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Paris, May 12, 2008

i



ii



Mým rodič̊um
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ABSTRACT ix

Title: Statistical Physics of Hard Optimization Problems
Author: Lenka Zdeborová

Abstract: Optimization is fundamental in many areas of science, from computer science
and information theory to engineering and statistical physics, as well as to biology or social
sciences. It typically involves a large number of variables and a cost function depending on
these variables. Optimization problems in the NP-complete class are particularly difficult,
it is believed that the number of operations required to minimize the cost function is in
the most difficult cases exponential in the system size. However, even in an NP-complete
problem the practically arising instances might, in fact, be easy to solve. The principal
question we address in this thesis is: How to recognize if an NP-complete constraint
satisfaction problem is typically hard and what are the main reasons for this? We adopt
approaches from the statistical physics of disordered systems, in particular the cavity
method developed originally to describe glassy systems. We describe new properties of
the space of solutions in two of the most studied constraint satisfaction problems - random
satisfiability and random graph coloring. We suggest a relation between the existence
of the so-called frozen variables and the algorithmic hardness of a problem. Based on
these insights, we introduce a new class of problems which we named ”locked” constraint
satisfaction, where the statistical description is easily solvable, but from the algorithmic
point of view they are even more challenging than the canonical satisfiability.

Keywords: Constraint satisfaction problems, combinatorial optimization, random color-
ing problem, average computational complexity, cavity method, spin glasses, replica sym-
metry breaking, Bethe approximation, clustering of solutions, phase transitions, message
passing, belief propagation, satisfiability threshold, reconstruction on trees.
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RESUME xi

Titre: Physique statistique des problèmes d’optimisation
Autheur: Lenka Zdeborová

Résumé: L’optimisation est un concept fondamental dans beaucoup de domaines scien-
tifiques comme l’informatique, la théorie de l’information, les sciences de l’ingénieur et
la physique statistique, ainsi que pour la biologie et les sciences sociales. Un problème
d’optimisation met typiquement en jeu un nombre important de variables et une fonc-
tion de coût qui dépend de ces variables. La classe des problèmes NP-complets est
particulièrement difficile, et il est communément admis que, dans le pire des cas, un nom-
bre d’opérations exponentiel dans la taille du problème est nécessaire pour minimiser la
fonction de coût. Cependant, même ces problèmes peuveut être faciles à résoudre en
pratique. La principale question considérée dans cette thèse est comment reconnâıtre
si un problème de satisfaction de contraintes NP-complet est ”typiquement” difficile et
quelles sont les raisons pour cela ? Nous suivons une approche inspirée par la physique
statistique des systèmes desordonnés, en particulier la méthode de la cavité développée
originalement pour les systèmes vitreux. Nous décrivons les propriétés de l’espace des
solutions dans deux des problèmes de satisfaction les plus étudiés : la satisfiabilité et
le coloriage aléatoire. Nous suggérons une relation entre l’existence de variables dites
”gelées” et la difficulté algorithmique d’un problème donné. Nous introduisons aussi une
nouvelle classe de problèmes, que nous appelons ”problèmes verrouillés”, qui présentent
l’avantage d’être à la fois facilement résoluble analytiquement, du point de vue du com-
portement moyen, mais également extrêmement difficiles du point de vue de la recherche
de solutions dans un cas donné.

Les mots clefs: Problèmes d’optimisation de contraintes, optimisation combinatoire,
problèmes de coloriage, complexité de calcul moyenne, méthode de la cavité, verres de
spins, brisure de la symétrie des répliques, approximation de Bethe, regroupement des so-
lutions en amas, transitions de phases, passage de messages, propagation des convictions,
seuil de satisfiabilité, reconstruction sur des arbres.



xii RESUME



ČESKÝ ABSTRAKT xiii

Název: Statistická fyzika těžkých optimalizačńıch úloh
Autor: Lenka Zdeborová

Abstrakt: Optimalizace je fundamentálńı koncept v mnoha vědńıch oborech, poč́ınaje
poč́ıtačovou vědou a teoríı informace, přes inženýrstv́ı a statistickou fyziku, až po bi-
ologii či ekonomii. Optimalizačńı úloha se typicky skládá z minimalizace funkce závisej́ıćı
na velkém množstv́ı proměnných. Problémy z takzvané NP-úplné tř́ıdy jsou obzvláště
složité, věř́ı se, že počet operaćı potřebný k nalezeńı řešeńı v tom nejtěžš́ım př́ıpadě roste
exponenciálně s počtem proměných. Nicméně i pro NP-úplné úlohy plat́ı, že praktické
př́ıpady mohou být jednoduché. Hlavńı otázka, kterou se zabývá tato práce, je: Jak
rozpoznat, zda je NP-úplný problém splnitelnosti podmı́nek v typickém př́ıpadě těžký a
č́ım je tato složitost zp̊usobena? K této otázce přistupujeme s využit́ım znalost́ı ze stati-
stické fyziky neuspořádaných, a zejména skelných, systémů. Poṕı̌seme nové vlastnosti
prostoru řešeńı ve dvou z nejv́ıce studovaných optimalizačńıch problémů – splnitelnosti
náhodných Booleovských formuĺı a barveńı náhodných graf̊u. Navrhneme existenci vz-
tahu mezi typickou algoritmickou složitost́ı a existenćı takzvaně zamrzlých proměnných.
Na základě těchto poznatk̊u zkonstruujeme novou tř́ıdu problémů, které jsme nazvali
”uzamknuté”, zde je statistický popis množiny všech řešeńı poměrně jednoduchý, ale
z algoritmického pohledu jsou tyto typické př́ıpady těchto problémů ještě težši než v
kanonickém problému splitelnosti Booleovských formuĺı.

Kĺıčová slova: Problémy splnitelnosti podmı́nek, kombinatorická optimalizace, barveńı
náhodných graf̊u, pr̊uměrná algoritmická složitost, metoda kavity, spinová skla, narušeńı
symetrie replik, Betheho aproximace, shlukováńı řešeńı, fázové přechody, pośıláńı zpráv,
propagace domněnek, práh splnitelnosti, rekonstrukce na stromech.
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Foreword

P.-G. de Gennes in his foreword to the book ”Stealing the gold – A celebration of the
pioneering physics of Sam Edwards” wrote:

But he {meaning S. Edwards} also has another passion, which I {meaning P.-G.
de Gennes} call ”The search for unicorns.” To chase unicorns is a delicate enterprise.
Medieval Britons practised it with great enthusiasm (and this still holds up to now: read
Harry Potter). Sir Samuel Edwards is not far from the gallant knights of the twelfth
century. Discovering a strange animal, approaching it without fear, then not necessarily
harnessing the creature, but rapidly drawing a plausible sketch of its main features.

One beautiful unicorn prancing in the magic garden of Physics has been names ”Spin
glass.” It is rare: not many pure breeds of Spin glasses have been found in Nature. But
we have all watched the unpredictable jumps of this beast. And we have loved its story –
initiated by Edwards and Anderson.

Unicorn is a mythical animal, described in the book of Job, together with another
strange and fascinating creature which is less peaceful: the leviathan. Leviathans are
described as immense terrible monsters, invincible beasts. Most people prefer not to
even think about them.

This thesis tells a story about what happens when the fierce and mysterious beauty
of a unicorn meets with the invincibility of a leviathan.

xv
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Chapter 1

Hard optimization problems

In this opening chapter we introduce the constraint satisfaction problems and discuss
briefly the computer science approach to the computational complexity. We review the
studies of the random satisfiability problem in the context of average computational com-
plexity investigations. We describe the connection between spin glasses and random CSPs
and highlight the most interesting results coming out from this analogy. We explain the
replica symmetric approach to these problems and show its usefulness on the example of
counting of matchings [ZDEB-1]. Then we review the survey propagation approach to
constraint satisfaction on an example of 1-in-K satisfiability [ZDEB-3]. Finally we sum-
marize the main contributions of the author to the advances in the statistical physics of
hard optimization problems, that are elaborated in the rest of the thesis.

1.1 Importance of optimization problems

Optimization is a common concept in many areas of human activities. It typically involves
a large number of variables, e.g. particles, agents, cells or nodes, and a cost function
depending on these variables, such as energy, measure of risk or expenses. The problem
consists in finding a state of variables which minimizes the value of the cost function.

In this thesis we will concentrate on a subset of optimization problems the so-called
constraint satisfaction problems (CSPs). Constraint satisfaction problems are one of the
main building blocks of complex systems studied in computer science, information theory
and statistical physics. Their wide range of applicability arises from their very general
nature: given a set of N discrete variables subject to M constraints, the CSP consists in
deciding whether there exists an assignment of variables which satisfies simultaneously
all the constraints. And if such an assignment exists then we aim at finding it.

In computer science, CSPs are at the core of computational complexity studies: the
satisfiability of boolean formulas is the canonical example of an intrinsically hard, NP-
complete, problem. In information theory, error correcting codes also rely on CSPs. The
transmitted information is encoded into a codeword satisfying a set of constraints, so that
the information may be retrieved after transmission through a noisy channel, using the
knowledge of the constraints satisfied by the codeword. Many other practical problems in
scheduling a collection of tasks, in electronic design engineering or artificial intelligence
are viewed as CSPs. In statistical physics the interest in CSPs stems from their close
relation with the theory of spin glasses. Answering if frustration is avoidable in a system
is the first, and sometimes highly nontrivial, step in understanding the low temperature
behaviour.

1



2 CHAPTER 1. HARD OPTIMIZATION PROBLEMS

A key point is to understand how difficult it is to solve practical instances of a con-
straint satisfaction problem. Everyday experience confirms that sometimes it is very
hard to find a solution. Many CSPs require a combination of heuristics and combina-
torial search methods to be solved in a reasonable time. A key question we address in
this thesis is thus why and when are some instances of these problems intrinsically hard.
Answering this question has, next to its theoretical interest, several practical motivations

• Understanding where the hardness comes from helps to push the performance of
CSPs solvers to its limit.

• Understanding which instances are hard helps to avoid them if the nature of the
given practical problem permits.

• Finding the very hard problem might be interesting for cryptographic application.

A pivotal step in this direction is the understanding of the onset of hardness in random
constraint satisfaction problems. In practice random constraint satisfaction problems
are either regarded as extremely hard as there is no obvious structure to be explored
or as extremely simple as they permit probabilistic description. Furthermore, random
constraint satisfaction models are spin glasses and we shall thus borrow methods from
the statistical physics of disordered systems.

1.2 Constraint Satisfaction Problems: Setting

1.2.1 Definition, factor graph representation

Constraint Satisfaction Problem (CSP): Consider N variables s1 . . . , sN taking values
from the domain {0, . . . , q − 1}, and a set of M constraints. A constraint a concerns
a set of ka different variables which we call ∂a. Constraint a is a function from all
possible assignments of the variables ∂a to {0, 1}. If the constraint evaluates to 1 we say
it is satisfied, and if it evaluates to 0 we say it is violated. The constraint satisfaction
problem consists in deciding whether there exists an assignment of variables which satisfies
simultaneously all the constraints. We call such an assignment a solution of the CSP.

In physics, the variables represent q-state Potts spins (or Ising spins if q = 2). The con-
straints represent very general (non-symmetric) interactions between ka-tuples of spins.
In Boolean constraint satisfaction problems (q = 2) a literal is a variable or its negation.
A clause is then a disjunction (logical OR) of literals.

A handy representation for a CSP is the so-called factor graph, see [KFL01] for a
review. Factor graph is a bipartite graph G(V, F, E) where V is the set of variables
(variables nodes, represented by circles) and F is the set of constraints (function nodes,
represented by squares). An edge (ia) ∈ E is present if the constraint a ∈ F involves the
variable i ∈ V . A constraint a is connected to ka variables, their set is denoted ∂a. A
variable i is connected to li constraints, their set is denoted ∂i. For clarity we specify the
factor graph representation for the graph coloring and exact cover problem in fig. 1.1,
both defined in the following section 1.2.2.

1.2.2 List of CSPs discussed in this thesis

Here we define constraint satisfaction problems which will be discussed in the following.
Most of them are discussed in the classical reference book [GJ79]. The most studied
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Figure 1.1: Example of a factor graph representation for the coloring (left) and the exact
cover (right) problems. The function nodes (squares) in the graph coloring are satisfied if
and only if their two neighbours (circles) are in different states (take different colors). The
function nodes (squares) in the exact cover problem are satisfied if exactly one variable
(circle) around them takes values 1 (full) and the others 0 (empty).

constraint satisfaction problems are defined over Boolean variables, q = 2, si ∈ {0, 1}.
Sometimes we use equivalently the notation with Ising spins si ∈ {−1,+1}. CSPs with
Boolean variables that we shall discuss in this thesis are:

• Satisfiability (SAT) problem: Constraints are clauses, that is logical disjunc-
tions of literals (i.e., variables or their negations). Example of a satisfiable formula
with 3 variables and 4 clauses (constraints) and 10 literals: (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨
x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3).

• K-SAT: Satisfiability problem where every clause involves K literals, ka = K for
all a = 1, . . . ,M .

• Not-All-Equal SAT: Constraints are satisfied everytime except when all the lit-
erals they involve are TRUE or all of them are FALSE.

• Bicoloring: Constraints are satisfied except when all variables they involve are
equal. Bicoloring is Not-All-Equal SAT without negations.

• XOR-SAT: Constraints are logical XORs of literals.

• Odd (resp. Even) Parity Checks: A constraint is satisfied if the sum of variables
it involves is odd (resp. even). Odd parity checks are XORs without negations.

• 1-in-K SAT: Constraints are satisfied if exactly one of the K literals they involve
is TRUE.

• Exact Cover, or positive 1-in-K SAT: Constraints are satisfied if exactly one
of the K variables they involve is 1 (occupied). Exact cover, or positive 1-in-K
SAT, is 1-in-K SAT without negations.

• Perfect matching: Nodes of the original graph become constraints, variables
are on edges and determine if the edge is or is not in the matching, see fig. 1.5.



4 CHAPTER 1. HARD OPTIMIZATION PROBLEMS

Constraints are satisfied if exactly one of the K variables they involve is 1 (belongs
to the matching). Note that perfect matching is just a variant of the Exact Cover

• Occupation problems are defined by a binary (K + 1) component vector A. All
constraints involve K variables, and are satisfied if the sum of variables they involve
r =

∑

∂a si is such that Ar = 1.

• Locked Occupation Problems (LOPs): If the vector A is such that AiAi+1 = 0
for all i = 0, . . . , K−1, and all the variables are present in at least two constraints.

We will also consider in a great detail one CSP with q-ary variables: The graph
coloring with q colors: Every constraint involves two variables and is satisfied if the two
variables are not assigned the same value (color). In physics the q-ary variables are called
Potts spins.

1.2.3 Random factor graphs: definition and properties

Given a constraint satisfaction problem with N variables and M constraints, the con-
straint density is defined as α = M/N . Denote by R(k) the probability distribution of
the degree of constraints (number of neighbours in the factor graph), and by Q(l) the
probability distribution of the degree of variables. The average connectivity (degree) of
constraints is

K = k =

∞
∑

k=0

kR(k) . (1.1)

The average connectivity of variables is

c = l =
∞
∑

l=0

lQ(l) . (1.2)

The constraint density is then asymptotically

α =
M

N
=
l

k
=

c

K
. (1.3)

A random factor graph with a given N and M is then created as follows: Draw a
sequence {l1, . . . , lN} of N numbers from the distribution Q(l). Subsequently, draw a
sequence {k1, . . . , kM} of M numbers from the distribution R(k), such that

∑M
a=1 ki =

∑N
i=1 li. The random factor graph is drawn uniformly at random from all the factor graphs

with N variables, M constraints and degree sequences {l1, . . . , lN} and {k1, . . . , kM}.
Another definition leading to a Poissonian degree distribution is used often if the

degree of constraints is fixed to K and the number of variables is fixed to N . There are
(

N
K

)

possible positions for a constraint. Each of these positions is taken with probability

p =
cN

K
(

N
K

) . (1.4)

The number of constraints is then a Poissonian random variable with averageM = cN/K.
The degree of variables is distributed according to a Poissonian law with average c

Q(l) = e−c
cl

l!
. (1.5)
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If K = 2 these are the random Erdős-Rényi graphs [ER59]. This definition works also if
constraints are changed for variables, that is if the degree of variables and the number of
constraints are fixed, as in e.g. the matching problem.

The random factor graphs are called regular if both the degrees of constraints and
variables are fixed, R(k) = δ(k −K) and Q(l) = δ(l−L). In section 4.3 we will also use
the truncated Poissonian degree distribution

l ≤ 1 : Q(l) = 0 , (1.6a)

l ≥ 2 : Q(l) =
1

ec − (c+ 1)

cl

l!
. (1.6b)

The average connectivity for the truncated Poissonian distribution is then

l = c
ec − 1

ec − (c+ 1)
. (1.7)

In the cavity approach, the so-called excess degree distribution is a crucial quantity.
It is defined as follows: Choose an edge (ij) at random and consider the probability
distribution of the number of neighbours of i except j. The variables (analogously for
constraints) excess degree distribution thus reads

q(l) =
(l + 1)Q(l + 1)

l
, r(k) =

(k + 1)R(k + 1)

k
. (1.8)

We will always deal with factor graphs where K and c are of order one, and N →
∞,M → ∞. These are called sparse random factor graphs. Concerning the physical
properties of sparse random factor graphs the two definitions of a random graph with
Poissonian degree distribution are equivalent. Some properties (e.g. the annealed aver-
ages) can however depend on the details of the definition.

The tree-like property of sparse random factor graphs — Consider a random
variable i in the factor graph. We want to estimate the average length of the shortest
cycle going through variable i. Consider a diffusion algorithm spreading into all direction
but the one it came from. The probability that this diffusion will arrive back to i in d
steps reads

1−

(

1−
1

N

)

Pd
j=1

(γlγk)j

, (1.9)

where γl = l2/l−1 and γk = k2/k−1 are the mean values of the excess degree distribution
(1.8). The probability (1.9) is almost surely zero if

d≪
logN

log γlγk
. (1.10)

An important property follows: As long as the degree distributions R(k) and Q(l) have a
finite variance the sparse random factor graphs are locally trees up to a distance scaling
as logN (1.10). We define this as the tree-like property.

In this thesis we consider only degree distributions with a finite variance. A general-
ization to other cases (e.g. the scale-free networks with long-tail degree distributions) is
not straightforward and many of the results which are asymptotically exact on the tree-
like structures would be in general only approximative. We observed, see e.g. fig. 2.2,
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that many of the nontrivial properties predicted asymptotically on the tree-like graphs
seems to be reasonably precise even on graphs with about N = 102 − 104 variables. It
means that the asymptotic behaviour sets in rather early and does not, in fact, require
logN ≫ 1.

1.3 Computational complexity

1.3.1 The worst case complexity

Theoretical computer scientists developed the computational complexity theory in order
to quantify how hard problems can be in the worst possible case. The most important
and discussed complexity classes are the P, NP and NP-complete.

A problem is in the P (polynomial) class if there is an algorithm which is able to
solve the problem for any input instance of length N in at most cNk steps, where k
and c are constants independent of the input instance. The formal definitions of what
is a ”problem”, its ”input instance” and an ”algorithm” was formalized in the theory of
Turing machines [Pap94], where the definition would be: The complexity class P is the set
of decision problems that can be solved by a deterministic Turing machine in polynomial
time. A simple example of polynomial problem is sorting a list of N real numbers.

A problem is in the NP class if its instance can be stored in memory of polyno-
mial size and if the correctness of a proposed result can be checked in polynomial time.
Formally, the complexity class NP is the set of decision problems that can be solved
by a non-deterministic Turing machine in polynomial time [Pap94], NP stands for non-
deterministic polynomial. Whereas the deterministic Turing machine is basically any of
our today computers, the non-deterministic Turing machine can perform unlimited num-
ber of parallel computations. Thus, if for finite N there is a finite number of possible
solutions all of them can be checked simultaneously. This class contains many problems
that we would like to be able to solve efficiently, including the Boolean satisfiability prob-
lem, the traveling salesman problem or the graph coloring. Problems which do not belong
to the NP class are for example counting the number of solutions in Boolean satisfiability,
or the random energy model [Der80, Der81].

All the polynomial problems are in the NP class. It is not known if all the NP problems
are polynomial, and it is considered by many to be the most challenging problem in
theoretical computer science. It is also one of the seven, and one of the six still open,
Millennium Prize Problems that were stated by the Clay Mathematics Institute in 2000 (a
correct solution to each of these problems results in a $1,000,000 prize for the author). A
majority of computer scientists, however, believes that the negative answer is the correct
one [Gas02].

The concept of NP-complete problems was introduced by Cook in 1971 [Coo71]. All
the NP problems can be polynomially reduced to any NP-complete problem, thus if
any NP-complete problem would be polynomial then P=NP. Cook proved [Coo71] that
the Boolean satisfiability problem is NP-complete. Karp soon after added 21 new NP-
complete problems to the list [Kar72]. Since then thousands of other problems have
been shown to be NP-complete by reductions from other problems previously shown to
be NP-complete; many of these are collected in the Garey and Johnson’s ”Guide to
NP-Completeness” [GJ79].

Schaefer in 1978 proved a dichotomy theorem for Boolean (q = 2) constraint satis-
faction problems. He showed that if the constraint satisfaction problem has one of the



1.3. COMPUTATIONAL COMPLEXITY 7

following four properties then it is polynomial, otherwise it is NP-complete. (1) All con-
straints are such that si = 1 for all i is a solution or si = 0 for all i is a solution. (2) All
constraints concern at most two variables (e.g. in 2-SAT). (3) All constraints are linear
equations modulo two (e.g. in XOR-SAT). (4) All constraints are the so-called Horn
clauses or all of them are the so-called dual Horn clauses. A Horn clause is a disjunction
of variables such that at most one variable is not negated. A dual Horn clause is when at
most one variable is negated. A similar dichotomy theorem exists for 3-state variables,
q = 3, [Bul02]. Generalization for q > 3 is not known.

1.3.2 The average case hardness

Given the present knowledge, it is often said that all the polynomial problems are easy
and all the NP-complete problems are very hard. But, independently if P=NP or not,
even polynomial problems might be practically very difficult, and some (or even most)
instances of the NP-complete problems might be practically very easy.

An example of a still difficult polynomial problem is the primality testing, a first
polynomial algorithm was discovered by [AKS04]. But a ”proof” of remaining difficulty
is the EFF prize [EFF] of $100,000 to the first individual or group who discovers the first
prime number with at least 10,000,000 decimal digits.

And how hard are the NP-complete problems? One way to answer is that under
restrictions on the structure an NP-complete problem might become polynomial. Maybe
the most famous example is 4-coloring of maps (planar factor graphs) which is polynomial.
Moreover, it was a long standing conjecture that every map is colorable with 4 colors,
proven by Appel and Haken [AH77b, AH77a]. Interestingly enough 3-coloring of maps is
NP-complete [GJ79].

But there are also settings under which the problem stays NP-complete and yet almost
every instance can be solved in polynomial time. A historically important example is the
Boolean satisfiability where each clause is generated by selecting literals with some fixed
probability. Goldberg introduced this random ensemble and showed that the average
running time of the Davis-Putnam algorithm [DP60, DLL62] is polynomial for almost
all choices of parameter settings [Gol79, GPB82]. Thus in the eighties some computer
scientist tended to think that all the NP-complete problems are in fact on average easy
and it is hard to find the evil instances which makes them NP-complete.

The breakthrough came at the beginning of the nineties when Cheeseman, Kanefsky
and Taylor asked ”Where the really hard problems are?” in their paper of the same
name [CKT91]. Shortly after Mitchell, Selman and Levesque came up with a similar
work [MSL92]. Both groups simply took a different random ensemble of the satisfiability
(in the second case) and coloring (in the first case) instances: the length of clauses is
fixed to be K and they are drawn randomly as described in sec. 1.2.3. They observed
that when the density of clauses α = M/N is small the existence of a solution is very
likely and if α is large the existence of a solution is very unlikely. And the really hard
instances were located nearby the critical value originally estimated to be αs ≈ 4.25 in the
3-SAT [MSL92]. The hardness was judged from the median running time of the Davis-
Putnam-Logemann-Loveland (DPLL) backtracking-based algorithm [DP60, DLL62], see
fig. 1.2. This whipped away the thoughts that NP-complete problems might in fact be
easy on average. Many other studies and observations followed. The hard instances of
random K-satisfiability became very fast important benchmarks for the best algorithms.
Moreover, there are some indications that critically constrained instances might appear
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Figure 1.2: The easy-hard-easy pattern in the random 3-SAT formulas as the constraint
density is changed. Full lines are probabilities that a formula is satisfiable. Dashed lines
is the medium running time of the DPLL algorithm. This figure is courtesy of Riccardo
Zecchina.

in real-world applications. One may imagine that in a real world situation the amount
of constraints is given by the nature of the problem, and variables usually correspond to
something costly, thus the competitive designs contain the smallest possible number of
variables.
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Figure 1.3: Probability that a random 3-SAT formula is satisfiable as a function of
the constraint density. In the inset on the left figure is the position of the crossing
point between curves corresponding to different sizes as a function of 1/N . It seems to
extrapolate to the analytical value αs = 4.267 [MZ02, MMZ06]. This figure should be
put in contrast with fig. 4.1 where the same plot is presented for the freezing transition
with a much smaller size of the inset.

Given a random K-SAT formula of N variables the probability that it is satisfiable,
plotted in fig. 1.3 for 3-SAT, becomes more and more like a step-function as the size N
grows. An analogy with phase transitions in physics cannot be overlooked. The existence
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and sharpness of the threshold were partially proved [Fri99]. The best known probabilistic
bounds of the threshold value in 3-SAT are 3.520 for the lower bound [KKL03, HS03] and
4.506 for the upper bound [DBM00]. Numerical estimates of the asymptotic value of the
threshold are αs ≈ 4.17 [KS94], αs ≈ 4.258 [CA96], αs ≈ 4.27 [MZK+99b, MZK+99a].
The finite size scaling of the curves in fig. 1.3 is quite involved as the crossing point is
moving. That is why the early numerical estimates of the threshold were very inaccurate.
The work of Wilson [Wil02], moreover, showed that the experimental sizes are too small
and the asymptotic regime for the critical exponent is not reached in any of the current
empirical works. The study of XOR-SAT indeed shows a crossover in the critical exponent
at sizes which are not accessible for K-SAT [LRTZ01].

The studies of random K-SAT opened up the exciting possibility to connect the
hardness with an algorithm-independent property, like the satisfiability phase transition.
But what exactly makes the instances near to the threshold hard remained an open
question.

1.4 Statistical physics comes to the scene

1.4.1 Glance on spin glasses

Spin glass is one of the most interesting puzzles in statistical physics. An example of a
spin glass material is a piece of gold with a small fraction of iron impurities. Physicist,
on contrary to the rest of the human population, are interested in the behaviour of these
iron impurities and not in the piece of gold itself. A new type of a phase transition was
observed from the high temperature paramagnetic phase to the low temperature spin
glass phase, where the magnetization of each impurity is frozen to a non-zero value, but
there is no long range ordering. More than 30 years ago Edwards and Anderson [EA75]
introduced a lattice model for such magnetic disordered alloys

H = −
∑

(ij)

JijSiSj − h
∑

i

Si , (1.11)

where Si ∈ {−1,+1} are Ising spins on a 3-dimensional lattice, the sum runs over all
the nearest neighbours, h is the external magnetic field and the interaction Jij is random
(usually Gaussian or randomly ±J). The solution of the Edwards-Anderson model stays
a largely open problem even today.

The mean field version of the Edwards-Anderson model was introduced by Sherrington
and Kirkpatrick [SK75], the sum in the Hamiltonian (1.11) then runs over all pairs (ij)
as if the underlying lattice would be fully connected. Sherrington and Kirkpatrick called
their paper ”Solvable Model of a Spin-Glass”. They were indeed right, but the correct
solution came only five years later by Parisi [Par80c, Par80b, Par80a]. Parisi’s replica
symmetry breaking (RSB) solution of the Sherrington-Kirkpatrick model gave rise to a
whole new theory of the spin glass phase and of the ideal glass transition in structural
glasses. The exactness of the Parisi’s solution was, however, in doubt till 2000 when
Talagrand provided its rigorous proof [Tal06]. The relevance of the RSB picture for the
original Edwards-Anderson model is widely discussed but still unknown.

A different mean field version of the Edwards-Anderson model was introduced by
Viana and Bray [VB85], the lattice underlying the Hamiltonian (1.11) is then a random
graph of fixed average connectivity. The complete solution of the Viana-Bray model is
also still an open problem.
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1.4.2 First encounter

The Viana-Bray model of spin glasses can also be viewed as random graph bi-partitioning
(or bi-coloring at a finite temperature). The peculiarity of the spin glass phase will surely
have some interesting consequences for the optimization problem itself. Indeed, the close
connection between optimization problems and spin glass systems brought forward a
whole collection of theoretical tools to analyze the structural properties of the optimiza-
tion problems.

All started in 1985 when Mézard and Parisi realized that the replica theory can be
used to solve the bipartite weighted matching problem [MP85]. Let us quote from the
introduction of this work: ”This being a kind of pioneering paper, we have decided to
present the method {meaning the replica method} on a rather simple problem (a polyno-
mial one) the weighted matching. In this problem one is given 2N points i = 1, . . . , 2N ,
with a matrix of distance lij, and one looks for a matching between the points (a set of
N links between two points such that at each point one and only one link arrives) of a
minimal length.” Using the replica symmetric (RS) approach they computed the average
minimal length, when the elements of the matrix lij are random identically distributed
independent variables.

Shortly after Fu and Anderson [FA86] used the replica method to treat the graph
bi-partitioning problem. They were the first to suggest that, possibly, the existence of a
phase transition in the average behaviour will affect the actual implementation and per-
formance of local optimization techniques, and that this may also play an important role
in the complexity theory. Only later, such a behaviour was indeed discovered empirically
by computer scientists [CKT91, MSL92].

The replica method also served to compute the average minimal cost in the random
traveling salesmen problem [MP86a, MP86b]. Partitioning a dense random graph into
more than two groups and the coloring problem of dense random graphs were discussed in
[KS87]. Later some of the early results were confirmed rigorously, mainly those concerning
the matching problem [Ald01, LW04]. All these early solved models are formulated on
dense or even fully connected graph. Thus the replica method and where needed the
replica symmetry breaking could be used in its original form. Another example of a ”fully
connected” optimization problem which was solved with a statistical physics approach is
the number partitioning problem [Mer98, Mer00].

And what about our customary random K-satisfiability, which is defined on a sparse
graph? Monasson and Zecchina worked out the replica symmetric solution in [MZ96,
MZ97]. It was immediately obvious that this solution is not exact as it largely overes-
timates the satisfiability threshold, the replica symmetry has to be broken in random
K-SAT.

An interesting observation was made in [MZK+99b]: They defined the backbone of
a formula as the set of variables which take the same value in all the ground-state con-
figurations 1. No extensive backbone can exist in the satisfiable phase in the limit of
large N . If it would, then adding an infinitesimal fraction of constraints would almost
surely cause a contradiction. At the satisfiability threshold an extensive backbone may
appear. The authors of [MZK+99b] suggested that the problem is computationally hard
if the backbone appears discontinuously and easy if it appears continuously. They sup-
ported this by replica symmetric solution of the SAT problem with mixed 2-clauses and

1In CSPs with a discrete symmetry, e.g. graph coloring, this symmetry has to be taken into account
in the definition of the backbone.



1.5. THE REPLICA SYMMETRIC SOLUTION 11

3-clauses, the so-called 2+p-SAT. Even if the replica symmetric solution is not correct in
random K-SAT and even if it overlooks many other important phenomena the concept
of backbone is fruitful and we will discuss its generalization in chapter 4.

How to deal with the replica symmetry breaking on a sparse tree-like graph was an
open question since 1985, when Viana and Bray [VB85] introduced their model. The solu-
tion came only in 2000 when Mézard and Parisi published their paper ”Bethe lattice spin
glass revisited” [MP01]. They showed how to treat correctly and without approximations
the first step of replica symmetry breaking (1RSB) and described how, in the same way,
one can in principal deal with more steps of replica symmetry breaking, this extension is
however numerically very difficult. But before explaining the 1RSB method we describe
the general replica symmetric solutions. And illustrate its usefulness on the problem of
counting matchings in graphs [ZDEB-1]. Only then we describe the main results of the
1RSB solution and illustrate the method in the 1-in-K SAT problem [ZDEB-3]. After
we list several ”loose ends” which appeared in this approach. Finally we summarize the
main contribution of this thesis. This will be the departure point for the following part
of this thesis which contains most of the original results.

1.5 The replica symmetric solution

The replica symmetric (RS) solution on a locally tree-like graph consists of two steps:

(1) Compute the partition sum and all the other quantities of interest as if the graph
would be a tree.

