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 Summary. We consider the problem of estimating multiple related Gaussian graphical models
 from a high dimensional data set with observations belonging to distinct classes. We propose the
 joint graphical lasso, which borrows strength across the classes to estimate multiple graphical
 models that share certain characteristics, such as the locations or weights of non-zero edges.
 Our approach is based on maximizing a penalized log-likelihood. We employ generalized fused
 lasso or group lasso penalties and implement a fast alternating directions method of multipliers
 algorithm to solve the corresponding convex optimization problems. The performance of the
 method proposed is illustrated through simulated and real data examples.

 Keywords: Alternating directions method of multipliers; Gaussian graphical model;
 Generalized fused lasso; Graphical lasso; Group lasso; High dimensional data; Network
 estimation

 1. Introduction

 In recent years, much interest has focused on estimating an undirected graphical model on the
 basis of an n x p data matrix X, where n is the number of observations and p is the number
 of features. Suppose that the observations xj,..., x„ e are independent and identically dis
 tributed NQit, S), where fieUp and S is a positive definite p x p matrix. Then Os in the inverse
 covariance matrix XT1 correspond to pairs of features that are conditionally independent—i.e.
 pairs of variables that are independent of each other, given all of the other variables in the data
 set. These conditional dependence relationships can be represented by a graph in which nodes
 represent features and edges connect conditionally dependent pairs of features (Lauritzen, 1996).

 A natural way to estimate the precision (or concentration) matrix is via maximum likeli
 hood. Letting S denote the empirical covariance matrix of X, the Gaussian log-likelihood takes
 the form (up to a constant)

 ^[l°g{det(S-1)} - tr(SS-1)]. (1)
 Maximizing expression (1) with respect to S-1 yields the maximum likelihood estimate S~'.

 Address for correspondence: Pei Wang, Public Health Sciences Division, Fred Hutchinson Cancer Research
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 374 P. Danaher, P. Wang and D. M. Witten

 However, two problems can arise in using this maximum likelihood approach to estimate X~1.
 First, in the high dimensional setting where the number of features p is larger than the number of
 observations n, the empirical covariance matrix S is singular and so cannot be inverted to yield
 an estimate of . If p « n, then even if S is not singular the maximum likelihood estimate for
 S_1 will suffer from very high variance. Second, one often is interested in identifying pairs of
 variables that are unconnected in the graphical model, i.e. that are conditionally independent;
 these correspond to Os in S"1. But maximizing the log-likelihood (1) will in general yield an
 estimate of XP1 with no elements that are exactly equal to 0.

 In recent years, various proposals have been made for estimating XT1 in the high dimensional
 setting in such a way that the resulting estimate is sparse. Meinshausen and Bühlmann (2006)
 proposed to do this via a penalized regression approach, which was extended by Peng et al.
 (2009). Various other researchers have instead taken a penalized log-likelihood approach (among
 others, Yuan and Lin (2006), Friedman et al. (2007b) and Rothman et al. (2008)): rather than
 maximizing expression ( 1 ), one can instead solve the problem

 maximize©[log{det(©)} -tr(S@) - A||0||i], (2)

 where A is a non-negative tuning parameter, and || © || i denotes the sum of the absolute values of
 the elements of ©. This is a convex optimization problem, and its solution provides an estimate
 for X-1. The use of an /] - or lasso (Tibshirani, 1996) penalty on the elements of © has the effect
 that, when the tuning parameter A is large, some elements of the resulting precision matrix
 estimate will be exactly equal to 0. Moreover, problem (2) can be solved even if p^>n. The
 solution to problem (2) is referred to as the graphical lasso. Some researchers have proposed
 applying the /[-penalty in problem (2) only to the off-diagonal elements of 0.

 Graphical models are especially of interest in the analysis of gene expression data, since
 it is believed that genes operate in pathways, or networks. Graphical models based on gene
 expression data can provide a useful tool for visualizing the relationships between genes and for
 generating biological hypotheses. The standard formulation for estimating a Gaussian graphical
 model assumes that each observation is drawn from the same distribution. However, in many
 data sets the observations may correspond to several distinct classes, so the assumption that all
 observations are drawn from the same distribution is inappropriate. For instance, suppose that
 a cancer researcher collects gene expression measurements for a set of cancer tissue samples
 and a set of normal tissue samples. In this case, one might want to estimate a graphical model
 for the cancer samples and a graphical model for the normal samples. One would expect the
 two graphical models to be similar to each other, since both are based on the same type of
 tissue, but also to have important differences stemming from the fact that gene networks are
 often dysregulated in cancer. Estimating separate graphical models for the cancer and normal
 samples does not exploit the similarity between the true graphical models. And estimating a
 single graphical model for the cancer and normal samples ignores the fact that we do not expect
 the true graphical models to be identical, and that the differences between the graphical models
 may be of interest.

 In this paper, we propose the joint graphical lasso ( JGL), a technique for jointly estimating
 multiple graphical models corresponding to distinct but related conditions, such as cancer and
 normal tissue. Our approach is an extension of the graphical lasso (2) to the case of multiple data
 sets. It is based on a penalized log-likelihood approach, where the choice of penalty depends on
 the characteristics of the graphical models that we expect to be shared across conditions.

 We illustrate our method with a small toy example that consists of observations from two
 classes. Within each class, the observations are independent and identically distributed according
 to a normal distribution. The two classes have distinct covariance matrices. When we apply
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 Joint Graphical Lasso 375

 Fig. 1. Comparison of the graphical lasso with our JGL in a toy example with two conditions, p = 10 variables
 and n = 200 observations per condition: (a) true networks; (b) networks estimated by applying the graphical
 lasso separately to each class; (c) networks estimated by applying our JGL proposal

 the graphical lasso separately to the observations in each class, the resulting graphical model
 estimates are less accurate than when we use our JGL approach. Results are shown in Fig. 1.

 The rest of this paper is organized as follows. In Section 2, we present the JGL optimization
 problem. Section 3 contains an alternating directions method of multipliers (ADMM) algorithm
 for its solution. In Section 4, we present theoretical results that lead to massive gains in the
 algorithm's computational efficiency. Section 5 contains a discussion of related approaches from
 the literature, and in Section 6 we discuss tuning parameter selection. In Section 7, we illustrate
 the performance of our proposal in a simulation study. Section 8 contains an application to a
 lung cancer gene expression data set. The discussion is in Section 9.

 The programs that were used to generate the tables and figures shown in this paper can be
 obtained from

 http ://wileyonlinelibrary.com/j ournal/rss-datasets

 and the R package JGL that implements the proposed approaches is available from the Com
 prehensive R Archive Network.

 2. Joint graphical lasso

 We briefly introduce some notation that will be used throughout this paper.
 We let K denote the number of classes in our data and let 1 denote the true precision matrix

 for the &th class. We shall seek to estimate XT ',..., by formulating convex optimization
 problems with arguments {0} = ©(1),..., ©( . The solutions {0} = 0(1),.... 0(^' to these
 optimization problems will constitute estimates of {S _1}=srl s*1.

 We shall index matrix elements by using i=\ p and j=l,...,p, and we shall index classes

 by using k = 1,..., K. ||A||f will denote the Frobenius norm of matrix A, i.e. ||A|]f = Hj A?j).

