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A common metaphor for describing development is a rugged epigenetic landscape where cell
fates are represented as attracting valleys resulting from a complex regulatory network. Here, we
introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data
with techniques from physics. Each cell fate is a dynamic attractor, yet cells can change fate in
response to external signals. Our model suggests that partially reprogrammed cells are a natural
consequence of high-dimensional landscapes and predicts that partially reprogrammed cells should
be hybrids that co-express genes from multiple cell fates. We verify this prediction by reanalyzing
existing data sets. Our model reproduces known reprogramming protocols and identifies candidate
transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a
powerful paradigm for understanding cellular identity.

Understanding the molecular basis of cellular identity
and differentiation is a major goal of modern biology.
This is especially true in light of the work of Takahashi
and Yamanaka demonstrating that the overexpression of
just four transcription factors (TFs) is sufficient to con-
vert somatic fibroblasts into cells resembling embryonic
stem cells (ESCs), dubbed induced pluripotent stem cells
(iPSCs) [1]. The idea of using a small set of TFs to re-
program cell fate has proven to be extremely versatile
and reprogramming protocols now exist for generating
neurons [2], cardiomyocytes [3], liver cells [4, 5], and hu-
man iPSCs [6]. Despite these revolutionary experimental
advances, cell fate is still poorly understood mechanisti-
cally and theoretically. Recent experiments suggest cell
fates can be viewed as high-dimensional attractor states
of the gene regulatory networks underlying cellular iden-
tity [7]. In particular, cell fates are characterized by
a robust gene expression and epigenetic state resulting
from the complex interplay of transcriptional regulation,
chromatin regulators, non-coding and micro RNAs, and
signal transduction pathways.

These experiments have renewed interest in the idea of
an ‘epigenetic landscape’ that underlies cellular identity
[8–11]. In the landscape metaphor, cell fates are viewed
as attracting basins in a rugged landscape and differen-
tiation proceeds through signal-dependent ‘low-energy’

valleys that connect cell fates (see Figure 1). Cells can
also change fates due to probabilistic barrier crossings
between valleys as in cellular reprogramming[12, 13].

Traditionally, epigenetic landscapes have been mod-
eled as low-dimensional systems using either a small sub-
set of genes [14] or a few cell fates [15]. These methods
cannot easily be scaled to higher dimensions. Instead,
inspired in part by the success of statistical energy land-
scapes in protein folding [16], we avoid these limitations
by combining large-scale genomic data with techniques
from spin glass physics and neural networks [17–20]. Us-
ing only data of mouse microarray gene expression states
as input, we construct a parameter-free epigenetic land-
scape model for cellular identity with 95 stable cell fates
and 1152 TFs. Each cell fate is a robust attractor, yet
cells can deterministically switch fates in response to ex-
ternal signals. Our model provides a unified framework
to discuss differentiation and reprogramming. It also nat-
urally explains the existence of partially reprogrammed
cell fates (stable cell fates found in reprogramming ex-
periments but not in vivo) as ‘spurious’ attractors re-
sulting from the high dimensionality of the landscape.
Our model predicts, and we verify, that partially repro-
grammed cells are hybrids that co-express TFs of mul-
tiple naturally occurring cell fates. Finally, our model
reproduces known reprogramming protocols to iPSCs,
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heart, and liver, and can be used for designing repro-
gramming protocols to novel cell fates. Taken together,
these results suggest that epigenetic landscapes represent
a powerful framework for understanding the molecular
circuitry and dynamics that gives rise to cell fate.

Any landscape model must reproduce several exper-
imental observations. Most importantly, all cell fates
must be robust attractors, yet allow cells to change fate
through rare stochastic transitions as in cellular repro-
gramming experiments [21, 22]. A common result of re-
programming is not the desired cell fate, but partially re-
programmed cells [23, 24]. These results suggest that the
landscape is rugged and may contain additional spurious
attractors corresponding to cell fates that do not natu-
rally occur in vivo. In addition, environmental and ex-
ternal signals can control cell fates. Some environments
stabilize particular cell fates (Fig. 1B). A dramatic ex-
ample of this is a protocol for reprogramming to neural
progenitor cells (NPCs) that is identical to Yamanaka’s
protocol for reprogramming to ESC except for the cultur-
ing media [25]. Other external signals deterministically
switch cell fates, as occurs in normal development (Fig.
1C) [26]. Together, these imply the landscape is a dy-
namic entity that depends on environmental signals, and
we will show that our landscape successfully incorporates
all of these experimental observations.

CONSTRUCTING EPIGENETIC LANDSCAPES

The epigenetic state space

Cellular identity and differentiation are largely con-
trolled by epigenetics, especially histone modifications
(HMs)[27] (Fig. 2A). Consequently, the ideal data set
for constructing epigenetic landscapes are the genome-
wide HM states for genes in all cell fates. However, un-
like microarrays, global HM data are limited to a few
cell fates [28, 29]. To circumnavigate this problem, we
used available HM data and compared them to microar-
ray gene expression levels for available cell fates; this
created a conditional probability distribution of having
a HM given a TF expression level (Fig. 2B). We found
a sharp threshold which distinguished genes with the ac-
tivating modification of histone 3 tri-methylation at ly-
sine 4 (K4) from genes with the inactivating modifica-
tion of histone 3 tri-methylation at lysine 27 (K27) and
poised/bivalent genes (both K4 and K27). This thresh-
old implies that continuous TF expression levels can be
used to infer the discrete HM states. We then used 393
relevant whole genome microarrays (details in SI) to cre-
ate a binary TF state for N = 1152 TFs (labeled by Latin
indices i, j) in p = 95 cell fates (labeled by Greek indices
µ, ν). A TF was designated active, (+1), if its expres-
sion level in the corresponding microarray was above the
threshold and inactive, (−1), otherwise (Fig. 2C). These

binary (i.e. on/off) TF data are the only biological in-
put into our model. We restricted our considerations to
TFs due to their importance in cellular reprogramming
and differentiation. However, our model can be easily
generalized to include other important genes.

Motivation from attractor neural networks

The Takahashi and Yamanaka reprogramming experi-
ments [1] are reminiscent of content-addressable memory
and attractor neural networks. A content-addressable
memory allows one to retrieve a full memory based on
sufficient partial information. To paraphrase the origi-
nal Hopfield paper[17], if we want to recall a paper cita-
tion, for example,“John J. Hopfield, Neural networks and
physical systems with emergent collective computational
abilities, 1982,” a content-addressable memory allows us
to recall the full citation with the partial recall “Hop-
field Neural networks 1982” or other sufficient details. In
the Yamanaka reprogramming protocol, overexpressing
only four TFs is enough for a fibroblast to “recall” the
global TF expression of an ESC. A content-addressable
memory is naturally represented as a basin of attraction
in a dynamical system, with partial recall corresponding
to entering the basin of attraction and full recall corre-
sponding to reaching the minimum of the basin. Hop-
field attractor neural networks [17, 18, 20] are a general
method to take an input set of vectors (“memories”) and
explicitly construct a unique, global, landscape such that
each input vector is a global minimum and has a basin
of attraction.