(2) The replica symmetric assumption: Assume that the correlations induced by long
loops decay fast enough, such that this tree solution is also correct on the only
locally tree-like graph.

Equivalent names used in literature for the replica symmetric solution are Bethe-Peierls
approximation (in particular in the earlier physics references) or belief propagation (in
computer science or when using the iterative equation as an algorithm to estimate the
marginal probabilities - magnetizations in physics). Both these conveniently abbreviate
to BP.

1.5.1 Statistical physics description

Let φa(∂a) be the evaluating function for the constraint a depending on the variables
neighbourhooding with a in the factor graph G(V, F, E). A satisfied constraint has
φa(∂a) = 1 and violated constraint φa(∂a) = 0. The Hamiltonian can then be writ-
ten as

HG({s}) =

M
∑

a=1

[

1− φa(∂a)
]

. (1.12)

The energy cost is thus one for every violated constraint. The corresponding Boltzmann
measure on configurations is:

µG({s}, β) =
1

ZG(β)
e−βHG({s}) , (1.13)
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where β is the inverse temperature and ZG(β) is the partition function. The marginals
(magnetizations) χisi

are defined as the probabilities that the variable i takes value si

χisi
=

1

ZG(β)

∑

{sj},j=1,...,i−1,i+1,...,N

e−βHG({sj},si) . (1.14)

The goal is to compute the internal energy EG(β) and the entropy SG(β). For β →∞
(zero temperature limit) these two quantities give the ground state properties. We are
interested in the ”thermodynamic” limit of large graphs (N →∞), and we shall compute
expectations over ensembles of graphs of the densities of thermodynamical potentials
ǫ(β) = E[EG(β)]/N and s(β) = E[SG(β)]/N , as well as the average free energy density

f(β) =
−1

βN
E[logZG(β)] =

1

N
E[FG(β)] = ǫ(β)−

1

β
s(β) . (1.15)

The reason for this interest is that, for reasonable graph ensembles, FG(β) is self-averaging.
This means that the distribution of FG(β)/N becomes more and more sharply peaked
around f(β) when N increases.

1.5.2 The replica symmetric solution on a single graph

j

i

a j

a

b

Figure 1.4: Parts of the factor graph used to compute ψa→i
si

and χj→a
sj

.

First suppose that the underlying factor graph is a tree, part of this tree is depicted
in fig. 1.4. We define messages ψa→i

si
as the probability that node i takes value si on a

modified graph where all constraints around i apart a were deleted, and χj→a
sj

as the prob-
ability that variable j takes value sj on a modified graph obtained by deleting constraint
a. On a tree these messages can be computed recursively as

ψa→i
si

=
1

Za→i

∑

{sj},j∈∂a−i

φa({sj}, si, β)
∏

j∈∂a−i

χj→a
sj
≡ Fψ({χ

j→a}) , (1.16a)

χj→a
sj

=
1

Zj→a

∏

b∈∂j−a

ψb→j
sj
≡ Fχ({ψ

b→j}) , (1.16b)

where Za→i and Zj→a are normalization constants, the factor φa({s}, β) = 1 if the con-
straint a is satisfied by the configuration {s} and φa({s}, β) = e−β if not. We denote by
ψa→i the whole vector (ψa→i

0 , . . . , ψa→i
q−1 ) and analogically χj→a = (χk→a

0 , . . . , χj→a
q−1 ). This

is one form of the belief propagation (BP) equations [KFL01, Pea82], sometimes called
sum-product equations. The probabilities ψ, χ are interpreted as messages (beliefs) living
on the edges of the factor graph, with the consistency rules (1.16a) and (1.16b) on the
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function and variable nodes. Equations (1.16) are usually solved by iteration, the name
message passing is used in this context. In the following it will be simpler not to consider
the ”two-levels” equations (1.16) but

ψa→i
si

=
1

Zj→i

∑

{sj},j∈∂a−i

φa({sj}, si, β)
∏

j∈∂a−i

∏

b∈∂j−a

ψb→j
sj
≡ F({ψb→j}) , (1.17)

where Zj→i = Za→i
∏

j∈∂a−i Z
j→a. Notice that on simple graphs, i.e., when either li = 2

for all i = 1, . . . , N or ka = 2 for all a = 1, . . . ,M , the form (1.17) simplifies further.
And on constraint satisfaction problems on simple graphs (e.g. the matching or coloring
problems) the ”two-levels” equations are almost never used.

Assuming that one has found the fixed point of the belief propagation equations
(1.16a-1.16b), one can deduce the various marginal probabilities and the free energy,
entropy etc. The marginal probability (1.14) of variable i estimated by the BP equations
is

χisi
=

1

Z i

∏

a∈∂i

ψa→i
si

. (1.18)

To compute the free energy we first define the free energy shift ∆F a+∂a after addition
of a function node a and all the variables i around it, and the free energy shift ∆F i after
addition of a variable i. These are given in general by:

e−β∆F a+∂a

= Za+∂a =
∑

{si},i∈∂a

φa({si}, β)
∏

i∈∂a

∏

b∈∂i−a

ψb→i
si

, (1.19a)

e−β∆F i

= Z i =
∑

si

∏

a∈∂i

ψa→i
si

. (1.19b)

The total free energy is then obtained by summing over all constraints and subtracting
the terms counted twice [MP01, YFW03]:

FG(β) =
∑

a

∆Fa+∂a −
∑

i

(li − 1)∆Fi . (1.20)

This form of the free energy is variational, i.e., the derivatives ∂(βFG(β))
∂χi→a and ∂(βFG(β))

∂ψa→i

vanish if and only if the probabilities χi→a and ψa→i satisfy (1.16a-1.16b). This allows to
compute easily the internal energy as

EG(β) =
∂βFG(β)

∂β
= −

∑

a

∂βZ
a+∂a

Za+∂a
. (1.21)

The entropy is then obtained as

SG(β) = β[EG(β)− FG(β)] . (1.22)

All the equations (1.16)-(1.22) are exact if the graphG is a tree. The replica symmetric
approach consists in assuming that all correlations decay fast enough that application of
eqs. (1.16)-(1.22) on a large tree-like graph G gives asymptotically exact results. These
equations can be used either on a given graph G or to compute the average over the
graph (and disorder) ensemble.
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1.5.3 Average over the graph ensemble

We now study the typical instances in an ensemble of graphs. We denote the average
over the ensemble by E(·). We assume that the random factor-graph ensemble is given by
a prescribed degree distribution Q(l) for variables and R(k) for constraints. Let us call
P(ψ) and O(χ) the distributions of messages ψ and χ over all the edges of a large typical
factor graph from the ensemble. They satisfy the following self-consistent equations

P(ψ) =

∞
∑

l=1

q(l)

∫ l
∏

i=1

[

dχiO(χi)
]

δ
[

ψ − Fψ({χ
i})
]

, (1.23a)

O(χ) =
∞
∑

k=1

r(k)

∫ k
∏

i=1

[

dψiP(ψi)
]

δ
[

χ− Fχ({ψ
i})
]

, (1.23b)

where the functions Fψ and Fχ represent the BP equations (1.16a-1.16b), q(l) and r(k)
are the excess degree distributions defined in (1.8). If there is a disorder in the interaction
terms, as e.g. the negations in K-SAT, we average over it at the same place as over the
fluctuating degree.

Solving equations (1.23a-1.23b) to obtain the distributions P and O is not straight-
forward. In some cases (on regular factor graphs, at zero temperature, etc.) it can be
argued that the distributions P, O are sums of Dirac delta functions. Then the solution
of eqs. (1.23a-1.23b) can be obtained analytically. But in general distributional equa-
tions of this type are not solvable analytically. However, a numerical technique called
population dynamics [MP01] is very efficient for their resolution. In appendix E we give
a pseudo-code describing how the population dynamics technique works.

Once the distributions P and O are known the average of the free energy density can
be computed by averaging (1.20) over P. This average expression for the free energy is

again in its variational form (see [MP01]), i.e., the functional derivative δf(β)
δP(h)

vanishes if

and only if P satisfies (1.32). The average energy and entropy density are thus expressed
again via the partial derivatives.

Factorized solution — As we mentioned, on the ensemble of random regular factor
graphs (without disorder in the interactions) the solution of equations (1.23) is very
simple: P(ψ) = δ(ψ − ψreg), Q(χ) = δ(χ− χreg), where ψreg and χreg is a self-consistent
solution of (1.16). This is because in the thermodynamical limit an infinite neighbourhood
of every variable is exactly identical thus also the marginal probabilities have to be
identical in every physical solution.

1.5.4 Application for counting matchings

To demonstrate how the replica symmetric method works to compute the entropy, that
is the logarithm of the number of solutions, we review the results for matching on sparse
random graphs [ZDEB-1]. The reasoning why the replica symmetric solution is exact for
the matching problem is done on the level of self-consistency checks in [ZDEB-1]. And
[BN06] have worked out a rigorous proof for graphs with bounded degree and a large
girth (length of the smallest loop).

Consider a graph G(V,E) with N vertices (N = |V |) and a set of edges E. A matching
(dimerization) of G is a subset of edges M ⊆ E such that each vertex is incident with
at most one edge in M . In other words the edges in the matching M do not touch each
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other. The size of the matching, |M |, is the number of edges inM . Our goal is to compute
the entropy of matchings of a given size on a typical large Erdős-Rényi random graph.

We describe a matching by the variables si = s(ab) ∈ {0, 1} assigned to each edge
i = (ab) of G, with si = 1 if i ∈M and si = 0 otherwise. The constraints that two edges
in a matching cannot touch impose that, on each vertex a ∈ V :

∑

b,(ab)∈E s(ab) ≤ 1. To
complete our statistical physics description, we define for each given graph G an energy
(or cost) function which gives, for each matching M = {s}, the number of unmatched
vertices:

HG(M = {s}) =
∑

a

Ea({s}) = N − 2|M | , (1.24)

where Ea = 1−
∑

∂b s(ab).
In the factor graph representation we transform the graph G into a factor graph F (G)

as follows (see fig. 1.5): To each edge of G corresponds a variable node (circle) in F (G);
to each vertex of G corresponds a function node (square) in F (G). We shall index the
variable nodes by indices i, j, k, . . . and function nodes by a, b, c, . . . . The variable i takes
value si = 1 if the corresponding edge is in the matching, and si = 0 if it is not. The
weight of a function node a is

φa({∂a}, β) = I

(

∑

i∈∂a

si ≤ 1

)

e−β(1−
P

i∈∂a si) , (1.25)

where ∂a is the set of all the variable nodes which are neighbours of the function node a,
and the total Boltzmann weight of a configuration is 1

ZG(β)

∏

a φa({∂a}, β).
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Figure 1.5: On the left, example of a graph with six nodes and six edges. On the right,
the corresponding factor graph with six function nodes (squares) and six variable nodes
(circles).

The belief propagation equation (1.16) becomes

χi→a
si

=
1

Zb→a

∑

{sj}

I

(

si +
∑

j∈∂b−i

sj ≤ 1

)

e−β(1−si−
P

sj)
∏

j∈∂b−i

χj→b
sj

, (1.26)

where Zb→a is a normalization constant. In statistical physics the more common form of
the BP equations uses analog of local magnetic fields instead of probabilities. For every
edge between a variable i and a function node a, we define a cavity field hi→a as

e−βh
i→a

≡
χi→a

0

χi→a
1

. (1.27)

The recursion relation between cavity fields is then:

hi→a = −
1

β
log

[

e−β +
∑

j∈∂b−i

eβh
j→b

]

. (1.28)
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The expectation value (with respect to the Boltzmann distribution) of the occupation
number si of a given edge i = (ab) is equal to

〈si〉 =
1

1 + e−β(hi→a+hi→b)
. (1.29)

The free energy shifts needed to compute the total free energy (1.20) are

e−β∆Fa+i∈∂a = e−β +
∑

i∈a

eβh
i→a

, (1.30a)

e−β∆Fi = 1 + eβ(hi→a+hi→b) . (1.30b)

The energy, related to the size of the matching via (1.24), is then

EG(β) =
∑

a

1

1 +
∑

i∈∂a e
β(1+hi→a)

. (1.31)

This is the sum of the probabilities that node a is not matched.
The distributional equation (1.23) becomes

O(h) =

∞
∑

k=1

r(k)

∫ k
∏

i=1

[

dhiO(hi)
]

δ

[

h+
1

β
log

(

e−β +
∑

i

eβh
i

)]

. (1.32)

And the average free energy is explicitly

f(β) =
E[FG(β)]

N
= −

1

β

∞
∑

k=0

R(k)

∫ k
∏

i=1

[

dhiO(hi)
]

log

(

e−β +
∑

i

eβh
i

)

+
c

2β

∫

dh1 dh2O(h1)O(h2) log
(

1 + eβ(h1+h2)
)

. (1.33)

Where R(k) is the connectivity distribution of the function nodes, that is the connec-
tivity distribution of the original graph, c is the average connectivity. The distributional
equations are solved via the population dynamics method, see appendix E. Fig. 1.6 then
presents the resulting average entropy as a function of size of the matching.

1.6 Clustering and Survey propagation

As we said previously in the random K-SAT the replica symmetric solution is not gener-
ically correct. Mézard and Parisi [MP01] understood how to deal properly and without
approximations with the replica symmetry breaking on random sparse graphs, that is
how to take into account the correlations induced by long loops. More precisely in their
approach only the one-step (at most two-step on the regular graphs) replica symmetry
breaking solution is numerically feasible. Anyhow, such a progress opened the door to a
better understanding of the optimization problems on sparse graphs. The K-satisfiability
played again the prominent role.

To compute the ground state energy within the 1RSB approach we can restrict only to
energetic considerations as described in [MP03], we call this approach the energetic zero
temperature limit. Applying this method to K-satisfiability leads to several outstand-
ing results [MPZ02, MZ02], we describe the three most remarkable ones. Soon after,
analog results were obtained for many other optimization problems, for example graph
coloring [MPWZ02, BMP+03, KPW04], vertex cover [Zho03], bicoloring of hyper-graphs
[CNRTZ03], XOR-SAT [FLRTZ01, MRTZ03] or lattice glass models [BM02, RBMM04].
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Figure 1.6: Entropy density s(m) as a function of relative size of the matchingm = |M |/N
for Erdős-Rényi random graphs with mean degrees c = 1, 2, 3, 6. The lower curve is the
ground state entropy density for all mean degrees. The curves are obtained by solving
eqs. (1.32)-(1.33) with a population dynamics, using a population of sizes N = 2 · 104 to
2 · 105 and the number of iterations T = 10000.

Clustering — It was known already in the ”pre-1RSB-cavity era” that replica sym-
metry broken solution is needed to solve random K-SAT. Such a need is interpreted
as the existence of many metastable well-separated states, in the case of highly de-
generate ground state this leads to a clustering of solutions in the satisfiable phase
[BMW00, MPZ02, MZ02]. The energetic 1RSB cavity method deals with clusters con-
taining frozen variables (clusters with backbones), that is variables which have the same
value in all the solutions in the cluster. It predicts how many of such clusters exist at
a given energy, the logarithm of this number divided by the system size N defines the
complexity function Σ(E). According to the energetic cavity method for 3-SAT, clusters
exist, Σ(0) 6= 0, for constraint density α > αSP = 3.92 [MPZ02, MZ02].

It was conjectured [MPZ02, MZ02] that there is a link between clustering, ergodicity
breaking, existence of many metastable states and the difficulty of finding a ground state
via local algorithms. The critical value αSP was called the dynamical transition and the
region of α > αSP the hard-SAT phase.

Clusters were viewed as a kind of pure states, however, in the view of many a good
formal definition was missing. It was also often referred to some sort of geometrical
separation between different clusters. A particularly popular one is the following: Clusters
are connected components in the graph where solutions are the nodes and two solutions
are adjacent if they differ in only d variables. Depending on the model and author the
value of d is either one of d is a finite number of d is said to be any sub-extensive number.
The notion of x-satisfiability, the existence of pairs of solutions at a distance x, leads
to a rigorous proof of existence of exponentially many geometrically separated clusters
[MMZ05, DMMZ08, ART06].



18 CHAPTER 1. HARD OPTIMIZATION PROBLEMS

The satisfiability threshold computed — The energetic 1RSB cavity method al-
lows to compute the ground state energy and thus also the satisfiability threshold αs. In
3-SAT its value is αs = 4.2667 [MPZ02, MZ02, MMZ06]. This value is computed as a
solution of a closed distributional equation. This time there is an excellent agreement
with the empirical estimations. Is the one step of replica symmetry breaking sufficient
to locate exactly the satisfiability threshold? The stability of the 1RSB solution was
investigated in [MPRT04], the 1RSB energetic cavity was shown to describe correctly the
ground state energy for 4.15 < α < 4.39 in 3-SAT. In particular, it yields the conjecture
that the location of the satisfiability threshold is actually exact. From a rigorous point
of view it was proven that the 1RSB equations give an upper bound on the satisfiability
threshold [FL03, FLT03, PT04].

Survey Propagation: a revolutionary algorithm — The most spectacular result
was the development of a new message passing algorithm, the survey propagation [MZ02,
BMZ05]. Before the replica and cavity analysis were used to compute the quenched
averages of thermodynamical quantities. Using always the self-averaging property that
the average of certain (not all) quantities is equal to their value on a large given sample.
Mézard and Zecchina applied the energetic 1RSB cavity equations, later called survey
propagation, on a single large graph. This resulted in an algorithm which is arguably still
the best known for large instances of random 3-SAT near to the satisfiability threshold.
And even more interesting than its performance is the conceptual advance this brought
into applications of statistical physics to optimization problems.

1.7 Energetic 1RSB solution

In this section we derive the energetic zero-temperature limit of the 1RSB method. When
applied to the satisfiability problem this leads, between others, to the calculation of
the satisfiability threshold and to the survey propagation equations and algorithm. We
illustrate this on the 1-in-3 SAT problem. Before doing so we have to introduce the
warning propagation equations, on which the derivation of the survey propagation relies.

1.7.1 Warning Propagation

In general warning propagation (min-sum) is a zero temperature, β → ∞, limit of the
belief propagation (sum-product) equations (1.16a-1.16b). It can be used to compute the
ground state energy (minimal fraction of violated constraints) at the replica symmetric
level. A constraint satisfaction problem at a finite temperature gives rise to φa({∂a}, β) =
1 if the constraint a is satisfied by configuration {s∂a}, and φa({∂a}, β) = e−2β if a is
not satisfied by {s∂a}2. In a general Boolean CSP, with N variables si ∈ {−1, 1}, the
warning propagation can then be obtained from (1.16a-1.16b) by introducing warnings u
and h as

e2βh
i→a

≡
χi→a

1

χi→a
−1

, e2βu
a→i

≡
ψa→i

1

ψa→i
−1

. (1.34)

2The factor 2 in the Hamiltonian is introduced for convenience and in agreement with the notation
of [ZDEB-3].
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This leads in the limit of zero temperature, β →∞, to

hi→a =
∑

b∈∂i−a

ub→i , (1.35a)

ua→i =
1

2

[

max
{sj}

(

∑

j∈∂a−i

hj→asj − 2Ea({sj},+1)
)

−max
{sj}

(

∑

j∈∂a−i

hj→asj − 2Ea({sj},−1)
)

]

.
(1.35b)

where Ea({si}) = 0 if the configuration {si} satisfies the constraint a, and Ea({si}) = 1 if
it does not. The warnings u and h have to be integer numbers, as they can be interpreted
as changes in the ground state energy of the cavity subgraphs when the value of variable
i is changed from si = 0 to si = 1. Given Ea ∈ {0, 1} we have that h ∈ Z and
u ∈ {−1, 0,+1}. The correspondence between values of u and ψ are

u = 1 ⇔ ψ1 = 1 , ψ−1 = 0 , (1.36a)

u = −1 ⇔ ψ1 = 0 , ψ−1 = 1 , (1.36b)

u = 0 ⇔ ψ1 = ǫ , ψ−1 = 1− ǫ , 0 < ǫ < 1 . (1.36c)

The warnings u and h can thus be interpreted in the following way

ua→i = −1 Constraint a tells to variable i: “I think you should be −1.”

ua→i = 0 Constraint a tells to variable i: “I can deal with any value you take.”

ua→i = +1 Constraint a tells to variable i: “I think you should be +1.”

hi→a < 0 Variable i tells to constraint a: “I would prefer to be −1.”

hi→a = 0 Variable i tells to constraint a: “I don’t have any strong preferences.”

hi→a > 0 Variable i tells to constraint a: “I would prefer to be +1.”

Given this interpretation the prescriptions (1.35) on how to update the warnings over the
graph becomes intuitive. Variable i collects the preferences from all constraints except a
and sends the result to a. Constraint a then decides which value i should take given the
preferences of all its other neighbours.

h1→a h2→a ua→3

+ + 0
+ – –
+ 0 –
0 0 0
– – +
– 0 0

Table 1.1: Example of the update (1.35b) in the positive 1-in-3 SAT problem, where
exactly one variable in the constraint takes value 1 in order to satisfy the constraint. The
first line might seem counter-intuitive, but note that we defined the energy in such a way
that configuration (1, 1, 1) is as bad as (1, 1,−1).
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Given the fixed point of the warning propagation (1.35) the total warning of variable
i is

hi =
∑

a∈∂i

ua→i . (1.37)

The corresponding energy can be computed as

E =
∑

a

∆Ea+∂a −
∑

i

(li − 1)∆Ei , (1.38)

where ∆Ea+∂a is the number of contradictions created when constraint a and all its
neighbours are added to the graph, ∆Ei is the number of contradictions created when
variables i is added to the graph. The energy shifts can be computed from (1.19a-1.19b)
using (1.34) and taking β →∞ they read

∆Ea+∂a = −max
{s∂a}

[

∑

i∈∂a

hi→asi −Ea({s∂a})
]

+
∑

i∈∂a

∑

b∈∂i−a

|ub→i| ; (1.39a)

∆Ei = −
∣

∣

∣

∑

a∈∂i

ua→i
∣

∣

∣
+
∑

a∈∂i

|ua→i| ; (1.39b)

To summarize, the warning propagation equations neglect every entropic information
in the belief propagation (1.16a-1.16b), thus only the ground state energy can be com-
puted. On the other hand the fact that warnings u and h have a discrete set of possible
values simplifies considerably the average over the graph ensemble presented in sec. 1.5.3
as the distribution P is a sum of three Dirac function, and can be represented by their
weights. Deeper interpretations of warning propagation and its fixed points will be given
in chapter 4. Note that in the literature the value 0 of warnings is also called ∗ or ”joker”
[BMWZ03, BZ04].

1.7.2 Survey Propagation

Survey propagation (SP) [MPZ02, MZ02] is a form of belief propagation which aims to
count the logarithm of the number of fixed points of warning propagation (1.35) of a
given energy (1.38). For the sake of simplicity we present the most basic form of SP
which aims to count the logarithm of number of fixed points of the warning propagation
with zero energy.

The constraints on values of the warnings assuring that the fixed point of warning
propagation corresponds to zero energy are

• For all i and a ∈ ∂i: the warnings {ub→i}b∈∂i−a are all non-negative or all non-
positive,

• For all a and i ∈ ∂a: the preferred values of all j ∈ ∂a − i can be realized without
violating the constraint a.

We define probabilities that warnings ua→i or hi→a are positive, negative or null.

Pa→i(ua→i) = qa→i
− δ(ua→i + 1) + qa→i

+ δ(ua→i − 1) + qa→i
0 δ(ua→i) ; (1.40a)

P i→a(hi→a) = pi→a
− µ−(hi→a) + pi→a

+ µ+(hi→a) + pi→a
0 δ(hi→a) ; (1.40b)

where qa→i
− + qa→i

+ + qa→i
0 = pi→a

− + pi→a
+ + pi→a

0 = 1, and µ±(h) are normalized measures
with support over Z

±. So, to every oriented edge we associate a message q = (q−, q0, q+)
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or p = (p−, p0, p+) (resp. if oriented towards the variable or the constraint). We call these
messages surveys, they are analogous to beliefs ψa→i and χi→a from (1.16a-1.16b). And
thus, if the factor graph is tree, exact iterative equations for q, p can be written. The
update of surveys p given incoming q is common for all Boolean CSPs and reads:

pi→a
+ + pi→a

0 = N−1
i→a

∏

b∈∂i−a

(qa→i
+ + qa→i

0 ) , (1.41a)

pi→a
− + pi→a

0 = N−1
i→a

∏

b∈∂i−a

(qb→i
− + qb→i

0 ) , (1.41b)

pi→a
0 = N−1

i→a

∏

b∈∂i−a

qb→i
0 , (1.41c)

where Ni→a is the normalization factor. The update of surveys q given the incoming
ps depends on the details on the constraint functions. For concreteness we write the
equation for the positive 1-in-3 SAT problem. The constraints assuring zero energy then
forbids that both the warnings incoming to a constraint a have value +1.

qa→i
+ = N−1

a→i p
j→a
− pk→a

− , (1.42a)

qa→i
− = N−1

a→i

[

pj→a
+ (1− pk→a

+ ) + (1− pj→a
+ )pk→a

+

]

, (1.42b)

qa→i
0 = N−1

a→i

[

pj→a
− pk→a

0 + pj→a
0 pk→a

− + pj→a
0 pk→a

0

]

, (1.42c)

where Na→i = 1 − pj→a
+ pk→a

+ is the normalization factor, j and k are the other two
neighbours of a.

The associated Shannon entropy is called complexity [Pal83] (or structural entropy in
the context of glasses) and reads [MZ02]

Σ(E = 0) =
∑

a

logN a+∂a −
∑

i

(li − 1) logN i , (1.43)

where N a+∂a is the probability that no contradiction is created when the constraint a
and all its neighbours are added, N i is the probability that no contradiction is created
when the variable i is added. Remark the exact analogy with (1.19a-1.19b). We denote
P i0 ≡

∏

a∈∂i q
a→i
0 and P i± ≡

∏

a∈∂i(q
a→i
± + qa→i

0 ), then

N i = P i+ + P i− − P
i
0 , (1.44a)

N a+∂a =
∏

i∈∂a

(P i→a
+ + P i→a

− − P i→a
0 )−

∏

i∈∂a

(P i→a
− − P i→a

0 )−
∏

i∈∂a

(P i→a
+ − P i→a

0 )

−
∑

i∈∂a

P i→a
−

∏

j∈∂a−i

(Pj→a
+ −Pj→a

0 ) .
(1.44b)

The second equation collects the contributions from all combinations of arriving sur-
veys except the “contradictory” ones (+,+,+), (−,−,−), (+,+, 0) and (+,+,−) (plus
permutations of the latter).

The survey propagation equations (1.41-1.42) and the expression for the complexity
function (1.43) are exact on tree graphs. In the spirit of the Bethe approximation, we
will assume sufficient decay of correlations and use these equations on a random graph 3.
To average over the ensemble of random graphs we adopt the same equations as we did
for the belief propagation in sec. 1.5.3.

3The fact that on a given tree with given boundary conditions the warning propagation has a unique
fixed point might seem puzzling at this point. Clarification will be made in the chapter 2.
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1.7.3 Application to the exact cover (positive 1-in-3 SAT)

The 1-in-3 SAT problem (with probability of negating a variable equal to one-half) is
a rare example of an NP-complete problem which is on average algorithmically easy
and where the threshold can be computed rigorously [ACIM01]. In particular it was
shown that for α 6= 1 an instance of the problem can be solved in polynomial time with
probability going to one as N →∞. This result was generalized into random 1-in-3 SAT
where the probability of negating a variable is p 6= 1/2 [ZDEB-3]. In particular we showed
that for all 0.273 < p < 0.718 the RS solution is correct and almost every instance can
be solved in polynomial time if the constraint density α 6= 1/[4p(1−p)]. When, however,
p < 0.273 the phase diagram is more complicated, see [ZDEB-3]. For p = 0 the solution of
the positive 1-in-3 SAT (exact cover) problem becomes very similar to the one of 3-SAT
[MZ02]. The result for the complexity (1.43) in the positive 1-in-3 SAT obtained from
the population dynamics method is plotted in fig. 1.7. For more detailed discussion of
how the phase diagram changes from the almost-always-easy to the very-hard pattern see
[ZDEB-3].
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Figure 1.7: Average complexity density (logarithm of number of states divided by the
number of variables) as a function of the mean degree c for the positive 1-in-3 SAT prob-
lem. At cSP = 1.822 a nontrivial solution of the survey propagation equations appears,
with positive complexity. At cs = 1.8789± 0.0002 the complexity becomes negative: this
is the satisfiability transition. At cp = 1.992 the solution at zero energy ceases to exist.
The inset magnifies the region where the complexity crosses zero, together with the error
bar for the satisfiability transition. Crosses represent results of a population dynamics
with N = 0.5 · 105 elements, squares of N = 1 · 105, and circles N = 2 · 105.

Up to certain average connectivity of variables cSP = 1.822 the only iterative fixed
point of the population dynamics gives qa→i

0 = pi→a
0 = 1 for all (ia). The associated

complexity function is zero. In an interval (cSP, cs) = (1.822, 1.879) there exist a non-
trivial solution giving positive complexity function. There are thus exponentially many
different fixed points of the warning propagation. Asymptotically, almost every warning
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propagation fixed point is associated to a cluster of solutions4. Above cs = 1.879 there
is a nontrivial solution to the SP equations giving a negative complexity function. There
are thus almost surely no nontrivial fixed points of warning propagation at zero energy.

Before interpreting the survey propagation results, we should check that its application
on tree-like random graphs is justified. The method to do this self-consistency check has
been developed in [MPRT04] and is discussed in appendix D. For 1-in-3 SAT the result in
that SP is stable, thus the results are believed to be correct, for c ∈ (1.838, 1.948) [ZDEB-
3]. The point cs belongs to this interval, thus we can interpret it safely as the satisfiability
threshold. However, the point cSP has no physical meaning, and some statements that
are suggested by its existence are wrong. For example it is not true that there is not
exponentially many fixed points of the warning propagation, thus no clustering, for c <
cSP. This has been remarked in [ZDEB-4] and a part of chapter 2 will be devoted to
understanding this.

1.8 Loose ends

We could summarize the understanding of the subject three years ago in the following way:
The 1RSB cavity method was able to compute the satisfiability threshold. The clustered
phase was predicted and its existence partially proven. The conjecture that clustering
is a key element in understanding of the computational hardness was accepted. The
survey propagation inspired decimation algorithm was breath-taking, and the computer
science community was getting gradually more and more interested in the concepts which
lead to its derivation. It might have seemed that a real progress can be made only on
the mathematical side of the theory, in the analytical analysis of the performance of the
message passing algorithms, or in new applications. But several loose ends hanged in the
air and the opinions on their resolution were diverse. I will list three of them which I
consider to be the most obtruding ones.

(A) The ”no man’s land”, RS unstable but SP trivial — The energetic 1RSB
cavity method (survey propagation) predicts the clustering in 3-SAT at αSP = 3.92. But
the replica symmetric solution is unstable at already αRS = 3.86, at this point the spin
glass susceptibility diverges and equivalently the belief propagation algorithm stops to
converge on a single graph, see appendix C. What is the solution in the ”no man’s
land” between αRS and αSP? The values are even more significant for the 3-coloring
or Erdős-Rényi graphs where the corresponding average connectivities are cRS = 4 and
cSP = 4.42.

(B) No solutions with nontrivial whitening cores — An iterative procedure called
whitening of a solution is defined as iteration of the warning propagation equations ini-
tialized from a solution. Whitening core is the corresponding fixed point. We call white
those variables which are assigned the ”I do not care” state in the whitening core. A
crucial asymptotic property is that if the 1RSB solution is correct then the whitening
core of all solutions from one cluster is the same and the non-white variables are the

4There might exist fixed points of the warning propagation which are not compatible with any solution,
thus do not correspond to a cluster. Such ”fake” fixed points are negligible if the 1RSB approach is
correct.
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frozen ones in that cluster. Consequently, knowing a solution, the whitening may be used
to tell if the solution was or was not in a frozen cluster.

Survey propagation uses information only about frozen cluster. It might seem that
every cluster is uniquely described by its whitening core, that is by the set and values of
the frozen variables.

Yet, the solutions found by survey propagation have always a trivial, all white, whiten-
ing core. This paradox was pointed out in [MMW07] and observed also by the authors
of [BZ04]. It was suggested that the concept of whitening might be meaningful only in
the thermodynamical limit. But that was not a satisfactory explanation.

