N∏
i=1

E(1 − g(ξi)) = (E(1 − g(ξ1)))
N

=
(

1 −
∫

S
g(y) dν ′(y)

)N

= (1 − (Tκg)(x)/ν(S))N .

Using P(N = n) = e−ν(S)ν(S)n/n! and taking the expectation, the result follows.

Our next aim is to study the fixed points of �κ , i.e., the solutions of the equation

f = �κ f := 1 − e−Tκ f , (5.3)

where f is a non-negative function on S.
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Remark 5.5. If f = g a.e., then �κ f = �κg. In particular, if f = �κ f a.e., then �κ f =
�κ(�κ f ); thus, if f satisfies (5.3) a.e., then there is a solution f̄ to (5.3) (viz. �κ f ) such that
f = f̄ a.e. This shows that it makes no essential difference if we require (5.3) to hold only
a.e. (which might be natural from an L2 perspective). We shall, however, find it convenient
to interpret (5.3) and similar relations as holding everywhere unless we explicitly state
otherwise. Similarly, if κ = κ̄ a.e., then for any solution f to f = �κ f there is a unique f̄
with the properties that f̄ = �κ̄ f̄ and f̄ = f a.e.

Note that �κ is monotone: if 0 ≤ f ≤ g a.e. then Tκ f ≤ Tκg and thus �κ f ≤ �κg.
In the lemma below, 1 denotes the function with constant value 1.

Lemma 5.6. (i) For m ≥ 0 the probability that a particle of type x has descendants in at
least m further generations is (�m

κ 1)(x).
(ii) As m → ∞, (�m

κ 1)(x) ↘ ρ(κ; x).
(iii) The function ρκ = ρκ(x) = ρ(κ; x) is a solution of (5.3), i.e., satisfies �κρκ = ρκ .
(iv) The function ρκ is the maximum solution of (5.3): if f is any other solution, then

ρκ(x) ≥ f (x) for every x.

Proof. (i) Let gm(x) be this probability. Then, with g = gm, the left-hand side of (5.2) is
the probability that none of the children of x has descendants in at least m generations, i.e.,
the probability 1 − gm+1(x) that x does not have descendants in m + 1 generations. Thus,
gm+1 = �κgm, and the result follows by induction, since g0(x) = 1.

(ii) An immediate consequence of (i).
(iii) This follows by the same argument as (i) (and is also a consequence of (ii) and

dominated convergence).
(iv) Suppose that f is a solution of (5.3). Then f = �κ f ≤ 1, and thus f = �m

κ f ≤ �m
κ 1

for every m. Hence, f ≤ ρκ follows from (ii).

Remark 5.7. If we do not impose (5.1) for all x, then (iii), i.e., (�κρκ)(x) = ρκ(x),
could fail for x in the measure zero set for which (5.1) does not hold. This is because a
particle of type x has infinitely many children, which may have finite but unbounded lines of
descendants; for an example, take S = (0, 1] and κ = 1 except that κ(x, 1) = κ(1, x) = 1/x.

We continue to study the functional equation (5.3).

Lemma 5.8. Suppose that f ≥ 0 with f = �κ f . Then

(i) 0 ≤ f < 1;
(ii) Tκ f ≥ f , with strict inequality when f (x) > 0;

(iii) Tκ f ≤ f /(1 − f ), with strict inequality when f (x) > 0;
(iv) if κ is irreducible, then either f = 0 everywhere or f > 0 a.e.

Proof. (i) We have f (x) = 1 − e−(Tκ f )(x) ≤ 1. Hence, (Tκ f )(x) ≤ (Tκ1)(x) =∫
S κ(x, y) dµ(y) < ∞, where the second inequality is just our assumption (5.1). Therefore,

f (x) = 1 − e−(Tκ f )(x) < 1.
(ii) This is immediate from f = 1 − e−Tκ f ≤ Tκ f , with equality only when Tκ f = 0.
(iii) We have e−Tκ f = 1 − f , and thus, as f < 1,

Tκ f ≤ eTκ f − 1 = 1

1 − f
− 1 = f

1 − f
,

with equality only when Tκ f = 0.
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(iv) Let A := {x ∈ S : f (x) = 0}. For x ∈ A, (�κ f )(x) = f (x) = 0, and thus
(Tκ f )(x) = 0. Hence κ(x, y) = 0 for a.e. y /∈ A. Consequently, κ = 0 a.e. on A × (S\A),
which by (2.12) implies µ(A) = 0 or µ(A) = 1. In the latter case, f = 0 a.e., and thus
f = �κ f = 0.

In the next two lemmas we consider irreducible κ .

Lemma 5.9. Suppose that κ is irreducible. Suppose further that f = �κ f and g = �κg
with 0 ≤ f ≤ g. Then, either f = 0 or f = g.

Proof. By Lemma 5.8(iv) we may assume that f > 0 a.e.
Let h = (g − f )/2 ≥ 0; thus f + h = (f + g)/2. The function t �→ 1 − e−t is strictly

concave; in particular, 1 − e−(t+u)/2 ≥ 1
2 ((1 − e−t) + (1 − e−u)). Hence,

�κ

(
f + g

2

)
= 1 − e−Tκ ((f +g)/2) = 1 − e−(Tκ f +Tκ g)/2

≥ 1

2
((1 − e−Tκ f ) + (1 − e−Tκ g)) = 1

2
(f + g) = f + h,

(5.4)

with strict inequality at every point where f < g and thus �κ f < �κg and Tκ f < Tκg. On
the other hand,

1 − �κ

(
f + g

2

)
= e−Tκ (f +h) = e−Tκ f e−Tκ h = (1 − f )e−Tκ h

≥ (1 − f )(1 − Tκh).
(5.5)

Combining (5.4) and (5.5), we find that

(1 − f )(1 − Tκh) ≤ 1 − (f + h) = 1 − f − h

and thus

(1 − f )Tκh ≥ h (5.6)

with strict inequality when g > f .
Suppose now that g > f on a set of positive measure. Then, inequality (5.6), the fact that

f > 0 a.e., and Lemma 5.8(iii) imply that∫
S

f Tκh dµ >

∫
S

f
h

1 − f
dµ =

∫
S

h
f

1 − f
dµ ≥

∫
S

h Tκ f dµ. (5.7)

Note that the integrals above are finite because κ ∈ L1 and f , h ≤ 1. However, as κ is
symmetric, Tκ is a symmetric operator, and so

∫
S f Tκh dµ = ∫

S h Tκ f dµ, contradicting
(5.7). This shows that g = f a.e. and thus f = �κ f = �κg = g.

Lemma 5.10. Suppose that κ is irreducible. Then f = 0 and f = ρκ are the only solutions
to (5.3); these solutions may coincide.
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Proof. By parts (iii) and (iv) of Lemma 5.6, the function ρκ is a solution of (5.3), and
0 ≤ f ≤ ρκ for every solution f of (5.3). The result follows by Lemma 5.9.

It remains to decide whether ρκ = 0 or not. Recall that ‖Tκ‖ is defined in (2.15). We
shall show that ρκ = 0 if and only if ‖Tκ‖ ≤ 1.

Lemma 5.11. If ‖Tκ‖ ≤ 1, then ρκ = 0.

Proof. Suppose that f is a solution of (5.3), and that we do not have f = 0 a.e.
Lemma 5.8(ii) implies that Tκ f ≥ f , with Tκ f > f on a set of positive measure, and
hence that ‖Tκ f ‖2 > ‖f ‖2, contradicting ‖Tκ‖ ≤ 1. Consequently, if f is a solution of (5.3),
then f = 0 a.e., and thus f = �κ f = 0, so the only solution is f = 0. In particular, ρκ = 0
since ρκ is a solution by Lemma 5.6.

It remains to show that if ‖Tκ‖ > 1, then ρκ is not identically zero. We proceed in several
steps.

Lemma 5.12. If f ≥ 0 and �κ f ≥ f , then �m
κ f ↗ g as m → ∞, for some g ≥ f ≥ 0

with �κg = g.

Proof. By induction, f ≤ �κ f ≤ �2
κ f ≤ . . . . Since 0 ≤ �m

κ f ≤ 1, the limit g(x) :=
limm→∞(�m

κ f )(x) exists for every x, and g ≥ 0. Monotone convergence yields

(Tκg)(x) = lim
m→∞

∫
S

κ(x, y)(�m
κ f )(y) dµ(y) = lim

m→∞(Tκ(�
m
κ f ))(x)

and thus
(�κg)(x) = lim

m→∞(�κ(�
m
κ f ))(x) = g(x).

Lemma 5.13. If there is a bounded function f ≥ 0, not a.e. 0, such that Tκ f ≥ (1 + δ)f
for some δ > 0, then ρκ > 0 on a set of positive measure.

Proof. Let M = sup f < ∞. Fix ε > 0 with (1 − Mε)(1 + δ) ≥ 1. Since − log(1 − x) ≤
x/(1 − x) we have

− ln(1 − εf ) ≤ 1

1 − εM
εf ≤ (1 + δ)εf ≤ εTκ f ,

and thus
�κ(εf ) = 1 − e−εTκ f ≥ 1 − (1 − εf ) = εf .

By Lemma 5.12, there exists a solution g to �κg = g with g ≥ εf , and thus g not a.e. 0. By
part (iv) of Lemma 5.6, we have ρκ ≥ g.

Remark 5.14. The proof of Lemma 5.13 shows that ρκ ≥ δ

1+δ

f
sup f . In particular, this

immediately implies Theorem 10 of [19].

We should like to find an eigenfunction of Tκ with eigenvalue greater than 1, so that
we can apply Lemma 5.13. If the Hilbert–Schmidt norm of Tκ (see (2.16)) is finite, then a
standard result gives us such an eigenfunction.
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Lemma 5.15. If ‖Tκ‖HS < ∞, then Tκ is compact and has an eigenfunction ψ ∈ L2(S),
ψ ≥ 0, with eigenvalue ‖Tκ‖.

If, in addition, κ is irreducible, then ψ > 0 a.e., and every eigenfunction with eigenvalue
‖Tκ‖ is a multiple of ψ .

Proof. Suppose that ‖Tκ‖HS < ∞. It is well-known (see e.g. [17, XIV.6, p. 202]) that Tκ is
then compact, and so has an eigenfunction g ∈ L2 with eigenvalue of modulus λ := ‖Tκ‖.
Then

Tκ |g| ≥ |Tκg| = λ|g| a.e.,

and since ‖Tκ‖ = λ we must have Tκ |g| = λ|g| a.e. Hence ψ := |g| is an eigenfunction
with eigenvalue λ = ‖Tκ‖.

Now suppose that κ is irreducible, with ‖Tκ‖HS < ∞, and let h be any (real) function
in L2 with Tκh = λh a.e. By the argument above, Tκ |h| = λ|h| a.e. holds as well. Let
A := {|h| = 0}. Then Tκ |h| = λ|h| = 0 a.e. on A, so κ = 0 a.e. on A × (S\A) and (2.12)
yields µ(A) = 0 or 1. Hence either h = 0 a.e. or h �= 0 a.e. In particular, taking h = g we
see that ψ > 0 a.e.

Returning to a general h satisfying Tκh = λh a.e., as Tκ(|h| + h) = λ(|h| + h) a.e. by
linearity, we can apply the argument above to |h| + h, deducing that either h > 0 a.e. or
h ≤ 0 a.e. Finally, applying this to h − aψ , with a chosen such that

∫
(h − aψ) dµ = 0, we

see that h − aψ = 0 a.e.

The second part of Lemma 5.15 will be needed only in Section 15.
After this preparation, it is easy to show that if ‖Tκ‖ > 1 then ρκ > 0 on a set of positive

measure.

Lemma 5.16. If 1 < ‖Tκ‖ ≤ ∞, then ρκ > 0 on a set of positive measure. Thus (5.3)
has at least one non-zero solution.

Proof. Since ‖Tκ‖ > 1, there is function f ∈ L2 with ‖f ‖2 = 1 and ‖Tκ f ‖2 > 1.
As Tκ |f | ≥ |Tκ f |, we may assume that f ≥ 0. Let TN be the integral operator on S
with the truncated kernel κN(x, y) := κ(x, y) ∧ N , N ≥ 1. By monotone convergence,
TN f ↗ Tκ f as N → ∞, and thus ‖TN f ‖2 ↗ ‖Tκ f ‖2 > 1. We can thus choose an N such
that ‖TN f ‖2 > 1 = ‖f ‖2, and thus ‖TN‖ > 1. Set δ = ‖TN‖ − 1 > 0.

Since the kernel κN is bounded and µ is a finite measure, by Lemma 5.15 TN has an
eigenfunction ψ ∈ L2(S) with ψ ≥ 0 and

TNψ = ‖TN‖ψ = (1 + δ)ψ . (5.8)

Since the kernel κN is bounded, it follows that TNψ is a bounded function. Indeed,
(TNψ)(x) ≤ N

∫
S ψ dµ = N‖ψ‖1 ≤ N‖ψ‖2 < ∞. From (5.8) it follows that ψ is

bounded.
Since κ ≥ κN ≥ 0, we have, using (5.8) again,

Tκψ ≥ TNψ = (1 + δ)ψ ,

and the result follows by Lemma 5.13.

The final lemma of this section will enable us to reduce the reducible case to the
irreducible one.
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Lemma 5.17. Let κ be a symmetric measurable function on S × S. Then there exists
a partition S = ⋃N

i=0 Si with 0 ≤ N ≤ ∞ such that each Si is measurable, µ(Si) > 0
for i ≥ 1, the restriction of κ to Si × Si is irreducible for each i ≥ 1, and κ = 0 a.e. on
(S × S)\⋃N

i=1(Si × Si).

Note that κ = 0 a.e. on S0 × S0.

Proof. Let G be the family of all measurable subsets A ⊆ S such that κ = 0 a.e. on
A × (S\A). It is easily verified that G is a σ -field; thus (S, G, µ) is a finite measure space.
Hence there exists a partition S = ⋃N

i=0 Si with 0 ≤ N ≤ ∞ and each Si ∈ G such that for
each i ≥ 1 the set Si is an atom in (S, G, µ) with positive measure, while S0 is non-atomic,
i.e., contains no atoms with non-zero measure. (We allow S0 = ∅.) Here “Si is an atom”
means that if A ⊆ Si with A ∈ G, then µ(A) = 0 or µ(A) = µ(Si); this is equivalent to
(2.12), so κ is irreducible on Si × Si for each i ≥ 1.

Finally, since S0 is non-atomic, for every positive integer M there exists a partition
S0 = ⋃M

j=1 Tj with Tj ∈ G and µ(Tj) = µ(S0)/M. Then κ = 0 a.e. on Ti × Tj when i �= j,
and thus

(µ × µ){(x, y) ∈ S0 × S0 : κ(x, y) �= 0} ≤ (µ × µ)

(
M⋃

j=1

(Tj × Tj)

)
= M

(
µ(S0)

M

)2

.

Letting M → ∞, we see that κ = 0 a.e. on S0 × S0.

Remark 5.18. One application of Lemma 5.17 is a generalization of Lemma 5.10 to
arbitrary κ . With Si as in Lemma 5.17, let J be the set of indices i such that the restriction
of the operator Tκ to L2(Si) has norm strictly greater than 1. Then there are 2|J| solutions of
(5.3), where 0 ≤ |J| ≤ ∞: for every subset J ′ ⊆ J , there is exactly one solution that equals
ρκ a.e. on

⋃
i∈J ′ Si and vanishes a.e. elsewhere. (This is easily seen using the argument in

the proof of Theorem 6.4 below.)

6. BRANCHING PROCESS RESULTS

In this section we collect the branching process results we shall use. These are all simple
consequences of the lemmas in the previous section. In this section, κ will always be a
kernel on a measure space (S, µ), i.e., a symmetric non-negative measurable function on
S × S. Unless explicitly stated otherwise, µ will be a probability measure, i.e., µ(S) = 1.
We shall assume that κ ∈ L1; as noted in the previous section, it follows that (5.1) holds
a.e. x. We do not assume that (5.1) holds for every x except when explicitly stated.

Theorem 6.1. Suppose that κ is a kernel on the space (S, µ), that κ ∈ L1, and that (5.1)
holds for every x. Then the function ρκ defined by ρκ(x) = ρ(κ; x) is the maximum solution
of (5.3). Furthermore:

(i) If ‖Tκ‖ ≤ 1, then ρ(κ; x) = 0 for every x, and (5.3) has only the zero solution.
(ii) If 1 < ‖Tκ‖ ≤ ∞, then ρ(κ; x) > 0 on a set of positive measure. If, in addition, κ

is irreducible, then ρ(κ; x) > 0 for a.e. x, and ρ(κ; x) is the only non-zero solution
of (5.3).

In particular, ρ(κ) > 0 if and only if ‖Tκ‖ > 1.
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Proof. The first statement is just part (iv) of Lemma 5.6. The remaining statements follow
directly from Lemmas 5.11, 5.16, Lemma 5.8(iv) and 5.10.

The next result is essentially a restatement of Theorem 6.1, in the setting of the results in
Section 3. Thus, µ will not necessarily be a probability measure, and we shall not require that
(5.1) holds; this makes very little difference. This result gives the promised characterization
of ρ(κ; x) and ρ(κ) in terms of a functional equation, in the full generality of the setting of
Theorem 3.1.

Recall that (2.17) defines �κ only for non-negative functions; we thus consider only
non-negative solutions to (6.1) later.

Theorem 6.2. Let κ be a kernel on a (generalized) ground space (S, µ), with κ ∈
L1(S × S, µ × µ). There is a (necessarily unique) maximum solution ρ̃κ to

�κ(ρ̃κ) = ρ̃κ , (6.1)

i.e., a solution that pointwise dominates all other solutions. Furthermore, ρ(κ; x) = ρ̃κ (x)
for a.e. x, and

�κ(ρκ) = ρκ a.e., (6.2)

where the function ρκ is defined by ρκ(x) := ρ(κ; x).
If ‖Tκ‖ ≤ 1, then ρ̃κ is identically zero, and this is thus the only solution to (6.1). If

‖Tκ‖ > 1, then ρ̃κ is positive on a set of positive measure. Thus ρ(κ) > 0 if and only if
‖Tκ‖ > 1.

If ‖Tκ‖ > 1 and κ is irreducible, then ρ̃κ is the unique non-zero solution to (6.1), and
ρ̃κ = ρκ > 0 a.e.

Theorem 6.2 follows almost immediately from Theorem 6.1 and Lemma 5.1.

Proof. Multiplying κ by a constant factor and dividing µ by the same constant factor
does not affect the definition of the branching process Xκ(x). Hence, the function ρκ is not
affected by this rescaling. As the operators Tκ and �κ are also unchanged, we may assume
without loss of generality that µ(S) = 1. As noted in Section 5, since κ ∈ L1 there is a
kernel κ̄ with κ̄ = κ a.e., such that (5.1) holds for κ̄ for every x. Applying Theorem 6.1 to
the kernel κ̄ , the result follows by Lemma 5.1 and Remark 5.5.

We now study monotonicity and continuity properties of ρ(κ; x) and ρ(κ) when κ is
varied. For the rest of the section, we assume that µ(S) = 1. As usual, we say that a
sequence of functions fn increases (a.e.) to a function f if for every x (a.e. x) the sequence
fn(x) is monotone increasing and converges to f (x). As before, we write ρκ for the function
given by ρκ(x) := ρ(κ; x). We start with a trivial lemma.

Lemma 6.3. If κ1 ≤ κ2, then ρκ1 ≤ ρκ2 .

Proof. Immediate by coupling the branching processes.

Theorem 6.4. (i) Let (κn)
∞
1 be a sequence of kernels on (S, µ) increasing a.e. to κ . Then

ρκn ↗ ρκ for a.e. x and ρ(κn) ↗ ρ(κ).
(ii) Let (κn)

∞
1 be a sequence of kernels on (S, µ) decreasing a.e. to κ . Then ρκn ↘ ρκ

for a.e. x and ρ(κn) ↘ ρ(κ).
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Proof. On the measure zero set where κn �→ κ , redefine all κn and κ to be 0. By Lemma 5.1,
this does not affect the conclusions, so we may assume κn ↗ κ or κn ↘ κ everywhere.
Similarly, we may assume that (5.1) holds for every x, for each κn and for κ . It suffices to
prove the conclusions for ρκ : the conclusions for ρ(κ) follow from (2.13) and dominated
convergence.

(i) We choose a partition S = ⋃N
i=0 Si as in Lemma 5.17, and redefine κ and all κn to

be 0 on (S × S)\⋃N
i=1(Si × Si); this only changes the kernels on a set of measure zero,

so we may again apply Lemma 5.1. Now ρκn = ρκ = 0 on S0. We may consider each Si,
i ≥ 1, separately, and we may thus assume without loss of generality that κ is irreducible.
The only problem is that the restriction of µ to Si does not have total mass 1, but this is not
a real problem, and can be handled by renormalizing, i.e., dividing the measure by µ(Si)

and multiplying all kernels by the same factor; as remarked earlier, this operation does not
affect the branching process.

We have shown that we may assume that κ is irreducible; let us do so. By Lemma 6.3, if
m ≤ n, then ρκm ≤ ρκn . Thus (ρκn) is an increasing sequence of functions, all bounded by
1, so the limit ρ∗

κ (x) := limn→∞ ρκn(x) exists everywhere. By monotone convergence,

(Tκρ
∗
κ )(x) =

∫
S

κ(x, y)ρ∗
κ (y) dµ(y) = lim

n→∞

∫
S

κn(x, y)ρκn(y) dµ(y)

= lim
n→∞(Tκnρκn)(x),

so �κρ
∗
κ = limn→∞ �κnρκn = limn→∞ ρκn = ρ∗

κ . Hence, by Lemma 5.10, either ρ∗
κ = ρκ ,

and we are done, or ρ∗
κ = 0. In the latter case, each ρκn = 0, and thus, by Lemma 5.16,

‖Tκn‖ ≤ 1.
Hence, if f ∈ L2 with f ≥ 0 and ‖f ‖2 ≤ 1, then ‖Tκn f ‖2 ≤ 1. Monotone convergence

shows that, as n → ∞, Tκn f ↗ Tκ f and ‖Tκn f ‖2 ↗ ‖Tκ f ‖2. Consequently, ‖Tκ f ‖2 ≤ 1 for
each such f , and thus ‖Tκ‖ ≤ 1. By Theorem 6.1, ρκ = 0 in this case, so ρκ = ρ∗

κ in this
case too.

(ii) This is similar. Now (ρκn) is a decreasing sequence of functions, and ρ∗
κ (x) :=

limn→∞ ρκn(x) still exists everywhere. By dominated convergence, (Tκρ
∗
κ )(x) =

limn→∞(Tκnρκn)(x), so �κρ
∗
κ = limn→∞ �κnρκn = limn→∞ ρκn = ρ∗

κ . In other words,
ρ∗

κ satisfies (5.3). Furthermore, by Lemma 6.3 again, ρκn ≥ ρκ , so ρ∗
κ ≥ ρκ . Since ρκ is a

maximal solution to (5.3) by Lemma 5.6, ρ∗
κ = ρκ .

Theorem 6.5. (i) Let (κn)
∞
1 be a sequence of kernels on (S, µ) increasing a.e. to κ . Then,

for every k ≥ 1, ρ≥k(κn; x) ↗ ρ≥k(κ; x) for a.e. x and ρ≥k(κn) ↗ ρ≥k(κ).
(ii) Let (κn)

∞
1 be a sequence of kernels on (S, µ) decreasing a.e. to κ . Then, for every

k ≥ 1, ρ≥k(κn; x) ↘ ρ≥k(κ; x) for a.e. x and ρ≥k(κn) ↘ ρ≥k(κ).

Proof. As in the proof of Theorem 6.4, we may assume that κn ↗ κ or κn ↘ κ everywhere,
and that (5.1) always holds.

(i) Let κ0 := 0 and �κn := κn − κn−1, n ≥ 1. The children of a particle of type x are
given by a Poisson process with intensity κ(x, y) dµ(y) = ∑

n �κn(x, y) dµ(y), which can be
represented as the sum of independent Poisson processes with intensities �κn(x, y) dµ(y).
We label the children in the nth of these processes by n, and give the initial “root” vertex
label 0. This gives a labelling of all particles in the branching process Xκ(x) (which starts
with a single particle of type x) such that the subset of all particles that, together with all their
ancestors, have labels at most n gives the branching process Xκn(x). Consequently (using
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this coupling of the processes), the family tree of the initial particle in Xκn(x) will grow to
its family tree in Xκ(x) as n → ∞. Hence ρ≥k(κn; x) ↗ ρ≥k(κ; x) and ρ≥k(κn) ↗ ρ≥k(κ).

(ii) We may similarly label all particles in Xκ1(x) with labels {1, 2, . . . ,∞} such that
Xκn(x) [Xκ(x)] consists of all particles that, together with their ancestors, have labels at
least n [∞]. By Remark 5.2, a particle always has a finite number of children, so a particle
survives for eternity if and only if it has infinitely many descendants. By Theorem 6.4 we
have

ρ(κn; x) ↘ ρ(κ; x) (6.3)

for a.e. x. Fix any x for which (6.3) holds. Writing |Xκn(x)| for the total population of the
branching process Xκn(x), whenever |Xκm(x)| < ∞ for some m, we have |Xκn(x)| ↘ |Xκ(x)|
as n → ∞; indeed, for large n the entire processes Xκn(x) and Xκ(x) coincide. From (6.3),
with probability 1 either |Xκ(x)| = ∞, in which case |Xκn(x)| ≥ |Xκ(x)| = ∞ for all n, or
there is an m with |Xκm(x)| < ∞, in which case |Xκn(x)| = |Xκ(x)| for all large enough n.
Thus, the events |Xκn(x)| ≥ k converge a.e. to |Xκ(x)| ≥ k, and ρ≥k(κn; x) ↘ ρ≥k(κ; x).

Suppose that κ is supercritical (i.e., that ‖Tκ‖ > 1), and assume for simplicity that (5.1)
holds for every x. Consider the branching process Xκ(x) starting with a particle of type x,
and classify its children in the first generation according to whether they have infinitely
many descendants or not. By the properties of Poisson processes, this exhibits the children
as the union of two independent Poisson processes with intensities κ(x, y)ρκ(y) dµ(y) and
κ(x, y)(1 − ρκ(y)) dµ(y) respectively, where the first litter consists of the children with
infinitely many descendants, or, equivalently, those whose descendants live for ever.

The process Xκ(x) eventually becomes extinct if and only if the first litter is empty. It
follows that if X̂κ(x) denotes the branching process Xκ(x) conditioned on extinction, then
X̂κ(x) is itself a multi-type Galton–Watson branching process, where the set of children of
a particle of type z is given by a Poisson process with intensity κ(z, y)(1 − ρκ(y)) dµ(y).
This is another instance of the situation studied here, with µ replaced by µ̂ defined by
dµ̂(y) := (1−ρκ(y)) dµ(y), except that µ̂ is not a probability measure – this is unimportant
since we can normalize and consider κ̂ ′ := (1 − ρ(κ))κ and µ̂′ := (1 − ρ(κ))−1µ̂; see
Definition 3.15 and the discussion following.

The process X̂κ(x) dies out by construction, and is thus subcritical or critical. Exam-
ple 12.4 shows that it can be critical (even when κ is irreducible). In many cases, however,
X̂κ(x) is subcritical; we give one simple criterion.

Lemma 6.6. Suppose that κ is irreducible and that ‖Tκ‖ > 1. If g ≥ 0 is integrable and
such that Tκ((1 − ρκ)g) ≥ g a.e., then g = 0 a.e.

Proof. We may assume that (5.1) holds for every x. By Theorem 6.1 and Lemma 5.8(iii),
(1 − ρκ)Tκρκ < ρκ a.e. If g > 0 on a set of positive measure, then

∫
S

gρκ dµ >

∫
S

g(1 − ρκ)Tκρκ dµ =
∫

S
ρκTκ(g(1 − ρκ)) dµ ≥

∫
S

ρκg dµ,

a contradiction.
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Theorem 6.7. Suppose that κ is a quasi-irreducible kernel on (S, µ), and that ‖Tκ‖ > 1.
Let µ̂ be the measure defined by dµ̂(y) = (1−ρκ(y)) dµ(y), and let T̂κ be the corresponding
integral operator

T̂κg :=
∫

S
κ(x, y)g(y)dµ̂(y) = Tκ((1 − ρκ)g).

Then ‖T̂κ‖L2(µ̂) ≤ 1.
If, in addition,

∫∫
S2 κ(x, y)2 dµ(x) dµ(y) < ∞, then ‖T̂κ‖L2(µ̂) < 1.

Note that with κ̂ ′ = (1 − ρ(κ))κ and µ̂′ = (1 − ρ(κ))−1µ̂ as above, we have T̂κ = Tκ̂ ′ ,
where Tκ̂ ′ is defined by Tκ̂ ′g(x) := ∫

S κ̂ ′(x, y)g(y)dµ̂′(y). Thus ‖T̂κ‖L2(µ̂) = ‖Tκ̂ ′ ‖L2(µ̂′).

Proof. We may assume (5.1) and that κ is irreducible. The discussion above and Theo-
rem 6.1 show that ‖Tκ̂ ′ ‖L2(µ̂′) ≤ 1, as X̂κ(x) dies out by construction. (An analytic proof is
easily given too, using a truncation of κ and the argument below for the second part.)

For the second part, the additional assumption implies that
∫∫

S2 κ̂ ′(x, y)2dµ̂′(x)
dµ̂′(y) < ∞, so ‖Tκ̂ ′ ‖HS < ∞. Lemma 5.15 shows that T̂κ = Tκ̂ ′ has an eigenfunction
g ≥ 0 with eigenvalue ‖T̂κ‖, and thus

‖T̂κ‖g = T̂κg = Tκ((1 − ρκ)g) a.e.

If ‖T̂κ‖ ≥ 1, this contradicts Lemma 6.6.

With a few exceptions, in the rest of the paper we shall not refer directly to the lemmas
in Section 5; the results in this section describe the properties of the branching process we
shall use.

7. APPROXIMATION

In this section we introduce certain upper and lower approximations to a kernel κ on
a (generalized) ground space (S, µ), in preparation for the study of the random graph
GV(n, κn). Recall that S is a separable metric space, and that µ is a Borel measure on S
with 0 < µ(S) < ∞. We usually assume that µ(S) = 1; in this section, this makes no
difference. Here the metric and topological structure of S will be important.

Given a sequence of finite partitions Pm = {Am1, . . . , AmMm}, m ≥ 1, of S and an x ∈ S,
we define im(x) by

x ∈ Am,im(x). (7.1)

As usual, for A ⊂ S we write diam(A) for sup{d(x, y) : x, y ∈ A}, where d is the metric on
our metric space S.

Lemma 7.1. Let (S, µ) be a (generalized) ground space. There exists a sequence of finite
partitions Pm = {Am1, . . . , AmMm}, m ≥ 1, of S such that

(i) each Ami is measurable and µ(∂Ami) = 0;
(ii) for each m, Pm+1 refines Pm, i.e., each Ami is a union

⋃
j∈Jmi

Am+1,j for some set Jmi;
(iii) for a.e. x ∈ S, diam(Am,im(x)) → 0 as m → ∞, where im(x) is defined by (7.1).
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Proof. If S = (0, 1] and µ is continuous, e.g., µ is the Lebesgue measure, we can take
Pm as the dyadic partition into intervals of length 2−m. If S = (0, 1] and µ is arbitrary, we
can do almost the same; we only shift the endpoints of the intervals a little when necessary
to avoid point masses of µ.

In general, we can proceed as follows. Let z1, z2, . . . be a dense sequence of points in
S. For any zi, the balls B(zi, r), r > 0, have disjoint boundaries, and thus all except at
most a countable number of them are µ-continuity sets. Consequently, for every m ≥ 1
we may choose balls Bmi = B(zi, rmi) that are µ-continuity sets and have radii satisfying
1/m < rmi < 2/m. Then,

⋃
i Bmi = S, and if we define B′

mi := Bmi\⋃
j<i Bmj, we obtain

for each m an infinite partition {B′
mi}∞1 of S into µ-continuity sets, each with diameter

at most 4/m. To get a finite partition, we choose Nm large enough to ensure that, with
B′

m0 := ⋃
i>Nm

B′
mi, we have µ(B′

m0) < 2−m; then {B′
mi}Nm

i=0 is a partition of S for each m, with
diam(B′

mi) ≤ 4/m for i ≥ 1.
Finally, we letPm consist of all intersections

⋂m
l=1 B′

lil
with 0 ≤ il ≤ Nl; then conditions (i)

and (ii) are satisfied. Condition (iii) follows from the Borel–Cantelli Lemma: as
∑

m µ(B′
m0)

is finite, a.e. x is in finitely many of the sets B′
m0. For any such x, if m is large enough then

x ∈ B′
mi for some i ≥ 1, so the part of Pm containing x has diameter at most diam(B′

mi) ≤
4/m.

Recall that a kernel κ on (S, µ) is a symmetric measurable function on S × S. Fixing a
sequence of partitions with the properties described in Lemma 7.1, we can define sequences
of lower and upper approximations to κ by

κ−
m (x, y) := inf{κ(x′, y′) : x′ ∈ Am,im(x), y′ ∈ Am,im(y)}, (7.2)

κ+
m (x, y) := sup{κ(x′, y′) : x′ ∈ Am,im(x), y′ ∈ Am,im(y)}. (7.3)

We thus replace κ by its infimum or supremum on each Ami × Amj. As κ+
m might be +∞,

we shall use it only for bounded κ .
By Lemma 7.1(ii),

κ−
m ≤ κ−

m+1 and κ+
m ≥ κ+

m+1.

Furthermore, if κ is continuous a.e. then, by Lemma 7.1(iii),

κ−
m (x, y) → κ(x, y) and κ+

m (x, y) → κ(x, y) for a.e. (x, y) ∈ S2. (7.4)

Since κ−
m ≤ κ , we can obviously construct our random graphs so that G(n, κ−

m ) ⊆ G(n, κ);
in the sequel we shall assume this. Similarly, we shall assume that G(n, κ+

m ) ⊇ G(n, κ)

when κ is bounded.
If (κn) is a graphical sequence of kernels with limit κ , we define instead

κ−
m (x, y) := inf{(κ ∧ κn)(x

′, y′) : x′ ∈ Am,im(x), y′ ∈ Am,im(y), n ≥ m}. (7.5)

By Lemma 7.1(ii), we have κ−
m ≤ κ−

m+1, and from Lemma 7.1(iii) and (2.10) we see that

κ−
m (x, y) ↗ κ(x, y) as m → ∞, for a.e. (x, y) ∈ S2. (7.6)

Moreover, when n ≥ m we have
κn ≥ κ−

m , (7.7)

and we may assume that G(n, κ−
m ) ⊆ G(n, κn).

Random Structures and Algorithms DOI 10.1002/rsa



THE PHASE TRANSITION IN INHOMOGENEOUS RANDOM GRAPHS 41

For a uniformly bounded graphical sequence (κn) of kernels with limit κ , we similarly
define

κ+
m (x, y) := sup{(κ ∨ κn)(x

′, y′) : x′ ∈ Am,im(x), y′ ∈ Am,im(y), n ≥ m} < ∞. (7.8)

Relations corresponding to (7.6) and (7.7) hold for κ+
m ; we collect these and an additional

result in the following lemma.

Lemma 7.2. Let (κn)n∈I be a graphical sequence of kernels on a (generalized) vertex
space V with limit κ , and suppose that supx,y,n κn(x, y) < ∞. Then there is a sequence κ+

m ,
m = 1, 2, . . . , of regular finitary kernels on V with the following properties.

(i) We have κ+
m (x, y) ↘ κ(x, y) as m → ∞ for a.e. (x, y) ∈ S2.

(ii) Whenever n ≥ m we have κ+
m (x, y) ≥ κn(x, y) for every (x, y) ∈ S2.

(iii) ‖Tκ+m ‖ ↘ ‖Tκ‖ as m → ∞.

Proof. Let Pm = {Am1, . . . , AmMm}, m ≥ 1, be a sequence of partitions with the properties
described in Lemma 7.1, and define κ+

m (x, y) by (7.8). (If κn = κ for all n, this is just (7.3).)
Then (ii) holds trivially. By Lemma 7.1(iii) and (2.10), κ+

m ↘ κ a.e., proving (i). Finally,
by dominated convergence, ‖Tκ+m − Tκ‖HS → 0. Hence,

‖Tκ‖ ≤ ‖Tκ+m ‖ ≤ ‖Tκ‖ + ‖Tκ+m − Tκ‖ ≤ ‖Tκ‖ + ‖Tκ+m − Tκ‖HS ↘ ‖Tκ‖,

proving (iii).