Mathematical model

We now give a brief mathematical description of how
we construct epigenetic landscapes. An arbitrary state
of a cell is represented as a vector Si of length N =
1152, with the ith component of the vector +1 if TF i
is active and −1 if it is inactive. A cell fate µ = 1 . . . 95
is characterized by its binary TF expression vector, ξµi .
Our data set determine the ξµi and these are the only
biological input into the landscape.

A direct application of the original Hopfield neural net-
work [17] fails for the real biological data set we con-
structed. The original Hopfield method works for vec-
tors whose components are random, independent vari-
ables with equal probability of on (+1) and off (−1)
states. This leads to Gaussian noise between mem-
ories [18]. However, cell fates are highly correlated
(Fig. S1), as shown by the cell type correlation matrix

Aµν = 1/N
∑N
i=1 ξ

µ
i ξ

ν
i which characterizes the correla-

tion between cell fate µ and ν. These correlations lead
to noise that globally destabilizes all basins of attrac-
tion. The Hopfield construction can be generalized to
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the projection-method which can incorporate correlated
“memories” [19].

Mathematically, the high correlation between cell fates
implies that the overlap (vector dot-product), mµ =

1/N
∑N
i=1 ξ

µ
i Si, is a poor measure of how close a cell

with expression state Si is to a cell fate µ. Instead, the
“projection” accurately characterizes correlated vectors
and is given by aµ =

∑p
ν=1(A−1)µνmν , of Si on a cell

fate µ. The projection measures the orthogonal projec-
tion of a state Si onto the subspace spanned by naturally
occurring cell fates, {ξµi } (see Fig. 2D and SI).

We now explicitly construct the landscape using the
potential energy (Lyapunov function), H, given by

H = −1

2

∑

i,j

SiJijSj −
N

2

∑

µ

χµaµ − 1

2

∑

i,j

SiKij(~c)Sj

(1)
The coupling constants Jij =
1/N

∑p
µ=1

∑p
ν=1 ξ

µ
i (A−1)µνξνj represent effective,

correlation-based, interactions between TFs that may
be indirect and give rise to stable basins of attraction
around each cell fate. The χµ are an environment-
dependent local field that can stabilize or destabilize
a specific cell fate µ. The Kij(~c) are differentiation
couplings that switch between cell types and can depend
on the environment through the external input ~c. Future
work will explore the exact dependence of switching on
the external environment. See Box 1 for technical de-
scription, and see SI for more details of the Hamiltonian
and a geometric interpretation.

The dynamics of the network proceed by random,
asynchronous updates [20] according to the probability

P [Si(t+ 1)] =
eβhi(t)Si(t)

eβhi(t) + e−βhi(t)
(2)

with the local field on TF i given by hi = − ∂H
∂Si

, and
β an effective noise parameter that controls the level of
stochasticity resulting from biochemical noise (see SI).
This update time cannot be directly related to biologi-
cal time. Instead, inspired by experiments showing that
reprogramming rates scale with cell division rates [12],
and the observation that cellular divisions produce HM
errors [30], we introduced an additional source of stochas-
ticity into the dynamics by periodically flipping a fixed
percentage of TF states to mimic cell division (see SI).

RESULTS

Cell fates are dynamic attractors that are responsive
to signals

We tested our model using two in silico experiments.
To verify that naturally occurring cell fates are dy-
namic attractors, we randomly perturbed the TF state

of cells, Si, from the ESC state and then tracked the
TF state over time. Fig. 2E shows the projection of
the TF state on the ESC state as a function of time.
For a large number of starting conditions, after an ini-
tial transient, the system relaxes back to the ESC state
(red bracket), explicitly demonstrating the existence of
a large basin of attraction [7]. Originally, the interac-
tions, Jij , between TFs are symmetric, while biologi-
cally realistic interactions should be non-symmetric, im-
plying a non-Lyapunov pseudo-potential [31]. The sym-
metry condition can be relaxed, for example by ran-
domly deleting 20% of interactions (Fig. 2E Diluted).
The cell fates remain robust attractors even for these
pseudo-potentials. Our model can also deterministically
switch between cell fates in response to differentiation
signals. For example, the common myeloid progenitor
(CMP) is a blood cell fate that in vivo can differenti-
ate into either granulo-monocytic progenitors (GMP) or
megakaryocyte-erythroid progenitors (MEP). In Fig. 2F,
we show in silico experiments where we start the system
in the CMP state and show the trajectories after apply-
ing either the GMP (signal 1, blue) or MEP (signal 2,
red) differentiation signal, resulting in branching to two
distinct cell fates.

Partially reprogrammed cells as “spuirous”
attractors

Partially reprogrammed cells have a natural interpreta-
tion in our model as spurious attractors arising from the
high dimensionality (N = 1152) of the state space [20].
These spurious attractors are guaranteed by topology of
high-dimensional vector spaces and can be interpreted as
potential cell fates that do not occur in vivo. Naively,
one would expect partially reprogrammed cells to have
minimal projection on natural cell fates since in high-
dimensional vector spaces, any two random vectors are
orthogonal (Fig. S2). The literature on neural networks
[19] specifically predicts that in our model, spurious at-
tractors should be hybrid cells that co-express genes from
multiple cell fates, not necessarily including the begin-
ning or ending cell fate. Reanalyzing all existing genome-
wide data sets on partially reprogrammed cells (Table
1) validates our prediction. The purity of the partially
reprogrammed cell colonies is important because a het-
erogenous sample could mimic hybrids. However, nearly
all studied partially reprogrammed cells grew as homoge-
nous colonies. Therefore, the limited experimental data
does not support the idea of partially reprogrammed cells
being explained by cell culture heterogeneity. In addi-
tion, reexamination of a claimed iPSC-to-NSC conversion
[32] shows that the resulting cell fate is more accurately
characterized as a partially reprogrammed cell. This il-
lustrates how the techniques developed here can be used
to improve the classification of reprogrammed cells.
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TABLE I. Partially reprogrammed cells as spurious at-
tractors. Partially reprogrammed cell lines (first column)
and their significant projections (i.e 2 std above noise) onto
“natural” cell fates based on microarray data. The last col-
umn indicates whether partially reprogrammed cell lines were
homogeneous. The iPSC-NSC was originally classified as an
NSCs [32] but is more accurately characterized as a partially
reprogrammed hybrid of NPCs and NSCs. Abbreviations:
iPSC, induced pluripotent stem cell; NSC, neural stem cell;
NPC, neural progenitor cell; ESC, embryonic stem cell; MEF,
mouse embryonic fibroblast; MPP, multi-potent progenitor.