(C) Where do the simple local algorithms actually fail — The clustered phase,
baptized ”Hard” in [MZ02] does not seem to be that hard. There is no local algorithm
which would perform well exactly up to αSP = 3.92. For a while it was thought that the
1RSB stability point αII = 4.15, see appendix D , is a better alternative. It was argued
that the full-RSB states are more ”transparent” for the dynamics than the 1RSB states
which should be well defined and separated. Moreover there was at least one empirical
result which suggested that the Walk-SAT algorithm stops to work in linear time at
that point [AGK04]. But other version of Walk-SAT stopped before or even after, as for
example the ASAT which was argued in [AA06] to work in linear time at least up to
α = 4.21.

1.9 Summary of my contributions to the field

In my first works [ZDEB-1, ZDEB-2, ZDEB-3] I applied the replica symmetric and the
energetic 1RSB method to the matching and the 1-in-K SAT problems. This is why I
used these two problems to illustrate the methods in sec. 1.5.4 and 1.7.

The problem of matching on graphs is a common playground for algorithmic and
methodological development. I studied the problem of counting maximum matchings in
a random graph in [ZDEB-1]. Finding a maximum matching is a well known polynomial
problem, while their approximative counting is a much more difficult task. We showed,
that the entropy of maximum matchings can be computed using the belief propagation
algorithm, a result which was later on partially proved rigorously [BN06].

My interest in the 1-in-K SAT problem stemmed from the work [ACIM01] where the
authors computed rigorously the satisfiability threshold and showed that the NP-complete
problem is in fact on average algorithmically easy. In [ZDEB-2, ZDEB-3] we studied the
random 1-in-3 SAT in two-parameter space. One parameter is the classical constraint
density, the other is the probability p of negating a variable in a constraint (p = 1/2 in
[ACIM01]). We showed that for 0.2627 < p < 0.7373 the problem is on average easy and
the satisfiability threshold can be computed rigorously. On the other hand for p < 0.07
the problem is qualitatively similar to the 3-SAT. We computed the threshold from the
energetic 1RSB approach. In the intermediate region the 1RSB approach is not stable,
thus it stays an open question how exactly does the problem evolve from an on average
easy case to a 3-SAT like case. Qualitatively similar phase diagram was described in
the 2 + p SAT problem [MZK+99a, AKKK01]. We also found an interesting region of
the parameter space in the 1-in-3 SAT where the unit clause algorithm provably finds
solutions despite the replica symmetric solution being not correct (unstable).

The rest of my works [ZDEB-4, ZDEB-5, ZDEB-6, ZDEB-7, ZDEB-8, ZDEB-10,
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ZDEB-9] tied up the loose ends from the previous section and mainly addressed the orig-
inal question of this thesis: Why are some constraint satisfaction problems intrinsically
hard on average and what causes this hardness?

I used the entropic zero temperature 1RSB approach, introduced in [MPR05], to
study the structure of solutions in random CSPs. In [ZDEB-4, ZDEB-5] we discovered
that the true clustering (dynamical) transition does not correspond to the onset of a
nontrivial solution of the survey propagation equations. We gave a proper definition of
the clustering transition and formulated it in terms of extremality of the uniform measure
over solutions. The clustering transition happens always before or at the same time as
the replica symmetric solution ceases to be stable. This tied up the loose end (A), as in
the ”no man’s land” the energetic 1RSB solution was simply incomplete.

We showed that in general there exist two distinct clustered phases below the satis-
fiable threshold. In the first, dynamic clustered phase, an exponentially large number of
pure states is needed to cover almost all solutions. However, average properties (such as
total entropy) still behave as if the splitting of the measure did not count. In particular,
a simple algorithm such as belief propagation gives asymptotically correct estimates of
the marginal probabilities. However, the measure over solutions is not extremal and,
more importantly, the Monte Carlo equilibration time diverges, thus making the sam-
pling of solutions a hard problem. The second kind of clustered phase is the condensed
clustered phase where a finite number of pure states is sufficient to cover almost all so-
lutions. A number of nontrivial predictions follows: for instance the total entropy has
a non-analyticity at the transition to this phase, the marginal probabilities are non-self-
averaging and not given anymore by the belief propagation algorithm.

In the context of the coloring problem, i.e. anti-ferromagnetic Potts glass, I also
addressed related questions of what does the 1RSB solution predict for the finite tem-
perature phase diagram and when is the 1RSB solutions correct (stable) [ZDEB-5]. We
give the full phase diagram for this model and argue that in the colorable phase for at
least 4 colors the 1RSB solutions is stable, and thus believed to be exact.

In order to clarify and substantiate this heuristic picture, we introduced the random
subcubes model in [ZDEB-8], a generalization of the random energy model. The random
subcubes model is exactly solvable and reproduces the sequence of phase transitions
in the real CSPs (clustering, condensation, satisfiability threshold). Its, perhaps, most
remarkable property is that it reproduces quantitatively the behaviour of random q-
coloring and random K-SAT in the limit of large q and K. We showed that the random
subcubes model can also be used as a simple playground for the studies of dynamics in
glassy systems.

An important and quite novel phenomena I investigated in [ZDEB-5, ZDEB-7] is the
freezing of variables. A variable is frozen when in all the solutions belonging to one cluster
it takes the same value. I discovered that the fraction of such frozen variables undergoes
a first order phase transition when the size of states is varied. I introduced the notion
of the rigidity transition as the point where almost all the dominating clusters become
frozen and the freezing transition as the point where all the clusters become frozen. The
solutions belonging to the frozen clusters can be recognized via the whitening procedure.

We computed the rigidity transition in the random coloring in [ZDEB-5]. And we
studied the freezing transition in 3-SAT numerically [ZDEB-10], with the result αf =
4.254 ± 0.009 (to be compared to the satisfiability threshold αs = 4.267). This study
also confirms that the notion of whitening and freezing of variables in meaningful even
on relatively small systems.
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This allows us to tie up the loose end (B). The survey propagation algorithm describes
the most numerous frozen clusters. The range of connectivities where the SP based
algorithms are able to find solutions in 3-SAT lies in the phase where most solutions are
in fact unfrozen. It is thus much less surprising that the SP based algorithms always find
a solution with a trivial whitening.

A very natural question cannot be avoided at this point: What happens in the frozen
phase where all the solutions are frozen? We know that such a phase exists, this was
shown in [ART06] and numerically in [ZDEB-10]. And we also know from several authors
that the known algorithms do not seem to be able to find frozen solutions in polynomial
time (that is never for sufficiently large instances). We conjectured in [ZDEB-5] that the
freezing is actually a relevant concept for the algorithmical hardness. Thus the answer
we suggest to tie up the loose end (C) is that the simple local algorithms stop always
before the freezing transition. It is a challenging problem to design an algorithm which
would be able to beat this threshold.

In the coloring and satisfiability problems (at reasonably small q and K) the freezing
transition is however very near to the satisfiability threshold, see the numbers in [ZDEB-
5, ZDEB-10]. It is thus difficult to make strong empirical conclusions about the relation
between hardness and freezing. Motivated by the need of problems where the freezing
and satisfiability would be well separated I introduced the locked constraint satisfaction
problems where the freezing transition coincides with the clustering one [ZDEB-9]. The
locked CSPs are very interesting from several points of view. The clusters in locked CSPs
are point-like, this is why the clustering and freezing coincide. This is also connected
with a remarkable technical simplification, as these problems can be fully described on
the replica symmetric level.

On the other hand the locked problems are extremely algorithmically challenging. We
implemented the best known solvers and showed that they do not find solutions starting
very precisely from the clustering (= freezing) transition. At the same time this transition
is very well separated from the satisfiability threshold.

A remarkable point about a subclass of the locked problems which we called balanced is
that the satisfiability threshold can be obtained exactly from the first and second moment
calculation. This adds a huge class of constraint satisfaction problems to a handful of
other NP-complete CSPs where the threshold is known rigorously. And it also brings the
understanding of which properties of the problem introduce fluctuations which make the
second moment method fail.

The numerical work on the 3-SAT problems [ZDEB-10] also addresses another im-
portant and almost untouched question: How much are the asymptotic results relevant
for systems of practical sizes. We counted the number of clusters in random 3-SAT on
instances up to size N = 150 and compared to the analytical prediction. We saw that
the comparison is strikingly good for already so small systems. This should encourage
the application of statistical physics methods to the real world problems.



Chapter 2

Clustering

In this chapter we introduce the concept of clustering of solutions. First we investigate
when does the replica symmetric solution fail. Then we derive the one-step replica sym-
metry breaking equations on trees and give their interpretation on random graphs. We
discuss how several geometrical definitions of clusters might be related to the pure states
and review the properties of the clustered phase. Finally, we revise how is the clustering
related to the algorithmical hardness and conclude that it is considerably less than previ-
ously anticipated. The original contributions to this chapter were published in [ZDEB-4,
ZDEB-5, ZDEB-10].

2.1 Definition of clustering and the 1RSB approach

How to recognize when is the replica symmetric solution correct? First we have to explain
what do we precisely mean by ”being correct”. We obviously require that quantities like
the free energy, energy, entropy, marginal probabilities (magnetizations) are asymptoti-
cally exact when computed in the replica symmetric approach. But this is not enough, as
this is also satisfied in the phase which we will call later the clustered (dynamical) 1RSB
phase.

A commonly used necessary condition for the validity of the RS solution is referred to
as the local stability towards 1RSB. It consists in checking that the spin glass susceptibil-
ity does not diverge, or equivalently that the belief propagation algorithm converges on
a large single graph, or in the probability theory this corresponds to the Kesten-Stigum
condition [KS66a, KS66b]. These and other equivalent representations for the replica
symmetric stability are discussed in detail in appendix C. If the replica symmetric solu-
tion is not stable then it predicts wrong free energy, entropy, correlation functions, etc.
But the contrary is far from being true: even if stable, the RS solution might be wrong,
and even unphysical (predicting negative entropies in discrete models, negative energies
in models with strictly non-negative Hamiltonian function, or discontinuities in functions
which physically have to be Lipschitzian).

It is tempting to say: The replica symmetric solution is correct if and only if the
assumptions we used when deriving it are correct. In deriving the belief propagation
(1.16) and the RS free energy (1.20) we used only one assumption: The neighbours of a
variable i are independent random variables, under the Boltzmann measure (1.13), when
conditioned on the value of i. As we will see, this assumption is asymptotically correct
also in the dynamical 1RSB phase, and thus the RS marginal probabilities, or the free
energy function remain asymptotically exact in that phase.

27
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We thus need a different definition for the ”RS correctness” which would determine
whether the Boltzmann measure (1.13) can be asymptotically described as a single pure
state, and whether the equilibration time of a local dynamics is linear in the system
size. At the same time we do not want this definition to refer the RSB solution, because
obviously we want to justify the need of the RSB solution by the failure of the RS solution.

A definition satisfying the above requirements appeared only recently [MM08, MS05,
MS06c], and it can be written in several equivalent ways. From now on we say that the
replica symmetric solution is correct if and only if one of the following is true.

(a) The point-to-set correlations decay to zero.

(b) Reconstruction on the underlying graph in not possible.

(d) The uniform measure over solutions satisfies the extremality condition.

(c) The 1RSB equations at m = 1, initialized in a completely biased configuration,
converge to a trivial fixed point.

In the rest of this section we explain these four statements, and show that they are indeed
equivalent, and explain how do they correspond to the existence of a nontrivial 1RSB
solution. We should mention that in the so-called locked constraint satisfaction problems
this definition have to be slightly changed at zero temperature, we will discuss that in
sec. 4.3. The transition from a phase where the RS solution is correct to a phase where
it is not is called the clustering or the dynamical transition.

Gibbs measures and why are the sparse random graphs different — Our goal
is to describe the structure of the set of solutions of a constraint satisfaction problem
with N variables. Let φa(∂a) be the constraint function depending on variables si ∈ ∂a
involved in the constraint a, φa(∂a) = 1 if the constraint is satisfied, φa(∂a) = 0 if not.
The uniform measure over all solutions can be written as

µ({si}) =
1

Z

M
∏

a=1

φa(∂a) , (2.1)

where Z is the total number of solutions. The uniform measure over solutions is the zero
temperature limit, β →∞, of the Boltzmann measure

µ({si}, β) =
1

Z(β)

M
∏

a=1

e−β[1−φa(∂a)] . (2.2)

The above expressions are valid on any given finite factor graph. The theory of Gibbs
measures [Geo88] tries to formally define and describe the limiting object to which (2.1-
2.2) converge in the thermodynamical limit, N →∞. A common way to build this theory
is to ask: What is the measure induced in a finite volume Λ when the boundary conditions
are fixed? Roughly speaking, the good limiting objects, called the Gibbs measures or the
pure states, are such that boundaries taken from the Gibbs measure induce the same
measure inside the finite large volume Λ.

The Ising model on a 2D lattice gives an excellent example of how a phase transition
is seen via Gibbs measures. Whereas in the high temperature paramagnetic phase the
Gibbs measure is unique, in the ferromagnetic phase there are two extremal measures, one
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corresponding to the positive average magnetization, the other to the negative average
magnetization. Indeed, if a boundary condition is chosen from one of these two then the
correct magnetization will be induced in the bulk. In general the bulk in equilibrium can
be described by a linear combination of these two extremal objects.

In the disordered models the situation might be much more complicated. Indeed the
proper definition of the Gibbs measure in the Edwards-Anderson model (1.11) and other
glassy models is a widely discussed but still an open problem [Bov06, Tal03, NS92].

The locally tree-like lattices, we are interested in here, are also peculiar from this
point of view. The main difference is that in any reasonable definition of the boundary
variables, the boundary has volume comparable to the volume of the interior. Thus
again the usual theory of Gibbs measure implies very little. On the other hand the tree
structure makes some considerations simpler. We will try to understand what sort of
long range correlations might appear on the tree-like graphs by studying the tree graphs
with general boundary conditions.

2.1.1 Properties and equations on trees

It is a well known fact that on arbitrary tree, with arbitrary boundary conditions, the
belief propagation equations and the Bethe free energy are exact (the thermodynamical
limit is not even needed here) [Pea88, KFL01, YFW00].

But what if the boundary conditions are chosen from a complicated measure? Then
very little (if anything) is known in general. However, there is a way how to choose the
boundary conditions such that the tree is then described by the one-step replica symme-
try breaking equations. This is closely linked to the problem of reconstruction on trees,
studied in mathematics [EKPS00, Mos01, Mos04]. The link with 1RSB was discovered
by Mézard and Montanari [MM06a]. We chose to present the 1RSB equations in this new
way, because it opens the door to further mathematical developments. For the original
statistical physics derivation we refer to [MP00]. Another recent computer science-like
derivation, which is based on the construction of a decorated constraint satisfaction prob-
lem and writing belief propagation on such a problem, in presented in [MM08, Mor07].

Reconstruction on trees — We explain the concept of reconstruction on trees [Mos04].
For simplicity we consider q-coloring on a rooted tree with constant branching factor γ
(sometimes also called the Cayley tree). A more general situation (with disorder, in the
interaction or in the branching factor) is described in appendix A.

Create a rooted tree with branching γ and with L generations. An example of γ = 2
and L = 8 is in fig. 2.1. Assign a color s0 to the root and broadcast over the edges
towards the leaves of the tree in such a way that if a parent node i was assigned color si
then each of its ancestors is assigned random one of the remaining q − 1 colors.

At the end of this broadcasting, every node in the tree is assigned a color, and this
assignment corresponds to a proper coloring (neighbours have different colors). Now in
an imaginary experiment we forget the colors everywhere but on the leaves. The problem
of reconstruction consists in deciding if there is any information left in the values on the
leaves (and their correlation) about the original color s0 of the root in the limit of infinite
tree L → ∞. If the answer is yes then we say that the reconstruction is possible, if the
answer is no then the reconstruction is not possible.

Call {s}l the assignment of colors in the lth generation of the tree. Consider formally
the probability ψs0({s}l) that a broadcasting process which finished at the configuration
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Figure 2.1: Illustration of the broadcasting of colors on a binary tree (γ = 2) for the
reconstruction problem.

{s}l started from the color s0 at the root. In other words, in what fraction of assignments
in the interior of the tree (compatible with the boundary conditions {s}l) is the color of
the root s0? Reconstruction is possible if and only if

lim
l→∞

q
∑

r=1

ψr({s}l) log
[

qψr({s}l)
]

> 0 . (2.3)

Intuitively when the branching γ is small and the number of colors large the infor-
mation about the root will be lost very fast. If, on the contrary, the branching is large
compared to the number of colors some information remains. A simple exercise is to
analyze the so-called naive reconstruction algorithm [Sem08]. The naive reconstruction
is possible if the probability that the leaves determine uniquely the root does not go to
zero as the number of generation goes to infinity. We compute the probability η that the
far-away boundary is compatible with only one value of the root. Denote ηl the proba-
bility that a variable in the lth generation is directly implied conditioned on the value of
its parent. The probability ηl−1 can be computed recursively as

η l−1 = 1− (q − 1)
(

1−
1

q − 1
η l
)γ

+
(q − 1)(q − 2)

2

(

1−
2

q − 1
η l
)γ
− . . .

=

q−1
∑

r=0

(−1)r
(

q − 1

r

)

(

1−
r

q − 1
η l

)γ

. (2.4)

The terms in this telescopic sum come from probabilities that number r out of the q − 1
colors are not present in the γ descendants. In the last generation we know the colors
by definition of the problem, thus η∞ = 1. If the iterative fixed point of (2.4) is positive
then the reconstruction is possible.
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This simple upper bound on the branching γ for which the reconstruction is possible
is actually quite nontrivial and in the limit of large number of colors it coincides with
the true threshold at least in the first two orders, see [ZDEB-5] and [Sem08, Sly08]. This
upper bound is connected to the presence of frozen variables and will be discussed in a
greater detail in chapter 4.

Self-consistent iterative equations for the reconstruction — The iterative equa-
tions for the reconstruction problem are equivalent to the one-step replica symmetry
breaking equations with Parisi parameter m, m = 1 will apply to the original question of
reconstructibility. This was first derived by Mézard and Montanari [MM06a] and it has
some deep consequences for the understanding of the RSB solution. We now explain this
derivation, still for the coloring problem with a fixed branching γ and q colors. A more
general form is presented in appendix A.

For given boundary conditions {s}l, constructed as described above, we compute the
probability ψi→j

si
(over all broadcasting experiments leading to these boundary conditions)

that a variables i had color si, where j is the parent of i and the edge (ij) has been cut.
Given the probabilities on the descendants of i, which are indexed by k = 1, . . . , γ, we
can write

ψi→j
si

=
1

Z i→j

γ
∏

k=1

(1− ψk→i
si

) ≡ Fsi
({ψk→i}) , (2.5)

because the descendants can take any other color but si. The Z i→j is a normalization
constant. It should be noticed that this is in fact the belief propagation equation (1.16) for
the graph coloring. This equation can also be derived by counting how many assignments
are consistent with the boundary conditions {s}l. This gives a natural interpretation to
Z i→j

Z i→j =
Z(i)

∏γ
k=1 Z

(k)
. (2.6)

where Z(i) is the total number of solutions consistent with {s}l if i were the root. Thus
Z i→j is a change in the number of solutions compatible with the boundary conditions
when the γ branches are merged.

Now we consider the distribution over all possible boundary conditions which are
achievable by the broadcasting process defined above. We have to specify the probabil-
ity distribution on the boundary conditions. We consider that the probability of every
boundary conditions {s}l is proportional to the power m of the number of ways by which
we could create {s}l, denote this number Z({s}l). In other words, the probability of
a given boundary condition is proportional to the power m of the number of possible
assignments in the bulk of the tree.

µ({s}l) =

[

Z({s}l)
]m

Z(m)
, where Z(m) =

∑

{s}l

[

Z({s}l)
]m
. (2.7)

The value of m = 1 is natural for the original question of reconstruction, because every
realization of the broadcasting experiment is then counted in a equiprobable way. We,
however, introduced a general power m. The parameter m will play a role of the Legendre
parameter, changing its value focuses on boundary conditions compatible with a given
number of assignments inside the tree.
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Denote P i→j(ψi→j) the distribution of ψi→j, over the measure on the boundary con-
ditions (2.7)

P i→j(ψi→j) ≡
∑

{s}l

I({s}l induceψi→j)

[

Z(i)({s}l)
]m

Z(i)(m)
. (2.8)

Where Z(i)({s}l) is the number of solutions induced on the subtree rooted in vertex
i, Z(i)(m) is the corresponding normalization. To express the probability distribution
P i→j(ψi→j) as a function of P k→i(ψk→i) we need that ψi→j = F({ψk→i}), eq. (2.5).
Moreover, Z i→j is the increase in the total number of solutions after merging the branches
rooted at k = 1, . . . , γ into one branch rooted at i. The distributional equation for P is
then

P i→j(ψi→j) =
1

Z i→j

∫ γ
∏

k=1

dP k→i(ψk→i) (Z i→j)m δ
[

ψi→j −F({ψk→i})
]

, (2.9)

where F and Z i→j are defined in (2.5), and Z i→j is a normalization constant equal to

Z i→j =
Z(i)(m)

∏γ
k=1Z

(k)(m)
=

∫ γ
∏

k=1

dP k→i(ψk→i) (Z i→j)m . (2.10)

where Z(i) is the normalization from (2.8) if i were the root. Notice that if we start from
boundary conditions which are not compatible with any solution then the re-weighting
Z i→j = 0 at the merging where a contradiction is unavoidable. Initially at the leaves
the colors of nodes are known. Call δr the q-component vector ψi→j

si
= δ(si, r), then the

initial distribution is just a sum of singletons

P init(ψ) =
1

q

q
∑

r=1

δ
(

ψ − δr
)

. (2.11)

Denote P0(ψ) the distribution created from (2.11) after many iteration of (2.9) with
m = 1. The reconstruction is possible if and only if P0(ψ) is nontrivial, that is different
from singleton on ψsi

= 1/q , ∀si. We define the critical branching factor γd in such a way
that for γ < γd the reconstruction is not possible, and for γ ≥ γd the reconstruction is
possible. The critical values γd = cd−1 for the coloring problem are reviewed in tab. 5.2.

What are clusters on a tree? If the reconstruction is not possible, then almost all
(with respect to (2.7) at m = 1) boundary conditions do not contain any information
about the original color of the root. However, for rare boundary conditions this might be
different. Obviously as long as γ ≥ q − 1 one can always construct boundary conditions
which determine uniquely the value of the root (by assigning every of the q − 1 colors to
the descendants of every node). If γ < q − 1 then this is no longer possible. And it was
proven in [Jon02] that for γ < q − 1 every boundary conditions lead to an expectation
1/q for every color on the root. If the reconstruction is possible, then different boundary
conditions may lead to different expectations on the root.

The basic idea of the definition of clusters on a tree is the same as in the classical
definition of a Gibbs measure [Geo88]. However, some more work is needed to make the
following considerations rigorous. Define a d-neighbourhood of the root as all the nodes
up to dth generation, consider 1≪ d≪ l. Consider the set S (resp. S ′) of all assignments



2.1. DEFINITION OF CLUSTERING AND THE 1RSB APPROACH 33

on the d-neighbourhood compatible with a given boundary condition {s}l (resp. {s′}l).
Define two boundary conditions {s}l and {s′}l as equivalent if the fraction of elements
in which the two sets S and S ′ differ goes to zero as l, d → ∞. Clusters are then the
equivalence classes in the limit l → ∞, d → ∞, d ≪ l. The requirement d ≪ l comes
from the fact that in l − d iterations the equation (2.8) should converge to its iterative
fixed point.

As we explained, more than one cluster exists as soon as the branching factor γ ≥ q−1,
but as long as the iterative fixed point of eq. (2.9) atm = 1 is trivial all but one clusters are
negligible because they contain an exponentially small fraction of solutions. Indeed, if the
reconstruction is not possible it means that the information about the d-neighbourhood
is almost surely lost at the lth generation. Thus almost every broadcasting will lead to a
boundary condition from the only relevant giant cluster.

Only for γ ≥ γd, when the reconstruction start to be possible, the total weight of
all solutions will be split into many clusters. In every of them the set of expectation
values (beliefs) ψi→j will be different. This is related to another derivation of the 1RSB
equations where the clusters of solutions on a given graph are identified with fixed points
of the belief propagation equations [MM08, Mor07]. There are exponentially many (in
the total number of variables N) initial conditions, it is also reasonable to expect that
the number of clusters will be exponentially large in N .

The complexity function — The number of solutions compatible with a boundary
condition ({s}l) was denoted Z({s}l) in eq. (2.7). The associated entropy is then, due to
interpretation of Z i→j (2.6)

S({s}l) ≡ log
[

Z({s}l)
]

=
∑

i

logZ i→j , (2.12)

where the sum is over all the vertices i in the tree, if i is a leaf then Z i→j = 1, if i is
the root that j is a imaginary parent of the root. An intuition about this formula is the
following: logZ i→j is the change in the entropy when the node i and all edges (ki), where
k are descendants of i, are added. Summing over all i then creates the whole tree.

More commonly, we introduce also messages going from the parents to the descendants
and write the expression for the entropy (2.12) in the equivalent Bethe form [YFW03]

S({s}l) =
∑

i

logZ i+∂i −
∑

ij

logZ ij , (2.13)

where

Z i+∂i =

q
∑

r=1

∏

k∈∂i

[

1− ψk→i
r

]

, Z ij = 1−

q
∑

r=1

ψi→j
r ψj→i

r , (2.14)

where ∂i are all the neighbours (descendants and the parent) of node i. The first sum in
(2.13) goes over all the nodes in the tree, the root included, leaves have only one allowed
color, thus eq. (2.14) changes correspondingly. Again the meaning of logZ i+∂i is the
change in the entropy when node i and his neighbourhooding edges are added, each edge
is then counted twice, thus the shift in the entropy when an edge (ij) is added, logZ ij ,
have to be subtracted.

We denote Φ(m) ≡ logZ(m) the thermodynamical potential associated to the mea-
sure (2.7). To avoid confusion with the real free energy, associated to the uniform measure
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over solutions (2.1), we call it the replicated free entropy. If a nonzero temperature is in-
volved then −Φ(m)/(βm) is called the replicated free energy. The replicated free entropy
on a tree can be expressed in totally analogous way as the entropy. From (2.10) we derive

Φ(m) ≡ logZ(m) =
∑

i

logZ i→j , (2.15)

which is usually written in the equivalent way

Φ(m) =
∑

i

logZ i+∂i −
∑

ij

logZ ij , (2.16)

where we introduced

Z i+∂i =

∫

∏

k∈∂i

dP k→i(ψk→i)
(

Z i+∂i
)m

, (2.17a)

Z ij =

∫

dP i→j(ψi→j)dP j→i(ψj→i)
(

Z ij
)m

. (2.17b)

We denote Σ(m) the Shannon entropy corresponding to measure on the boundary
conditions (2.7), and we call it the complexity function.

Σ(m) ≡ −
∑

{s}l

µ({s}l) logµ({s}l) = −mS(m) + Φ(m) , (2.18)

where S is the entropy averaged with respect to µ({s}l)

S(m) =
∑

{s}l

[

Z({s}l)
]m

Z(m)
logZ({s}l) =

∂Φ(m)

∂m
. (2.19)

Thus the complexity can also be written as a function of the internal entropy via the
Legendre transform of the replicated free entropy Φ(m)

Σ(S) = −mS + Φ(m) with
∂Σ(S)

∂S
= −m. (2.20)

The reader familiar with the cavity approach surely recognized eqs. (2.9) and (2.15–2.20)
as the 1RSB equations.

Interpretation of the complexity function — In the cavity method [MP01] the
exponential of the complexity function Σ(m) (2.18) counts the number of clusters cor-
responding to a given value of the parameter m, that is of a given entropy S (2.19).
Complexity defined on the full tree is never negative, as it is a Shannon entropy of a
discrete random variable. The same is, of course true, about the entropy (2.12).

It is more interesting to consider the complexity (or the entropy) function Σd(m) on
the d-neighbourhood of the root. If the total number of generations of the tree is l we take
1≪ d≪ l. And moreover we require l−d to be large enough, such that the distributional
iterative equation (2.9) converges to its fixed point in less than l − d iterations. The
average complexity function on the d-neighbourhood can then be computed from this
fixed point. And it can be both positive or negative. Its negative value then means that
the number of clusters is decreasing as we are getting nearer to the root. Two important
critical connectivities can be defined
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• γc: at which the complexity of the ”natural” clusters Σd(m = 1) becomes negative.

• γs: at which the maximum of the complexity Σd(m = 0) becomes negative.

The connectivity γs is the tree-analog of the satisfiability threshold. The connectivity γc
is the tree-analog of the condensation transition on random graphs, see chapter 3.

Strictly speaking, it is not known how to justify the interpretation of the complexity
function as the counter of clusters in the derivation we just presented. In the original
cavity derivation [MP01] or in the later derivations [MM08, Mor07] this point is well
justified. We, however, find the purely tree derivation appealing for further progress
on the mathematical side of the theory and that is why we have chosen to present this
approach despite this current incompleteness.

2.1.2 Back to the sparse random graphs

We stress that the equations, derived in the previous section, are all exact on a given
(even finite) tree and that we have not use any approximation. We were just describing
boundary conditions correlated via (2.7). These, in nature recursive, equations are solved
via the population dynamics technique, see the appendix E.

To come back to the sparse random graphs, which are only locally tree-like, we can
consider equations (2.9-2.26) as an approximation on arbitrary graphs, just as we did
with belief propagation. This leads to the one-step replica symmetry breaking (1RSB)
approach. Note that on random graphs we will always speak about densities of the
entropy, complexity or free-entropy etc. Thus on random graphs: instead of the entropy
S defined in (2.12) we consider s = S/N . The replicated free entropy Φ (2.15) and
complexity Σ (2.18) are also divided by the number of variables. We, however, denote
them by the same symbol, as confusion is not possible.

Let us discuss once again, now from the random graph perspective, what are the
correlations which make the replica symmetric approach fail. This will finally explain the
definition of the replica symmetric solution being correct given at the beginning of this
section.

Point-to-set correlations — The concept of the point-to-set correlations is common
in the theory of glassy systems. Usually it is considered in the phenomenology of the
real glassy systems on finite-dimensional lattices, see for example [BB04] and references
therein. Here we restrict the discussion to properties relevant for the tree-like lattices.

Call Bd(i) all vertices of the graph which are at distance at least d from i, define
point-to-set correlation function as

Cd(i) = ||µ(i, Bd(i))− µ(i)µ(Bd(i))||TV , (2.21)

where µ(·) is the uniform measure over solutions (2.1), and the total variation distance of
two probability distributions is defined as ||q − p||TV =

∑

x |q(x)− p(x)|/2. The average
point-to-set correlation is

Cd =
1

N

N
∑

i=1

Cd(i) . (2.22)

The reconstruction on graphs is then defined via the decay of this correlation function.
The reconstruction on tree-like graphs is not in general equivalent to the reconstruction
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on trees. Roughly said, it is not equivalent in the ferromagnetic models, e.g. the ferro-
magnetic Ising model, which spontaneously break some of the discrete symmetries. On
the other hand on most of the frustrated models they are equivalent. A general condition,
which might be very nontrivial to check, is given in [GM07].

If the point-to-set correlation function decays to zero, limd→∞Cd = 0, then almost
every variable is independent of its far away neighbours. The replica symmetric approach
then has to be asymptotically correct on locally tree-like lattices.

On the other hand if the point-to-set correlations do not decay to zero, then the
far-away neighbours influence the value of the variable i. And the replica symmetric
solution fails to give the correct picture of the properties of the model. The lack of decay
of the point-to-set correlations is equivalent to the reconstruction on graphs, and is also
equivalent to the existence of a nontrivial solution of the 1RSB equation (2.9) at m = 1.
This is also equivalent to the extremality condition for the uniform measure (2.1), which
was used in definition of [ZDEB-4] and reads

E

[

∑

Bd(i)

µ(Bd(i)) ||µ(i|Bd(i))− µ(i)||TV

]

→
d→∞

0 , (2.23)

where the external average is over quenched disorder (in interactions or connectivities).
The point-to-set correlations do not decay to zero for example in the low temperature

phase of the ferromagnetic Ising model on a random graph. There it is sufficient to
introduce the pure state ”up” and the pure state ”down” and within these pure states
the point-to-set correlations will decay to zero again. On the frustrated models the
situation is more complicated but the idea of the resolution is the same: If we manage
to split the set of solutions into clusters (pure states) such that within each cluster the
point-to-set correlations again decay, the situation is fixed. A statistical description of
the properties of clusters can be obtained using the one-step replica symmetry breaking
(1RSB) equations, derived in the previous section 2.1.1 and summarized in the next
section 2.1.3.

However, the correlations might be more complicated and might not be captured
fully by the 1RSB approach. In particular the 1RSB approach is correct if and only if
the point-to-set correlation decay to zero within clusters and if the replica symmetric
statistical description of clusters is correct. In appendix D we will discuss a necessary
condition for the 1RSB approach being correct. In case the 1RSB approach does not fully
describe the system further steps of replica symmetry breaking might provide a better
approximation (that means splitting clusters into sub-clusters or aggregation of clusters)
[MP00]. However, on the tree-like lattices, the exact solutions is not known in such cases.

