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The information theoretic measure known as mutual information is widely used as a way to quantify the
similarity of two different labelings or divisions of the same set of objects, such as arises, for instance, in
clustering and classification problems in machine learning or community detection problems in network science.
Here we argue that the standard mutual information, as commonly defined, omits a crucial term which can
become large under real-world conditions, producing results that can be substantially in error. We derive an
expression for this missing term and hence write a corrected mutual information that gives accurate results even
in cases where the standard measure fails. We discuss practical implementation of the new measure and give

example applications.
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I. INTRODUCTION

Mutual information is widely used in physics, statistics,
and machine learning as a tool for comparing different la-
belings of a set of objects [1]. For instance, within physics
it is used in statistical mechanics for comparing states of spin
models [2] and particularly in network science for comparing
partitions of networks into communities, mutual information
being perhaps the standard measure for quantifying the per-
formance of community detection algorithms [3,4]: it tells
us the extent to which the set of communities found by an
algorithm agree with a given set of ground-truth communi-
ties. In machine learning and statistics, mutual information
is similarly used in classification (supervised learning) and
clustering (unsupervised learning) to quantify the similarity
of different labelings of sets of objects [5]. For instance, we
might attempt to deduce characteristics of a set of users of
an online service, such as their age group or gender, and
then calibrate our algorithm by using mutual information to
compare our efforts against known characteristics of a test
set of users. Mutual information also finds use in purely
empirical settings for quantifying correlations between any
two categorical variables describing the same set of objects.
Does your name predict your nationality, for example?

Imagine then that we have some set of individuals or
objects, such as people, documents, email messages, or aerial
photographs, among many other possibilities. Each object can
be classified or labeled as belonging to one of several types,
groups, or communities. In supervised learning or classifica-
tion problems the labels usually correspond to some known
characteristic: people could be labeled by sex, race, or blood
type, for instance; documents by topic; aerial photographs
by type of terrain, and so forth. In unsupervised learning
or clustering problems the labels may have no such explicit
meaning, or the meaning maybe unknown, but the grouping
of the objects is nonetheless of interest—community detection
problems are a good example.
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Now imagine we have two different sets of labels for our
objects. One set might be inferred by some algorithm, for
instance, and the other assigned by human experts. The mutual
information of the two labelings represents the amount of
information that the first labeling gives us about the second—
in effect, how good the algorithm is at mimicking the human
experts. If the two labelings are exactly the same, then the
first tells us everything about about the second and the mutual
information is maximal. If the two labelings are completely
unrelated, then the first tells us nothing about the second
and the mutual information is zero. A nice feature of mutual
information is that it is invariant under permutations of the
labels of one or both labelings, which is useful in clustering
or community detection applications where one is interested
primarily in the division of objects into groups and not in the
labels themselves.

Despite its advantages, however, mutual information is not
perfect. In this paper we show that, as traditionally defined,
the mutual information can give inaccurate answers—indeed
maximally inaccurate—under certain conditions and particu-
larly when the number of groups or communities differs be-
tween the two labelings. In some applications these conditions
arise frequently, in which case the standard measure can fail
badly. We show how to properly correct for this failure, cre-
ating a mutual information measure that gives useful answers
even when the traditional measure fails. These findings have
potentially broad repercussions. Given the widespread use
of mutual information in machine learning, network science,
and other areas, the number of studies whose results could
be changed, either modestly or in some cases greatly, by
switching to the corrected measure, is substantial.

Various shortcomings of the mutual information have been
discussed previously and several alternatives or variants have
been proposed. Best known is the work of Danon et al.
[3], who point out that the range of values of the mutual
information is somewhat arbitrary and suggest a modified
measure, the normalized mutual information, whose values
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run from zero to one. This measure is useful, for instance,
for comparing results across data sets of different sizes and it
has become widely used, particularly in network science. We
discuss the normalized mutual information in more detail in
Sec. IT and define a normalized version of our own measure in
Sec. I C.

Several previous authors have raised objections to the
mutual information similar to those discussed in this paper
[6-8] and suggested potential solutions [7—11]. Best known
of these solutions is the variation of information, proposed by
Meila [9], a metric information distance that sees some use
with clustering and community detection algorithms. Though
formally elegant, however, the variation of information is
difficult to interpret, bearing no simple relationship to the
labelings it describes. Rosenberg and Hirschberg [10] have
proposed V-measure, a heuristic one-parameter family of
measures that emphasizes a balance between two desirable
properties, homogeneity and completeness, while Gates et al.
[8] have proposed an ‘“element-centric clustering similar-
ity” calculated via a multistep process involving graph- and
matrix-based concepts. Perhaps closest to our own work is that
of Dom [7], who proposes a measure that shares some features
with ours but which, as we will argue, has problems of its own.
A useful survey of measures for comparing labelings has been
given by Amigé et al. [11].

A different shortcoming of the mutual information has
been highlighted by Vinh et al. [12], who argue that mutual
information should by rights be zero for unrelated random
labelings, but in practice this is only true in the limit of
infinitely large sets of objects. For finite sets, and hence for
all practical applications, the expected mutual information
of two random labelings is nonzero, which is undesirable.
Vinh et al. propose a measure they call the adjusted mutual
information, which corrects for this problem by subtracting
the average mutual information of a random pair of labelings.
We will show that our own proposed measure also corrects
for this shortcoming of the mutual information, but we argue
that it does so in a more correct manner. A detailed dis-
cussion and comparison of the various measures is given in
Sec. V.