We finish this section with a result for lower approximations corresponding to Lemma 7.2,
but with one additional ingredient: for lower approximations to be useful we shall often
need them to be quasi-irreducible.

Lemma 7.3. If (κn)n∈I is a graphical sequence of kernels on a (generalized) vertex space
V with limit κ , there is a sequence κ̂−

m , m = 1, 2, . . . , of regular finitary kernels on V with
the following properties.

(i) If κ is quasi-irreducible, then so is κ̂−
m for all large m.

(ii) We have κ̂−
m (x, y) ↗ κ(x, y) as m → ∞ for a.e. (x, y) ∈ S2.

(iii) Whenever n ≥ m we have κ̂−
m (x, y) ≤ κn(x, y) for every (x, y) ∈ S2.

Before turning to the proof, let us note that the conclusions of the lemma are obvious
for suitably “nice” kernels κ (or sequences κn → κ); for example if κ is continuous, S is
compact and κ > 0. Indeed, if we partition S into finitely many pieces Si in a suitable way,
we may then set κ̂−

m (x, y) = inf{κ(x′, y′) : x′ ∈ Si, y′ ∈ Sj} whenever x ∈ Si and y ∈ Sj.
Note also that in the application we shall need condition (iii) for every (x, y) ∈ S2: while
changes in a kernel κ on a set of measure zero do not affect the branching process Xκ , they
can affect the graph GV(n, κ).

Proof of Lemma 7.3. We may assume that κ > 0 on a set of positive measure, as otherwise
we may take κ̂−

m = 0 for every m and there is nothing to prove. We shall construct the
sequence κ̂−

m in two stages.
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Let Pm = {Am1, . . . , AmMm}, m ≥ 1, be a sequence of partitions with the properties
described in Lemma 7.1. If κn = κ for all n, we start with κ−

m defined in (7.2). In general,
with a sequence κn, we use instead the definition (7.5).

Each κ−
m is of the regular finitary type treated above, and the κ−

m have two of the properties
required for the κ̂−

m , namely (ii) and (iii), by (7.6) and (7.7), respectively. However, (i) may
fail, as some κ−

m may be reducible. From now on we shall assume that κ is quasi-irreducible,
as otherwise we may take κ̂−

m = κ−
m . In fact, without loss of generality we may assume that

κ is irreducible. Indeed, it suffices to prove this case as, given a quasi-irreducible κ , we may
then apply the result to the irreducible restriction to S ′ × S ′, and extend the approximating
κ̂−

m obtained to S × S by taking them to be zero off S ′ × S ′. We shall thus assume that κ is
irreducible.

If κ−
m = 0 a.e. for every m, then κ = 0 a.e. by (7.6), contradicting our assumption. We

may thus assume that there exists an m0 such that κ−
m0

> 0 on a set of positive measure.
We consider only m ≥ m0, and assume for notational convenience that m0 = 1. Thus there
exist i and j (possibly equal) with µ(A1i), µ(A1j) > 0 and κ−

1 > 0 on A1i × A1j. From now
on we fix such a pair i and j.

For m ≥ 1, let Em := ⋃{Ami : µ(Ami) = 0}, noting that µ(Em) = 0, and let Bm be
the set of all x ∈ S such that for some k ≥ 1 there exists a sequence x0, . . . , xk with
x0 = x, xk ∈ A1i, κ−

m (xl−1, xl) > 0, and xl /∈ Em for l = 1, . . . , k. (Note that x = x0

may belong to Em.) Since κ−
m is constant on each Amp × Amq, Bm is a union of some of

the sets Amp. It is easily seen that Bm ⊆ Bm+1, that Bm ⊇ B1 ⊇ A1j, that the restric-
tion of κ−

m to Bm is irreducible and that κ−
m = 0 on (Bm\Em) × (S\Bm) and thus a.e. on

Bm × (S\Bm).
Let B := ⋃∞

1 Bm. If n ≥ m, then Bm ⊆ Bn and thus κ−
n = 0 a.e. on Bm × (S\B) ⊆

Bn × (S\Bn). Letting n → ∞, (7.6) shows that κ = 0 a.e. on Bm × (S\B). Letting now
m → ∞ (taking the union) yields κ = 0 a.e. on B × (S\B). Since κ is irreducible, it
follows by (2.12) that µ(B) = 0 or µ(S\B) = 0. As B ⊇ B1 ⊇ A1j, we have µ(B) > 0, so
µ(S\B) = 0. In other words, a.e. x ∈ B = ⋃

m Bm.
Now define

κ̂−
m (x, y) = κ−

m (x, y)1[x ∈ Bm]1[y ∈ Bm].

Thus κ̂−
m is 0 off Bm ×Bm, and the restriction to Bm is by construction irreducible and of the

regular finitary type, so condition (i) of the lemma is satisfied. Furthermore, by (7.6) and
the fact that Bm ↗ B with µ(S\B) = 0, we have κ̂−

m (x, y) ↗ κ(x, y) as m → ∞ for a.e.
(x, y) ∈ S2, so (ii) holds.

Finally, if n ≥ m, then κ̂−
m ≤ κ−

m ≤ κn, so (iii) holds.

8. THE NUMBER OF EDGES

In this section we consider circumstances in which the condition (2.9) or (2.11) on the
convergence of the number of edges in GV(n, κ) does, or does not, hold. In doing so, we
shall make frequent use of the approximating kernels κ−

m and κ+
m defined for a single kernel

κ by (7.2) and (7.3), and for a sequence by (7.5) and (7.8). As before, we shall always
write the (generalized) vertex space V under consideration as (S, µ, (xn)), unless otherwise
specified.
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Lemma 8.1. Let κ be an a.e. continuous kernel on a (generalized) vertex space V . Then

lim inf
n→∞

1

n
E e(GV(n, κ)) ≥ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y). (8.1)

If κ is a bounded a.e. continuous kernel on a vertex space V , then

lim
n→∞

1

n
E e(GV(n, κ)) = 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y). (8.2)

Proof. Write G(n, κ) for GV(n, κ). Consider first the regular finitary case defined in
Definition 4.4. For n ≥ max κ , conditioning on n1, . . . , nr we have

1

n
E e(G(n, κ) | n1, . . . , nr) = 1

2n

r∑
i,j=1

(ninj − niδij)
1

n
κ(i, j)

p→ 1

2

r∑
i,j=1

κ(i, j)µ(Si)µ(Sj) = 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y). (8.3)

Taking expectations and applying Fatou’s Lemma, it follows that (8.1) holds in this case.
In general, to prove (8.1) we use Lemma 7.1 and the approximation (7.2). For every m,

by the case just treated,

lim inf
n→∞

1

n
E e(G(n, κ)) ≥ lim inf

n→∞
1

n
E e(G(n, κ−

m )) = 1

2

∫∫
S2

κ−
m .

As m → ∞, the monotone convergence theorem implies that
∫∫

κ−
m → ∫∫

κ , and (8.1)
follows.

If V is a vertex space and κ is regular finitary, then the left-hand side of (8.3) is bounded
by max κ/2, so by the dominated convergence theorem we have 1

n E e(G(n, κ)) → 1
2

∫∫
κ .

In general, if V is a vertex space and κ is bounded, we can use κ+
m in place of κ−

m to show
that lim supn→∞

1
n E e(G(n, κ)) ≤ 1

2

∫∫
κ .

Remark 8.2. Condition (8.2) may fail for a generalized vertex space V , even if κ is
constant. The problem is that the definition of a generalized vertex space only imposes
“whp conditions” on the number of vertices, giving no control on the distribution in the
o(1) probability case that these conditions fail, and hence giving no control on expec-
tations. In particular, with κ identically 1, the expected number of edges is essentially
1

2n E(|V(GV(n, κ))|2), and we have no control over this expectation—it can even be infinite.
When the number vn of vertices is sufficiently concentrated (for example Poisson), this

problem does not arise. Indeed, (8.2) holds whenever κ is bounded and Var(vn/n) → 0;

since vn/n
p→ µ(S) by assumption, the variance condition is easily shown to be equivalent

to E(vn/n)2 → µ(S)2, and to imply uniform integrability of (vn/n)2; see e.g. [61, Proposi-
tion 4.12]. (If the parameter n is not restricted to integers, we may have to consider a sequence
of indices n.) Since the left-hand side of (8.3) is bounded by max κ (vn/n)2, which is also
uniformly integrable, we may take the expectation in (8.3) and obtain (8.2).

Our main results concern statements that hold whp, and convergence in probability of
various quantities. For such statements, a small chance of a very large number of vertices
is not a problem.
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The following lemma shows that the condition to be graphical is essentially equivalent
to a statement about approximations with bounded kernels.

Lemma 8.3. Let κ be a bounded a.e. continuous kernel on a (generalized) vertex space
V .

If V is a vertex space, then κ is graphical if and only if

(i) for every ε > 0 there exists an M < ∞ such that

lim sup
n→∞

1

n
E e(GV(n, κ)\GV(n, κ ∧ M)) ≤ ε.

In general, κ is graphical if and only if (i) holds together with

(ii) for every M < ∞,

lim sup
n→∞

1

n
E e(GV(n, κ ∧ M)) ≤ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

Proof. It is obvious that (i) and (ii) imply that lim sup 1
n E e(GV(n, κ)) ≤

1
2

∫∫
S2 κ(x, y) dµ(x) dµ(y), which together with Lemma 8.1 shows that κ is graphical.

Conversely, suppose that κ is graphical on V . Then, from the definition of graphicality
(see (2.9)), E e(GV(n, κ)) → 1

2

∫∫
κ . Applying Lemma 8.1 to κ ∧ M, it follows that

lim sup
1

n
E e(GV(n, κ)\GV(n, κ ∧ M))

= 1

2

∫∫
κ − lim inf

1

n
E e(GV(n, κ ∧ M)) ≤ 1

2

∫∫
(κ − κ ∧ M) < ε

if M is large enough.

Note that (ii) almost always holds by Lemma 8.1 and Remark 8.2. Arguing as in the
proof of Lemma 8.3, one can show that (ii) can be replaced by the condition that each κ ∧M
be graphical; we omit the details.

Remark 8.4. Lemma 8.3 implies that, if κ is a graphical kernel on a (generalized) vertex
space V and 0 < c < ∞, then cκ is also graphical on V . Indeed, it suffices to check condition
(iii) of Definition 2.7, namely that 1

n E e(G(n, cκ)) → 1
2

∫∫
cκ(x, y). Without the min{·, 1}

in the formula (2.8), this would be immediate from the same condition for κ; indeed, the
claim that cκ is graphical is equivalent to the claim that replacing this 1 with 1/c does not
affect E e(G(n, κ)) by more than o(n).

Since cκ ∧ cM = c(κ ∧ M), it is obvious that condition (ii) of Lemma 8.3 holds for cκ
if and only if it holds for κ . Moreover, if n ≥ M,

1

n
E(e(GV(n, κ)\GV(n, κ ∧ M)) | xn) = n−2

∑
i<j

(κ(xi, xj) ∧ n − κ(xi, xj) ∧ M).

It is clear that if we replace κ by cκ and M by cM, and assume n ≥ 2(1 ∨ c)M, then this
sum changes by at most a constant factor. Hence condition (i) of Lemma 8.3 also holds for
cκ if and only if it holds for κ .
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Lemmas 8.1 and 8.3 hold also for the variants of GV(n, κ) defined in Remark 2.4, by the
same proofs. Moreover, it is easily seen that conditions (i) and (ii) of Lemma 8.3 hold for
one of these versions if and only if they hold for GV(n, κ). Hence κ is graphical if and only
if the analogue of (2.9) for one of these variants holds.

The results above can be extended to sequences (κn) satisfying (2.10), using the approxi-
mations κ−

m defined by (7.5). In particular, a similar argument shows that if (κn) is a graphical
sequence of kernels on a (generalized) vertex space V with limit κ , and (cn) is a sequence
of positive reals with cn → c > 0, then (cnκn) is graphical on V with limit cκ .

Let us emphasize that relation (8.2), i.e., condition (2.9) from the definition of graphical-
ity, often holds for unbounded κ too, and for generalized vertex spaces V . One example is
when the xi are random as in Example 4.8; another is the Poisson process case in Example 4.9.
A rather different example is the following.

Example 8.5. Suppose that S = (0, 1], µ is the Lebesgue measure and xi = i/n; this
vertex space was considered in Example 4.7 and will be used in several further examples
in Section 16, with several different kernels. Suppose that κ is decreasing in each variable,
so κ(x, y) ≥ κ(x′, y′) when x ≤ x′ and y ≤ y′. Then

1

n
E e(G(n, κ)) = 1

2n2

∑
i �=j

κ(i/n, j/n) ∧ n ≤ 1

2

∫ 1

0

∫ 1

0
κ(x, y) dx dy.

Hence (8.1) implies that (8.2) holds in this case. Note that this includes both (16.1) and
(16.4).

We next give a simple example where (2.9), i.e., (8.2), fails.

Example 8.6. Take again S = (0, 1], let µ be the Lebesgue measure and set xi = i/n.
Let 0 < δ < 1 be constant and define κ by

κ(x, y) =
{

m if x ∧ y = 1/m and m ≥ 1;

δ otherwise.

Note that κ = δ a.e., and hence ρ(κ) = ρ(δ) = 0 as for G(n, δ/n) in Example 4.1;
furthermore, κ is continuous a.e.

Now, κ(1/n, j/n) = n for every j ≤ n. Hence, G(n, κ) contains the star consisting
of all edges 1j, 1 < j ≤ n, so G(n, κ) is connected and C1(G(n, κ)) = n, although,
as remarked above, ρ(κ) = 0. Consequently, (3.2) fails in this case. Note that all
assumptions of Theorem 3.1 are satisfied except (2.9); indeed, e(G(n, κ)) ≥ n − 1 while∫∫

S2 κ(x, y) dµ(x) dµ(y) = δ.
We can modify this example to make κ continuous on (0, 1]2: for 0 < ε < 1/4, let

κε(x, y) = φ(x ∧ y) with φ(1/m) = m, φ(1/m ± εm−4) = δ, and φ linear in between. If ε

is small enough, then ‖Tκε‖ < 1 (because the Hilbert–Schmidt norm satisfies ‖Tκε‖HS → δ

as ε → 0 by dominated convergence); thus ρ(κε) = 0, although C1(G(n, κε)) = n.

We next give a result on the number of edges conditioned on xn; this time we consider a
sequence (κn) of kernels.

Random Structures and Algorithms DOI 10.1002/rsa



46 BOLLOBÁS, JANSON, AND RIORDAN

Lemma 8.7. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with limit κ . Then

1

n
E(e(GV(n, κn)) | xn)

p→ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

Proof. Let Wn := E(e(GV(n, κn)) | xn)/n and w := 1
2

∫∫
S2 κ(x, y) dµ(x) dµ(y). By our

assumption (2.11), we have E Wn → w.
Define κ−

m by (7.5). By (8.3), applied to κ−
m ,

W (m)
n := E(e(GV(n, κ−

m )) | xn)/n
p→ wm := 1

2

∫∫
S2

κ−
m (x, y) dµ(x) dµ(y).

Let ε > 0 be given. By (7.6) and monotone convergence, wm → w as m → ∞, so we may
choose m such that wm > w − ε. For n ≥ m we have Wn ≥ W (m)

n , and hence

P(Wn < w − 2ε) ≤ P(W (m)
n < wm − ε) → 0 as n → ∞.

Hence, writing f− for −(f ∧ 0), we have (Wn − w)−
p→ 0 and, by dominated convergence,

E(Wn − w)− → 0. Consequently, E |Wn − w| = 2 E(Wn − w)− + E(Wn − w) → 0.

Remark 8.8. Recalling (2.2) or (2.4), the convergence condition for the empirical dis-

tribution νn of the types of the vertices in a (generalized) vertex space, we have νn
p→ µ

and Wn
p→ w (in the notation of the proof above), where νn and Wn are functions of xn.

Coupling the xn for different n appropriately (a simple application of the Skorohod coupling
theorem [61, Theorem 4.30]), or considering appropriate subsequences, we may assume
that νn → µ and Wn → w a.s. Consequently, we may condition on xn and assume that
(2.2) and (2.11) still hold. In other words, after conditioning on xn, V is still a (generalized)
vertex space and (κn) is still graphical with limit κ . By conditioning in this way we may
thus assume that xn is deterministic; see Subsection 8.1.

Our next result shows that the number of edges is concentrated, so that the actual number
converges as well as its mean.

Proposition 8.9. Let (κn) be a graphical sequence of kernels on a (generalized) vertex
space V with limit κ . Then

1

n
e(GV(n, κn))

p→ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

Proof. Let Gn = GV(n, κn) and, as above, Wn = E(e(Gn) | xn)/n. Conditioned on xn,
the number e(Gn) of edges is a sum of independent Be(pij) variables, and thus Var(e(Gn) |
xn) ≤ E(e(Gn) | xn). Hence, using (2.11),

E(e(Gn)/n − Wn)
2 = n−2

E(Var(e(Gn) | xn)) ≤ n−2
E(e(Gn)) → 0.

Consequently, e(Gn)/n − Wn
p→ 0, and the result follows by Lemma 8.7.

Finally, we note that small sets of vertices do not connect to too many edges. For this we
need a simple lemma. Recall that dG(i) denotes the degree of the vertex i in the graph G.
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Lemma 8.10. Let κ be a bounded kernel on a (generalized) vertex space V , and let
Gn = GV(n, κ). Then

∑
i d2

Gn
(i) = O(n) whp.

Proof. Let a := 2µ(S) and b := sup κ(x, y) < ∞. Then whp vn ≤ an, and thus, in
the natural coupling, GV(n, κ) ⊆ G(�an�, b/n) whp. Consequently, it suffices to prove
the result for G(�an�, b/n) or, changing the notation slightly, for G(n, c/n) for every fixed
c > 0. However, for any graph G,

∑
i dG(i) = 2e(G) and

∑
i dG(i)(dG(i) − 1) = 2P2(G),

twice the number of paths of length 2 (cf. Section 17). It is well-known, and easy to prove,

that e(G(n, c/n))/n
p→ α1 and P2(G(n, c/n))/n

p→ α2 for some constants α1, α2 (depending
on c), see e.g. [59, Chapter 3 and Theorem 6.5]. Consequently, with C := 2α1 + 2α2 + 1,∑

i d2
G(n,c/n)(i) < Cn whp. (Alternatively, we may use Theorem 17.1.)

Proposition 8.11. Let (κn) be a graphical sequence of kernels on a (generalized) vertex
space V with limit κ . Given ε > 0, there is a δ > 0 so that whp the sum of the degrees of
any set of at most δn vertices of Gn = GV(n, κn) is at most εn. In particular, any set of op(n)

vertices of Gn has op(n) neighbours.

Proof. Let κ̂−
m be as in Lemma 7.3. Since κ̂−

m ↗ κ a.e.,
∫∫

κ̂−
m → ∫∫

κ , and thus we can
choose m such that

∫∫
κ̂−

m >
∫∫

κ − ε. Let G′
n := GV(n, κ̂−

m ). For n ≥ m we have κ̂−
m ≤ κn,

and we may as usual assume that G′
n ⊆ Gn. Moreover, Proposition 8.9 applies to both Gn

and G′
n, so

1

2n

∑
i∈V(Gn)

(dGn(i) − dG′
n
(i)) = 1

n
e(GV(n, κn)\GV(n, κ̂−

m ))

p→ 1

2

∫∫
S2

κ − 1

2

∫∫
S2

κ̂−
m < ε.

Hence, whp ∑
i∈V(Gn)

(dGn(i) − dG′
n
(i)) < 2εn. (8.4)

By Lemma 8.10, applied to G′
n, there is a constant C < ∞ such that whp

∑
i d2

G′
n
(i) <

Cn. Hence, if δ = ε2/C, the Cauchy–Schwarz inequality shows that whp for every set
A ⊆ V(Gn) with |A| ≤ δn,

∑
i∈A

dG′
n
(i) ≤

(
|A|

∑
i∈A

d2
G′

n
(i)

)1/2

< (|A|Cn)1/2 ≤ εn.

Combining this with (8.4), we obtain
∑

i∈A dGn(i) < 3εn, whp for all such A, and the result
follows by replacing ε by ε/3.

8.1. Generalized Vertex Spaces

Our main results concern graphical sequences of kernels on generalized vertex spaces,
expressing properties of the graphs GV(n, κn) in terms of the limiting kernel κ . As noted
earlier, it is intuitively clear that we lose no generality by restricting our attention to vertex
spaces. Furthermore, as noted in Remark 8.8, we may assume that the vertex types xn are
deterministic. As we shall now see, Lemma 8.7 and a simple probabilistic lemma given in
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the appendix imply precise forms of these assertions. We start by showing that we may take
the sequences xn to be deterministic.

Let κn be a graphical sequence of kernels on a generalized vertex space V with limit κ .
As noted in Remark 8.8, by coupling appropriately we may assume that, after conditioning
on (xn), the triple (S, µ, (xn)), in which the sequences xn are now deterministic, is (a.s.)
still a generalized vertex space, and that κn is (a.s.) graphical on this space with limit κ .
Almost all our results assert that (given some ε > 0) a certain event En holds whp; recall that

statements like Xn
p→ a and Xn = op(an) can be expressed in this form. The xn deterministic

case of such a result then implies that (a.s.) the conditional probabilities P(En | xn) tend
to 1. Taking expectation with respect to the random sequences xn, it follows by dominated
convergence that P(En) → 1, i.e., the result holds also for random xn.

Some of our results are of the form Xn = O(an) whp. Again, it suffices to prove such
a result for deterministic xn; the general case then follows by Lemma A.5, with Yn = νn,
and Mn the set of all measures of the form n−1

∑N
1 δxi , a subset of the metric space M of

all finite Borel measures on S. The key point is that νn determines xn up to relabelling the
vertices, and that the conditional distribution of the unlabelled graph GV(n, κn) given xn

does not depend on the labelling, or on xn′ , n′ �= n.
We now turn to the simple reduction from generalized vertex spaces to vertex spaces.

Although the arguments apply to all our main results, for definiteness, we shall illustrate
them with one particular example: we shall show that statement (iii) of Theorem 3.1, namely

1

n
C1(G

V(n, κn))
p→ ρ(κ), (8.5)

follows from the same statement restricted to the case that V is a vertex space.
Let V = (S, µ, (xn)n∈I) be a generalized vertex space, and let κn, n ∈ I , be a graphical

sequence of kernels on V with limit κ . As noted in Section 2, purely formal manipulations
show that taking µ(S) = 1 loses no generality, although one must be a little careful with
the introduction of normalizing factors. To spell this out pedantically, let I ′ = µ(S)I =
{µ(S)n : n ∈ I}, let µ′ = µ/µ(S) be the normalized version of the measure µ, and let V ′

be the generalized vertex space (S, µ′, (ym)m∈I ′) defined by ym = xm/µ(S), so the sequences
(xn) and (ym) are identical except for our rescaling of the index set. Writing κ ′ for µ(S)κ

and κ ′
m for µ(S)κm/µ(S), for n ∈ I the graphs GV(n, κn) and GV ′

(m, κ ′
m), m = µ(S)n, have

exactly the same distribution. Also (as a consequence), the sequence κ ′
n is graphical on V ′

with limit κ ′, so our main results, in particular Theorem 3.1, apply to the model GV ′
(m, κ ′

m).
Multiplying κ by the constant factor µ(S) and dividing µ by the same factor leaves the

branching process �κ , and hence the survival probability ρ(κ; x), unchanged, and so divides
ρ(κ) by a factor µ(S). Multiplying the index variable n by µ(S) divides the left-hand side
of (8.5) by the same factor, so this relation for GV(n, κn) follows from the same relation for
the model GV ′

(m, κ ′
m).

Apart from the rather trivial normalization above, there are two further differences
between vertex spaces and generalized vertex spaces. One is that, in the former, the index
set is discrete, indeed a subset of the integers. This makes very little difference: for any

result of the form f (Gn)
p→ a, n ∈ I , it suffices to consider “thin” index sets I , say discrete

sets {i1, i2, . . . , } with i1 ≥ 100 and it+1 ≥ 2it . Indeed, if f (Gn)
p→ a fails, there is an ε > 0

and an unbounded set I ′ ⊂ I with P(|f (Gn) − a| ≥ ε) ≥ ε for every n ∈ I ′, and then

f (Gn)
p→ a fails along any subsequence of I ′, and hence along at least one thin sequence.

Thus, in all our main results we need only consider “thin” index sets.
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The final extension allowed by generalized vertex spaces is that the number of vertices in
xn may be random, rather than exactly n. As noted at the start of the section, we may assume
that each xn is deterministic, and in particular that the number vn of vertices is deterministic.
This does not quite give a vertex space, as we need not have vn = n: instead, taking A = S
in (2.4), we have vn/n → 1. Rescaling the indexing parameter as above, replacing n by
vn (after taking a subsequence if necessary) and multiplying κn by a factor vn/n, does not
affect the distribution of the graph, so the resulting kernels are still graphical with limit κ .
Hence, our results for vertex spaces apply. In particular, using (8.5) for vertex spaces, we
find that

1

vn
C1(G

V(n, κn))
p→ ρ(κ).

As n ∼ vn, this implies (8.5).
We have shown that it suffices to prove (8.5), i.e., part (iii) of Theorem 3.1, for vertex

spaces in which the sequences xn are deterministic; this was our aim in this subsection.
Similar comments apply to all our results.

9. THE GIANT COMPONENT

In this section we prove our main results, Theorems 3.1 and 3.6 of Subsection 3.1, concerning
the existence, size and uniqueness of the giant component in the random graph GV(n, κn).
The basic strategy will be to relate the neighbourhoods of a vertex of GV(n, κn) to the
branching process, by exploring these neighbourhoods step by step. In the context of random
graphs, this step-by-step exploration and comparison with a branching process, which now
is standard, was perhaps first used by Karp [62], who applied it to study the size of the giant
component in random directed graphs; similar ideas were used earlier in other contexts, for
example by Kendall [63] in the study of epidemics.

Let us first recall some notation. We shall work with the branching process Xκ defined
in Subsection 2.1 and studied in Sections 5 and 6. As before, when the branching process is
started with a single particle of type x we denote it Xκ(x). Unless explicitly stated otherwise,
κ will be a kernel on a vertex space V = (S, µ, (xn)n≥1); most of the time we shall not
consider generalized vertex spaces. We shall assume that κ ∈ L1, i.e., that

∫∫
κ < ∞. Any

additional assumptions on κ (such as irreducibility) will be stated.
Recall that ρ≥k(κ; x) is the probability that Xκ(x) contains at least k particles in total (in

all generations taken together), and ρk(κ; x) is the probability that Xκ(x) contains exactly
k particles in total, while ρ(κ; x) is the probability that Xκ(x) survives for eternity, i.e.,
for infinitely many generations. Starting the process with a particle of random type with
distribution µ, the corresponding probabilities for Xκ are ρ≥k(κ), ρk(κ), and ρ(κ).

A key step in our proofs will be an additional result, relating the fixed-size components
of GV(n, κn) to the branching process Xκ . As before, we write Nk(G) for the number of
vertices of a graph G in components of order k, and N≥k(G) for

∑
j≥k Nj(G), the number of

vertices in components of order at least k.

Theorem 9.1. Let (κn) be a graphical sequence of kernels on a vertex space V with limit

κ . If k ≥ 1 is fixed, then Nk(GV(n, κn))/n
p→ ρk(κ).

Remark 9.2. In [25, 84], results similar to Theorem 3.1 were proved (for special κ but
with more complicated dependencies) using a careful coupling of the discovery process
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of the random graph and the limiting branching process; here we shall do this coupling
only in the simple case of finitely many types (Example 4.3); the general case will then
follow by approximation and monotonicity arguments. In particular, we shall show that any
Gn = GV(n, κ) contains a G′

n = GV(n, κ ′), where κ ′ may be regarded as a kernel defined
on a finite set S, such that C1(G′

n) is no more than op(n) smaller than C1(Gn); a formal
statement is given below. This reduces many questions concerning the very general model
GV(n, κ) to the much simpler “finite-type” case.

Proposition 9.3. Let (κn) be a graphical sequence of kernels on a vertex space V with
quasi-irreducible limit κ . Given any ε > 0, there is a vertex space V ′ = (S ′, µ′, (yn)n≥1)

with S ′ finite and a quasi-irreducible kernel κ ′ on S ′ × S ′ with the following properties:
ρ(κ ′) ≥ ρ(κ) − ε, the graphs Gn = GV(n, κn) and G′

n = GV ′
(n, κ ′) can be coupled so that

G′
n ⊆ Gn for sufficiently large n, and C1(G′

n)/n
p→ ρ(κ ′).

The assertion concerning C1(G′
n) will follow from the other assertions and Theorem 3.1.

However, we shall prove Proposition 9.3 as a step towards the proof of Theorem 3.1. This
is an example where quasi-irreducibility is forced on us: if we assume κ is irreducible, we
still cannot insist that κ ′ is irreducible.

We now turn to the proofs. We start by giving two elementary results that will be useful
below. The first concerns N≥k(G), the number of vertices of a graph G that are in components
of order at least k. Note that for any graph G and any k ≥ 1,

C1(G) ≤ max{k, N≥k(G)}, (9.1)

since if C1(G) ≥ k then N≥k(G) ≥ C1(G).

Lemma 9.4. If k ≥ 2 and G, G′ are two graphs with G ⊆ G′, then

N≥k(G) ≤ N≥k(G
′) ≤ N≥k(G) + 2k(e(G′) − e(G)).

Proof. If we add a single edge to G, the set of vertices belonging to components of
orders ≥ k will either remain the same or increase by the inclusion of one or two smaller
components; hence N≥k(G) will increase by at most 2(k−1). The result follows by iterating
e(G′) − e(G) times.

Lemma 9.5. As k → ∞, ρ≥k(κ; x) ↘ ρ(κ; x) a.e. x, and ρ≥k(κ) ↘ ρ(κ).

Proof. As κ ∈ L1, (5.1) holds a.e. x. By Lemma 5.1, we may assume that (5.1) holds for
every x. Then every particle in the branching process Xκ has a finite number of children,
so a particle survives for eternity if and only if it has infinitely many descendants, and the
result follows.

Now we turn to the main part of this section, which concerns the connection between
the order of the giant component of GV(n, κ) and the survival probability ρ(κ).

We begin by studying the case when S is finite. It will turn out that this case gives
essentially everything, using our monotonicity results and Lemma 9.4. We use the notation
in Example 4.3. We shall assume that we have a fixed κ , as in Definition 2.7, rather than a
convergent sequence κn as in Definition 2.9 and Theorem 3.1. In addition, we shall assume
that the matrix κ is irreducible and that µ({i}) > 0 for every i. As observed by Söderberg
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[88], we then can adapt the standard branching process argument for the classical random
graph G(n, c/n), see, e.g., [59, Section 5.2]. The details are as follows.

Lemma 9.6. Let κ be a kernel on the vertex space V = (S, µ, (xn)n≥1), where S =
{1, 2, . . . , r}, and suppose that µ({i}) > 0 for every i. Writing Gn for GV(n, κ), if κ is
irreducible we have

C1(Gn)/n
p→ ρ(κ). (9.2)

Whether or not κ is irreducible, for any fixed k we have

N≥k(Gn)/n
p→ ρ≥k(κ). (9.3)

Proof. Recall that we have ni vertices of type i, i = 1, . . . , r, and that ni/n
p→ µi = µ({i}).

Coupling the graphs (or just the xn) for different n appropriately, we may of course assume
that ni/n → µi a.s. From now on we condition on n1, . . . , nr ; we may thus assume that
n1, . . . , nr are deterministic with ni/n → µi.

Let ω(n) be any function such that ω(n) → ∞ and ω(n)/n → 0. (Although it might
seem more natural to fix ω(n) = log log n, say, we shall need this flexibility in the choice
of ω(n) later.) We call a component of Gn := GV(n, κ) big if it has at least ω(n) vertices.
Let B be the union of the big components, so |B| = N≥ω(n)(Gn).

Fix ε > 0. We may assume that n is so large that ω(n)/n < εµi and |ni/n − µi| < εµi

for every i; thus (1 − ε)µin < ni < (1 + ε)µin. We may also assume that n > max κ , as κ

is a function on the finite set S × S.
Select a vertex and explore its component in the usual way, one vertex at a time. We

first reveal all edges from the initial vertex, and put all neighbours that we find in a list of
unexplored vertices; we then choose one of these and reveal its entire neighbourhood, and
so on. Stop when we have found at least ω(n) vertices (so x ∈ B), or when there are no
unexplored vertices left (so we have found the entire component and x /∈ B).

Consider one step in this exploration, and assume that we are about to reveal the neigh-
bourhood of a vertex x of type i. Let us write n′

j for the number of unused vertices of type j
remaining. Note that nj ≥ n′

j ≥ nj − ω(n), so

(1 − 2ε)µj < n′
j/n < (1 + ε)µj. (9.4)

The number of new neighbours of x of type j has a binomial Bi(n′
j, κ(i, j)/n) distribution,

and the numbers for different j are independent. The total variation distance between a
binomial Bi(n, p) distribution and the Poisson distribution with the same mean is at most
p, see, e.g., the first inequality in Barbour, Holst and Janson [11, (1.23)]. Hence the total
variation distance between the binomial distribution above and the Poisson distribution
Po(κ(i, j)n′

j/n) is at most κ(i, j)/n = O(1/n). Also, by (9.4),

(1 − 2ε)κ(i, j)µj ≤ κ(i, j)n′
j/n ≤ (1 + ε)κ(i, j)µj.

Since we perform at most ω(n) steps in the exploration, we may, with an error probability
of O(ω(n)/n) = o(1), couple the exploration with two multi-type branching processes
X(1−2ε)κ and X(1+ε)κ such that the first process always finds at most as many new vertices of
each type as the exploration, and the second process finds at least as many. Consequently,
for a vertex x of type i,

ρ≥ω(n)((1 − 2ε)κ; i) + o(1) ≤ P(x ∈ B) ≤ ρ≥ω(n)((1 + ε)κ; i) + o(1). (9.5)
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Note for later (after (9.8)) that, as for any constant C the Poisson distribution with mean C
has probability o(1/n) of exceeding log n, the probability that we find more than log n new
neighbours in one step is O(1/n). It follows that the probability that we reach more than
ω(n)+ log n vertices during the exploration is o(1). (Informally, we cannot “overshoot” by
more than log n.)

Since ω(n) → ∞, by Lemma 9.5 we have ρ≥ω(n)(κ
′; i) → ρ(κ ′; i) for every kernel

κ ′ ∈ L1, so we can rewrite (9.5) as

ρ((1 − 2ε)κ; i) + o(1) ≤ P(x ∈ B) ≤ ρ((1 + ε)κ; i) + o(1).

Letting ε → 0 we find, using Theorem 6.4, that if x is of type i, then the probability that
the component containing x is big satisfies

P(x ∈ B) → ρ(κ; i). (9.6)

(Recall that we are conditioning on the types of the vertices, treating the numbers ni of
vertices of type i as deterministic, and assuming that ni/n → µi.) Summing over all vertices
x we find

1

n
E |B| = 1

n

∑
x

P(x ∈ B) = 1

n

r∑
i=1

ni P(x ∈ B | x is of type i)

→
r∑

i=1

µiρ(κ; i) = ρ(κ).

(9.7)

Note that this limit is independent of the choice of ω(n) in the definition of B. Hence, if we
define B′ using another such function ω′(n), it follows from (9.7) (considering ω ∧ ω′ and
ω ∨ ω′) that

E |B � B′|/n → 0. (9.8)

Next, start with two distinct vertices x and y, of types i and j, say, and explore their
components as above, again stopping each exploration if we find ω(n) vertices. Assume for
the moment that ω(n) is small, say ω(n) = log n. The probability that during the truncated
exploration we find a connection between the two components is O(ω(n)2/n)+ o(1) =
o(1). (Here we use the fact noted after (9.2), that we are not likely to overshoot: with
probability 1 − o(1), at every stage, even after stopping the exploration of one component
because it has become too large, the explored parts of the components contain at most
ω(n)+ log n vertices.) As before, fix ε > 0. For n large enough, ignoring the possibility of
joining the truncated components of x and y, we can couple the two explorations as above
with independent branching processes (with (1 − 3ε)κ for the lower bound) to obtain

ρ≥ω(n)((1 − 3ε)κ; i)ρ≥ω(n)((1 − 3ε)κ; j) + o(1)

≤ P(x, y ∈ B) ≤ ρ≥ω(n)((1 + ε)κ; i)ρ≥ω(n)((1 + ε)κ; j) + o(1).

Letting ε → 0, it follows, as above, that

P(x, y ∈ B) → ρ(κ; i)ρ(κ; j); (9.9)

therefore, summing over all pairs of vertices x, y, we find that

1

n2
E |B|2 = 1

n2

∑
x �=y

P(x, y ∈ B) + 1

n2
E |B| →

r∑
i,j=1

µiµjρ(κ; i)ρ(κ; j) = ρ(κ)2.