Relation with equilibration time — In glasses, the clustering transition is usually
studied at finite temperature and is called the dynamical transition. The clustered phase
with Σ(m = 1) > 0 is called the dynamical 1RSB phase. This phase, where most of
the static properties do not differ from the replica symmetric (liquid) ones, was first
described and discuss in [KT87a, KT87b]. The dynamical transition is associated with a
critical slowing down of the dynamical properties, e.g. the equilibration time is expected
to diverge at this point. Note that such a purely dynamical phase transition is typical
for mean-field models. In the finite dimensional glassy systems the barriers between a
metastable and an equilibrium state are finite (independent of the system size). This is
because the nucleation length might be large but have to be finite. Thus instead of a
sharp dynamical transition in finite dimensional systems we observe only a crossover.
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However, even at the mean field level, the exact dynamical description is known only in
a few toy models, e.g. the spherical p-spin model [CK93] or the random subcubes model
[ZDEB-8]. In general, the dynamical solution is only approximative, still many very
interesting results were obtained. For a review see [BCKM98]. In the models on sparse
random lattices even the approximation schemes are rather poor, see e.g. [SW04]. Thus
the exact general relation between dynamics and the dynamical (clustering) transition is
not known.

An important contribution in establishing the link between dynamics and the static
solution on random graphs is [MS05, MS06b, MS06c] where the divergence of the point-
to-set correlation length is linked with divergence of the equilibration time of the Glauber
dynamics. This suggests that beyond the clustering transition the Monte Carlo sampling
(or maybe even sampling in general) will be a hard task.

Note also that in the mathematical literature the Glauber dynamics is often studied.
Many results exist about the so-called rapid mixing of the associated Markov chain [Sin93].
But the rapid mixing questions equilibration in polynomial time, whereas in physics the
relevant time scale is linear. Moreover rapid mixing is defined as convergence to the
equilibrium measure from any possible initial conditions, whereas in physics of glasses
the notion of a typical initial condition should be used instead.

2.1.3 Compendium of the 1RSB cavity equations

We review the 1RSB equations on a general CSP. The order parameter is a probability
distribution of the cavity field (BP message) ψa→i = (ψa→i

0 , . . . , ψa→i
q−1 ). The self-consistent

equation for P a→i reads

P a→i(ψa→i) =
1

Zj→i

∫

∏

j∈∂a−i

∏

b∈∂j−a

[

dP b→j(ψb→j)
]

(Zj→i)m δ
[

ψa→i − F({ψb→j})
]

,

(2.24)
where the function F({ψb→j}) and the term Zj→i are defined by the BP equation (1.17),
Zj→i is a normalization constant.

The associated thermodynamical potential (2.15) is computed as

Φ(m) =
1

N

[

∑

a

logZa+∂a −
∑

i

(li − 1) logZ i
]

, (2.25a)

Za+∂a =

∫

∏

i∈∂a

∏

b∈∂i−a

[

dP b→i(ψb→i)
](

Za+∂a
)m

, (2.25b)

Z i =

∫

∏

a∈∂i

[

dP a→i(ψa→i)
](

Z i
)m

, (2.25c)

where the terms Za+∂a and Z i are the partition sum contributions defined in (1.19).
The logarithm of the number of states divided by the system size defines the com-

plexity function Σ. Inversely the number of states is eNΣ. At finite temperature the
complexity of states with a given internal free energy is a Legendre transformation of the
potential Φ(m)

Φ(m) = −βmf + Σ(f) , (2.26)

Useful relations between the free energy, complexity and potential Φ are

∂fΣ(f) = βm , ∂mΦ(m) = −βf , m2∂m
Φ(m)

m
= −Σ . (2.27)
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At zero energy, E = 0, and zero temperature, β → ∞, the free energy becomes entropy
−βf → s. Then the complexity is a function of the internal entropy of states and (2.26)
becomes

Φ(m) = ms+ Σ(s) , (2.28)

with

∂sΣ(s) = −m, ∂mΦ(m) = s , m2∂m
Φ(m)

m
= −Σ . (2.29)

This is called the entropic zero temperature limit. The internal entropy is expressed as

s =
1

N

(

∑

a

∆Sa+∂a −
∑

i

(li − 1)∆Si
)

, (2.30)

where ∆Sa+∂a (∆Si resp.) is an internal entropy shift when the constraint a and all its
neighbour (the variable i resp.) are added to the graph.

∆Sa+∂a =

∫
∏

i∈∂a

∏

b∈∂i−a

[

dP b→i(ψb→i)
](

Za+∂a
)m

logZa+∂a

∫
∏

i∈∂a

∏

b∈∂i−a

[

dP b→i(ψb→i)
](

Za+∂a
)m , (2.31a)

∆Si =

∫
∏

a∈∂i

[

dP a→i(ψa→i)
](

Z i
)m

logZ i

∫
∏

a∈∂i

[

dP a→i(ψa→i)
](

Z i
)m . (2.31b)

In the energetic zero temperature limit, described in sec. 1.6 for zero energy, the Parisi
parameter y = βm is kept constant, thus m→ 0. The free energy then converges to the
energy, and (2.26) becomes

Φ(y) = −ye+ Σ(e) , (2.32)

where the complexity is this time a function of the energy density e. The survey propa-
gation equations generalized to nonzero y are called the SP-y equations.

Equations (2.24-2.31) are defined on a single instance of the constraint satisfaction
problem. Averages P over the graph ensemble are obtained in a similar manner as in
sec. 1.5.3 for the replica symmetric solution.

P
[

P (ψ)
]

=
∑

{li}

[

∏

li

Q1(li)
]

∫ K−1
∏

i=1

li
∏

ji=1

{

dP
[

P ji(ψji)
]

}

δ
[

P (ψ)− F2({P
ji(ψji)})

]

,

(2.33)
where in the sum over {li}, i ∈ {1, . . . , K − 1}, and the functional F2 is defined by
(2.24). Analogical expression holds for the average of the complexity or internal entropy.
A general method to solve the equation (2.33) is the population of populations described
in appendix E.5.

2.2 Geometrical definitions of clusters

Up to now we were describing clusters, i.e., partitions of the space of solutions, in a
very abstract way which was defined only in the thermodynamical limit. We showed
how to compute the number of clusters of a given size (internal entropy) (2.28), and we
argued that the description makes sense if the point-to-set correlation (2.22) decays to
zero within almost every cluster of that size. In this last sense clusters are what we would
call in statistical physics pure equilibrium states.
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On a very intuitive level, cluster are groups of nearby solutions which are in some sense
separated from each other. Several geometrical definitions are used in the literature, we
want to review the most common ones and state their relation to the definition above. We
want to stress that it is not know whether any of the geometric definitions is equivalent
to the description given above and used usually in the statistical physics literature.

Strong geometrical separation, x-satisfiability — First rigorous proofs of exis-
tence of an exponential number of clusters of solutions in the random K-SAT were based
on the concept of x-satisfiability. Two solutions are at distance x if they differ in exactly
xN variables. A formula is said x-satisfiable if there is a pair of solutions at distance x,
and x-unsatisfiable if there is not.

Mora, Mézard and Zecchina [MMZ05, DMMZ08] managed to prove that forK ≥ 8 and
a constraint density α near enough to the satisfiability threshold the formulas are almost
surely x-satisfiable for x < x0, almost surely x-unsatisfiable for x1 < x < x2, and almost
surely x-satisfiable at x3 < x < x4, where obviously 0 < x0 < x1 < x2 < x3 < x4 < 1.
This means that at least two well separated clusters of solutions exist. Proving that
there is an exponentially smaller number of pairs of solutions at distances x < x1 than at
distances x > x2 leads to the conclusion that an exponential number of well geometrically
separated clusters exists [ART06].

However, the x-satisfiability gives too strong conditions of separability. This is illus-
trated for example in the XOR-SAT problem [MM06b]. It is still an open question if
there is or not a gap in the x-satisfiability in the random 3-SAT near to the satisfiability
threshold.

Connected-components clusters — Another popular choice of a geometrical defini-
tion of clusters is that clusters are connected components in a graph where every solution
is a vertex and solutions which differ in d or less variables are connected. The distance
d is often said to be any sub-extensive (in the number of variables N) distance, that is
d = o(N). However, such a rule is not very practical for numerical investigations.

In K-SAT, in fact, d = 1 seems to be a more reasonable choice. There are two reasons:
First, clusters defined via d = 1 have correct ”whitening” properties as we explain in the
next paragraph. Second, we numerically investigated the complexity of d = 1 connected-
components clusters, fig. 2.2 right, and the agreement with the total number of clusters
computed from (2.28) at m = 0 is strikingly good. In particular, near to the satisfiability
threshold α > 4.15, where the 1RSB result for the total complexity function is believed
to be correct (stable) [MPRT04].

Formally, connected-components clusters have no reason to be equivalent to the notion
of pure states. They are not able to reproduce purely entropic separation between clusters,
which might exist in models like 3-SAT. However, fig. 2.2 suggests that there is more in
this definition than it might seem at a first glance.

Whitening-core clusters — We define the whitening of a solution as iterations of
the warning propagation equations (1.35) initialized in the solution. The fixed point is
then called the whitening core. Note, that the whitening core is well defined in the sense
that the fixed point of the warning propagation initialized in a solution does not depend
on the order in which the messages were updated. A whitening core is called trivial if all
the warning messages are 0, that is ”I do not care”.
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The 1RSB equations at m = 0, which give the total complexity function, can be
derived as belief propagation counting of all possible whitening cores [MZ02, BZ04,
MMW07]. Thus another reasonable definition of clusters is that two solutions belong
to the same cluster if and only if their whitening core is identical. In fig. 2.2 left we
plot numerically computed complexity of the whitening-core clusters compared to the
complexity computed from (2.28) at m = 0. The agreement is again good, in particular
near to the satisfiability threshold, α > 4.15, where the SP gives a correct result.

The d = 1 connected-components clusters share the property that all the solution
from one clusters have the same whitening core. Proof: If this would not be true then
there have to exist a pair of solutions which do not have the same whitening core but
differ in only one variable, this is not possible because then the whitening could be started
in that variable.

Note, however, that the definition of whitening-core clusters put all the solutions with
a trivial whitening core into one cluster. This is not correct as, at least near to the
clustering threshold, there are many pure states with a trivial whitening core. This is
closely connected to the properties of frozen variables which will be discussed in chapter 4.
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Figure 2.2: Right: Complexity of the connected-components clusters. Left: Complexity
of the whitening-core clusters. Both compared to the complexity computed from the
survey propagation equations. The data for the SP complexity are courtesy of Stephan
Mertens, from [MMZ06].

Enumeration of clusters in 3-SAT: the numerical method — In order to obtain
the data in fig. 2.2 we generate instances of the random 3-SAT problem with N variables
and M clauses, constraint density is then α = M/N . We count number of solutions
in A = 999 random instances and choose the median one where we count the number
of connected-components and whitening-core clusters S. This is repeated B = 1000
times. The average complexity is then computed as Σ =

∑B
i=1 log Si/(BN), if the median

instance was unsatisfiable then we count zero to the average, that is if all the B instances
are unsatisfiable then the complexity is zero. We do such a non-traditional sampling to
avoid rare instances with very many solutions, which we would not be able to cluster.
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2.3 Physical properties of the clustered phase

Let us give a summary of the properties of the clustered phase, also called the dynamical
1RSB phase. We describe only the situation when Σ(m = 1) > 0 (2.28), when the
opposite is true the properties are completely different as we will discuss in the next
chapter 3.

The complexity function computed from (2.28) is the log-number of clusters of a given
internal entropy. If a solution is chosen uniformly at random it will almost surely belong
to a cluster with entropy s∗ such that Σ(s) + s is maximized in s∗, ∂sΣ(s∗) = −1, that is
m = 1. At m = 1 the total entropy Σ(s∗) + s∗ = Φ(m = 1). The replicated free entropy
at Φ(m = 1) is equal to the replica symmetric entropy. Thus the total entropy in the
dynamical 1RSB phase is equal to the RS entropy. Also the marginal probabilities at
m = 1 are equal to the replica symmetric ones

∫

dP i→j(ψi→j)ψi→j
si

= (ψRS)
i→j
si

if m = 1 . (2.34)

Thus the clustering transition is not a phase transition in the Ehrenfest sense, because
the thermodynamical potential, entropy in our case, in analytical at the transition.

The overlap (or here distance) distribution, which is often used to describe the spin
glass phase, is also trivial and equal to the replica symmetric one in the dynamical 1RSB
phase. Indeed, if exponentially many clusters are needed to cover almost all solutions,
then the probability that two solutions happen to belong to the same cluster is zero.

The correlation function between two variables at a distance (shortest path in the
graph) d is defined as 〈sisj〉c = ||µ(si, sj) − µ(si)µ(sj)||TV. The variance of the overlap
distribution, which is negligible compared to 1 as we explained, can be expressed as
∑

i,j〈sisj〉
2
c/N

2, and thus the two-point correlation have to decay faster with distance
than the number on vertices at that distance is growing. This means in particular that
two neighbours of a node i are independent if we condition on the value of i, this is
again consistent with the fact that the belief propagation equations predict correct total
entropy and marginal probabilities.

So far nothing is different form the replica symmetric phase. It is thus not straightfor-
ward to recognize the dynamical 1RSB phase based on the original replica computation.
Presence of this phase was discovered and discussed in [KT87a, KT87b]. Later purely
static methods were developed to identify this phase. The most remarkable is perhaps
the ǫ-coupling and the ”potential” of [FP95, FP97].

In our setting the main difference between the replica symmetric phase and the dy-
namical 1RSB phase is that in the later the point-to-set correlations do not decay to
zero. Consequently the equilibration time of the local Monte Carlo dynamics diverges
and Monte Carlo sampling becomes difficult [MS06b].

2.4 Is the clustered phase algorithmically hard?

Clustering has important implications for the dynamical behaviour. It slows down the
equilibration and thus uniform sampling of solutions via local single spin flip Monte Carlo
is not possible, or exponentially slow, beyond the dynamical threshold. But finding one
solution is a much simpler problem than sampling.
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Analytic arguments — In the 3-coloring of Erdős-Rényi graphs the clustering thresh-
old is cd = 4, as at this point the spin glass susceptibility diverges, see appendix C. In
the terms of the reconstruction problem the Kesten-Stigum [KS66a, KS66b] bound is
sharp. On the other hand Achlioptas and Moore [AM03] proved that a simple heuristic
algorithm is able to find a solution in average polynomial time up to at least c = 4.03.
This shows that the RSB phase is not necessarily hard.

A similar observation was made in the 1-in-3 SAT problem in [ZDEB-3]. There is a
region in the values of the average density of constraints and the probability of negating
a variable in a clause in which the replica symmetric solution is unstable and yet the
unit clause propagation algorithm with the short clause heuristics was proven to find a
solution in polynomial average time.

We should mention a common contra-argument; which is that in the above mentioned
regions the 1RSB approach might not be correct, and the presumably full-RSB phase
[Par80c] is more ”transparent” for the dynamics of algorithms, see e.g. [MRT04]. However,
at least in the 3-coloring, the 1RSB approach seems to be correct in the interval in
question, as we argue in appendix D.

Stochastic local search — There is a lot of numerical evidence that relatively simple
single spin flip stochastic local search algorithms are able to find solutions in linear time
deep in the clustered region. Examples of works where performance of such algorithms
was analyzed are [KK07, SAO05, AA06, AAA+07]. In fig. 2.3 we give an example of
performance of the ASAT algorithm [AA06] in 4-coloring of Erdős-Rényi random graphs
[ZDEB-5]. The algorithm is described in appendix F.2.2. In the 4-coloring ASAT is able
to find solutions in linear time beyond the clustering transition cd = 8.35
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Figure 2.3: The performance of the ASAT algorithm in the 4-coloring of random Erdős-
Rényi graphs. Left: The energy density plotted against the number of steps per variable.
Right: The average running time (per variable) as a function of the connectivity. The
time does not diverge at the clustering transition cd, but beyond it. The other phase
transitions marked are the condensation transition cc (chap. 3) the rigidity transition cr
(chap. 4) and the colorability threshold cs

Simulated annealing — There is no paradox in the observations above. Quantitative
statements are, however, difficult to make. Let us describe on an intuitive level the
behaviour of an algorithm (dynamics) which satisfies the detailed balance condition and
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thus in infinite time samples uniformly from the uniform measure (2.1). We think for
example about the simulated annealing [KGV83]. Above the dynamical temperature
Td corresponding to an energy Ed the point-to-set correlation function (2.22) decay fast
and thus simulated annealing is able to reach the equilibrium. Below temperature Td
this is not the case anymore and the dynamics is stuck for a very long time in one
of the clusters, states. But the bottom of this state Ebottom lies lower than Ed, thus
when lowering the temperature the average energy seen by the simulated annealing also
decreases. If Ebottom = 0 then the algorithm will find a solution. It is not known how
to compute Ebottom in general. Sometimes, far from the clustering transition, the iso-
complexity approach [MRT04] gives a lower bound on Ebottom. But in general, as far as
we know, there is no argument saying Ebottom > 0. This picture can be substantiated for
several simple models as the spherical p-spin model [CK93] or the random subcubes model
[ZDEB-8]. The connection with the optimization problems was remarked in [KK07].

For the stochastic local search algorithm, which does not satisfy the detailed balanced
condition, the situation might be similar. At a point the algorithm is stuck in a cluster,
but if this cluster goes down to the zero energy then it might be able to find solutions
even in the clustered phase.

However, the current understanding of the dynamics of the mean field glassy systems
is far from complete. More studies are needed to understand better the link between the
static clustered phase and the dynamical behaviour.
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Chapter 3

Condensation

In this chapter we will describe the so-called condensed clustered phase. Before turning
to the models of our interest we present the random subcubes model [ZDEB-8], where the
condensation of clusters can be understood on a very elementary probabilistic level. After
mentioning that the condensed phase is in fact very well known in spin glasses we describe
the Poisson-Dirichlet process which determines the distribution of sizes of clusters in that
phase. Further, we discuss general properties of the condensed phase in random CSPs.
And finally we address our original question and conclude that the condensation is not
much significant for the hardness of finding a solution [ZDEB-5].

3.1 Condensation in a toy model of random subcubes

The random-subcubes model [ZDEB-8] is defined by its solution space S ⊆ {0, 1}N ; we
define S as the union of ⌊2(1−α)N⌋ random clusters (where ⌊x⌋ denotes the integer value
of x). A random cluster A being defined as:

A = {σ | ∀i ∈ {1, . . . , N}, σi ∈ π
A
i }, (3.1)

where πA is a random mapping:

πA : {1, . . . , N} −→ {{0}, {1}, {0, 1}} , (3.2)

i 7−→ πAi , (3.3)

such that for each variable i, πAi = {0} with probability p/2, {1} with probability p/2,
and {0, 1} with probability 1 − p. A cluster is here a random subcube of {0, 1}N . If
πAi = {0} or {1}, variable i is said “frozen” in A; otherwise it is said “free” in A. In this
model one given configuration σ might belong to zero, one or several clusters.

We describe the static properties of the set of solutions S in the random-subcubes
model in the thermodynamic limit N →∞ (the two parameters 0 ≤ α ≤ 1 and 0 ≤ p ≤ 1
being fixed and independent of N). The internal entropy s of a cluster A is defined as
1
N

log2 |A|, i.e., the fraction of free variables in A. The probability P(s) that a cluster has
internal entropy s follows the binomial distribution

P(s) =

(

N

sN

)

(1− p)sNp(1−s)N . (3.4)

Then the number of clusters of entropy s, denoted N (s), is with high probability

lim
N→∞

1

N
log2N (s) =

{

Σ(s) ≡ 1− α−D(s ‖ 1− p) if Σ(s) ≥ 0,
−∞ otherwise,

(3.5)

45
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where D(x ‖ y) ≡ x log2
x
y

+ (1− x) log2
1−x
1−y is the binary Kullback-Leibler divergence.

We compute the total entropy stot = 1
N

log2 |S|. First note that a random configura-
tion belongs on average to 2N(1−α)(1− p

2
)N clusters. Therefore, if

α < αd ≡ log2 (2− p), (3.6)

then with high probability the total entropy is stot = 1.

Now assume α > αd. The total entropy is given by a saddle-point estimation:

∑

A

2s(A)N = [1 + o(1)]N

∫

Σ(s)≥0

ds 2N [Σ(s)+s], (3.7)

whence stot = max
s

[Σ(s) + s |Σ(s) ≥ 0]. (3.8)

We denote by s∗ = argmaxs[Σ(s) + s |Σ(s) ≥ 0] the fraction of free variables in the
clusters that dominate the sum. Note that our estimation is valid (there is no double
counting) since in every cluster the fraction of solutions belonging to more than one
cluster is exponentially small as long as α > αd.

Define s̃ ≡ 2(1− p)/(2− p) such that ∂sΣ(s̃) = −1. The complexity of clusters with
entropy s̃ reads:

Σ(s̃) =
p

2− p
+ log2(2− p)− α. (3.9)

s̃ maximizes eq. (3.8) as long as Σ(s̃) ≥ 0, that is if

α ≤ αc ≡
p

(2− p)
+ log2 (2− p). (3.10)

Then the total entropy reads

stot = 1− α + log2 (2− p) for α ≤ αc. (3.11)

For α > αc, the maximum in (3.8) is realized by the largest possible cluster entropy smax,
which is given by the largest root of Σ(s). Then stot = s∗ = smax. We will show in the
next section that in such a case almost all solutions belong to only a finite number of
largest clusters. This phase is thus called condensed, in the sense that almost all solutions
are ”condensed” in a small number of clusters.

In summary, for a fixed value of the parameter p, and for increasing values of α, four
different phases can be distinguished:

(a) Liquid (replica symmetric) phase, α < αd: almost all configurations are solutions.

(b) Clustered (dynamical 1RSB) phase with many states, αd < α < αc: an exponential
number of clusters is needed to cover almost all the solutions.

(c) Condensed clustered phase, αc < α < 1: a finite number of the biggest clusters
covers almost all the solutions.

(d) Unsatisfiable phase, α > 1: no cluster, hence no solution, exists.
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Figure 3.1: The complexity function in the random subcubes model, Σ(s) (3.5), for
p = 0.8 and several values of α. The red dots mark the dominating clusters s∗,Σ(s∗).
For p = 0.8 the dynamical transition αd ≈ 0.263 is far away from the plotted values, the
condensation transition is αc ≈ 0.930, the satisfiability αs = 1.

3.2 New in CSPs, well known in spin glasses

The complexity function Σ(s) (2.26) in random CSPs is counting the logarithm of the
number of clusters per variable which have internal entropy s per variable. We define
dominating clusters in the same way as in the random subcubes model, that is clusters
of entropy s∗ such that

s∗ = arg max
s,Σ(s)>0

[

Σ(s) + s
]

. (3.12)

In chap. 2 we discussed properties of the dynamical 1RSB phase, that is when Σ(s∗) > 0,
in other words when there are exponentially many dominating clusters.

The condensed phase with Σ(s∗) = 0, described in the random subcubes model, exists
also in random CSPs. And in the context of constraint satisfaction problems it was first
computed and discussed in [MPR05] and [ZDEB-4]. However, historically it was the
condensed phase where the 1RSB solution was first worked out [Par80c]. A very simple
example of condensation can also be found in the random energy model [Der80, Der81].
As we discussed in the previous chapter 2, the dynamical 1RSB phase is well hidden
within the replica solution — the total entropy is equal to the replica symmetric entropy,
the overlap distribution is trivial and the two-point correlation functions decay to zero
etc. All this changes in the condensed phase.

A small digression to the physics of glasses: In structural glasses, the analog of the
condensation transition is well known for a long time, its discovery goes back to Kauz-
mann in 1948 who studied the configurational entropy of glassy materials. Configurational
entropy is the difference between the total (experimentally measured) entropy and the
entropy of a solid material, this thus corresponds to the complexity function. In the so
called fragile structural glasses [Ang95] the extrapolated configurational entropy becomes
zero at a positive temperature, nowadays called the Kauzmann temperature. The Kauz-
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mann temperature in the real glasses is, however, only extrapolation. The equilibration
time in glasses exceeds the observation time high above the Kauzmann temperature. It
is a widely discussed question if there exists a true phase transition at the Kauzmann
temperature or not, for a recent discussion see [DS01].

Why does Parisi maximize the replicated free energy? As we said, it is the con-
densed phase which was originally described by Parisi and his one-step replica symmetry
breaking solution [Par80c]. Let us now briefly clarify the relation to the replica solution,
similar reasoning first appeared in [Mon95]. In sec. 2.1 we called the Legendre trans-
form of the complexity function the replicated free entropy Φ(m) (2.26). In the replica
approach the replicated entropy Ω(m) = Φ(m)/m is computed. From (2.28) follows

Ω(m) = s+
Σ(s)

m
where

∂Ω(m)

∂m
= −

Σ(s)

m2
. (3.13)

Thus, in the condensed phase, computing the largest root of the function Σ(s), in order
to maximize the total entropy, is equivalent to extremizing the replicated entropy Ω(m).
Moreover, as the function Σ(s) is concave and the parameter m is minus its slope this
extrema have to be a minima. Thus in the Parisi’s replica solution we have to minimize the
replicated entropy function with respect to the parameter m. If a temperature is involved
then this becomes a maximization of the replicated free energy, this might have seem
contra-intuitive in the original solution, but it comes out very naturally in our approach.
Other physical interpretation of the maximization was proposed e.g. in [Jan05].

3.3 Relative sizes of clusters in the condensed phase

What is the number of dominating clusters in the condensed phase and what are their
relative sizes? So far we know that the entropy per variable of the dominating states is
s∗ + o(1) and that their number is sub-exponential, Σ(s∗) = 0. But much more can be
said based on purely probabilistic considerations.

Consider that the total number of clusters N is exponentially large in the system size
N , and that N → ∞. Let the log-number of clusters of a given entropy be distributed
according to an analytic function Σ(s). Denote −m∗ = ∂sΣ(s∗), in the condensed phase
0 < m∗ < 1. Denote the size of the αth largest cluster eNs

∗+∆α, ∆α = O(1). The
probability that there is a cluster of size between eNs

∗+∆ and eNs
∗+∆+d∆, ∆ ≫ d∆, is

e−m
∗∆d∆, in other words points ∆α are constructed from a Poissonian process with rate

e−m
∗∆ 1. Relative size of the αth largest cluster is defined as

wα =
e∆α

∑N
γ=1 e

∆γ

. (3.14)

Point process wα which is constructed as described above is in mathematics called the
Poisson-Dirichlet process [PY97]. The connection between this process and the relative

1Note that in the random subcubes model the numbers (Ns∗ + ∆α) log(2) are integers equal to the
number of free variables in the cluster Aα. Then ∆α are discrete and some of the properties of the
resulting process might be different from the Poisson-Dirichlet.
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weights of states in the mean field models of spin glasses was (on a non-rigorous level)
understood in [MPV85], for more mathematical review see [Tal03]2.

Any moment of any wα can be computed from the generating function [PY97]

E[exp (−λ/wα)] = e−λφm∗(λ)α−1ψm∗(λ)−α , (3.15)

where λ ≥ 0 and the functions φm∗ and ψm∗ are defined as

φm∗(λ) = m∗

∫ ∞

1

e−λxx−1−m∗

dx , (3.16a)

ψm∗(λ) = 1 +m∗

∫ 1

0

(1− e−λx)x−1−m∗

dx . (3.16b)

The second moments can be used to express the average probability Y that two random
solutions belong to the same cluster

Y = E

[

N
∑

α=1

w2
α

]

= 1−m∗ . (3.17)

This was originally derived in [MPV85]
Another useful relation [PY97] is that the ratio of two consequent points Rα =

wα+1/wα, α = 1, 2, . . . ,N is distributed as αm∗Rαm∗−1
α . In particular its expectation

is E[Rα] = αm∗/(1 + αm∗) and the random variables Rα are mutually independent. We
used these relation to obtain data in figure 3.2.
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Figure 3.2: The fractions of solutions covered by the largest clusters as a function of
parameter m∗. The lower curve is related to the size of the largest clusters as 1/E[1/w1] =
1−m∗. The following curves are related to the size of i largest clusters, their distances
are E[Rα]E[Rα−1] . . .E[R1](1−m∗).

2To avoid confusion, note that the Poisson-Dirichlet process we are interested in is the PD(m∗, 0)
in the notation of [PY97]. In the mathematical literature, it is often referred to the PD(0, θ) without
indexing by the two parameters.
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From the properties of the Poisson-Dirichlet process, it follows that an arbitrary large
fraction of the solutions can be covered by a finite number of clusters. When m∗ is near to
zero, that is near to the satisfiability threshold, the largest cluster covers a large fraction
of solutions. On the other side, when m∗ is near to one, that is near to the condensation
transition, very many (but finite in N) clusters are needed to cover a given fraction of
solutions.

3.4 Condensed phase in random CSPs

The total entropy in the condensed phase is strictly smaller than the replica symmetric
entropy, stot = s∗ < sRS. At the condensation transition cc the total entropy is non-
analytic, it has a discontinuity in the second derivative. This can be seen easily for
example from the expressions for the random subcubes model. At a finite temperature
the discontinuity in the second derivative of the free energy corresponds to a jump in
the specific heat. The parameter m∗ = 1 at the condensation transition and decreases
monotonously to m∗ = 0 at the satisfiability threshold.

Concept of self-averaging — In the physics of disordered systems the self-averaging
is a crucial concept. We say that quantity A measured on a system (graph) of N variables
is self-averaging if in the limit N →∞

E(A2)−
[

E(A)
]2

[

E(A2)
] → 0 , (3.18)

where the average E
[

·
]

is over all the disorder in the system. In other words a quantity
is self-averaging if its value on a typical large system is equal to the average value. By
computing the average value we thus describe faithfully the typical large system. And
also measuring A on a single large system is enough to represent the whole ensemble. On
finite-dimensional lattices and off criticality extensive quantities are always self-averaging.
This can be shown by building the large lattice from smaller blocks, the additivity of an
extensive quantity and the central limit theorem then ensures the self-averaging. At the
critical point, on a mean field lattice (fully connected or tree-like) or for non-extensive
quantities the answer whether A is self-averaging or not becomes nontrivial.

In the condensed phase quantities which involve the weights of clusters are not self-
averaging. This arises from the fact that the dominating clusters are different in every
realization of the system. Statistical properties of many quantities of interest can be
described from the Poisson-Dirichlet process.

Overlap distribution — The overlap between two solutions is defined as one minus
the Hamming distance

q({s}, {s′}) =
1

N

N
∑

i=1

δ(si, s
′
i) . (3.19)

The overlap between two solutions belonging to two different dominating clusters is q0,
and between two solutions belonging to the same dominating cluster q1. Values q0 and q1
are self-averaging. The distribution of overlaps in the limit N →∞ can thus be written
as

P (q) = w δ(q − q1) + (1− w) δ(q − q0) , (3.20)
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where the weight w is the probability that two random solutions belong to the same
cluster. Thus w =

∑N
α=1w

2
α, where wα are weights of the clusters (3.14) given by the

Poisson-Dirichlet process. The weights change from realization to realization, w is thus
not a self-averaging quantity, its typical value fluctuates around the mean E(w) = 1−m∗

computed in (3.17). The distribution of the random variable w is also known [MPS+84].

Two-point correlation functions — The variance of the overlap distribution is

var q =

∫

q2P (q) dq −
[

∫

q P (q) dq
]2

= w(1− w)(q1 − q0)
2 . (3.21)

At the same time the variance is equal to

var q =
1

N2

∑

i,j

∑

si,sj

|µ(si, sj)− µ(si)µ(sj)| ≈
1

N

∑

i

∑

si,s0

|µ(si, s0)− µ(si)µ(s0)| , (3.22)

where s0 is a typical variable in the random graph. If we consider that the two-point
correlation function is of order one up to a correlation length ξ and zero after that we get

var q ≈
1

N
cξ , (3.23)

where c is approximately the branching factor. In the condensed phase the variance of
the overlap is of order one thus the correlation length has to be of order logN . But the
shortest path between two random variables is also of order logN thus the two-point
correlations cannot be neglected in the condensed phase.

If two-point correlations cannot be neglected then the derivation of belief propagation
equations (1.16a-1.16b) is not valid, because we supposed that the neighbours of a node
i are independent when we condition on the value of i. It is thus not surprising that the
value to which the BP equations converge (if they do), does not correspond to the true
marginal probability. Formally, the BP fixed point corresponds to the 1RSB equations
at m = 1, but in the condensed phase m∗ < 1.

In fact, the probability distribution of the true marginal probabilities is another ex-
ample of a non self-averaging quantity. It again depends on the realization of the Poisson-
Dirichlet process.