 2.1. General formulation for the joint graphical lasso
 Suppose that we are given K data sets Y' ' Y' with K~^ 2. Y® is an x p matrix
 consisting of nk observations with measurements on a set of p features, which are common to
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 376 P. Danaher, P. Wang and D. M. Witten

 all K data sets. Furthermore, we assume that the observations are independent, and
 that the observations within each data set are identically distributed: yf\..., y® ~ N(nk, E*).
 Without loss of generality, we assume that the features within each data set are centred such
 that fik = 0. We let Sik> = (1 /n^)(Y®)TY®, the empirical covariance matrix for Y®. The log
 likelihood for the data takes the form (up to a constant)

 '({©}) = ~ E «,[log{det(0w)} - tr(S®0w)]. (3)
 1 k=l

 Maximizing equation (3) with respect to 0(l),..., @(K) yields the maximum likelihood estimate
 (s(1))_1,..., (S^r1.

 However, depending on the application, the maximum likelihood estimates that result from
 equation (3) may not be satisfactory. When p is smaller than but close to nk, the maximum
 likelihood estimates can have very high variance, and no elements of (S(1')_1,..., (S(J0)~' will
 be 0, leading to difficulties in interpretation. In addition, when p>nk, the maximum likelihood
 estimates become ill defined. Moreover, if the K data sets correspond to observations collected
 from K distinct but related classes, then we might wish to borrow strength across the K classes
 to estimate the K precision matrices, rather than estimating each precision matrix separately.

 Therefore, instead of estimating Ej"1,..., E^1 by maximizing equation (3), we take a penal
 ized log-likelihood approach and seek {0} solving

 maximize{0}^E n^[log{det(0w)}-tr(Sw0w)]-P({0})^ (4)
 subject to the constraint that 0(1\..., 0<K> are positive definite. Here P({0}) denotes a convex
 penalty function, so that the objective in problem (4) is strictly concave in {0}. We propose to
 choose a penalty function P that will encourage 0(1), 0(/o to share certain characteristics,
 such as the locations or values of the non-zero elements; moreover, we would like the estimated

 precision matrices to be sparse. In particular, we shall consider penalty functions that take the
 form

 /X{0})=A1EEI»g)l + ^({0}).
 k 'W

 where Ai is a non-negative tuning parameter and P is a convex function. When P({©}) = 0,
 problem (4) amounts to performing K uncoupled graphical lasso optimization problems (2). The
 P-penalty is chosen to encourage similarity across the K estimated precision matrices; therefore,
 we refer to the solution to problem (4) as the joint graphical lasso (JGL). We discuss specific
 forms of the penalty function in problem (4) in the next section.

 2.2. Two useful penalty functions
 In this subsection, we introduce two particular choices of the convex penalty function P in
 problem (4) that lead to useful graphical model estimates. In Appendix A, we further extend
 these proposals to work on the scale of partial correlations.

 2.2.1. Fused graph ical lasso
 The fused graphical lasso (FGL) is the solution to problem (4) with the penalty

 P({0}) = A] E El^'l + A2 E El^-Cl, (5)
 k=li^j k<k' i.j
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 Joint Graphical Lasso 377

 where Ai and À2 are non-negative tuning parameters. This is a generalized fused lasso penalty
 (Hoefling, 2010a) and results from applying l\-penalties to

 (a) each off-diagonal element of the K precision matrices and
 (b) differences between corresponding elements of each pair of precision matrices.

 Like the graphical lasso, the FGL results in sparse estimates when the tuning
 parameter Ai is large. In addition, many elements of Ô"1,... ,&lK> will be identical across
 classes when the tuning parameter A2 is large (Tibshirani et al., 2005). Thus the FGL borrows
 information aggressively across classes, encouraging not only similar network structure but also
 similar edge values.

 2.2.2. Group graphical lasso
 We define the group graphical lasso (GGL) to be the solution to problem (4) with

 Again, X\ and A2 are non-negative tuning parameters. A lasso penalty is applied to the elements
 of the precision matrices and a group lasso penalty is applied to the (i, j) element across all K
 precision matrices (Yuan and Lin, 2007). This group lasso penalty encourages a similar pattern
 of sparsity across all the precision matrices—i.e. there will be a tendency for the 0s in the K
 estimated precision matrices to occur in the same places. Specifically, on the one hand, when
 Ai =0 and A2 > 0, each 0® will have an identical pattern of non-zero elements. On the other
 hand, the lasso penalty encourages further sparsity within each 0®.

 The GGL encourages a weaker form of similarity across the K precision matrices than does
 the FGL: the latter encourages shared edge values across the K matrices, whereas the former
 encourages only a shared pattern of sparsity.

 3. Algorithm for the joint graphical lasso problem

 3.1. An alternating directions method of multipliers algorithm
 We solve problem (4) by using an ADMM algorithm. We refer the reader to Boyd et al. (2010)
 for a thorough exposition of ADMM algorithms as well as their convergence properties, and
 to Simon and Tibshirani (2011) and Mohan et al. (2012) for recent applications of ADMM
 algorithms to related problems.

 To solve problem (4) subject to the constraint that 0® is positive definite for k= 1,..., K
 using the ADMM algorithm, we note that the problem can be rewritten as

 subject to the positive definiteness constraint as well as the constraint that Z® — 0® for k =

 1 ,...,K, where {Z} = Z(1),..., Z(K\ The scaled augmented Lagrangian (Boyd et al., 2010) for
 this problem is given by

 (6)

 minimize(- J2 «*[log{det(0w)}-tr(Sw0w)] +P({Z})\
 {©},{z} \ k=l )

 (7)

 Lp({0}, {Z}, {U}) = -£ «*[log{det(0w)} - tr(Sw0®)] + />({Z})
 k= 1

 + '- f \\®(k) - Z(h> + li(k) Û - - T ||U®|||, (8)
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 378 P. Danaher, P. Wang and D. M. Witten

 where {U} = U(1),...,are dual variables and p serves as a 'penalty parameter'. Roughly
 speaking, an ADMM algorithm corresponding to equation (8) results from iterating three simple
 steps. At the i'th iteration, they are as follows.

 (a) {©,/)} ^argmin{0}{Lp({0}, {Z(i_i)},{U(,■_])})}.
 (b) {ZO)}^-argmin{z}{Lp({0(O},{Z},{U(,_i)})}.
 (c) {U(O}MU(i-i)} + ({0(i)}-{Z(o}).

 We now present the ADMM algorithm in greater detail for solving the JGL problem.

 (a) Initialize the variables: =1, U(,:) = 0 and Z{k) =0 for k = 1,..., K.
 (b) Select a scalar p > 0.
 (c) For / = 1,2,3,... until convergence update as follows.

 M
 '<«) (i) Fork=l,...,K, update ©jf? as the minimizer (with respect to 0W) of

 -#u[log{det(0®)} - tr(S®0®)] + ^||0® -Z® 1} + U® 1}||p.

 Letting VDVT denote the eigendecomposition of S(k) - pZ^^/n* + pU® the
 solution is given (Witten and Tibshirani, 2009) by VDVT, where D is the diagonal
 matrix with jth diagonal element

 ~{-Djj + (D2jj + 4p/nk)l/2}.

 (ii) Update {Z(i)} as the minimizer (with respect to {Z}) of

 P- £ ||Z® — (©[f) +U|^_1))||p + F({Z}). (9)
 <t= 1

 (iii) For k = \,...,K, update U® as U® + 0g -zjfj.
 The final 0*1',..., ©"° that result from this algorithm are the JGL estimates of .. -, .
 This algorithm is guaranteed to converge to the global optimum (Boyd et al., 2010). We note
 that the positive definiteness constraint on the estimated precision matrices is naturally enforced
 by the update in step (c)(i).