Random Structures and Algorithms DOI 10.1002/rsa



THE PHASE TRANSITION IN INHOMOGENEOUS RANDOM GRAPHS 53

Combining this and (9.7), we see that Var(|B|/n) → 0, and thus that

|B|/n
p→ ρ(κ). (9.10)

So far, we have assumed that ω(n) was small. However, by (9.8), having proved (9.10)
for one choice of ω(n) it follows that (9.10) holds for every choice of ω(n) satisfying
ω(n) → ∞ and ω(n) = o(n).

For any choice of ω(n) with ω(n) → ∞ and ω(n) = o(n), equation (9.10) gives the
upper bound on the size C1(Gn) of the largest component claimed in (9.2), since C1(Gn) ≤
max{ω(n), |B|} by (9.1). In other words, for any ε > 0,

|C1(Gn))|/n ≤ ρ(κ) + ε (9.11)

holds whp.
To obtain the matching lower bound, it remains to show that all but op(n) vertices in B

belong to a single component. (We note that this is the only place where the irreducibility
of κ is needed.) We first consider the simpler case where κ(i, j) > 0 for every i and j; we
shall return to the general case afterwards. We shall reveal the edges in Gn in two rounds:
given 0 < ε < 1, we may take independent graphs Gn,0 and Gn,1 on the same vertex set,
with the distributions of G(n, (1− ε)κ) and G(n, εκ) respectively, so that Gn,0 ∪Gn,1 ⊆ Gn.
We shall think of Gn,0 as containing almost all the edges of Gn, and Gn,1 as containing a few
edges we initially keep in reserve.

Recalling that |S| = r, set ω(n) = rn2/3, and let B0 be the union of the big components
in Gn,0. From (9.10), applied with (1 − ε)κ in place of κ , whp we have

|B0|/n ≥ ρ((1 − ε)κ) − ε. (9.12)

We claim that whp all vertices of B0 lie in a single component in Gn. To see this, we condition
on Gn,0 and use the random graph Gn,1: let x, y ∈ B0 be vertices in distinct components Cx,
Cy of Gn,0. As ω = rn2/3, there are 1 ≤ i, j ≤ r such that Cx contains a set Ci

x of at least n2/3

vertices of type i, and Cy a set Cj
y of at least n2/3 vertices of type j. Now the probability that

Gn,1 does not contain a Ci
x − Cj

y edge is (1 − κ(i, j)/n)|C
i
x ||Cj

y | = exp(−�(n1/3)) = o(n−2).
As there are at most n2 pairs to consider, it follows that whp all vertices of B0 lie in a single
component of Gn, and hence, from (9.12), that

|C1(Gn)|/n ≥ ρ((1 − ε)κ) − ε (9.13)

holds whp.
The case when some κ(i, j) may be zero is only slightly more complicated. This time, we

replace Gn,1 by r independent graphs Gn,l with the distribution of G(n, εκ/r). Given Ci
x and Cj

y

as above, the irreducibility of κ implies that there is a sequence of types, i = i1, i2, . . . , it = j,
such that κ(il, il+1) > 0 for all l. As there are only r types, we may suppose that t ≤ r + 1
(note that we may have i = j). Let A1 = Ci

x, and, for 2 ≤ l ≤ t − 1, let Al be the
set of vertices of type il adjacent to Al−1 in Gn,l−1. As |A1| = �(n2/3) and κ(i1, i2) > 0,
the expected size of A2 is �(n2/3); furthermore, from a standard Chernoff bound, with
probability 1 − exp(−�(n2/3)) = 1 − o(n−2) we have |A2| ≥ E |A2|/2, say. Iterating, we
see that for some c > 0 we have |At−1| ≥ cn2/3 with probability 1−o(n−2). Finally, we find
an edge in Gn,t−1 from At−1 to Cj

y with very high probability, as above, establishing (9.13)
in this case as well.

Random Structures and Algorithms DOI 10.1002/rsa



54 BOLLOBÁS, JANSON, AND RIORDAN

Letting ε → 0 and using Theorem 6.4, the right-hand side of (9.13) tends to ρ(κ), so
(9.13) proves the lower bound on C1(Gn) claimed in (9.2). Combining this with the upper
bound (9.11), equation (9.2) follows.

To prove (9.3), observe that if we replaceω(n)by a fixed number k in the argument leading
to (9.10) above, and use Theorem 6.5 instead of Theorem 6.4, we obtain (9.3) instead of
(9.10). Note that this argument has not made use of the irreducibility of κ either.

Note that the first part of Lemma 9.6 and Theorem 6.2 imply Theorem 3.1 in the case
when S is finite, µ({i}) > 0 for every i ∈ S, κn = κ for every n, and κ is irreducible.

We next consider the regular finitary case in Definition 4.4; let us recall the definition. A
kernel κ on a vertex space V is regular finitary if S may be partitioned into a finite number
r of µ-continuity sets S1, . . . , Sr so that κ is constant on each Si × Sj. A µ-continuity set is
a measurable set A ⊆ S with µ(∂A) = 0. We next prove an extension of Lemma 9.6 to this
regular finitary case.

Lemma 9.7. Let κ be a regular finitary kernel on a vertex space V , and let Gn = GV(n, κ).
Then (9.3) holds. If κ is irreducible, then (9.2) holds.

Proof. As noted in Example 4.3, the regular finitary case differs only in notation from
the finite case, so it suffices to prove that the conclusions of Lemma 9.6 hold without the
assumption that each µ({i}) > 0. Due to the generality of our model, we cannot just ignore
sets of measure zero; see Remark 2.3.

Using the notation of Lemma 9.6, let us say that a type i is bad if µi = 0, and let
S ′ := {i ∈ S : i is not bad}. Conditioning on the sequences ni as in the proof of Lemma 9.6,
if i is a bad type then ni/n → 0. Hence, if we eliminate all vertices of bad type, we
are left with a random graph G′

n = G(n′, (n′/n)κ ′), where κ ′ is the restriction of κ to
S ′ × S ′ and n′/n → 1. It is easily seen that ρ(κ ′) = ρ(κ), and ρ≥k(κ

′) = ρ≥k(κ). The
expected degree of any vertex is at most max κ < ∞, so the expected number of edges
with at least one bad endpoint is o(n). Hence, Lemma 9.4 shows that for each fixed k,
E(N≥k(Gn) − N≥k(G′

n)) = o(n). Consequently, (9.3) holds for Gn because it holds for G′
n.

Similarly, applying (9.2) to G′
n, we see that if ε > 0 then C1(Gn)/n ≥ C1(G′

n)/n >

ρ(κ) − ε whp. In the opposite direction, (9.3) yields that for every ε > 0 and k ≥ 1,
whp N≥k(Gn)/n ≤ ρ≥k(κ) + ε, and (9.1) implies C1(Gn)/n ≤ ρ≥k(κ) + ε whp. Further,
by Lemma 9.5, we have ρ≥k(κ) ↘ ρ(κ) as k → ∞. Taking k large enough, we find that
C1(Gn)/n ≤ ρ(κ) + 2ε whp, and (9.2) follows.

For technical reasons, we prove a slight extension of Lemma 9.7 to the quasi-irreducible
regular finitary case; cf. Remark 2.12.

Lemma 9.8. Let κ be a regular finitary kernel on a vertex space V . Suppose that κ is
quasi-irreducible, i.e., that there is a µ-continuity set S ′ ⊆ S such that κ restricted to S ′ is
irreducible and κ = 0 off S ′ × S ′. Then (9.2) holds for Gn = GV(n, κ).

Proof. We may ignore all vertices with types not in S ′, since they will be isolated, and

consider the restriction of our model to S ′. Note that we now have n′ vertices, with n′/n
p→

µ(S ′). The case µ(S ′) = 0 is trivial, and otherwise we can consider the normalized measure
µ/µ(S ′) on S ′ and the kernel κ ′ = µ(S ′)κ on S ′ × S ′. It is easily checked that Lemma 9.7
implies that (9.2) holds for Gn in this case as well.
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It turns out that most of the work is behind us; roughly speaking, to prove Theorem 3.1 we
shall approximate with the regular finitary case and use Lemma 9.7. There are some compli-
cations, as we must ensure irreducibility of the approximations, but these have already been
dealt with in Section 7: when κn is a graphical sequence of kernels with quasi-irreducible
limit κ , Lemma 7.3 gives us a sequence of quasi-irreducible regular finitary kernels κ̂−

m

approaching κ from below. Furthermore, κ̂−
m ≤ κn when n ≥ m, so we may and shall

assume that
G(n, κ̂−

m ) ⊆ G(n, κn) (9.14)

for n ≥ m. This will allow us to apply Lemma 9.4.
We are now in a position to prove our main results. We start with the approximation result

Proposition 9.3, which shows that for many purposes we need only consider the finite-type
case.

Proof of Proposition 9.3. We use the kernels κ̂−
m constructed in Lemma 7.3. From Lemma

7.3(i)(ii) and Theorem 6.4, if m is large enough then κ̂−
m is quasi-irreducible and ρ(κ̂−

m ) ≥
ρ(κ)− ε. Fix such an m. We may regard the regular finitary kernel κ̂−

m as a kernel on a finite
set S ′, so the graph GV(n, κ̂−

m ) has the required distribution for G′
n. From Lemma 7.3(iii)

and (9.14) we can couple G′
n and Gn so that G′

n ⊆ Gn whenever n ≥ m. Finally, from

Lemma 9.8, we have C1(G′
n)/n

p→ ρ(κ ′) as required.

Next, it will be convenient to prove a restatement of Theorem 9.1.

Lemma 9.9. Let (κn) be a graphical sequence of kernels on a vertex space V with limit
κ , and let k ≥ 1 be fixed. Then

N≥k(G
V(n, κn))/n

p→ ρ≥k(κ). (9.15)

Note that Lemma 9.9 immediately implies Theorem 9.1, as Nk = N≥k − N≥k+1.

Proof. As before, to avoid clutter we suppress the dependence on V , writing G(n, ·) for
GV(n, ·). We shall also write Gn for G(n, κn) = GV(n, κn). We may assume that k ≥ 2, since
the case k = 1 is trivial. We use the κ̂−

m constructed in Lemma 7.3.
For each m, by Lemma 9.7 we have

N≥k(G(n, κ̂−
m ))/n

p→ ρ≥k(κ̂
−
m ). (9.16)

Let ε > 0. Since ρ≥k(κ̂
−
m ) → ρ≥k(κ) as m → ∞ by Theorem 6.5, we can choose m such

that ρ≥k(κ̂
−
m ) > ρ≥k(κ) − ε. Using (9.14), it follows from (9.16) that whp

N≥k(G(n, κn))/n ≥ N≥k(G(n, κ̂−
m ))/n > ρ≥k(κ) − ε, (9.17)

proving the lower bound claimed in (9.15).
To prove the upper bound, consider any η > 0. By monotone convergence,∫∫

S2
κ̂−

m (x, y) dµ(x) dµ(y) →
∫∫

S2
κ(x, y) dµ(x) dµ(y)

as m → ∞. Hence we may choose m such that
∫∫

κ − ∫∫
κ̂−

m < η/k. We now fix this m.
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By (2.11) and Lemma 8.1 (applied to the bounded kernel κ̂−
m ), we have

E(e(Gn) − e(G(n, κ̂−
m )))/n

→ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y) − 1

2

∫∫
S2

κ̂−
m (x, y) dµ(x) dµ(y) < η/2k.

Hence, for n large,
E(e(Gn) − e(G(n, κ̂−

m )))/n < η/2k, (9.18)

and by (9.14) and Lemma 9.4, E(N≥k(Gn) − N≥k(G(n, κ̂−
m )))/n < η. Hence, for large n,

using also (9.16),

P(N≥k(Gn)/n > ρ≥k(κ) + 2ε) ≤ P(N≥k(Gn)/n > ρ≥k(κ̂
−
m ) + 2ε)

≤ P(N≥k(G(n, κ̂−
m ))/n > ρ≥k(κ̂

−
m ) + ε)

+ P((N≥k(Gn) − N≥k(G(n, κ̂−
m )))/n > ε)

< η + η/ε.

Letting η → 0, we find N≥k(Gn) ≤ ρ≥k(κ)+2ε whp, which together with (9.17) completes
the proof of the lemma.

As noted above, Theorem 9.1 is just a reformulation of Lemma 9.9. We are now ready
to prove Theorem 3.1.

Proof of Theorem 3.1. As noted in Subsection 8.1, without loss of generality we may
assume that V is a vertex space, rather than a generalized vertex space. As above we write
Gn for GV(n, κn), and consider the approximating kernels κ̂−

m constructed in Lemma 7.3.
We first observe that (2.13), Theorem 6.2 and Lemma 5.8(i) imply that ρ(κ) < 1, and

that ρ(κ) > 0 if and only if ‖Tκ‖ > 1.
Next we prove the upper bound (3.1) on the size of the giant component of Gn. Fix ε > 0.

By (9.1) and Lemma 9.9, for every fixed k ≥ 1, whp

C1(Gn)/n ≤ k/n + N≥k(Gn)/n < ε + ρ≥k(κ) + ε. (9.19)

By Lemma 9.5, as k → ∞, ρ≥k(κ) ↘ ρ(κ). Hence we may choose k so large that ρ≥k(κ) <

ρ(κ) + ε, and (9.19) yields C1(Gn)/n < ρ≥k(κ) + 3ε whp, proving (3.1).
For quasi-irreducible κ , the lower bound on the size of the giant component claimed in

(3.2) follows from Proposition 9.3. Alternatively, we may argue as in the proof of Lemma 9.9.
Fix ε > 0. By Theorem 6.4, ρ(κ̂−

m ) → ρ(κ) as m → ∞, so we can choose m such that
ρ(κ̂−

m ) > ρ(κ) − ε, and then, by Lemma 9.8 and (9.14), whp

C1(G(n, κn))/n ≥ C1(G(n, κ̂−
m ))/n > ρ(κ) − ε.

Together with (3.1), this proves the convergence claimed in (3.2).
It remains to prove part (i) of Theorem 3.1. When ‖Tκ‖ ≤ 1 we have ρ(κ) = 0, so

(3.1) yields C1(Gn) = op(n), as required. Suppose that ‖Tκ‖ > 1. Recall that κ̂−
m ↗ κ a.e.,

by Lemma 7.3(ii). It follows as in the proof of Lemma 5.16 that ‖Tκ̂−m ‖ > 1 if m is large
enough. Let us fix such an m. As κ̂−

m is of the regular finitary type, there is a finite partition
S = ⋃r

i=0 Si of S into µ-continuity sets such that the restriction κ ′
i of κ̂−

m to Si × Si is
irreducible for 1 ≤ i ≤ r, and κ̂−

m is zero a.e. off
⋃r

i=1 Si × Si. (This can be regarded as an
application of Lemma 5.17 with S finite. However, the lemma is trivial in this case.) As Tκ̂−m
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operates separately on each Si, we have ‖Tκ̂−m ‖ = maxi ‖Tκ ′i‖, where ‖Tκ ′i‖ is defined either
on the generalized ground space (Si, µ|Si), or, equivalently, by extending κ ′

i to S × S by
setting κ ′

i (x, y) = 0 if x /∈ Si or y /∈ Si. In particular, there is an i with ‖Tκ ′i‖ > 1. Extending
κ ′

i to S×S as above, κ ′
i is a supercritical quasi-irreducible kernel on S of the regular finitary

type, with κn ≥ κ̂−
m ≥ κ ′

i for large n. Hence, by (9.14) and Lemma 9.8, we have

C1(Gn)/n ≥ C1(G(n, κ ′
i ))/n

p→ ρ(κ ′
i ) > 0,

and C1(Gn) = �(n) whp follows, completing the proof.

We next prove Theorem 3.6, showing that the second largest component has size op(n).

Proof of Theorem 3.6. Let (κn) be a graphical sequence of kernels on a (generalized)
vertex space V with quasi-irreducible limit κ , and ω(n) a function satisfying ω(n) → ∞
and ω(n) = o(n). Our task is to show that

N≥ω(n)(Gn) :=
∑

j≥1: Cj(Gn)≥ω(n)

Cj(Gn) = nρ(κ) + op(n).

Then (3.5) follows by Theorem 3.1. In turn, (3.6) follows immediately, taking ω(n) = log n,
say. As before, we may assume that V is a vertex space.

Let ε > 0. For an upper bound on N≥ω(n)(Gn), fix a large k such that ρ≥k(κ) < ρ(κ)+ ε.
For large n we have ω(n) > k and thus by Lemma 9.9 whp N≥ω(n)(Gn)/n ≤ N≥k(Gn)/n <

ρ(κ) + 2ε.
For a lower bound, assume that ρ(κ) > 0. Then, by Theorem 3.1, whp C1(Gn) >

1
2ρ(κ)n > ω(n), so by Theorem 3.1 again, whp N≥ω(n)(Gn)/n ≥ C1(Gn)/n > ρ(κ) − ε.
This is trivially true if ρ(κ) = 0 too.

Since ε was arbitrary, the proof is complete.

We now turn to a result giving the distribution of the types of the vertices making up the
giant component; to state this, we need some more definitions.

Let C1(Gn) be the largest component of Gn = GV(n, κn), i.e., the component with most
vertices, chosen by any rule if there is a tie. (Thus, if a sequence (Gn) has a unique giant
component, then C1(Gn) is this giant component.) Let ν1

n := 1
n

∑
i∈C1(Gn) δxi be the random

measure with total mass C1(Gn)/n that describes the distribution of the points xi corre-
sponding to the vertices in the largest component. We equip the space of finite positive
Borel measures on S with the weak topology; see Appendix A. As before, we write ρκ for
the function defined by ρκ(x) = ρ(κ; x).

Theorem 9.10. Let (κn) be a graphical sequence of kernels on a (generalized) vertex

space V with quasi-irreducible limit κ . Then ν1
n

p→ µκ in the space of finite measures on S
with the weak topology, where µκ is the measure on S defined by dµκ = ρκ dµ. In other
words, for every µ-continuity set A,

ν1
n(A) = 1

n
#{i ∈ C1(Gn) : xi ∈ A} p→ µκ(A) =

∫
A
ρ(κ; x) dµ(x), (9.20)

where Gn = GV(n, κn). Furthermore, if f : S → R is continuous µ-a.e. and satisfies

1

n

∑
i∈V(Gn)

| f (xi)| p→
∫

S
| f | dµ < ∞, (9.21)
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then
1

n

∑
i∈C1(Gn)

f (xi)
p→

∫
S

f dµκ =
∫

S
f (x)ρ(κ; x) dµ(x). (9.22)

In particular, (9.22) holds for every bounded and µ-a.e. continuous f : S → R.

Condition (9.21) is very natural and often easy to verify; for example, if V is a vertex
space in which the xi are i.i.d., as in Example 4.8, or a generalized vertex space in which
xn is a Poisson process, as in Example 4.9, then (9.21) holds for every integrable f by the
law of large numbers. Similarly, if S = (0, 1] and xi = i/n, then (9.21) holds for every
decreasing integrable positive f . Note that some restriction on f is needed for (9.22); it is
not hard to construct an example where (9.22) fails, and so does (9.21).

Proof. We begin by proving the first statement. We proceed in several steps, as before.
Arguing as in Subsection 8.1, we may assume without loss of generality that V is a vertex
space.

First we assume that the conditions of Lemma 9.6 are satisfied: S is finite, κ is fixed and
irreducible, and µi := µ({i}) > 0 for every i. We use the notation of the proof of Lemma 9.6;
in particular, ω is some function with ω(n) → ∞ and ω(n) = o(n), and B is the set of
vertices of Gn = GV(n, κ) in “big” components, i.e., components of order at least ω(n).

Let Vi be the set of vertices of type i. The arguments leading to (9.10) in the proof of

Lemma 9.6 yield also |B ∩ Vi|/n
p→ ρ(κ; i)µi; see (9.6) and (9.9).

If ρ(κ) > 0, then the conclusion (9.2) of Lemma 9.6 implies that whp C1(Gn) ⊆ B, and

thus (9.2) and (9.10) imply that |B � C1(Gn)|/n
p→ 0. This is clearly true when ρ(κ) = 0

too, and implies that |C1(Gn) ∩ Vi|/n
p→ ρ(κ; i)µi for every i, which is exactly (9.20).

The result extends to the case when some µi = 0 as before. Thus (9.20) holds in the
irreducible regular finitary case considered in Lemma 9.7, provided A is one of the sets Si

in the partition or a union of such sets. In fact, A may be any µ-continuity set, since we
may replace the partition {Si} by {Si ∩ A, Si\A}, noting that all parts are µ-continuity sets.
Similarly, the extension to the quasi-irreducible case is immediate, as in Lemma 9.8.

We now turn to the general case. Note that µκ(S) = ρ(κ). Assume that ρ(κ) > 0;
otherwise the result is trivial (with µκ = 0) by Theorem 3.1.

Fix a µ-continuity set A. Use a sequence of partitions Pm as in Lemma 7.1, and consider
the finitary approximation κ̂−

m given by Lemma 7.3 for some m. Let ν1
nm be the random

measure ν1
n defined for G(n, κ̂−

m ). (As before, we suppress the dependence on V .) By the
finitary case completed above,

ν1
nm(A) := 1

n
#{i ∈ C1(G(n, κ̂−

m )) : xi ∈ A} p→ µκ̂−m (A) (9.23)

for every fixed m.
Let ε > 0 and choose m so large that ρ(κ̂−

m ) > ρ(κ) − ε and ρ(κ̂−
m ) > 0 (see

Theorem 6.4). Then, applying Theorem 3.1 to κ̂−
m and (3.6) of Theorem 3.6 to κ , whp

C1(G(n, κ̂−
m )) > 1

2ρ(κ̂−
m )n > C2(Gn). Recalling the coupling (9.14), it follows that

the largest component of G(n, κ̂−
m ) is contained in the largest component of Gn, i.e.,

C1(G(n, κ̂−
m )) ⊆ C1(Gn), and thus ν1

nm ≤ ν1
n . Consequently, from (9.23), whp

ν1
n(A) ≥ ν1

nm(A) ≥ µκ̂−m (A) − ε ≥ µκ(A) − 2ε, (9.24)

because µκ(A) − µκ̂−m (A) ≤ µκ(S) − µκ̂−m (S) = ρ(κ) − ρ(κ̂−
m ) < ε.
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Since S\A also is a µ-continuity set, we may replace A by S\A in (9.24) and obtain that
whp

ν1
n(S\A) ≥ µκ(S\A) − 2ε.

Since ν1
n(S) = C1(Gn)/n and µκ(S) = ρ(κ), this and Theorem 3.1 show that whp

ν1
n(A) = C1(Gn)/n − ν1

n(S\A) ≤ ρ(κ) + ε − µκ(S\A) + 2ε = µκ(A) + 3ε.

This and (9.24) yield ν1
n(A)

p→ µκ(A), so we have shown that (9.20) holds for this A. We

have shown that (9.20) holds for an arbitrary µ-continuity set A, which yields ν1
n

p→ µκ by
Lemma A.2.

Turning to the second part of the lemma, note that the left-hand sides of (9.21) and
(9.22) are equal to

∫ |f | dνn and
∫

f dν1
n , respectively. If f is bounded and µ-a.e. continuous,

Lemma A.2 thus shows that these relations follow from (2.4) and (9.20), respectively.
To deduce (9.22) from (9.21) for unbounded f , we use the truncations fM := (|f | ∧

M) sign(f ). Let ε > 0. By monotone convergence,
∫ |fM | dµ → ∫ |f | dµ as M → ∞.

Thus, we can choose M such that
∫ |fM | dµ >

∫ |f | dµ− ε. Since (9.21) holds for bounded
µ-a.e. continuous functions, it holds for fM , so

1

n

∑
i∈V(Gn)

(|f (xi)| − |fM(xi)|) p→
∫

S
|f | dµ −

∫
S
|fM | dµ < ε.

Hence the left-hand side is at most ε whp. Consequently, whp∣∣∣∣∣∣1

n

∑
i∈C1(Gn)

f (xi) − 1

n

∑
i∈C1(Gn)

fM(xi)

∣∣∣∣∣∣ ≤ 1

n

∑
i∈C1(Gn)

∣∣f (xi) − fM(xi)
∣∣

≤ 1

n

∑
i∈V(Gn)

∣∣f (xi) − fM(xi)
∣∣ = 1

n

∑
i∈V(Gn)

(|f (xi)| − |fM(xi)|) ≤ ε,

with the first two inequalities holding unconditionally. Note that∣∣∣∣∫S
f dµκ −

∫
S

fM dµκ

∣∣∣∣ ≤ ∫
S
|f − fM | dµ =

∫
S
|f | dµ −

∫
S
|fM | dµ < ε.

Since ε > 0 is arbitrary, and (9.22) holds for each fM , relation (9.22) for f follows by a
standard 3ε-argument.

10. EDGES IN THE GIANT COMPONENT

The main aim of this section is to prove Theorem 3.5, which claims that if κn is a graphical
sequence of kernels on a (generalized) vertex space V with quasi-irreducible limit κ , then
1
n e(C1(GV(n, κn)))

p→ ζ(κ), where ζ(κ) is defined in (3.3) as

ζ(κ) := 1

2

∫∫
S2

κ(x, y)(ρ(κ; x) + ρ(κ; y) − ρ(κ; x)ρ(κ; y)) dµ(x) dµ(y). (10.1)
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Before turning to the proof, we briefly examine the behavior of ζ(κ), giving two
alternative formulae for ζ(κ), together with upper and lower bounds in terms of ρκ .

From the symmetry of κ and the definition (2.14) of Tκ , (10.1) is equivalent to

ζ(κ) =
∫

S
(1 − ρκ/2)Tκρκ dµ,

where, as usual, ρκ is the function defined by ρκ(x) := ρ(κ; x). By relation (6.2) of
Theorem 6.2 and the definition of �κ in (2.17), it follows that

ζ(κ) =
∫

S

(
1 − ρ(κ; x)

2

)
ln

(
1

1 − ρ(κ; x)

)
dµ(x). (10.2)

Writing Gn for GV(n, κn), note that the assumptions of Theorem 3.5 include convergence
of the expectation of e(Gn)/n. As shown in Proposition 8.9, an easy consequence of these
assumptions is that

e(Gn)/n
p→ 1

2

∫∫
S2

κ . (10.3)

In the light of (10.3), relation (3.4) is equivalent to the assertion that number of edges not
in the giant component is

n

2

∫∫
S2

(1 − ρ(κ; x))κ(x, y)(1 − ρ(κ; y)) dµ(x) dµ(y) + op(n).

In any connected graph, the number of edges is at least the number of vertices minus 1;
hence ζ(κ) ≥ ρ(κ). In fact, Theorem 6.2 has the following simple consequence.

Proposition 10.1. Let κ be a kernel on a (generalized) ground space (S, µ). Then

ρ(κ) ≤ ζ(κ) ≤ 1

2
(‖Tκ‖ + 1)ρ(κ) ≤ ‖Tκ‖ρ(κ).

Furthermore, the first two inequalities are strict when ρ(κ) > 0.

Proof. If 0 < s < 1, then s < (1 − s/2) ln(1/(1 − s)), as is easily verified by computing
the Taylor series. Thus,

ρ(κ; x) ≤
(

1 − ρ(κ; x)

2

)
ln

(
1

1 − ρ(κ; x)

)
,

with strict inequality when ρ(κ; x) > 0. Integrating with respect to µ, the left-hand side
becomes ρ(κ), while, from (10.2), the right-hand side becomes ζ(κ). Thus ρ(κ) ≤ ζ(κ),
with strict inequality if ρ(κ) > 0.

In the other direction, if 0 < s < 1, then (1 − s) ln(1/(1 − s)) < s − s2/2, as can again
be verified by computing the Taylor series. Hence,(

1 − s

2

)
ln

(
1

1 − s

)
< s − s2

2
+ s

2
ln

(
1

1 − s

)
.

Substituting s = ρ(κ; x) and integrating, it follows that

ζ(κ) ≤
∫

S

(
ρ(κ; x) − 1

2
ρ(κ; x)2 + 1

2
ρ(κ; x) ln

(
1

1 − ρ(κ; x)

))
dµ(x),
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with strict inequality when ρ(κ; x) > 0. Writing ρκ for the function defined by ρκ(x) :=
ρ(κ; x), from (6.2) and the definition (2.17) of �κ , we have

ln

(
1

1 − ρ(κ; x)

)
= (Tκρκ)(x).

It follows that

ζ(κ) ≤ ρ(κ) − 1

2
〈ρκ , ρκ〉 + 1

2
〈ρκ , Tκρκ〉

≤ ρ(κ) + 1

2
(‖Tκ‖ − 1)

∫
S

ρ2
κ dµ(x) ≤ 1

2
(‖Tκ‖ + 1)ρ(κ),

with strict inequality unless ζ(κ) = ρ(κ) = 0.

Our proof of Theorem 3.5 will be very similar to that of Theorem 3.1, except that we
need to consider certain branching process expectations σ(κ) and σ≥k(κ) in place of ρ(κ)

and ρ≥k(κ). In preparation for the proof, we shall relate ζ(κ) to the branching process Xκ

via σ(κ). As before, we assume that κ is a kernel on (S, µ) with κ ∈ L1; in particular, it is
convenient here to normalize so that µ(S) = 1.

Let A be a Poisson process on S, with intensity given by a finite measure λ, so that A is a
random multi-set on S. If g is a bounded measurable function on multi-sets on S, it is easy
to see that

E (|A|g(A)) =
∫

S
E g(A ∪ {y})dλ(y). (10.4)

(This is a simple consequence of the well-known fact that the Palm distribution equals the
distribution of A ∪ {y}. To show (10.4) directly, note that we may construct A as follows:
first decide the total number N of points in A, according to a Poisson Po(c) distribution with
mean c = λ(S). Then let (ai)

N
i=1 be a sequence of i.i.d. random points of S, each distributed

according to the normalized form λ/c of λ, and take A = {a1, . . . , aN}. Let ν be the measure
(on finite sequences of points inS) associated to (ai)

N
i=1, and let ν ′ be the measure with density

N dν. Recalling that if Z has a Po(c) distribution, then k P(Z = k) = c P(Z − 1 = k), we
find that ν ′/c may be constructed by taking N − 1 to have a Po(c) distribution, and then
taking the ai i.i.d. as before, or, equivalently, by constructing a sequence according to ν and
appending a new random point with the distribution λ/c. Neglecting the order of the points,
(10.4) follows.)

Let X(x) denote the first generation of the branching process Xκ(x). Thus X(x) is given
by a Poisson process on S with intensity κ(x, y) dµ(y). Suppose that (5.1) holds, so X(x) is
finite. Let σ(κ; x) denote the expectation of |X(x)|1[|Xκ(x)| = ∞], recalling that under the
assumption (5.1), the branching process Xκ(x) dies out if and only if |Xκ(x)| < ∞. Then∫

S
κ(x, y) dµ(y) − σ(κ; x) = E

(|X(x)|1[|Xκ(x)| < ∞])
= E

(
|X(x)|

∏
z∈X(x)

(1 − ρ(κ; z))

)

=
∫

S
κ(x, y)(1 − ρ(κ; y)) E

( ∏
z∈X(x)

(1 − ρ(κ; z))

)
dµ(y)

=
∫

S
κ(x, y)(1 − ρ(κ; y))(1 − ρ(κ; x)) dµ(y).
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Here the penultimate step is from (10.4); the last step uses the fact that the branching process
dies out if and only if none of the children of the initial particle survives. Writing X for the
first generation of Xκ , let

σ(κ) := E
(|X|1[|Xκ | = ∞]) =

∫
S

σ(κ; x) dµ(x).

Then, integrating over x and subtracting from
∫∫

κ(x, y), we obtain

σ(κ) =
∫∫

S2
κ(x, y)(1 − (1 − ρ(κ; x))(1 − ρ(κ; y))) dµ(y) dµ(x), (10.5)

i.e., σ(κ) = 2ζ(κ), where ζ(κ) is defined in (3.3).

Lemma 10.2. Let κ be a quasi-irreducible kernel on a ground space (S, µ), with κ ∈ L1.
If (κn)

∞
1 is a sequence of kernels that increase to κ a.e., then σ(κn) → σ(κ) < ∞.

Proof. This is immediate from Theorem 6.4(i), (10.5), the fact that
∫∫

κ < ∞, and
dominated convergence.

As we shall see next, σ(κ) is the limit of the expectations

σ≥k(κ) := E
(|X|1[|Xκ | ≥ k]).

Lemma 10.3. With κ ∈ L1 fixed,

σ≥k(κ) ↘ σ(κ) as k → ∞. (10.6)

Proof. We have |X| ≥ |X|1[|Xκ | ≥ k] ↘ |X|1[|Xκ | = ∞]. As E |X| = ∫∫
κ(x, y) < ∞,

the result follows by dominated convergence.

Using the above lemmas we can prove Theorem 3.5. As the argument is very similar to
that for Theorem 3.1, we give only an outline.

Proof of Theorem 3.5. As usual, we may assume without loss of generality that V is a
vertex space. Let M≥k(G) denote the number of edges of a graph G that lie in components
of order at least k.

We start with the case when S is finite and κ is irreducible, writing Gn for GV(n, κn). Let
d(x) denote the degree of a vertex x of Gn. Using the local coupling of the neighbourhood
of a random vertex x to the branching process Xκ described in the proof of Lemma 9.6,
considering E(d(x)1[x ∈ B]) in place of P(x ∈ B), the proof of Lemma 9.6 yields the
relations

2e(C1(Gn))/n
p→ σ(κ) (10.7)

and
2M≥k(Gn)/n

p→ σ≥k(κ), (10.8)

corresponding to (9.2) and (9.3). As before, the same formulae in the quasi-irreducible
regular finitary setting of Lemma 9.8 follow.
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To complete the proof, we consider the approximating kernels κ̂−
m constructed

in Lemma 7.3. By Lemma 7.3(ii) and Lemma 10.2 we have σ(κ̂−
m ) → σ(κ). Applying

(10.7) to κ̂−
m and using the coupling GV(n, κ̂−

m ) ⊆ GV(n, κn), n ≥ m, it follows that for any
ε > 0,

e(C1(Gn))/n ≥ σ(κ)/2 − ε (10.9)

holds whp. This is exactly the lower bound claimed in (3.4).
For the upper bound, we claim first that, for each fixed k,

2M≥k(G
V(n, κn))/n

p→ σ≥k(κ).

The argument is exactly as for (9.15), except that in place of (9.18) we show that there
is an m for which E(e(Gn) − e(G(n, κ̂−

m )))/n < η/(2k2), and in place of Lemma 9.4 we
use the fact that, for k ≥ 1, adding an edge to a graph cannot change M≥k by more than
2
(k−1

2

) + 1 ≤ k2. The rest of the proof is as for Theorem 3.1, using

e(C1(Gn))/n ≤ k2/n + M≥k(Gn)/n

in place of (9.19) and Lemma 10.3 instead of Lemma 9.5.

11. STABILITY

This section is devoted to the proof of the “stability” result, Theorem 3.9, which states that
deleting a few vertices and their incident edges, and then adding or deleting a few edges,
does not change the size of the giant component of Gn = GV(n, κn) significantly. As usual,
without loss of generality we may restrict our attention to the case where V is a vertex space;
we shall return to this later. For the moment, we shall ignore vertex deletion; our aim is thus
to prove the following special case of Theorem 3.9.

Theorem 11.1. Let (κn) be a graphical sequence of kernels on a vertex space V with
irreducible limit κ , and let Gn = GV(n, κn). For every ε > 0 there is a δ > 0 (depending
on κ) such that, whp,

(ρ(κ) − ε)n ≤ C1(G
′
n) ≤ (ρ(κ) + ε)n (11.1)

for every graph G′
n on V(Gn) = [n] with e(G′

n � Gn) ≤ δn.

We shall see later (at the end of Subsection 11.1) that Theorem 3.9 follows. As noted in
Subsection 3.2, to prove Theorem 11.1, it suffices to consider separately the cases where
edges are added and where edges are deleted. More precisely, as G′

n ∩ Gn ⊆ G′
n ⊆ G′

n ∪
Gn, it suffices to prove the upper bound in (11.1) for G′

n ⊇ Gn, and the lower bound
for G′

n ⊆ Gn.
The upper bound is easy. Indeed, by Lemma 9.5, ρ≥k(κ) ↘ ρ(κ) as k → ∞. Thus, given

ε > 0, we may choose k such that ρ≥k(κ) ≤ ρ(κ) + ε/3. By Lemma 9.9, whp N≥k(Gn) ≤
(ρ(κ)+ε/2)n. Taking δ = ε/4k, it follows by Lemma 9.4 that whp N≥k(G′

n) ≤ (ρ(κ)+ε)n,
which implies the upper bound in (11.1).