3.5 Is the condensed phase algorithmically hard?

From the algorithmic point of view the only important difference between the dynamical
1RSB phase and the condensed phase is that in the condensed phase the belief propaga-
tion does not estimate correctly the asymptotic marginal probabilities. In the condensed
phase, the total entropy cannot be estimated from the BP equations either, thus ap-
proximative counting and sampling of solutions will probably be even harder than in the
dynamical 1RSB phase.

Concerning the hardness of finding a solution we might expect that the incorrectness
of the belief propagation estimates of marginals will play a certain role. However, we
used the belief propagation maximal decimation as described in appendix F.1.2 in the
3- and 4-coloring, see fig. 3.3. And this algorithm does not seem to have any problem
to pass the condensation transition in both these cases. In particular, in the 3-coloring
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Figure 3.3: The performance of the maximal BP decimation algorithm, described in
appendix F.1.2, in the 3-coloring (left) and the 4-coloring (right) of random graphs.
This algorithm is able to color random graphs beyond both the clustering cd and the
condensation cc transitions in 3- and 4-coloring.

the gap between the condensation threshold cc = 4 and the limit of performance of the
BP decimation c ≈ 4.55 is huge. The rigidity transition cr, defined in chapter 4, and the
colorability threshold cs are also marked for comparison in fig. 3.3.

The condensation transition thus does not seem to play any significant role for the
computational hardness of finding a solution.



Chapter 4

Freezing

The previous two chapters describe recent contributions to the understanding of the clus-
tering and condensation of solutions in random constraint satisfaction problems. Both
these concepts are well known and widely discussed in the mean field theory of glasses
and spin glasses for at least a quarter of a century.

The concept of freezing of variables appeared in the studies of optimization problems,
that is systems at zero temperature (or infinite pressure). In this chapter we first define
the freezing of variables, clusters and solutions, and discuss its properties both in the
thermodynamical limit and on finite-size instances. Then we explain how to describe the
frozen variables within the one-step replica symmetry breaking approach and we define
several possible phase transition associated to the freezing. To simplify the picture we de-
fine and solve the ”completely frozen” locked constraint satisfaction problem where every
cluster contains only one configuration. Finally we give several arguments about connec-
tion between the freezing and the average computational hardness. Results of this section
are mostly original and were published in [ZDEB-5, ZDEB-7, ZDEB-10, ZDEB-9].

4.1 Frozen variables

Consider a set of solutions S of a given instance of a constraint satisfaction problem.
Define that a variable i is frozen in the set of solutions A ⊂ S if it is assigned the same
value in all the solutions in the set. If an extensive number of variables is frozen in the
set A, then we call A and all the solutions in A frozen, otherwise A and all the solutions
in A are called soft (unfrozen).

A first observation is that the set of all solutions S is not frozen in the satisfiable
phase. If it would be then adding one constraint, i.e., increasing the constraint density
by 1/N , would make the formula unsatisfiable with a finite probability, that would be in
a contradiction with the sharpness of the satisfiability threshold. The backbone is made
of variables frozen in the set of ground states. An extensive backbone can thus exist only
in the unsatisfiable phase. Already in [MZK+99b] it was argued that there might be a
connection between the backbone and the computational hardness of the problem. The
suggestion of [MZK+99b] was that if the fraction of variables covered by the backbone is
discontinuous at the satisfiability transition then it is hard to find satisfying assignments
on highly constrained but still satisfiable instances. On the other hand if the backbone
appears continuously the problem is easy in the satisfiable phase. This was based on the
replica symmetric solution of the random K-SAT which does not describe fully the phase
space, in spite of that the relation between the existence of frozen variables inside clusters
and the algorithmical hardness seems to be deep and we will develop it in this chapter.
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4.1.1 Whitening: A way to tell if solutions are frozen

How to recognize if clusters have frozen variables or not. Or how to recognize if a given
solution belongs to a frozen cluster or not. An iterative procedure called whitening
[Par02a] gives an answer to these questions.

Given a formula of a CSP and one of its solutions {si} ∈ {−1, 1}N , i = 1, . . . , N , the
whitening of the solution is defined as iterations of the warning propagation equations
(1.35) initialized on the solution. That is, for a binary CSP hi→a

init = si, and ua→i
init is

computed according to eq. (1.35b). Note that the fixed point of the whitening does not
depend on the order in which the warnings are updated. Indeed, during the iterations
the only changes in warnings are from non-zero values to zero values. The fixed point is
called the whitening core of the solution. The whitening core is called trivial if all the
warnings are equal to 0, and nontrivial otherwise.

In the K-SAT problem whitening can be reformulated in a very natural way: Start
with the solution {si}, assign iteratively a ”∗” (joker) to variables which belong only to
clauses which are already satisfied by another variable or already contain a ∗ variable.
On a general CSP such procedure is not equivalent to the whitening, and the warning
propagation definition has to be used instead in order to obtain all the desired properties
and relations to the 1RSB solution.

We now argue that if the 1RSB solution is correct, then frozen variables in the cluster,
to which solution {si} belongs, asymptotically correspond to variables for which in the
whitening core the total warning hi 6= 0 (1.37). Thus whitening can be used to decide
if the solution {si} belongs to a frozen cluster without knowing all the solutions in that
cluster. The first step to show this property is, as in sec. 2.1.1, to consider the CSP
on a tree with given boundary conditions which are compatible with a non-empty set of
solutions S in the interior of the tree. Starting on the leaves we compute iteratively the
warnings (1.35) down to the root. Variables which have at least one non-zero incoming
warning are frozen in the set S. The correctness of the 1RSB approach on a tree-like
graph means that the picture on a tree captures properly all the asymptotic properties.
In particular, the whitening core determines the set of frozen variables on typical large
instances of the problem. The correctness of the 1RSB solution is an essential assumption
for the above statement. Because all the long-range correlations decay within one cluster
the warnings ua→i in the whitening core are independent in the absence of i. Thus there
truly exist solutions in that cluster in which the variable i takes all the values allowed by
the warnings. And on the other hand, if a value is not allowed by the warnings there is no
solution where i would be taking this value. For consistency, all solutions in one cluster
have to have the same whitening core. However, two different clusters can have the same
whitening core. The most important example are all the soft (not frozen) clusters that
all have the trivial whitening core.

Whitening, as the iterative fixed point of the warning propagation, may be defined
not only for a solution but for any configuration. In this way one may find blocking
metastable states. For some preliminary numerical considerations see [SAO05].

4.1.2 Freezing on finite size instances

The definition of whitening is applicable to any (non-random, small, etc.) instance.
What does then remain from the asymptotic correspondence between frozen variables
and whitening cores?
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Consider now clusters as connected components in the graph where all solutions are
nodes and where edges are between solutions which differ in only one variable, as in
sec. 2.2. Several questions arise about this definition:

• Do all the solutions in the connected-components cluster have the same whitening
core? The answer is yes. If there were two solutions with different whitening cores
which can be connected by a chain of single-variable flips, then along this chain there
would exist a pair of solutions which differ in only one variable i and have different
whitening cores. But this is not possible, as the fixed point of the whitening does
not depend on the order in which the warnings were updated, and one could thus
start the whitening by setting warnings hi→a = 0.

• Does the whitening core of a connected-components cluster correspond to the set
of frozen variables? The answer is: If in the whitening core hi 6= 0 (1.37) then the
variable i is frozen in the connected-components cluster. Proof: If such a variable
i is not frozen, then there have to exist a pair of solutions which differ only in the
value of this variable. Then all the constraints around i have to be compatible
with both these values, this would be in contradiction with hi 6= 0. On the other
hand, if in the whitening core hi = 0 then the variable i might still be frozen in the
connected-components cluster on a general instance, because correlations which are
not considered by the 1RSB solution may play a role.

Consider now clusters as the set of all solutions which share the same whitening
core. Whitening-core clusters are aggregations of the connected-components clusters. In
particular, all the solutions with a trivial whitening core, which might correspond to
exponentially many pure states, are put together.

• What is the set of frozen variables in the whitening-core clusters? The answer is:
Again if in the whitening core hi 6= 0 then the variable i is frozen in the whitening-
core cluster. In principle, one whitening-core cluster could be an union of several
connected-components cluster, but i is frozen to the same value in each of them.
The inverse is not correct in general. On finite size instances some variables with a
zero warning hi = 0 might be frozen in the whitening-core cluster.

• Can there be a fixed point of the warning propagation (1.35) corresponding to zero
energy (1.38) which is not compatible with any solution? The answer is yes. And
such fixed points were observed in [BZ04, MMW07, KSS07b]. Again if the 1RSB
solution is correct then in the thermodynamical limit these ”fake” fixed points are
negligible.

4.1.3 Freezing transition in 3-SAT - exhaustive enumeration

Before turning to the cavity description of frozen clusters we investigate the freezing
transition in the random 3-SAT numerically. We define the freezing transition, αf , as
the smallest density of constraints α such that the whitening core of all solutions is
nontrivial, i.e., not made only from zero warnings. We use the whitening core in the
definition instead of the real set of frozen variables, because it does not depend on the
definition of clusters and it has much smaller finite size effects. The existence of such a
frozen phase was proven in the thermodynamical limit for K ≥ 9 of the K-SAT near to
the satisfiability threshold in [ART06].



56 CHAPTER 4. FREEZING

In order to determine the freezing transition we start with a 3-SAT formula of N
variables and all possible clauses, and remove the clauses one by one independently at
random1. We mark the number of clauses Ms where the formula becomes satisfiable as
well as the number of clauses Mf ≤ Ms where at least one solution starts to have a
trivial whitening core. We repeat B-times (B = 2 · 104 in fig. 4.1) and compute the
probabilities that a formula of M clauses is satisfiable Ps(α,N), and unfrozen Pf(α,N)
respectively. Due to the memory limitation we could treat only instances which have
less than 5 · 107 solutions which limits us to system sizes N ≤ 100. The results for the
satisfiability threshold are shown in fig. 1.3 and are consistent with previous studies in
[KS94, MZK+99b, MZK+99a]. The probability of being unfrozen, Pf(α,N), is shown in
fig. 4.1.
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Figure 4.1: Left: Probability that there exists an unfrozen solution as a function of the
constraint density α for different system sizes. The clustering [ZDEB-4] and satisfiability
[MPZ02] transitions marked for comparison. Right: A 1:20 zoom on the critical (crossing)
point, our estimate for the freezing transition is αf = 4.254 ± 0.009. The curves are
cubic fits in the interval α ∈ (4, 4.4). The arrows represent estimates of the limits
of performance of the best known local search ASAT [AA06] and survey propagation
[Par03, CFMZ05] algorithms.

It is tempting to perform a scaling analysis as has been done in [KS94, MZK+99b,
MZK+99a] for the satisfiability threshold. The critical exponent related to the width of
the scaling window was defined via rescaling of the constraint density α as N1/νs [1 −
α/αs(N)]. Note, however, that the estimate νs = 1.5 ± 0.1 for 3-SAT provided in
[MZK+99a] is not asymptotically correct. It was proven in [Wil02] that νs ≥ 2. In-
deed, it was shown numerically in [LRTZ01] that a crossover exists at sizes of order
N ≈ 104 in the related XOR-SAT problem. A similar situation happens for the scaling
of the freezing transition, Pf(α,N), as the proof of [Wil02] applies also here 2. It would
be interesting to investigate the scaling behaviour on an ensemble of instances where the
results of [Wil02] do not apply (e.g. graphs without leaves). However, we concentrate
instead on the estimation of the critical point, which we do not expect to be influenced by
the crossover in the scaling. We are in a much more convenient situation for the freezing
transition than for the satisfiability one. The crossing point between functions Pf(α,N)

1In practice we do not start with all the clauses, but as many that in all the repetitions of this
procedure the initial instance is unsatisfiable.

2Theorem 1 of [Wil02] applies to the freezing property where the bystander are clauses containing
two leaves.
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for different system sizes seems to depend very little on N , while for the satisfiability
transition it depends very strongly on N , compare the zooms in figs. 1.3 and 4.1.

We determine the value of the freezing transition in random 3-SAT as

αf = 4.254± 0.009 , (4.1)

which is very near but seems separated from the satisfiability threshold αs = 4.267
[MZ02, MMZ06]. In any case the frozen phase in 3-SAT is very narrow, that is in contrast
with the situation in K ≥ 9 SAT where it covers at least 1/5 of the large clustered phase
[ART06].

4.2 Cavity approach to frozen variables

In this section we present how to describe the frozen variables within the 1RSB cavity
solution. We illustrate the results on an example of the random graph coloring where
properties of frozen variables were studied in detail for the first time [ZDEB-5].

The energetic 1RSB (survey propagation), sec. 1.6-1.7, aims to count the total number
of frozen clusters. More precisely, it counts the total number of fixed points of the warning
propagation (1.35). It can be used to locate the satisfiability threshold or to design survey
propagation based solvers [MPZ02, MZ02]. However, as we understood in chapter 2, by
neglecting the soft clusters we cannot locate the clustering transition. In chapter 3 we
defined the dominant clusters, i.e., those which cover almost all solutions. A natural
question arises immediately: Are the dominant clusters frozen or soft? In order to answer
the general entropic 1RSB equations (2.24,2.28) have to be analyzed.

4.2.1 Frozen variables in the entropic 1RSB equations

We remind that in the 1RSB solution of the graph coloring problem the components
of the messages (called also the cavity fields) ψi→j

si
are the probabilities that in a given

cluster the node i takes the color si when the constraint on the edge (ij) is not present.
The belief propagation equations, (1.16) in general, (2.5) in coloring, then define the
consistency rules between the field ψi→j

si
and fields incoming to i from the other variables

than j. In the zero temperature limit we can classify fields ψi→j
si

in the following two
categories:

(i) The hard (frozen) field corresponds to the case when all components of ψi→j are
strictly zero except the one for color s. This means that in the absence of edge (ij),
variable i takes color s in all the solutions from the cluster in question.

(ii) The soft field corresponds to the case when more than one component of ψi→j
si

is
nonzero. The variable i is thus not frozen in the absence of edge (ij), and the colors
of all the nonzero components are allowed.

This distinction is also meaningful for the full probabilities ψisi
(1.18). By definition, the

variable i is frozen in the cluster if and only if ψisi
is a hard field.

It is important to stress that some of the soft fields on a given instance of the problem
might be very small. Some of them might even scale like e−N . We insist on classifying
those as the soft fields because they cannot create real contradictions. This subtle dis-
tinction becomes important mainly in the implementation of the population dynamics
algorithm, see appendix E.
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The distribution of fields over clusters P i→j(ψi→j) (2.24), which is the ”order param-
eter” of the 1RSB equation, can be decomposed into the hard-field part of a weight ηi→j

s

and the soft-field part P i→j
soft of a weight ηi→j

0 = 1−
∑q

s=1 η
i→j
s

P i→j(ψi→j) =

q
∑

s=1

ηi→j
s I(ψi→jfrozen into s) + ηi→j

0 P i→j
soft (ψi→j) . (4.2)

Hard fields in the simplest case, m = 0 — First, we derive equations for the
hard fields when the parameter m = 0 in (2.24). This will, in fact, lead to the survey
propagation equations, for coloring originally derived in [MPWZ02, BMP+03] from the
energetic 1RSB method (1.6). For simplicity we write the most general form only for the
3-coloring.

We plug (4.2) into eq. (2.24). The reweighting factor (Z i→j)m at m = 0 is either
equal to zero, when the arriving fields are hard and contradictory, or equal to one. This
is the origin of a significant simplification. The outcoming field ψi→j might be frozen in
direction s if and only if for every other color r 6= s there is at least one incoming field
frozen to the color r. The update of probability ηi→j

s that a field is frozen in direction s
is for the 3-coloring written as

ηi→j
s =

∏

k∈i−j(1− η
k→i
s )−

∑

p 6=s

∏

k∈i−j(η
k→i
0 + ηk→i

p ) +
∏

k∈i−j η
k→i
0

∑

p

∏

k∈i−j(1− η
k→i
p )−

∑

p

∏

k∈i−j(η
k→i
0 + ηk→i

p ) +
∏

k∈i−j η
k→i
0

. (4.3)

In the numerator there is a telescopic sum counting the probability that color s and
only color s is not forbidden by the incoming fields. In the denominator there is the
normalization, i.e., the telescopic sum counting the probability that there is at least one
color which is not forbidden. The crucial observation is that at m = 0 the self-consistent
equations for η do not depend on the soft-fields distribution P i→j

soft (ψi→j).

If we do not aim at finding of a proper coloring on a single graph but just at computing
of the complexity function and similar quantities, we can further simplify eq. (4.3) by
imposing the color symmetry. Indeed, the probability that in a given cluster a field is
frozen in the direction of a color s has to be independent of s. Then (4.3) becomes, now
for general number of colors q:

ηi→j = w({ηk→i}) =

∑q−1
l=0 (−1)l

(

q−1
l

)
∏

k∈i−j

[

1− (l + 1)ηk→i
]

∑q−1
l=0 (−1)l

(

q
l+1

)
∏

k∈i−j [1− (l + 1)ηk→i]
. (4.4)

We remind that since ∂Σ(s)/∂s = −m (2.28), the value m = 0 corresponds to the
point s̃ where the function Σ(s) has a zero slope. If a nontrivial solution of (4.3) exists,
then Σ(s̃)|m=0 is the maximum of the curve Σ(s). And if the 1RSB solution for clusters
at m = 0 is correct then it is counting the total log-number of clusters of size s̃, which is
due to the exponential dependence also the total log-number of all clusters, regardless of
their size.

Frozen variables at general m, generalized SP — Let us compute how the fraction
of hard fields η evolves after one iteration of equation (2.24) at a general value ofm. There
are two steps in each iteration of (2.24). In the first step, η iterates via eq. (4.4). In the
second step we re-weight the fields. Writing P hard

m (Z) the —unknown— distribution of
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the reweightings Zm for the hard fields, one gets

ηi→j =
1

N i→j

∫

dZ i→j P hard
m (Z i→j)

(

Z i→j
)m
w({ηk→i})

=
w({ηk→i})

N i→j

∫

dZ i→j P hard
m (Z i→j)

(

Z i→j
)m

=
w({ηk→i})

N i→j
〈Z i→j

m 〉hard . (4.5)

A similar equation can formally be written for the soft fields

1− qηi→j =
1− qw({ηk→i})

N i→j
〈Z i→j

m 〉soft . (4.6)

Writing explicitly the normalization N i→j, we finally obtain the generalized survey prop-
agation equations:

ηi→j =
w({ηk→i})

qw({ηk→i}) + [1− qw({ηk→i})] r(m, {ηk→i})
, (4.7)

where r is the ratio of average reweighting factors of the soft and hard fields

r(m, {ηk→i}) =
〈Z i→j

m 〉soft

〈Z i→j
m 〉hard

. (4.8)

In order to do this recursion, the only nontrivial information needed is the ratio r between
soft- and hard-field average reweightings, which depends on the full distribution of soft
fields P i→j

soft (ψi→j). Eq. (4.7) is easy to use in the population dynamics and allows to
compute the fraction of frozen variables in typical clusters of a given size (for a given
value m).

There are two cases where eq. (4.7) simplifies so that the hard-field recursion becomes
independent from the soft-field distribution. The first case is, of course, m = 0. Then
r = 1 independently of the edge (ij), and the equation reduces to the original SP. The
second case arises for m = 1, where the eq. (4.7) can be written as the equation for the
naive reconstruction (2.4). The probability that a variables is frozen at m = 1 is the
same at the probability that leaves (far away variables) determine uniquely the root in
the reconstruction problem, see sec. 2.1.1.

Frozen variables and minimal rearrangements — Montanari and Semerjian [MS05,
Sem08] developed a very interesting connection between frozen variables and the so-called
minimal rearrangements. Given a CSP instance, one of its solutions {si} and a variable
i, find the nearest solution to {si} where the values of the variable i is changed to s′i 6= si.
The set of variables on which these two solutions differ is called the minimal rearrange-
ment. It was shown in [Sem08] that the size of the average (over variables i, the solution
{si}, and the graph ensemble) minimal rearrangement diverges at the rigidity transition
(when almost all the dominant clusters become frozen). Indeed, the cavity approach to
minimal rearrangements leads to equations analogous to those for frozen variables. Part
of the reasoning is the following [SAO05]: Consider a solution of a K-SAT formula and
a variable i from its whitening core. By flipping the variable i at least one neighbouring
constraint a is made unsatisfied, otherwise the variable would not be in the whitening
core. All variables contained in a are also in the whitening core, thus one of them has
to be flipped in order to satisfy this constraint. There have to be a chain of flips which
can be finished only by closing a loop. The length of the shortest loop going through a
typical variable is of order logN . Thus a diverging number of changes is needed to find
another solution. Hence the connection between frozen variables and rearrangements is:
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• If the variable i is frozen in the cluster to which the solution {si} belongs, then in
order to change the value of i one has to find a solution from a different cluster,
thus at an extensive Hamming distance.

• If the variable i is not frozen in the cluster to which the solution {si} belongs, then
the best rearrangement will probably also lie within that cluster and the Hamming
distance is finite.

Many more results about rearrangements can be found in [Sem08], they shed light
on the onset of frozen variables. An exciting possibility is that the cavity equations
for rearrangements might be useful in incremental algorithms for CSPs, like the one of
[KK07].

4.2.2 The phase transitions: Rigidity and Freezing

A natural question is: “In which clusters are the hard fields present?” Or more in the
terms of the 1RSB solutions: “When does eq. (4.7) have a nontrivial solution η > 0?”
We answer this question in one of the simplest cases, that is for the coloring of random
regular graphs of connectivity c = k+1. In tree-like regular graphs the neighbourhood of
each node looks identical, thus also the distribution P i→j(ψi→j) is the same for every edge
(ij). Moreover we search for a color-symmetric solution [ZDEB-5], that is ηs = ηr = η
for all s, r ∈ {1, . . . , q}. The function w({η}) in the ensemble of random regular graphs
simplifies to

w(η) =

∑q−1
l=0 (−1)l

(

q−1
l

)

[1− (l + 1)η]k

∑q−1
l=0 (−1)l

(

q
l+1

)

[1− (l + 1)η]k
. (4.9)

First notice that in order to constrain a variable into one color, i.e., create a hard field,
one needs at least q − 1 incoming fields that forbids all the other colors. It means that
the function w({η}) defined in eq. (4.9) is identically zero for k < q − 1 and might be
non-zero only for k ≥ q − 1, where k is the number of incoming fields.

The equation (4.7) also simplifies on a regular graph and η follows a self-consistent
relation

η = w(η)
1

qw(η) + [1− qw(η)] r(m)
, (4.10)

where r(m) is the average of the reweighting of the soft fields divided by the average of
the reweighting of the frozen fields (4.7). The function r(m) is in general not easy to
compute, the population dynamics is needed for that. Several properties are, however
known:

r → 0 when m→ −∞ , (4.11a)

r → ∞ when m→∞ , (4.11b)

and r(m) is a monotonous function of m. Moreover, for the internal entropy of clusters
s(m)→ 0 when m→ −∞, and s(m)→∞ when m→∞, and s(m) is also a monotonous
function. We thus solve eq. (4.10) for every possible ratio r. For all k ≥ q−1 we compute
the solution η(r). The result is shown in fig. 4.2 for the 3- and 4-coloring of random
regular graphs.

There is a discontinuous phase transition: For r < rr eq. (4.10) has a solution with a
large fraction of frozen fields, η > 0, whereas for r < rr the only solution is η = 0. Note
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Figure 4.2: The lines are solutions of eq. (4.10) and give the fraction qη of hard fields
for a given value of ratio r = 〈Z i→j

m 〉soft/〈Z i→j
m 〉hard for q = 3 (left) and q = 4 (right) in

regular random graphs. There is a critical value of the ratio rr (red point) beyond which
only the trivial solution η = 0 exists. Note that the solutions corresponding to m = 0
(green square) and m = 1 (blue triangle) only exist for a connectivity large enough.

that the index r stands for ”rigidity”. In terms of the parameter m, the critical value is
r(mr) = rr. In terms of the internal entropy of clusters s(mr) = sr. The interpretation
is the following:

• Clusters of internal entropy s < sr are almost all frozen, and the fraction of frozen
variable’s they contain is quite large.

• Clusters of internal entropy s > sr are almost all soft, meaning the fraction of frozen
variables is zero.

When we change the average constraint density there are at least three interesting
phase transitions related to frozen variables. Fig. 4.3 sketches the difference between the
phases they separate. Recall that s∗ is the internal entropy of the dominant clusters, and
smax the internal entropy of the largest clusters Σ(smax) = 0.

• The rigidity transition, cr, at which s∗ = sr, separates a phase where a typical
dominant cluster is almost surely not frozen from a phase where a typical dominant
cluster is almost surely frozen.

• The total rigidity transition, ctr, at which smax = sr, when almost all clusters of
every size become frozen.

• The freezing transition, cf , separates phase where exponentially many unfrozen
cluster exists from a phase where such clusters almost surely do not exist3.

In general it have to be cr ≤ ctr ≤ cf . The relation between the rigidity and total
rigidity transition is easily obtained from the 1RSB solution. It is thus known that in the
q-coloring of Erdős-Rényi graphs cr = ctr if and only if q ≤ 8, in K-SAT if and only if
K ≤ 5. For larger q or K the rigidity transition is given by the onset of frozen variables
in clusters corresponding to m = 1, this is equivalent to the naive reconstruction (2.4).

3Note that what is called freezing transition in [Sem08] or in sec. IV.C of [MRTS08] is in fact what
we define as the rigidity transition, in agreement with [ZDEB-5].
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Figure 4.3: A pictorial sketch of the complexity function of clusters of a given size. Cyan-
blue is the complexity of the frozen clusters, magenta of the soft clusters. The total
complexity is the envelope, which can be calculated from the entropic 1RSB solution.
The black point marks the dominating clusters. Left: In the rigid phase almost all the
dominant clusters are frozen, but clusters corresponding to larger entropy might be mostly
soft. Middle: In the totally rigid phase almost all clusters of all sizes are frozen, but there
still might be exponentially many of soft clusters. Right: The frozen phase where soft
clusters almost surely do not exist.

The relation between the total rigidity transition and the freezing is less known. There
are only few studies for the freezing transition in random K-SAT. The first one is the
one of [ART06] where they prove that for every K ≥ 9 the freezing transition is strictly
smaller than the satisfiability one cf < cs. In the large K limit they showed that the
frozen phase covers a finite fraction (at least 20%) of the satisfiable region. The second
study [MS07] gives a rigorous upper bound on the freezing transition in 3-SAT αf < 4.453,
which is slightly better than the best known upper bound on the satisfiability transition
in 3-SAT [DBM00]. The third study is numerical [ZDEB-10], presented in fig. 4.1. It
shows that in 3-SAT the frozen phase is tiny, about 0.3% of the satisfiable region.

It is not known if the total rigidity transition coincides with the freezing transition.
The entropic cavity method describes a typical but not every cluster of a given size.
A generalization of the 1RSB equations which would count only the number of soft
cluster would answer this question.

To summarize the description of the freezing of variables and clusters in the canonical
constraint satisfaction problems, like q-coloring or K-satisfiability, is both numerically
and conceptually involved task. Moreover in the experimentally feasible range of q and
K the frozen phase is tiny. Thus conclusive statements about the connection between
the freezing and the computational hardness are difficult to make. In the next section
we introduce the so-called locked constraint satisfaction problems where the situation is
much more transparent.

4.3 Point like clusters: The locked problems

In order to get a better understanding of the frozen phase we introduce the so-called
locked constraint satisfaction problems [ZDEB-9]. In these problems the whole clustered
phase is at the same time frozen, this is because in the locked problems all the clusters
contain only one solution.
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4.3.1 Definition

A locked constraint satisfaction problem is made of N variables and M locked constraints
in such a way that every variable is present in at least two constraints. A constraint
consisting of K > 0 variables is locked if and only if for every satisfying assignment
of variables changing the value of any (but only one) variable makes the assignment
unsatisfying.

A locked constraint of K variables has the property that if (K − 1) variables are
assigned then either the constraint cannot be satisfied by any value of the last variable
or there is only one value of the last variable which makes the constraint satisfied. All
the uniquely extendible constraints [Con04, CM04] are locked, XOR-SAT being the most
common example. 1-in-K SAT (exact cover) constraint [GJ79] is another common ex-
ample. On the other hand, the most studied constraint satisfaction problems K-SAT or
graph q-coloring (q > 2) are not made of locked constraints.

The second important part of the definition of locked constraint satisfaction problems
is the requirement that every variable is present in at least two constraints, i.e., leaves are
absent. An important property follows: In order to change a satisfying assignment into
a different satisfying assignment at least a closed loop of variables have to be changed. If
leaves would be allowed changing a path connecting two leaves might be sufficient.

It seems to us that all the random locked constraint satisfaction problems should
behave in the way we describe in the following. We, however, investigated in detail only
a subclass of the locked problems called locked occupation problems (LOP). Occupation
constraint satisfaction problem is defined as a problem with binary variables (0-empty,
1-occupied) where each constraint containing K variables is a function of how many of the
K variables are occupied. A constraint of the occupation CSP can thus be characterized
via a (K + 1)-component vector A, Ai ∈ {0, 1}, i ∈ 0, . . . , K. A constraint is satisfied
(resp. violated) if it contains r occupied variables where r is such that Ar = 1 (resp.
Ar = 0). For example A = (0, 1, 0, 0) corresponds to the positive 1-in-3 SAT [ZDEB-3],
A = (0, 1, 1, 0) is bicoloring [CNRTZ03], A = (0, 1, 0, 1, 0) is 4-odd parity check (4-XOR-
SAT without negations) [MRTZ03].

An occupation problem is locked if all the variables are connected to at least two
constraints and the vector A is such that AiAi+1 = 0 for all i = 0, . . . , K − 1. We study
the random ensembles of LOPs where all constraints are identical and the variable degree
is either fixed of distributed according to a truncated Poissonian law (1.6).

4.3.2 The replica symmetric solution

The replica symmetric cavity equations, belief propagation (1.16a-1.16b), for the occu-
pation problems read

ψa→i
si

=
1

Za→i

∑

{sj}

δ(Asi+
P

j sj
− 1)

∏

j∈∂a−i

χj→a
sj

, (4.12a)

χj→a
sj

=
1

Zj→a

∏

b∈∂j−a

ψb→j
sj

, (4.12b)

where ψa→i
si

is the probability that the constraint a is satisfied conditioned that the
value of the variable i is si, and χj→a

sj
is the probability that variable j takes value sj

conditioned that the constraint a was removed from the graph. The normalizations Z
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have the meaning of the partition function contributions. The replica symmetric entropy
s is a zero temperature limit of (1.20)

s =
1

N

∑

a

log (Za+∂a)−
1

N

∑

i

(li − 1) log (Z i) , (4.13)

where the contributions Za+∂a (resp. Z i) are the exponentials of the entropy shifts when
the node a and its neighbours (resp. the node i) is added (1.19a-1.19b)

Za+∂a =
∑

{si}

δ(AP

i si
− 1)

∏

i∈a

(

∏

b∈i−a

ψb→i
si

)

, (4.14a)

Z i =
∏

a∈i

ψa→i
0 +

∏

a∈i

ψa→i
1 . (4.14b)

Solving eqs. (4.12a-4.12b) means finding their fixed points. A crucial property of the
locked problems it that if {si} is one of the solutions then

ψa→i
si

= 1 , ψa→i
¬si

= 0 , (4.15a)

χi→a
si

= 1 , χi→a
¬si

= 0 (4.15b)

is a fixed point of eqs. (4.12a-4.12b). The corresponding entropy is then zero, as Z i =
Za+∂a = 1 for all i, a. In the derivation of [MM08] fixed points of the belief propagation
equations correspond to clusters. Thus in the locked problems every solution corresponds
to a cluster.

In the satisfiable phase there exist exponentially many solutions (i.e., clusters), thus
the iterative fixed point of BP equations (4.12a-4.12b) obtained from a random initial-
ization gives an asymptotically exact value for the total entropy. And the satisfiability
threshold coincides with the condensation transition, described in chap. 3. Furthermore,
as each cluster contains only one solution the clustered phase is automatically frozen
according to the definition in sec. 4.2.2. Interestingly, part of the satisfiable phase is
only ”fake clustered” meaning that at infinitesimally small temperature there is a single
fixed point of the BP equations. This has been discussed e.g. in the context of the per-
fect matchings in [ZDEB-1]. A general discussion and proper definition of the clustering
transition in the locked problems follows in sec. 4.3.3.