 This algorithm requires specification of a penalty p controlling the step size and a convergence

 criterion. In the examples throughout this paper, we use p = 1 and declare convergence when

 aieS-ei^ll./Die^llKio-5. k k

 Details of the minimization of expression (9) will depend on the form of the convex penalty
 function P. We note that the task of minimizing equation (9) can be rewritten as

 minimize

 {z}
 ^êllZ«—aW||2+P({Z})
 1 k=l

 (10)

 where

 A^og+Ujfl,). (11)
 We shall see in Section 3.2 that, for the FGL and GGL penalties, solving problem (10) is a
 simple task, regardless of the value of K.
 The algorithm given above involves computing the eigendecomposition of a px p matrix,

 which can be computationally demanding when p is large. However, in Section 4, we shall present
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 Joint Graphical Lasso 379

 two theorems that reveal that, when the values of the tuning parameters Aj and A2 are large,
 we can obtain the exact solution to the JGL optimization problem without ever computing the
 eigendecomposition of a p x p matrix. Therefore, solving the JGL problem is fast even when p
 is quite large. In Section 8, we shall see that one can perform the FGL with K = 2 classes and
 almost 18000 features in under 2 min.

 3.2. Solving problem (10) for the joint graphical lasso
 We now consider the problem of solving problem (10) if P is a generalized fused lasso or group
 lasso penalty.

 3.2.1. Solving problem (10) for the fused graphical lasso
 If P is the penalty given in equation (5), then problem (10) takes the form

 minimize(^ £ l|Z® - A®||2F +Aj £ £!z/fl + A2 £ £ |Z® - zjf|). (12) {Z} V2 /t=l k—\ i?j lc<k'i,j J

 Now problem (12) is completely separable with respect to each pair of matrix elements (i, j), i.e.
 one can simply solve, for each (i, j),

 £ (Z^-^V + A, l,w £ |zj?| + A2 £ |Z®-Z<f|}. (13) 12 k=\ k= 1 k<k' )

 This is a special case of the fused lasso signal approximator (Hoefling, 2010a) in which there is a
 fusion between each pair of variables. A very efficient algorithm for this special case, which can

 be performed in 0{ATlog(/if)} operations, is available (Hocking et ai, 2011; Hoefling, 2010b;
 Tibshirani, 2012).
 In fact, when K = 2, problem (13) has a very simple closed form solution. When Ai =0, it is

 easy to verify that the solution to problem (13) takes the form

 ' (A^ - A2/p, A\f + A2/p) if A?) > A?) + 2X2/p,

 Ml) 7(2), (A^ + A2/P, A® — A2//J) if A® > A-p + 2X2/P, ..
 J U /A0) + A(2) a(1) + a(2)\

 ( \ " , " j " ) if|A«»-Ag»|<2i2fr
 And, when Aj >0, the solution to problem (13) can be obtained through soft thresholding
 expression (14) by \\/p (see Friedman et al. (2007)). Here the soft thresholding operator is
 defined as S(x, c) = sgn(x)(|x| - c)+, where a+ = max(a, 0).

 3.2.2. Solving problem (10) for the group graphical lasso
 If P is the group lasso penalty (6), then problem (10) takes the form

 minimize I ^ £ ||Z<» - A««2 +Al £ £ |Z®| + A2 £ fe zf)(15) (z> k=l k=li^j ¥j\k ) J

 First, for all j = 1,..., p and k = 1,..., K, it is easy to see that the solution to problem ( 15) has

 Zjj = A®. And one can show that the off-diagonal elements take the form (Friedman et al.,
 2010)
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 380 P. Danaher, P. Wang and D. M. Witten

 È\f = S(Afj\Xi/p)(l — — , (16)
 p{ E 5(^5', Aj/p)2} 4=i }

 where S denotes the soft thresholding operator.

 4. Faster computations for the fused graphical lasso and group graphical lasso

 We now present two theorems that lead to substantial computational improvements to the JGL
 algorithm that was presented in Section 3. Using these theorems, we can inspect the empirical
 covariance matrices S(1),..., S(K) to determine whether the solution to the JGL optimization
 problem is block diagonal after some permutation of the features. Then we can simply perform
 the JGL algorithm on the features within each block separately, to obtain exactly the same
 solution that would have been obtained by applying the algorithm to all p features. This leads to
 huge speed improvements since it obviates the need ever to compute the eigendecomposition of
 a p x p matrix. Our results mirror recent improvements in algorithms for solving the graphical
 lasso problem (Witten et ai, 2011; Mazumder and Hastie, 2012).
 For instance, suppose that, for a given choice of Ai and Xi, we determine that the estim
 ated inverse covariance matrices ©' \ 0<A) are block diagonal, each with the same R blocks,

 the rth of which contains pr features, E*=1 pr = p. Then in each iteration of the JGL algorithm,
 rather than having to compute the eigendecomposition of K p x p matrices, we need only to
 compute eigendecompositions of matrices of dimension p\ x p\,... ,pr x pr. This leads to a
 potentially massive reduction in computational complexity from 0(p3) to £^=1 O(pj).
 We begin with a very simple lemma for which the proof follows by inspection of problem (4).
 The lemma can be extended by induction to any number of blocks.

 Lemma 1. Suppose that the solution to the FGL or GGL optimization problem is block
 diagonal with known blocks, i.e. the features can be reordered in such a way that each estim
 ated inverse covariance matrix takes the form

 ê'MÎ 4e)
 where each of©'/',..., ©j*"' has the same dimension. Then, ©j",..., @iA) andôî",..., ©^
 can be obtained by solving the FGL or GGL optimization problem on just the corresponding
 set of features.

 We now present the key results. Theorems 1 and 2 outline necessary and sufficient conditions
 for the presence of block diagonal structure in the FGL and GGL optimization problems and
 are proven in Appendix B.

 Theorem 1. Consider the FGL optimization problem with K = 2 classes. Let C\ and C2 be
 a non-overlapping partition of the p variables, such that C\ D C2 = 0, C\ U C2 = {1, •.., p}.
 The following conditions are necessary and sufficient for the variables in C\ to be completely
 disconnected from those in Ci in each of the resulting network estimates:

 (a) |niS[p| < Ai + A2 for all i e C\ and j e C2,
 (b) < Ai + A2 for all i e Cj and j e C2, and

 (c) + n2Sjf I ^2Ai forall/eCi and jeCj.

This content downloaded from 
�����������192.33.206.54 on Wed, 02 Aug 2023 08:56:33 +00:00������������ 

All use subject to https://about.jstor.org/terms



 Joint Graphical Lasso 381

 Furthermore, if K > 2, then

 for all i e Ci, y' e C2, & = 1,..., (18)

 is a sufficient condition for the variables in C\ to be completely disconnected from those in
 c2.

 Theorem 2. Consider the GGL optimization problem with K > 2 classes. Let C\ and C2 be a
 non-overlapping partition of the p variables, such that Ci HC2 = 0, Ci UC2 = {1,..., p}. Then
 the following condition is necessary and sufficient for the variables in C\ to be completely
 disconnected from those in C2 in each of the resulting network estimates:

 jç

 £ (|n*s{f| - M)2+ < A for all i € Cj, j € C2. (19)
 k= 1

 Theorems 1 and 2 allow us to check quickly whether, given a partition of the features C]
 and C2, the solution to the JGL optimization problem is block diagonal with one block corres
 ponding to features in C1 and one block corresponding to features in C2. In practice, for any
 given (Ai, A2), we can quickly perform the following two-step procedure to identify any block
 structure in the FGL or GGL solution.

 (a) Create M, a p x p matrix with Mjj = 1 for j = 1,..., p. For i / j, let Mij = 0 if the conditions
 that are specified in theorem 1 are met for that pair of variables and the FGL penalty
 is used, or if the condition of theorem 2 is met for that pair of variables and the GGL
 penalty is used. Otherwise, set = 1.