II. MUTUAL INFORMATION AND CONDITIONAL
ENTROPY

Consider a set of n objects, numbered 1 to n, and consider
two divisions of those objects into groups or communities.
The two divisions need not have the same number of groups
but the groups must be nonoverlapping within each divi-
sion and they must not be empty. Let us suppose that the
first division has R groups labeled by integers r =1...R
and the second division has S groups labeled s =1...S.
(Throughout this paper we use the language of general clus-
tering or classification problems—*“objects” and “labels”—
but all of the developments described apply equally, without
modification, in other realms such as network community
detection.)

Let a, be the number of objects with label r in the first
labeling, let b, be the number with label s in the second, and
let c,; be the number labeled r in the first labeling and s in the

second. Note that

S R
a, = Zc”" by = Zcrs, e
s=1 r=1
R S
Ya=Yh=Yasn 0
r=1 s=1 rs

and that @, > 0 and by > O for all r and s since the groups
are nonempty. With these definitions we can compute the
probabilities P(r) and P(s) that an object chosen uniformly
at random has group label r or s, or the probability P(r, s) that
it has both labels r and s, from

r bS rs
P(r) = % P) =2 P(rs)= % 3)

Now we ask the following question: If we are told the label
r of a particular object, then how much additional information
is need to specify the other label s of the same object, on
average? Information theory tells us that the answer is given
by the entropy of the conditional probability distribution
P(s|r) = P(r, s)/P(r):

Entropy = — > P(s|r) log P(s]r). )

The average of this entropy over all objects, i.e., over the com-
plete distribution of r, is the quantity we call the conditional
entropy of s given r:

H(s|r) ==Y _P(r) ) _ P(s|r)log P(s|r)

P(r,s)

=— ZP(V, s)log Poy Q)

The conditional entropy is the average amount of additional
information we would need to supply, on top of the value r,
to specify the value s. (Traditionally the logarithms would
be taken base 2, giving entropy in units of bits, but other
choices are possible and produce only an overall multiplier
in the entropy. None of our results will depend on what
base is used. Note also that for the expression above and
subsequent expressions to give correct answers we must adopt
the convention that 0log 0 = 0.)

The maximum of the conditional entropy occurs when r
and s are independent, so that r tells us nothing about s and
P(r,s) = P(r)P(s), which gives H (s|r) = H(s), where

H(s)=—Y_P(s)log P(s) (6)

is the (unconditional) entropy of s. Conversely, the minimum
value of the conditional entropy is zero, which occurs when r
and s are in perfect agreement.

Arguably the conditional entropy is a little counterintuitive
since it is minimized, not maximized, when labelings are
identical. One can reverse the scale and create a measure that
is maximized for maximum similarity by subtracting H (s|r)
from its maximum value H(s), which gives the quantity
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known as the mutual information:

I(ris) = H(s) = H(s|r)
== L PO logP6)+ 1P log Py
= ZP(r s)log ——— P ) 7

P(r)P(s)’

This measure is now zero for uncorrelated labels and equal
to H(r) = H(s) for identical ones. The mutual information is
often described as the amount of information that the known
labeling r tells us about the unknown one s. For our purposes,
however, it is perhaps more useful to think of it as the amount
of information we save if we already know r when specifying
s, as compared to if we do not.

In addition to increasing with the similarity of the label-
ings, the mutual information has the nice property of being
symmetric in r and s. In some circumstances, it is convenient
to normalize it so as to create a measure whose value runs
between zero and one [3]. There are several ways to perform
the normalization [13], but the most widely used normalizes
by the mean of the entropies H(r) and H (s), which preserves
the symmetry with respect to » and s:

I(r;s)

Normalized mutual information = ———————. (8)
7[H(r) + H(s)]

A. Shortcomings of the mutual information

As we have said, the mutual information is not perfect. The
particular shortcoming that we focus on here is illustrated by
the following two simple examples suggested by Gates et al.
[8]. First, consider a case where the labeling r consists of just
a single group or community containing all n objects. At the
same time let us assume that the labeling s is nontrivial, with
S > 1. Itis clear in this case that labeling » communicates no
information about labeling s, and hence the mutual informa-
tion I(r;s) should be zero. And indeed it is, since P(r) =1
and P(r, s) = P(s) and hence

I(r;s) = ZP(S)logP() 0. )

Now consider a second case where the labeling r consists
of n groups, each containing a single object. It is again
clearly true that r communicates no information about s in this
situation and hence the mutual information should be zero, but
if we perform the calculation this is no longer what we find.
In this case ¢, takes only the values zero and one and a, = 1
for all r. Combining Egs. (1), (3), (6), and (7), we then get

N Cyg

1
I(r;s) = ;Zcmlog P

1 by
- Z |:crs logc,s — ¢5loga, — c¢,5log —i|
n s n

—Z%loglﬁz

— > " P(s)log P(s)

(where, as previously, we are employing the convention that
0log0 = 0).

Equation (10) is the complete opposite of what we expect.
The mutual information should be zero; instead it takes its
maximal value of H(s). The measure has failed completely.

III. AN IMPROVED MEASURE OF SIMILARITY

In this paper we propose a new measure, the reduced
mutual information, or RMI for short, which corrects for
the failure illustrated in the previous section. Our measure is
simple to state—it is equal to the standard mutual information
minus a single correction term, thus,

1
RMI = I(r;s) — — log Q(a, b), (11)
n

where Q(a, b) is a (usually large) integer equal to the number
of R x S nonnegative integer matrices with row sums a = {a,}
and column sums b = {b,;}. We give a (previously published)
formula for calculating this number, to a good approximation,
in Sec. IITE.