Iterative fixed point of eqs. (4.12a-4.14b) averaged over the graph ensemble is in
general found via the population dynamics technique, see appendix E. Note that the
sum over {sj} in (4.12a) can be computed iteratively in (K − 1)2 steps instead of the
naive 2K−1 steps. Moreover, on the regular graphs ensemble or for some of the symmetric
locked problems, such that Ai = AK−i for all i = 0, . . . , K, the solutions is factorized. In
the factorized solution the messages χi→a, ψa→i are independent of the edge (ia) and the
population dynamics is thus not needed.

• For the regular graph ensemble where each variable is present in L constraints the
factorized solution is

ψ0 =
1

Zreg

∑

Ar=1

(

K − 1

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (4.16a)

ψ1 =
1

Zreg

∑

Ar+1=1

(

K − 1

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (4.16b)
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and the entropy is

sreg =
L

K
log

[

∑

Ar=1

(

K

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−r)
0

]

− (L− 1) log
[

ψL0 + ψL1
]

. (4.17)

• For the symmetric locked problems where the symmetry is not spontaneously broken
the solution is also factorized. We call these the balanced locked problems. The BP
solution is ψ1 = ψ0 = 1/2 and the corresponding entropy

ssym(l) = log 2 +
l

K
log

[

2−K
K
∑

r=0

δ(Ar − 1)

(

K

r

)

]

, (4.18)

where l is the average degree of variables. Notably, this result for the entropy can
be proven rigorously by computing the first and second moment of the partition
sum, i.e., 〈Z〉, 〈Z2〉, and using the Chebyshev’s inequality. The exact value of the
satisfiability threshold is then given by ssym(ls) = 0. This itself is a remarkable
result, because so far the exact threshold was computed in only a handful of the
sparse NP-complete CSPs. As far as we know only in the 1-in-K SAT [ACIM01]
and [ZDEB-3], the 2+p-SAT [MZK+99a, AKKK01] and the (3, 4)-UE-CSP [CM04].
We dedicate the appendix B to this computation.

The replica symmetric solution might be incorrect if long range correlations are present
in the system, as we discussed in detail in chap. 2. A sufficient condition for its correctness
is the decay of the point-to-set correlations, which we will discuss in the next section, again
in context of the reconstruction problem. A necessary condition for the RS solution to
be correct is the non-divergence of the spin glass susceptibility, which can be investigated
in several equivalent ways, as described in appendix C. The result for all the locked
problems we investigated is that the phase where the entropy (4.13) is positive is always
RS stable, whereas part of the phase where the entropy (4.13) is negative might be RS
unstable (depending on the parameters and the vector A).

4.3.3 Small noise reconstruction

It is immediate to observe that reconstruction as we defined it in sec. 2.1.1 is always
possible for the locked problems. Indeed, if we know K − 1 out of K variables around a
constraint the last one is given uniquely (no contradiction is possible as we broadcasted
a solution). This is related to the fact that at least one closed loop has to be flipped to
go from one solution of a given instance of a locked problem to another solution. Typical
length of such a minimal loop is of order logN . For very low connectivities, and at
infinitesimally low temperature, the BP equations will have a unique fixed point, there
the zero temperature logN clustering is ”fake” and will not have a crucial influence on
the dynamics and other properties of interest.

Thus for the locked problem it is useful to modify the definition of the clustering
transition presented in chap. 2. In order to do that we need to introduce the small noise
(SN) reconstruction. Construct an infinite tree hyper-graph, assign a value 1 or 0 to its
root and iteratively assign its offsprings uniformly at random but in such a way that the
constraints are satisfied (constraints play the role of noiseless channels). At the end of the
procedure forget the values of all variables in the bulk but also of an infinitesimal fraction
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ǫ of leaves. If the remaining 1−ǫ leaves contain some information about the original value
on the root then we say that the small noise reconstruction is possible, if they do not the
small noise reconstruction is not possible. The phase where the SN reconstruction is not
possible is then only ”fake clustered” and is more similar to the liquid phase. Whereas
the phase where the SN reconstruction is possible has all the properties of the clustered
phase, except that each of the clusters contains only one configuration4.

All the equations we derived in sec. 2.1.1 for the reconstruction apply also for the SN
reconstruction. Except the specification of the initial conditions (2.11) which for the SN
reconstruction is instead

P init(~ψ) =
1− ǫ

2

[

δ(~ψ − δ0) + δ(~ψ − δ1)
]

+ ǫ δ
(

ψ0 −
1

2

)

δ
(

ψ1 −
1

2

)

, (4.19)

where ǫ≪ 1. The second term accounts for the fraction of leaves on which the value of the
variable has been forgotten. The fixed point of the 1RSB equation (2.24) is then either
trivial (corresponding to the replica symmetric solution) or nontrivial describing solutions
as an ensemble of totally frozen clusters. This has several interesting consequences: The
threshold for the naive SN reconstruction (i.e., the one taking into account only the
frozen variables) coincide with the true threshold for SN reconstruction. The solution
of the 1RSB equation (2.24) in the locked problem does not depend on the value of the
parameter m.

A general form of the 1RSB equations at m = 1 for occupation problems is derived
in appendix A. First we consider only problems where the replica symmetric solution
is factorized. We define µ1 (resp. µ0) as the probability that a variable which in the
broadcasting had value 1 (resp. 0) is uniquely determined by the boundary conditions.
Based on the general eq. (A.10), we derive self-consistent equations for µ1, µ0 on regular
graphs ensemble of connectivity of variables L:

µ1 =
1

ψ1Zreg

∑

Ar+1=1,Ar=0

(

k

r

)

(ψ1)
lr(ψ0)

l(k−r)
s1
∑

s=0

(

r

s

)

[

1− (1− µ0)
l
]k−r [

1− (1− µ1)
l
]r−s

(1− µ1)
ls , (4.20a)

µ0 =
1

ψ0Zreg

∑

Ar=1,Ar+1=0

(

k

r

)

(ψ1)
lr(ψ0)

l(k−r)
s0
∑

s=0

(

k − r

s

)

[

1− (1− µ1)
l
]r [

1− (1− µ0)
l
]k−r−s

(1− µ0)
ls , (4.20b)

where l = L − 1, k = K − 1. The indices s1, s0 in the second sum of both equations
are the largest possible but such that s1 ≤ r, s0 ≤ K − 1 − r, and

∑s1
s=0Ar−s = 0,

∑s0
s=0Ar+1+s = 0. The values ψ0, ψ1 are the fixed point of eqs. (4.16a-4.16b), and Zreg is

the corresponding normalization. These lengthy equations have in fact a simple meaning.
The first sum is over the possible numbers of occupied variables on the descendants in
the broadcasting. The sums over s is over the number of variables which were not implied
by at least one constraint but still such that the set of incoming implied variables implies
the outcoming value. The term 1− (1−µ)l is the probability that at least one constraint
implies the variable, (1 − µ)l is the probability that none of the constraints implies the
variable.

4Note that a rigorous study of a related robust reconstruction exists [JM04]. In robust reconstruction,
however, one allows ǫ to be arbitrarily near to one.
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The second case where the BP equations are factorized are the balanced locked prob-
lems. That is LOPs with symmetric vector A where the symmetry is not spontaneously
broken. Then ψ0 = ψ1 = 1/2 and thus also µ0 = µ1 = µ. For the ensemble of graphs
with truncated Poissonian degree distribution of coefficient c we derive from (A.10)

µ =
2

gA

∑

Ar+1=1

(

k

r

) s1
∑

s=0

(

r

s

)(

1− e−cµ

1− e−c

)k−s(
e−cµ − e−c

1− e−c

)s

, (4.21)

where k = K − 1, and gA =
∑

r,Ar+1=1

(

k
r

)

+
∑

r,Ar=1

(

k
r

)

and the value s is, as before, the
number of descendants which were not directly implied.

In both these cases, there are two solutions to eqs. (4.20a-4.20b) and (4.21). One
is µ = 0 and the other µ = 1. The small noise reconstruction is investigated by the
iterative stability of the solution µ = 1. If it is stable then the SN reconstruction is
possible, all variables are almost surely directly implied. If it is not stable then the only
other solution is µ = 0. Few observations are immediate, for example if L ≥ 3 then the
solution µ1 = µ0 = 1 of (4.20a-4.20b) is always iteratively stable. Iterative stability of
(4.21) gives for the balanced locked problems, marked by ∗ in tab. 4.1:

ecd − 1

cd
= K − 1−

∑K−2
r=0 δ(Ar+1 − 1) δ(Ar−1) δ(Ar)

(

K−1
r

)

∑K−2
r=0 δ(Ar+1 − 1)

(

K−1
r

) . (4.22)

4.3.4 Clustering transition in the locked problems

In the locked problem where the replica symmetric solution is not factorized there is
another equivalent way to locate the clustering transition, which is simpler than solving
eq. (A.10). It is the investigation of the iterative stability of the nontrivial fixed point of
the survey propagation. In LOPs the survey propagation equations consist of eqs. (1.41)
and

qa→i
1 =

1

N a→i





∑

{rj}

C1({rj})
∏

j∈a−i

pj→a
rj



 , (4.23a)
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rj



 , (4.23b)

qa→i
0 =

1

N a→i





∑

{rj}

C0({rj})
∏

j∈a−i

pj→a
rj



 , (4.23c)

where the indexes rj ∈ {1,−1, 0}, N a→i is the normalization constant. The C1/C−1

(resp. C0) takes values 1 if and only if the incoming set of {rj} forces the variable i to
be occupied/empty (resp. let the variable i free), in all other cases the C’s are zero. Let
us call s1, s−1, s0 the number of indexes 1,−1, 0 in the set {rj} then

• C1 = 1 if and only if As1+s0+1 = 1 and As1+n = 0 for all n = 0 . . . s0;

• C−1 = 1 if and only if As1 = 1 and As1+1+n = 0 for all n = 0 . . . s0;

• C0 = 1 if and only if there exists m,n = 0 . . . s0 such that As1+n = As1+m+1 = 1.
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A name Ls cd cs ld ls
0100 1-in-3 SAT 3 0.685(3) 0.946(4) 2.256(3) 2.368(4)
01000 1-in-4 SAT 3 1.108(3) 1.541(4) 2.442(3) 2.657(4)
00100* 2-in-4 SAT 3 1.256 1.853 2.513 2.827
01010* 4-odd-PC 5 1.904 3.594 2.856 4
010000 1-in-5 SAT 3 1.419(3) 1.982(6) 2.594(3) 2.901(6)
001000 2-in-5 SAT 4 1.604(3) 2.439(6) 2.690(3) 3.180(6)
010100 1-or-3-in-5 SAT 5 2.261(3) 4.482(6) 3.068(3) 4.724(6)
010010 1-or-4-in-5 SAT 4 1.035(3) 2.399(6) 2.408(3) 3.155(6)
0100000 1-in-6 SAT 3 1.666(3) 2.332(4) 2.723(3) 3.113(4)
0101000 1-or-3-in-6 SAT 6 2.519(3) 5.123(6) 3.232(3) 5.285(6)
0100100 1-or-4-in-6 SAT 4 1.646(3) 3.366(6) 2.712(3) 3.827(6)
0100010 1-or-5-in-6 SAT 4 1.594(3) 2.404(6) 2.685(3) 3.158(6)
0010000 2-in-6 SAT 4 1.868(3) 2.885(4) 2.835(3) 3.479(4)
0010100* 2-or-4-in-6 SAT 6 2.561 5.349 3.260 5.489
0001000* 3-in-6 SAT 4 1.904 3.023 2.856 3.576
0101010* 6-odd-PC 7 2.660 5.903 3.325 6

Table 4.1: The locked cases of the occupation CSPs for K ≤ 6 (cases with a trivial
ferromagnetic solution are omitted). In the regular graphs ensemble the phase is clustered
for L ≥ Ld = 3, and unsatisfiable for L ≥ Ls. Values c are the critical parameters of the
truncated Poissonian ensemble (1.6), the corresponding average connectivities l are given
via eq. (1.7). All these problems are RS stable at least up to the satisfiability threshold.
For the balanced cases, marked as *, the dynamical threshold follows from (4.21), and
the satisfiability threshold, which can be computed rigorously, app. B, from (4.18).

The SP equations in LOPs have two different fixed points:

• The trivial one: qa→i
0 = pi→a

0 = 1, qa→i
1 = pi→a

1 = qa→i
−1 = pi→a

−1 = 0 for all edges (ai).

• The BP-like one: qa→i
0 = pi→a

0 = 0, qa→i = ψa→i, pi→a = χi→a for all edges (ai),
where ψ and χ is the solution of the BP equations (4.12a-4.12b).

The small noise reconstruction is then investigated, using the population dynamics, from
the iterative stability of the BP-like fixed point. If it is stable then the SN reconstruction
is possible and the phase is clustered. If it is not stable then we are in the liquid phase. Of
course, this approach gives the same critical connectivity ld as the previous one, because
for the locked problems the solutions of the 1RSB equation (2.24) is independent of the
parameter m.

We remind at this point that in a general CSP, where the sizes of clusters fluctuate,
the SP equations are not related to the reconstruction problem, more technically said the
1RSB solutions at m = 0 and at m = 1 are different. The solution of the locked problems
is sometimes called frozen 1RSB [MMR04, MMR05].

4.4 Freezing - The reason for hardness?

We describe several strong evidences that it is hard to find frozen solutions. We also
give several arguments for why it is so. However, the precise mechanism stays an open
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question and strictly speaking the freezing of variables might just be going along with
a true yet unknown reason. Or even there might be an algorithm which is able to find
the frozen solutions efficiently waiting for a discovery. But in any case, we show that
freezing of variables is an important new aspect in the search of the origin of the average
computational hardness.

4.4.1 Always a trivial whitening core

Several studies of the random 3-SAT problem [MMW07, BZ04, SAO05] showed that
all known algorithms on large instances systematically find only solutions with a trivial
whitening core (defined in sec. 4.1.1). On small instances of the problem solutions with
a nontrivial whitening core can be found as observed by several authors, and studied
systematically in sec. 4.1.3.

For solutions found by the stochastic local search algorithms, see appendix F, this
observation is reasonable, as argued already in [SAO05]. Consider that a stochastic local
search finds a configuration which is not a solution, but its whitening core is nontrivial.
Then a diverging number of variables have to be rearranged in order to satisfy one of
the unsatisfied constraints [Sem08]. In the clusters with a trivial whitening core the
rearrangements are finite [Sem08] and thus stochastic local dynamics might be able to
find them more easily.

The fact of finding only the ”white” solutions is, however, quite surprising for the
survey propagation algorithm. The SP equations compute probabilities (over clusters)
that a variables is frozen in a certain value. This information is then used in a deci-
mation, reinforcement, etc. algorithms, see appendix F. Thus SP is explicitly exploring
the information about nontrivial whitening cores and in spite of that it finishes finding
solutions with trivial whitening cores.

A related, and rather surprising, result was shown in [DRZ08]. The authors considered
the random bi-coloring problem in the rigid, but not frozen, phase. That is a phase where
most solutions are frozen, but rare unfrozen ones still exist. They showed that belief
propagation reinforcement solver, see appendix F, is in some cases able to find these
exponentially rare, but unfrozen, solutions.

We observed the same phenomena in one of the non-locked occupation problem A =
(0110100), that is 1-or-2-or-4-in-6 SAT. On regular factor graphs this problem is in the
liquid phase for L ≤ 6, in the rigid phase for 7 ≤ L ≤ 9, where almost all the solutions
are frozen, and it is unsatisfiable for L ≥ 10. In fig. 4.4 we show that belief propagation
reinforcement finds almost always solutions for L = 8, but as the size of instances is
growing the fraction of cases in which the solution is frozen goes to zero.

We listed this paradox, that only the all-white solutions can be found, as one of the
loose ends in sec. 1.8. The resolution we suggest here, and substantiate in the following,
is that every known algorithm is able to find efficiently (in polynomial - but more often in
experiments we mean linear or quadratic - time) only the unfrozen solutions. The frozen
solutions are intrinsically hard to find and all the known algorithms have to run for an
exponential time to find them.

4.4.2 Incremental algorithms

Adopted from [KK07]: Consider an instance of a constraint satisfaction problem of N
variables and M constraints. Order randomly the set of constraints and remove all of
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Figure 4.4: Algorithmical performance in the rigid phase of the 1-or-2-or-4-in-6 SAT at
L = 8. In red is the rate of success of the belief propagation reinforcement algorithms as
a function of system size (out of 100 trials). The algorithm basically always succeeds to
find a solution. In blue is the fraction of solutions which were frozen (had a nontrivial
whitening core). Almost all solutions are frozen in this problem, yet it is algorithmically
easier to find the rare unfrozen solutions, in particular in instances of larger size.

them. Without constraints any configuration is a solutions. In each step: First, add
back one of the constraints. Second, if needed rearrange the configuration in such a way
that it satisfies the new and all the previous constraints. Repeat until there are some
constraints left. We call such strategy the incremental algorithm for CSPs. And one can
ask about its computational complexity. The way by which the rearrangement is found
in the second step needs to be specified. But independently of this specification we know
that if the new constraint connects frozen and contradictory variables then the size of
the minimal rearrangement diverges [Sem08], thus in the frozen phase the incremental
algorithm have to be at best super-linear.

Another understanding of the situation is gained by imagining the space of solutions
at a given constraint density. As we are adding the constraints some solutions are disap-
pearing and none are appearing. At the clustering transition the space of solutions splits
into exponentially many clusters. As more constraints are added the clusters are becom-
ing smaller, they may split into several smaller ones and some may completely disappear.
However, only the frozen clusters can disappear, if a constraint is added between two
frozen and contradictory variables. Note also that each frozen cluster will almost surely
disappear before an infinitesimally small fraction of constraints is added. An unfrozen
cluster, on the other hand, may only become smaller or split. Indeed, if a constraint is
added any solution belonging to an unfrozen cluster may be rearranged in a finite num-
ber of steps [Sem08]. The incremental algorithm in this setting works as a non-intelligent
animal would be escaping from a rising ocean on a Pacific hilly island [KK07]. As the
water starts to rise the animal would step away from it. As the water keeps rising at a
point the animal would be blocked in one of the many smaller islands. This island will
be getting smaller and smaller and it will disappear at a point and the animal will have
to learn how to swim. But at this point there might still be many small higher island.
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All of them will disappear eventually. For sure the animal will be in trouble before all
the clusters (island) start to contain frozen variables.

Moreover, if the sequence of constraints to be added is not known in advance there is
no way to choose the best cluster, because which cluster is the best depends completely
on the constraints to be added. This proves that no incremental algorithm is able to
work in linear time in the frozen phase. On the other hand it was shown experimentally
in [KK07] for the coloring problem that such algorithms work in linear time in part of
the clustered (or even the condensed) phase.

4.4.3 Freezing transition and the performance of SP in 3-SAT

How does the freezing transition in 3-SAT, αf = 4.254 ± 0.009 fig. 4.1, compare to the
performance of the best known random 3-SAT solver — the survey propagation? We are
aware of two studied where the performance of SP is investigated systematically and with
a reasonable precision, [Par03] and [CFMZ05].

In [Par03] the survey propagation decimation is studied. The SP fixed point is found
on the decimated graph and the variable having the largest bias is fixed as long as the SP
fixed point is nontrivial. When the SP fixed point becomes trivial the Walk-SAT algo-
rithm finishes the search for a solutions. In [Par03] the residual complexity is measured
on the partially decimated graph. It is observed that if the residual complexity becomes
negative then solutions are never found, if on the other hand the residual complexity is
positive just before the survey propagation fixed point become trivial then solutions are
found. The value of complexity in the last step before the fixed point becomes trivial is
extrapolated, fig. 2 of [Par03] for system size N = 3 · 105, to zero at a constraint density
α = 4.252± 0.003 (we estimated the error bar based on data from [Par03]).

In [CFMZ05] the survey propagation reinforcement is studied. The rate of success is
plotted as a function of the complexity function. From fig. 8 of [CFMZ05] it is estimated
that SP reinforcement (more precisely its implementation presented in [CFMZ05]) finds
solution in more than 50% of trials if Σ > 0.0013. The data do not really concentrate
on this point, thus is is difficult to obtain a reliable error bar of this value, our educated
guess is 0.0013± 0.0003 this would correspond to a constraint density α = 4.252± 0.004.

The striking agreement between our value for the freezing transition and the perfor-
mance limit of the survey propagation supports the suggestion that the frozen phase is
hard for any known algorithm. The trouble for a better study of the frozen phase in
3-SAT is its size, it covers only 0.3% of the satisfiable phase. In K-SAT with large K the
frozen phase becomes wider, but as K grows the constraint density of the satisfiability
threshold grows like 2K logK, empirical study thus becomes infeasible very fast. It is
also not very easy to compute the freezing transition or to check if the 1RSB solution is
correct in the frozen phase. Thus K-SAT (and q-coloring) are not very suitable problems
for understanding better how exactly the freezing influences the search for a solution.

4.4.4 Locked problems – New extremely challenging CSPs

We introduced the locked problems to challenge the suggestion about hardness of the
frozen phase [ZDEB-9]. It is rather easy to compute the freezing transition here, it
coincides with the clustering transition ld. Moreover, the frozen phase is wide, taking
more than 50% of the satisfiable phase for some of the locked problems, see table 4.1. As
in the locked problems every cluster consists of one solution, all the variables are frozen.
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Consequently the replica symmetric approach describes correctly the phase diagram.
From this point of view the locked problems seems extremely easy compared to K-SAT.

On the other hand, experiments with the best known solvers of random CSPs show
that the frozen phase of locked problems is very hard. And some of the very good
solvers, e.g. the belief propagation based decimation, do not work at all even at the
lowest connectivities (for an explanation see appendix F).
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Figure 4.5: The probability of success of the BP-reinforcement (top) and the stochas-
tic local search ASAT (bottom) plotted against the average connectivity for two of the
locked occupation problems. The clustering transition is marked by a vertical line, the
satisfiability threshold is ls = 4 for the 4-odd parity checks, and ls = 4.72 for the 1-or-3-
in-5 SAT. The challenging task is to design an algorithm which would work also in the
clustered phase of the NP-complete locked problems.

In fig. 4.5 we show the performance of the BP-reinforcement and the stochastic
local search ASAT algorithms. Both the algorithms are described in appendix F, they
are the best we were able to find for the locked CSPs. The greediness parameter in the
stochastic local search ASAT we evaluated as the most optimal is p = 5.10−5 for the
4-odd parity check, and p = 3.10−5 for the 1-or-3-in-5 SAT. In the BP-reinforcement

the optimal forcing parameter π changes slightly with the connectivity. For the 1-or-3-
in-5 SAT we used π = 0.42 for 2.9 ≤ l < 3.0 and π = 0.43 for 3.0 ≤ l ≤ 3.2. For the
4-odd parity checks we used π = 0.44 for 2.75 ≤ l ≤ 2.95.

Of course, the parity check problem is an exceptional locked problem, as it is not
NP-complete and can be solve via Gaussian elimination. However, our study shows that
algorithms which do not use directly the linearity of the problem fail in the same way
as they do in the NP-complete cases. Instances of the regular XOR-SAT indeed belong
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between the hardest benchmarks for all the best known satisfiability solvers which do not
explore linearity of the problem, see e.g. [HJKN06].

Fig. 4.5 puts in the evidence that in all the random locked problems the best known
algorithms stop to be able to find solutions (in linear time) at the clustering transition.
This supports the conjecture about freezing being relevant for algorithmical hardness.
The locked problems are thus (at least until they are ”unlocked”) the new benchmarks
of hard constraint satisfaction problems.
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Chapter 5

Coloring random graphs

In the previous three chapters we developed tools for describing the structure of solution
and the phase diagram of random constraint satisfaction problems. These tools were
applied to the problem of coloring random graphs in a series of works [ZDEB-4, ZDEB-5,
ZDEB-6, ZDEB-7]. In this section we summarize the results.

5.1 Setting

Coloring of a graph is an assignment of colors to the vertices of the graph such that
two adjacent vertices do not have the same color. The question is if on a given graph
a coloring with q colors exists. Fig. 5.1 gives an example of 3-coloring of a graphs with
N = 22 vertices and M = 27 edges, the average connectivity is c = 2M/N ≈ 2.45.

Figure 5.1: Example of a proper 3-coloring of a small graph.

It is immediate to realize that the q-coloring problem is equivalent to the question of
determining if the ground-state energy of a Potts anti-ferromagnet on a random graph
is zero or not [KS87]. Consider indeed a graph G = (V,E) defined by its vertices
V = {1, . . . , N} and edges (i, j) ∈ E which connect pairs of vertices i, j ∈ V ; and
the Hamiltonian

H({s}) =
∑

(i,j)

δ(si, sj) . (5.1)

With this choice there is no energy contribution for neighbours with different colors, but
a positive contribution otherwise. The ground state energy is thus zero if and only if the
graph is q-colorable. This transforms the coloring problem into a well-defined statistical
physics model.

75
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Studies of coloring of sparse random graphs have a long history in mathematics and
computer science, see [ZDEB-5] for some references. From the statistical physics perspec-
tive it was first studied in [vMS02], where the replica symmetric solution was worked out,
and the replica symmetric stability was investigated numerically. Results were compared
to Monte Carlo simulations and simulated annealing was used as a solver for coloring. The
energetic 1RSB solution and the survey propagation algorithm for graph coloring were
developed in [MPWZ02, BMP+03]. Subsequently [KPW04] studied the stability of the
1RSB solution and its large q limit. The entropic 1RSB solution was studies in [MPR05]
for 3-coloring of Erdős-Rényi graphs. The entropic 1RSB solution was, however, fully
exploited only in [ZDEB-4, ZDEB-5, ZDEB-6, ZDEB-7] and the resulting phase diagram
is discussed here.

5.2 Phase diagram

Fig. 5.2 summarizes how does the structure of solutions of the coloring problem change
when the average connectivity is increased, (A)→(F). In fig. 5.2 up, each colored ”pixel”
corresponds to one solution, and each circle to one cluster. As the average connectivity is
increased, some solutions disappear and the overall structure of clusters changes. This is
depicted in the six snapshots (A)→(F). The magenta clusters are the unfrozen ones, the
cyan-blue clusters are the frozen ones. Fig. 5.2 down, the corresponding complexity (log-
number) of clusters of a given entropy, Σ(s), computed from the 1RSB approach (2.28)
for the 6-coloring of random regular graphs. More detailed description of the different
phases for q-coloring follows.

(A) A unique cluster exists: For connectivities low enough, all the proper colorings
are found in a single cluster, where it is easy to “move” from one solution to another.
Only one possible —and trivial— fixed point of the BP equations exists at this stage
(as can be proved rigorously in some cases [BG06]). The entropy can be computed
and reads in the large graph size limit

s =
logNsol

N
= log q +

c

2
log

(

1−
1

q

)

. (5.2)

(B) Some (irrelevant) clusters appear: As the connectivity is slightly increased, the
phase space of solutions decomposes into a large (exponential) number of different
clusters. It is tempting to identify that as the clustering transition. But in this
phase all but one of these clusters contain relatively very few solutions, as compare
to the whole set. Thus almost all proper colorings still belong to one single giant
cluster, and the replica symmetric solution is correct, eq. (5.2) gives the correct
entropy.

(C) The clustered phase: For larger connectivities, the large single cluster decom-
poses into an exponential number of smaller ones: this now defines the genuine
clustering threshold cd. Beyond this threshold, a local algorithm that tries to move
in the space of solutions will remain prisoner of a cluster of solutions for a diverging
time [MS06c]. Interestingly, it can be shown that the total number of solutions is
still given by eq. (5.2). Thus the free energy (entropy) has no singularity at the
clustering transition, which is therefore not a phase transition in the sense of Ehren-
fest. Only a diverging length scale (point-to-set correlation length) and time scale
(the equilibration time) when cd is approached justify the name ”phase transition”.
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Figure 5.2: Up: Sketch of the structure of solutions in the random coloring problem. The
depicted phase transitions arrive in the above order on Erdős-Rényi graphs for number
of colors 4 ≤ q ≤ 8. Down: Complexity (log-number) of clusters of a given entropy, Σ(s),
for 6-coloring or random regular graphs. The circles mark the dominating clusters, i.e.,
those which cover almost all solutions.

(D) The condensed phase: As the connectivity is increased further, another phase
transition arises at the condensation threshold, cc, where most of the solutions are
found in a finite number of the largest clusters. Total entropy in the condensed
phase is strictly smaller than (5.2). It has a non-analyticity at cc therefore this is a
genuine static phase transition. The condensation transition can be observed from
the two-point correlation functions or from the overlap distribution.

(E) The rigid phase: As explained in chapter 4, two different types of clusters exist.
In the first type, the unfrozen ones, magenta in fig. 5.2, all variables can take at
least two different colors. In the second type, frozen clusters, cyan in fig. 5.2, a finite
fraction of variables is allowed only one color within the cluster and is thus ”frozen”
into this color. In the rigid phase, a random proper coloring belongs almost surely
to a frozen cluster. Depending on the value of q, this transition may arise before or
after the condensation transition (see tab. 5.1).

(F) The uncolorable phase: Eventually, the connectivity cs is reached beyond which
no more solutions exist. The ground state energy is zero for c < cs and then grows
continuously for c > cs.
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In table 5.1 we present all the critical values for coloring of Erdős-Rényi graphs, in
table 5.2 for random regular graphs. Notice the special role of 3-coloring where the
clustering and condensation transitions coincide and are given by the local stability of
the replica symmetric solution, see app. C. Notice also that for q ≥ 9 in Erdős-Rényi
graphs and q ≥ 8 in regular graph the rigidity transition arrives before the condensation
transition.

q cd cr cc cs cSP cr(m=1)

3 4 4.66(1) 4 4.687(2) 4.42(1) 4.911
4 8.353(3) 8.83(2) 8.46(1) 8.901(2) 8.09(1) 9.267
5 12.837(3) 13.55(2) 13.23(1) 13.669(2) 12.11(2) 14.036
6 17.645(5) 18.68(2) 18.44(1) 18.880(2) 16.42(2) 19.112
7 22.705(5) 24.16(2) 24.01(1) 24.455(5) 20.97(2) 24.435
8 27.95(5) 29.93(3) 29.90(1) 30.335(5) 25.71(2) 29.960
9 33.45(5) 35.658 36.08(5) 36.490(5) 30.62(2) 35.658
10 39.0(1) 41.508 42.50(5) 42.93(1) 35.69(3) 41.508

Table 5.1: Critical connectivities cd (dynamical, clustering), cr (rigidity), cc (condensa-
tion, Kauzmann) and cs (colorability) for the phase transitions in the coloring problem
on Erdős-Rényi graphs. The connectivities cSP (where the first non trivial solution of
SP appears) and cr(m=1) (where hard fields appear at m = 1) are also given. The error
bars consist of the numerical precision on evaluation of the critical connectivities by the
population dynamics technique, see appendix E.

q cSP cd cr cc cs
3 5 5+ - 6 6
4 9 9 - 10 10
5 13 14 14 14 15
6 17 18 19 19 20
7 21 23 - 25 25
8 26 29 30 31 31
9 31 34 36 37 37
10 36 39 42 43 44
20 91 101 105 116 117

Table 5.2: The transition thresholds for regular random graphs: cSP is the smallest
connectivity with a nontrivial solution atm = 0; the clustering threshold cd is the smallest
connectivity with a nontrivial solution at m = 1; the rigidity threshold cr is the smallest
connectivity at which hard fields are present in the dominant states, the condensation
cc is the smallest connectivity for which the complexity at m = 1 is negative and cs the
smallest uncolorable connectivity. Note that 3−coloring of 5−regular graphs is exactly
critical for that cd = 5+. The rigidity transition may not exist due to the discreteness of
the connectivities.

Few more words about the rigidity transition and the rigid phase in coloring. In
sec. 4.2.2, next to the rigid phase, we also defined the totally rigid phase where almost all



5.2. PHASE DIAGRAM 79

the clusters of every size become frozen. And the frozen phase where strictly all clusters
become frozen. Note that in the random graph coloring the rigidity transition coincides
with the total rigidity transition for q ≤ 8 for Erdős-Rényi graphs and for q ≤ 7 for regular
graphs. For larger values of q the rigidity transition is given by the m = 1 computation.
We have not computed the total rigidity transition for larger q, but it is accessible from
the present method. The freezing transition is, however, not accessible for the entropic
1RSB cavity approach. We cannot exclude that in the totally rigid phase there might
still be some rare unfrozen clusters.

Note also an interesting feature about the 1RSB entropic solution; in fig. 5.2 down,
for the connectivity c = 17 the function Σ(s) consists of two branches. The low-entropy
branch with frozen clusters, and the high-entropy branch with soft clusters. Note that the
soft branch may also exist for positive values of complexity, e.g. in 4-coloring of Erdős-
Rényi graphs. We interpreted the gap as the nonexistence of clusters of the corresponding
size. The gap might, however, be an artifact of the 1RSB approximation which most
likely does not describe correctly clusters of the corresponding size. For the discussion of
correctness of the 1RSB solutions see appendix D.
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Figure 5.3: Entropies and complexities as a function of the average connectivity for the
5-coloring of Erdős-Rényi graphs. The replica symmetric entropy is in dashed black, the
total entropy in red. The complexity of dominant clusters in red. The total complexity,
computed from the survey propagation, is in dashed blue.