For the lower bound, our aim is to show that whp

C1(Gn − E) ≥ (ρ(κ) − ε)n (11.2)

for every E ⊆ E(Gn) with |E| ≤ δn.
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We may assume that ρ(κ) > 0, as otherwise there is nothing to prove. As in the proof
of Theorem 3.1, it suffices to consider the regular finitary case; in fact, given ε > 0, by
Proposition 9.3 there is a vertex space V ′ with finite type space and a quasi-irreducible kernel
κ ′ on V ′ with ρ(κ ′) > ρ(κ)−ε/2 such that we may consider GV ′

(n, κ ′) as a subgraph of Gn.
It suffices to prove that there is a δ > 0 such that removing at most δn edges from GV ′

(n, κ ′)
leaves whp a graph with a component of order at least (ρ(κ ′) − ε/2)n. Replacing ε by
2ε, this is exactly (11.2), but with GV(n, κn) replaced by GV ′

(n, κ ′). Thus we may assume
that Gn = GV(n, κ), where κ is a quasi-irreducible kernel on a finite set S = {1, 2, . . . , r}.
In fact, by rescaling, as in the proof of Lemma 9.8, we may assume that κ is irreducible.
Finally, as in the proof of Lemma 9.7, we may assume that µ({i}) > 0 for every i, as there
are op(n) edges incident with types i with µ({i}) = 0. In other words, we may assume the
setting of Lemma 9.6. We shall do so for the rest of this section; thus Gn = GV(n, κ), where
V = (S, µ, (xn)n≥1) is a vertex space, and

S = {1, 2, . . . , r}, µ({i}) > 0 ∀i, κ is irreducible, and ‖Tκ‖ > 1. (11.3)

In a paper studying the bisection width of sparse random graphs, Luczak and McDi-
armid [70] proved (11.2) for the Erdős-Rényi case, where |S| = 1 or κ is constant. Their
proof adapts easily to the finite-type case, from which, as shown above, Theorem 11.1
follows. We present this proof in Subsection 11.1.

A different, perhaps more natural, approach to proving (11.2) is to work with the branch-
ing process Xκ , using the coupling of vertex neighbourhoods in Gn with Xκ to reduce (11.2)
to an equivalent statement for the two-core, Lemma 11.10 below. The latter statement has
a very simple proof in the uniform case. We present this approach here, in Subsection 11.2
below, because the intermediate results, relating properties of the two-core to the branching
process, are likely to be of interest in their own right. Unfortunately, while Lemma 11.10
can be proved in the general case by branching process methods, our proof is rather com-
plicated. As the result follows from Theorem 11.1, which can be proved more simply by
the method of Luczak and McDiarmid, we omit the proof. A reader interested only in the
proof of Theorem 11.1 can safely omit Subsection 11.2.

11.1. Counting Cuts in the Giant Component

In this subsection we prove Theorem 11.1, and then deduce Theorem 3.9. Apart from the
straightforward adaptations to non-constant κ , the argument for Theorem 11.1 is that of
Luczak and McDiarmid [70]. We start with a deterministic lemma whose statement and
proof are taken verbatim from [70].

Lemma 11.2. For any ε > 0, there exist η0 = η0(ε) > 0 and n0 such that the following
holds. For all n ≥ n0, and for all connected graphs G with n vertices, there are at most
(1 + ε)n bipartitions of G with at most η0n cross edges.

Proof. Let T be an arbitrary spanning tree of G. Any 2-partition S, S of T is determined
uniquely by the corresponding set of cross edges, together with the specification for each
cross edge of which of its endpoints is in S. For as T is connected, the cross edges specify
a nonempty subset S∗ of S, and then S is the set of vertices v such that there is a path from
v to one of the vertices in S∗ where this path does not use any of the cross edges. (If v ∈ S
then no path from v to S∗ can avoid the cross edges, and if v ∈ S then any shortest path from
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v to S∗ avoids the cross edges.) Hence, since T has n − 1 edges, the number of 2-partitions
of T (and hence also of G) with at most ηn cross edges is no more than

∑
j≤ηn

2j

(
n

j

)
= O(n2ηn((1 − η)1−ηηη)−n),

assuming η ≤ 1/2. Now let ε > 0. As η → 0, 2η/((1 − η)1−ηηη) → 1. Hence, for η

sufficiently small and n sufficiently large, there are at most (1 + ε)n partitions with at most
ηn cross edges.

Recall our assumptions (11.3), that S = {1, 2, . . . , r}, µ({i}) > 0 for every i, κ is
irreducible and ‖Tκ‖ > 1. As usual, we condition on xn, so we may assume that xn is
deterministic for every n, so there are ni vertices of type i, with ni/n → µ({i}) > 0 as
n → ∞.

The main additional ingredient needed to adapt the proof of [70] to non-constant kernels
is the following simple lemma.

Lemma 11.3. Suppose that the assumptions (11.3) hold. For any ε > 0 there is a
θ = θ(κ , ε) > 0 with the following property. If n is large enough then, whenever V1, V2 are
disjoint sets of at least εn vertices of Gn = G(n, κ) such that V1 ∪ V2 contains at least εn
vertices of each type, the expected number of edges from V1 to V2 in Gn is at least θn.

Proof. We assume that n ≥ max κ . Let ε′ = min{ε/r, ε/2}, and let

θ = (ε′)2 min{κ(i, j) : κ(i, j) > 0} > 0.

There are types i and j such that V1 contains at least ε′n vertices of type i, and V2 at least
ε′n vertices of type j. As κ is irreducible, there is a sequence i = i0, i1, . . . , it = j such that
κ(is, is+1) > 0 for each s. For each is, from our condition on V1 ∪ V2, one or both of V1

and V2 must contain at least ε′n vertices of type is. It follows that for some s, V1 contains
at least ε′n vertices of type is, and V2 contains at least ε′n vertices of type is+1. But then the
expected number of edges from V1 to V2 is at least (ε′n)2κ(is, is+1)/n ≥ θn, as required.

Using Lemma 11.3, the proof of Lemma 2 in [70] adapts immediately to our setting.
Note that we use different notation (in particular, Greek letters) from [70], for consistency
with the rest of the present paper.

Proof of Theorem 11.1. As noted at the start of the section, it suffices to prove (11.2),
assuming that (11.3) holds.

Given δ, ε > 0, by an (ε, δ)-cut in a graph G we shall mean a partition (W , W) of the
vertex set of G with |W |, |W | ≥ ε|G|, such that G contains at most δ|G| edges from W to

W . We know from Theorem 3.1 that 1
n C1(Gn)

p→ ρ(κ) > 0, so proving (11.2) is equivalent
to showing that for any ε > 0 there is a δ = δ(ε) > 0 such that whp the giant component
of Gn has no (ε, δ)-cut.

Given 0 < γ < 1, let G1, G2 be independent graphs with the distributions of G(n, (1 −
γ )κ) and G(n, γ κ), respectively. We may and shall couple the pair (G1, G2) with Gn ∼
G(n, κ) so that G1 ∪ G2 ⊆ Gn. (The union has almost the distribution of Gn; the only
difference arises from the possibility of G1 and G2 sharing edges.)
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Fix ε > 0. Recall that κ is supercritical, so ρ(κ) > 0. Furthermore, κ is irreducible, so
ρ(κ; i) > 0 for each i. By Theorem 6.4, for each i we have ρ((1 − γ )κ; i) ↗ ρ(κ; i) as
γ → 0. Let us fix a γ such that

ρ((1 − γ )κ; i) ≥ (1 − ε/3)ρ(κ; i)

holds for every i. Thus, ρ((1 − γ )κ) ≥ (1 − ε/3)ρ(κ).
Following (in this respect) the notation of [70], let U and U1 denote the largest com-

ponents of Gn and G1 respectively, chosen according to any rule if there is a tie. Then, by
Theorems 3.1 and 3.6, the events

A1 := {|U1| ≥ (1 − ε/2)ρ(κ)n}
and

A2 := {U1 ⊆ U and |U1| ≥ (1 − ε/2)|U|}
hold whp; for the condition U1 ⊆ U, note that U1 must be contained in some component
of Gn, and whp only U is large enough.

Let ε1 = min{ρ(κ; i)µ({i}) : i ∈ S}/2 > 0. By Theorem 9.10, the event

A′
1 := {U1 contains at least ε1n vertices of each type i}

holds whp. Without loss of generality, we may assume that ε < ε1. Let ν = γ θ(κ , ερ(κ)/2),
where θ is the function appearing in Lemma 11.3. If n is large enough then, by Lemma 11.3,
whenever A′

1 holds, if we partition the vertex set of U1 into two parts V1, V2 each of size at
least ερ(κ)n/2 < ε1n, then the expected number of edges in G2 from V1 to V2 is at least νn.

Continuing exactly as in [70], but keeping our notation for the relevant constants, let
η > 0 satisfy

1 + 2η ≤ exp(ν/8),

and let δ > 0 be the minimum of ν/4 and 1
2η0(η) (from Lemma 11.2). Let

A3 := {U has an (ε, δ)-cut in Gn},
and

A4 := {U1 has an (ε/2, 2δ)-cut in Gn}.
We claim that A2 ∩A3 ⊆ A4. Indeed, suppose that A2 holds and that U has an (ε, δ)-cut into
B ∪ C. Let B1 = B ∩ U1 and C1 = C ∩ U1. Then U1 has a partition into B1 ∪ C1, both |B1|
and |C1| are at least

ε|U| − (|U| − |U1|) ≥ ε|U1|/2,

and the number of cross edges is at most δ|U| ≤ 2δ|U1|, so A4 holds, proving the claim.
As A2 holds whp, and our aim is to show that P(A3) → 0, it thus suffices to show that
P(A4) → 0.

Let us condition on G1, assuming that A = A1 ∩ A′
1 holds. By Lemma 11.2 and our

choice of δ, there are at most (1+η)n (ε/2, 2δ)-cuts of U1 in G1. Consider any one such cut,
partitioning U1 into B∪C, say. Let X2 be the number of edges of G2 from B to C. Recalling
that G1 and G2 are independent, as noted above, E(X2) ≥ νn ≥ 4δn. As X2 has a binomial
distribution, a standard Chernoff estimate implies that

P(X2 ≤ 2δn) ≤ P(X2 ≤ E(X2)/2) ≤ exp(−E(X2)/8) ≤ exp(−νn/8).
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As G2 ⊆ Gn, the probability that B ∪C is an (ε/2, 2δ)-cut of U1 in Gn is at most exp(−νn/8).
Hence, conditional on G1 and assuming that A holds,

P(A4 | G1) ≤ (1 + η)n exp(−νn/8) ≤ (1 + η)n(1 + 2η)−n = o(1).

As the estimate above holds uniformly for all G1 such that A holds, it follows that P(A4 |
A) = o(1). As A holds whp, this shows that P(A4) → 0, as required.

As noted earlier, it is easy to deduce Theorem 3.9 from Theorem 11.1. Recall that the
only differences between these results are that in Theorem 3.9 we allow V to be a generalized
vertex space, and we allow the deletion of vertices as well as the addition and deletion of
edges.

Proof of Theorem 3.9. We first show that, as usual, we lose no generality by assuming
that V is a vertex space. Although this is not obvious at first sight, the general arguments
in Subsection 8.1 apply. Indeed, the only potential problem arises when we condition on
the sequences (xn), since δ might depend on (xn). However, fixing ε and defining Xn as
the smallest number of changes (edge/vertex deletions or edge additions) that can be made
to Gn to obtain a graph G′

n for which (3.7) fails, then Theorem 3.9 states exactly that, for
any ε > 0, we have n/Xn = O(1) whp. As noted in Subsection 8.1, in proving that any
function of Gn is O(1) whp, we may assume that the sequences (xn) are deterministic, by
conditioning and applying Lemma A.5.

From now on we assume that V is a vertex space. Turning to vertex deletion, given an
ε > 0, let δ > 0 be such that the conclusion of Theorem 11.1 holds. By Proposition 8.11,
there is a δ′ > 0 such that the event E that any δ′n vertices of Gn are incident with at most
δn/2 edges holds whp. Set δ′′ = min{δ′, δ/2}.

Let G′
n be any graph obtained from Gn by deleting at most δ′′n ≤ δ′n vertices, and then

adding and deleting at most δ′′n ≤ δn/2 edges. If E holds, then replacing the deleted vertices
as isolated vertices to obtain a graph G′′

n on V(Gn), we have

|E(G′′
n) � E(Gn)| ≤ δn/2 + δn/2 = δn.

Hence, by Theorem 11.1, whp every such G′
n satisfies (11.1), which is exactly (3.7). This

completes the proof of Theorem 3.9.

The above proof of Theorem 11.1 is much simpler than any proof we have been able to
find based directly on branching process methods. However, the branching process approach
does give additional insight into the relationship between the giant component and two-core
of Gn and the branching process Xκ .

11.2. Branching Process Analysis of the Two-core

Throughout this subsection we work with a kernel κ on a vertex space V satisfying the
assumptions (11.3). As usual, we assume without loss of generality that the number ni

of vertices of each type i is deterministic, with ni/n → µ({i}) as n → ∞. The corner-
stone of the branching process approach is the following form of the coupling between the
neighbourhood exploration process in Gn and the branching process Xκ .

Lemma 11.4. There is a function L0 = L0(n) → ∞ such that we may couple the neigh-
bourhood exploration process of a random vertex v of Gn = GV(n, κ) with the branching
process Xκ so that whp they agree for the first L0 generations.
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The sense of agreement is that there is a bijection between the vertices of Gn at distance
at most L0 from v and the first L0 generations of Xκ mapping v to the initial particle and
preserving type and adjacency, where particles in the branching process are adjacent if one
is a child of the other.

Proof. The argument is the same as the proof of (9.5), except for the error bounds. Note that
it suffices to consider the case L0 fixed. With L0 fixed, the total number of vertices encoun-
tered has bounded expectation, so we may abandon the coupling if we reach more than
log n vertices, say, in the neighbourhood exploration. At every step, the number of unused
vertices of type j is µ({j})n+ o(n). Using this estimate in place of (9.4), we may couple
the number of new neighbours of each type found with a corresponding Po(κ(i, j)µ({j}))
random variable so as to agree with probability 1 − o(1). As the expected total number of
steps is O(1), the total error probability is o(1).

If we have µ({ j})n + O(1) vertices of type j, Lemma 11.4 holds for any L0 = o(log n).
As in the proof of Lemma 9.6, the coupling easily extends to the L0-neighbourhoods of

two vertices. Given Gn, let v and w be chosen independently and uniformly at random from
the vertices of Gn.

Lemma 11.5. There is an L0(n) → ∞ such that we may couple (Gn, v, w) with two inde-
pendent copies Xκ , X′

κ of the branching process Xκ so that whp the first L0 neighbourhoods
of v and of w agree with the first L0 generations of Xκ and of X′

κ , respectively.

We omit the proof, noting only that for L0 fixed, the probability that v and w are within
graph distance 2L0 is o(1).

The next step is to find a way of applying the coupling results above to expectations
of functions of the neighbourhoods. This will require some care, due to the possible large
contribution to an expectation from the low probability event that the coupling fails.

We consider functions f (v, G) defined on a pair (v, G), where G is a graph in which each
vertex has a type from S = {1, 2, . . . , r}, and v is a distinguished vertex of G, the root. We
call such a function an L-neighbourhood function if it is invariant under type preserving
rooted-graph isomorphisms and depends only on the subgraph of G induced by vertices
within a fixed distance L of v. We define f (Xκ) by evaluating f on the branching process
in the natural way: form a graph from the branching process as above, and take the initial
particle as the root. Thus Lemma 11.4 implies that we can couple (Gn, v) with Xκ so that
f (v, Gn) = f (Xκ) whp for every L-neighbourhood function f .

Given an L-neighbourhood function f , let

Sn := 1

n

∑
v∈V(Gn)

f (v, Gn).

Also, for v and w independent random vertices of Gn, let Xn = f (v, Gn) and Yn = f (w, Gn).
Note that E(Sn) = E(Xn) = E(Yn).

Theorem 11.6. Let V be a vertex space with finite type space S, and let κ be a kernel on

V . If f is an L-neighbourhood function such that supn E(X4
n ) < ∞, then Sn

p→ E(f (Xκ)).

Random Structures and Algorithms DOI 10.1002/rsa



THE PHASE TRANSITION IN INHOMOGENEOUS RANDOM GRAPHS 69

Proof. Let X = f (Xκ). By Lemma 11.4 we may couple Xn and Xκ so that P(Xn �= X) → 0,

and hence Xn
p→ X . Since supn E(X4

n ) < ∞ implies that the variables Xn are uniformly
integrable, it follows that

E(Sn) = E(Xn) → E(X); (11.4)

see [61, Lemma 4.11], for example.
Let Y be an independent copy of X . From Lemma 11.5 we may couple (Xn, Yn) with

(X, Y) so that P((Xn, Yn) �= (X , Y)) → 0. In particular, XnYn
p→ XY . As

E((XnYn)
2) = E

(
X2

n Y 2
n

) ≤
√

E
(
X4

n

)
E

(
Y 4

n

) = E
(
X4

n

) ≤ C,

for some C < ∞, the variables XnYn are also uniformly integrable, so E(XnYn) → E(XY).
But E(S2

n) = E(XnYn) by linearity of expectation, while X and Y are independent and have
the same distribution. Thus E(S2

n) → E(XY) = E(X)2. Together with (11.4), this proves
the result.

Remark 11.7. Theorem 11.6 can be applied to any L-neighbourhood function f bounded
by a polynomial of the number of vertices within distance L of v. Indeed, the number of
vertices at distance t from v in Gn is stochastically dominated by the number Nt of particles
in generation t of a Galton-Watson branching process in which the number of children of
each particle has a Bi(n, max κ/n) distribution. As a Bi(1, p) distribution is stochastically
dominated by a Po(1,− log(1 − p)) distribution, if n is large enough then Nt is dominated
by N ′

t , the number of particles in generation t of the single-type Poisson branching process
X2 max κ . The probability generating function of N ′

t is obtained by iterating that of the Poisson
distribution t times. As all moments of a Poisson distribution are finite, it follows that all
moments of N ′

t are finite, so the fourth moment of any power of N ′
t is finite.

Proposition 8.11 states that, given ε > 0, there is a δ > 0 such that whp any set of at most
δn vertices of Gn is incident with at most εn edges. A very special case of Theorem 11.6
gives an alternative proof of this result (under the more restrictive assumptions of the present
section). Indeed, writing X for the number of particles in the first generation of Xκ , since
E X is finite, we have E(X1[X > M]) → 0 as M → ∞. Given ε > 0 there is thus an M for
which E(X1[X > M]) < ε/3. Writing dG(v) for the degree of a vertex v in the graph G, let
f (v, G) = dG(v)1[dG(v) > M]; clearly, f is a 1-neighbourhood function. By Remark 11.7,
Theorem 11.6 applies to f , so

Sn = 1

n

∑
v∈V(Gn) : d(v)>M

d(v)
p→ E(X1[X > M]) < ε/3.

Hence Sn ≤ ε/2 whp. Set δ = ε/(2M), and let W be a set of at most δn vertices of Gn. Then∑
w∈W

d(w) ≤
∑

w∈W : d(w)>M

d(w) + M|W |

≤ nSn + εn/2 ≤ εn

whenever Sn ≤ ε/2 holds, so whp any set of at most δn vertices of Gn are incident with at
most εn edges.

Our next result is a simple observation concerning short cycles. As before, we assume
throughout that (11.3) holds.
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Lemma 11.8. Let L = L(n) = o(log n). The probability that a random vertex v of Gn is
within distance L of a cycle of length at most L is o(1).

Proof. As all edge probabilities are bounded by p = max κ/n, the expected number of
vertices v at distance d ≥ 0 from a cycle of length l ≥ 3 is at most nl+dpl+d ≤ (max κ)l+d .
Summing over l, d ≤ L, the expectation is o(n).

The two-core C2(G) of a graph G is the maximal subgraph of G with minimum degree
at least 2. Equivalently, C2(G) consists of those vertices and edges of G that lie in some
cycle in G, or on a path joining two vertex-disjoint cycles. We shall work with the two-core
G2 := C2(Gn) of Gn. To do so, we need to relate certain properties of G2 to the branching
process Xκ . In the light of Lemma 11.4, it will be useful to have a reasonably accurate (o(1)

error probability) “local” characterization of when a vertex v is in the two-core. We shall
need similar results for vertices not in the two-core, but connected to it by short paths. Note
that Theorem 3.6 gives us a corresponding characterization for the giant component: for a
suitable L(n) → ∞, up to an error probability of o(1), a vertex v is in the giant component
if and only if it is in a component of size at least L, and using Lemma 11.4, it is easy to
check that whp when this condition holds the L-distance set, the set of vertices at graph
distance exactly L from v, is non-empty, so there is a path of length L starting at v. (We
omit the details as we use this statement only to motivate what follows, not in the proof.)
For the two-core, we need two vertex-disjoint paths.

Let L = L(n) be a function tending to infinity slowly, to be chosen below. For a vertex v

of Gn and an integer d ≥ 0, let TCd(v) be the event that v is at graph distance at most d from
the two-core G2 of Gn. Thus TC0(v) is the event v ∈ G2. Let LTCd(v) be the “localized”
event that there is a vertex w at distance d ′ ≤ d from v joined by two vertex-disjoint paths
of length L to vertices at distance d ′ + L from v. Thus, as we explore the neighbourhoods
of v successively, LTCd(v) is the event that after d ′ ≤ d steps we reach a vertex w (which
we expect to be the closest vertex of the two-core to v) with two neighbours in the next
generation each of which has neighbours for at least L − 1 further generations.

Lemma 11.9. Let d ≥ 0 be fixed, and let v be a random vertex of Gn. Provided L(n)

tends to infinity sufficiently slowly, the event TCd(v) � LTCd(v), i.e., the event that one of
TCd(v) and LTCd(v) holds but not the other, has probability o(1).

Proof. Assume, as we may, that L = o(log n). We start with the case d = 0. Let us say
that a cycle is short if it has length at most 2L. By Lemma 11.8, the probability that v is
within distance L of a short cycle is o(1). If TC0(v) holds, i.e., v is in the two-core, then v

is in a cycle, or on a path joining two vertex-disjoint cycles. Assuming that v is not close to
a short cycle, in either case we can find two vertex-disjoint paths of length L starting from
v, so LTC0(v) holds. Hence P(TC0(v)\LTC0(v)) = o(1).

The reverse bound is more difficult, as what we need is an equivalent for the two-core
of Theorem 3.6, which states that almost all vertices in largish components are in a single
giant component. In fact, we can use Theorem 3.6. Suppose that LTC0(v)\TC0(v) holds.
Note that v is not in a cycle by definition of the two-core. Let w1, w2 be two neighbours of
v joined by vertex-disjoint paths to vertices x1, x2 at distance L from v. In Gn − v, there
is no path from w1 to w2; otherwise, there would be a cycle in Gn containing v. Hence, at
least one of w1 and w2, let us say w1, is not in the giant component of Gn − v. (Here, by
the giant component we mean the largest component, chosen according to any fixed rule if
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there is a tie.) But w1 is in a component of size at least L, as witnessed by the path w1x1.
In summary, if LTC0(v)\TC0(v) holds, so does the event E(v) that v is adjacent in Gn to a
vertex w in an intermediate component of Gn − v, i.e., a component other than the largest
having size at least L. As the random vertex v is chosen independently of Gn, the graph
Gn−v is an (n−1)-vertex graph to which Theorem 3.6 applies. Hence, taking ω(n) = L(n),
by Theorem 3.6 the number of vertices w of Gn − v in intermediate components is op(n).
Conditioning on Gn − v tells us nothing about the edges from v to Gn − v. As κ is bounded,
it follows that E(v) has probability o(1). Thus P(LTC0(v)\TC0(v)) = o(1), completing the
proof in the case d = 0.

The general case follows using Proposition 8.11. If TCd(v)\LTCd(v) holds, then
v is within distance d + L of a vertex on a short cycle. Hence, by Lemma 11.8,
P(TCd(v)\LTCd(v)) = o(1). If LTCd(v)\TCd(v) holds, then v is within distance d of a
vertex v′ for which LTC0(v

′)\TC0(v
′) holds. By the case d = 0 above, op(n) vertices v′

have this property, and the result follows by applying Proposition 8.11 d times.

We now turn to the branching process equivalents of the events TCd and LTCd . Consid-
ering the branching process Xκ (started with a single particle of random type), let DSd be
the event that there is a particle in some generation d ′ ≤ d which has at least two children
with descendants in all future generations. Similarly, let LDSd,L be the event that there is a
particle x in generation up to d, say in generation d ′, such that x has two children each of
which has one or more descendants in generation d ′ + L, i.e., L generations after x. Note
that LDSd,L depends only on the first d + L generations of the branching process. Suppose
that L(n) grows slowly enough that Lemma 11.4 applies with 2L in place of L. Then for
any fixed d we have d + L ≤ 2L for large enough n, and, with v a random vertex of Gn as
before, from Lemma 11.4 we have

P(LTCd(v)) = P(LDSd,L(n)) + o(1) as n → ∞. (11.5)

Note that for d and L fixed, the event LDSd,L, which is defined in terms of the branching
process, does not depend on n, so P(LDSd,L) is a constant. For each d, as L increases the
events LDSd,L decrease to the event DSd . Hence,

lim
L→∞

P(LDSd,L) = P(DSd). (11.6)

Suppose now that L(n) tends to infinity sufficiently slowly that (11.5) and Lemma 11.9 hold.
Then, from (11.6), P(LDSd,L(n)) → P(DSd) as n → ∞. Hence, from (11.5), P(LTCd(v)) =
P(DSd) + o(1). Finally, using Lemma 11.9 we obtain

P(TCd(v)) = P(DSd) + o(1).

Considering two random vertices v, w of Gn and using Lemma 11.5 instead of
Lemma 11.4, we obtain P(TCd(v) ∩ TCd(w)) = P(DSd)

2 + o(1) similarly.
Writing TCd for the set of vertices of Gn for which TCd(v) holds, i.e., for the set of vertices

within distance d of the two-core, it follows that E |TCd |/n → P(DSd) and E(|TCd |/n)2 →
(P(DSd))

2, and thus

|TCd |/n
p→ P(DSd). (11.7)

As ‖Tκ‖ > 1, the branching process Xκ is supercritical, so P(DS0) > 0. Hence, taking
d = 0 in (11.7),

|V(G2)|/n
p→ P(DS0) > 0. (11.8)
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The reason for considering the two-core G2 of Gn is that Theorem 3.9 boils down to a
statement about G2. Roughly speaking, the largest component of Gn consists of the two-core
with some trees hanging off it, and it is easy to see what effect deleting edges from the trees
has on the size of the largest component. The question is what happens when edges are
deleted from the two-core.

Lemma 11.10. Suppose that (11.3) holds, i.e., S = {1, 2, . . . , r}, µ({i}) > 0 for each i,
κ is irreducible, and ‖Tκ‖ > 1. Let G2 be the two-core of GV(n, κ). For any ε > 0 there is a
δ > 0 such that the following statement holds whp: for any set W ⊂ V(G2) with |W | ≥ εn
and |V(G2)\W | ≥ εn there are more than δn edges of G2 joining W to V(G2)\W.

In other words, under the assumptions of Lemma 9.6, if ‖Tκ‖ > 1 then the two-core
G2 cannot be cut into two large (size �(n)) pieces by a small set of edges. Note that the
two-core itself is large by (11.8). As the proof of Lemma 11.10 is rather long, we first show
that it implies Theorem 3.9.

Deduction of Theorem 3.9 from Lemma 11.10. We have already shown (at the end of Sub-
section 11.1) that, using Proposition 8.11, Theorem 3.9 can be deduced from Theorem 11.1.
As noted at the start of the section, in proving Theorem 11.1 we may assume that (11.3)
holds, and it suffices to prove (11.2). From now on, let us fix the quantity ε > 0 appearing
in (11.2).

The events DSd form an increasing sequence, and their union is contained in the event S
that the branching process Xκ survives (contains points in all generations). Also, S\⋃

d DSd

is the event that the process survives, but with only a single infinite line of descent. From basic
properties of Poisson processes, starting from a particle of type x, the types its surviving
children, i.e., its children that have descendants in all later generations, form a Poisson
process on S with intensity κ(x, y)ρ(κ; y) dµ(y). In particular, the number of such children
is Poisson with some mean λ(x) > 0. It follows that, conditional on a particle surviving, the
probability that it has at least two surviving children is positive, and hence, as the type space
S is finite, bounded way from zero. Hence P(S\⋃

d DSd) = 0, so P(DSd) ↗ P(S) = ρ(κ),
and there is a constant D such that P(DSD) ≥ ρ(κ)− ε/3. From (11.7), for any fixed D the
set TCD of vertices within distance D of the two-core has size P(DSD)n + op(n), so whp

|TCD| ≥ (ρ(κ) − ε/2)n. (11.9)

Let ε′ < P(DS0)/3 be a small positive constant to be chosen later, and let δ =
min{ε′, δ(ε′)}, where δ(·) is the function appearing in Lemma 11.10. Let us delete an arbi-
trary set E of at most δn edges from Gn, leaving a graph G′

n. Let G2− ⊆ G2 be the largest
remaining connected part of G2. We claim that

|V(G2)\V(G2−)| ≤ ε′n

holds whp. Note that |V(G2)| ≥ 3ε′n whp by (11.8). If this inequality holds and every
component of G2\E has size at most |V(G2)| − ε′n, then there is a union H of components
of G2\E with between ε′n and |V(G2)| − ε′n vertices: indeed, if the largest component has
at least ε′n vertices, this will do as H. Otherwise, every component has at most ε′n vertices,
and the smallest union H with at least ε′n vertices will do. The existence of an H with the
stated properties has probability o(1) by Lemma 11.10, proving the claim.

Let X be the component of G′
n containing G2−. If v ∈ TCD\X then, as v ∈ TCD, there is

a path in Gn of length at most D from v to a vertex of G2. Taking any such path, as v /∈ X,
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either the path ends in a vertex of G2\G2−, of which there are whp at most ε′n, or it contains
an edge of E, and hence contains an endvertex of such an edge; there are at most 2δn ≤ 2ε′n
such endvertices. In particular, whp all v ∈ TCD\X are within distance D (in Gn) of some
set of at most 3ε′n vertices. Applying Proposition 8.11 D times, it follows that if we choose
ε′ small enough, then whp |TCD\X| ≤ εn/2. Using (11.9) it follows that whp

C1(G
′
n) ≥ |X| ≥ (ρ(κ) − ε)n,

completing the proof of Theorem 3.9.

It remains only to prove Lemma 11.10. The uniform case (κ constant) has a simple proof,
presented below.

Proof of Lemma 11.10, uniform case. In a moment we shall restrict to the uniform case;
for now, we assume (11.3).

As ‖Tκ‖ > 1, the branching process Xκ is supercritical, so ρ(κ) > 0. From irreducibility,
it follows that ρ(κ; i) > 0 for every i. Consider the event TS that the initial particle has
exactly three children that survive. As the initial particle has positive probability of having
exactly three children, P(TS) > 0. Arguing as for (11.8), one can show that the number of
vertices of degree exactly 3 in G2 is P(TS)n + op(n); in fact, both statements are special
cases of Lemma 11.11 below.

We shall condition on the vertex set and (labelled) degree sequence of G2. In other words,
we shall condition on the sequence d = (d(1), . . . , d(n)), where d(i) is the degree in G2

of the vertex i and d(i) = 0 if i /∈ V(G2). Let us write n2 for |V(G2)| = |{i : d(i) > 0}|,
m2 for e(G2) = 1

2

∑
d(i), and n≥3 for the number of i for which d(i) ≥ 3. Note that whp

n≥3 ≥ P(TS)n/2 > 0. Also, e(Gn) = O(n) whp (for example, by Proposition 8.9), and Gn

has maximum degree O(log n) whp. Thus there are positive constants ε1 and C, depending
only on κ , such that

n≥3 ≥ ε1n, m2 ≤ Cn2, and max
i

d(i) ≤ C log n, (11.10)

hold whp.
From now on we consider the uniform case, where κ is constant, or, equivalently, |S| = 1.

This is just the usual Erdős–Rényi random graph Gn = G(n, c/n), with c > 1. We condition
on d, assuming, as we may, that the conditions (11.10) hold. In the uniform case it is easy
to see that (given d) the graph G2 is uniformly distributed among all graphs with degree
sequence d. This is because any graph can be decomposed into its two-core and a collection
of vertex-disjoint trees, each sharing at most one vertex with the two-core. Hence, any two
graphs H1, H2 with degree sequence d can be extended in exactly the same ways to graphs
H ′

1, H ′
2 with vertex set [n] so that H ′

i has two-core Hi. As corresponding graphs H ′
1, H ′

2 have
the same number of edges, they are equally likely in the model G(n, c/n). Summing over
the possible extensions, H1 and H2 are equally likely to arise as G2.

Let H be the random multigraph with degree sequence d generated by the configuration
model of [14]. In other words, for each vertex i we take d(i) “stubs”, and we pair the 2m2

stubs randomly, with all (2m2−1)!! pairings equally likely. For every pair in this pairing, we
take an edge between the corresponding vertices. This generates a multigraph H with degree
sequence d, where H may contain loops and multiple edges. Let psimple be the probability that
H is simple. From our assumptions on d it is easy to check that psimple = exp(−o(n)). This
very crude lower bound is all that we shall need; the much stronger bound exp(−O((log n)2))
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follows from (11.10) and the general results in McKay [75]. In fact, using the fact that∑
i d(i)2 = O(n) whp, one can show that psimple = �(1). Given that H is simple, it is

uniformly distributed among all simple graphs with degree sequence d, i.e., H has the
distribution of G2. Hence, to show that G2 has a certain property whp it suffices to show
that H has the property with probability 1 − o(psimple).

For W ⊆ V(G2) let W = V(G2)\W . Let S(W) denote the set of stubs associated to W ,
so |S(W)| = ∑

i∈W d(i). For a set S of stubs, let S = S(V(G2))\S, and let pcut(S, S) denote
the probability that, in the random pairing, every stub in S is paired with another stub in
S. If V(G2) has a partition W , W with at most δn edges between W and W , then there is
an S ⊆ S(W) with |S(W)\S| ≤ δn so that every stub in S is paired with another stub in S.
Hence, the expected number of such partitions with W , W large is at most

EC :=
∑

W⊂V(G2):|W |,|W |≥εn

∑
S⊆S(W):|S(W)\S|≤δn

pcut(S, S), (11.11)

and it suffices to show that EC is o(psimple) if we choose δ small enough. Now pcut(S, S) = 0
if |S| is odd, and otherwise

pcut(S, S) = (|S| − 1)!! (|S| − 1)!!
(2m2 − 1)!! ≤

(
m2

|S|/2

)−1

. (11.12)

Every vertex of G2 has degree at least 2, so for any W we have |S(W)|/2 ≥ |W |. As, from
(11.10), there are at least ε1n vertices of degree 3 in G2, either |S(W)|/2 ≥ |W | + ε1n/4 or
|S(W)|/2 ≥ |W | + ε1n/4. It follows that whenever |W |, |W | ≥ εn we have(

m2

|S(W)|/2

)
≥ exp(4an)

(
n2

|W |
)

,

where a > 0 is a constant depending only on ε1 and ε, and hence only on κ and ε. Choosing
δ small enough, it follows that(

m2

|S|/2

)
≥ exp(3an)

(
n2

|W |
)

, (11.13)

whenever S ⊆ S(W) with |S| ≥ |S(W)| − δn. Given w = |W |, there are at most
(n2

w

)
choices for W . Given W , there are, crudely, at most m2

(2m2
δn

)
choices for S ⊆ S(W) with

|S(W)\S| ≤ δn. Hence, from (11.11), (11.12) and (11.13),

EC ≤
∑

εn≤w≤n2−εn

(
n2

w

)
m2

(
2m2

δn

)
exp(−3an)

(
n2

w

)−1

.

Choosing δ small enough, it follows that EC = O(n2 exp(−2an)), and hence that EC ≤
exp(−an) for n large enough. As psimple = exp(−o(n)), this completes the proof in the
uniform (|S| = 1) case.

One might hope that any argument for the uniform case would adapt easily to the finite-
type case. However, we have been unable to find a simple extension of the argument above.
Our branching-process based argument for the general case is somewhat involved and rather
lengthy, and we shall not present it. This is because adapting a proof due to Luczak and

Random Structures and Algorithms DOI 10.1002/rsa



THE PHASE TRANSITION IN INHOMOGENEOUS RANDOM GRAPHS 75

McDiarmid [70] gives the much simpler proof of Theorem 11.1 in Subsection 11.1, which
in turn immediately implies the general case of Lemma 11.10. We believe, however, that
the results in this subsection are likely to be useful for determining other properties of the
two-core.