Cell line Start Goal Highest projecting states (projection) Homogeneous?

1A2 [23] MEF ESC MEF (0.187), ESC (0.163), muscle-smooth (0.126) Yes

1B3 [23] MEF ESC MEF (0.161), ESC (0.149) Yes

BIV1+ [24] B Cell ESC melanocyte (0.1548), MPP (0.136) No info

BIV1- [24] B Cell ESC ESC (0.434), pro-mesoderm (0.162), No info

MPP (0.153), neural crest SC (0.127)

MCV6 [24] MEF ESC ESC (0.264), MPP (0.145), Yes

pre-erythroid (0.133), smooth muscle (0.132)

MCV8 [24] MEF ESC ESC (0.180), MPP (0.160), melanocyte (0.143) No

large intestine (0.135)

iPSC-NSC [32] iPSC NSC NPC (0.428), NSC (0.281) Yes

Identifying transcription factors for cellular
reprogramming

Our landscape model also provides a quantitative
method to identify candidate TFs for reprogramming.
First, recent experiments provide evidence that repro-
gramming TFs should be based only on final, not initial,
cell fates[22]. Second, intuitively, reprogramming candi-
dates should be both highly expressed and highly “pre-
dictive” of the desired cell fate. Since TF expression lev-
els are well-fit by a log-normal distribution (Fig. S3), the
log-normal z-score naturally defines high and low TF ex-
pression levels. Within our landscape, the “predictivity”
of a TF, for a given cell fate, is measured by its con-
tribution to the potential energy of that cell fate. This
“projection-contribution” is mathematically represented
as ηµi = 1/N

∑p
ν=1(A−1)µνξνi for TF i in cell fate µ. To

obtain a single quantitative rank, we can multiply the
z-score by the projection-contribution.

We validate our candidate reprogramming TFs by
comparing to existing protocols. Fig. 3 shows every TF’s
projection-contribution versus z-score in ESC, heart (car-
diomyocytes), and liver (hepatocytes). Note that neu-
rons were not included due to lack of compatible mi-
croarray data. ESC are examined in Fig. 3A and Fig.
3B. We have explicitly labeled TFs from existing repro-
gramming protocols [21, 22]. As expected, these TFs are
both predictive and highly expressed (upper right hand
corner of graphs). To check the biological validity of our
predictions (SI for details), we analyzed the GO Anno-

tation of our top 100 candidates for ESC reprogramming
(Table S1). Within these top TFs, 9 have successfully
been used in reprogramming, 8 are known pluripotency
TFs (involved in maintaining stem cell fate), while 32
have no known function as of yet and are intriguing re-
programming candidates.

ESCs are unusual in that the highly expressed TFs
are also among the most predictive (e.g. Pou5f1/Oct4,
Nanog). The true benefit of using both z-score and
projection-contribution is best demonstrated by exam-
ining reprogramming protocols to heart (Fig. 3C) and
liver (Fig. 3D) (Table S2). For example, in heart (car-
diomyocytes) reprogramming[3], Gata4 is ranked 68th in
z-score TF expression, but our combined ranking of z-
score and projection-contribution ranks Gata4 as 6th.
Similar results are seen in liver (hepatocyte) protocols
[4, 5] (see SI).

In most cell fates, the highly expressed TFs are not
necessarily predictive, suggesting landscapes may be use-
ful for rationally-designing reprogramming protocols to
novel cell fates. Using our landscape model, we have
identified the top 100 candidates for overexpression and
as well as the top 100 candidates for knockouts for all
cell fates where we have reliable data (see SI). Besides
being candidates for reprogramming, the predictive TFs
can be used as markers for each cell fate.
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DISCUSSION

Our work suggests that epigenetic landscapes are a
powerful paradigm for understanding cellular identity
and reprogramming. Remarkably, despite having no free
parameters or biological knowledge beyond binary TF
states of cell fates, our landscape models can explain par-
tially reprogrammed cell fates and identify TFs used in
cellular reprogramming protocols.

The epigenetic landscapes of cellular identity con-
structed in this paper are related to but distinct from
the standard Waddington landscape for development [8].
In both landscapes, cell fates are viewed as valleys of
a potential. However, Waddington’s landscape is con-
cerned with how developmental signals give rise to differ-
ent cell fates. Hence, the axis of the original Wadding-
ton landscape can be interpreted as a combination of
time, signals, as well the state of molecular components
such as transcription factors. In more modern language,
Waddington’s landscape is concerned with the geometry
of bifurcations in space of possible developmental sig-
nals (see [33] for an example). In contrast, in the land-
scapes considered in this paper the state space is com-
posed solely of the epigenetic state of transcription fac-
tors and developmental signals, ~c, couple to the landscape
through the signal-dependent parameters Kij(~c).

Currently, our model has several limitations centered
around dynamics. First, for ESC reprogramming, our
model does not highlight the importance of the non-
specific transcription factor Myc (see SI for a detailed
discussion). Second, as mentioned previously, our use of
asynchronous dynamics cannot be directly related to bi-
ological time. Lastly, our landscape does not accurately
reflect the dynamics of reprogramming. Simulations of
reprogramming with known protocols, such as the Ya-
manaka protocol, lead to rates of reprogramming that
are comparable to the rates from a reprogramming sim-
ulation with a randomly selected protocol. This is likely
due to the fact that cell fates are extremely stable and
hence reprogramming is extremely rare and hence hard
to stochastically sample.

Our model has several possible extensions. Following
previous work on neural network [34], our landscape can
be generalized to continuous TF expression levels. Addi-
tionally, our landscapes can provide a multitude of pre-
dictions given the correct data. Our framework can easily
be generalized to include microRNAs, other genes, or the
human epigenetic landscape given appropriate data sets.
This opens up possibilities of improving upon the high re-
programming rates achieved by overexpressing microR-
NAs [35] or synthetic mRNAs [36]. Another attractive
element of the framework presented here is that it allows
for a quantitative analysis of whole genome-wide expres-
sion states (see Table 1). This is likely to yield a more
accurate classification of reprogrammed cells and allow

for the classification as well as the identification of dis-
eased cell fates. Finally, our epigenetic landscape may
also prove useful for designing more efficient directed dif-
ferentiation protocols [37]. Overall epigenetic landscapes
provide a unifying framework for cell identity, reprogram-
ming, and directed differentiation.