To make the picture complete we plot the important complexities and entropies as a
function of the average connectivity, for 5-coloring of Erdős-Rényi graphs see fig. 5.3. We
plotted in dashed black the replica symmetric entropy (5.2), which in coloring is equal
to the annealed one sann. The correct total entropy stot (in red) differs from the replica
symmetric one in the condensed and uncolorable phase. The complexity of the dominating
clusters (those covering almost all solutions) Σdom (in red, computed at m = 1) is non-
zero between the clustering and the condensation transition. The total complexity Σmax

(in blue), maximum of the curves Σ(s), can be computed in the region where survey
propagation gives a nontrivial result. The colorability threshold corresponds to Σmax = 0.
We call cSP the smallest connectivity at which survey propagation gives a nontrivial result,
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i.e., the part of the curve Σ(s) with a zero slope exists. Clusters exists also for c < cSP,
but computing their total complexity is more involved and we have not done it. The
rigidity transition cr cannot be determined from these quantities.

In fig. 5.4 we sketch what fraction of solutions is covered by the largest cluster as
the average connectivity increases for 4-coloring of Erdős-Rényi graphs. In the replica
symmetric phase c < cd the largest cluster covers almost all solutions. In the dynamical
1RSB phase the largest cluster covers an exponentially small fraction of solutions. In the
condensed phase the largest state covers fraction of about 1−m∗ of solutions1, but this
part of the curve in not self-averaging. In the uncolorable phase there are no clusters of
solutions, the ground state is made from one cluster.
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Figure 5.4: The fraction of solutions covered by the largest cluster as a function of
the average connectivity for 4-coloring of Erdős-Rényi graphs. In the condensed phase
the fraction covered by the largest cluster is not self-averaging and is determined by the
Poisson-Dirichlet process with parameter m∗.

5.3 Large q limit

The coloring of random graphs in the limit of large number of colors might seem a
very unpractical and artificial problem. However, it allows many simplifications in the
statistical description (rigorous or not) and a lot of insight can be obtained from this
limit.

It is known from the cavity method, but also from a rigorous lower [ANP05] and
upper [Luc91] bound that the colorability threshold for large number of colors scales like
2q log q. At the same time a very naive algorithm: Pick at random an uncolored vertex
and assign it at random a color which is not assigned to any of its neighbours, was shown
to work in polynomial (linear) time up to a connectivity scaling as q log q. In other words
this algorithm uses about twice as many colors than needed. Such a performance is not

1More precisely from the properties of the Poisson-Dirichlet process, described in sec. 3.3, if the
fraction of solutions covered by the largest state is w then 1−m∗ = 1/E(1/w).
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very surprising, a very naive algorithm performs half as good as possible. The surprise
comes with the fact that it is an open problem if there is a polynomial algorithm which
would work at connectivity (1 + ǫ)q log q for an arbitrarily small positive ǫ.

5.3.1 The 2q log q regime: colorability and condensation

The complexity function Σ(s) at connectivity

c = 2q log q − log q + γ (5.3)

where γ = Θ(1) was computed in [ZDEB-5] and reads

Σ(s) =
s

log 2

[

1− log
s

ε log 2

]

− ε(2 + γ) + o(ε). (5.4)

where ε = 1/2q. From this expression it is easy to see that the coloring threshold
corresponds to

γs = −1. (5.5)

and the condensation transition

γc = −2 log 2 . (5.6)

Notice, as in [ZDEB-8], that the complexity of the random subcubes model (3.5),
sec. 3.1, gives exactly the expression (5.4) if we take the parameters of the random
subcubes model as 2

p = 1− ε , α = 1 + ε
1 + γ

log 2
. (5.7)

This is a striking property of the coloring problem in the limit of large number of colors
near to the colorability threshold. The 1 − ε is a fraction of frozen variables in each
cluster. Almost all the soft variables can take only one of two colors. The expression
(5.4) means that the soft variables are mutually almost independent and the clusters have
shape of small hypercubes. And the other way around, this property makes the random
subcubes model more than just a pedagogical example of the condensation transition.

5.3.2 The q log q regime: clustering and rigidity

Another interesting scaling regime is defined as

c = q(log q + log log q + α) , (5.8)

where α = Θ(1) is of order one. The large q scaling of the rigidity transition (m = 1) is
easily expressed from (2.4):

αr = 1 . (5.9)

This was originally computed in [ZDEB-4, ZDEB-5] and [Sem08]. The onset of a non-
trivial solution for the survey propagation corresponds to the rigidity transition at m = 0
and reads [KPW04]

αSP = 1− log 2 . (5.10)

2We remind that in the section 3.1 entropies were logarithms of base 2 whereas everywhere else they
are natural logarithms.
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Figure 5.5: We plotted the difference (cr − cd)/q = αr − αd and (cr − cSP)/q = αr − αSP.
The data are takes from table 5.1. The difference αr − αSP indeed seems to converge to
the theoretical log 2, the difference αr − αSP seems to converge to around 1/4.

An empirical observation is that for q = 3 the threshold for survey propagation is smaller
than the rigidity at m = 1, but for q ≥ 4 the order changes and the distances between the
two threshold grows with q. Based on this observation we conjectured that the clustering
transition is

1− log 2 ≥ αd ≥ 1 . (5.11)

Note that recently the dynamical transition was proved to be 1 − log 2 ≥ αd [Sly08].
Fig. 5.5 actually suggest that αd ≈ 1/4. Its precise location is actually an interesting
problem because it could shed light on the way soft fields converge to hard fields in the
cavity approach.

Concerning the total rigidity transition, where almost all the clusters of all sizes
become frozen, we have not manage to compute it in the large q limit. It is not even clear
if the relevant scaling is as (5.8). The same is true for the even more interesting freezing
transition, where all the clusters become frozen.

5.4 Finite temperature

It is interesting to study how does the antiferromagnetic Potts model, coloring at zero
temperature, behave at finite temperature. In particular which of the zero temperature
phase transitions survive to positive temperatures and what do they correspond to in the
phenomenology of glasses. This has been done in [ZDEB-6] and we summarize the main
results here.

The belief propagation equation for coloring (2.5) generalizes at finite temperature to

ψi→j
si

=
1

Z i→j

∏

k∈∂i−j

[

1−
(

1− e−β
)

ψk→i
si

]

≡ Fsi
({ψk→i}) . (5.12)

The distributional 1RSB equation (2.24) is the same.
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• The clustering transition — becomes the dynamical phase transition Td at pos-
itive temperature. The notion of reconstruction on trees, introduced in sec. 2.1.1,
generalizes to positive temperatures. Constraints then play the role of noisy chan-
nels in the broadcasting. The dynamical temperature Td is then defined via di-
vergence of the point-to-set correlations (2.22). Or equivalently via the onset of
a nontrivial solution of the 1RSB equations at m = 1. At the dynamical transi-
tion the point-to-set correlation length and the equilibration time diverge. There
is however no non-analyticity in the free energy, Ehrenfest might thus not call it a
phase transition.

• The condensation transition — becomes the Kauzmann phase transition TK
at positive temperature. The point at which the complexity function at m = 1
(structural entropy) becomes negative defines the Kauzmann temperature [Kau48].
At the Kauzmann temperature the free energy has a discontinuity in the second
derivative. This corresponds to the discontinuity in the specific heat. Kauzmann
transition is thus genuine even in the sense of Ehrenfest.

• The rigidity transition — is a purely zero temperature phase transition. At
positive temperature the fields ψi→j

si
(5.12) cannot be hard.

• The colorability transition — is a purely zero temperature phase transition.
At the colorability threshold the ground state energy becomes positive (it has dis-
continuity in the first derivative). At a finite temperature, however, there is no
corresponding non-analyticity.
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Figure 5.6: Phase diagrams for the 3-state (left) and 4-state (right) anti-ferromagnetic
Potts glass on Erdős-Rényi graphs of average degree c (top) and regular graphs of degree
c (bottom). For q = 3 the transition is continuous Td = TK = Tlocal. For q = 4, we find
that Td > TK > Tlocal, while for larger connectivities these three critical temperatures
become almost equal. The Gardner temperature TG for regular graphs is also shown
(green), bellow TG the 1RSB solution is not correct anymore (for Erdős-Rényi graph we
expect this curve to look similar). The bold (red) lines at zero temperature represent the
uncolorable connectivities c > cs.

Fig. 5.6 shows the temperature phase diagram of 3- (left) and 4-coloring (right) on
both Erdős-Rényi (up) and regular (down) random graphs. The dynamical temperature
is in blue, the Kauzmann temperature in black.
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The temperature at which the replica symmetric solution becomes locally unstable,
see appendix C, is called Tlocal. In the terms of reconstruction on trees this is the Kesten-
Stigum bound [KS66a, KS66b]. This temperature is a lower bound on the dynamical
temperature Td, but also on the Kauzmann temperature TK . This is because bellow
Tlocal the two-point correlations do not decay, which is possible only bellow TK . Note
that in the 3-coloring Td = TK = Tlocal and this phase transition is continuous in the
order parameter P i→j(ψi→j) (2.24). For q ≥ 4 colors we find instead Td > TK > Tlocal

and the dynamical transition is discontinuous. At large connectivity, however, the three
temperatures are very close, see fig. 5.6 where the Tlocal is in pink.

Correctness of the 1RSB solution — The last question concerns correctness of
the 1RSB solutions itself. The local stabilities of the 1RSB solution are discussed in
appendix D. The temperature at which the 1RSB solutions becomes type II locally
unstable, see appendix D, is called the Gardner temperature TG [Gar85]. We computed
it only on the ensemble of random regular graphs, see fig. 5.6, the TG is in green. We do
not know how to compute the stability of the type I, but we argued that the corresponding
critical temperature should be smaller than the Tlocal. An important consequence is that
in the colorable region the 1RSB solution is stable for q ≥ 4 coloring.

Coloring with three colors is a bit special, as Tlocal = Td = TK . However, at small
temperatures the stability of type I can be investigated from the energetic approach, again
discussed in app. D. It follows that at least in interval c ∈ (cs, cG) = (4.69, 5.08) the 1RSB
solution is stable at low temperature. For c > cG on contrary the Gardner temperature
is strictly positive. We cannot exclude that part of the colorable phase is unstable, but
in such a case the unstable region would have a sort of re-entrant behaviour. Moreover
the ferromagnetic fully connected 3-state Potts model has also a continuous dynamical
transition Td = Tlocal yet it is 1RSB stable near to Td [GKS85]. We thus find more likely
that also the colorable phase of 3-coloring is 1RSB stable.

Finally, the local stability is only a necessary condition. The full correctness of the
1RSB approach have to be investigated from the 2RSB approach. We implemented the
2RSB on the regular coloring, the results are not conclusive, as the numerics is involved.
but we have not found any sign for a nontrivial 2RSB solution in the colorable region.



Conclusions and perspectives

In this final section we highlight the, in our view, most interesting results of this thesis.
More complete overview of the original contributions is presented in sec. 1.9. Scientific
research is such that every answered question raises a number of new questions to be
answered. We thus bring up a list of open problems which we find particularly intrinsic.
Finally we give a brief personal view on the perspective applications of the results obtained
in this work.

Key results

The main question underlying this study is: How to recognize if an NP-complete problem
is typically hard and what are the main reasons for this?

In order to approach the answer we studied the structure of solutions in random
constraint satisfaction problem - mainly in the graph coloring. We did not neglect the
entropic contributions, as was common in previous studies, and this led to much more
complete description of the phase diagram and associated phase transitions, see summa-
rizing fig. 5.2.

The most interesting concept in these new findings was the freezing of variables. We
pursued its study and investigated its relation to the average computational hardness.
We introduced the locked constraint satisfaction, where the statistical description is easily
solvable and the clustered phase is automatically frozen. We indeed observed empirically
that these problems are much harder than the canonical K-satisfiability. They should
thus become a new challenge for algorithmical development. As we mention in the per-
spectives, we also anticipate that the locked constraint satisfaction problems are of a
more general interest.

Some open problems

(A) Clusters and their counting on trees — In sec. 2 we derived the 1RSB equa-
tions on purely tree graphs. Our derivation was, however, not complete as it is not
straightforward why the complexity function should be counting the clusters as we de-
fined them on trees. More physically founded derivations are for example the original
one [MP00]. And also the one presented in [MM08] where the complexity is shown to
count the fixed points of the belief propagation. We are, however, persuaded that the
purely tree approach is more appealing from the probabilistic point of view, as treating
correlations in the boundary conditions on trees is easier than treating the random graphs
directly, for a recent progress see e.g. [Sly08, GM07, DM08]. This is why we chose to
present this derivation despite its incompleteness.
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In general we should say that creating better mathematical grounds for the replica
symmetry breaking approach is a very important and challenging task.

(B) What is the meaning of the gap in the Σ(s) function — We computed
the number of clusters of a given entropy via the 1RSB method. For some intervals
of parameters there is no solution corresponding to certain intermediate sizes. In other
words there is a gap in the 1RSB function Σ(s). See e.g. fig. 5.2, we observed such a gap
in many other cases. Does this gap mean that there are truly no clusters of corresponding
sizes or does it mean that the 1RSB method is wrong in that region or is there another
explanation?

(C) Analysis of dynamical processes — In this thesis we described in quite a detail
the static (equilibrium) properties of the constraint satisfaction problems. Very little is
known about the dynamical properties – here we mean both the physical dynamics (with
detailed balance) and the dynamics of algorithms. Focusing on results described here: the
dynamics of the random subcubes model can be solved [ZDEB-8], and the uniform belief
propagation decimation can be analyzed [MRTS07], see also appendix F.1.2. However in
general even the performance of simulated annealing as a solver is not known. And the
understanding of why the survey propagation decimation works so well in 3-SAT and not
that well in other problems, e.g. the locked problems or for larger K, is also very pure.

The most exciting conjecture of this work is the connection between the algorithmical
hardness and freezing of variables. Several indirect arguments and empirical results were
explained in sec. 4.4 to support this conjecture. It is, however, not very clear what is the
detailed origin of the connection between presence of frozen variables in solutions and the
fact that dynamics (of a solver) does not seem to be able to find them.

(D) Beyond random graphs and the thermodynamical limit — For practical
application the perhaps most important point is to understand what is the relevance
of our results for instances which are not random or not infinite. For example fig. 2.2
suggests that even on small random instances the clustering can be observed and is thus
probably relevant. We also observed that the solutions-related quantities seems to have
stronger finite size effects than the clusters-related properties, compare e.g. fig. 1.3 with
fig. 4.1. This is an interesting point and it should be pursued.

Perspectives

This work should have a practical impact on the design of new solvers of constraint
satisfaction problems. Instances with only frozen solutions should be used as new bench-
marks for SAT solvers. At the same time where the design allows such instances should
be avoided.

More concretely, the belief propagation algorithm is used as a standard approximative
inference technique in artificial intelligence and information theory. One of the important
problems with applications of the belief propagation is the fact that in many cases it does
not converge. Many converging modifications were introduced. In might be interesting
to investigate in this context the reinforced belief propagation, see appendix F.2.3, which
sometimes converges towards a fixed point when the standard belief propagation does not.
As the reinforcement algorithm seems to be very efficient, robust and is not theoretically
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well understood different variants of the implementation should be studied empirically.
It would be interesting to see if this algorithm performs well on non-random graphs,
or if it can provide information useful for the practical solvers. Several other concepts
enhanced in this thesis might show up useful in algorithmic applications. We feel that
the whitening of solutions might be one of them.

We introduced the locked constraint satisfaction problems as a new algorithmical
challenge. Moreover the simplicity of their statistical description makes accessible several
quantities which are difficult to compute in the K-SAT problem. For example the weight
enumerator function or the x-satisfiability threshold. But these new models are exciting
from many other points of view. Their hardness might be appealing for noise tolerant
cryptographic applications. Planted ensemble of the locked problems might be a very
good one-way functions. The fact that the solutions of the locked problems are well
separated makes them excellent candidates for nonlinear error correcting codes. It will
be interesting to investigate if they can be advantageous over the standard linear low-
density-parity-check codes [Gal62, Gal68, MN95, Mon01].

Clusters of solutions come up naturally in the pattern recognition and machine learn-
ing problems. There each cluster corresponds to a pattern which should be learned or
recognized. Similarly the different phenotypes of a cell might be viewed as clusters of
fixed points of the corresponding gene regulation network. The methods developed in
this thesis might thus have impact also in these exciting fields.
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Appendix A

1RSB cavity equations at m = 1

Here we derive how the 1RSB equation (2.24) simplifies at m = 1 for the problems
where the replica symmetric solution is not factorized. We restrict to the occupation
models, but a generalization to other models is straightforward. Advantage of these
equations is that the unknown object is not a functional of functionals but only a single
functional. Moreover, the final self-consistent equation does not contain the reweighting
term. This simplification makes implementation of the population dynamics at m = 1
much simpler, and thus the computation of the clustering and condensation transitions
easier. Derivation of the corresponding equations for the K-SAT problem can be found
in [MRTS08].

Write the RS equation (1.17) for the occupation problems in the form

ψa→i
si

=
1

Zj→i

∑

{sj}

Ca({sj}, si)
∏

j∈∂a−i

(

∏

b∈∂j−a

ψb→j
sj

)

≡ Fsi
({ψb→j}) , (A.1)

where the constraints Ca({sj}, si) = 1 if
∑

j sj + si ∈ A, and 0 otherwise. Let PRS(ψ) be
the distribution of RS fields over the graph.

The 1RSB equations (2.24) at m = 1 are

P a→i(ψa→i) =
1

Zj→i

∫

∏

j∈∂a−i

∏

b∈∂j−a

[

dψb→jP b→j(ψb→j)
]

Zj→i({ψb→j}) δ
[

ψa→i − F({ψb→j})
]

≡ F2({P
b→j}) . (A.2)

The averages over states

ψ
a→i

si
=

∫

dψa→i
si

P a→i(ψa→i
si

)ψa→i
si

(A.3)

satisfy the RS equation (A.1). And consequently the RS and 1RSB normalizations are
equal Zj→i = Zj→i. The full order parameter is the probability distribution of P ’s over
the graph, it follow the self-consistent equation

P1RSB[P (ψ)] =
∑

l1,...lK−1

q(l1, . . . , lK−1)

∫ K−1
∏

i=1

li
∏

j=1

{

dP j(ψj)Pj1RSB[P j(ψj)]
}

δ[P (ψ)−F2({P
j})] . (A.4)
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We define the average distribution P (ψ|ψ) on those edges where the RS field is equal
to a given value ψ

P (ψ|ψ)PRS(ψ) ≡

∫

dP (ψ)P1RSB[P (ψ)]P (ψ) δ

[

ψ −

∫

dψP (ψ)ψ

]

. (A.5)

Now we rewrite all the terms on the right hand side using the incoming fields and distri-
butions, i.e., using first eq. (A.4) and then (A.2).

P (ψ|ψ)PRS(ψ) =
∑

{l}

q({l})

∫ K−1
∏

i=1

li
∏

j=1

{

dP j(ψj)Pj1RSB[P j(ψj)]
}

F2({P
j}) δ

[

ψ −

∫

dψF2({P
j})ψ

]

=
∑

{l}

q({l})

∫ K−1
∏

i=1

li
∏

j=1

{

dP j(ψj)Pj1RSB[P j(ψj)]
}

∫ K−1
∏

i=1

li
∏

j=1

[

dψjP j(ψj)
] Z({ψj})

Z
δ
[

ψ − F({ψj})
]

δ
[

ψ − F({ψ
j
})
]

=
∑

{l}

q({l})

∫ K−1
∏

i=1

li
∏

j=1

[

dψ
j
PRS(ψ

j
)
]

δ
[

ψ −F({ψ
j
})
]

∫ K−1
∏

i=1

li
∏

j=1

[

dψjP
j
(ψj|ψ

j
)
] Z({ψj})

Z({ψ
j
})
δ
[

ψ −F({ψj})
]

, (A.6)

where the original Dirac function was rewritten using

∫

dψF2({P
j})ψ =

1

Z

∫ K−1
∏

i=1

li
∏

j=1

[

dψjP j(ψj
]

Z({ψj})

∫

dψ ψ δ
[

ψ −F({ψj})
]

=
1

Z

∫ K−1
∏

i=1

li
∏

j=1

[

dψjP j(ψj
]

Z({ψj})F({ψj} = F({ψ
j
}) , (A.7)

and in last equality was obtained using the integral of eq. (A.5)

∫

dψ P (ψ|ψ)PRS(ψ) =

∫

dP (ψ)P1RSB[P (ψ)]P (ψ) . (A.8)

To simplify the equations further, in particular to get rid of the reweighting term
Z({ψj}), we define a distribution P s

ψsP s(ψ|ψ) ≡ ψsP (ψ|ψ) ⇒ P (ψ|ψ) =
∑

s

ψsP s(ψ|ψ) , (A.9)
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then by factorizing the sum over components s we get

ψsP s(ψ|ψ)PRS(ψ) =
∑

{l}

q({l})

∫ K−1
∏

i=1

li
∏

j=1

[

dψ
j
PRS(ψ

j
)
]

δ
[

ψ −F({ψ
j
})
]

∑

{si}

C({si}, s)

∏K−1
i=1

∏li
j=1 ψ

j

si

Z({ψ
j
})

∫ K−1
∏

i=1

li
∏

j=1

[

dψjP
j

si
(ψj|ψ

j
)
]

δ
[

ψ −F({ψj})
]

. (A.10)

This final equation might look more complicated than the original one, but, in fact, it is
much easier to solve. It could seem that we need a population of populations to represent
the distribution P s(ψ|ψ)PRS(ψ). But keeping in mind that the proper initial conditions
are

P 1(ψ1 = 1|ψ) = 1 , P 0(ψ0 = 1|ψ) = 1 , (A.11)

independently of the RS field ψ we see that the probability distribution P s(ψ|ψ)PRS(ψ)
may be represented by a population of triplets of fields - the first one corresponding to
the RS field ψ and the other two corresponding to the two components (A.11).

In the population dynamics we first equilibrate the RS distribution PRS(ψ) and then
initialize the other two components according to (A.11). In every step of the update we
first fix randomly the set of indexes {j} and compute the new ψ, then given the value
s we choose the set of indexes {si} according to a probability law given by the first line
of eq. (A.10), then we compute the new ψ for s = 0 and s = 1 and change a random
triplet in the population for the new values. In summary, eq. (A.10) allows to reduce the
double-functional equations at m = 1 into a simple-functional form, which is much easier
to solve.

The internal entropy s = sRS − Σ, and thus also the complexity function, may be
computed by making very similar manipulations as

s = α
∑

{l}

q({l})

∫ K
∏

i=1

li
∏

j=1

[

dψ
j
PRS(ψ

j
)
]

∑

{si}
C({si})

∏K
i=1

∏li
j=1 ψ

j

si

Za+∂a({ψ
j
})

∫ K
∏

i=1

li
∏

j=1

[

dψjP j
si
(ψj |ψ

j
)
]

logZa+∂a({ψj})

−
∑

l

Q(l)(l − 1)

∫ l
∏

i=1

[

dψ
i
PRS(ψ

i
)
]

∑

si

∏l
i=1 ψ

i

si

Z i({ψ
i
})

∫ l
∏

i=1

[

dψiP i
si
(ψi|ψ

i
)
]

logZ i({ψi}) . (A.12)

We can also express other quantities, e.g. the inter q0 = qRS and intra q1 state
overlaps.

q1 =

∫

dP (ψ)P1RSB

∫

dψP (ψ)
∑

σ

ψσ =
∑

σ,s

∫

dψPRS(ψ)ψs

∫

dψ P s(ψ|ψ)ψ2
σ . (A.13)
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Factorized RS solution — Several times, see e.g. sec. 4.3.3, we used the equations
at m = 1 for problems with factorized RS solution, PRS(ψ) = δ(ψ − ψ). The derivation
is straightforward from (A.10)

P s(ψ) =
∑

{l}

q({l})
1

ψsZ

∑

{si}

C({si}, s)
K−1
∏

i=1

li
∏

j=1

ψ
j

si

∫ K−1
∏

i=1

li
∏

j=1

dP si
(ψj) δ(ψ − F(ψj)) .

(A.14)
Proper initial conditions for the population dynamics resolution of (A.14) is P s(ψs =
1) = 1.

At zero temperature the distributions can be written as the sum of the frozen and
soft part

P 1(ψ) = µ1δ(ψ −

(

1

0

)

) + (1− µ1)P̃1(ψ) , (A.15a)

P 0(ψ) = µ0δ(ψ −

(

0

1

)

) + (1− µ0)P̃0(ψ) . (A.15b)

Self-consistent equations for the fractions of hard fields µ1, µ0 (4.20a-4.20b) follow from
(A.14).



Appendix B

Exact entropy for the balanced LOPs

Rigorous results about the entropy and the satisfiability threshold can be obtain com-
paring the first and second moment of the number of solutions, that is: If a number of
solution on a graph G is NG then the first moment is average over the graph ensemble:

〈NG〉 =
∑

{σ}

Prob ({σ} is SAT) . (B.1)

The second moment is

〈N 2
G〉 =

∑

{σ1},{σ2}

Prob ({σ1} and {σ2} are both SAT) . (B.2)

The Markov inequality then gives an upper bound on the entropy and the satisfiability
threshold

Prob(NG > 0) ≤ 〈NG〉 . (B.3)

The Chebyshev’s inequality gives a lower bound via

Prob(NG > 0) ≥
〈N 2

G〉

〈NG〉2
. (B.4)

B.1 The 1st moment for occupation models

Let us remind that the occupation models are defined via a (K + 1)-component vector
A, such that Ai = 1 if and only if there can be i occupied particles around a constraint
of K variables. We consider by default A0 = AK = 0, i.e., that everybody full of empty
is not a solution. We also consider all the M constraints are the same. We have Q(l)N
variables of connectivity l, where

∑∞
l=0Q(l) = 1 and l =

∑∞
i=0 lQ(l) = KM/N .

In order to compute the first moment we divide variables into groups according to their
connectivity and in each groups we choose fraction tl of occupied variables. Number of
ways in which this is possible is then multiplied by a probability that such a configuration
satisfies simultaneously all the constraints.

〈NG〉 =

∫ 1

0

dt
∑

{tl}

∏

l

(

Q(l)N

tlQ(l)N

) K
∑

r1,...,rM=1

M
∏

a=1

δ(Ara − 1)

(

N
∑

l l(1− tl)Q(l)

(K − r1) . . . (K − rM)

)

(

N
∑

l l tlQ(l)

r1 . . . rM

)[(

lN

K . . .K

)]−1

δ

(

M
∑

a=1

ra − ltN

)

δ

(

t lN −
∑

l

l tlQ(l)N

)

, (B.5)
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where t is the total fraction of occupied variables, this variable might seem ambiguous,
as it can be integrated out, but we will appreciate its usefulness later, ra is a number of
occupied variables in a constraint a.

We develop expression (B.5) in the exponential order. In order to do so we exchange
the last two delta functions by their Fourier transforms, introducing two complex La-
grange parameters log x and log u.

〈NG〉 ≈

∫

dt

∫

∏

l

dtl

∫

dx

∫

du expN

{

−
∑

l

Q(l) [tl log tl + (1− tl) log (1− tl)]

+ l [t log t+ (1− t) log (1− t)] + log u

[

∑

l

ltlQ(l)− tl

]

+
l

K
log

[

K
∑

r=1

δ(Ar − 1)

(

K

r

)

xr

]

− tl log x

}

. (B.6)

Saddle point with respect to parameters tl gives us

tl =
ul

1 + tl
, (B.7)

and we call pA(x) =
∑K

r=1 δ(Ar − 1)
(

K
r

)

xr. Using this we have

〈NG〉 ≈

∫

dt dx du expN

{

l

K
log pA(x)− t l log x

+
∑

l

Q(l) log (1 + ul)− t l log u+ l [t log t+ (1− t) log (1− t)]

}

. (B.8)

The saddle point equations read

∂u : t =
1

l

∑

l

l Q(l)
ul

1 + ul
, (B.9a)

∂x : t =
x∂xpA(x)

KpA(x)
, (B.9b)

∂t : t =
xu

1 + xu
, (B.9c)

As the parameter t is the only physically meaningful from the three, the goal is to
express the annealed entropy as a function of t and find its maxima. We do that by
inverting numerically (B.9a) and plugging (B.9c) in (B.8). Eq. (B.9c) then express the
saddle point with respect to the parameter t. We can write

sann(t) =
∑

l

Q(l) log [1 + u(t)l] +
l

K
log pA(t) , (B.10)

where

pA(t) =
K
∑

r=1

δ(Ar − 1)

(

K

r

)(

t

u(t)

)r

(1− t)K−r , (B.11)
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where u(t) is an inverse of (B.9a).

For the regular graphs Q(l) = δ(l−L) the inverse of (B.9a) is explicit u = [t/(1−t)]1/L

and thus

sann reg(t) =
L

K
log

{

K
∑

r=1

δ(Ar − 1)

(

K

r

)

[

tr(1− t)K−r
]

L−1

L

}

. (B.12)

B.2 The 2nd moment for occupation models

The second moment is computed in a similar manner. First we fix that in a fraction tx,l
of nodes of connectivity l the variable is occupied in both the solutions σ1, σ2 in (B.2). In
a fraction ty,l the variable is occupied in σ1 and empty in σ2 and the other way round for
tz,l. We sum over all possible combinations of 0 ≤ tx,l, ty,l, tz,l such that

∑

w=x,y,z tw,l ≤ 1.
All this is multiplied by the probability that such two configurations σ1, σ2 both satisfy
all the constraints.

〈N 2
G〉 =

∫

dtxdtydtz
∑

{tx,l},{ty,l},{tz,l}

∏

l

(

Q(l)N

(tx,lQ(l)N) (ty,lQ(l)N) (tz,lQ(l)N)

)

∑

rx,1,...,rx,M

∑

ry,1,...,ry,M

∑

rz,1,...,rz,M

M
∏

a=1

δ(Arx,a+ry,a − 1)δ(Arx,a+rz,a − 1)

(

N
∑

l l(1−
∑

w=x,y,z tw,l)Q(l)

(K −
∑

w=x,y,z rw,1) . . . (K −
∑

w=x,y,z rw,M)

)

∏

w=x,y,z

(

N
∑

l l tw,lQ(l)

rw,1 . . . rw,M

)

[(

lN

K . . .K

)]−1
∏

w=x,y,z

δ

(

M
∑

a=1

rw,a − ltwN

)

δ

(

tw lN −
∑

l

l tw,lQ(l)N

)

.(B.13)

We introduce Fourier transforms at a place of both the Dirac functions, the conjugated
parameters are log x, log y, log z for the first Dirac function, and log ux, log uy, log uz for
the second one. After that we suppress the parameters tw,l in the same manner as we did
for the first moment. We obtain for the second moment entropy

s2nd = l [tx log tx + ty log ty + tz log tz + (1− tx − ty − tz) log (1− tx − ty − tz)]

−l(tx log x+ ty log y + tz log z) +
l

K
log pA(x, y, z)

+
∑

l

Q(l) log (1 + ulx + uly + ulz)− l(tx log ux + ty log uy + tz log uz) , (B.14)

where

pA(x, y, z) =
K
∑

r1,r2=0

δ(Ar1Ar2 − 1)

min (r1,r2)
∑

s=max (0,r1+r2−K)

(

K

(r1 − s)(r2 − s) s

)

xsy(r1−s)z(r2−s) ,

(B.15)
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and the saddle point with respect to tw, w and uw (w = x, y, z) is

∂tw : tw =
1

l

∑

l

l Q(l)
ulw

1 + ulx + uly + ulz
, w = x, y, z , (B.16a)

∂w : tw =
w∂wpA(x, y, z)

KpA(x, y, z)
, w = x, y, z , (B.16b)

∂uw : wuw =
tw

1− tx − ty − tz
, w = x, y, z . (B.16c)

Once again the parameters tw are physically meaningful, so we want to express s2nd

as a function of these. We thus need to inverse (B.16a), note that such an inverse is well
defined, and using (B.16c) we obtain

s2nd(tx, ty, tz) =
l

K
log pA(tx, ty, tz) +

∑

l

Q(l) log







1 +
∑

w∈{x,y,z}

[uw(tx, ty, tz)]
l







, (B.17)

where

pA(tx, ty, tz) =

K
∑

r1,r2=0

δ(Ar1Ar2 − 1)

min (r1,r2)
∑

s=max (0,r1+r2−K)

(

K

(r1 − s)(r2 − s) s

)(

tx
ux(tx, ty, tz)

)s

(

ty
uy(tx, ty, tz)

)(r1−s)( tz
uz(tx, ty, tz)

)(r2−s)

(1− tx − ty − tz)
(K−r1−r2+s) . (B.18)

The global maximum with respect to tx, ty, tz needs to be found.
For the regular ensemble Q(l) = δ(l − L) the function (B.16a) is explicitly reversible

and the final expression for the second moment entropy simplifies significantly

s2nd,reg(tx, ty, tz) =
L

K
log

{

∑

r1,r2,s

K!δ(Ar1 − 1)δ(Ar2 − 1)

(r1 − s)! (r2 − s)! s! (K − r1 − r2 + s)!