We close this section with a final result, Lemma 11.11 below, relating any “local” property
of the two-core to the branching process Xκ . This will require a little introduction.

Recall that, by Lemma 11.4, if L → ∞ sufficiently slowly then we may couple the
2L-neighbourhood of a random vertex v of Gn with the first 2L generations of the branching
process Xκ so that they agree with probability 1 − o(1). By Lemma 11.9, for almost every
vertex v, v is in the two-core if and only if there are two disjoint paths of length L starting
at v. This allows us to adapt the coupling, and hence Theorem 11.6, to the two-core.

For v ∈ G2 and t ≥ 0, let �t(v, G2) be the set of vertices of G2 at graph distance t from
v, and set �t(v, G2) = ∅ if v /∈ G2. Note that any vertex on a path joining two vertices
of G2 is in G2, so �t(v, G2) is the t-distance set of v in the graph G2. Let Xκ be obtained
from Xκ in two steps: first, delete any particle that does not have descendants in all future
generations. Then, if the initial particle has only one remaining child, delete everything; we
write Xκ = ∅ in this case. We obtain a certain branching process Xκ having the following
properties whenever Xκ �= ∅: the first particle has at least two children, and every later
particle at least one child.

For constant D, if L = L(n) → ∞ then up to an o(1) error probability, the first D + L
generations of Xκ determine the first D generations of Xκ : consider surviving to generation
D + L instead of surviving forever. Let v be a random vertex of Gn. If L → ∞ sufficiently
slowly then, by Lemma 11.9 and Proposition 8.11 (applied D times), the probability that v

is within distance D of a vertex w for which one of TC0(w) and LTC0(w) holds but not the
other is o(1). Using Lemma 11.4, it follows that the G2-neighbourhoods (�t(v, G2))D

t=0 of a
random vertex v ∈ Gn can be coupled with the first D generations of Xκ so as to agree with
probability 1 − o(1). Similarly, Lemma 11.5 implies its equivalent for G2 and Xκ . Using
these two results, an analogue of Theorem 11.6 follows. In the result below we take f (Xκ)

to be zero when Xκ is empty. The proof follows exactly that of Theorem 11.6, so we omit it.

Lemma 11.11. Let D be fixed, and let f = f (v, G) be a D-neighbourhood function
bounded by a polynomial of the number of vertices within distance D of v. Then

Sn := 1

n

∑
v∈G2

f (v, G2)
p→ E(f (Xκ)).

Of course, the condition on f could be replaced by a fourth-moment condition as in Theo-
rem 11.6. As an immediate consequence of Lemma 11.11, we can describe, for example, the
typed degree sequence of G2, taking fi,d(v, G) to be the 1-neighbourhood function taking
the value 1 when v has degree d and type i, and 0 otherwise. Lemma 11.11 can be used
as the basis of a proof of Lemma 11.10, but as noted above, the details are rather involved;
see the first version of this paper, at http://arXiv.org/math.PR/0504589v1

Remark 11.12. Recently, Riordan [85] proved an analogue of Lemma 11.11 for the k-core,
again using a direct coupling of the neighbourhood exploration process with a branching
process.
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12. BOUNDS ON THE SMALL COMPONENTS

In this section we prove Theorem 3.12, i.e., that the sizes of the small components of Gn =
GV(n, κ) are O(log n) whp under certain assumptions. As before, by the giant component in
a graph Gn we mean the unique largest component, provided it has �(n) vertices – all other
components are small. Thus, in the supercritical case (‖Tκ‖ > 1), where there is a giant
component, a small component is any component other than the largest, so our aim is to
prove an upper bound on C2(Gn). In the strictly subcritical case (‖Tκ‖ < 1), all components
are small, and our aim is to show that C1(Gn) = O(log n) whp.

We shall prove three results that together imply Theorem 3.12, namely Theorems 12.5,
12.6 and 12.7 below. In the supercritical case, we shall also prove a more general result,
Theorem 12.1 below, describing the distribution of the graph formed from Gn by deleting
the giant (more precisely, largest) component, C1(Gn). This description is in terms of another
instance of our general model, involving the dual kernel κ̂ defined in Definition 3.15.

Theorem 12.1. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with quasi-irreducible limit κ , with ‖Tκ‖ > 1. Let Gn = GV(n, κn), and let G′

n be the
graph obtained from Gn by deleting all vertices in the largest component C1(Gn). There is a
generalized vertex space V̂ = (S, µ̂, (yn)) with µ̂ given by dµ̂(x) = (1 − ρ(κ; x)) dµ(x),
such that G′

n and GV̂(n, κn) can be coupled to agree whp. Furthermore, the sequence (κn)

is graphical on V̂ with quasi-irreducible limit κ .

If we wish, we can renormalize so that (S, µ̂) becomes a ground space; see the comment
after Definition 3.15. However, the resulting graph still has a random number of vertices,
so we cannot insist that V̂ is a vertex space.

Theorem 12.1 is the natural generalization to our context of the old “duality result” of
Bollobás [15] for the Erdős–Rényi model G(n, c/n) that was the basis of the study of the
phase transition there (see also Łuczak [71], Janson, Knuth, Łuczak and Pittel [58], and the
books [16, 59]).

Remark 12.2. We know that the random graph GV̂(n, κn) in Theorem 12.1 cannot be
supercritical, since otherwise Gn would have a second giant component. It may be critical,
see Example 12.4, but is typically subcritical; one sufficient condition for subcriticality is
given in the next result.

Theorem 12.3. Under the assumptions of Theorem 12.1, if, in addition,∫∫
S2 κ(x, y)2 dµ(x) dµ(y) < ∞, then GV̂(n, κn) is subcritical.

Proof. As usual, we may normalize so that µ(S) = 1. The result then follows immediately
from Theorem 6.7.

Example 12.4. As in Example 4.12, let S = {1, 2, 3, . . . } with µ({k}) = 2−k , and
let x1, . . . , xn be i.i.d. random points in S with distribution µ. Let (εk)

∞
1 be a sequence of

positive numbers tending to zero, to be chosen below. Set κ(1, 1) = 4, κ(k, k) = 2k for
k ≥ 2 (instead of 2k+1 in Example 4.12), κ(1, k) = κ(k, 1) = εk for k ≥ 2, and κ(i, j) = 0
otherwise.

Furthermore, again as in Example 4.12, let Hk be the subgraph of G(n, κ) induced by the
nk ∼ Bi(n, 2−k) vertices of type k. Then, conditional on nk , each Hk has the distribution of
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the Erdős–Rényi graph G(nk , κ(k, k)/n). As before, H1 is supercritical, which implies that
G(n, κ) is supercritical.

Let kn → ∞ slowly, and choose εk such that εkn ≤ n−2; to be specific, set kn :=
 log2 log n" and εk := exp(−2k+2). Then (4.4) implies that Hkn is a critical Erdős–Rényi
graph: the edge probability is not exactly one over the number nkn of vertices, but is (1 +
o(n−1/3

kn
))/nkn , which is within the “scaling window”. It follows, as in Example 4.12, that

whp C2(G(n, κ)) ≥ C1(Hkn) = �p(n̄
2/3
kn

) > n2/3/ log n.
It is easy to see, analytically from Theorem 6.2 or probabilistically from Theorem 9.10,

that ρ(k) → 0 as k → ∞. Consider the graph GV̂(n, κn) in Theorem 12.1; the norm of
the corresponding integral operator T̂κ on L2(µ̂) is at least the norm when restricted to {k},
which is exactly 1 − ρ(k), k ≥ 2. Hence the norm is at least 1. By Remark 12.2, it follows
that the norm of T̂κ is exactly 1, i.e., that GV̂(n, κn) is critical.

We now turn to the proofs of Theorems 3.12 and 12.1, starting with the subcritical case
of Theorem 3.12, which we restate below.

Theorem 12.5. Let (κn) be a graphical sequence of kernels on a (generalized) vertex
space V with limit κ . If κ is subcritical, i.e., ‖Tκ‖ < 1, and supx,y,n κn(x, y) < ∞, then
C1(Gn) = O(log n) whp.

Proof. As usual, we may assume that V is a vertex space; see Subsection 8.1. Consider
first the case when κn = κ for all n and S is finite, or, equivalently, the regular finitary
case. In this case, the result follows by comparing the neighbourhood exploration process
of a vertex in the graph to a subcritical branching process: this comparison is similar to that
made in the proof of Lemma 9.6. This time, setting ω(n) = A log n, where A is a (large)
constant to be chosen below, instead of the upper bound in (9.5) we claim that

P(x ∈ B) ≤ ρ≥ω(n)((1 + 2ε)κ; i), (12.1)

for all sufficiently large n.
This can be proved by the comparison argument used for (9.5), except that in the final step,

instead of using the total variation distance between the binomial and Poisson distributions,
we note that if# denotes stochastic domination and p′ = − log(1−p), so that p′ = p+O(p2)

as p → 0, then Bi(1, p) # Po(p′), and thus Bi(m, p) # Po(mp′) for every m. Hence, for
n large enough, Bi(n′

j, κ(i, j)/n) # Bi(nj, κ(i, j)/n) # Po((1 + 2ε)κ(i, j)µj). Note that in
the argument leading to (9.5), and hence in our proof of (12.1), we do not assume that κ is
irreducible.

For ε small enough, the branching process X(1+2ε)κ is subcritical. Therefore, there is an
a > 0 such that

ρ≥k((1 + 2ε)κ; i) ≤ e−ak (12.2)

holds for all i and all k ≥ 1. Inequality (12.2) is undoubtedly well known for finite-type
Galton-Watson processes, but for the sake of completeness we sketch a proof. For z > 0
let gz(x) := E z|Xκ (x)|, where |Xκ(x)| denotes the total population of the branching process.
Using E wPo(λ) = eλ(w−1) and independence of the Poisson numbers of particles of each
type in the first generation, we have gz = zeTκ (gz−1). If κ is subcritical, then by the implicit
function theorem this functional equation has a finite solution for z in a neighbourhood of
1, say for |z − 1| < δ, and it follows by an argument similar to the proof of Lemma 5.6 that
indeed gz(x) < ∞ for all x when z < 1 + δ.
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Taking A = 2/a for some a for which inequality (12.2) holds, and recalling (12.1),
P(x ∈ B) ≤ n−2 follows, and so whp there are no vertices in B, i.e., there is no component
of order A log n or larger.

For the general case, it suffices to bound κn for large n from above by a subcritical finitary
κ ′. Recalling that supx,y,n κn(x, y) < ∞, let κ+

m be defined as in Lemma 7.2. As ‖Tκ‖ < 1,
by Lemma 7.2 we have ‖Tκ+m ‖ < 1 for m large enough, and we can take κ ′ = κ+

m .

We now turn to the supercritical case, proving two results that together imply part (ii) of
Theorem 3.12.

Theorem 12.6. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with irreducible limit κ . If κ is supercritical, i.e., ‖Tκ‖ > 1, and infx,y,n κn(x, y) > 0, then
C2(Gn) = O(log n) whp.

Proof. As usual, we may assume that V is a vertex space. As the kernel κ is supercritical,
we have ‖Tκ‖ > 1, so there is an integer k such that (1 − 1/k)‖Tκ‖ > 1. Fix such a k
throughout the proof.

Recall that Gn = GV(n, κn) is constructed by choosing in an appropriate manner a
(deterministic or random) sequence xn = (x1, . . . , xn) giving the types of the vertices,
and then constructing the edges using the kernel κn. Independently of Gn, let us partition
V(Gn) = [n] into k subsets Si in a random way, by independently assigning each vertex
to a random subset. In other words, we construct Gn (which has vertex set [n]) and then
partition its vertex set into k classes Si. Let Sc

i := [n]\Si.
Let A be a very large constant, to be chosen later. We aim to prove that the event E that

Gn contains a component with more than A log n and at most n/A vertices has probability
o(1). Every component C of Gn meets some Si in at least |C|/k vertices. Let us say that a
component C of Gn is bad if it has at least A log n and at most n/A vertices, and meets S1

in at least A log n/k vertices. Then, as all Si are equivalent, it suffices to prove that whp Gn

has no bad component.
To this end, consider the subgraph G′

n of Gn induced by the vertices in Sc
1. Let µ′ =

(1 − 1/k)µ, and let yn be the (random) subsequence of xn corresponding to those vertices
i with i /∈ S1. Note that V ′ = (S, µ′, (yn)n≥1) is a generalized vertex space: condition (2.2)
for V ′ follows from the same condition for V and the random choice of S1. Also, G′

n has
exactly the distribution of GV ′

(n, κn).
Since E e(G′

n) = (1 − 1/k)2
E e(Gn), and the sequence (κn) is graphical on V with limit

κ , it is graphical on V ′ with the same limit κ . As κ is irreducible on (S, µ), it is irreducible
on (S, µ′). Let us write κ ′ for the kernel κ when viewed as a kernel on (S, µ′). Thus Tκ ′ is an
operator on L2(S, µ′), and, by assumption, ‖Tκ ′ ‖ = (1−1/k)‖Tκ‖ > 1. Let C1 be the largest
component of G′

n (chosen according to any rule if there is a tie). Then, by Theorem 3.1,
whp C1 contains at least ρ(κ ′)n/2 vertices, and ρ(κ ′) > 0.

From now on, we shall assume that C1 has at least ρ(κ ′)n/2 vertices, and choose A so
that 1/A < ρ(κ ′)/2. If a component C of Gn is bad, then it cannot contain C1, and hence
sends no edges to C1. Let G′′

n be the spanning subgraph of Gn obtained from Gn by deleting
all edges between C1 and vertices in S1. If C is a bad component of Gn, then all edges of
C are present in G′′

n , so C is a component of G′′
n . Hence, the probability that Gn has a bad

component is bounded by o(1) (the probability that C1 is too small) plus the probability that
some component C �= C1 of G′′

n containing at least A log n/k vertices of S1 sends no edges to
C1 in Gn. Conditioning on xn, S1 and G′′

n , we have not tested any edges between C1 and S1, so
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these edges are present independently, each with its original probability. These individual
probabilities are all at least (inf κ)/n, where inf κ := infx,y,n κn(x, y) > 0 by assumption.

Thus, for any of the at most n components C �= C1 of G′′
n with at least M = A log n/k

vertices in S1, the probability that C sends no edges to C1 is at most

(1 − (inf κ)/n)M|C1|.

As inf κ > 0, |C1| ≥ ρ(κ ′)n/2 and M = A log n/k, we can make this probability o(n−100)

by choosing A large enough.

Next, we turn to our general result Theorem 12.1 on the distribution of the small com-
ponents of a supercritical graph Gn = GV(n, κn). This will then be used to prove the final
statement in Theorem 3.12, restated as Theorem 12.7 below.

Proof of Theorem 12.1. The result is a simple consequence of Theorems 3.1, 9.10, 3.5
and 3.6. Indeed, given Gn = GV(n, κn), let C1 be the largest component of Gn (chosen
according to any fixed rule if there is a tie), and, for each n, let yn be the subsequence of
xn consisting of those xi for which i /∈ C1. Then, by Theorem 9.10, V̂ = (S, µ̂, (yn)) is a
generalized vertex space, where µ̂ is defined by dµ̂(x) = (1 − ρ(κ; x)) dµ(x); indeed, the
only non-trivial condition to verify is (2.4), which is immediate from the same condition
for V and (9.20).

Next, we must show that the graphs G′
n and GV̂(n, κn) may be coupled so that their

edge-sets agree whp. This is easy to see: as usual, we condition throughout on xn, treating
xn as deterministic. If we condition also on the vertex set V of C1, the only information this
gives about edges of Gn inside V c = V(Gn)\V is that G′

n = Gn[V c] contains no component
larger than |V | (and that certain components of order exactly |V | are ruled out). Without this
condition, Gn[V c] would have exactly the distribution of GV̂(n, κn), so it suffices to prove
that C1(GV̂(n, κn)) < |V | holds whp. In fact, as |V | ≥ ρ(κ)n/2 whp, it suffices to prove
that

η := P
(
C1(G

V̂(n, κn)) ≥ ρ(κ)n/2
)

tends to 0 as n → ∞.
Recall that the sequence xn is deterministic. Pick a vertex j of Gn at random, and explore

its component in Gn in the usual way, by finding the neighbours of j, then the neighbours
of the neighbours, and so on. Let Vj be the vertex set of this component. The nature of the
exploration process ensures that, given Vj, the edges of Gn[V c

j ] are present independently
with their unconditional probabilities. In other words, writing y′

n for the subsequence of xn

consisting of those xi with i /∈ Vj, and setting V̂ ′ = (S, µ̂, (y′
n)), the edge sets of Gn[V c

j ] and
GV̂ ′

(n, κn) have the same distribution.
Let us condition on the event E that |Vj| ≥ ρ(κ)n/2. As Theorem 3.1 can be applied to

Gn, and j was chosen at random, we see that P(E) is bounded away from 0. Also, appealing
to Theorem 3.6, we see that whp Gn has a unique component of size at least ρ(κ)n/2.
Thus, given E, we have yn = y′

n whp. Hence, with probability P(E)(o(1) + η), the graph
Gn contains two components of order at least ρ(κ)n/2. By Theorem 3.6, this probability
is o(1), so we have η = o(1), as required. Finally, as κ is quasi-irreducible on (S, µ), it is
quasi-irreducible on (S, µ̂).

It remains only to show that the sequence (κn) is graphical on V̂ with limit κ . Now (κn)

is graphical on V with limit κ , and all conditions of Definition 2.9 for V̂ apart from the last,
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(2.11), follow immediately from the corresponding conditions for V . In other words, we
must show that

E e(GV̂(n, κn))/n →
∫∫

S2
κ(x, y) dµ̂(x) dµ̂(y)

=
∫∫

S2
κ(x, y)(1 − ρ(κ; x))(1 − ρ(κ; y)) dµ(x) dµ(y).

As we may couple G′
n and GV̂(n, κn) to agree whp, and as the number of edges in either

graph is bounded by that in Gn, and thus, divided by n, is uniformly integrable, it suffices
to prove the same limiting formula for E e(G′

n)/n. This is immediate from the definition of
G′

n, condition (2.11) for Gn, and Theorem 3.5.

Theorem 12.7. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space
V with irreducible limit κ . If κ is supercritical, i.e., ‖Tκ‖ > 1, and supx,y,n κn(x, y) < ∞,
then C2(Gn) = O(log n) whp.

Proof. By Theorem 12.1, whp C2(Gn) = C1(GV̂(n, κn)), and the result follows from
Theorems 12.3 and 12.5.

Remark 12.8. One might think that C2(Gn) = O(log n) would hold whp for any super-
critical kernel κ , i.e., that Theorems 12.6 and 12.7 would hold without the condition
infx,y,n κn(x, y) > 0 or supx,y,n κn(x, y) < ∞, at least for κn = κ , say. However, it is easy to
construct counterexamples, similar to Example 8.6, by taking xi = i/n ∈ S = (0, 1] and
modifying a suitable kernel to introduce a largish star with centre 1 not joined to the giant
component.

Such pathologies are not the only counterexamples: in the case where the xi are uni-
formly distributed, for any function ω(n) = o(n), Example 4.12 provides an example of a
supercritical random graph with C2(Gn) > ω(n) whp; thus the op(n) bound in Theorem 3.6
is best possible.

13. VERTEX DEGREES

In this section we turn to the vertex degrees, proving Theorem 3.13: if κn is a graphical
sequence of kernels on a vertex space V with limit κ , and we define λ(x) by

λ(x) :=
∫

S
κ(x, y) dµ(y),

then, writing Zk for the number of vertices of degree k in GV(n, κn), our aim is to show that

Zk/n
p→ P( = k) =

∫
S

λ(x)k

k! e−λ(x) dµ(x),

where  has the mixed Poisson distribution
∫

S Po(λ(x)) dµ(x).
In fact, Theorem 3.13 is stated for a generalized vertex space, and includes limiting results

both for Zk/n and for Zk/|V(Gn)|. Since |V(Gn)|/n
p→ µ(S), these results are equivalent.
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As usual, the statement for generalized vertex spaces reduces to that for vertex spaces (see
Subsection 8.1), and what we must prove is exactly the statement above.

Proof of Theorem 3.13. Consider first the finite-type case in Example 4.3. Take a vertex v

of type i, let Dv be its degree, and let Dv,j be the number of edges from v to vertices of type j,
j = 1, . . . , r; thus Dv = ∑

j Dv,j. Assume that n ≥ max κ and condition on n1, . . . , nr . Then

the Dv,j are independent for j = 1, . . . , r, and Dv,j ∼ Bi(nj − δij, κ(i, j)/n)
d→ Po(µjκ(i, j));

hence

Dv

d→ Po

(∑
j

µjκ(i, j)

)
= Po(λ(i)),

as λ(i) = ∫
κ(i, j) dµ(j) = ∑

j κ(i, j)µj. Consequently,

P(Dv = k) → P(Po(λ(i)) = k) = λ(i)k

k! e−λ(i).

Let Zk,i be the number of vertices in GV(n, κ) of type i with degree k. Then, still conditioning
on n1, . . . , nr ,

1

n
E Zk,i = 1

n
ni P(Dv = k) → µi P(Po(λ(i)) = k).

It is easily checked that Var(Zk,i | n1, . . . , nr) = O(n). Hence

1

n
Zk,i

p→ P(Po(λ(i)) = k)µi,

and thus, summing over i,

1

n
Zk =

∑
i

1

n
Zk,i

p→
∑

i

P(Po(λ(i)) = k)µi = P( = k).

This proves the theorem in the regular finitary case. In general, define κ−
m by (7.5). Let

ε > 0 be given. From (7.6) and monotone convergence, there is an m such that∫∫
S2

κ−
m (x, y) dµ(x) dµ(y) >

∫∫
S2

κ(x, y) dµ(x) dµ(y) − ε. (13.1)

For n ≥ m we have κ−
m ≤ κn by (7.7), so we may assume that G(n, κ−

m ) ⊆ G(n, κn). (Here,
as usual, we suppress the dependence on V .) Then, using Proposition 8.9 twice and (13.1),

1

n
e(G(n, κn)\G(n, κ−

m )) = 1

n
e(G(n, κn)) − 1

n
e(G(n, κ−

m ))

p→ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y) − 1

2

∫∫
S2

κ−
m (x, y) dµ(x) dµ(y) <

ε

2
,

so whp e(G(n, κn)\G(n, κ−
m )) < εn. Let us write Z (m)

k for the number of vertices of degree
k in G(n, κ−

m ). It follows that whp

|Z (m)

k − Zk| < 2εn. (13.2)
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Writing (m) for the equivalent of  defined using κ−
m in place of κ , by the first part of the

proof, Z (m)

k /n
p→ P((m) = k). Thus whp

|Z (m)

k /n − P((m) = k)| < ε. (13.3)

Finally, we have E  = ∫
S λ(x) dµ(x) = ∫∫

S2 κ(x, y) dµ(x) dµ(y). Since λ(m)(x) ≤
λ(x), we can assume that (m) ≤ , and thus

P( �= (m)) = P( − (m) ≥ 1) ≤ E( − (m)) =
∫∫

S2
κ −

∫∫
S2

κ−
m < ε. (13.4)

Combining (13.2), (13.3), and (13.4), we see that |Zk/n − P( = k)| < 4ε whp.

Let � be the random variable λ(ξ), where ξ is a random point in S with distribution
µ. Then we can also describe the mixed Poisson distribution of  as Po(�). Under mild
conditions, the tail probabilities P( > t) and P(� > t) are similar for large t. We state this
for the case of power-law tails; the result generalizes to regularly varying tails. As above,
let D be the degree of a random vertex in GV(n, κn). Let Z≥k be the number of vertices with
degree ≥ k.

Corollary 13.1. Let (κn) be a graphical sequence of kernels on a vertex space V with
limit κ . Suppose that P(� > t) = µ{x : λ(x) > t} ∼ at−α as t → ∞, for some a > 0 and
α > 1. Then

Z≥k/n
p→ P( ≥ k) ∼ ak−α ,

where the first limit is for k fixed and n → ∞, and the second for k → ∞. In particular,
limn→∞ P(D ≥ k) ∼ ak−α as k → ∞.

Proof. It suffices to show that P( ≥ k) ∼ ak−α; the remaining conclusions then follow
from Theorem 3.13. For any ε > 0, P(Po(�) > t | � > (1 + ε)t) → 1 and P(Po(�) > t |
� < (1−ε)t) = o(t−α) as t → ∞, for example by standard Chernoff estimates [59, Remark
2.6]. It follows that P( > t) = P(Po(�) > t) ∼ at−α as t → ∞.

This result shows that our model does include natural cases with power-law degree
distributions. For example, taking S = (0, 1] with the Lebesgue measure, and κn(x, y) =
κ(x, y) = c/

√
xy for c > 0 constant, we have λ(x) = 2c/

√
x, so P(� > t) = 4c2/t2

for t ≥ 2c. Thus, by Corollary 13.1, P(D ≥ k) ∼ 4c2/k2 as k → ∞. In fact, in this
case GV(n, κ) is the “mean-field” version of the Barabási–Albert scale-free model; see
Subsection 16.2. For other power laws, see Subsection 16.4.

14. DISTANCES BETWEEN VERTICES

One of the properties of inhomogeneous graphs that has received much attention is their
“diameter”. For example, considering the scale-free model of Barabási and Albert [9], the
diameter was determined heuristically and experimentally to be �(log n) in [4, 10, 81]; for
a precise version of this model, the LCD model, the value (1 + o(1)) log n/ log log n was
found rigorously in [23]; later, this value was also found heuristically in [39].

Often, the diameter is taken to mean the average distance between a random pair of
vertices, or perhaps the “typical” distance, although the usual graph theoretic definition (the
maximum distance between a pair of vertices) is also used. Here we shall consider both
interpretations.
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14.1. Typical Distances

In this subsection we study the “typical” distance between vertices; our aim is to prove
Theorem 3.14, giving upper and lower bounds on the distances between almost all pairs
of vertices, showing that almost all pairs of vertices in the giant component are at distance
roughly log n/ log ‖Tκ‖.

Many related results have been published, concerning random graphs with a fixed degree
sequence, or random graphs with a given expected degree sequence; we shall only describe a
few here. These models are similar to (and in some cases special cases of) the rank 1 case of
our model; see Subsection 16.4. For example, Chung and Lu [35,36] studied distances in a
“random graph with given expected degrees”. For power-law degrees with exponent β > 3,
where their model is a special case of ours, they obtained an asymptotic diameter of log n
over the log of the average of the squares of the degrees, a special case of Theorem 3.14;
see Subsection 16.4 for the connection to our model.

Van der Hofstad, Hooghiemstra and Van Mieghem [54] (see also [49, 55, 56]) studied
a model where the vertex degrees are i.i.d. with a certain distribution, and the graph is
chosen uniformly among all graphs with these degrees. They analyze the growth of vertex
neighbourhoods in this model by using a branching process; this process is single type, but
the number of children of a particle is not Poisson, so it is rather different from the one
considered here. They obtain very precise results on the distances between a random pair of
vertices, showing that it is log n/ log c+Op(1), where c is the expectation of d(v)(d(v)−1).
(The −1 here comes from the degrees being (conditionally) fixed, rather than essentially
Poisson.)

There are many other papers in this area, both heuristic and mathematical; we shall not
attempt to list them. Let us mention only that Fernholz and Ramachandran [51], while mainly
focussing on the diameter (see Subsection 14.2) also treat the typical distance between
vertices. For further references we refer the reader to the discussion of related work in [54].

Let us now begin our preparation for the proof of Theorem 3.14. Let κn be a graphical
sequence of kernels on a vertex space V with limit κ , and let Gn = GV(n, κn). Note that we do
not consider generalized vertex spaces; arguing as in Subsection 8.1, to prove Theorem 3.14
it suffices to consider vertex spaces. (For part (iv), we use also the fact that, by standard
arguments, the conclusion holds if and only if (3.10) holds for f (n) = η log n, for every
η > 0.) We shall write dG(v, w) for the graph distance between two vertices v, w of a graph
G, taking dG(v, w) = ∞ if v and w are not in the same component of G. When the graph G
is not specified, Gn = GV(n, κn) is to be understood.

Lemma 14.1. If κ is quasi-irreducible, then

|{{v, w} : d(v, w) < ∞}| = C1(Gn)
2

2
+ op(n

2) = ρ(κ)2n2

2
+ op(n

2). (14.1)

Proof. As noted in Subsection 3.5, by (3.9) this is immediate from Theorems 3.1
and 3.6.

In particular, almost all pairs with either or both vertices outside the giant component
are not connected at all, so we shall study the typical distance only in the supercritical case
‖Tκ‖ > 1.
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Lemma 14.2. Let κ be a regular finitary kernel on a vertex space V with ‖Tκ‖ > 1. For
any ε > 0,

E
∣∣{{v, w} : d(v, w) ≤ (1 − ε) log n/ log ‖Tκ‖

}∣∣ = o(n2).

Proof. Changing only the notation, we may assume that the type space S is finite, say
S = {1, 2, . . . , r}. It turns out that, as usual, we may assume that µ({i}) > 0 for every i;
however, here we cannot simply ignore op(n) edges, so an argument is needed. Suppose
that µ({i}) = 0 for some i. Taking κ ′(i, j) = κ ′(j, i) = max κ for all j, and κ ′(j, k) = κ(j, k)

for j, k �= i, we have κ ≤ κ ′, so we may couple Gn := GV(n, κ) with G′
n = GV(n, κ ′) so

that Gn ⊆ G′
n. Note that ‖Tκ‖ = ‖Tκ ′ ‖, as κ = κ ′ a.e.

For any η > 0, define µ′ by µ′({i}) = η and µ′({j}) = (1 − η)µ({ j}), j �= i. Thus µ′

is obtained from µ by shifting some measure from types other than i to type i. Changing
the types of some vertices correspondingly, we obtain a vertex space V ′ = (S, µ′, (x′

n)n≥1)

such that whenever a vertex has type j in V , it has either type j or type i in V ′. As κ ′(j, k)

is maximal when one or both of j and k is equal to i, it follows that we can couple G′
n and

G′′
n = GV ′

(n, κ ′) so that G′
n ⊆ G′′

n . As η → 0, the norm of Tκ ′ defined with respect to µ′

tends to the norm defined with respect to µ. Since Gn ⊆ G′′
n , to prove Lemma 14.2 for Gn,

it thus suffices to prove the same result for G′′
n , defined on a vertex space with µ′({i}) > 0.

Iterating, it suffices to prove Lemma 14.2 in the case where µ({i}) > 0 for every i.
Let �d(v) = �d(v, Gn) denote the d-distance set of v in Gn, i.e., the set of vertices of Gn at

graph distance exactly d from v, and let �≤d(v) = �≤d(v, Gn) denote the d-neighbourhood⋃
d′≤d �d′(v) of v.
Let 0 < ε < 1/10 be arbitrary. The proof of (12.1) involved first showing that,

for n large enough, the neighbourhood exploration process starting at a given vertex v

of Gn with type i (chosen without inspecting Gn) could be coupled with the branching
process X(1+2ε)κ (i) so that the branching process dominates. In particular, the two processes
can be coupled so that for every d, |�d(v)| is at most the number Nd of particles in
generation d of X(1+2ε)κ (i). Elementary properties of the branching process imply that
E Nd = O(‖T(1+2ε)κ‖d) = O(((1 + 2ε)λ)d), where λ = ‖Tκ‖ > 1.

Set D = (1 − 10ε) log n/ log λ. Then D < (1 − ε) log n/ log((1 + 2ε)λ) if ε is small
enough, which we shall assume. Thus,

E |�≤D(v)| ≤ E

D∑
d=0

Nd = O(((1 + 2ε)λ)D) = O(n1−ε) = o(n).

Summing over v, the expected number of pairs of vertices within distance D is o(n2), and
the result follows.

We now turn to the reverse bound, showing that most vertices in the giant component
are within distance roughly log n/ log ‖Tκ‖. First we consider two random vertices.

Lemma 14.3. Let κ be a quasi-irreducible regular finitary kernel on a vertex space V
with ‖Tκ‖ > 1, and let v and w be two vertices of GV(n, κ) chosen independently and
uniformly. Then, for any ε > 0,

P
(
d(v, w) < (1 + ε) log n/ log ‖Tκ‖

) → ρ(κ)2

as n → ∞.
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Proof. Note that an upper bound ρ(κ)2 + o(1) follows from Lemma 14.1, so it suffices to
prove a corresponding lower bound. This time we may simply ignore types i with µ({i}) = 0,
working entirely within the subgraph G′

n of Gn = GV(n, κ) induced by vertices of the
remaining types. As there op(n) vertices of types i with µ({i}) = 0, changing ε slightly it
suffices to prove the result for G′

n. Thus we shall assume that µ({i}) > 0 for every i. Also,
restricting to a suitable subset of the types and renormalizing, we may and shall assume
that κ is irreducible.

Fix 0 < η < 1/10. We shall assume that η is small enough that (1 − 2η)λ > 1, where
λ = ‖Tκ‖. In the argument leading to (9.5) in proof of Lemma 9.6, we showed that, given
ω(n) with ω(n) = o(n) and a vertex v of type i, the neighbourhood exploration process
of v in Gn could be coupled with the branching process X(1−2η)κ (i) so that whp the former
dominates until it reaches size ω(n). More precisely, writing Nd,k for the number of particles
of type k in generation d of X(1−2η)κ (i), and �d,k(v) for the set of type-k vertices at graph
distance d from v, whp

|�d,k(v)| ≥ Nd,k , k = 1, . . . , r, for all d s.t. |�≤d(v)| < ω(n). (14.2)

The key point is that this coupling works because we have only “looked at” o(n) vertices at
each step.

Let us call a kernel κ bipartite if

S = L ∪ R, with κ(i, j) = 0 whenever i, j ∈ L or i, j ∈ R, (14.3)

in which case the graph Gn is bipartite. For the moment, let us suppose that κ is not bipartite.
Let Nt(i) be the number of particles of type i in the tth generation of Xκ , and let Nt be the
vector Nt(1), . . . , Nt(r). Also, let ν = (ν1, . . . , νr) be the eigenvector of κ with eigenvalue λ

(unique, up to normalization, as κ is irreducible). From standard branching process results,
for example, [8, Theorems V.6.1 and V.6.2], we have

Nt/λ
t → Xν a.s., (14.4)

where X ≥ 0 is a real-valued random variable, X is continuous except that it has some mass
at 0, and X = 0 if and only if the branching process eventually dies out.

Let D be the integer part of log(n1/2+2η)/ log((1−2η)λ). From (14.4), whp either ND = 0,
or ND,k ≥ n1/2+η for each k. Furthermore, as limd→∞ P(Nd �= 0) = ρ((1 − 2η)κ) and
D → ∞, we have P(ND �= 0) → ρ((1 − 2η)κ). Thus, if n is large enough,

P
(∀k : ND,k ≥ n1/2+η

) ≥ ρ((1 − 2η)κ) − η.

By Theorem 6.4, the right-hand side tends to ρ(κ) as η → 0. Hence, given any fixed γ > 0,
if we choose η small enough we have

P
(∀k : ND,k ≥ n1/2+η

) ≥ ρ(κ) − γ (14.5)

for n large enough. It is easy to check that E(|�≤D(v)|) = o(n2/3) if η is small enough; for
example, we may argue as in the proof of Lemma 14.2. Hence,

|�≤D(v)| ≤ n2/3 whp, (14.6)

and whp the coupling described in (14.2) extends at least to the D-neighbourhood.
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Now let v and w be two fixed vertices of GV(n, κ), of types i and j respectively. We
explore both their neighbourhoods at the same time, stopping either when we reach distance
D in both neighbourhoods, or we find an edge from one to the other, in which case v and
w are within graph distance 2D + 1. We consider two independent branching processes
X(1−2η)κ (i), X′

(1−2η)κ (j), with Nd,k and N ′
d,k vertices of type k in generation d respectively. By

(14.6), whp we encounter o(n) vertices in the explorations so, by the argument leading to
(14.2), whp either the explorations meet, or

|�D,k(v)| ≥ ND,k and |�D,k(w)| ≥ N ′
D,k , k = 1, . . . , r.

Using (14.5) and the independence of the branching processes, it follows that

P
(
d(v, w) ≤ 2D + 1 or ∀k : |�D,k(v)|, |�D,k(w)| ≥ n1/2+η

) ≥ (ρ(κ) − γ )2 − o(1).
(14.7)

Conditional on the second event in (14.7) holding and not the first, we have not exam-
ined any edges from �D(v) to �D(w), so these edges are present independently with their
original unconditioned probabilities. For any i′, j′, the expected number of these edges is
at least |�D,i′(v)||�D,j′(w)|κ(i′, j′)/n. Choosing i′, j′ such that κ(i′, j′) > 0, this expectation
is �((n1/2+η)2/n) = �(n2η). It follows that at least one edge is present with probability
1 − exp(−�(n2η)) = 1 − o(1). If such an edge is present, then d(v, w) ≤ 2D + 1. Thus,
(14.7) implies that

P(d(v, w) ≤ 2D + 1) ≥ (ρ(κ) − γ )2 − o(1) ≥ ρ(κ)2 − 2γ − o(1).