MATERIALS AND METHODS

All microarray data utilize the Affymetrix GeneChip
Mouse Genome 430 2.0 platform and were downloaded
using ArrayExpress (www.ebi.ac.uk/arrayexpress). The
details of all 393 microarrays can be found under ac-
cession GSE (to be determined). Microarray probe-to-
gene map was created with Bioconductor 2.10. All raw
microarray files were processed in one batch by robust
mean averaging (RMA) in MATLAB. Since we were in-
terested in cellular identity, only transcription factors,
transcription factor co-factors, or chromatin remodeling
genes were kept (for short hand, referred to as transcrip-
tion factors (TF) throughout the text) [38].

Ideally, we would like the global histone modification
(HM) state of all cell fates since these are the primary in-
put into our model. However, global HM data are limited
[28, 29]. Consequently, we used the global HM data for
these three cell fates and compared them to microarray
TF expression levels. This allowed us to create a con-
ditional probability distribution of each HM for a given
TF expression level (Fig. 2B). We found a sharp cut-
off (≈ 5.5) which distinguished TFs with the activating
modification of histone 3 tri-methylation at lysine 4 (K4)
from TFs with the inactivating modification of histone 3
tri-methylation at lysine 27 (K27), poised/bivalent TFs
(both K4 and K27), and no HM (most likely DNA methy-
lation).

This conditional probability distribution allowed us to
create a binary expression state for each cell fate from
our microarray data. TFs with expression above 5.5 were
designated on, (+1), while TFs below 5.5 were designated
off, (−1). The conclusions presented in the paper are
robust to the threshold choice (not shown, but similar
conclusions reached for a cutoff of 5 or 6). See SI for full
details.
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Box 1. Overview of our quantitative cellular identity landscape

• N transcription factors (TF) labeled by Latin indices i and p cell types labeled by Greek indices µ. Each TF is
either on (+1) or off (−1).

• A general network state is represented by a vector Si of length N . A cell type µ is represented by the vector ξµi .

• We require all ξµi to be attractors in the landscape. This is ensured by constructing a correlation-based interaction
network

Jij =
1

N

p∑

µ=1

p∑

ν=1

ξµi (A−1)µνξνj (3)

with Aµν the correlation matrix between cell types:

Aµν =
1

N

N∑

i=1

ξµi ξ
ν
i . (4)

• The commonly used overlap order parameter is the ”magnetization”

mµ =
1

N

N∑

i=1

ξµi Si. (5)

• However, cell types are highly correlated with each other. Thus, a more accurate order parameter is the ”projection”,
aµ, on each cell type

aµ =

p∑

ν=1

(A−1)µνmν . (6)

• The specific ”projection-contribution” of a given TF i to the projection on cell type µ is given by

ηµi =
1

N

p∑

ν=1

(A−1)µνξνi (7)

• Cell types may be stabilized by external conditions (such as growing in a favorable culture media). For example,
cell type µ is favored by χµaµ, where χ characterizes the degree of the stabilization.

• External signals, ~c, can induce switching between cell types and is represented by the matrix Kij(~c). See SI for more
detail.

• The landscape is defined by function H. Term 1 is an energy, or Lyapunov function, that generates the basins of
attraction. Term 2 stabilizes specific cell types (ie culture term). Term 3 is non-Lyapunov and represents switching
due to external signaling.

H = −1

2

∑

ij

SiJijSj − N

2

∑

µ

χµaµ − 1

2

∑

ij

∑

µν

SiKij(~c)Sj . (8)

• TFs can stochastically switch states. A TF is biased towards a state by its interactions with the network through
its local field hi = − ∂H

∂Si
. The dynamics are stochastic and controlled by a global noise parameter β. At each time

step, one TF is updated with the probability of state Si(t+ 1) at time t+ 1 related to the state Si(t) and local field
hi(t) at time t by

P [Si(t+ 1)] =
Exp[βhi(t)Si(t)]

Exp[βhi(t)] + Exp[−βhi(t)]
. (9)
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FIG. 1. Phenotypic Landscape. These landscapes envi-
sion cell fates as attractors in a signal-dependent landscape.
(A) The minimal cellular identity landscape. Each cell fate is
a basin of attraction (black circles). Reprogramming between
different cell fates (1 and 2) can occur probabilistically via
different trajectories (black paths). Partially reprogrammed
cells (PRC) exist as smaller, spurious, basins of attraction
(red circle) that can be experimentally observed by repro-
gramming experiments (example trajectory in red). (B) Same
cellular identity landscape in the presence of a stabilizing en-
vironment (ex. favorable culturing medium) for cell fate 2.
The environment increases the radius and depth of the cell
fate 2 basin of attraction. (C) Landscape in the presence of
an external signal that gives rise to differentiation from cell
fate 1 to cell fate 2 (ex. growth factors associated with differ-
entiation). Notice the low energy path between the cell fates
that drives switching from cell fate 1 to cell fate 2.
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FIG. 2. Overview of model. (A) Histone 3 tri-methylation
at lysine 4 (K4) is associated with active genes, while his-
tone 3 tri-methylation at lysine 27 (K27) is associated with
repressed genes. (B) Conditional probability distribution of
histone modification (HM) given transcription factor (TF) ex-
pression levels derived by comparing microarray data with
HM data from [28, 29]. Notice the sharp threshold (black
line) between expression levels of active and inactive TFs.
(C) Using (B), continuous TF expression levels is converted
into binary states. (D) An arbitrary state is represented by

a vector ~S of ±1, with each dimension in the vector space
representing the state of a TF. The natural cell fates form
a subspace (gray plane). The landscape model is based on
the orthogonal projection of the TF state onto this subspace.
(E) The dynamics of the landscape model for different ini-
tial conditions for a fully connected interaction matrix Jij
and a diluted interaction matrix where 20% of interactions
have been randomly deleted. Plot shows the projection of S
on embryonic stem cells (ESC) as function of time. Notice
the large basins of attraction (red bracket). (F) Simulations
showing how a common myeloid progenitor (CMP) can dif-
ferentiate into either granulo-monocytic progenitors (GMP)
or megakaryocyte-erythroid progenitors (MEP) in response
to two distinct external signals.
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FIG. 3. Identifying reprogramming candidates. For a
given cell fate, we plot every transcription factor’s (TF) pre-
dictivity (aka energy projection-contribution, ηµi ) vs TF ex-
pression level. Gray TFs are within the the uncertainty intro-
duced by making data discrete (binary). All reprogramming
TFs are in a pre-existing protocol. Boxed TFs are potential
reprogramming candidates since they have both high expres-
sion level and high projection-contribution. (A) Embryonic
stem cell graph (ESC). (B) Zoom in of box in (A). TFs used
in known reprogramming protocols are labeled [21, 22]. (C)
Heart. Labeled TFs can reprogram fibroblasts to cardiomy-
ocytes [3]. (D) Liver. Labeled TFs can reprogram fibroblasts
to liver cells. One protocol used Hnf4a plus any of Foxa1,
Foxa2, or Foxa3 [4] while another used Gata4, Foxa3, Hnf1a,
and deletion of p19Arf [5]. Hnf1a and p19Arf were not differ-
entially expressed in our microarrays and are not shown.
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I. DATA SET CONSTRUCTION