 (b) Identify the connected components of the undirected graph whose adjacency matrix is
 given by M. Note that this can be performed in 0(|M|) operations, where |M| is the
 number of non-zero elements in M (Tarjan, 1972).

 Theorems 1 and 2 guarantee that the connected components that are identified in step (b)
 correspond to distinct blocks in the FGL or GGL solutions. Therefore, we can quickly obtain
 these solutions by solving the FGL or GGL optimization problems on the submatrices of
 these K px p empirical covariance matrices that correspond to that block diagonal structure.
 Consequently, we can obtain the exact solution to the JGL optimization problem on extremely
 high dimensional data sets that would otherwise be computationally intractable. For instance,
 in Section 8 we performed FGL on a gene expression data set with almost 18000 features in
 under 2 min.

 As pointed out by a reviewer, theorems 1 and 2 lead to improvements in speed only if the
 tuning parameters Ai and X2 are sufficiently large. We argue that this will in fact be so in most

 practical applications of the JGL. When network estimation is performed for data exploration
 and when p is large, only a very sparse network estimate will be useful; otherwise, interpretation
 of the estimate will be impossible. Even when data exploration is not the end goal of the analysis,

 large values of Ai and A2 will generally be used, since most data sets cannot reasonably support
 estimation of Kp(p+ l)/2 non-zero parameters when n <?; p.

 5. Relationship to previous proposals

 Several past proposals have been made to estimate graphical models jointly on the basis of
 observations drawn from distinct conditions. Some proposals have used time series data to
 define time varying networks in the context of continuous or binary data (Zhou et al., 2008;
 Song et al., 2009a, b; Ahmed and Xing, 2009; Kolar and Xing, 2009; Kolar et al., 2010).
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 382  P. Danaher, P. Wang and D. M. Witten

 Guo et al. (2011) instead described a likelihood-based method for estimating precision ma
 trices across multiple related classes simultaneously. They employed a hierarchical penalty that
 forces similar patterns of sparsity across classes, an approach that is similar in spirit to the

 Our FGL and GGL proposals have several advantages over these existing approaches. Meth
 ods for estimating time varying networks cannot be easily extended to the setting where the
 classes lack a natural ordering. The proposal of Guo et al. (2011) is a closer precursor to our
 method and can in fact be stated as an instance of problem (4) with a hierarchical group lasso
 penalty

 that encourages a shared pattern of sparsity across the K classes. But the approach of Guo et al.
 (2011) has some disadvantages relative to the FGL and GGL.

 (a) The penalty (20) is not convex, so algorithmic convergence to the global optimum is not
 guaranteed.

 (b) Because penalty (20) is not convex, it is not possible to achieve the improvements in speed
 that were described in Section 4. Consequently, the proposal of Guo et al. (2011) is quite
 slow relative to our approach, as seen later in Figs 2(e), 4(e) and 5(e), and essentially
 cannot be applied to very high dimensional data sets.

 (c) Unlike the FGL and GGL, it uses just one tuning parameter and cannot control separately
 the sparsity level and the extent of network similarity.

 (d) In cases where we expect edge values as well as network structure to be similar between
 classes, the FGL is much better suited than the GGL and the proposal of Guo et al. (2011),
 both of which encourage shared patterns of sparsity but do not encourage similarity in
 the signs and values of the non-zero edges.

 The proposal of Guo et al. (2011) is included in the simulation study in Section 7.

 6. Tuning parameter selection

 Network estimation is usually performed to aid exploratory data analysis and hypothesis gener
 ation. For these purposes, approaches such as the Akaike information criterion (AIC), Bayesian
 information criterion and cross-validation may tend to choose models that are too large to be
 useful, and model selection is better guided by practical considerations, such as network inter

 pretability and stability and the desire for an edge set with a low false discovery rate (Meinshausen
 and Bühlmann, 2010; Li et ai, 2013). Thus, in most cases, we recommend an application-driven

 selection of tuning parameters to achieve a model that is biologically plausible, sufficiently com
 plex to be interesting and sufficiently sparse to be interpretable and extremely well supported by
 the data. In fact, network estimation methods will often prove most descriptively useful when

 run over a variety of tuning parameters, giving the researcher a sense of how easily various edges

 overcome increasing values of the sparsity penalty and how readily they become shared across
 networks as the similarity penalty increases. Ideally, the final model would be accompanied by
 a /rvalue on each edge or an overall estimate of the edge false discovery rate (FDR), a difficult
 problem that was addressed by Li et al. (2013) in the partial correlation-based network esti
 mation framework and an important goal for research in likelihood-based network estimation
 methods.

 GGL.

 (20)
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 Joint Graphical Lasso 383

 When an objective method of selecting tuning parameters is desirable, one can select tuning
 parameters for the JGL by using an approximation of the AIC:

 AIC(A,,A2)= £["*tr(S®0® )-«* log{det(©;)A2)} + 2£:,], (21)
 k=1

 * (k)
 where @A] is the inverse covariance matrix estimated on the kth class of data by using the
 tuning parameters Aj and A2, and Ek is the number of non-zero elements in ©A A . A grid search
 can then be performed to select Ai and A2 that minimize the AIC(Ai, A2) score. The simulation
 study in Section 7 suggests that this criterion tends to select models whose Kullback-Leibler
 divergence dKL from the true model is low. When the number of variables p is very large,
 computing AIC(Ai, A2) over a range of values for Ai and A2 may prove computationally onerous.
 If this is so, we suggest a dense search over \\ while holding A2 at a fixed low value, followed by

 a quick search over A2, holding Ai at the selected value.

 7. Simulation study

 We compare the performances of the FGL and GGL with two existing methods, the graphical
 lasso and the proposal of Guo et al. (2011), in Section 7.1. When applying the graphical lasso,
 networks are fitted for each class separately. We investigate the effects of n and p on the FGL and

 GGL's performances in Section 7.2. Additional simulation results are presented in Appendix C.
 The effects of the FGL and GGL penalties vary with the sample size. For ease of presentation

 of the simulation study results, we multiply the reported tuning parameters Ai and A2 by the
 sample size of each class before performing the JGL.

 To ease interpretation, we reparameterize the GGL penalties in our simulation study. The
 motivation is to summarize the regularization for 'sparsity' and for 'similarity' separately. In the

 FGL, this is nicely achieved by just using Aj and A2, as the former drives network sparsity and
 the latter drives network similarity. In contrast, in the GGL, both tuning parameters contribute
 to sparsity: Aj drives individual network edges to zero whereas A2 simultaneously drives network
 edges to zero across all K network estimates. We reparameterize our simulation results for the
 GGL in terms of

 u»i =Ai +

 "2 = 72A2/(A|+^A2)'
 which we found respectively to reflect the levels of sparsity and similarity regularization.

 7.1. Performance as a function of tuning parameters
 7.1.1. Simulation set-up
 In this simulation, we consider a three-class problem. We first generate three networks with
 p = 500 features belonging to 10 equally sized unconnected subnetworks, each with a power
 law degree distribution. Power law degree distributions are thought to mimic the structure
 of biological networks (Chen and Sharp, 2004) and are generally more difficult to estimate
 than simpler structures (Peng et al., 2009). Of the 10 subnetworks, eight have the same struc
 ture and edge values in all three classes, one is identical between the first two classes and missing
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 384 P. Danaher, P. Wang and D. M. Witten

 in the third (i.e. the corresponding features are singletons in the third network) and one
 is present in only the first class. The topology of the networks generated is shown in Fig. 6 in
 Appendix D.