Choosing η small enough, we have 2D + 1 ≤ (1 + ε) log n/ log λ. As γ is arbitrary, we
have

P(d(v, w) ≤ (1 + ε) log n/ log λ) ≥ ρ(κ)2 − o(1),

and the lemma follows.
The argument for the bipartite case is essentially the same, except that if v and w are of

types in the same class of the bipartition, we should look for an edge between �D(v) and
�D−1(w).

Lemmas 14.1 and 14.3 have the following immediate consequence.

Corollary 14.4. Let κ be a quasi-irreducible regular finitary kernel on a vertex space V
with ‖Tκ‖ > 1. For any ε > 0,∣∣{{v, w} : d(v, w) ≤ (1 + ε) log n/ log ‖Tκ‖

}∣∣ = ρ(κ)2n2/2 + op(n
2). (14.8)

Proof. It follows from Lemma 14.1 that the expected number of vertex pairs {v, w} with
d(v, w) < ∞ is ρ(κ)2n2/2 + o(n2).

Fix ε > 0. From Lemma 14.3, the expected number of pairs of vertices at distance less
than d = (1+ε) log n/ log ‖Tκ‖ is ρ(κ)2n2/2+o(n2). Hence, the expected number of pairs
with d ≤ d(v, w) < ∞ is o(n2), so there are op(n2) such pairs. Using (14.1) again, (14.8)
follows.

After this preparation it is easy to deduce Theorem 3.14. As noted earlier, it suffices to
consider vertex spaces, rather than generalized vertex spaces.
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Proof of Theorem 3.14. Let κn be a graphical sequence of kernels on a vertex space V with
limit κ , let Gn = GV(n, κn), and let ε > 0 be fixed. We must prove four statements, which
we recall separately below.

(i) The first part of Theorem 3.14 is exactly Lemma 14.1 (but with quasi-irreducible
replaced by irreducible), which we have already proved.

(ii) We must show that if supx,y,n κn(x, y) < ∞, then only op(n2) vertices of Gn are within
distance (1 − ε) log n/ log ‖Tκ‖. As usual, we approximate with the regular finitary case.
Let κ+

m be a sequence of regular finitary kernels on V with the properties guaranteed by
Lemma 7.2. By Lemma 7.2(iii), ‖Tκ+m ‖ → ‖Tκ‖ > 1, so there is an m such that (1 −
ε/2)/ log ‖Tκ+m ‖ ≥ (1 − ε)/ log ‖Tκ‖. Fixing such an m, we may couple Gn and GV(n, κ+

m )

so that Gn ⊆ GV(n, κ+
m ) for n ≥ m, and the result follows by applying Lemma 14.2 to

GV(n, κ+
m ) with ε/2 in place of ε.

(iii) This time we must show that if κ is irreducible and ‖Tκ‖ < ∞, then ρ(κ)2n2/2 +
op(n2) pairs of vertices of Gn are within distance (1+ ε) log n/ log ‖Tκ‖. By (14.1), it suffices
to prove the lower bound. Again, we approximate with the regular finitary case, this time
working with a graph G′

n = GV(n, κ̂−
m ) ⊆ Gn. The argument is as above, but using the

approximating kernels κ̂−
m given by Lemma 7.3 instead of κ+

m , and applying Corollary 14.4
with ε/2 in place of ε: by Lemma 7.3(i), the quasi-irreducibility condition of Corollary 14.4
is satisfied, while Lemma 7.3(ii) implies ‖Tκ̂−m ‖ ↗ ‖Tκ‖.

(iv) This time we must show essentially that if κ is irreducible and ‖Tκ‖ = ∞ then
almost all pairs of vertices in the giant component are within distance o(log n). First, let
η > 0. By the same proof as for part (iii) above, except that we have ‖Tκ̂−m ‖ → ∞,
we see that ρ(κ)2n2/2 + op(n2) pairs of vertices of Gn are within distance η log n. Since
η is arbitrary, a standard argument shows that we can replace η log n by some function
f (n) = o(log n).

Remark 14.5. Part (ii) of Theorem 3.14 does not hold if we omit the condition that
supx,y,n κn(x, y) < ∞, even if κn = κ for all n, with ‖Tκ‖ < ∞. To see this, let S = [0, 1]
with µ the Lebesgue measure, and let (xn)n≥1 be disjoint deterministic sequences such that
V = (S, µ, (xn)n≥1) is a vertex space. We shall write xn as (x(n)

1 , . . . , x(n)
n ) to emphasize the

dependence of the terms on n; for example, we may take x(n)

i = (i − √
2/2)/n. Taking

κ(x, y) = 2 for all x, y, the graph GV(n, κ) is a supercritical Erdős–Rényi random graph.
Forming κ ′ by modifying κ on a set of measure zero, we can effectively add or delete

o(n) given edges to/from GV(n, κ) while keeping κ ′ graphical on V with κ ′ = κ = 2 a.e.
In particular, given f (n) = o(n), taking κ ′(x(n)

1 , x(n)

i ) = n2, say, for 1 ≤ i ≤ f (n), we may
ensure that in the graph G′

n = GV(n, κ ′), whp the vertex 1 is joined to all of the vertices
2, 3, . . . , f (n). By Theorem 3.1, the giant component still has ρ(2)n + op(n) vertices.

For any ω(n) → ∞ it is easy to check that if we choose f (n) large enough, all but op(n)

vertices in the giant component are within distance ω(n) of one of the vertices 1, 2, . . . , f (n),
and thus, all but op(n2)pairs of vertices in the giant component are within distance 2ω(n)+ 2.
Hence, even if ‖Tκ‖ is bounded, the typical distance between vertices may be smaller than
any given function tending to infinity.

Even if we allow ‖Tκ‖ = ∞, the typical distance cannot be as small as a constant:
one can check that when κ is irreducible, for any C there are whp �(n2) pairs of vertices
in the giant component at distance at least C. In fact, there are �(n) vertices in the giant
component whose C-neighbourhood is a path. This can be proved using a combination of
the arguments leading to Theorems 3.1 and 9.1.
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Remark 14.6. Using the same vertex space as in Remark 14.5, for any f (n) = o(n), we
can define a graphical sequence of kernels κ ′′

n with (irreducible) limit κ = 2 such that whp
GV(n, κ ′′

n ) is obtained from the Erdős-Rényi graph G(n, 2/n) by deleting f (n) + 1 vertices
and replacing them with a path of length f (n) not joined to the rest of the graph. In this graph
there are at least (f (n)/3)2 pairs of vertices at distance at least f (n)/3. Hence the average
distance between vertices (counting only pairs at finite distance) is at least �(f (n)3)/n2,
which may be much larger than O(log n): in fact, it may be larger than any given function
that is o(n). This is the reason for considering the distances between almost all pairs rather
than the average distance in Theorem 3.14(ii).

Remark 14.7. In certain cases, we know better bounds than o(log n) on the typical dis-
tances between vertices. For example, the (1+o(1)) log n/ log log n formula for the diameter
of the m = 2 LCD model proved by Bollobás and Riordan [23] certainly holds as a bound
on the typical distances in the much simpler “mean-field” case described in Subsection 16.2,
where κ(x, y) = 1/

√
xy and xi = i/n.

However, without further restrictions (which could be on κ , or on the distributions of
the xi), we cannot strengthen the o(log n) bound in part (iv) of Theorem 3.14. Indeed,
given a graphical kernel κ on a vertex space V = (S, µ, (xn)n≥1) with ‖Tκ‖ = ∞, and
any function g(n) → ∞, setting κn = κ ∧ g(n) we have E |�d(v)| ≤ g(n)d for a given
vertex v and every d ≥ 0. Indeed, we have G(n, κn) ⊆ G(n, g(n)/n). The argument in the
proof of Lemma 14.2 shows that the typical distance is at least (1+ o(1)) log n/ log g(n).
Hence the o(log n) bound in part (iv) is best possible. A similar example may be constructed
with a fixed kernel κ by modifying the sequences (xn)n≥1 appropriately; take for example
κ(x, y) = 1/

√
xy and xi = max{i/n, 1/g(n)}.

14.2. The Diameter

Let κ be a kernel on a (generalized) vertex space V in which the set of types is finite. In this
subsection we study the diameter of Gn = GV(n, κ), measured in the usual graph theoretical
sense for disconnected graphs:

diam(Gn) := max{d(v, w) : v, w ∈ V(G), d(v, w) < ∞},
where d(v, w) is the graph distance between v and w in Gn.

The following is a partial list of existing work on the diameter of sparse random graphs:
Bollobás and Fernandez de la Vega [18] found the asymptotic diameter of random r-regular
graphs, Łuczak [73] obtained detailed results for G(n, c/n) with c < 1, Chung and Lu [33]
studied G(n, c/n), c > 1, and Fernholz and Ramachandran [51] obtained a precise result
for random graphs with i.i.d. degrees (see below).

When Gn has finite-type, provided κ is not critical we can easily find the diameter of Gn

in the form (c + o(1)) log n. The constant c = c(κ) will be obtained from the branching
process Xκ in a simple way, different in the sub- and super-critical cases; see Theorems
14.8 and 14.11 below. Together, these results, which we shall prove separately, constitute
Theorem 3.16.

The results in this subsection correspond to those of Fernholz and Ramachandran [51]
for a different model, where the distribution of the vertex degrees is fixed, the vertex degrees
are sampled independently from this distribution and, conditional on the degree sum being
even, the graph is then chosen uniformly at random from all graphs with the given degree
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sequence. The special case of our model where κ has rank one is a special case of this
model; see Subsection 16.4. In general, the two models are different. The proofs in [51] are
much more complicated than those we shall present here, because their model does not have
independence built in. Thus, roughly speaking, Fernholz and Ramachandran have to work to
get the branching process approximation that we have here as our starting point. Also, here
we keep things simple by considering only the finite type case; as noted in Subsection 3.5,
even the single type case is non-trivial.

Throughout this subsection, when exploring the neighbourhoods of a vertex v in Gn =
GV(n, κ), we fix in advance an arbitrary order on the vertices of Gn. At each step in the
exploration, among unexplored vertices at minimal distance from v, we choose the first
vertex w in this order, and reveal all edges from w to vertices not yet reached by the
exploration. In this way we reveal the vertex sets of the neighbourhoods �t(v), t = 1, 2, . . .
successively. Furthermore, the graph we reveal is always a tree, rooted at v. We shall denote
this graph by T(v), and call it the reduced component of v. For t ≥ 0 we write Tt(v) for
T(v) ∩ �≤t(v), the reduced t-neighbourhood of v.

Specifying which unexplored vertex to choose next does not affect the coupling argu-
ments leading to (9.5), for example, where any unexplored vertex could be chosen at each
step. The advantage is that the tree T(v) is uniquely specified even if the component con-
taining v has cycles; below we shall sum the probability that the reduced component of a
vertex is a particular tree over all trees. Using the reduced component guarantees that the
corresponding events are disjoint. Note that if v and w lie in the same component, then
d(v, w) is the same as the graph distance in T(v) between the root, v, and w.

We shall first prove the subcritical case of Theorem 3.16, restated below.

Theorem 14.8. Let κ be a kernel on a (generalized) vertex space V = (S, µ, (xn)), with
S = {1, 2, . . . , r} finite and µ({i}) > 0 for each i. If 0 < ‖Tκ‖ < 1, then

diam(Gn)

log n
p→ 1

log ‖Tκ‖−1

as n → ∞, where Gn = GV(n, κ).

Proof. We may assume without loss of generality that κ is irreducible. Also, by condi-
tioning on the sequences (xn), we may assume that V is a vertex space, and that the number
ni of vertices of type i is deterministic (see Subsection 8.1).

Let pd,i be the probability that the branching process Xκ(i) survives for at least d genera-
tions. As the number of particles in the first generation that have descendants in generation
d + 1 has a Poisson distribution, we have

pd+1,i = 1 − exp

(
−

∑
j

κ(i, j)µ({ j})pd,j

)
.

Recalling that pd,i ↘ ρ(κ , i) = 0 as d → ∞, and using 1 − exp(−x) = x + O(x2), it
follows easily that, for each i,

pd,i = (‖Tκ‖ + o(1))d as d → ∞. (14.9)

Let ω = ω(n) = A log n, where A is a constant, chosen large enough that the estimates
below hold. As Xκ is subcritical, ρ≥k(κ) decays exponentially with k; see (12.2). Thus
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ρ≥ω(κ) = o(n−2), say. Let d = (1 ± ε) log n/ log ‖Tκ‖−1, where ε is a small positive
constant; we shall consider both choices of sign below.

Let T be a rooted tree where each vertex has a type from S = {1, 2, . . . , r}. We shall say
that a tree T is relevant if it has height at least d and contains at most ω vertices. Let π(T)

be the probability that Xκ is isomorphic to T , in the natural sense.
The sum of π(T) over relevant T is the probability that Xκ survives at least d generations

and contains at most ω particles in total, which is (‖Tκ‖ + o(1))d + o(n−2) = n−1∓ε+o(1).
Let p(T) be the probability that the reduced component of a random vertex v of Gn is

isomorphic to T in the natural sense. From the step-by-step exploration, one can check that

p(T) = (1 + o(1))|T |π(T) = no(1)π(T)

for any relevant T : the proof is similar to that of Lemma 11.4, but one shows that at each step
the conditional probability of finding the right number a of new neighbours of a particular
type in the graph is within a factor (1 + o(1))a+1 of the corresponding Poisson probability,
as long as both a and the number of previously uncovered vertices are o(n). Let σ be the
sum of p(T) over relevant T . Then it follows that σ = n−1∓ε+o(1). In particular, nσ = o(1)

if we take the plus sign in d = (1±ε) log n/ log ‖Tκ‖−1, and nσ → ∞ if we take the minus
sign.

Using (12.2) again, the expected number of vertices in Gn with more than ω(n) vertices
in their (reduced or unreduced) component is o(1) (in fact, o(n−100)), so whp there no
such vertices. Taking the plus sign in d, the expected number of vertices in Gn whose
reduced component is a relevant tree is nσ = o(1). Together, these bounds show that
whp every vertex v is such that all w with d(v, w) < ∞ have d(v, w) < d. Thus, whp
diam(Gn) < d = (1 + ε) log n/ log ‖Tκ‖−1. As ε > 0 was arbitrary, this proves the upper
bound in Theorem 14.8.

For the lower bound we take the minus sign in d, so nσ = nε+o(1) → ∞, and use the
second moment method. The key point is that if T , T ′ are relevant trees, and p(T , T ′) is the
probability that independently chosen random vertices v, w have vertex-disjoint reduced
neighbourhoods isomorphic to T , T ′ respectively, then

p(T , T ′) = (1 + O(ω/n))ωp(T)p(T ′) ∼ p(T)p(T ′). (14.10)

This again follows from the step-by-step exploration, as finding one tree uses up at most
ω vertices. (Note that we do not have p(T) ∼ π(T), because all we know about ni is that
ni ∼ nµ({i}).)

Let Xv be the indicator function of the event that the reduced neighbourhood of v is a
relevant tree, and let N = ∑n

v=1 Xv , so E(N) = nσ . Expanding E(N2) = ∑
v

∑
w E(XvXw),

the contribution from pairs v, w in the same component is at most
∑

v E(Xvω) = nσω: if
the component containing v is relevant, then by definition it contains at most ω vertices w.
Using (14.10) above, it follows that

E(N2) = (1 + o(1))n2σ 2 + O(nσω).

Now E(N) = nσ = nε+o(1), which is much larger than ω, so E(N2) ∼ E(N)2, and whp
N > 0. So whp there is a vertex v whose neighbourhood is a relevant tree, and thus includes
a vertex w at distance at least d = (1 − ε) log n/ log ‖Tκ‖−1, completing the proof of
Theorem 14.8.
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Remark 14.9. Recall that p(T) was defined as the probability that the reduced neighbour-
hoods of a random vertex v are isomorphic to T , allowing the possibility that there are some
edges within each �d(v). The reason was that, in proving the upper bound on the diameter,
we must rule out components of large diameter that contain cycles, as well as components
that are trees. If we redefine p(T) to exclude edges within each �d(v), then p(T) changes
by a factor (1+O(|T |/n))|T |. As we only ever consider T with |T | = O(log n), this factor is
1+ o(1), and all our estimates go through. In particular, whp Gn contains a tree component
of diameter at least (1 − ε) log n/ log ‖Tκ‖−1.

Remark 14.10. One might expect Theorem 14.8 to generalize immediately from S finite
to (at least) the case κ bounded. However, diam(G) does not always decrease when an edge
is added to G, as the new edge might join two components. Thus one cannot just sandwich
GV(n, κ) between finite-type graphs and apply Theorem 14.8. In the unbounded case, the
construction described in Remark 14.6 shows that for any ω(n) = o(n) one can construct
a graph GV(n, κ) with κ supercritical, such that diam(GV(n, κ)) ≥ ω(n) whp. Modifying
the construction by starting with a subcritical Erdős-Rényi graph gives an example with κ

subcritical.

We now turn to the supercritical case of Theorem 3.16, restated as Theorem 14.11
below. Recall that, given a supercritical kernel κ on a ground space (S, µ), there is a
“dual” kernel κ̂ on a ground space (S, µ̂), defined as follows: as a function on S × S,
κ̂ = (1 − ρ(κ))κ , while dµ̂(x) = (1 − ρ(k; x))/(1 − ρ(κ)) dµ(x). In particular, in the
finite-type case, µ̂({i}) = (1 − ρ(k; i))/(1 − ρ(κ))µ({i}). Note that we have chosen to
renormalize the dual kernel defined in Definition 3.15 so that µ̂ is a probability measure. As
discussed after Definition 3.15, this makes essentially no difference; however, it allows us
to speak of the branching process Xκ̂ started with a particle whose type is chosen according
to µ̂. (In the remark after Definition 3.15 we wrote κ̂ ′ and µ̂′ for the renormalized dual
kernel and associated measure; here we write κ̂ and µ̂ for notational convenience.) When
we write ‖Tκ̂‖, we mean the norm of Tκ̂ defined with respect to (S, µ̂).

Theorem 14.11. Let κ be an irreducible kernel on a (generalized) vertex space V =
(S, µ, (xn)), with S = {1, 2, . . . , r} finite and µ({i}) > 0 for each i. If ‖Tκ‖ > 1, then

diam(Gn)

log n
p→ 2

log ‖Tκ̂‖−1
+ 1

log ‖Tκ‖ ,

where Gn = GV(n, κ).

The relevance of the dual kernel is that it describes components other than the giant
component. In particular, it follows from Theorem 12.1 and Theorem 14.8 that the diameter
of the largest “small” component of Gn will be (1 + o(1)) log n/ log ‖Tκ̂‖−1. As we shall
see, the same quantity will give the height of the tallest tree attached to the two-core. The
diameter will be given by two such trees attached to vertices of the two-core at typical
distance, (1 + o(1)) log n/ log ‖Tκ‖.

The idea of the proof is as follows: instead of considering the event that the neigh-
bourhoods of a vertex v form a tree of height at least d, we consider the event that the
neighbourhoods are thin for d generations, meaning that each generation has size at most
ω, with ω = A log n as before. For the upper bound, we will show that whp no vertex has
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neighbourhoods that are thin for more than d = (1 + ε) log n/ log α−1 generations, where
α = ‖Tκ̂‖. For the lower bound, we will find two trees of height roughly d attached to
typical vertices of the two-core.

The reason for considering thin neighbourhoods is that, once �t(v) is larger than A log n
for some t, the neighbourhoods �s(v), s ≥ t, grow reasonably rapidly.

From now on, we assume that κ is an irreducible kernel on a finite ground space (S, µ),
with µ({i}) > 0 for each i, and that the number ni of vertices of each type i is deterministic,
with ni/n → µ({i}). As before, it suffices to prove Theorem 14.11 under these assumptions.
Let

t(v) := min{r : |�r(v)| ≥ ω}
denote the index of the first thick neighbourhood of a vertex v, when there is one.

Lemma 14.12. For any ε > 0, whp the graph Gn does not contain two vertices v, w with
the properties that t(v), t(w) are defined, t(v), t(w) ≤ n1/2, and d(v, w) ≥ t(v) + t(w) +
(1 + ε) log n/ log ‖Tκ‖.

Proof. We show that the expected number of pairs is o(1), by showing that the probability
that a random pair v, w has the properties is o(n−2). Explore the neighbourhoods of v

and w simultaneously, stopping at the first thick neighbourhood of each, if there is one.
Suppose, as we may, that t(v) and t(w) are defined and at most n1/2. Then with very high
probability we have seen o(n) vertices (the neighbourhoods can’t have grown too much in
the last step). If the neighbourhoods have already joined, we are happy. Otherwise, continue
exploring. Simple Chernoff bounds show that for any η > 0, if A is chosen large enough,
with probability 1 − o(n−100) the number of vertices of each type found at each subsequent
step is within a factor 1 ± η of its expectation. It follows that the neighbourhoods grow by
a factor of (1 ± 2η)‖Tκ‖ at each step, after a few steps to allow the distribution of types
to converge to the relevant eigenvector of κ . Once both neighbourhoods reach size n1/2+η,
they join at the next step with very high probability.

For the rest of this section, let α = ‖Tκ̂‖ denote the norm of the dual kernel κ̂ . As S is
finite, α < 1 by Theorem 12.3. Recall, from the discussion before Lemma 6.6, that Xκ̂ has
the same distribution as Xκ conditioned on extinction. Let td,n be the probability that Xκ

stays alive but thin for d generations:

td,n := P(1 ≤ |Xt| ≤ ω : 1 ≤ t ≤ d),

where Xt is generation t of Xκ . Note that td,n depends on n, via the definition of ω.

Lemma 14.13. For any η > 0, if n is large enough, then

(α − η)d ≤ td,n ≤ (α + η)d (14.11)

holds for all d in the range 1
2 log n/ log α−1 ≤ d ≤ 2 log n/ log α−1.

Proof. We start with the lower bound.
Let p′

r,i be the probability that the branching process Xκ̂ (i), started with a particle of type
i, survives for at least r generations. By (14.9), we have p′

r,i = (α + o(1))r as r → ∞.
Let p′′

r,j,i be the probability that generation r of Xκ̂ (j) consists of a single particle of type
i. As the branching process is subcritical, one can check that p′′

r,i,i = �(p′
r,i) for r even.
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(The restriction r even is only needed if the kernel κ̂ is bipartite, in the sense of (14.3).) We
shall need only the much weaker statement that p′′

r,i,i = (α + o(1))r as r → ∞ with r even;
this can be proved along the same lines as (14.9): let N1 be the number of particles x in the
first generation of Xκ̂ (j) with the property that the descendants of x in generation d + 1
consist of a single particle of type i. Let N2 be the number of particles x in the first generation
of Xκ̂ (j) with more than one descendant in generation d + 1 of type i, or any descendants
of types other than i. Note that N1 and N2 have independent Poisson distributions, with

E(N1) =
∑

k

κ̂(j, k)µ̂({k})p′′
d,k,i,

and
E(N2) =

∑
k

κ̂(j, k)µ̂({k})(p′
d,k − p′′

d,k,i).

Since p′′
d,k,i ≤ p′

d,k ≤ ρ≥d(κ̂; k) → 0, we have E(N1), E(N2) → 0. By definition,

p′′
d+1,j,i = P(N1 = 1, N2 = 0) = E(N1) exp(−E(N1) − E(N2)) ∼ E(N1).

In other words,
p′′

d+1,j,i = (1 + o(1))
∑

k

κ̂(j, k)µ̂({k})p′′
d,k,i.

Recalling that α is the norm of Tκ̂ defined with respect to µ̂, it follows that p′′
r,i,i = (α+o(1))r

as r → ∞ with r even.
The probability that Xκ̂ has any thick generation at all is at most the expected total

size of Xκ̂ divided by ω, which is O(1/ω) = O(1/ log n). Taking r → ∞ slowly enough,
for example r = 2 log log log n", this probability is much smaller than p′′

r,i,i. Hence, with
probability p′′′

r,i = (α + o(1))r the branching process Xκ̂ (i) remains thin for r generations,
and the rth generation is a single particle of type i. Restarting, we see that for any d we
have td,n ≥ µ({i})(p′′′

r,i)
 d/r", and the lower bound in (14.11) follows.

Let c > 0 be a (small) constant. Simple Chernoff bounds show that, given that a certain
generation t of Xκ has size at least c log n (and given the numbers of particles of each type),
generation t + c1 has size at least ω with probability at least 1−n−c2 , for some constants c1,
c2 depending on c and κ . Hence, if L = L(κ , c) is chosen large enough, the probability that
Xκ stays thin for d generations and has size at least c log n for the last L of these is at most
n−100: given that generation d − L has size at least c log n, the probability that generation
d − L + c1 is still thin is at most n−c2 . If this generation is thin but also has size larger than
c log n, generation d − L + 2c1 is unlikely to be thin, and so on.

Hence, td,n is within n−100 of the probability that Xκ stays thin for d generations and one
of the last L of the first d generations has size at most c log n. Let qr = qr,c be the probability
of the event that Xκ survives for at least r generations, that the first r generations are thin,
and that generation r has size at most c log n. We have shown that

td,n ≤
∑

d−L≤r≤d

qr + n−100. (14.12)

As a generation of size c log n has probability n−O(c) of dying out immediately, the probability
that Xκ survives for exactly r generations is at least qrn−O(c). Hence, p′

r,i, the probability
that Xκ̂ , which is just Xκ conditioned on dying out, survives for r generations is also at
least qrn−O(c). Using p′

r,i = (α + o(1))r , it follows that qr ≤ nO(c)(α + o(1))r . In particular,
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choosing c small enough (depending on κ and η), for r ≥ 1
3 log n/ log α−1, say, we have

qr ≤ (α + η/2)r . Using (14.12), it follows that

td,n ≤ L(α + η/2)d−L + n−100 ≤ (α + η)d

for n large enough and d in the range considered in (14.11), completing the proof of
Lemma 14.13.

Let T be a rooted tree in which each vertex has a type from S. Let h(T) be the height of
T , i.e., the maximal distance of a vertex form the root. We shall say that Xκ is consistent with
T if the first h(T) generations of Xκ are isomorphic to T , and write π ′(T) for the probability
of this event. Analogously, we say that the reduced neighbourhoods of a vertex v of Gn

are consistent with T if Th(T)(v), the tree formed by the first h(T) such neighbourhoods, is
isomorphic to T . We write p′(T) for the probability that the reduced neighbourhoods of a
random vertex of Gn are consistent with T . The definitions are almost the same as those
of π(T), p(T), except that we do not care what happens after the first h(T) generations.
(We could have used these definitions in the subcritical case – there it was not essential that
we explored the whole component.)

We are now ready to prove Theorem 14.11.

Proof of Theorem 14.11. As before, we may assume that V is a vertex space, and that the
number ni of vertices of type i is deterministic.

Let ε > 0 be fixed, and let d = (1 ± ε) log n/ log α−1, where α = ‖Tκ̂‖, as above. As
before, let ω = A log n, where A is a constant chosen large enough for our bounds to hold.
Having chosen A, let A′ be another constant chosen large enough that the bounds below
hold.

Let t+h,n be the probability that the branching process Xκ is alive and thin for h generations
(as in the definition of td,n), but that these first h generations contain more than A′ log n
particles. The proof of Lemma 14.13 shows that if A′ is chosen large enough, then t+h,n ≤ n−99

for any h. Indeed, the argument leading to (14.12) gives a corresponding bound on t+h,n with
qr replaced by the probability q+

r of an appropriate event, defined as qr , but with the extra
condition that there are at least A′ log n/2 particles in the first r generations. (We take A′

large enough that Lω ≤ A′ log n/2.) Then, as before, q+
r can be bounded by nO(1) times

the probability that Xκ̂ survives for exactly r generations and contains at least A′ log n/2
particles. Using only the exponential decay of ρ≥k(κ̂), this is at most n−100 if A′ is large
enough, for any r.

Let us say that a tree T is relevant if T has height d, is thin, and contains at most A′ log n
vertices. As T has O(log n) vertices, we have p′(T) = no(1)π ′(T), as before. The sum of
π ′(T) over all relevant T is exactly

td,n − t+d,n = (α + o(1))d − O(n−99) = n−1∓ε+o(1),

by Lemma 14.13 and our bound on t+d,n above. As before, the sign above is the opposite of
the sign we choose in d = (1 ± ε) log n/ log α−1. It follows that the sum σ of p′(T) over
relevant trees is n−1∓ε+o(1).

To prove the upper bound in Theorem 14.11, let d = (1 + ε) log n/ log α−1. Then we
have nσ = o(1), so whp no vertex of Gn has neighbourhoods consistent with a relevant
tree. It is easy to check that whp no vertex has neighbourhoods consistent with a thin
tree T ′ of height d that is not relevant (because it contains more than A′ log n vertices):
any such T ′ contains a subtree T ′′ given by the first h generations of T ′ for some h, such
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that T ′′ is thin and has between A′ log n and A′ log n + ω = O(log n) vertices. But then
p′(T ′′) = no(1)π ′(T ′′), and

∑
T ′′ π ′(T ′′) is at most

∑
h≤n t+h,n ≤ n−98. It follows that whp no

vertex of v has neighbourhoods consistent with any thin tree of height d. Thus, for every v,
either �d(v) is empty, or t(v) ≤ d. Applying Lemma 14.12, the upper bound on diam(Gn)

claimed in Theorem 14.11 follows.
For the lower bound, we aim to find many tall thin trees attached to the two-core. As

in Remark 14.9, for this part of the proof we modify our notion of the consistency of the
neighbourhoods of a vertex v of Gn with a tree T of height d, by disallowing edges within
each �t(v), t ≤ d. We redefine p′(T) correspondingly; as in Remark 14.9, this changes p′(T)

by a factor 1 + o(1) for trees of the size we consider, so our estimate p′(T) = no(1)π ′(T)

goes through.
A good tree T will be a relevant tree with height d = (1 − ε) log n/ log α−1 in which

generation d consists of a single vertex a. Changing ε slightly, we shall assume that d is a
multiple of the quantity r considered in the proof of Lemma 14.13. Then, this proof shows
that with probability at least (α + o(1))d = n−1+ε+o(1) the first d generations of Xκ are
thin and generation d consists of a single particle. With our bound on t+d,n, it follows that∑

T π ′(T) = n−1+ε+o(1), where the sum is over good trees. As p′(T) = no(1)π ′(T) for each
good T , we have

∑
T p′(T) = n−1+ε+o(1). As in the subcritical case, the second moment

method gives us many good trees in the graph, but this is not enough – they might not be
attached to the two-core.

For v ∈ V(G) and T a good tree, let E2(v, T) be the event that the following all hold, where
d1 = C log log n, and C, C1 are constants to be chosen below: the first d neighbourhoods
of v form the tree T , the single a ∈ �d(v) has two neighbours b1, b2 in �d+1(v) each of
which has at least ω “descendants” in �d+d1(v), and |�≤d+d1(v)| ≤ (log n)C1 . We claim
that if the constants C and C1 are chosen large enough, and v is a random vertex of Gn,
then P(E2(v, T)) = �(p′(T)). To see this, note that p′(T) is exactly the probability that
the first condition is satisfied. Conditional on this happening, bounding the neighbourhood
exploration below by a supercritical branching process shows that the existence of b1, b2

with the required properties has probability bounded away from zero. Finally, given that
|�d(v)| = 1, the expected size of the next d1 generations is at most (2 sup κ)d1 = (log n)O(1),
so the claim follows.

Let E2(v) be the event that E2(v, T) holds for some good T . As
∑

T p′(T) = n−1+ε+o(1),
we have

P(E2(v)) =
∑

T

P(E2(v, T)) = n−1+ε+o(1), (14.13)

where the sum is over good T .
We would like to show that whp there are two (in fact, many) vertices v, w for which

E2(v), E2(w) hold. We could use the second moment method, but as we shall need the
relevant neighbourhoods of v and w to be disjoint, it turns out to be easier to test vertices
one by one.

Whether E2(v, T) holds can be determined by exploring the neighbourhoods of v, stop-
ping when at most M = (log n)C1 vertices have been uncovered. Let us construct a sequence
of t tests, t = n/M3, as follows. Each test starts from a vertex vi, where the vi are cho-
sen independently and uniformly at random from V(Gn). In the ith test, we explore the
neighbourhoods of vi, uncovering at most M vertices, and attempting to verify that E2(vi)

holds. We abort the attempt if we reach a vertex uncovered in a previous attempt. As at
most tM = n/M2 vertices have previously been uncovered, for each vertex we reach, the
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probability that it was previously uncovered is at most O(M−2). As the ith test involves
examining at most M vertices, conditional on everything so far, the ith test succeeds with
probability

(1 − O(M−2))M
P(E2(v)) ∼ P(E2(v)) = n−1+ε+o(1).

The number of tests that succeed dominates a binomial random variable with mean
tn−1+ε+o(1) = nε+o(1) → ∞, so whp at least two tests succeed. Hence, whp there are
vertices v, w in Gn for which E2(v), E2(w) hold, with the relevant neighbourhoods disjoint.

Now whp Gn has the property that whenever E2(v) holds, the corresponding a ∈ �d(v)

is in the two-core of Gn. The argument is as for Lemma 14.12: we may continue expanding
the large neighbourhoods of b1, b2 until they meet. Hence, whp Gn contains two vertices
v1, v2 belonging to separate trees T1, T2 of height d, each attached to the two-core by the
single vertex at distance d from the root. We shall need only this last fact, basic properties
of the model, and Theorem 3.14.

Recall that Gn is a graph on labelled vertices {1, 2, . . . , n}, each of which has a type in
S. Given Gn and the vertex types, let us separate Gn into the two-core G2, a list of trees Ti

each attached to the two-core at some attachment vertex ai, and the rest of Gn. So far, we
remember the label of each vertex. Now, however, let us forget the labels of the attachment
vertices ai of Ti, while remembering their types. To reconstruct Gn, we should identify
each attachment vertex with a vertex of G2 of the same type. Moreover, we may pick these
vertices independently and uniformly at random from the allowed vertices of G2; this is
because all possible (labelled) graphs formed in this way have the same number of vertices
of each type, and the same number of edges between vertices of each pair of types, and
hence the same probability in our model.

We have shown above that whp our list Ti contains two trees, say T1 and T2, each of which
has a vertex vi at distance d from the corresponding attachment vertex ai. By (11.8), whp G2

contains �(n) vertices. Hence, by Theorem 3.14(ii), whp almost all pairs of vertices of G2

are at distance at least d ′ = (1− ε) log n/ log ‖Tκ‖. Hence, whp the vertices of G2 at which
we reattach the ai are at distance at least d ′. Thus, whp, diam(Gn) ≥ d(v1, v2) ≥ 2d + d ′,
completing the proof of Theorem 14.11.

15. THE PHASE TRANSITION

Our main aim in this section is to prove Theorem 3.17, which claims that if a kernel κ on a
ground space (S, µ) is irreducible and satisfies (3.11), i.e.,

sup
x

∫
S

κ(x, y)2 dµ(y) < ∞, (15.1)

then the function c �→ ρ(c) := ρ(cκ) is analytic except at c = c0 := ‖Tκ‖−1, that Tκ has
an eigenfunction ψ of eigenvalue ‖Tκ‖, and that every such eigenfunction is bounded and
satisfies (3.12).

Proof of Theorem 3.17. Note that our assumption (15.1) on κ implies that Tκ is a Hilbert–
Schmidt operator, and thus compact in L2; see Lemma 5.15. It further implies, by the
Cauchy–Schwarz inequality, that Tκ is bounded L2 → L∞, and that (5.1) holds for all x.

(i) It is trivial that the function c �→ ρ(c) = ρ(cκ) is analytic for c < c0, so we
shall assume that c > c0. We shall show that we can extend this function to a suitable
neighbourhood of c in the complex plane, and that this extension is (complex) analytic; this
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implies that ρ is a real analytic function at c. Actually, we will show that there is an analytic
map z �→ ρ+

z into L2(µ), defined in a neighbourhood of c, such that ρ+
z = ρzκ when z is real.

Here, as before, ρzκ is the function defined by ρzκ(x) = ρ(zκ; x), the survival probability
of the branching process Xzκ(x), which starts with a particle of type x. We may then take
ρ+(z) := ∫

ρ+
z (x) dµ(x) as the extension of ρ.