All microarray data utilize the Affymetrix GeneChip Mouse Genome 430 2.0 platform and were downloaded using
ArrayExpress (www.ebi.ac.uk/arrayexpress). The details of all 393 microarrays can be found under accession GSE
(to be determined). Microarrays are all control or natural conditions. Microarray probe-to-gene map was created
with Bioconductor 2.10. All raw microarray files were processed in one batch by robust mean averaging (RMA) in
MATLAB, and genes with multiple microarray probes were averaged. At this point, the data set consisted of 393
microarrays with 20877 genes. Since we were interested in cellular identity, only transcription factors, transcription
factor co-factors, or chromatin remodeling genes were kept (for short hand, referred to as transcription factors (TF)
throughout the text)1, leaving 1612 TFs.

Ideally, we would like the global histone modification (HM) state of all cell fates since these are the primary input
into our model. However, global HM data are limited to embryonic stem cells (ESC), mouse embryonic fibroblasts
(MEF), and neural progenitor cells (NPC)2,3. Consequently, we used the global HM data for these three cell fates and
compared them to microarray TF expression levels. This allowed us to create a conditional probability distribution
of each HM for a given TF expression level (Fig. 2B). We found a sharp cutoff (≈ 5.5) which distinguished TFs with
the activating modification of histone 3 tri-methylation at lysine 4 (K4) from TFs with the inactivating modification
of histone 3 tri-methylation at lysine 27 (K27), poised/bivalent TFs (both K4 and K27), and no HM (most likely
DNA methylation).

This conditional probability distribution allowed us to create a binary expression state for each cell fate from our
microarray data. TFs with expression above 5.5 were designated on, (+1), while TFs below 5.5 were designated off,
(−1). The conclusions presented in the paper are robust to the threshold choice (not shown, but similar conclusions
reached for a cutoff of 5 or 6). After the binarization of TF expression, all TFs that were not differentially expressed
across cell fates (i.e. TFs that are always on / always off in every cell fate) were dropped, leaving 1152 TFs. The
binarized TF expression for the 95 cell fates was found by first binarizing all 393 microarrays and then taking the
majority vote for each cell state (with ties broken by averaging the continuous data). The final result was the binary
expression state for 95 cell fates and 7 partially reprogrammed cell fates with 1152 TFs.

Several self-consistency checks were performed on the data. First, the correlation matrix Aµν (explained in main
text and below) was calculated for the original continuous data and for the binarized data (Fig. S1). Both correlation
matrices are consistent with each other showing binarization does not change the global correlations. Note that in
the correlation matrix, cell fates have been grouped by tissue type, leading to a block diagonal form. Second, the TF
expression is well fit by a log-normal distribution (Fig. S3), and the mean of this distribution (5.35) is consistent with
the threshold (5.5). Third, the expression state of all cell fates was constructed from multiple microarray experiments.
These different experiments were compared with each other and were within 2 standard deviations for all cell fates
(see Fig. S2 for definition of std). This demonstrates that microarrays from multiple laboratories can be directly
compared.
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A complete list of microarrays used in this study is included as an Excel file. In addition, the processed data
(continuous and binary) are also included as an Excel file.

II. OVERVIEW OF MODEL

A. Epigenetic landscapes from the projection method

Here we expand upon the explanation of the quantitative model from the main text. The state of a cell is represented
as a vector Si of length N = 1152, with each dimension of the vector (labeled by Latin indices i, j) corresponding
to the binary TF expression, either +1 if TF i is active and −1 if it is inactive. There are p = 95 cell fates (labeled
by Greek indices µ, ν) and cell fate µ is a N by 1 vector characterized by its binary expression state, ξµi . The TF
expression for each cell fate, ξµi , is given by our microarray dataset. This is the only input of biological data in our
landscape.

In general, cell fates are highly correlated (Fig. S1), and it is useful to define a correlation matrix Aµν =

1/N
∑N
i=1 ξ

µ
i ξ

ν
i which characterizes the correlation between cell fate µ and ν. The high correlation between cell

fates implies that the overlap (vector dot-product), mµ = 1/N
∑N
i=1 ξ

µ
i Si, is a poor measure of how close a cell

with expression state Si is to a cell fate µ. A more accurate characterization is provided by the “projection”,
aµ =

∑p
ν=1(A−1)µνmν , of Si on a cell fate µ. The projection measures the orthogonal projection of a state Si onto

the subspace spanned by naturally occurring cell fates, {ξµi } (see Fig. 2D). The “projection-contribution” is math-
ematically represented as ηµi = 1/N

∑p
ν=1(A−1)µνξνi for TF i in cell fate µ. This can be interpreted as the energy

contribution of TF i to cell fate µ. This is also a measure of the “predictivity” of a TF for a given cell fate.
Using the state space, we can explicitly construct the landscape, H, as:

H = −1

2

∑

i,j

SiJijSj −
1

2

∑

i

XiSi −
1

2

∑

i,j

SiKij(~c)Sj (1)

with the dynamics set by random, asynchronous update according to the probability

P [Si(t+ 1)] =
eβhi(t)Si(t)

eβhi(t) + e−βhi(t)
(2)

with the local field on each TF given by hi = − ∂H
∂Si

.

The Hbasin = −1/2
∑
i,j SiJijSj produces stable basins of attraction (Fig. 1A). This is done by inferring a

correlation-based, TF interaction matrix4

Jij =
1

N

p∑

µ=1

p∑

ν=1

ξµi (A−1)µνξνj (3)

with effective interactions that may be indirect.
This stabilizing term of the landscape can be rewritten in terms of the overlap and projection as follows:

Hbasin = −1

2

∑

i,j

SiJijSj = − 1

2N

∑

i,j

∑

µν

Siξ
µ
i (A−1)µνξνj Sj = −N

2

∑

µ

mµaµ (4)

A simple geometric picture illustrates that Hbasin = −1/2
∑
i,j SiJijSj makes each cell type a global minimum

of the landscape. An arbitrary vector can be rewritten in terms of its projection in the cell fate subspace and its
orthogonal component δSi

4,

Si =
∑

µ

aµξµi + δSi (5)

Then, the distance of an arbitrary vector S to the cell fate subspace is given by ∆,

∆ = (
∑

i

(δSi)
2)1/2 (6)
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which can be rewritten as

∆2

N
= 1−

∑

µ

aµmµ (7)

This allows us to rewrite the stabilizing term of the landscape as

Hbasin = −N
2

+
1

2
∆2 (8)

This provides a very clear interpretation of the landscape as the global distance of an arbitrary vector S to the
natural cell fate subspace4.