The origin of the correction term in Eq. (11) lies in the fact
that even when our two labelings » and s agree perfectly, r
does not tell us everything about s. To deduce s from r one
also needs to know how the values of the labels used in r
map to those used in s. One can encapsulate this mapping
in a matrix and it is the information content of this matrix
that gives rise to the term in Q(a, b). To understand the
argument in detail, let us look more closely at the conditional
entropy and mutual information, paying careful attention to
their derivation, including several terms that are commonly
neglected.

A. Information content of a labeling

The central question we want to answer is this: if we know
the labels in labeling r, how much additional information
is needed to specify the other labeling s? One can think in
terms of two individuals, traditionally called Alice and Bob,
who are in communication with one another. Alice knows
both labelings of the objects, » and s, but Bob only knows
r. How much information, in the traditional Shannon sense,
must Alice transmit to communicate s to Bob?

The exact answer depends on how Alice encodes her
communication with Bob. There are more and less efficient
ways to transmit the labeling s that will accomplish the
desired outcome with shorter or longer communications. At
the simplest level, Alice could entirely ignore r and just send
a complete record of s to Bob as a single message. Since there
are S possible labels for each object, there are S” possible
such messages Alice might need to send. If the message is
sent in binary, then k bits will suffice to encode uniquely each
of these S" possibilities provided 2% > S, or k > log, S" =
nlog, S. Since k is an integer, the number of bits needed to
communicate s in this manner is thus given by [nlog ST, the
smallest integer not less than the log of the number of different
messages one might send. Then the amount of information per
object is

H, = l(nlogSl =logS + O(1/n). (12)
n
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(a)

FIG. 1. (a) The number of ways of choosing § strictly positive
integers b, such that they sum to n is equal to the number of
ways of placing S — 1 dividers (the vertical bars) between n objects
(represented by the line of gray squares), with no two dividers
allowed to fall in the same place. The number of squares between
each divider and the next represents the value of one of the b;, and
trivially they sum to n. Since there are n — 1 places the dividers can
go, the total number of ways of choosing the b, is (4~}). (b) The
number of ways of choosing S integers b, such that they sum to
n, where individual integers are now allowed to be zero (but not
negative), is equal to the number of ways of placing an additional
S — 1 divider objects (the dark squares) among the n lighter squares,
for a total of n + § — 1 squares overall. The values of the b, are again
the numbers of squares between the dividers, which again necessarily
sum to n. Since two divider squares can now be adjacent, however,

we can have b, = 0, and the total number of divisions is ("ﬁ]l)

In the common case where the number n of objects is large
we neglect the term of order 1/n and just say that the amount
of information is log S. (As before, the logarithm would tradi-
tionally be taken base 2, but the choice of base only affects the
overall multiplier of the information and is not important for
our purposes. Henceforth, we will for convenience use natural
logarithms in this paper, converting to units of bits only where
necessary.)

B. A more efficient encoding

Equation (12) provides an upper bound on the amount
of information Alice needs to send per object. It is always
possible to send a simple message like this and achieve the
desired communication. It is, however, often also possible to
do better. For example, suppose that not all labels occur with
equal frequency, i.e., that by varies with s. Then in most cases
Alice can transmit s more compactly by first sending Bob the
values of the b, followed by the particular value of s. This
approach works as follows.

The number of possible choices of b, is equal to the number
of different sets of S nonnegative integers that sum to n,
which is (gj) and the amount of information needed to
communicate one of these sets is, once again, given by the log
of this number. (See Fig. 1 for a simple visual explanation of
why this is the correct combinatoric factor.) Once the values
of the by are specified, Alice need then only tell Bob which
labeling s is the correct one out of the set of all choices
compatible with those values. Normally this set of compatible
choices is much smaller than the total number of possible
labelings, which is why this approach is more economical.

The number of compatible choices of the labeling s is given
by the multinomial coefficient n!/ [], b,! and the information

needed to specify a particular choice is the logarithm of this
number. So the total information needed to communicate the
value of s is log (i_}) + log(n!/ [, bs!), and the information
per object is

1 -1
H, n|:log< >+lgl_[b'i| (13)

This expression is exact and easily computable. We can,
however, gain further insight by approximating the second
term using Stirling’s formula in the form

logn!=nlogn—n+%logn+0(1), (14)

which gives us
1 n! by n logn
-1 = —log—+0
e = 2 ee 02"

—Y " P(s)log P(s) + o(k’%) (15)

where as previously P(s) = by/n is the probability that a
randomly chosen object is in group s.

The sum in Eq. (15) is the Shannon entropy of s, Eq. (6).
Note that this entropy represents only the second term in
Eq. (13). It omits the first term, which measures the infor-
mation needed to transmit the values of the b,;. Applying
Stirling’s approximation to this term too, we find that

1 n—1
;log<s_1> (S—l)

for S constant as n grows. Thus, this term is of the same order
as the terms we have neglected in Eq. (15) and it is often
legitimate to neglect it too, in which case our information is
given approximately by the conventional entropy, Eq. (15).

Assuming this to be the case, we can apply Jensen’s
inequality, which says that )~ g, logx, < log ) g.x, for any
set of nonnegative numbers x, and weights g, with >~ g, =1,
with the exact equality applying only when all x, are equal.
Setting g; = by/n and x; = n/b,, we then get

Hy=>Y"

except when all by are equal. Thus, H, < H; and this new
scheme for transmitting the labeling s requires less informa-
tion than simply sending the complete labeling. In the lan-
guage of information theory, we have found a more efficient
encoding of the information by breaking it up and sending the
values of by and s separately.