To show that the claimed extension exists, we will use the implicit function theorem
for complex analytic functions in the Banach space L2. Of course, in this proof we use the
complex version of L2. Recall that a function f mapping an open subset U of a complex
Banach space E into another Banach space F is analytic if and only if it is differentiable
(in the Fréchet sense) at every point in U; the derivative f ′(x) at a point x ∈ U then is a
continuous linear operator E → F, see, e.g., Hervé [53, Section 3.1]. For background on
differentiable functions in (real or complex) Banach spaces, see Cartan [32]; in particular,
as a special case of [32, Theorème 4.7.1] (which holds in both the real and complex cases),
we have the following.

Lemma 15.1 (The implicit function theorem). Let B be a complex Banach space and let
f0 ∈ B, z0 ∈ C. Let � : C × B → B be an analytic function, and denote by D2�(z, f )
the partial derivative of � with respect to the second variable, i.e., let D2�(z, f ) be the
derivative of f �→ �(z, f ). Suppose that �(z0, f0) = 0 and that D2�(z0, f0) is invertible.
Then there exists a neighbourhood U of z0 and an analytic function z �→ f (z) defined in U
such that f (z0) = f0 and �(z, f (z)) = 0, z ∈ U.

For convenience, note that by replacing κ by cκ , we may assume that c = 1 (and
thus c0 < 1). We then apply Lemma 15.1 with B = L2(µ), z0 = c = 1, f0 = ρκ and
�(z, f ) = �κ(zf ) − f , where �κ(f ) = 1 − e−Tκ f as above. Since Tκ is a bounded linear
map L2 → L∞, and g �→ eg is analytic L∞ → L∞, � is analytic L2 → L∞ ⊆ L2 and thus
� is analytic. It is also easily seen that D2�(z, f ) = z�′

κ(zf ) − I . It remains to show that
the partial derivative at (1, ρκ) is invertible; we state this as another lemma.

Lemma 15.2. Assume that κ is irreducible, (15.1) holds and c0 = ‖Tκ‖−1 < 1. Let µ̃

be the measure dµ̃ = eTκ ρκ dµ on S. Then ‖�′
κ(ρκ)‖L2(µ̃) < 1, and hence D2�(1, ρκ) =

�′
κ(ρκ) − I is invertible in L2(µ̃) and in L2(µ).

Proof. Since Tκ maps L2 into L∞, we have Tκρκ ∈ L∞. Hence L2(µ̃) = L2(µ) with
equivalent norms.

We have

�′
κ(f )(g) = e−Tκ f Tκg. (15.2)

Hence, for any g, h ∈ L2(µ̃) = L2(µ), writing h̄ for the complex conjugate of h, we see that

〈�′
κ(ρκ)(g), h〉L2(µ̃) =

∫
S

e−Tκ ρκ (Tκg)h̄eTκ ρκ dµ =
∫

S
(Tκg)h̄ dµ

is a hermitian form in g and h, because Tκ is a symmetric operator in L2(µ). Hence �′
κ(ρκ)

is a symmetric operator in L2(µ̃). Furthermore, as remarked above, Tκ is compact in L2(µ)

and thus also in L2(µ̃).
If we had ‖�′

κ(ρκ)‖L2(µ̃) ≥ 1, there would thus be an eigenfunction g with an eigenvalue
λ with |λ| ≥ 1. Let h := |g| ≥ 0, so

∫
h > 0. Since �′

κ(ρκ) has a non-negative kernel by
(15.2), we obtain

h ≤ |λg| = |�′
κ(ρκ)g| ≤ �′

κ(ρκ)h = e−Tκ ρκ Tκh. (15.3)
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Moreover, ρκ > 0 a.e. and thus, by part (iii) of Lemma 5.6, Tκρκ > 0 a.e. and

Tκρκ < eTκ ρκ − 1 = eTκ ρκ �κρκ = eTκ ρκ ρκ a.e. (15.4)

Multiplying (15.3) and (15.4) and integrating, recalling that
∫

h > 0, we obtain∫
hTκρκ dµ <

∫
ρκTκh dµ,

which contradicts the symmetry of Tκ .
This contradiction shows that ‖�′

κ(ρκ)‖L2(µ̃) < 1. Hence I − �′
κ(ρκ) is invertible in

L2(µ̃) = L2(µ), completing the proof of Lemma 15.2.

Continuing the proof of Theorem 3.17, we can now apply the implicit function theorem
(Lemma 15.1) to conclude the existence of an analytic function z �→ ρ+

z ∈ L2(µ) with
�κ(zρ+

z ) = ρ+
z , defined in a complex neighbourhood U of 1. We may further (by continuity)

assume that U is so small that ‖ρ+
z ‖2 > 0. For real z ∈ U, we thus have �zκ(ρ

+
z ) =

�κ(zρ+
z ) = ρ+

z (in L2, i.e., a.e.), so ρ+
z = ρzκ a.e. by Theorem 6.1 and Remark 5.5, which

completes the proof of (i).
(ii) This time we scale so that ‖Tκ‖ = 1, and thus c0 = 1, and write ρ1+ε for ρ(1+ε)κ ; we

assume below that 0 ≤ ε < 1. Thus, by Theorem 6.1,

1 − e−(1+ε)Tκ ρ1+ε = �(1+ε)κ (ρ1+ε) = ρ1+ε,

i.e.,
(1 + ε)Tκρ1+ε = − ln(1 − ρ1+ε) = ρ1+ε + R(ρ1+ε) (15.5)

where

R(f ) := f 2

2
+ f 3

3
+ · · · (15.6)

By Theorem 6.1, ρ1+ε > 0 a.e. when ε > 0, but ρ1 = 0. By Lemma 5.15, there exists
an eigenfunction ψ ∈ L2 with ψ = Tκψ , which now implies ψ ∈ L∞. Furthermore, ψ

is determined up to a constant factor, so the coefficient
∫

ψ
∫

ψ2/
∫

ψ3 does not depend
on the choice of ψ . We will for convenience assume that ψ is chosen with ψ ≥ 0 and∫

ψ2 dµ = ‖ψ‖2
2 = 1.

The operator Tκ maps the subspace ψ⊥ ⊂ L2(µ) into itself; let T ′
κ denote the restriction of

Tκ to this subspace. Then 1 is not an eigenvalue of T ′
κ , and thus (since Tκ is compact), 1 does

not belong to the spectrum of T ′
κ , i.e., I −T ′

κ is invertible. By continuity, I −(1+ε)T ′
κ is also

invertible for small ε, and there exists δ > 0 and C < ∞ such that ‖(I −(1+ ε)T ′
κ)

−1‖ψ⊥ ≤
C for 0 ≤ ε < δ, i.e.,

‖f ‖2 ≤ C‖(I − (1 + ε)Tκ)f ‖2, 0 ≤ ε < δ, f ∈ ψ⊥. (15.7)

Theorem 6.4 implies that ρ1+ε ↘ ρ1 a.e. as ε ↘ 0, and thus, by dominated convergence,

‖ρ1+ε‖2 → 0. (15.8)

We also have, by (15.5), ρ1+ε ≤ (1 + ε)Tκρ1+ε and thus, as Tκ is bounded from L2 to L∞,

‖ρ1+ε‖∞ ≤ (1 + ε)‖Tκρ1+ε‖∞ ≤ C1‖ρ1+ε‖2. (15.9)

In particular, by (15.8), ‖ρ1+ε‖∞ → 0 as ε → 0.
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Assume that ε > 0 is small enough to ensure that ‖ρ1+ε‖∞ < 1/2. Then, by (15.6),
R(ρ1+ε) ≤ ρ2

1+ε, and thus, using (15.9),

‖R(ρ1+ε)‖2 ≤ ‖ρ2
1+ε‖∞ = ‖ρ1+ε‖2

∞ ≤ C2‖ρ1+ε‖2
2. (15.10)

Let Q be the orthogonal projection onto ψ⊥ and let ρ∗
1+ε := Qρ1+ε. We thus have the

orthogonal decomposition

ρ1+ε = aεψ + ρ∗
1+ε, (15.11)

where

aε = 〈ρ1+ε, ψ〉 =
∫

S
ρ1+εψ dµ. (15.12)

Hence 0 ≤ aε ≤ ‖ρ1+ε‖2.
Applying the projection Q to (15.5) we find, since QTκ = TκQ,

(1 + ε)Tκρ
∗
1+ε = ρ∗

1+ε + Q(R(ρ1+ε))

and thus by (15.7) and (15.10), for ε < δ,

‖ρ∗
1+ε‖2 ≤ C‖(I − (1 + ε)Tκ)ρ

∗
1+ε‖2 = C‖Q(R(ρ1+ε))‖2 ≤ C3‖ρ1+ε‖2

2. (15.13)

Consequently, by (15.11) and (15.8), as ε → 0,

aε = ‖aεψ‖2 = ‖ρ1+ε − ρ∗
1+ε‖2

= ‖ρ1+ε‖2 + O(‖ρ∗
1+ε‖2) = ‖ρ1+ε‖2 + O(‖ρ1+ε‖2

2) ∼ ‖ρ1+ε‖2.
(15.14)

Furthermore, recalling (15.12) (twice), ψ = Tκψ , and (15.5),

(1 + ε)aε = (1 + ε)〈Tκψ , ρ1+ε〉 = 〈ψ , (1 + ε)Tκρ1+ε〉
= 〈ψ , ρ1+ε〉 + 〈ψ , R(ρ1+ε)〉 = aε + 〈ψ , R(ρ1+ε)〉.

Therefore, appealing to (15.6), (15.11), (15.9), (15.13) and (15.14), we find that

εaε = 〈ψ , R(ρ1+ε)〉 =
〈
ψ , 1

2ρ
2
1+ε

〉 + O
(‖ρ3

1+ε‖∞
)

= 〈
ψ , 1

2 a2
εψ

2
〉 + 〈ψ , aεψρ∗

1+ε〉 +
〈
ψ , 1

2 (ρ
∗
1+ε)

2
〉 + O

(‖ρ1+ε‖3
∞

)
= 1

2
a2

ε

∫
ψ3 dµ + O(aε‖ρ∗

1+ε‖2) + O
(‖ρ∗

1+ε‖2
2

) + O
(‖ρ1+ε‖3

∞
)

= 1

2
a2

ε

∫
ψ3 dµ + O

(
aε‖ρ1+ε‖2

2

) + O
(‖ρ1+ε‖4

2

) + O
(‖ρ1+ε‖3

∞
)

= 1

2
a2

ε

∫
ψ3 dµ + O

(
a3

ε

)
.

If ε > 0 is small enough then, by (15.14), we have aε > 0, and so we can conclude that

ε = 1

2
aε

∫
ψ3 dµ + O

(
a2

ε

)
. (15.15)
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Finally, let ε ↘ 0. Then (15.14) and (15.8) imply that aε → 0, and so from (15.15) we
see that ε ∼ 1

2 aε

∫
ψ3 dµ = �(aε), and, more precisely,

aε = 2∫
ψ3 dµ

ε + O(ε2). (15.16)

Consequently, using (15.11), (15.13), (15.14) and (15.16),

ρ(1 + ε) =
∫

S
ρ1+ε dµ = aε

∫
S

ψ dµ +
∫

S
ρ∗

1+ε dµ

= aε

∫
S

ψ dµ + O(‖ρ∗
1+ε‖2) = 2

∫
ψ dµ∫
ψ3 dµ

ε + O(ε2),

proving (3.12), and so completing the proof of Theorem 3.17.

As noted in Subsection 3.6, Theorem 3.17 has a simple consequence, Corollary 3.18,
showing that the rate c0ρ

′
+(c0) of emergence of the giant component at the phase transition is

maximal in the Erdős–Rényi case, and, more generally, when (4.2) holds; see Example 4.6.

Proof of Corollary 3.18. Our aim is to show that if κ is an irreducible kernel on a ground
space (S, µ) for which (15.1) holds, and c0 := ‖Tκ‖−1 > 0, then c0ρ

′
+(c0) ≤ 2.

By Theorem 3.17, c0ρ
′
+(c0) = 2

∫
S ψ

∫
S ψ2/

∫
S ψ3. By Lemma 5.15, we may assume

that ψ ≥ 0. Then, by Hölder’s inequality,
∫

S ψ ≤ (
∫

S ψ3)1/3 and
∫

S ψ2 ≤ (
∫

S ψ3)2/3, with
equality if and only if ψ is a.e. constant, i.e., if and only if the constant function 1 is an
eigenfunction of Tκ , which is equivalent to (4.2).

Turning to the number of edges at the phase transition, we shall next prove Proposi-
tion 3.4, which says that if κn is a graphical sequence of kernels on a vertex space V with

limit κ , and ‖Tκ‖ = 1, then 1
n e(GV(n, κn))

p→ 1
2

∫∫
κ ≤ 1/2, with equality if and only if

(4.2) holds.

Proof of Proposition 3.4. By Proposition 8.9 we have e(GV(n, κn))/n
p→ γ , where γ :=

1
2

∫∫
κ . If ‖Tκ‖ = 1, then

1

2

∫∫
κ = 1

2
〈1, Tκ1〉 ≤ 1

2
‖Tκ‖ = 1

2
,

with equality if and only if the constant function 1 is an eigenfunction, i.e., if and only if
(4.2) holds.

Remark 15.3. Proposition 3.4 says that the number of edges at the phase transition is
largest in the classical Erdős–Rényi case, and is strictly smaller in all other cases except
some very homogeneous ones. Together, Corollary 3.18 and Proposition 3.4 say roughly that
inhomogeneities make the giant component appear sooner, but grow more slowly (initially,
at least).

Remark 15.4. Another way to study the number of edges when the giant component is
born is to consider the graph process in Remark 2.6. Let us stop the growth when the largest
component first has at least ω(n) vertices, where ω(n) is a function chosen in advance, with
ω(n) = o(n), and ω(n) increasing sufficiently rapidly with n. (If κ is bounded, we can take
any ω with log n ' ω(n) ' n; see Theorem 3.12.) Then, for any ε > 0, whp we stop
at a time between (c0 − ε)/n and (c0 + ε)/n, where c0 := ‖Tκ‖−1, and it follows easily
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from Proposition 8.9 that if N is the number of edges when we stop, then N/n
p→ 1

2

∫∫
κ .

Again we see that the number of edges required for a giant component is largest in the
homogeneous case.

Remark 15.5. The proof of part (i) of Theorem 3.17 shows that the function ρ(cκ; ·)
defined before (2.13) depends analytically on c �= c0 as an element of L2. Hence ν1

n in
Theorem 9.10 also depends analytically on c �= c0.

We expect the following extensions of Theorem 3.17 to hold.

Conjecture 15.6. Theorem 3.17(i) holds without the condition (3.11), i.e., ρ(c) is always
analytic except at c0.

Conjecture 15.7. Let κ be an irreducible kernel on a ground space (S, µ). Then
equation (3.12) holds with the larger error term o(ε) whenever Tκ has an eigenfunction ψ

of eigenvalue ‖Tκ‖ with
∫

S ψ3 < ∞; conversely, ρ ′
+(c0) = 0 if c0 > 0 but no such ψ exists

or ψ exists with
∫

S ψ3 = ∞. Cf. Subsection 16.4.

16. APPLICATIONS AND RELATIONSHIP TO EARLIER RESULTS

In this section we apply our general results to several specific models that have been studied
in recent years, and describe the relationships between our results and various earlier results.

16.1. Dubins’ Model

A common setting is the following: the vertex space V is (S, µ, (xn)n≥1), where S = (0, 1],
µ is the Lebesgue measure, and xn = (x1, . . . , xn) with xi = i/n. In this case, (2.3) gives
pij = κ(i/n, j/n)/n ∧ 1 for the probability of an edge between vertices i and j. We shall
consider several choices of κ in some detail.

Observe first that if κ is a positive function on (0,∞)2 that is homogeneous of degree
−1, then (2.3) yields pij = κ(i, j) ∧ 1. Since this does not depend on n, in this case we
can also consider the infinite graph G(∞, κ), defined in the same way as Gn = GV(n, κ)

but on the vertex set {1, 2, . . . }. Note that the graphs GV(n, κ) are induced subgraphs of
G(∞, κ), and that we can construct them by successively adding new vertices, and for each
new vertex an appropriate random set of edges to earlier vertices.

We first consider κ(x, y) = c/(x ∨ y) with c > 0, so that if j ≥ c then

pij = c/j for i < j. (16.1)

In this case we can regard GV(n, κ) as a sequence of graphs grown by adding new vertices one
at a time where, when vertex k is added, it gets Bi(k −1, c/k) edges, whose other endpoints
are chosen uniformly among the other vertices. (We might instead take Po(c)∧ (k −1) new
edges, without any difference in the asymptotic results below.)

This infinite graph G(∞, κ) was considered by Dubins in 1984, who asked when G(∞, κ)

is a.s. connected. Dubins’ question was answered partially by Kalikow and Weiss [60]. A
little later Shepp [86] proved that G(∞, κ) is a.s. connected if and only if c > 1/4. This
result was generalized to more general homogeneous kernels by Durrett and Kesten [46].

The finite random graph GV(n, κ) with this κ , i.e., with edge probabilities given by (16.1),
has been studied by Durrett [44], who points out that it has the same critical value c = 1/4
for the emergence of a giant component as the infinite version has for connectedness, and
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by Bollobás, Janson and Riordan [19] who rigorously show that this example has a phase
transition with infinite exponent. More precisely, denoting ρ(κ) by ρ(c), it was shown by
Riordan [84] that

ρ(1/4 + ε) = exp
(
−π

2
ε−1/2 + O(log ε)

)
. (16.2)

A similar formula for the closely related CHKNS model (see Subsection 16.3), introduced
by Callaway, Hopcroft, Kleinberg, Newman and Strogatz [30], had been given earlier by
Dorogovtsev, Mendes and Samukhin [43] using non-rigorous methods.

To find the critical value by our methods, we have to find the norm of Tκ on L2(0, 1).
Using the isometry U : f �→ e−x/2f (e−x) of L2(0, 1) onto L2(0,∞), we may instead consider
T̃κ := UTκU−1, which by a simple calculation is the integral operator on L2(0,∞) with
kernel

κ̃(x, y) = e−x/2κ(e−x, e−y)e−y/2 = ce−x/2−y/2+x∧y = ce−|x−y|/2. (16.3)

Hence T̃κ is the restriction to (0,∞) of the convolution with h(x) := ce−|x|/2. Because of
translation invariance, it is easily seen that T̃κ has the same norm as convolution with h on
L2(−∞,∞), and taking the Fourier transform we find

‖Tκ‖ = ‖T̃κ‖ = ‖f �→ h ∗ f ‖L2(−∞,∞) = sup
ξ∈R

|ĥ(ξ)| =
∫ ∞

−∞
h(x)dx = 4c.

Thus, Theorem 3.1 shows that there is a giant component if and only if c > 1/4, as
shown in Durrett [44] and in [19].

To find the size of the giant component is more challenging, and we refer to Riordan [84]
for a proof of (16.2). Note that the hypothesis (3.11) of Theorem 3.17 fails, as do the
conclusions in part (ii). Indeed, it is easy to see that Tκ is a non-compact operator, and that
it has no eigenfunctions at all in L2. We suspect that this is connected to the fact that the
phase transition has infinite exponent.

16.2. The Mean-field Scale-free Model

Another interesting case with a homogeneous kernel as in Subsection 16.1 is κ(x, y) =
c/

√
xy with c > 0; then, for ij ≥ c2, we have

pij = c/
√

ij. (16.4)

This model has been studied in detail by Riordan [84]. Considering the sequence GV(n, κ)

as a growing graph, in this case, together with each new vertex we add a number of edges
that has approximately a Poisson Po(2c) distribution; the other endpoint of each edge is
chosen with probability proportional to i−1/2, which is approximately proportional to the
degree of vertex i. Hence, this random graph model resembles the growth with preferential
attachment model of Barabási and Albert [9], which was made precise as the LCD model
by Bollobás and Riordan [23]; see also [84]. In fact, up to a factor of 1 + o(i−1) in the
edge probabilities, the model defined by (16.4) is the so called “mean-field” version of
the Barabási–Albert model, having the same individual edge probabilities, but with edges
present independently. This (by now common) use of “mean-field” is not the standard one
in physics, where it normally means that all vertices interact equally. (So the mean-field
random graph model is G(n, p).)
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In this case, Tκ is an unbounded operator, because x−1/2 �∈ L2(0, 1), and thus there is no
threshold. In other words, ρ(c) := ρ(κ) > 0 for every c > 0.

As shown by Riordan [84], ρ(c) grows very slowly at first in this case too; more precisely,

ρ(c) ∼ 2e1−γ exp(−1/(2c)) as c → 0, (16.5)

where γ is Euler’s constant; see also Subsection 16.4. The result in [84] for the Barabási–
Albert model is different, showing that in this model the dependence between edges is
important.

Remark 16.1. Random graphs related to the ones defined here and in Subsection 16.1
but with some dependence between edges (and thus not covered by the present paper) can
be obtained by adding at each new vertex a number of edges with some other distribution,
for example Bi(m, p) for some fixed m and p. Such random graphs have been considered in
[22, 25, 41, 84], and these papers show that not only the expected numbers of edges added
at each step are important, but also the variances; the edge dependencies shift the threshold.

16.3. The CHKNS Model

We next consider the CHKNS model of Callaway, Hopcroft, Kleinberg, Newman and
Strogatz [30]. Here, the graph grows from a single vertex; vertices are added one by one,
and after each vertex is added, an edge is added with probability δ; the endpoints are chosen
uniformly among all existing vertices. (Multiple edges are allowed; this does not matter for
the asymptotics.)

Following Durrett [44], we consider a modification (which is perhaps at least as natural):
after adding each vertex, add a Poisson Po(δ) number of edges to the graph, again choosing
the endpoints of these edges uniformly at random. Thus, when vertex k is added, each
existing pair of vertices acquires Po(δ/

(k
2

)
) new edges, and these numbers are independent.

When we have reached n vertices, the number of edges between vertices i and j, with
1 ≤ i ≤ j ≤ n, is thus Poisson with mean

eij :=
n∑

k=j

δ(k
2

) = 2δ

n∑
k=j

1

k(k − 1)
= 2δ

(
1

j − 1
− 1

n

)
, (16.6)

and the probability that there is one or more edges between i and j is pij := 1 − exp(−eij).
Hence, ignoring multiple edges, we have a graph Gn of our type, with S = (0, 1], µ

Lebesgue measure, xi = i/n and

κn(x, y) := n

(
1 − exp

(
−2δ

(
1

n(x ∨ y) − 1
− 1

n

)))
→ κ(x, y) := 2δ

(
1

x ∨ y
− 1

)
. (16.7)

The conditions of Theorem 3.1 are immediately verified, and thus C1(Gn)/n
p→ ρ(κ).

Instead of adding a Poisson number of edges at each step, we could add a binomial
number by adding, after vertex k, each possible edge with probability δ/

(k
2

)
. We obtain the

same results with slightly different κn but the same κ .
The original CHKNS model, G̃n, say, can be treated by the argument in [19]. It follows

that C1(G̃n)/n
p→ ρ(κ) holds for the CHKNS model too.
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In particular, the threshold for the CHKNS model, as well as for Durrett’s modifica-
tion, is given by ‖Tκ‖ = 1, or 2δ = ‖T‖−1, where T is the integral operator with kernel
1/(x ∨ y) − 1 on L2(0, 1). This kernel is strictly smaller than the kernel 1/(x∨y) considered
in Subsection 16.1. However, changing variables as in (16.3), we see that T is equivalent
to the operator on L2(0,∞) with kernel e−|x−y|/2 − e−(x+y)/2. Using translational invariance
of the operator with kernel e−|x−y|/2 considered in Subsection 16.1, considering functions
supported in (R,∞) and letting R → ∞, it is easily seen that T has the same norm as this
operator, namely 4.

Thus the thresholds for the CHKNS model and Durrett’s modification are both given by
2δ = 1/4, i.e. δ = 1/8, as was found by non-rigorous arguments by Callaway, Hopcroft,
Kleinberg, Newman and Strogatz [30], and Dorogovtsev, Mendes and Samukhin [43], and
first proved rigorously by Durrett [44]; see also [19].

To study the size of the giant component in these models, let us write κ0(x, y) := 1/(x∨y)
and κ1(x, y) := 1/(x ∨ y) − 1. Then κ1 < κ0, and thus ρ(cκ1) ≤ ρ(cκ0) for each c > 0.
(We have strict inequality for c > 1/4, see Remark 3.8; note that, as pointed out by Durrett
[44], we have the same threshold 1/4 for both kernels although we have twice as many
edges in G(n, cκ0) as in G(n, cκ1).) On the other hand, let η > 0 and consider only vertices
i ≤ j ≤ ηn. Then,

n−1cκ1(i/n, j/n) = c

(
1

j
− 1

n

)
≥ (1 − η)c

j
.

Hence, cf. (16.1), G(n, cκ1) ⊇ G(ηn, (1 − η)cκ0). (Note that these graphs have different
numbers of vertices.) Thus, for every η with 0 < η < 1,

ρ(cκ0) ≥ ρ(cκ1) ≥ ηρ((1 − η)cκ0).

Taking c = 1/4 + ε and η = ε2, relation (16.2) for ρ(cκ0) implies the same estimate for
ρ(cκ1); in other words, if δ = 1/8 + ε, then the size of the giant component is given by

ρ(κ) = ρ(2δκ1) = exp

(
− π

2
√

2
ε−1/2 + O(log ε)

)
.

As noted in Subsection 16.1, a similar formula (with no error term, and a particular
constant in front of the exponential) was given by Dorogovtsev, Mendes and Samukhin [43],
with a derivation part of which can be made rigorous; see Durrett [44].

16.4. The Rank 1 Case

In this subsection we consider a special case of our general model that, while very restric-
tive, is also very natural, and includes or is closely related to many random graph models
considered by other authors. This is the rank 1 case, where the kernel κ has the form
κ(x, y) = ψ(x)ψ(y) for some function ψ > 0 on S. We shall assume that the kernel is
graphical; in particular, we assume

∫
ψ dµ < ∞, but not necessarily that

∫
ψ2 dµ < ∞.

The function ψ(x) can be interpreted as the “activity” of a vertex at x, with the probability
of an edge between two vertices proportional to the product of their activities. In the rank
1 case, Tκ f = ( ∫

f ψ
)
ψ , so

‖Tκ‖ = ‖ψ‖2
2 =

∫
ψ2 dµ ≤ ∞. (16.8)

Thus Tκ is bounded if and only if ψ ∈ L2, in which case Tκ has rank 1, so it is compact, and
ψ is the unique (up to multiplication by constants) eigenfunction with non-zero eigenvalue.
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By Theorem 3.13, the distribution of vertex degrees is governed by the distribution of
the function λ(x) = (

∫
ψ dµ)ψ(x) on (S, µ). In particular, by Corollary 13.1, the degree

sequence will (asymptotically) have a power-law tail if the distribution of λ(x) has; for
example, if S = (0, 1] with µ Lebesgue measure, and ψ(x) = cx−1/p. (Another, perhaps
more canonical, version is to take ψ(x) = x on S = [0,∞), with a suitable finite Borel
measure µ. Note that every random graph considered in this example may be defined in this
way, since we may map S to [0,∞) by x �→ ψ(x). Alternatively, we may map by x �→ λ(x)
and have ψ(x) = cx with c > 0 and λ(x) = x.)

Random graphs of this type have been studied in several papers; we shall not attempt
a complete list, mentioning only several examples. Chung and Lu [34] and Norros and
Reittu [82] give results on the existence and size of a giant component. Britton, Deijfen and
Martin-Löf [27] use (2.7) with κ(x, y) = ψ(x)ψ(y) to define a random graph, and observe
that conditioned on the vertex degrees, the resulting graph is uniformly distributed over all
graphs with the given degree sequence; they further prove a version of Theorem 3.13 for
this case.

Actually, in [34] and [82] the edge probabilities pij are given by pij := wiwj/
∑n

i=1 wi,
with wi deterministic in [34] and random in [82]. Under suitable conditions on the wi, these
examples are also special cases of our general model. For suitable deterministic sequences
(wi)

n
1, we use Definition 2.9; we omit the details. For random i.i.d. wi, as in [82], if we

further assume E wi = ω < ∞, we can, for example, let S = [0,∞), µ = L(w1),
xi = wi

( ∑
j wj/nω

)−1/2
and ψ(x) = ω−1/2x. Then κ(x, y) = xy/ω, and we have λ(x) = x

in Theorem 3.13, and thus � = w1 in Corollary 13.1 and  ∼ Po(w1). Furthermore, from
(16.8) the norm of Tκ is (essentially) the “second order average degree” d = ∑

w2
i /

∑
wi.

Thus, for example, the result of Chung and Lu [35,36] that, under certain assumptions, the
typical distance between two vertices of the model G(w) studied in [34] is log n/ log(d)

corresponds to Theorem 3.14. (Chung and Lu also study sequences wi falling outside the
scope of our model.)

Chung and Lu [37] give a result for the “volume”
∑

i∈C1
wi of the giant component C1

of G(w). This result corresponds to Theorem 9.10 with f (x) = λ(x); indeed, under certain
assumptions on the wi, it is implied by Theorem 9.10. Unfortunately, the statement of the
result in [37] is incomplete, as no conditions on the wi are given. It is not clear what the
right conditions are; certainly some restrictions are needed.

The random graphs G(n, κ) obtained from rank 1 kernels should be compared to the
random graphs with a given (suitably chosen) degree sequence (di)

n
1, studied by, for example,

Luczak [72], Molloy and Reed [77, 78] and (in the power-law case) Aiello, Chung and Lu
[1]. Note that in this model, the probability of an edge between i and j is roughly didj/n,
but there are dependencies between the edges. It was shown by Molloy and Reed [77] that,
under some conditions, the threshold for the existence of a giant component in this model
is

∑
i di(di − 2) = 0. This fits well with our result, although we see no strict implication:

Theorem 3.13 shows that, for our model, the degree of a random vertex converges in
distribution to a random variable  with the mixed Poisson distribution

∫
S Po(λ(x)) dµ(x).

If X ∼ Po(λ), then E(X(X − 2)) = E(X(X − 1) − X) = λ2 − λ, so

E(( − 2)) =
∫

S
(λ(x)2 − λ(x)) dµ(x) =

(∫
S

ψ dµ

)2 (∫
S

ψ2 dµ − 1

)
,

which vanishes when
∫

S ψ2 = 1. As ‖Tκ‖ = ∫
S ψ2, this is indeed the threshold for the

emergence of a giant component in our model. The result of Molloy and Reed [77] that,
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in the supercritical case, the second largest component has size O(log n) corresponds to
Theorem 3.12(ii); again there is no strict implication, but the kernels κ corresponding to the
graphs studied by Molloy and Reed satisfy inf κ(x, y) > 0. In a subsequent paper, Molloy
and Reed [78] gave further results on the size of the giant component and on the structure
of the remainder of the graph, corresponding to our Theorems 3.1 and 12.1.

The following variant of this model has also been studied: the degrees are first cho-
sen according to some distribution, and then the graph is chosen uniformly among all
graphs with the resulting degree sequence; see, for example, the results of Van der Hofstad,
Hooghiemstra and Van Mieghem [54] and of Fernholz and Ramachandran [51] on distances
and diameter, respectively, mentioned in Section 14.

Yet another variant of the rank 1 case of GV(n, κ) was studied rather earlier by Khokhlov
and Kolchin [64, 65], who proved results about the number of cycles; see Section 17.

In the rank 1 case, the size of the giant component (if any) of GV(n, κ) can be found rather
easily. In order to study the phase transition, let us consider the kernel cκ(x, y) = cψ(x)ψ(y),
with c > 0 a parameter. By Corollary 3.2, the threshold for c is c0 = ‖Tκ‖−1 = (

∫
S ψ2)−1.

For c ≥ c0, let

α(c) := c
∫

ψρcκ dµ, (16.9)

where, as before, ρcκ(x) = ρ(cκ; x) is the survival probability of the branching process
Xcκ(x).

We have Tcκρcκ = cTκρcκ = α(c)ψ . Thus, by Theorem 6.1 and (16.9),

ρcκ = �cκ(ρcκ) = 1 − e−Tcκ ρcκ = 1 − e−α(c)ψ . (16.10)

(The condition (5.1) holds for every x.) Let

β(t) :=
∫

S

(
1 − e−tψ(x)

)
ψ(x) dµ(x), t ≥ 0. (16.11)

Then, by (16.9) and (16.10),

α(c) = c
∫

S
ρcκψ dµ = cβ(α(c)), (16.12)

so c = α(c)/β(α(c)), i.e., α is the inverse function to t �→ γ (t) := t/β(t). Since β is
explicitly given by (16.11), for any c > c0 this gives (at least in principle) α(c), and hence,
by (16.10), the function ρcκ . Then ρ(cκ) = ∫

S ρcκ(x) dµ(x) determines the asymptotic
number of vertices in the giant component. Similarly, by Theorem 3.5, the asymptotic
number of edges in the giant component is determined by ζ(cκ), which by the definition
(3.3) and (16.12) is given by

ζ(cκ) = c
∫

S
ψρcκ dµ

∫
S

ψ dµ − c

2

(∫
S

ψρcκ dµ

)2

= α(c)
∫

S
ψ dµ − α(c)2

2c
. (16.13)

Moreover, the asymptotic value of
∑

i∈C1
f (xi)/n is given by Theorem 9.10 for suitable

functions f .
We now turn to asymptotics as c ↘ c0, in order to study the phase transition more closely.

Note that ρcκ ↘ 0 a.e. as c ↘ c0 by Theorem 6.4 so, by dominated convergence,

α(c)/c ↘ 0 as c ↘ c0. (16.14)
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Further, by (16.10) and dominated convergence,

ρ(c)

α(c)
=

∫
S

ρcκ(x)

α(c)
dµ(x) →

∫
S

ψ(x) dµ(x) > 0 as c ↘ c0. (16.15)

Consequently, the behavior of β at 0 determines, through γ and α = γ −1, the behavior of
ρ(c) as c ↘ c0. Note that, by (16.11), β is continuous with β(0) = 0 and

β ′(t) =
∫

S
e−tψ(x)ψ2(x) dµ(x), t > 0. (16.16)

Moreover, from (16.13) we have

ζ(cκ) = α(c)
∫

S
ψ dµ − α(c)2

2c
∼ α(c)

∫
S

ψ dµ ∼ ρ(c)

as c ↘ c0, where the first ∼ is from (16.14) and the second from (16.15). Hence the
asymptotics are the same as for the number of vertices; see Remark 3.19.

Let us consider some concrete examples. Once again, we takeS = (0, 1]with µ Lebesgue
measure, and let ψ(x) = x−1/p where 1 < p ≤ ∞. We shall use C, C1, etc. to denote various
positive constants that depend on p.

Case 1: 1 < p < 2. In this case, ‖ψ‖2 = ∞, so c0 = 0. As t → 0, by (16.16),

β ′(t) :=
∫ 1

0
e−tx−1/p

x−2/pdx = p
∫ ∞

t
e−yt−2+py1−pdy ∼ Ctp−2, (16.17)

noting for the last step that the integral
∫ ∞

0 e−yy1−pdy is convergent. Thus, β(t) ∼ C1tp−1

and γ (t) = t/β(t) ∼ C2t2−p. Consequently, using (16.15),

ρ(c) ∼ C3α(c) = C3γ
−1(c) ∼ C4c1/(2−p) as c → 0.

Note that this exponent 1/(2 − p) may be any real number in (1,∞).

Case 2: p = 2. This is the case (16.4) studied in Subsection 16.2 and [84]. We still have
‖ψ‖2 = ∞ and thus c0 = 0. In analogy with (16.17) we now find that β ′(t) ∼ 2 ln(1/t)
as t → 0. This yields β(t) ∼ 2t ln(1/t) and γ ∼ 1/(2 ln(1/t)) as t → 0, and thus
α(c) = γ −1(c) = e−(1+o(1))/2c and

ρ(c) = e−(1+o(1))/2c as c → 0.

More refined estimates can be obtained in the same way, see (16.5) and [84].

Case 3: 2 < p < 3. For p > 2 we have
∫

ψ2 dµ < ∞, and thus c0 > 0, so we have
a phase transition. (In fact, c0 = 1 − 2/p.) By (16.16), β ′(t) is continuous for t ≥ 0 with
β ′(0) = ∫

ψ2 dµ = c−1
0 . Differentiating once more we obtain as t → 0

β ′′(t) = −
∫ 1

0
e−tx−1/p

x−3/p dµ(x) = −p
∫ ∞

t
e−yt−3+py2−pdy ∼ −Ctp−3

and thus β ′(t) = c−1
0 − (C1 + o(1))tp−2 and β(t) = c−1

0 t − (C2 + o(1))tp−1. Hence γ (t) =
t/β(t) = c0 + (C3 + o(1))tp−2. Consequently, using (16.15),

ρ(c0 + ε) ∼ C4α(c0 + ε) ∼ C5ε
1/(p−2) as ε ↘ 0.
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We thus have a phase transition at c0 with exponent 1/(p− 2). Note that this exponent may
be any real number in (1,∞). (Taking instead e.g. ψ(x) = x−1/2 ln−1(e3/x), it is similarly
seen that there is a phase transition with infinite exponent.)