To demonstrate cell fate stability, an ESC state for the fully connected interaction matrix was randomly perturbed
(Fig. 2E, Fully Connected) and evolved in time. For a variety of initial conditions, it relaxed back to the ESC,
demonstrating a large basin of attraction (red bracket). While our original construction is a true potential or Lyapunov
function, this condition can be relaxed. Random dilution (Jij = 0) creates a pseudo-potential or non-Lyapunov
function, which has a smaller, noisier basin of attraction, see (Fig. 2E, Diluted) where 20% of Jij were removed.
Note, we show the trajectories of the diluted interaction matrix to demonstrate the robustness of the model, but
further experimental data is needed to introduce biologically realistic (i.e. not random) dilution.

The Hculture = −1/2
∑
iXiSi stabilizes specific cell fates (Fig. 1B). This can be explicitly shown as:

Hculture = −1

2

∑

i

XiSi = −N
2

∑

i

χµηµi Si = −N
2

∑

i

χµaµ (9)

where cell fate µ is favored χµ which characterizes the degree of environmental stabilization5.
The Hswitch = −1/2

∑
i,j SiKij(~c)Sj represents switching due to external signals ~c (Fig. 1C). The original inter-

pretation as an interaction in TF space can be written in terms of cell fates as

Hswitch = −1

2

∑

i,j

SiKij(~c)Sj = − 1

2N

∑

i,j

∑

µ,ν

Siξ
µ
i G

µν(~c)ηνj Sj = −N
2

∑

µ,ν

mµGµν(~c)aν (10)

where Gµν characterizes the switching from the switching from cell fate ν to cell fate µ and in general is a complicated
function of external signals ~c. For now the ~c is included to show where external signals couple to switching, but more
work is needed to determine the explicit interactions between the environment and cell fate switching.

We demonstrate this term with a biological example. The common myeloid progenitor (CMP) is a blood cell fate
that in vivo can differentiate into either granulo-monocytic progenitors (GMP) or megakaryocyte-erythroid progenitors
(MEP). We demonstrate (Fig. 2F) that signal 1 (red),

GGMP,CMP = 1 (11)

(with rest of Gµν = 0, i.e. signal 2 absent) can convert CMP to GMP, while a separate application of signal 2 (blue)

GMEP,CMP = 1 (12)

(with rest of Gµν = 0, i.e. signal 1 absent) can differentiate MEP to GMP. These switching terms are explicitly
non-Lyapunov because they break symmetry; for example, signal 1 switches CMP to GMP, but not GMP to CMP.

The standard dynamics is random, asynchronous update5. The interaction network biases a TF to its state by
its local field hi = − ∂H

∂Si
. The dynamics are stochastic and controlled by a global noise parameter β, which is the

inverse temperature, β = 1/T . At each time step, one TF is probabilistically updated based only on its local field,
hi, and the global noise, β. The update time has no physical meaning, while the biologically relevant time scale is
cell division6. Since cellular division produces HM errors7, a physical time scale is introduced by periodically flipping
a fixed percentage of TF states. The system is still stable under this additional noise, as shown in Fig. 2E which
incorporates both asynchronous dynamics with β = 1/0.45 = 2.2 and 2% errors every 5000 time steps. The noise due
to the temperature β is equivalent to partial annealing or smooth fluctuations about the landscape while the bursts of
noise due to cell division is equivalent to quantum annealing or jumps through phase space which can tunnel through
barriers in the landscape.
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B. Model in matrix notation

For completeness, we again present the model above but now in explicit matrix notation. S is a N by 1 vector and
ξ is a p by N matrix that is based on biological data. The correlation matrix is p by p

A =
1

N
ξξT (13)

The overlap and projection are both p by 1 vectors

m =
1

N
ξS (14)

a = A−1m =
1

N
A−1ξS = (ξξT )−1ξS (15)

and the projection-contribution is a p by N matrix

η =
1

N
A−1ξ = (ξξT )−1ξ (16)

The TF interaction matrix that creates stable basins of attraction a N by N matrix

J =
1

N
ξTA−1ξ = ξT (ξξT )−1ξ (17)

One can verify that this is a projection matrix since J2 = J . The culture stabilization term in TF space is a N by 1
vector given by X. In cell fate space it is represented as X = NηTχT .

The TF interaction matrix that induces switches between cell fates is a N by N matrix

K =
1

N
ξTGη = ξTG(ξξT )−1ξ (18)

where the cell fate switching matrix G is a p by p matrix.
The landscape can be written in TF space as

H = −1

2
STJS − 1

2
XTS − 1

2
STKS (19)

Or the landscape can be given in terms of cell fates as

H = −N
2
mTa− N

2
χTa− N

2
mTGa (20)

C. Partially reprogrammed cells as spurious attractors

One of the most generic properties of all attractor neural network constructions is that in addition to the desired
attractors, ξµi , the non-linearity of the dynamical process and the high dimensionality of the underlying space induces
additional attractors, which are termed spurious attractors5. In general, these spurious attractors have higher energy
than the stored patterns, ξµi , and hence smaller basins of attractions. For the traditional Hopfield model, these
spurious attractors take the form of odd-hybrids (i.e. hybrids of 3, 5, 7, . . . of the ξµi )5. However, for the projection
method any hybrid of ξµi is a spurious attractor of the system4. This can be easily understood by noting that in the
projection method, the entire subspace spanned by the ξµi are spurious attractors (see geometric picture above).

As discussed in the main text, the prediction of spurious attractors in the projection method inspired us to reexamine
data on existing partially reprogrammed cells. Surprisingly, we found that partially reprogrammed cells could be
thought of as hybrids of existing cell fates. While in this paper we use discrete states, Hopfield8 has shown that the
landscape construction can be generalized to continuous, sigmoidal states. This means that a continuous Hopfield
model effectively interpolates continuously between a set of discrete states. The agreement between theory and
experiment provides hints that the fundamental units of cellular identity are discrete states that are read out in a
continuous manner, suggesting the tantalizing possibility that the discreteness of histone modifications (HM) is an
important component of the networks that underly cellular identity.
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D. Predicting candidate TFs for reprogramming

Our candidate TFs for overexpression should have high projection-contribution ( η > 0) and high expression
(zscore > 0.5). Note that conversely, negative projection-contribution ( η < 0) and low TF expression (zscore < −0.5)
indicates candidates for knockouts in reprogramming. TF within 0.5 std of the binary threshold are excluded since
their projection-contribution can change significantly with changes in the threshold (data not shown). Within TFs
that satisfy the above criteria, we can rank reprogramming candidates by a single number by multiplying projection-
contribution by z-score TF expression.