% od/m), (16)

by n
zlogb—s < logXS:I =logS=H,, (17)

C. Employing shared information

So far Alice has made no use of the fact that Bob already
knows the other labeling r of our n objects. If r is correlated
with s, however, then it may be possible to use that fact
to convey the value of s more succinctly. Again there is
more than one way to do this, corresponding to different
encoding schemes, but we can illustrate the point with the
following simple approach. Alice first communicates to Bob
the complete set of values c,;, defined in Sec. II, which are the
numbers of objects with each combination of labels r, s. The
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matrix of values c,; is known in this context as a contingency
table. After sending the contingency table, Alice then follows
up by sending the particular value of s. As in the previous
section, knowing the contingency table narrows down the
number of possible choices for s and hence (in most cases)
reduces the total amount of information Alice needs to send
to specify the labeling s. The accounting works as follows.
Since both Alice and Bob already know r they also know
a,, which are the row sums of the contingency table, so, even
before Alice sends the table, Bob knows that it must have
these row sums. The number of choices for a row with S ele-
ments which sum to a, (and which are allowed to be zero) is
(“;_Sfl) (see Fig. 1 again for a visual explanation), and hence
the number of tables with row sums a, is [], (“’;'fl_ 1) and
the information needed to transmit the table is the log of this
number. At the same time, the number of possible choices of s
that are compatible with a particular contingency table is given
by a product of multinomial coefficients [].[a,!/]]; crs!]
and again the information is the logarithm. Hence the total
information, per object, needed to communicate s to Bob is

1 a+S—1 ay!
Hg_;Z[log( oo >+log—ﬂscrs!] (18)

Focusing on the last term in this expression and again
applying Stirling’s approximation, Eq. (14), we find that

1 a,! Crs a, logn
- 1 —log — + 0O —
n Xr: o [1en! Z n o8 * ( n )

Crs
rs rs

— 3" P s)log P;Z’r‘;) + o<105”>,
(19)

where P(r, s) = c,s/n is, as previously, the probability that a
randomly chosen object has labels 7, s. The sum in the second
line of Eq. (19) is precisely the conditional entropy H (s|r) of
Eq. (5) and thus we can to a good approximation write

a+85—1
S—1 ’

1
Hy = H(s|r) + = Z 1og< (20)

Thus, we see that the information needed to communicate s
is not exactly equal to the standard conditional entropy, but
contains an additional term.

Equation (20) was proposed previously as a measure of the
similarity of labelings by Dom [7], who argued for its use on
the grounds that the second term compensates to some extent
for the shortcomings of the conditional entropy discussed in
Sec. ITA.

The measure has some issues however. For instance, it does
not equal H (s)—as we would expect—in the case discussed in
Sec. IT A where the labeling r places each object in a separate
group on its own. In that case, H(s|r) = 0 and, putting a, = 1
for all r, we get H3 = log S, which can be in error by a wide
margin depending on the distribution of the b;.

Instead therefore we here adopt a different approach as
follows. In Sec. III B we found that specifying the values of
the b, reduced the total amount of information Alice needed
to send. The same is true here. Alice can use a three-part
encoding, in which she first sends the values of the by, then the

contingency table, then s itself. Each step reduces the number
of possibilities on the next and hence saves information. The
accounting is as follows.

First Alice sends the values of the b,. As we have said, this
takes an amount of information equal to log (g:}) Second, she
sends the contingency table. Since she and Bob now know
both a, and b, for all r and s, both the row sums and the
column sums of the table are fixed, and hence we need choose
only among the set of tables that satisfy these constraints.
Suppose that the number of such tables is (a, b). Then
the information needed to transmit the contingency table is
log Q2(a, b). Third, Alice sends s itself, choosing among only
those values that are compatible with the contingency table.
As before, this requires an amount of information equal to
> log(a,!/T1, ¢rs!). Thus, the total information, per object,
is

= g (1) 410z 9 b+ 1 ar!
=—|1lo o a, og — |.
A R A O g - g]—[c‘

21

If, as previously, the first term in this expression is negligible
[since it vanishes for large n—see Eq. (16)], and given that the
number 2(a, b) of contingency tables with row and column
constraints can never exceed the number with row constraints
alone, we have H; < Hj, making Eq. (21) the most efficient of
the encoding schemes we have considered. Technically, like
all of the measures we have given, this one is still just an
upper bound on the amount of information: in any particular
situation there could exist an encoding that transmits s more
succinctly. However, as we argue in Sec. VI, Eq. (21) is the
best bound we can establish without making use of domain-
specific knowledge about the particular system of study. If
we wish to define a general measure that does not require
additional tuning for each individual application, then Eq. (21)
is the best we can do.

As discussed in Sec. II, it is in fact conventional to invert
the scale on which information is measured by subtracting the
information needed to communicate s, given in this case by
Eq. (21), from the amount needed when the receiver does not
know r, given by Eq. (13). This gives us a mutual-information-
style measure, thus

!