 Given a network structure, we generate a covariance matrix for the first class as follows (Peng

 et al., 2009). We create a p~x p matrix with Is on the diagonal, 0s on elements not corresponding
 to network edges and values from a uniform distribution with support on {[-0.4, -0.1]U
 [0.1,0.4]} on elements corresponding to edges. To ensure positive definiteness, we divide each
 off-diagonal element by 1.5 times the sum of the absolute values of off-diagonal elements in its
 row. Finally, we average the matrix with its transpose, achieving a symmetric, positive definite
 matrix A. We then create the (/, j) element of S] as

 where J/7 = 0.6 if i ^ j and djj = 1 if i = j. We create S 2 equal to Si; then we reset one of
 its 10 subnetwork blocks to the identity. We create S3 equal to S2, and reset an additional
 subnetwork block to the identity. Finally, for each class we generate independent, identically
 distributed samples from an N(0, S^-) distribution.

 We present two additional simulations studies involving two-class data sets in Appendix C.
 The first additional simulation uses the same network structure as described above, and the
 second uses a single power law network with no block structure.

 7.1.2. Simulation results

 Our first set of simulations illustrates the effect of varying tuning parameters on the performances

 of the FGL and GGL. We generated 100 three-class data sets with p — 500 features and n = 150
 observations per class, as described in Section 7.1. Class l's network had 490 edges, class 2's
 network is missing 49 of those edges, and class 3's network is missing an additional 49 edges. Fig.
 2 characterizes the average performance of the methods over the 100 data sets. In each plot, the
 curves for the FGL and GGL indicate the results obtained with a single value of the similarity
 tuning parameters A2 and oJ2- The graphical lasso and the proposal of Guo et al. (2011) are
 included in the comparisons.

 Fig. 2(a) displays the number of true edges selected against the number of false edges selected.

 We say that an edge (/, j) in the klh network is selected if 0l f / 0, and we say that the edge is true
 if (S^~ ),y ^0 and false if (S^1),^- = 0. As the sparsity tuning parameters A] and uj\ decrease,
 the number of edges selected increases. At many values of the similarity tuning parameter A2, the
 FGL dominates the other methods. At some choices of the similarity tuning parameter W2,
 the GGL performs as well as the method of Guo et al. (2011 ). The FGL, GGL and the proposal
 of Guo et al. (2011) dominate the graphical lasso.

 Fig. 2(b) displays the sum of squared errors between estimated edge values and true edge

 values: S^=1 S- (S^');y}2. Unlike the proposal of Guo et al. (2011 ), the FGL, GGL
 and the graphical lasso tend to overshrink edge values towards zero owing to the use of convex
 penalty functions. Thus, although the FGL and GGL attain sum of squared errors values that
 are as low as those of Guo et al. (2011), they do so when estimating much larger networks. When
 simultaneous edge selection and estimation are desired, it may be useful to run the FGL or GGL
 once and then to rerun them with smaller penalties on the selected edges, as in Meinshausen
 (2007).

 Fig. 2(c) evaluates each method's success in detecting differential edges, or edges that differ
 between classes. We say that tjie (;, /')th edge is estimated to be differential between the klh

 and k!th networks if 0® ^ôfj\ and we say that it is truly differential if (S^1),-; ^ (S^1 ),;
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 ig®^8o u" i2 -S O c J= ££ o Fig. 2. Performance of the FGL ( ), GGL ( ), the method of Guo et al. (2011 ) ( ) and the graphical lasso ( ) on simulated data with  150 observations in each of three classes and 500 features: (a) number of edges correctly identified to be non-zero (true positive edges) versus number of edges incorrectly identified to be non-zero (false positive edges); (b) sum of squared errors in edge values versus the total number of edges estimated  to be non-zero; (c) number of edges correctly found to have values differing between classes (true positive differential edges) versus the number of edges incorrectly found to have values differing between classes (false positive differential edges); (d) dKL for the estimated models from the true models versus  the A]-norm of the off-diagonal entries of the estimated precision matrices; (e) running time versus the number of non-zero edges estimated (note the use  of a log-scale on the vertical axis)
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 386 P. Danaher, P. Wang and D. M. Witten

 and falsely differential if (S^T1),^ = (E^1),;. For the FGL, the jiumber of differential edges is
 computed as the number of pairs k < k', i < j, such that 6tJ / 0tJ . Since the GGL, the proposal
 of Guo et al. (2011) and the graphical lasso cannot yield edges that are exactly identical across
 classes, for those approaches the number of differential edges is computed as the number of

 pairs k < k', i < j, such that \êlj — 0- \ > 10-2. The number of true positive differential edges is
 plotted against the number of false positive differential edges. By controlling the total number
 of non-zero edges, the sparsity tuning parameters A] and <jj\ have a large effect on the number
 of edges that are estimated to differ between the two networks. The FGL yields fewer false
 positive results than the competing methods, since it shrinks between-class differences in edge
 values to 0. Since neither the GGL nor the method of Guo et al. (2011) is designed to shrink
 edge values towards each other, by this measure neither method outperforms even the graphical
 lasso.

 Fig. 2(d) displays the sum of the dKLs of the estimated distributions from the true distri
 butions, as a function of the /j-norm of the off-diagonal elements of the estimated precision

 matrices, i.e. £*E,-=é/|0^ |. The dKL from the multivariate normal model with inverse covari
 ance estimates @(1\..., &<k> to the multivariate normal model with the true precision matrices

 Sj is
 1 K

 r £[~log{det(0W£*)} + tr(0W£*)].
 L k=\

 At most values of A2, the FGL attains a lower dKL than the other methods, followed by
 the method of Guo et al. (2011) and then by the GGL. The graphical lasso has the worst
 performance, since it estimates each network separately.

 Fig. 2(e) compares the methods' running times. The computation time (in seconds) is plotted
 against the total number of non-zero edges estimated. The graphical lasso is fastest, but the
 FGL and GGL are much faster than the proposal of Guo et al. (2011), owing to the results
 from Section 4. Timing comparisons were performed on an Intel Xeon x5680 3.3 GHz processor.
 It is worth mentioning that the FGL algorithm is much faster in problems with only two classes,
 since in that case there is a closed form solution to the generalized fused lasso problem (Section
 3.2). This can be seen in Figs 4(e) and 5(e) in Appendix C.

 We examined the details of the models from the FGL, GGL, the method of Guo et al.
 (2011) and the graphical lasso with tuning parameters selected as described in Section 6. The
 performance of these models is detailed in Table 1. The AIC-selected FGL and GGL models
 outperform the AIC-selected models from the earlier methods. The AIC selects a larger model

 Table 1. Performance of models selected by the AlCt

 Method Tuning parameters AIC dKL TPE FPE TPDE FPDE

 FGL A) =0.175, A2 = 0.025 1465 774 884 2406 77 4977
 GGL wi =0.225, w2 = l 1470 776 898 736 53 1456
 Graphical lasso A = 0.2 1471 781 766 5578 85 11609
 Guoefa/. (2011) A = 0.4 1338 791 1003 5080 89 8992

 tFor each method, the tuning parameters selected by the AIC are displayed, as are the average values
 over 100 iterations of the following performance metrics: the AIC, the Kullback-Leibler divergence
 from the true model, dKL, numbers of true and false positive edges, TPE and FPE, and numbers
 of true and false positive differential edges, TPDE and FPDE.

 Method Tuning parameters AIC dKL TPE FPE TPDE FPDE

 FGL A] =0.175, A2 =0.025 1465 774 884 2406 77 4977
 GGL ux =0.225,u2 = 1 1470 776 898 736 53 1456
 Graphical lasso A = 0.2 1471 781 766 5578 85 11609
 Guo et al. (2011) A = 0.4 1338 791 1003 5080 89 8992
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 Joint Graphical Lasso 387

 for the method of Guo et al. (2011) than it does for the FGL and GGL. For all methods, the AIC
 appears to select models with low Kullback-Leibler divergences from the truth but with greater
 numbers of edges than would be ideal for accurate hypothesis generation. The AIC selected a
 much smaller model for the GGL than for the other methods, achieving by far the best edge
 estimation performance.