Case 4: p = 3. Similar calculations show that, as t → 0, β ′′(t) ∼ 3 ln t, β ′(t) = 3− (3+
o(1))t ln(1/t), β(t) = 3t − (3/2 + o(1))t2 ln(1/t), and γ (t) = 1/3 + (1/6 + o(1))t ln 1/t.
Consequently, with c0 = 1/3,

ρ(c0 + ε) ∼ Cα(c0 + ε) ∼ C1ε/ ln(1/ε) as ε ↘ 0,

so ρ ′(c0) = 0.

Case 5: 3 < p ≤ ∞. In this case,
∫

ψ3 dµ < ∞ and we find as t → 0, β ′′(t) ∼ −C,
β ′(t) = c−1

0 − (C + o(1))t, β(t) = c−1
0 t − (C + o(1))t2/2, and γ (t) = c0 + (C1 + o(1))t.

Consequently, ρ(c0 +ε) ∼ C2α(c0 +ε) ∼ C3ε, so we have a phase transition with exponent
1. This is similar to Theorem 3.17, although (3.11) is not satisfied (except in the classical
case p = ∞). Indeed, it can be checked that (3.12) holds, except that the error term may be
larger (it is �(εp−2) for 3 < p < 4).

More generally, the same argument shows that (3.12) holds for any rank 1 kernel
ψ(x)ψ(y) with

∫
ψ3 dµ < ∞, provided the error term is weakened to o(ε). (The error

term is O(ε2) if
∫

ψ4 dµ < ∞.)

16.5. Turova’s Model

Turova [93–96] has studied a dynamical random graph G(t), t ≥ 0, defined as follows,
using three parameters γ > 0, λ > 0 and δ ≥ 0. The graph starts with a single vertex
at time t = 0. Each existing vertex produces new, initially isolated, vertices according to
a Poisson process with intensity γ . As soon as there are at least two vertices, each vertex
sends out edges according to another Poisson process with intensity λ; the other endpoint
is chosen uniformly among all other existing vertices. (Multiple edges are allowed, but this
makes little difference.) Vertices live for ever, but edges die with intensity δ, i.e., the lifetime
of an edge has an exponential distribution with mean 1/δ. (All these random processes and
variables are independent. We use δ for Turova’s µ to avoid conflicts with our notation.)

By homogeneity we may assume γ = 1; the general case follows by replacing λ and δ

by λ/γ and δ/γ and changing the time scale.
Our analysis of the random graph G(t) is very similar to that of Söderberg [88]; our the-

orems enable us to add technical rigor to his calculations. The vertices proliferate according
to a Yule process (binary fission process): writing N(t) for the number of vertices at time
t, the probability that a new vertex is added in the infinitesimal time interval [t, t + dt] is
N(t)dt. It is well-known (see, e.g., Athreya and Ney [8, Theorems III.7.1–2]) that

e−tN(t)
a.s.→ W as t → ∞ (16.18)

for a random variable W with W > 0 a.s. (In fact, W ∼ Exp(1), but we do not need this.)
We condition on the vertex process, and assume, as we may by (16.18), that

e−tN(t) → w as t → ∞ (16.19)
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for some w > 0. We take S = [0,∞) and let x1, . . . , xN(t) be the ages of the particles existing
at time t. For any fixed s > 0, by (16.19) we have

νt[s,∞) := 1

N(t)
#{i : xi ≥ s} = 1

N(t)
N(t − s) → e−s,

as t → ∞. This means (see Remark A.3) that νt → µ, where µ is the measure on [0,∞)

given by dµ/dx = e−x (the exponential distribution).
If xi ≤ xj, the number of edges at time t between two vertices of ages xi and xj has a

Poisson distribution with mean

eij :=
∫ t

t−xi

e−δ(t−s) 2λ

N(s) − 1
ds = 2λ

∫ xi

0
e−δs ds

N(t − s) − 1
.

Set

κ∗
t (x, y) := 2λ

∫ x∧y

0
e−δs N(t)

N(t − s) − 1
ds,

and
κt(x, y) = N(t)

(
1 − exp(−κ∗

t (x, y)/N(t))
)
.

Thus eij = κ∗
t (xi, xj)/N(t), and the probability pij that there is at least one edge between i

and j is given by pij = 1 − e−eij = κt(xi, xj)/N(t).
By (16.19), N(t)/(N(t−s)−1) → es as t → ∞ for every s, and dominated convergence

shows that if δ �= 1 and xt → x, yt → y, then

κ∗
t (xt , yt) → κδ(x, y) := 2λ

∫ x∧y

0
e−δs+sds = 2λ

1 − δ
(e(1−δ)(x∧y) − 1) (16.20)

For δ = 1, corresponding to δ = γ in the non-rescaled model, let κ1(x, y) := 2λ(x ∧ y).
Then κ∗

t (xt , yt) → κδ(x, y) in this case also.
Theorem 3.1 thus applies to G(t) conditioned on the process (N(t))t≥0, and we find

(conditioned on (N(t))t≥0, and thus also unconditionally) that

C1(G(t))

N(t)
p→ ρ(κδ),

with κδ given by (16.20).
To study ρ(κδ) further, and in particular to investigate the threshold as we vary λ keeping

µ ≥ 0 fixed, we thus have to investigate the integral operator Tκδ
with kernel κδ given by

(16.20). The change of variables x → e−x transforms S and µ to the standard setting (0, 1]
with Lebesgue measure, and the kernel (16.20) becomes

κ̃δ(x, y) := 2λ

1 − δ
((x ∨ y)δ−1 − 1), (16.21)

with κ̃1 := 2λ ln(1/(x ∨ y)).
In the case δ = 0, this is the same as (16.7); hence we have the same critical value 1/8

(for λ) as for the CHKNS model and the same ρ(κ) giving the size of the giant component;
in particular, the phase transition has infinite exponent. (Indeed, with δ = 0 the model
is very similar to (Durrett’s form of) the CHKNS model discussed in Subsection 16.3;
now a geometric number of edges between random vertices is added at each step, rather
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than a Poisson number.) For δ > 0, the kernel κ̃δ is in L2((0, 1]2), so Tκ̃δ
is compact (see

Lemma 5.15) and its norm can be found by finding its eigenvalues. By the discussion in
Subsection 16.6 below, this is equivalent to solving (16.23) with the given boundary values.
In our case, denoting the eigenvalue by α, this means solving αG′′(x) = −2λxδ−2G(x) with
boundary values G(0) = G′(1) = 0 (since φ(1) = 0).

The general solution is easily written down as a linear combination of two hypergeometric
series, and G(0) = 0 yields (up to a constant factor)

g(x) = G′(x) =
∞∑

n=0

1

n!�(n + 1/δ)

(
− 2λ

αδ2
xδ

)n

=
(

2λ

αδ2
xδ

)−(1/δ−1)/2

J1/δ−1

(
2

(
2λ

αδ2
xδ

)1/2
)

,

where Jν is a Bessel function.
The condition g(1) = G′(1) = 0 (which gives the formula in Turova [93, Corollary 4.1]

and [94]) thus leads to J1/δ−1

(
( 8λ

αδ2 )1/2
) = 0, so if zν is the first positive zero of Jν , then

‖Tκδ
‖ = ‖Tκ̃δ

‖ = α1 = 8λ

δ2z2
1/δ−1

.

In other words, the critical value of λ is λcr(δ) = δ2z2
1/δ−1/8, as given by a related argument

by Söderberg [88].
Theorem 3.17 applies only when δ > 1/2, but the eigenfunctions are continuous and

bounded for every δ > 0, and we believe that the phase transition has exponent 1, and that
(3.12) holds, for every δ > 0.

We can easily find the asymptotics of λcr(δ) as δ → 0 or∞; see Turova [93]. If λ, δ → ∞
with λ/δ → c > 0, then κ̃δ(x, y) → 2c, pointwise and in L2((0, 1]2), and thus ‖Tκ̃δ

−T2c‖ ≤
‖Tκ̃δ

− T2c‖HS → 0. It follows that for large δ, the graph is subcritical if 2c < 1 and
supercritical if 2c > 1. In other words, λcr/δ → 1/2 as δ → ∞. Similarly, if δ ↘ 0,
then κδ ↗ κ0 and it follows easily, e.g. by Theorem 6.4, that ‖Tκδ

‖ → ‖Tκ0‖, and thus
λcr(δ) → λcr(0) = 1/8. (The contrary assertion in [93] is incorrect; see the erratum.)

16.6. Functions of max{x , y }
In several of the examples above (see Subsections 16.1, 16.3, and 16.5) we have S = (0, 1],
µ is the Lebesgue measure and κ(x, y) = φ(x ∨ y) for some function φ ≥ 0 on (0, 1]. The
integral operators Tκ with such kernels have been studied by Maz’ya and Verbitsky [74]
and Aleksandrov Janson, Peller and Rochberg [6]. In particular, these papers prove that Tκ

is bounded if and only if supx>0 x
∫ 1

x φ(y)2 dy < ∞, and that Tκ is compact if and only if

x
∫ 1

x φ(y)2 dy → 0 as x → 0.
In the case when φ is decreasing (as in the examples above), these criteria simplify to

φ(x) = O(x−1) and φ(x) = o(x−1) as x → 0, respectively.
Unfortunately, there is no general formula known for the norm of Tκ . However, the criteria

just given extend to estimates within constant factors; for example, if φ is decreasing, then
sup(xφ(x)) ≤ ‖Tκ‖ ≤ 4 sup(xφ(x)). In the compact case, at least if φ has a continuous
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derivative on (0, 1], the eigenvalues, and thus the norm, can be found by studying a Sturm–
Liouville equation. In fact, g is an eigenfunction with eigenvalue λ if

λg(x) = φ(x)
∫ x

0
g(y) dy +

∫ 1

x
φ(y)g(y) dy. (16.22)

If λ �= 0, it is easily seen that then g ∈ C1(0, 1] and, by differentiating, that (16.22) is
equivalent to

g(x) = G′(x), λG′′(x) = φ′(x)G(x), (16.23)

with the boundary conditions G(0) = 0, G′(1) = λ−1φ(1)G(1); see [6, Section 9] and the
example in Subsection 16.5 above.

17. PATHS AND CYCLES

Let Pk(G) and Qk(G) be the numbers of paths and cycles, respectively, of length k (i.e.,
with k edges) in a graph G. Note that P1(G) = e(G) is the number of edges, and that
Q1 = Q2 = 0 for simple graphs. (If we allow multiple edges and loops as in Remark 2.5,
the results below extend to Q2 and, under an additional continuity assumption on κ , to Q1.)

In this section we briefly study the numbers Pk = Pk(Gn) and Qk = Qk(Gn), where
Gn = GV(n, κ). The results are easily extended to a sequence κn as in Definition 2.9 under
appropriate conditions, but we leave the details to the reader.

For k ≥ 1 let

αk(κ) := 1

2

∫
Sk+1

κ(x0, x1)κ(x1, x2) · · · κ(xk−1, xk) dµ(x0) · · · dµ(xk),

βk(κ) := 1

2k

∫
Sk

κ(x1, x2) · · · κ(xk−1, xk)κ(xk , x1) dµ(x1) · · · dµ(xk).

Note that αk(κ) = 1
2 〈1, T k

κ 1〉. Clearly, αk(κ) and βk(κ) may be infinite. In this case, the
limiting statements in the result below have their natural interpretations.

Theorem 17.1. Let κ be an a.e. continuous kernel on a (generalized) vertex space V , and
let Gn = GV(n, κ).

(i) For k fixed,

lim inf
n→∞ E Pk(Gn)/n ≥ αk(κ), k ≥ 1,

lim inf
n→∞ E Qk(Gn) ≥ βk(κ), k ≥ 3.

(ii) Suppose further that V is a vertex space. If κ is bounded, or if x1, . . . , xn are i.i.d.
random points with the distribution µ, then

E Pk(Gn)/n → αk(κ), k ≥ 1, (17.1)

E Qk(Gn) → βk(κ), k ≥ 3. (17.2)
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Moreover, whenever (17.1) holds and αk(κ) is finite,

Pk(Gn)/n
p→ αk(κ). (17.3)

Similarly, whenever (17.2) holds and the βk(κ) are finite,

Qk(Gn)
d→ Po(βk(κ)), k ≥ 3, (17.4)

jointly for all k ≥ 3 with independent limits.

Proof. The argument for parts (i) and (ii) is as in the proof of Lemma 8.1 (a special
case), considering first the regular finitary case and then approximating with κ−

m and κ+
m

defined in (7.2) and (7.3); we omit the details. The case of i.i.d. xi with the distribution µ

is immediate.
The convergence (17.3) and the asymptotic (joint) Poisson distribution (17.4) of Qk(Gn)

follow easily in the regular finitary case (first conditioning on xn as in Remark 8.8 if V
is a generalized vertex space), for example by the method of moments as for G(n, p),
cf. [16, 59]. The general cases then follow by appealing to Billingsley [13, Theorem
4.2], noting that if κ−

m is defined by (7.2), then αk(κ
−
m ) → αk(κ) and βk(κ

−
m ) → βk(κ)

by the monotone convergence theorem, while, from the assumption (17.2) and part (i)
(applied to κ−

m ),

lim sup
n→∞

E |Qk(G(n, κ)) − Qk(G(n, κ−
m ))|

= lim
n→∞ E Qk(G(n, κ)) − lim inf

n→∞ E Qk(G(n, κ−
m )) ≤ βk(κ) − βk(κ

−
m ) → 0

as m → ∞; an analogous bound holds for Pk/n.

Part (ii) holds for many generalized vertex spaces too, but not for all. Indeed, Remark 8.2
extends easily to the present situation, although, writing vn for the number of vertices of
GV(n, κ), the variance condition Var(vn/n) → 0 should be replaced by a higher moment
condition E(v�

n/n�) → µ(S)�, with � = k + 1 for (17.1) and � = k for (17.2). It is easily
seen that (17.1) and (17.2) hold in the situation in Example 8.5 too. However, these relations
may fail for the counterexample in Example 8.6.

Khokhlov and Kolchin [64, 65] studied a model closely related to the rank 1 case of
GV(n, κ): each vertex has an activity ai, and edges are added one by one, with the endpoints
of the edge chosen independently, and the probability that a vertex is chosen proportional
to its activity. They proved results about the distribution of the numbers of short cycles in
this model corresponding to the last part of Theorem 17.1.

Proposition 17.2. (i) If ‖Tκ‖ ≤ 1, then αk(κ) ≤ 1/2 for every k.
(ii) If ‖Tκ‖ > 1, then αk(κ) → ∞ as k → ∞.

Consequently, if κ is a graphical kernel on a vertex space V , then GV(n, κ) has a giant
component if and only if supk αk(κ) = ∞.

Proof. The first statement is immediate, as 〈1, T k
κ 1〉 ≤ ‖Tκ‖k . For the second statement,

we argue as in the proof of Lemma 5.16: there is a bounded kernel κN ≤ κ with ‖TκN ‖ > 1,
and TκN has a bounded eigenfunction ψ with eigenvalue λ > 1. Taking ‖ψ‖∞ = 1 we
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have 〈1, T k
κ 1〉 ≥ 〈1, T k

κN
1〉 ≥ 〈1, T k

κN
ψ〉 = λk〈1, ψ〉 → ∞. The final statement follows by

Theorem 3.1(i), which states that GV(n, κ) has a giant component if and only if ‖Tκ‖ > 1.

Similarly, at least when
∫∫

κ2 < ∞, we have the following consequence of well-known
properties of Hilbert–Schmidt operators (cf. Lemma 5.15).

Proposition 17.3. If
∫∫

κ2 < ∞, then Tκ is compact and self-adjoint, and if λi are its
(real) eigenvalues (counted with multiplicities), then

βk(κ) = 1

2k
Tr(T k

κ ) = 1

2k

∑
i

λk
i < ∞, k ≥ 2.

Example 17.4. As in Example 4.6, let S = (0, 1] (regarded as a circle) with µ

Lebesgue measure, and κ(x, y) = h(x − y), with h ≥ 0 an even periodic function that is
integrable over (0, 1]. Then Tκ is the convolution operator f �→ h ∗ f with eigenvalues
ĥ(j) = ∫ 1

0 e−2π ijxh(x)dx, j ∈ Z, so βk = ∑∞
−∞ ĥ(j)k .

Considering functions h with small support, we can obtain arbitrarily large βk with κ

bounded and
∫∫

κ = 1. Alternatively, we can take ĥ(j) = 1/ ln(2 + |j|), for example; this
defines an integrable function h > 0 which is continuous except at 0 [97, Theorems V.(1.5)
and V.(1.8)], and thus a kernel κ with ‖Tκ‖ = ∫ 1

0 h < ∞ but βk(cκ) = ∞ for every k ≥ 2
and c > 0.

Example 17.5. Let κ(x, y) = c/(x ∨ y) on S = (0, 1] as in Subsection 16.1. Then
βk(κ) = ∞ for every k and every c > 0; indeed, if, say, xi = i/n, the expected number of
k-cycles with vertices in (2−m−1n, 2−mn) tends to a positive constant independent of m ≥ 0,
and thus E Qk → ∞.

The same holds for κ(x, y) = c(1/(x∨y)−1) as in (16.7) and the δ = 0 case of (16.21).

Example 17.6. Let κ(x, y) = φ(x ∨ y) with S = (0, 1], as in Subsection 16.6, and
assume that φ ≥ 0 is non-increasing with xφ(x) bounded. Assume that x1, . . . , xn are i.i.d.
and uniformly distributed on (0, 1]. (It can be checked that the same conclusions hold for
xi = i/n.) Then, results of Aleksandrov, Janson, Peller and Rochberg [6, Theorems 4.1 and
4.6] imply that Tκ is a bounded positive operator, and it is compact with eigenvalues λi

satisfying
∑

i λ
k
i < ∞ (which means that Tκ belongs to the Schatten–von Neumann class

Sk) if and only if
∫ 1

0 (xφ(x))k/x dx < ∞.
By Theorem 17.1, we have E Qk → βk(κ) ≤ ∞ for k ≥ 3. Proposition 17.3 assumes∫∫
κ2 < ∞, but it can be shown (using truncations of φ) that the result extends to the

present situation; hence βk(κ) < ∞ if and only if
∫ 1

0 (xφ(x))k/x dx < ∞.
Consequently, we may for any given � choose φ such that βk = ∞ for 3 ≤ k ≤ � but

βk < ∞ for k > �.

Under suitable conditions, the expected total number of cycles converges to
∑∞

k=3 βk;
we omit the details. By Proposition 17.3 this sum is given by the following formula.

Corollary 17.7. If
∫∫

κ2 < ∞, then

∞∑
k=3

βk(κ) =
{∑

i

( − 1
2 ln(1 − λi) − 1

2λi − 1
4λ

2
i

)
< ∞, if ‖Tκ‖ < 1,

∞, if ‖Tκ‖ ≥ 1.
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The sum on the right-hand side can be written as − 1
2 ln(det3(I − Tκ)), where det3 is a

renormalized Fredholm determinant [87, Section 9].

Remark 17.8. Turova [94] studies the number of cycles in the random graph discussed in
Subsection 16.5, including a formula for lim E Qk = βk . She conjectures that the threshold
for the existence of a giant component is the same as the threshold for

∑
k βk = ∞. (This

conjecture inspired the present section.) We now see from Corollary 17.7 that this is true
in great generality; for example, if κ is bounded, then Theorem 17.1 and Proposition 17.3
imply that the threshold c0 = ‖Tκ‖−1 in Corollary 3.2 may be written as

c0 = sup

{
c :

∞∑
k=3

βk(cκ) < ∞
}

. (17.5)

Note, however, that exactly at the threshold, i.e., for G(n, κ) with ‖Tκ‖ = 1, there is no
giant component although

∑∞
k=3 βk(κ) = ∞. Moreover, the relation (17.5) may fail for

unbounded κ , see the examples above. In Turova’s case (16.21), the relation (17.5) holds
for δ > 0 (when Tκ is Hilbert–Schmidt), but not for δ = 0 (when Tκ is not compact), see
Example 17.5.

18. FURTHER REMARKS

Random graphs defined via kernels appear in various other contexts. One natural example
is the “dense” case: let κ be a symmetric function from [0, 1]2 to [0, 1] with some suitable
“smoothness” property, and form a graph on [n] by taking the probability pij of the edge ij
to be κ(xi, xj), where xi is the type of vertex i (e.g., xi = i/n), and different edges are present
independently. Thus, when κ = p is constant, one recovers the dense Erdős–Rényi graph
G(n, p). The study of this inhomogeneous dense model is as far from the concerns of the
present paper as the study of G(n, 1/2), say, is from the study of G(n, c/n).

Another case, dense but not so dense, is obtained from our model if we omit the restriction
that κ ∈ L1(S × S, µ × µ). One particular example that might have interesting behavior is
κ(x, y) = 1/|x − y|, with xi = i/n, say, so pij = 1/|i − j|, for i �= j. A similar model (in the
rank 1 case of Subsection 16.4) has been studied by Norros and Reittu [82]. Newman and
Schulman [79] studied percolation in a closely related infinite random graph: two vertices
i, j ∈ Z are joined with probability 1 − exp(−β|i − j|−s), where β and s are parameters of
the model.

Models with intermediate density (a number of edges that is more than linear but less than
quadratic in the number n of vertices) could be obtained by defining the edge probabilities
pij in terms of a kernel κ but with different scaling to that in (2.3). For example, we could
take pij = min{κ(xi, xj)/nα , 1}, where 0 ≤ α ≤ 1 is a fixed number, or pij = n−κ(xi ,xj),
say. Although these definitions bear a formal resemblance to the one we have used, they
lead to very different models. Nevertheless, these models may also repay close attention.
In some cases such models might correspond to, or resemble, graphs growing in time by
the addition of vertices, with the addition of an increasing number of edges at each step:
the case pij = j−α for i < j is one particular example.

A different connection between graphs and symmetric functions W from [0, 1]2 to [0, 1]
arises in the work of Lovász and Szegedy [69], where the limit of a sequence of dense
graphs is defined by considering the number of subgraphs isomorphic to each fixed graph.

Another natural model is the following: take the type space as [0, 1]2, say, with the
Lebesgue measure, and take the types of the vertices to be independent. (Or, more naturally,
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generate the vertex types by a Poisson process of intensity n, so the total number of vertices
is random.) Join two vertices with a probability p(d, n) that is a function of d, the Euclidean
distance between the (types of the) vertices, and n. Since the typical distances are order
n−1/2, the natural normalization is p = f (dn1/2), for example, p(d, n) = c1 exp(−c2d2n).

In many ways, a model defined in this way is similar to that considered in this paper: if
f decays sufficiently fast, the expected degrees are of order 1, and the degree distribution
will be asymptotically Poisson. However, in other ways this graph is very different from
the ones we have been studying: in particular, it has many small cycles. Determining the
threshold for the emergence of the giant component in this model is likely to be as hard as
finding the critical probability for a planar percolation model (indeed, it is essentially the
same task), and is thus likely to be impossible except perhaps in very special cases.

Another interesting property of a graph is the behavior of the contact process on the
graph. Suppose that each vertex is either susceptible, or infected: infected vertices infect
their susceptible neighbours with rate λ, and recover with rate 1, returning to the susceptible
state. The process starts with a single randomly chosen infected vertex. When the average
degree is of order 1, one might expect that there is a critical value λc such that for λ < λc

constant, the expected number of vertices ever infected is O(1), while for λ > λc constant,
with probability bounded away from zero almost all (perhaps even all) vertices in the giant
component become infected at some point, and the infection lasts an exponentially long
time. This is the case for the 4-regular grid graph on the torus, say; see Liggett [68].

The behavior of the contact process on the scale-free LCD graph has been studied by
Berger, Borgs, Chayes and Saberi [12], who gave detailed results showing in particular that
there is no threshold (i.e., λc = 0).

For GV(n, κ), one might expect a positive threshold if and only if ‖Tκ‖ < ∞. (Perhaps
an additional condition would be needed, such as κ bounded.) In fact, one can make a more
detailed prediction based on the contact process on infinite trees: the threshold λc should
be the same as the threshold for the process to continue forever on an infinite tree generated
by the branching process Xκ(x). Note that it is likely that there are two distinct thresholds
for the behavior of the contact process on such trees (this is known only for certain classes
of trees, including regular trees; see [67, 83, 92]): a lower threshold λ1 above which the
process has positive probability of never dying out, and an upper threshold λ2 above which
a given vertex has a positive probability of becoming reinfected infinitely often. (In both
cases, we start with a single infected vertex.) In the graph, λ1 should be relevant: if the
process survives with drift in the infinite tree, it will eventually revisit a given vertex of
GV(n, κ), as the neighbourhoods of a vertex are only locally treelike.

Related results have been proved by Durrett and Jung [45] for a d-dimensional version of
the small-world model of Bollobás and Chung: the vertex set is a discrete torus, each vertex
is connected to all vertices within a fixed distance, and then all pairs in a random matching
of the vertices are added as “long-range” edges. Durrett and Jung prove separation of λ1

and λ2 for an infinite version of this graph. Also, they show that for λ > λ1, a modified
contact process on the finite graph survives for an exponential time; the modification is to
allow an infected vertex to infect a randomly chosen other vertex, at an arbitrarily small
but positive rate γ . The result is likely to hold with γ = 0, since the “long-range” edges
already provide sufficient global randomness.

If the definition of the contact process on a graph G is modified so that when a vertex
recovers it cannot be reinfected, one might expect that, starting with a single infected vertex
v, the set of vertices eventually infected will have a “similar” distribution to the component
of G[p] containing v, where G[p] is formed from G by keeping each edge independently

Random Structures and Algorithms DOI 10.1002/rsa



116 BOLLOBÁS, JANSON, AND RIORDAN

with probability p = λ/(1+λ). Roughly speaking, for each edge ww′ of G, we may declare
the edge ww′ to be open if whichever of w and w′ is first infected will try to infect the
other before it recovers, an event with probability λ/(1 + λ). The set of infected vertices
is the component of v in the graph formed by the open edges. Unfortunately, since the
probabilities of infection from w to w′ and from w to w′′ both depend on the random time
that w remains infected, the events that different edges are open are not independent. This
fact is missed by Newman [80], who states that this modified contact process is equivalent
to percolation on G; we should like to thank an anonymous referee for drawing this paper
to our attention. Nevertheless, it may still be true that the threshold in this modified contact
process is close to the percolation threshold on G, at least under certain conditions.

APPENDIX A: PROBABILISTIC LEMMAS

In this appendix we prove three simple technical results concerning sequences of random
variables. The first and third are used in the main body of the paper; the second is needed
to prove the third. The first concerns random Borel measures.

Let S be a separable metric space, let M(S) be the space of all finite (positive) Borel
measures onS, and let P(S)be the subspace of all Borel probability measures onS. We equip
M(S) and P(S) with the usual (weak) topology: µn → µ if and only if

∫
f dµn → ∫

f dµ

for every function f in the space Cb(S) of bounded continuous functions on S. Alternatively,
as is well known, µn → µ if and only if µn(A) → µ(A) for every µ-continuity set A, i.e.,
every measurable set A with µ(∂A) = 0.

Remark A.1. The case of probability measures is perhaps better known, and is treated in
detail in, for example, Billingsley [13]. Many results extend immediately to M(S), either
by inspecting the proof, or because µn → µ in M(S) if and only if µn(S) → µ(S) and
either µ(S) = 0 or µn/µn(S) → µ/µ(S) in P(S).

The spaces P(S) and M(S) are themselves separable metric spaces; for P(S), see [13,
Appendix III].

The characterizations above of convergence in P(S) and M(S) extend to random mea-
sures and convergence in probability as follows; see Kallenberg [61, Theorem 16.16] for
a similar (but stronger) theorem under a stronger hypothesis on S. Note that both (ii) and
(iii) are special cases of (iv).

Lemma A.2. Let S be a separable metric space, and suppose that νn, n ≥ 1, are random
measures in M(S). Then the following assertions are equivalent:

(i) νn
p→ µ;

(ii) νn(A)
p→ µ(A) for every µ-continuity set A;

(iii)
∫

f dνn
p→ ∫

f dµ for every bounded continuous function f : S → R.

(iv)
∫

f dνn
p→ ∫

f dµ for every bounded µ-a.e. continuous function f : S → R.

Proof. (i) =⇒ (ii) If A is a µ-continuity set then ν �→ ν(A) defines a measurable function
M(S) → R which is continuous at µ.

(ii) =⇒ (iv) We may suppose that 0 ≤ f ≤ 1; the general case follows by linearity. Let N
be the µ-null set consisting of points at which f is discontinuous, and let At := f −1(t,∞) =
Random Structures and Algorithms DOI 10.1002/rsa
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{x : f (x) > t}. If x ∈ At\At and x /∈ N , then f (x) = t by continuity. Thus ∂At ⊆ N ∪ f −1{t}.
Hence, the sets ∂At\N are disjoint, and µ(∂At) = 0 except for at most countably many

t. When µ(∂At) = 0, we have νn(At)
p→ µ(At) by (ii), so E |νn(At) − µ(At)| → 0 by

dominated convergence. By dominated convergence again,

E

∣∣∣∣∫S
f dνn −

∫
S

f dµ

∣∣∣∣ = E

∣∣∣∣∫ 1

0
νn(At)dt −

∫ 1

0
µ(At)dt

∣∣∣∣
≤ E

∫ 1

0

∣∣νn(At) − µ(At)
∣∣dt

=
∫ 1

0
E

∣∣νn(At) − µ(At)
∣∣dt → 0.

(iv) =⇒ (iii) Trivial.
(iii) =⇒ (i) The topological space M(S) is metrizable, but the topology is also defined by

the functionals µ �→ ∫
f dµ, f ∈ Cb(S). Hence, if U is a neighbourhood of µ in M(S), there

is a finite set of functions f1, . . . , fN ∈ Cb(S) and an ε > 0 such that if
∣∣∫ fi dν−∫

fi dµ
∣∣ < ε,

i = 1, . . . , N , then ν ∈ U. Consequently,

P(νn /∈ U) ≤
N∑

i=1

P

(∣∣∣∣∫ fi dν −
∫

fi dµ

∣∣∣∣ ≥ ε

)
→ 0.

Remark A.3. To verify condition (ii), it often suffices to consider A in a suitably selected
family of subsets. For example, it is well-known that on R, it suffices to considerµ-continuity
sets of the form (−∞, x] and, for M(S), R itself; see [13, Section 3].

Recall that if Xn is a sequence of random variables and an a sequence of positive real
numbers, then Xn = O(an) whp means that there is a constant C such that |Xn| ≤ Can

whp. Our final technical result (Lemma A.5 below) is simple, but perhaps a little surprising:
we shall show that under suitable assumptions, if Xn = O(an) holds conditionally (after
conditioning on the sequences xn in our model), then it holds unconditionally, i.e., that the
implicit constant may be assumed to be deterministic. We start with a preparatory lemma.

Lemma A.4. Let A1, A2, . . . , be non-empty families of random variables such that for
any sequence Xn ∈ An we have Xn = O(an) whp. Then there is a constant C such that
supX∈An

P(|X| > Can) → 0 as n → ∞. In other words, the implicit constant in Xn = O(an)

whp can be chosen uniformly for Xn ∈ An.

Proof. Replacing Xn by Xn/an, we may assume that an = 1. Suppose the conclusion fails.
Then, for every m there is an εm > 0 such that there are arbitrarily large n for which there is
an Xn ∈ An with P(|Xn| > m) > εm. Let (mk) be a sequence of integers where each positive
integer appears infinitely many times. Select inductively an increasing sequence (nk) and
Xnk ∈ Ank such that P(|Xnk | > mk) > εmk . For n /∈ {nk}, choose Xn from An arbitrarily.

For any positive integer m, there are infinitely many k such that mk = m, and thus infinitely
many n such that P(|Xn| > m) > εm. Hence (Xn) is not O(1) whp, which contradicts our
assumption.
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The next lemma can be stated in terms of families µn(y) of probability distributions (on
R) and mixtures E µn(Yn) of them, but we prefer a statement in terms of random variables
Xn(y) ∼ µn(y); we consider a sequence of families Xn(y) of random variables defined for
y in a subset Mn of a certain space M as this is convenient when we apply the lemma to
GV(n, κ).

Lemma A.5. Let M be a metric space, and, for each n ≥ 1, let Xn(y), y ∈ Mn ⊆ M, be
a (measurable) family of real-valued random variables. Let y0 ∈ M, and suppose that for
every sequence (yn) with yn ∈ Mn and yn → y0 we have Xn(yn) = O(an) whp. Then, if (Yn)

is a sequence of Mn-valued random variables, independent of all Xn(y), with Yn
p→ y0, we

have Xn(Yn) = O(an) whp.

Proof. Since Yn
p→ y0, there is a sequence δn → 0 such that P(d(Yn, y0) < δn) → 1. Set

Un = {y ∈ Mn : d(y, y0) < δn}, so P(Yn ∈ Un) → 1. Note that yn ∈ Un implies yn → y0,
and thus Xn(yn) = O(an) whp. Let An = {Xn(y) : y ∈ Un}. By Lemma A.4, there exists C
such that εn := supy∈Un

P(|Xn(y)| > Can) → 0. Finally, P(|Xn(Yn)| > Can) ≤ εn + P(Yn /∈
Un) → 0.
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1989), Wiley, New York, 1992, pp. 165–182.

[73] T. Łuczak, Random trees and random graphs, Random Struct Alg 13 (1998), 485–500.

[74] V. G. Maz’ya and I. E. Verbitsky, The Schrödinger operator on the energy space: Boundedness
and compactness criteria, Acta Math 188 (2002), 263–302.

[75] B. D. McKay, Asymptotics for symmetric 0–1 matrices with prescribed row sums, Ars Combin
19 (1985), A, 15–25.

[76] C. Mode, Multitype branching Processes: Theory and applications, Elsevier, New York, 1971.

[77] M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence,
Random Struct Alg 6 (1995), 161–179.

[78] M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree
sequence, Combin Probab Comput 7 (1998), 295–305.

[79] C. M. Newman and L. S. Schulman, One-dimensional 1/|j − i|s percolation models: the
existence of a transition for s ≤ 2, Comm Math Phys 104 (1986), 547–571.

[80] M. E. J. Newman, Spread of epidemic disease on networks, Phys Rev E 66 (2002), 016128.

[81] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree
distribution and their applications, Phys Rev E 64 (2001), 026118.

Random Structures and Algorithms DOI 10.1002/rsa



122 BOLLOBÁS, JANSON, AND RIORDAN

[82] I. Norros and H. Reittu, On a conditionally Poissonian graph process, Adv Appl Probab 38
(2006), 59–75.

[83] R. Pemantle, The contact process on trees, Ann Probab 20 (1992), 2089–2116.

[84] O. Riordan, The small giant component in scale-free random graphs, Combin Probab Comput
14 (2005), 897–938.

[85] O. Riordan, The k-core and branching processes, Combin Probab Comput, to appear. Preprint
available at http://arXiv.org/ math.CO/0511093

[86] L. A. Shepp, Connectedness of certain random graphs, Israel J Math 67 (1989), 23–33.

[87] B. Simon, Trace ideals and their applications, Cambridge University Press, Cambridge. (1979)
LMS Lecture Notes Series, 35.

[88] B. Söderberg, General formalism for inhomogeneous random graphs, Phys Rev E 66 (2002),
066121.

[89] B. Söderberg, Random graphs with hidden color, Phys Rev E 68 (2003), 015102(R).

[90] B. Söderberg, Properties of random graphs with hidden color, Phys Rev E 68 (2003), 026107.

[91] B. Söderberg, Random graph models with hidden color, Acta Physica Polonica B 34 (2003),
5085–5102.

[92] A. M. Stacey, The existence of an intermediate phase for the contact process on trees, Ann
Probab 24 (1996), 1711–1726.

[93] T. S. Turova, Dynamical random graphs with memory, Phys Rev E 65 (2002), 066102. Erratum:
Phys Rev E 70 (2004), 059902(E).

[94] T. S. Turova, Long paths and cycles in dynamical graphs, J Statist Phys 110 (2003), 385–417.

[95] T. S. Turova, Continuity of the percolation threshold in randomly grown graphs (to appear).

[96] T. S. Turova, Phase transitions in dynamical random graphs, J Stat Phys 123 (2006), 1007–1032.

[97] A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, Cambridge, 1959.

Random Structures and Algorithms DOI 10.1002/rsa