1 n! a,!
HZ_H4=;|:]0g]_[b'_ZIOgH '—logQ(a,b):|.

sCrs:

(22)

This is the quantity we call the reduced mutual information or
RMI. The reduced mutual information is equal to the amount
of information that Alice saves by making use of the fact that
Bob already knows r. Note that the first term in Eq. (21),
which measures the amount of information needed to transmit
the values of the by, has canceled out, so in fact we need not
assume (as we previously did) that this term is negligible.
Equation (22) can be rearranged to give a manifestly sym-
metric expression for the reduced mutual information, thus

n! [, crs!

1
RMI = log ———2——
["g [T, @' TT, b:!

n

— log Q(a, b)], (23)
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which is the form we use henceforth. Applying Stirling’s
approximation to the first term, we find that
P(r,s)

1 n'l_[mc” ~
~lo ol [ b Zp(r log 5omss 24

which is the standard mutual information I(r;s) of Eq. (7).
So, as claimed at the start of Sec. IIlI, the reduced mutual
information is, to a good approximation, equal to the standard
mutual information minus the information needed to specify
the contingency table: I(r; s) — (1/n)log Q2(a, b). If one com-
putes only the first term in this expression, as one normally
does when comparing labelings, then one is neglecting the
contingency table. This is the root cause of the problem
described in Sec. II A. For correct answers in all cases, one
should compare labelings using the full expression, Eq. (23),
with both terms.

The reduced mutual information will normally be positive
but it is possible for it to take negative values. Referring to
Eq. (22), we see that this happens whenever H, < Hs—in
other words when it is more efficient for Alice to just send
s directly to Bob than to exploit correlations between r and
s. This tells us that in fact there are no correlations, a least
at the level where they give us pertinent information about
the labeling, a result that could be useful in some situations.
The standard mutual information, by contrast, is never neg-
ative and hence has no natural threshold value that indicates
absence of correlation between two variables. The adjusted
mutual information discussed in the Introduction [12] does
have such a threshold, created by subtracting a small offset
value from the mutual information, but, as we argue in Sec. V,
Eq. (23) is more correct in most situations.

It is also possible to create a normalized version of
Eq. (23), akin to the normalized mutual information of Danon
et al. [3], Eq. (8), by dividing by the average of the values
obtained when both labelings are equal to r and when both
are equal to s. This gives a normalized information of

Normalized RMI

— 2log Q(a, b)

— log Q(a, a) — log (b, b)
(25)

which is now equal to 1 when r and s are identical.

D. Simple examples

To illustrate the importance of the second term in Eq. (23)
let us revisit our two simple examples from Sec. Il A. In
the first example, we considered a labeling r in which all
objects belong to the same single group. In this case the
contingency table has just one row, and S columns with entries
c1s = b,. Hence, all entries in the table are fixed and there is
only one possible contingency table with the given row and
column sums. Thus, the second term in Eq. (23) is zero. At
the same time there is only a single a, with value a; =n
and hence all factors in the first term cancel making this
term zero as well. Thus, we get a reduced mutual information
of zero, which is the correct answer, although the standard

mutual information also correctly gives zero in this case, as
we showed in Sec. Il A—see Eq. (9).

But now take our second example, in which the labeling
r consists of n groups of one object each. In Sec. IIA we
found that in this case the standard mutual information gave
the wrong answer—it took on the maximal value of H(s)
when common sense dictates that it should again be zero. This
is precisely because we neglected the information content of
the contingency table. In this case we have all a, = 1 and all
¢ =0or1,sothata,! = c,,! = 1 forall r, s and the first term
in Eq. (23) is log(n!/ [ ], bs!), which is indeed approximately
equal to H(s) by Stirling’s formula. The second term, how-
ever, is now large. The contingency table has n rows and S
columns with a single 1 in each row and all other elements
zero. The number of such contingency tables that have the
appropriate column sums by is equal to the number of ways of
placing the n objects in groups of sizes by, which is given by
the multinomial coefficient n!/ [, b,!. Hence, the two terms
in Eq. (23) cancel exactly to give zero once again, which is the
correct answer.

The intuitive explanation for this result is that in this latter
case the contingency table in fact tells us the complete labeling
s. Given that Bob knows the unique label r of each object, then
once Alice tells him which value of s each r corresponds to he
can reconstruct s without any further information. Thus, the
contingency table contains as much information as s itself, so
Alice necessarily saves no information by sending the table
first: She might as well have just sent s directly.

E. Counting contingency tables

To compute the reduced mutual information of Eq. (23) we
need to know the number Q(a, b) of possible R x S contin-
gency tables with row and column sums equal to the given
values of a, and b;. We are aware of no general closed-form
expression for this number, although there are expressions for
small (two- and three-row) tables [14]. Tables can be counted
numerically, for instance by exhaustively enumerating all
R x S matrices with the desired row sums and counting how
many have the desired column sums. The number of matrices

with row sums a, is ], (“;f;l) < ("JSFET])R <(n+S—1DES
and hence the running time for this procedure is polynomial
in n, but in practice the degree of the polynomial is so large
as to make the method unworkable for all but the smallest of
matrices. More sophisticated algorithms have been proposed
with somewhat better running times [14,15], but they are
still practical only for small cases. For larger values of n,
R, and S one can calculate approximate answers by Monte
Carlo sampling [14,16], but a more convenient solution for our
purposes is to make use of analytic approximations such as
those given in Refs. [14,17-20]. We are particularly interested
in two limits. The first is the sparse limit, typified by our
example above in which each object is placed in a group on its
own. In cases like this where most elements of the contingency
table are zero and the elements that are nonzero are small,
Békéssy et al. [14,17] have shown that

n! 2 a, by
et - 2 (3) 2)

(26)
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Applying Stirling’s formula we then have

1 1
~log Q(a,b) ~ H(s) — = Y loga,! + O(1/n).  (27)
n n -

Thus, in general, the contingency table requires an amount of
information on the order of H(s) per object for its specifica-
tion, making it essential that it be included in the calculation
if we are to obtain useful results.