 7.2. Performance as a function of n and p
 We now evaluate the effect of sample size n and dimension p on the performances of the FGL
 and GGL.

 7.2.1 Simulation set-up
 We generate a pair of networks with p = 500 much as described in Section 7.1.1, but with
 K = 2 instead of K = 3. The first network has 10 equal-sized components with power law degree
 distributions, and the second network is identical to the first in both edge identity and value,
 but with two components removed.

 In addition to the 500-feature network pair, we generate a pair of networks with p = 1000
 features, each of which is block diagonal with 500 x 500 blocks corresponding to two copies
 of the 500-feature networks just described. We generate covariance matrices from the networks
 exactly as described in Section 7.1.1.

 1.2.2. Simulation results

 For both the p = 500 and the p = 1000 networks, we simulate 100 data sets with n = 50, n = 200
 and n = 500 samples in each class. We run the FGL with Ai = 0.2 and À2 = 0.1, and the GGL
 with Ai = 0.05 and A2 = 0.25. These tuning parameter values were chosen because they were in
 the range of successful values in the similar simulation set-up of Section 7.1.2 (see Fig. 2) and
 therefore provide a good setting under which to evaluate the effects of n and p on the FGL and
 GGL. Table 2 displays the dKL of each estimated model as well as the sensitivity and FDR

 Table 2. Performances as a function of n and pt

 Method p n Mean Means for the following types of detection:
 dKL

 Edge Edge Differential Differential
 sensitivity FDR edge edge

 sensitivity FDR

 FGL 500 50 545.1 0.502 0.966 0.262 0.996
 200 517.5 0.570 0.053 0.228 0.485
 500 516.6 0.590 0.001 0.192 0.036

 1000 50 1119.3 0.600 0.970 0.245 0.998
 200 1035.0 0.666 0.063 0.223 0.557
 500 1033.3 0.681 0.000 0.194 0.025

 GGL 500 50 549.8 0.490 0.973 0.337 0.996
 200 520.8 0.505 0.060 0.244 0.903
 500 519.7 0.524 0.010 0.194 0.921

 1000 50 1127.9 0.587 0.976 0.316 0.998
 200 1041.7 0.615 0.061 0.239 0.908
 500 1039.4 0.629 0.007 0.197 0.920

 t Means over 100 replicates are shown for dKL, and for sensitivity and the FDR of
 detection of edges and differential edge detection.

 Method p n Mean Means for the following types of detection:
 dKL

 Edge Edge Differential Differential
 sensitivity FDR edge edge

 sensitivity FDR

 FGL 500 50 545.1 0.502 0.966 0.262 0.996
 200 517.5 0.570 0.053 0.228 0.485
 500 516.6 0.590 0.001 0.192 0.036

 1000 50 1119.3 0.600 0.970 0.245 0.998
 200 1035.0 0.666 0.063 0.223 0.557
 500 1033.3 0.681 0.000 0.194 0.025

 GGL 500 50 549.8 0.490 0.973 0.337 0.996
 200 520.8 0.505 0.060 0.244 0.903
 500 519.7 0.524 0.010 0.194 0.921

 1000 50 1127.9 0.587 0.976 0.316 0.998
 200 1041.7 0.615 0.061 0.239 0.908
 500 1039.4 0.629 0.007 0.197 0.920
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 in both edge detection and differential edge detection. In this simulation setting, the accuracy
 of covariance estimation (as measured by dKL) improves significantly from n = 50 to n = 200,
 and it improves only marginally with a further increase to n = 500. Detection of edges improves
 throughout the range of ns sampled: for both the FGL and the GGL, sensitivity improves
 slightly with increased sample size, and the FDR decreases dramatically. Accurate detection
 of edge differences is a more difficult goal, though the FGL succeeds in it at higher sample
 sizes.

 8. Analysis of lung cancer microarray data

 We applied the FGL to a data set containing 22283 microarray-derived gene expression mea
 surements from large airway epithelial cells sampled from 97 patients with lung cancer and
 90 controls (Spira et al., 2007). The data are publicly available from the Gene Expression Om
 nibus (Barrett et al., 2005) at accession number GDS2771. We omitted genes with standard
 deviations in the bottom 20% since a greater share of their variance is probably attributable
 to non-biological noise. The remaining genes were standardized to have mean 0 and standard
 deviation 1 within each class. To avoid disparate levels of sparsity between the classes and to
 prevent the larger class from dominating the estimated networks, we weighted each class equally

 instead of by sample size in problem (4). Since our goal was data visualization and hypothesis
 generation, we chose a high value for the sparsity tuning parameter, Ai =0.95, to yield very
 sparse network estimates. We ran the FGL with a range of A2-values to identify the edges that
 differed most strongly, and we settled on À2 = 0.005 as providing the most interpretable results.

 This application-driven choice of tuning parameters is appropriate when the goal of network
 estimation is description and hypothesis generation. A full analysis of this data set would involve
 examination of network estimates across a range of tuning parameters. Application of theorem
 1 revealed that only 278 genes were connected to any other gene by using the chosen tuning
 parameters. Identification of block diagonal structure by using theorem 1 and application of
 the FGL algorithm took less than 2 min. (Note that this data set is so large that it would be
 computationally prohibitive to apply the proposal of Guo et al. (2011)!) The FGL estimated
 134 edges shared between the two networks, 202 edges present only in the cancer network and
 18 edges present only in the normal tissue network. The results are displayed in Fig. 3.

 The estimated networks contain many two-gene subnetworks that are common to both classes,
 a few small subnetworks and one large subnetwork specific to tumour cells. Reassuringly, 45%
 of edges, including almost all of the two-gene subnetworks, connect multiple probes for the
 same gene. Many other edges connect genes that are obviously related, that are involved in
 the same biological process or that even code for components of the same enzyme. Examples
 include TUBA IB and TUBA1C, PABPC1 and PABPC3, HLA-B and HLA-G, and SERPINB3
 and SERPINB4. Recovery of these pairs suggests that the FGL (and other network analysis
 tools) can generate high quality hypotheses about gene coregulation and functional interactions.
 This increases our confidence that some of the non-obvious two-gene subnetworks that are
 detected in this analysis may merit further investigation. Examples include DAZAP2 and TCP1,
 PRKAR1A and CALM3, and BCLAF1 and SERPB1. A complete list of subnetworks detected
 is available in the on-line supplementary materials.

 The small black and green network in Fig. 3 suggests an interesting phenomenon. It contains
 multiple probes for two haemoglobin genes, HBA2 and HBB. In the normal tissue network,
 the probes for these genes are heavily interconnected both within and between the genes. In the
 tumour cells, although edges between HBA2 probes and between HBB probes are preserved, no
 edges connect the two genes. The abundance of connections between the two genes in healthy
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 Fig. 3. Conditional dependence networks inferred from 17772 genes in normal and cancerous lung cells
 (278 genes have non-zero edges in at least one of the two networks): , edges common to both classes;

 , tumour-specific edges; , normal-specific edges

 cells and the absence of connections in tumour cells may indicate a possible direction of future
 investigation.