See the SI file TF Reprogramming Candidates for our top 100 candidates for overexpression and our top 100
candidates for knockout for a variety of cell fates. We only made predictions for cell fates that are homogeneous.
For example, most of our neural data is based on dissection of the brain, and hence is a heterogenous mixture of
various neurons and other cell fates. To make predictions for various types of neurons, homogenous microarrays of
each neuron type are needed.

In the SI file Processed Data, all data used for the predictions can be found. Another type of prediction can be
made from the data. For example, we have microarrays for multiple B cell precursors, pre B cells, pre pro B cells,
and pro B cells. However, if one is interested in reprogramming to any of the B cell precursors, since our predictions
are based on linear algebra, the ranking for all three precursors can be averaged to produce rankings for a general B
cell precursor.

E. Limitations of model

One limitation of our model is that it misses the importance of the oncogene Myc to reprogramming. Many protocols
use Myc9, but it can be replaced (with no deleterious effect) by short hairpin RNAs (shRNAs)10, or dropped completely
from protocols at the expense of speed and less efficient reprogramming11. Thus, Myc appears to increase the rate
(not outcome) of reprogramming while our current framework has limited information about dynamics.

Another limitation is the use of Affymetrix GeneChip Mouse Genome 430 2.0 platform. This microarray is useful
since there exists much public data on a variety of cell fates. However, upon closer examination of one cell fate, lung,
we discovered the inaccuracy of this microarray. Nkx2-1 is known to be a marker of early lung development12, yet
the Affymetrix GeneChip Mouse Genome 430 2.0 shows no differential expression of Nkx2-1. Therefore, our current
data may miss key TFs due to a poorly matched probe. For future research, more accurate predictions can be made
using more modern microarrays such as Affymetrix Mouse Gene 1.0 ST or RNA-Seq data.

1 Zhang, H.-M, et al. (2012) Nucleic Acids Research 40, D144–D149.
2 Mikkelsen, T. S, et al. (2007) Nature 448, 553–560.
3 Meissner, A, et al. (2008) Nature 454, 766–770.
4 Kanter, I & Sompolinsky, H. (1987) Phys Rev A 35, 380–392.
5 Amit, D. (1992) Modeling brain function: The world of attractor neural networks. (Cambridge Univ Pr).
6 Hanna, J, et al. (2009) Nature 462, 595–601.
7 Ben-David, U, Mayshar, Y, & Benvenisty, N. (2011) Cell Stem Cell 9, 97–102.
8 Hopfield, J. J. (1984) Proc Natl Acad Sci U S A 81, 3088–3092.
9 González, F, Boué, S, & Belmonte, J. C. I. (2011) Nat Rev Genet 12, 231–242.

10 Onder, T. T, et al. (2012) Nature 483, 598–602.
11 Wernig, M, Meissner, A, Cassady, J. P, & Jaenisch, R. (2008) Cell Stem Cell 2, 10–12.
12 Longmire, T. A, et al. (2012) Cell Stem Cell 10, 398–411.
13 Young, R. A. (2011) Cell 144, 940–954.
14 Yu, J, et al. (2007) Science 318, 1917–1920.
15 Takahashi, K & Yamanaka, S. (2006) Cell 126, 663–676.
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B. Binarized Cell Type Correlation Matrix
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FIG. 1: Cell fate correlation matrices. (A) Correlation matrix between cell fates for continuous data. (B)
Correlation matrix for binarized data.
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FIG. 2: Projection of a random vector on a given cell fate. Ten thousand binarized random vectors were
created in MATLAB and projected onto the cellular sub-space. The histogram shows the distribution of the
projections. The red line is a Gaussian fit to the histogram. The mean is practically zero while the standard

deviation is 0.0629.
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TABLE I: Classifying ESC Reprogramming Candidates. Justification for transcription factor (TF) classification in
Figure 3A and 3B. Table has top 100 embryonic stem cell (ESC) reprogramming candidates (as ranked by z-score

times predictivity, ηµi ). Classification of each TF is either justified by paper citation or GO Process term.
Reprogramming TFs are in a pre-existing reprogramming protocol, pluripotency TFs help maintain the ESC state,
differentiation TFs are expressed in ESC but help induce cell fate change in vivo, and unknown TFs do not yet have
a known function and hence are intriguing reprogramming candidates. Note that reprogramming TFs Myc, Chd1,

and Ezh2 not in our top 100 candidates.

TF Z-Score ηµi (10−3) Z∗ηµi (10−3) Classification Citation or GO Term

Pou5f1 3.31 2.32 7.68 Reprogramming 9

Zfp819 1.38 4.96 6.86 Unknown biological process

Gbx2 1.33 5.01 6.68 Differentiation midbrain-hindbrain

boundary development

Nanog 2.90 1.94 5.62 Reprogramming 9

Prdm14 0.97 5.01 4.84 Pluripotency 13

Olig1 1.06 4.43 4.69 Differentiation neuron fate commitment

Foxd3 0.74 6.10 4.54 Pluripotency 14

Zic3 2.32 1.95 4.52 Differentiation cell differentiation

Msc 0.98 4.43 4.33 Differentiation branchiomeric skeletal

muscle development

Nr0b1 2.44 1.71 4.18 Pluripotency negative regulation

of cell differentiation

Gli1 1.21 3.40 4.11 Differentiation lung development

Tcfl5 1.96 2.07 4.07 Unknown regulation of transcription,

DNA-dependent

Zfp936 1.99 1.94 3.86 Unknown biological process

Zfp105 1.66 2.30 3.82 Unknown regulation of transcription,

DNA-dependent

Neurod1 0.82 4.45 3.64 Differentiation positive regulation

of cell differentiation

Rex2 1.20 2.99 3.58 Unknown biological process

Pir 1.72 2.08 3.57 Differentiation monocyte differentiation

Stat4 0.88 4.06 3.56 Signaling signal transduction

Bcl3 1.54 2.30 3.55 Differentiation marginal zone

B cell differentiation

Utf1 1.26 2.70 3.40 Reprogramming 9

Esrrb 1.71 1.97 3.38 Reprogramming 9

Gm13152 2.50 1.34 3.35 Unknown biological process

Otx2 1.17 2.71 3.17 Differentiation cell fate specification

Zfp42 2.77 1.14 3.16 Pluripotency 15

Trip6 1.79 1.60 2.87 Other regulation of transcription,

DNA-dependent; cell adhesion
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TF Z Score η (10−3) Z∗η (10−3) Classification Citation or GO Term