Substituting Eq. (26) into Eq. (23) we get

RMI ~ rll ;log Crs! — n_i Z (“2) Z (’;) (28)

which can be used to calculate the reduced mutual information
in this regime.

This, however, is not the regime in which we are most
commonly operating. Usually we are interested in cases where
the numbers of groups R and S are substantially smaller than
n and the contingency table is relatively dense, with many
elements much larger than 1. In this regime we use a different
approximation, a symmetrized version of a formula due to
Diaconis and Efron [21]:

log Q(a, b) ~ (R—1)(S—1)log (n+ %RS) + %(R+ v —2)

1
X Zlogyx+ E(S—F/L —Z)Zlogxr

n 110 C(uR)C'(vS) (29)
2 PO RPN (ISR
where
n
w=—"", 30
n+ 3RS G0
1—w wa, 1—w n wby 31)
Xy = 5 R — 5
R n Y S n
R+1 1 S+1 1
= - —, = - —. 32
Ry TR VTsne s P
The leading term in Eq. (29) is of order RS log n, and hence
1 RS1
~log Q(a, b) = o< Og”>. (33)
n n

If R and S are bounded as n becomes large, then this expres-
sion is of the same order of magnitude as terms neglected
in the conventional definition of the mutual information,
Eq. (19), and therefore can itself be neglected for large enough
n. This is why the traditional mutual information works well in
some circumstances, but there are also common situations in
which these conditions do not apply. First, either or both of the
number of groups R and S may increase with . For instance,
in community structure problems in networks it is reasonable
to suppose that R and/or S would grow: the number of groups
of friends in the world, for example, probably grows with
world population. In this case Eq. (29) cannot be neglected
for large n. Indeed, if R and S are of order /n or larger, which
they often are, then Eq. (29) cannot be neglected under any
circumstances.

Second, in practice n is not infinite and in many cases
it is not even particularly large: Values of a few dozen to
a few hundred are common in practical situations. In this

regime, Eq. (29) may well be comparable in magnitude with
the standard mutual information and again must be included
to get accurate results.

IV. EXAMPLE APPLICATIONS

As a simple example of the use of our measure, consider
Fig. 2, which depicts community structure in a well-known
test network, the “karate club” network of Zachary [22]. This
network, which depicts friendships among a group of univer-
sity students, is widely agreed to divide into two communities,
represented by the shaded areas in the figure. Figures 2(a)
and 2(b) show two different possible divisions of the network
found using popular community detection methods, the first
by a statistical inference technique [23] and the second by
the method of maximum modularity [24]. The two divisions
are quite different. The first is closely similar to the accepted
ground truth, but differs from it for one node in the center
of the figure. The second, by contrast, divides the network
into four smaller communities, which arguably align quite
well with the ground truth, although again one node is clearly
wrong. Which of these two divisions is more similar to the
ground truth? Most observers would probably say the two-
group division on the left. Both get a single node wrong, but
the two-group division is closer in overall form to the ground
truth.

Traditional mutual information, however, says the reverse.
Calculating the mutual information between each division and
the ground truth we find 0.788 bits per node for the two-group
division and 0.807 for the four-group division, indicating that
the four-group division is slightly superior. If, however, one
includes the information in the contingency table, then the
outcome is reversed. For this small example we have no need
of the approximation in Eq. (29) to calculate the number
of contingency tables—the tables can be counted exactly by
exhaustive enumeration, giving 2(a, b) = 16 in the first case
and 428 in the second. Substituting these figures into Eq. (23)
we find a reduced mutual information of 0.670 bits per node
for the two-group division and 0.550 for the four-group one,
making the two-group division now the favored choice.

A more complex example is depicted in Fig. 3, which
shows results for a widely studied data set from the machine
learning literature representing 178 different wines, each
produced in the same region of Italy and each made from
one of three different grapes [25]. Chemical and photometric
analysis of the wines produces 13 different measurements for
each one, for attributes such as alcohol content, flavinoids,
and color intensity. One of these attributes we discard based
on standard feature selection criteria [26]. The remaining 12
can be used to place each wine at a point in a 12-dimensional
data space, and previous studies have shown that it is possible,
by clustering these points, to infer at least approximately
which wine was made from which grape. Figure 3 shows
the results of clustering using what is perhaps the simplest
of methods, the k-means algorithm. Figures 3(a) and 3(b)
show two such clusterings, one into three groups (which is the
“correct” number according to the ground truth) and the other
into six. In both panels the calculated clustering is indicated
by the colors of the data points while their shapes indicate
the ground truth, and most observers would probably say that
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FIG. 2. Two divisions into communities of the “karate club” network of Zachary [21]. (a) Division found by statistical inference,
maximizing the profile likelihood for the degree-corrected stochastic block model [22]. (b) Division found by maximizing modularity [23].
The accepted ground-truth division is indicated by the shaded regions. According to the standard mutual information, division (b) has the
stronger similarity to the ground truth, but division (a) is more similar according to the reduced mutual information of Eq. (23).

the division into three groups in Fig. 3(a) is closer to the
ground truth—remarkably it classifies all but five of the wines
correctly.