 The most promising results of this analysis arise from the large subnetwork (104 nodes for 84
 unique genes) that is unique to tumour cells. Many of the subnetwork's genes are involved in
 constructing ribosomes, including RPS8, RPS23, RPS24, RPS7P11, RPL3, RPL5, RPL10A,
 RPL14P1, RPL15, RPL17, RPL30 and RPL31. Other genes in the subnetwork further in
 volve ribosome functioning: SRP14 and SRP9L1 are involved in recruiting proteins from ribo
 somes into the endoplasmic reticulum and NACA inhibits the SRP pathway. Thus this
 subnetwork portrays a detailed web of relationships that is consistent with known biology.
 More interestingly, this network also contains two genes in the RAS oncogene family: RAB1A
 and RAB11A. Genes in this family have been linked to many types of cancer and are consid
 ered promising targets for therapeutics (Adjei, 2008). These genes' connections with ribosome
 activity in the tumour samples may indicate a relationship that is common to an important
 subset of cancers. Many other genes belong to this network, each indicating a potentially novel
 interaction in cancer biology.

 9. Discussion

 We have introduced the JGL, a method for estimating sparse inverse covariance matrices on the
 basis of observations drawn from distinct but related classes. We describe an ADMM algorithm
 for the solution to the JGL problem with any convex penalty function, and we provide explicit
 and efficient solutions for two useful penalty functions. Our algorithm is tractable on very large
 data sets (more than 20000 features) and usually converges in seconds for smaller problems
 (500 features). Our joint estimation methods outperform competing approaches over a range
 of simulated data sets.

 In the JGL optimization problem (4), the contribution of each class to the penalized log
 likelihood is weighted by its size; consequently, the largest class can have outsize influence on

 Fig. 3. Conditional dependence networks inferred from 17772 genes in normal and cancerous lung cells
 (278 genes have non-zero edges in at least one of the two networks): , edges common to both classes;

 , tumour-specific edges; , normal-specific edges

 Fig. 3. Conditional dependence networks inferred from 17772 genes in normal and cancerous lung cells
 (278 genes have non-zero edges in at least one of the two networks): , edges common to both classes;

 , tumour-specific edges; , normal-specific edges
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 390 P. Danaher, P. Wang and D, M. Witten

 the estimated networks. By omitting the «Herrn in problem (4), it is possible to weight the
 classes equally to prevent a single class from dominating estimation.

 We note that the FGL and GGL's reliance on two tuning parameters is a strength rather than a

 drawback: unlike the proposal of Guo et al. (2011 ), which involves a single tuning parameter that
 controls both sparsity and similarity, in performing the FGL and GGL one can vary separately
 the amount of similarity and sparsity to enforce in the network estimates.

 The JGL has potential applications beyond those discussed in this paper. For instance, one
 could use it to shrink multiple classes' precision matrices towards each other to define a classifier

 that is intermediate between quadratic discriminant analysis and linear discriminant analysis
 (Hastie et al, 2009). In fact, a similar approach has been taken in recent work (Simon and
 Tibshirani, 2011). In the unsupervised setting, it can be used in the maximization step of Gaus
 sian model-based clustering to reduce the variance that is associated with estimating a separate
 covariance matrix for each cluster.

 The FGL and GGL are implemented in the R package JGL, which is available on the Com
 prehensive R Archive Network: http : / / cran. r-proj ect. org/.
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 Appendix A: Modifying the joint graphical lasso to work on the scale of partial
 correlations

 A reviewer suggested that, under some circumstances, it may be preferable to encourage the K networks
 to have shared partial correlations, rather than shared precision matrices. Below, we describe a simple
 approach for extending our FGL proposal to work on the scale of partial correlations. A similar approach
 can be taken to extend the GGL. The extension relies on two insights.

 (a) pij = -a''/ where is the true partial correlation between the ;'th and /th features, and
 where aij is the (/, y')th entry of the true precision matrix.

 (b) The algorithm for solving the FGL optimization problem can easily be modified to make use of the
 penalty function

 f({©}) = E E Ai.oif® I + E E - 0/fl. (22>
 k= 1 i^j k<k' i.j

 where A ,fij — \,/J(â"âJi), f = 1,2, and where â" is an estimate of the ith diagonal element of the K
 precision matrices. (Here, we assume that the K precision matrices have shared diagonal elements.)
 The estimate {â"} can be obtained in various ways, for instance by performing the graphical lasso
 on the samples from all K data sets together. Then this approach will effectively result in applying
 a generalized fused lasso penalty to the partial correlations for the K classes.

 Appendix B: Proofs of theorems 1 and 2

 B. 1. Preliminaries to proofs of theorems 1 and 2
 We begin with a few comments on subgradients. The subgradient of | | with respect to 0(:f equals
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 1 if Of) > 0,
 -1 if Ofj < 0,
 a if Ofj = 0

 for some a e [-1,1], The subgradient of 10-f - Q\) '| with respect to (0®, 0* ') for k^k! equals (d, — d),
 where

 d={
 1 if Ofj > ûjp,

 -1 if Ofj < Ojp,
 if 0$>=Ojp

 for some a g [—1,1]. Finally, the subgradient of {£f=, (ö'*')2}1/2 with respect to (0j'\..., d'f') is given by IJ ' J w , ...,V|y

 -1/2

 " if £(C)2>°>
 1 k= 1 J /c=l

 (TW,...,T^) if 0« = ... = 0<f> = O

 for some Ti.y,..., Tfc.ij such that Ef=1 T2klj ^ 1.
 To prove theorem 1, we shall use the following lemma.

 Lemma 2. The following two sets of conditions are equivalent.

 (a) |wi Si I ^ Ai +A2, ^ Ai + A2 and |«iSi +«2^2! ^ 2X\.
 (b) There exist ri,r2,Te[-l, 1] such that -«1S1 — AjTi — A2T = 0, and -«2S2 - AiT2 +A2T = 0.

 Proof. We shall begin by proving that set (b) implies set (a), and then prove that set (a) implies set (b).
 Proof that set (b) implies set (a): first, —«i5i - A|Ti - A2T = 0 implies that |«i5i| < Ai + A2, since

 r,,Te[—1,1], Similarly, -W2S2 — A|T2 +A2T = 0 implies that \n2S2\ < A! + A2. Finally, summing the two
 equations in set (b) reveals that «iS| +n2S2 = -A|(ri +F2), which implies that |niSi + n2S2K2Ai.
 Proof that set (a) implies set (b): without loss of generality, assume that n 1 S\ > n2 S2. We split the proof

 into two cases.

 (a) Case l,n\S\—n2S2< 2X2. let Ti =T2 = (—«iSi — n2S2)/2X\, and T = (—«iSi + «2S2)/2A2.
 First, note that by conditions (a) we know that |«]5i +n2S2\ ^2A,. Therefore, Ti, r2 g [—1,1].

 Second, note that case l's assumption that ntS\ -n2S2 < 2A2 implies that Te[-1,1]. Finally, we
 see by inspection that —n 1 Si - AiTi - A2T = 0, and -n2S2 - AiT2 + A2T = 0.

 (b) Case 2, n\S\ — n2S2^2X2: let Tj = (—«1 Si + A2)/Ai , T2 = (-n2S2- X2)/X\, and Y = -l. Then, by
 inspection, —«iSi - AiTj - A2T = 0, and -n2S2 - Ai^-t- A2T = 0.
 It remains to show that T,, T2,T e [—1,1]. Trivially, T = —1 e[—1,1], From our assumption

 that |niSi|< Ai + A2, we know that F| = {~ri\S\ +A2)/A| ^ — 1. Moreover, by the assumptions that
 «iSi -n2S2~^l\2 and |ni Si + /12S2I ^2Ai, we have that

 r _—niSi+X2^—niSi+\2{(n\Si—n2S2)/2\2} _—niS\—n2S2^
 ^ x — nx I-") A, A[ 2Ai

 Therefore Tj €[—1,1],
 By the assumption that ^ A| + A2, we know that r2 = (—n2S2 — X2)/Xi ^ 1. From the as
 sumptions that n\Si — n2S2^2X2 and |«iSi +n2S2\ ^2A|, we have that

 -n2S2-X2 -n2S2-X2{(n\S\-n2S2)/2X2} -n\S\—ri2S2
 = Âï ä; =—2ä;—>_1- (24)

 Therefore r2e[-l, 1].