Sycp3 1.35 2.01 2.72 Differentiation spermatogenesis

Zfp568 0.85 3.13 2.66 Differentiation convergent extension involved

in neural plate elongation

Trps1 0.58 4.53 2.62 Unknown negative regulation of

transcription, DNA-dependent

Sall1 1.51 1.70 2.57 Differentiation neural tube development

2610305D13Rik 2.09 1.22 2.56 Unknown biological process

Tfap2c 1.51 1.70 2.56 Differentiation cell differentiation

Zfp423 1.25 2.04 2.54 Differentiation cell differentiation

Gli2 1.78 1.37 2.45 Differentiation cell differentiation

Gm13212 0.95 2.56 2.42 Unknown biological process

Htatip2 0.53 4.55 2.41 Differentiation cell differentiation

Arid5b 0.93 2.55 2.36 Differentiation adipose tissue development

Klf4 2.47 0.95 2.35 Reprogramming 9

Dnmt3b 1.97 1.19 2.33 Epigenetics DNA methylation

Aire 1.30 1.78 2.32 Immune humoral immune response

Zfp57 1.56 1.46 2.28 Epigenetics DNA methylation

involved in embryo development

Pbrm1 2.00 1.04 2.09 Differentiation heart development

Tgif1 2.56 0.81 2.07 Differentiation positive regulation

of neuron differentiation

Sox15 1.23 1.68 2.06 Pluripotency 15

Zic5 1.09 1.89 2.05 Differentiation cell differentiation

Zfp473 1.72 1.18 2.03 Unknown regulation of transcription,

DNA-dependent

5730507C01Rik 1.44 1.37 1.96 Unknown biological process

Foxp1 1.04 1.87 1.95 Pluripotency embryo development

Zfp229 1.57 1.22 1.92 Unknown biological process

Six4 1.00 1.90 1.91 Differentiation thymus development

Dmrt1 1.16 1.64 1.90 Differentiation Sertoli cell differentiation
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TF Z Score η (10−3) Z∗η (10−3) Classification Citation or GO Term

Zscan10 2.23 0.84 1.88 Pluripotency stem cell differentiation

Hhex 1.06 1.68 1.78 Differentiation B cell differentiation

Cebpb 0.78 2.24 1.74 Differentiation neuron differentiation

Eomes 0.57 3.01 1.72 Differentiation cell differentiation

Foxh1 1.15 1.50 1.72 Differentiation axial mesoderm development

Zbtb8a 1.97 0.87 1.71 Unknown regulation of transcription,

DNA-dependent

Hsf2bp 1.06 1.59 1.69 Unknown biological process

Sall4 2.41 0.64 1.55 Reprogramming 9

Zfp955b 1.49 1.04 1.55 Unknown biological process

Rara 0.94 1.64 1.54 Differentiation chondroblast differentiation

Zfp934 0.97 1.59 1.54 Unknown biological process

Rest 1.58 0.97 1.54 Differentiation cardiac muscle cell

myoblast differentiation

Tcf15 1.81 0.84 1.52 Differentiation muscle organ development

Zfp647 1.42 1.06 1.50 Unknown regulation of transcription,

DNA-dependent

Id3 1.85 0.81 1.50 Differentiation epithelial cell differentiation

Zfp217 1.81 0.81 1.46 Unknown regulation of transcription,

DNA-dependent

Pitx2 0.90 1.60 1.45 Differentiation cardiac muscle cell differentiation

Egr1 1.90 0.74 1.40 Differentiation T cell differentiation

Id4 0.93 1.51 1.40 Differentiation cerebral cortex neuron differentiation

Smarca1 0.73 1.91 1.39 Differentiation neuron differentiation

Zfp799 0.84 1.66 1.39 Unknown biological process

Tead2 1.94 0.72 1.39 Differentiation notochord development

Usf1 0.80 1.72 1.38 DNA Repair response to UV

Zfp760 1.25 1.10 1.37 Unknown biological process

Plagl1 0.78 1.75 1.36 Unknown regulation of gene expression
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TF Z Score η (10−3) Z∗η (10−3) Classification Citation or GO Term

Sox2 3.01 0.44 1.33 Reprogramming 9

Hmgb2 2.40 0.54 1.30 Differentiation positive regulation

of erythrocyte differentiation

Rbpms 1.79 0.72 1.29 Unknown regulation of transcription,

DNA-dependent

Rhox6 0.94 1.38 1.29 Unknown biological process

Grhl1 0.75 1.71 1.28 Unknown regulation of transcription,

DNA-dependent

Prdm5 0.83 1.51 1.25 Epigenetic chromatin modification

Gm5595 1.05 1.17 1.23 Unknown biological process

Relb 0.83 1.48 1.23 Differentiation T-helper 1 cell differentiation

Zbtb12 1.02 1.20 1.22 Unknown biological process

Sp5 0.60 2.03 1.22 Differentiation bone morphogenesis

Lin28a 1.99 0.60 1.19 Reprogramming 9

Zfp553 1.18 0.99 1.17 Unknown regulation of transcription,

DNA-dependent

E2f1 0.88 1.32 1.17 Differentiation forebrain development

Peg3 0.76 1.49 1.14 Apoptosis apoptotic process

Zfp449 0.62 1.82 1.13 Unknown regulation of transcription,

DNA-dependent

Nr5a2 0.73 1.49 1.09 Reprogramming 9

Grhl3 0.70 1.56 1.08 Differentiation ectoderm development

Nfya 0.68 1.59 1.08 Unknown positive regulation of transcription

DNA-dependent

Sox11 0.78 1.37 1.07 Differentiation embryonic skeletal

system morphogenesis

Cenpi 1.52 0.71 1.07 Unknown biological process

Smad1 1.29 0.83 1.07 Pluripotency 13

Etv4 0.82 1.30 1.06 Differentiation stem cell differentiation

Cenpn 2.18 0.48 1.04 Unknown biological process

Zfp296 1.98 0.52 1.03 Unknown biological process

Maff 0.92 1.12 1.03 Differentiation regulation of epidermal

cell differentiation

TABLE II: Comparison of rankings. Here we compare our ranking based on mulitplying z-score by
projection-contribution versus the z-score only ranking. Note that in liver, Gata4 is within 0.5 std of the binary

cutoff and therefore its projection-contribution is unreliable.

TF Protocol Our Rank Z-score Rank

Gata4 Heart 6 68

Tbx5 Heart 13 129

Mef2c Heart 50 38

Foxa3 Liver 2 13

Foxa2 Liver 9 36

Hnf4a Liver 10 6

Foxa1 Liver 19 48

Gata4 Liver No rank 415