Once again, however, traditional mutual information
reaches the opposite conclusion, saying that the division into
six groups is better: the mutual information between the
three-group division and the ground truth is 1.380 bits per
data point, while for the six-group division we find a slightly
better score of 1.409. If one includes the correction due to
the information content of the contingency table, however,
then the results are reversed. In this case it is impractical
to count the number of contingency tables exhaustively: for
the six-group division there are estimated to be over 10'!
tables. Instead, therefore, we make use of the approximate
formula in Eq. (29). Combining this formula with Eq. (23)
we find a reduced mutual information of 1.266 bits per data
point for the three-group division and a lower 1.202 for
the six-group one, so that the three-group division is now
favored. Figure 3(c) shows results for both the standard and
reduced mutual information for k-means clusterings of the

data points into 2, 3, 4, 5, and 6 groups. As the figure shows,
the standard measure increases with the number of groups
while the modified measure peaks at the correct value of three
then falls off. Indeed it seems likely that the standard measure
will continue to increase with the number of groups as far
as we are willing to take the calculation. Such an increase
has been observed previously in numerical studies of mutual
information, for instance by White and Liu [6].

V. COMPARISON WITH OTHER MEASURES

As discussed in the Introduction, the measure we give
for comparing clusterings is not the only one that has been
proposed for this task. In this section we review some of the
previously proposed measures and their relationship to our
reduced mutual information.

In addition to the standard mutual information, whose dis-
advantages we have already discussed in depth, the measures
that are most directly related to ours are the measure proposed
by Dom in Ref. [7], the adjusted mutual information proposed
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FIG. 3. Clustering analysis of the wine data set described in the text [25], which represents 12 measured attributes of 178 different Italian
wines. (a) A three-group clustering of the data found using k-means applied to a normalized version of the data. The data points are projected
onto the data set’s two most significant principal components, with colors representing the calculated clustering and shapes representing the
ground truth. (b) A six-group clustering of the same data, again computed using k-means. (c) The standard mutual information and the reduced
mutual information of Eq. (23) for divisions into 2, 3, 4, 5, and 6 groups using k-means. While the standard measure increases with increasing
number of groups, the modified measure peaks at the correct ground-truth value of three.
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by Vinh ef al. [12], and the variation of information proposed
by Meila [9]. Let us consider each of these in turn.

The measure proposed by Dom [7] is equal to our measure
H;, Eq. (18), when the conditional entropy term is approxi-
mated using Stirling’s formula as in Eq. (20). This measure
does compensate to some extent for the shortcomings of the
standard conditional entropy but, as discussed Sec. IIIC, it
also has some undesirable features. For instance, it does not
take the expected value of H (s) when labeling r places every
node in a separate group of size one, and it is moreover
normally larger than our measure Hy and hence necessarily
a poorer approximation to the amount of information needed
to specify s—both measures by definition give upper bounds
on the information, but Hy gives a lower, and hence better,
bound. In that the stated goal of both measures is to calculate
the information, it is therefore normally better to use Hy or,
equivalently, the reduced mutual information.

A more subtle case is presented by the adjusted mutual
information [12] (and variants such as the relative mutual
information of Zhang [27]). Like our measure, the adjusted
mutual information subtracts a correction term from the
standard mutual information I(r;s). For the adjusted mutual
information this term is equal to the average of /(r;s) over all
possible choices of the labels s, consistent with the values of
the b;. It is helpful in comparing this measure to our own to
re-express this adjustment in terms of contingency tables as
follows.

As Vinh et al. point out, if all labelings s are equally likely
then all contingency tables are not. For a given labeling r, the
same table can be generated by many different choices of s. As
discussed in Sec. III C, the number of labelings s that corre-
spond to a particular contingency table is [ [, a,!/ [, ¢!, so
if all s are equally likely then the probability Q7 of generating
a particular table 7 is equal to this number divided by the total
number of labelings s, which is n!/ ]_[S b,!. Thus,

l_[r ar!/l_[rs Crs! l—lra"!nsbf!
Or = I r I (34)
n!/ 11, bs! n! 1, crs!
This probability distribution over contingency tables is known
as the multivariate hypergeometric distribution.
Given this distribution, information theory tells us that the
amount of information needed to transmit a particular table T
is

! ], crs!
l_[r ar! l_[s bV'
where we have used Eq. (24). Averaging over all tables T,

we then find that the average information per object needed to
transmit the contingency table is

—log Or = log ~ nl(r;s), 35)

1
== 0rlogQr =3 0rl(ris) = (I(r;s),  (36)
T T

where (. ..) denotes the average over the hypergeometric dis-
tribution. This is precisely the average mutual information that
Vinh et al. subtract to create their adjusted mutual information.

In other words, though this is not how it was originally
motivated, the adjusted mutual information can be interpreted
in a manner analogous to our own measure, as the standard
mutual information minus the amount of information needed

to specify the contingency table. The crucial difference, how-
ever, is that in calculating the correction Vinh et al. assume
that all labelings s are equally likely. This contrasts with our
own measure, Eq. (23), which assumes that all contingency
tables are equally likely.

We argue that the former is not a good assumption under
typical real-world conditions. This is because the hyperge-
ometric distribution over contingency tables, Eq. (34), is
strongly peaked around tables whose elements are uniform,
i.e., those for which r and s are uncorrelated. If » and s
are uncorrelated, then r provides no information about s,
so the assumptions of the adjusted mutual information are
equivalent to assuming that r tells us nothing about s. But
this is not a good description of the conditions under which
mutual information is used. Under normal use conditions, r
will sometimes contain information about s and sometimes
not, and we use mutual information precisely to tell us when it
does and to what extent. If it were always true that r contains
no information about s, as the adjusted mutual information
effectively assumes, then there would be no need to use
mutual information at all.