 Thus we conclude that set (a) implies set (b), and our proof of lemma 2 is complete. □

 We shall make use of the following lemma to prove theorem 2.

 Lemma 3. The following two conditions are equivalent.

 (a) There exist scalarsa\,...,aK such that a 1 and «tlS/tK Ai + X2aic for all k= 1,..., K.
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 392 P. Danaher, P. Wang and D. M. Witten

 (b) There exist scalars Ti,... ,r* €[— 1,1] and T],...,TK such that Sf=1T^ ^ 1 and nkSk + A|Ta +
 A2Tt=Ofor/t=l K.

 Proof. We shall begin by proving that condition (b) implies condition (a) and then show that condition
 (a) implies condition (b).

 Proof that condition (b) implies condition (a): by condition (b), nt|S/tl = lAiT* + A2Tt| ^ Ai|Tt|+
 A2lTt| ^ A] + A21Xa I. Letting ak = |T*|, the result holds.

 Proof that condition (a) implies condition (b)'.\&.Tk and Tk take the following forms, for k= 1,K,

 1 if nkSk ^ A),
 —nkSk/\\ if — A; <nkSk < Ai, (25)
 1 i£nkSk^ A1,

 (—nkSk + AO/A2 ifnt5'Jt>A|,
 0 if — A] ^nkSk^\\, (26)
 (—nkSk — AO/A2 if«^5t<— Ai.

 First, we note by inspection that r* e [—1,1] and that nkSk + \\Tk + A2T* =0 for k= 1,..., K. It remains
 to show that T,k=lT2k < 1. Specifically, we shall show that T| ^aj for k= 1,..., K. To see why this is so,
 note that if — Ai <nkSk< X\ then 0 = T2k^a2k. And, if nkSk > Ai or nkSk < — Aj, then

 2 I rik\Sk\ A] \ 2
 T*=( a2 » ^

 B.2. Proof of theorem 1

 We first consider the claim for the case K = 2. By the Karush-Kuhn-Tucker (see for example Boyd and
 Vandenberghe (2004)) conditions, a necessary and sufficient set of conditions for {0} to be the solution
 to the JGL problem is that

 0 = «1(©(1,)-1-n,S<l)-Alrl-A2T,
 O = n2(0(2)r'-»2S(2,-A,r2 + A2T,

 where rMj- is the subgradient of \6^\ with respect to d-f, T2,u is the subgradient of |0® | with respect to
 0® and Tjj is the subgradient of I#,]' — 0®| with respect to ()\j '.

 Let C1 and C2 be a partition of the p variables into two non-overlapping sets, with C\ fiC2 = 0 and
 C) U C2 = {1 , />}. Consider the matrices

 0(1) =
 0

 ®2
 (1)

 0(2) / O,
 0 ©2

 (28)

 f
 where ©j1' and ©l,2) solve the JGL problem on the features in C\, and ©j1' and 0® solve the JGL problem
 on the features in C2. By inspection of equations (27), 0(1) and ©(2) solve the entire JGL optimization
 problem if and only if, for all ieC 1 and j e C2, there exist T,-;- e[— 1,1] such that

 -nl^,-A1r1,,7-A2T,J=0,
 -n24)-Air2,7 + ^T,7 = 0.

 Therefore, by lemma 2, the proof of the claim for the case K — 2 is complete.
 The derivation of the sufficient condition for the case K > 2 is simple and we omit it here.

 (29)

 B. 3. Proof of theorem 2

 We note that theorem 2's condition ( 19) is equivalent to

 l«tSy)l<A,+A2ayit for all ieC\,j&C2,k=\,...,K (30)
 where 0,7,1,... ,aiJ<K are scalars that satisfy ^k=lajjk < 1. We shall prove that condition (30) is necessary
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 Joint Graphical Lasso 395

 and sufficient for the variables in C\ to be completely disconnected from those in C2 in each of the resulting
 network estimates.

 By the Karush-Kuhn-Tucker conditions, a necessary and sufficient set of conditions for {©} to be the
 solution to the JGL problem is that

 for k=\,.... K. In equation (31), Iis the subgradient of with respect to Ofj, and (T| ..., T KJj)
 is the subgradient of v/^f=1 (filf)2 with respect to (<?■]',O'j).

 Let CI and C2 be a partition of the p variables into two non-overlapping sets, with C\ D C2 = 0 and
 Ci U C2 = {1,..., p}. Consider the matrices of the form

 for k= 1,..., K, where ©j",..©f solve the JGL problem on the features in C1, and ©2'', ■ ■ ■, ©f' solve
 the JGL problem on the features in C2. By inspection of equation (31), ©(1),...,0® solve the entire
 JGL optimization problem if and only if, for all ieC\ and j e Ci, there exist I\,j,..., VK ij e[— 1,1] and
 T ijj,... ,T Kjj satisfying 1 such that

 Therefore, by lemma 3, the proof is complete.

 Appendix C: Additional simulations for two-class data sets

 We first present results for a simulation study similar to that in Section 7.1, but with only two classes.
 Taking an approach similar to that described in Section 7.1, we defined two networks with p = 500 features
 belonging to 10 equally sized unconnected subnetworks, each with a power law degree distribution. Of the
 10 subnetworks, eight have the same structure and edge values in both classes, and two are present in only
 one class. Class 1 's network has 490 edges, 94 of which are not present in class 2. We generated covariance
 matrices as described in Section 7.1.1. Again, we simulated 100 data sets with n = 150 observations per
 class. The results that are shown in Fig. 4 are similar to the results in Section 7.1.2.

 We also simulated data with an entirely different network structure. Instead of the block diagonal
 network structure that was used in the previous simulations, in this simulation we generated data drawn
 from a single large power law network. We defined class l's network to be a single power law network with
 only one component and generated S, as described in Section 7.1.1. We then identified a branch in this

 0 = ^(©(4)r1-n,S<t,-A1r,-A2T,  (31)

 (32)

 —"kSf? — AiTtjj — A2T,tiij = 0.  (33)

 ^ / \ / ^ \ \\ / ,

 Fig. 6. Network used to generate simulated data sets for Fig. 2 in Section 7.1.2: full edges are common to
 all three classes; broken edges are present only in classes 1 and 2, and dotted edges are present only in
 class 1
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 396  P. Danaher, P. Wang and D. M. Witten

 network connected to the rest of the network through only one edge. We then let Ej1 equal except
 for the elements corresponding to the edges in the selected branch, which were set to be 0 instead. Finally,
 we defined £2 by inverting Sjand generated the two classes' data by using Si and £?. This yielded
 distributions based on two power law networks that were identical except for a missing branch in class 2.
 Class l's network has 499 edges, 104 of which are not present in class 2. We simulated 100 data sets with
 n — 150 observations per class. Fig. 5 shows the results, averaged over the 100 data sets. Again, the FGL
 and GGL were superior to or competitive with the other methods.

 Appendix D: Network structure used in simulations

 The network structure for the simulations that were described in Section 7.1 is displayed in Fig. 6. Black
 edges are shared between all three classes' networks, green edges are present only in classes 1 and 2 and
 red edges are present only in class 1.
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