In other words, in calculating the average information
in the contingency table, adjusted mutual information uses
an unrealistic distribution over tables. If we are lucky it is
possible that the average calculated from this distribution in
Eq. (36) could still be approximately correct, but it could
also be in error by a substantial factor and we would have
no way of knowing. Our reduced mutual information, by
contrast, assumes a uniform distribution over contingency
tables, making it unbiased with respect to the form of the
table, and, in particular, giving equal weight to uniform and
nonuniform tables alike. On a purely practical level, the
adjusted mutual information is also quite time-consuming to
calculate, whereas our own measure can be calculated in time
O(RS) when the contingency table is known or O(n) when it is
not, which is the same time complexity as the standard mutual
information.

Third, let us consider the variation of information [9],
which is a somewhat different animal. It is defined as

Variation of information = H (s|r) + H(r|s). 37

Unlike the mutual information (and similar measures) the
variation of information is a dissimilarity measure, taking
larger values for unlike labelings. The variation of information
is satisfactory in that it does not suffer from the failings of
the simple mutual information. When labeling r places every
object in a group of its own, for instance, it gives an answer
that diverges as n becomes large. Arguably this is not exactly
the answer we are looking for, but it is definitely nonzero,
indicating that the two labelings are very different from one
another. Moreover, the variation of information has a number
of attractive formal properties. In particular, unlike any of the
other measures we have considered (including our own), it is
a true metric distance measure: It is symmetric, nonnegative,
and satisfies the triangle inequality (meaning that the distance,
in terms of variation of information, from r to 7 is never greater
than the sum of the distance from r to s and from s to ¢). This
means one can unambiguously say when one pair of labelings
are closer together than another and hence define a topology
on the space of all labelings.
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The main disadvantage of the variation of information is
that it does not have a simple interpretation in terms of infor-
mation content. It is not, for example, equal to the information
needed to transmit the unknown labeling s under any encoding
we are aware of. Instead it is equal to the information needed
to transmit s given r plus the information needed to transmit
r given s, not including the information needed to send the
contingency table. This makes it a less natural choice for the
type of applications we are considering.

VI. CONCLUSIONS

Mutual information is widely used as a quantitative mea-
sure for comparing competing labelings or divisions of a
set of objects, such as arise in clustering or community
detection problems. In this paper we have argued, however,
that the standard mutual information is not always adequate
for this purpose, giving incorrect answers—sometimes maxi-
mally incorrect—particularly when the labelings have differ-
ent numbers of groups. We have shown how this shortcoming
can be rectified by the inclusion of an additional term in
the mutual information equal to minus the logarithm of the
number of contingency tables compatible with the sizes of
the groups. We have given two example applications of the
resulting modified measure, which we call the reduced mutual
information, showing how the inclusion of the additional term
can make not only quantitative but also qualitative differences
to the outcomes of real-world calculations. We have also given
a detailed comparison of our measure to other variants of the
mutual information and argued that in practical situations it
better captures the similarity of pairs of labelings than its
competitors. Because of the widespread use of mutual infor-
mation in many different fields, adoption of the new measure
proposed here could change the outcomes and conclusions of
many studies, in some cases substantially.

In closing, let us consider whether it would be possible
to further improve our measure beyond what is described in
this paper. As we have said, all measures of the information
needed to describe a labeling are actually upper bounds on
the true information. In any individual case it may be possible
that a labeling has some special form or structure that allows
us to communicate it more succinctly. If one could calculate
the true minimum amount of information needed to transmit a
labeling in all cases, then by definition this would give a better
measure of similarity than any of those discussed in this paper.

There are, however, a number of reasons why this point of
view is not a helpful one. First, calculating the true minimum
information is normally impossible. It would be equivalent to
calculating the so-called Kolmogorov complexity [28], whose
computation is provably impossible in general. Second, a
measure such as our reduced mutual information, Eq. (23),
has the desirable feature of expressing the information as a
correction to the conventional mutual information. In effect,
it decomposes the information into the standard message that
one would send under traditional information theory plus an
additional term that has previously been neglected. Thus, it
not only gives us a better measure of similarity; it also tells
us in a straightforward manner how that measure is related to
others we are familiar with.

Even if we focus on measures with this latter property,
however, and if we abandon the hope of finding the true
minimum information, it is still possible that we could find a
better bound. Given that we are fixing the mutual information
term, such an improvement would have to come from finding
a more efficient scheme for transmitting the contingency table
(or some equivalent object). As discussed in Sec. V, we have
assumed that all contingency tables are equally likely, which
by definition maximizes the information needed to send them.
If, in fact, some tables are more likely than others, then
we can in principle use that fact to improve our encoding
and transmit the table more succinctly. The adjusted mutual
information, discussed in Sec. V, offers one way of doing this,
but the particular probability distribution over tables that it
employs is, we have argued, incorrect. If we could, however,
accurately characterize the true distribution of tables in any
particular system, then we could in principle find a better
encoding for labelings. Unfortunately, this means that any
improved information measure would have to make use of
domain-specific knowledge about the particular application of
interest. In the absence of any such knowledge, the uniform
distribution over contingency tables gives the only bound on
the information that is correct in all cases and hence we argue
that the measure proposed in this paper is the most natural
choice for most applications.
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