[

tsxt
(r1−s)
y t(r2−s)z (1−

∑

w

tw)(K−r1−r2+s)

]
L−1

L
}

, (B.19)

where the range of summations is the same as in (B.18).

B.3 The results

The main result is that for some of the symmetric (AK−r = Ar for all r = 0, . . . , K) and
locked occupation problems (Q(0) = Q(1) = 0) the first and second moments compu-
tation leads the exact entropy of solutions (4.18). And thus also the exact satisfiability
threshold. The cases where this statement holds are marked by a ∗ in tab. 4.1, and we
call them balanced LOPs. We observed that some of the balanced problems A are created
iteratively starting from 010 or 01010 and adding

AK+2 = 0AK0 , AK+4 = 01AK10 . (B.20)

We, however, found also other balanced cases than (B.20). The simplest example of
symmetric locked problem which is not balanced is A = 010010, and many others of
higher K.

Let us now show this result. For all the symmetric occupation problems:
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• The annealed entropy (B.10) has a stationary point at t = 1/2 (u = 1, x = 1). At
this stationary the entropy evaluates to (4.18).

• The second moments entropy (B.17) has a stationary point at tx = ty = tz = 1/4
(ux = uy = uz = 1, x = y = z = 1). At this stationary point the second moment
entropy evaluates to twice the (4.18). To prove this statement observe that for
the symmetric problems pA(1/4, 1/4, 1/4) = [pA(1/2)]2. This last identity can be
derived from the Vandermonde’s combinatorial identity

(

K

r2

)

=

r1
∑

s=0

(

r1
s

)(

K − r1
r2 − s

)

. (B.21)

• The second moment entropy has another stationary point at tx = 1/2, ty = tz = 0
or tx = 0, ty = tz = 1/2. This stationary point is equal to the first moment entropy
at t = 1/2.

In the problems where one of the above stationary points is the global maximum the
annealed entropy is exact and the satisfiability threshold easily calculable from (4.18).

In the symmetric problems with leaves (Q(1) > 0), or those which are not locked (e.g.
0110) or not balanced (e.g. 010010) another competing maximum of the second moment
entropy appears before the annealed entropy goes to zero.

We investigated numerically that this does not happen for the balanced problems
described by the recursion (B.20). So far we were not able to prove this last point
analytically. This is, however, a technical problem, much simpler that the original one.

The main message of this analysis is what are the ingredients of the model which
make the satisfiability threshold accessible to the second moment computations. Here we
showed that it is on one hand the (unbroken) symmetry of the problem and on the other
hand the point-like clusters. Such a general result might be surprising because otherwise
the satisfiability threshold is known exactly in only a handful of the NP-complete problems
[ACIM01, MZK+99a, AKKK01, CM04].
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Appendix C

Stability of the RS solution

In chapter 2 we argued in detail that the replica symmetric solution is correct if and only
if the point-to-set correlations decay to zero, or equivalently if the reconstruction is not
possible. Failure of the RS solution may (but does not have to) manifest itself via the
divergence of the spin glass susceptibility. In a system with Ising variables si ∈ {−1,+1}
this is defined as

χSG =
1

N

∑

i,j

〈sisj〉
2
c , (C.1)

where 〈·〉c is the connected expectation with respect to the Boltzmann measure.
Originally the replica symmetric instability was investigated from the spectrum of the

Hessian matrix in a celebrated paper by de Almeida and Thouless [dAT78]. Equivalence
between the RS stability and the convergence of the belief propagation equations on a
single large graph is also often stated. In the reconstruction on tress this corresponds to
the Kesten-Stigum condition [KS66a, KS66b]. It is not straightforward to see that all
these statements are equivalent. We thus try to put a bit of order to the different ways
of expressing the stability of the RS solution1.

C.1 Several equivalent methods for RS stability

Susceptibility chains — Perhaps the most direct way how to investigate the diver-
gence of the spin glass susceptibility (C.1) is to write

χSG ≈
∑

i

E(〈sis0〉
2
c) ≈

∑

d

γdE(〈sds0〉
2
c) , (C.2)

where s0 is a typical variable (the origin), sd is a variable at distance d from s0, and γd

is the typical number of variables at distance d from s0 (γ = l2/l − 1). The average E(·)
is over the randomness of the graph. The spin glass susceptibility diverges if and only if
λ > 1 where

λ = γ lim
d→∞

[

E(〈sds0〉
2
c)
]

1

d

(C.3)

Using the fluctuation dissipation theorem we can rewrite

E(〈s0sd〉
2
c) ≈ E

[

(

∂h0

∂hd

)2
]

= E

[

d
∏

i=1

(

∂hi−1

∂hi

)2
]

, (C.4)

1This overview has been worked out in collaboration with F. Krzakala and F. Ricci-Tersenghi.
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where h0, . . . , hd is a sequence of cavity fields (1.34) on the shortest path from s0 to sd.
The dependence of the cavity field hi on hi−1 is given by the belief propagation equations.
This method to investigate the RS stability was used e.g. in [MMR05] or [ZDEB-1]. It is
numerically involved and not very precise as in practice d can be taken only at maximum
10− 20.

Noise propagation — Call v0
d the contribution to the spin glass susceptibility from

the layer of variables at a distance d from 0

v0
d =

∑

k,|k,0|=d

(∂h0

∂hk

)2

=
∑

i∈∂0

(∂h0

∂hi

)2 ∑

k,|k,i|=d−1

( ∂hi
∂hk

)2

=
∑

i∈∂0

(∂h0

∂hi

)2

vid−1 , (C.5)

where hk are cavity fields at distance d from h0, and the sum is over all the cavity fields
needed to compute h0. The spin glass susceptibility diverges if and only if the numbers
vd are on average growing with the distance d.

The evolution of numbers v can be followed via the population dynamics method.
Next to the population of fields h we keep also a population of positive numbers v. When
a field h0 is updated according to the belief propagation equations, we update also the
number v0 according to (C.5). The RS solution is stable if and only if the overall sum

∑

i v
i

is decreasing during the population dynamics updates. This method was implemented
e.g. in [MS06a] or [ZDEB-3]. It is simple and numerically very precise.

Deviation of two replicas — Consider a general form of the belief propagation equa-
tions h = f({hi}). After averaging over the graph ensemble we obtain distributional
equations (1.23a-1.23b) which are solved via the population dynamics technique. Con-
sider now two replicas of the resulting population, each element i differs by δhi. Keep
running the population dynamics on both these replicas and record how the differences
δhi are changing

δh0 =
∑

i∈∂0

∂h0

∂hi
δhi . (C.6)

The differences δh can be negative and positive. Take v = (δh)2 then

v0 =

(

∑

i∈∂0

∂h0

∂hi
δhi

)2

=
∑

i∈∂0

(

∂h0

∂hi

)2

vi +
∑

i6=j

∂h0

∂hi

∂h0

∂hj
δhiδhj . (C.7)

The second term can be neglected because the terms δhi and δhj are independent. This
brings us back to the equation (C.5).

Thus the replica symmetric solutions is stable if and only if the two infinitesimally
different replicas do not deviate one from another. This method is very fast to implement
and is thus useful for preliminary checks of the RS stability.

Convergence of the belief propagation — The stability of replica symmetric so-
lutions is equivalent to the convergence of the belief propagation equations on a large
random graph. This fact follows directly from the previous paragraph. Eq. (C.6) gives
the rate of convergence (divergence) of two nearby trajectories of the dynamical map
defined by the BP iterative equations.
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Variance propagation — Often a ”variance” formulation of the stability if described.
Assume that instead of a value hi on every link, there is a narrow distribution of values
g(hi) parameterized by a mean hi and a small variance vi. How does h and v evolve? We
have now

h =

∫

dh g(h) h =

∫

∏

i

[dhi gi(hi)] f({hi}) , (C.8)

v =

∫

dh g(h) (h− h)2 =

∫

∏

i

[dhi gi(hi)] f
2({hi})− (h)2 , (C.9)

where h = f({hi}) is the belief propagation equation. However, since the variance is
infinitesimal, the variation of hi around hi is very small, so that

f({hi}) = f({hi}) +
∑

i

(

hi − hi
) ∂f({hi})

∂hi

∣

∣

∣

hi

, (C.10)

and therefore one obtains h = f({hi}) and

v =
∑

i

vi

(

∂f({hi})

∂hi

∣

∣

∣

hi

)2

, (C.11)

which is nothing else then equations (C.5).

Numerical instability towards the 1RSB solution — The RS stability can also
be investigated from the numerical stability of the trivial solution of the 1RSB equations.
Indeed if the distribution of fields over states is regarded the probability distribution of
a small variance g(h) then the 1RSB equation (2.24) gives for a pth moment of g(h)

hp =
1

Z

∫

∏

i

[dhi gi(hi)]Z
m({hi})f

p({hi}) , (C.12)

where Z is the normalization of the BP equations and its mth power is the reweighting
factor. Expansion gives

Zm({hi}) = Zm({hi}) +mZm−1({hi})
∑

i

(

hi − hi
) ∂Z({hi})

∂hi

∣

∣

∣

hi

. (C.13)

The equations for the variances (C.11) does not depend on the second term from (C.13),
as this is of a smaller order. As a consequence the condition for stability is independent
of the parameter m.

It is quite remarkable fact that the divergence of the spin glass susceptibility corre-
sponds to the appearance of a nontrivial solution of the 1RSB equation at all the values
of m. In particular because we observed that when the instability is not present the onset
of a nontrivial 1RSB solution is m dependent, see e.g. fig. D.2.

The eigenvalues of the Hessian — The replica symmetric solution is a minimum of
the Gibbs free energy. This is often investigated from the spectra of the matrix of second
derivatives called Hessian. The equivalence between this approach and the divergence of
the spin glass susceptibility is a classical result, see e.g. the book of Fischer and Hertz
[FH91], page 98-100.
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C.2 Stability of the warning propagation

At zero temperature the necessary (but not sufficient) condition for the replica symmetric
solution to be stable is the convergence of the warning propagation on a single graph.
Obviously if the warning propagation does not converge then BP does not either, and
convergence of the BP is equivalent to the replica symmetric stability. Advantage of the
investigation of the warning propagation convergence is that it can be treated analytically,
without using the population dynamics method.

Consider a model with Ising spins where the warnings u (1.35b) can take only three
possible values u ∈ {−1, 0, 1}. Consider warning u and one of the warnings on which
u depends, say u0. Except u0 the warning u depends also on u1, . . . , uk, where k is
distributed according to Q̃(k). The degree distribution conditioned on the presence of
two edges is

Q̃(k − 2) =
k(k − 1)

k2 − k
Q(k) . (C.14)

Call P (a→ b|c→ d) the probability that the warning u changes from value a to value b
provided that the warning u0 was changed from value c to value d. This probability can
be always computed from the probabilities p−, p0, p+ that a warning u = −1, 0,+1

P (a→ b|c→ d) =
∑

k

Q̃(k)Pk(p−, p0, p+; a→ b|c→ d) , (C.15)

where the function Pk depends on the model in consideration. This probability describes
a proliferation of a ”bug” in the warning propagation. We define a bug proliferation
matrix Pij of dimension 6, i ≡ a → b, j ≡ c → d. The stability of the warning
propagation is then governed by the largest (in absolute value) eigenvalue of this matrix
λmax. The warning propagation is stable if and only if

γλmax < 1 , (C.16)

where γ = k2/k − 1 is the growth rate of the tree (γd is the typical number of vertices
at distance d from the root). This analysis is often called bug proliferation [KPW04,
MMZ06] (mostly in the context of the 1RSB stability). This investigation of the warning
propagation stability was used e.g. in [ZDEB-1] or [CKRT05].

An example where the warning propagation is stable, however, the belief propagation
is not, can be found in [ZDEB-3] for the 1-in-K SAT problem. In 1-in-K SAT the warning
propagation stability threshold corresponds to the unit clause propagation upper bound
[ZDEB-3].



Appendix D

1RSB stability

Concerning the correctness of the 1RSB solution: the Boltzmann measure is split into
clusters. This leads to an exact description of the system if and only if both the following
conditions are satisfied.

• Condition of type I — the point-to-set correlation with respect to the measure over
clusters decay to zero. The statistics over clusters may be described on the replica
symmetric (tree) level. Clusters do not tend to aggregate.

• Condition of type II — the point-to-set correlations within the dominating clus-
ters decay to zero. The interior of these clusters may be described on the replica
symmetric (tree) level. Clusters do not tend to fragment into smaller ones.

Within the cavity approach these conditions can be checked from the 2RSB equation

P i→j
2

[

P i→j
]

=
1

Z i→j
2

∫

∏

k∈∂i−j

dP i→j
2

[

P k→i
]

(Z i→j)m2 δ
[

P i→j −F2({P
k→i})

]

, (D.1)

where the functional F2 is given by the 1RSB equation (2.24). We call the solution of

(D.1) trivial if either P i→j
2

[

P i→j
]

= δ[P i→j] or each P i→j(ψi→j) = δ(ψi→j −ψ
i→j

), where
the P i→j is the solution of (2.24). If and only if the (population dynamics) solution of
the 2RSB equation at m = m∗, m2 = 1 and at m = 1, m2 = m∗ is trivial then the two
conditions are satisfied, and the 1RSB solution at m∗ is correct.

Solving the 2RSB equation is, however, numerically involved. Even on random regular
graphs the population dynamics of populations is needed, see app. E.5. Moreover the
reweighting taking in account the term (Z i→j)m2 is costly. It is thus extremely useful to
check the local stability of the 1RSB solution in the lines of the appendix C. The two
types of local stability follow.

• Stability of type I — the inter-cluster spin glass susceptibility does not diverge.

χinter
SG =

1

N

∑

i,j

(

〈si〉〈sj〉 − 〈si〉 , 〈sj〉
)2
, (D.2)

where the overline denotes an average over clusters

x(ψi→j) =

∫

x(ψi→j) dP i→j(ψi→j) . (D.3)
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• Stability of type II — the intra-cluster spin glass susceptibility does not diverge.

χintra
SG =

1

N

∑

i,j

〈sisj〉
2
c . (D.4)

The instability of second type is sometimes called the Gardner instability due to
[Gar85].

Again, there are several equivalent ways how to investigate the 1RSB stability. This
time we first describe the zero temperature - frozen fields - version before turning to the
general formalism.

D.1 Stability of the energetic 1RSB solution

In the energetic zero temperature limit the 1RSB distribution P i→j(ψi→j) can be split
into the frozen and soft part as in (4.2). Moreover the self-consistency equations on the
weights of the frozen fields, called the SP-y equations, do not depend on the details of the
soft part. The methods for stability investigation of the SP-y equations were developed
in [Par02b, MRT03, MPRT04, RBMM04].

Type I — SP-y convergence — The divergence of the inter-cluster spin glass suscep-
tibility is in general equivalent to the non-convergence of the 1RSB equations (2.24) on a
single graph. The reason is exactly the same as for the equivalence of the non-divergence
of the spin glass susceptibility and the convergence of the belief propagation equations,
which we explained in app. C.1. In the energetic zero temperature limit the convergence
of the general 1RSB equations becomes convergence of the SP-y equations on a single
graph. All the methods described in app. C.1 for the stability of the belief propagation
equations can be used directly.

Remark in particular that the chain method (C.3), used e.g. in [RBMM04, KPW04],
is not the simplest choice. The chains of length d→∞ have to be considered numerically,
and the treatable values are only d ≈ 10−20. This leads to an imprecision for a relatively
large numerical effort. It is much more precise to use for example the noise propagation
(C.5) as e.g. in [ZDEB-3].

Type II — Bug proliferation — The intra-state susceptibility is investigated in
exactly the same manner as the replica symmetric stability. The only difference is that
the average over clusters have to be taken properly. The energetic 1RSB solution is
based on the warning propagation equations averaged properly over the clusters. Thus
the 1RSB stability of the type II leads to the bug proliferation, as in app. C.2, averaged
over the clusters.

Roughly explained, if we consider a model with Ising spins, we have the three com-
ponents surveys p = (p−, p0, p+) on each edge. Where ps is the probability over clusters
that the warning on this edge takes the value s. Consider, as in app. C.2, a warning u
and one of the incoming warnings u0, the remaining incoming warnings are indexed by
i = 1, . . . , k where k is distributed according to Q̃(k) (C.14). Define Pk(a → b|c → d)
as the probability, over clusters, that the warning u changes from a value a to a value
b provided that the warning u0 was changed from a value c to a value d. Consider
Pk(a → b|c → d) as a matrix of dimension 6. And consider a chain of edges of length
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d. The proliferation of an instability ”bug” is given by the product of matrices Pk along
this chain. The product is averaged over the realizations of disorder (in degrees, etc.).
We define the stability parameter as

λII(d) = γ
(

Tr〈P 1
k1
. . . P d

kd
〉
)

1

d . (D.5)

The SP-y is 1RSB stable if and only if limd→∞ λII(d) < 1. For more detailed presentation
of the 1RSB bug proliferation method or concrete examples see e.g. [RBMM04, MMZ06,
KPW04] and [ZDEB-3]. In all the implementations of this method the chain of d → ∞
edges was used. Unlike in the type I stability, it is not know if this can be avoided in
general.

Some results — The investigation of the 1RSB stability as we just described can be
very simply incorporated to the population dynamics method used to solve the survey
propagation equations. This means that on random regular graphs the stability equations
become algebraic, as the values of surveys do not depend on the index of the edge. In
fig. D.1 we present the result for coloring of random regular graphs.
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Figure D.1: The complexity as a function of energy for the coloring of random regular
graphs. The 1RSB stable parts of the curves are in bold red.

On all the parts of fig. D.1 the complexity function is plotted against energy, Σ(e)
(2.32). This function is the main output of the 1RSB energetic method, the SP-y equa-
tions. The parameter y corresponds to the slope of the complexity function y = ∂Σ(e)/∂e.
Note that only the concave parts of the curves are physical.

The red parts of the Σ(e) curves are the 1RSB stable parts. It seems to be a general
fact that the instability of type I happens first for large values of y, and the instability
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of the type II for small values of y. The unphysical (convex) branch is always type II
instable. The instability of type I is sometimes completely absent.

An important observation is that the stability of the 1RSB energetic solution does
not guarantee the stability of the full 1RSB solution. Differently said, the soft fields can
destabilize the full solution. On the other hand also the opposite is true — the instability
of the clusters corresponding to m = 0 does not imply the instability of the dominating
clusters at m∗. We thus want to stress that the results of [MPRT04, RBMM04, MMZ06,
KPW04] and others have to be taken with these two facts in mind.

D.2 1RSB stability at general m and T

The stability of the full 1RSB equations at a general value of the parameter m and of
the temperature T is a more difficult task. We are not aware of any study where this
would be practically considered for models on random graphs, apart from [ZDEB-6]. We
review shortly the main findings and difficulties.

Type I — Divergence of the inter-cluster spin glass susceptibility (D.2) is equivalent to
the non-convergence of the probability distributions P i→j(ψi→j) (2.24). But here arrives
the biggest problem, how to judge if a probability distribution converges? The probability
distribution P i→j(ψi→j) is represented by a population of random elements picked from
this distribution. How to decouple the randomness coming from this sampling and the
one coming from the eventual non-convergence? Of course, provided that the numerical
difficulty does not rise to the level of directly solving the 2RSB equations. This is not
known in general and it is a technical but important open problem in the subject.

One interesting observation can be made, however: If the RS solution is instable then
the 1RSB solution atm = 1 is type I instable. Indeed, if the mean value of the probability
distribution does not converge then the 1RSB solution is type I instable. At the value
m = 1 the mean (A.3) satisfies the simple belief propagation equations, as explained in
app. A.

Type II — Divergence of the intra-cluster spin glass susceptibility (D.4) is much easier
to investigate on a general level. It is equivalent to checking if the 1RSB iteration are
stable against small changes in the probabilities ψ. Arguably the simplest way to do
so is the deviation of two replicas method, described for the RS stability in app. C.1.
We first find a fixed point of the 1RSB equations (2.24) using the population dynamics
method. Then we create a second copy of the populations representing the distributions
P i→j(ψi→j). We perturb infinitesimally every of its elements ψi→j. The 1RSB is type II
stable if and only if the two copies converge to the same point. The noise propagation
and other methods from C.1 can be used equivalently.

Some results and connection to the SP-y stability — Fig. D.2 depicts the results
for the stability of type II in the space of the parameters m and temperature T . The
1RSB solution is type II stable above the red curve mII.

It is interesting to state the connection between the general m, T stability and the
energetic zero temperature limit. The parameter m = yT when T → 0, thus when the
stability of the frozen fields is relevant for the full stability the parameter yIIT gives the
slope of mII(T ) near to zero T . This indeed seems to be the case, as shown in fig. D.2.
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Figure D.2: Example of m-T diagrams for the 4-state anti-ferromagnetic Potts model
on c-regular random graphs (left c = 10, right c = 13). A nontrivial solution of the
1RSB eq. (2.24) exists above the curve mex (green). The curves in blue m∗ represent the
thermodynamic value of the parameter m. The red curve mII is the lower border of the
type II stable region. The straight lines (yIIT and y∗T ) represent the slopes corresponding
to the energetic 1RSB solution yT = m in T → 0. The energetic 1RSB solution is type
II stable for y > yII. The line yIIT seems to give correctly the slope of mII. This suggest
that the stability of frozen variables is equivalent to the full stability for small m and T .
Other examples of diagrams of this type are presented in [ZDEB-6].

Based on the arguments above, it seems reasonable that the following assumptions
are correct:

(i) The stability of the energetic method gives the full stability for small m and T .

(ii) If the RS solutions is stable then the 1RSB is stable type I at m = 1.

(iii) If the 1RSB at a given temperature is type I (II resp.) stable at a given m, then it
is type I (II resp.) stable for all smaller (larger resp.) m.

Assuming as above, the stability of the 1RSB solution in the region where the RS
solution is stable is given by the type II (Gardner) stability, which we know how to
investigate. The result is depicted e.g. in fig. 5.6. This would mean that the stability of
type II is always more important for the thermodynamical solution. And in particular
that in the random coloring problem for q ≥ 4 the 1RSB solution is stable in all the
colorable phase.

The situation for 3-coloring is more subtle as 3-coloring is not RS stable for c ≥
cd. However, from assumption (i) follows that the interval of connectivities (cs, cG) =
(4.69, 5.08) is 1RSB stable at small temperatures. Thus we expect also all the colorable
phase to be 1RSB stable (otherwise the phase diagram at fig. 5.6 would have to present
a sort of re-entrant behaviour). This would also be in agreement with the situation in
the fully connected ferromagnetic 3-state Potts model [GKS85] 1.

1This is a contra-example to the common claim that in the systems with continuous dynamical
transition (Td = Tlocal) the 1RSB solution is not stable.
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Appendix E

Populations dynamics

Population dynamics is a numerical method to solve efficiently distributional equations
of type (1.32) or (2.24) and compute observables of type (1.33) or (2.25a). In this context
it was developed in [MP01]. As the form of the 1RSB equations was more or less known
before, and they were solved approximatively using various forms of the variational ansatz,
see e.g. [BMW00], it may be argued that the population dynamics technique was the
crucial ingredient which made the spin glass models on random graphs solvable. Recently
rigorous versions of this method were developed to analyze the performance of decoding
algorithms [RU01], the name density evolution is often used in this context.

The main idea is to represent the probability distribution by a population (sample)
of N elements drawn independently at random from this distribution. The algorithm
starts from a random list and it mimics T iterations of the distributional equations and
(hopefully) converges to a good representation of the desired fixed point. Several gener-
alizations or subtleties are encountered and we describe some of them in the following.
Consider the a random constraint satisfaction model specified by degree distribution
R(k) of constraints, and Q(l) of variables, the excess degree distributions r(k) and q(l)
are given by (1.8).

E.1 Population dynamics for belief propagation

The simplest version of the population dynamics is used to solve

• Belief propagation distributional equations (1.23a-1.23b) and compute the corre-
sponding average free energy (1.20), entropy, etc. The complete replica symmetric
solution is obtained this way.

• Survey propagation distributional equations, obtained from (1.41-1.42), and com-
pute the average complexity function (1.43). The satisfiability transition is obtained
this way.

The pseudocode for the procedures Population-Dynamics and One-Measurement

follows. To compute the observable Φ (free energy, entropy, complexity, etc.) we first
call procedure Population-Dynamics with T = Tequil (equilibration time) and suffi-
ciently large N . After we repeat One-Measurement plus Population-Dynamics

with T = Trand (randomization time) and M sufficiently large, but smaller than N . And
finally we compute averages and error bars of these measurements.
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In some problems the constraints are themselves random (negations in K-SAT, in-
teractions in a spin glass etc.). The choice of this quenched randomness is then done at
line 9 of Population-Dynamics, and at line 8 of One-Measurement.

The population {ψ} is randomly initialized to a random assignment at line 1 of
Population-Dynamics. That is all the zero components of the surveys (1.41-1.42)
are zero, and the beliefs are completely biased, i.e., either (1, 0) or (0, 1). Such a choice
is justified from the analogy with the reconstruction on trees where the proper initial
condition is given by (2.11).

Satisfactory results are usually obtained with the population sizes and times of order
N ≈ 104 − 105, Tequil ≈ 103 − 104, Trand ≈ 10, M ≈ N . But these values may change
problem from problem and a special care have to be taken about the numerics every time
as basically no convergence theorems are known for a general case.

Population-Dynamics(r(k), q(l), N, T )

1 Initialize randomly N -component array {ψ};
2 for t = 1, . . . , T :
3 do for i = 1, . . . , N :
4 do Draw an integer k from the distribution r(k);
5 for d = 1, . . . , k:
6 do Draw an integer l from the distribution q(l);
7 Draw indexes j1, . . . , jl uniformly in {1, . . . , N};
8 Compute χd from {ψj1 , . . . , ψjl} according to eq. (1.16b);
9 Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);

10 ψi ← ψnew;
11 return array {ψ};

One-Measurement(R(k),Q(l), q(l), N,M)

1 Initialize Φconstraint = 0; Φvariable = 0;
2 for i = 1, . . . ,M : � Compute the constraint part.
3 do Draw an integer k from the distribution R(k);
4 for d = 1, . . . , k:
5 do Draw an integer l from the distribution q(l);
6 Draw indexes j1, . . . , jl uniformly in {1, . . . , N};

7 Compute χd =
∏l

n=1 ψjn;
8 Compute Znew from {χ1, . . . , χk} according to eq. (1.19a);
9 Φconstraint ← Φconstraint + logZnew;

10 for i = 1, . . . ,M : � Compute the variable part.
11 do Draw an integer l from the distribution Q(l);
12 Draw indexes j1, . . . , jl uniformly in {1, . . . , N};
13 Compute Znew from {ψj1 , . . . , ψjl} according to eq. (1.19b);
14 Φvariable ← Φvariable + (l − 1) logZnew;
15 return (αΦconstraint − Φvariable)/M ;

E.2 Population dynamics to solve 1RSB at m = 1

The general 1RSB equations for general random graph ensemble require a population
dynamics with population of populations. We will explain this in sec. E.5. Treating
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the population of populations requires a lot of CPU time and it is not very precise, thus
anytime we have the opportunity to avoid this we have to take it. One such opportunity is
the simplification of the 1RSB equations atm = 1 explained in appendix A. Conveniently,
both the clustering and the condensation transitions are obtained this way.

The population dynamics method have to be adapted to solve eq. (A.10) and to
measure the entropy of states (A.11). We give the m = 1 generalization of the procedure
Population-Dynamics, the changes in One-Measurement are then straightforward.
Note that lines 11 and 13 take in general 2k steps as we need to compute probability of
every combination of the set {s1, . . . , sk}.

PD-(m = 1)-Generalization(r(k), q(l), N, T )

1 {ψRS} ← Population-Dynamics(r(k), q(l), N, T );
2 Initialize N -component arrays {ψ1 ← 1} and {ψ0 ← 0};
3 for t = 1, . . . , T :
4 for i = 1, . . . , N :
5 do Draw an integer k from the distribution r(k);
6 for d = 1, . . . , k:
7 do Draw an integer ld from the distribution q(l);
8 Draw indexes j(d, 1), . . . , j(d, ld) uniformly in {1, . . . , N};
9 Compute χRS

d from {ψRS
j(d,1), . . . , ψ

RS
j(d,ld)} according to eq. (1.16b);

10 s← 1;
11 Choose {s1, . . . , sk} with prob. given by the 2nd line of eq. (A.10);
12 s← 0;
13 Choose {r1, . . . , rk} with prob. given by the 2nd line of eq. (A.10);
14 for d = 1, . . . , k:
15 do Compute χ1

d from {ψsd

j(d,1), . . . , ψ
sd

j(d,ld)} according to eq. (1.16b);

16 Compute χ0
d from {ψrdj(d,1), . . . , ψ

rd
j(d,ld)} according to eq. (1.16b);

17 Compute ψRS
new from {χRS

1 , . . . , χRS
k } according to eq. (1.16a);

18 Compute ψ1
new from {χ1

1, . . . , χ
1
k} according to eq. (1.16a);

19 Compute ψ0
new from {χ0

1, . . . , χ
0
k} according to eq. (1.16a);

20 ψRS
i ← ψRS

new;
21 ψ1

i ← ψ1
new;

22 ψ0
i ← ψ0

new;
23 return arrays {ψRS}, {ψ1}, {ψ0};

E.3 Population dynamics with reweighting

A simplification of the 1RSB equations (2.24) arises for the ensemble of random regular
graphs, there the distribution P i→j(ψi→j) over clusters is the same for every edge (ij).
In the corresponding population dynamics a special care have to be taken about the
reweighting term

(

Z i→j
)m

.
We describe two different strategies to deal with the reweighting. In the first one

Reweighting-Faster the elements of the population have all the same weight and thus
in each sweep the population needs to be re-sampled and some less probable elements
might be lost. In the second strategy Regular-Reweighting-Precise each element
has its own weight, no re-sampling is needed, but the search of a random element, at the
line 10, takes logN steps. Thus the first strategy is faster, the second one is slightly more
precise. Which one is eventually better seems to be problem specific.
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Consider a population {ψ} where each element ψi has weight wi. The weights are

computed from the BP update (1.16a-1.16a) as wi =
(

Za→i
∏

j∈∂a−iZ
j→a
)m

.

Reweighting-Faster(N, {ψ}, {w})

1 wtot ← 0;
2 for i = 1, . . . , N :
3 do wtot ← wtot + wi;
4 � zi is the cumulative distribution of indexes i;
5 z0 = 0;
6 for i = 1, . . . , N :
7 do zi ← zi−1 + wi/wtot

8 � Trick to make a list of ordered random numbers ni in O(N) steps.
9 G← 0;

10 for i = 1, . . . , N :
11 do ni ← − log Rand;
12 � Rand outputs a random number in the interval (0, 1).
13 G← G+ ni;
14 G← G− logRand;
15 n1 ← n1/G;
16 for i = 2, . . . , N :
17 do ni ← ni/G;
18 ni ← ni + ni−1;
19 � Finally making the new population.
20 p← 0;
21 for i = 1, . . . , N
22 do while (ni > zp) p← p+ 1;
23 ψnew

i ← ψp;
24 return array {ψnew};

Regular-Reweighting-Precise(r(k), q(l), N, T,m)

1 Initialize randomly N -component arrays {ψ} and {w};
2 for t = 1, . . . , T :
3 for i = 1, . . . , N :
4 do Draw an integer k from the distribution r(k);
5 Znew ← 1;
6 for d = 1, . . . , k:
7 do Draw an integer l from the distribution q(l);
8 for n = 1, . . . , l:
9 do Create cumulative probability distribution from weights {w};

10 Draw index jn from this cumulative distribution;
11 Compute χd from {ψj1, . . . , ψjl} according to eq. (1.16b);
12 Znew ← Znew · Zd, where Zd is the norm. from eq. (1.16b);
13 Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);
14 Znew ← Znew · Zd, where Zd is the norm. from eq. (1.16a);
15 ψi ← ψnew;
16 wi ← (Znew)m;
17 return array {ψ}, weights {w};
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E.4 Population dynamics with hard and soft fields

Fraction of frozen variables (again on random regular graphs for simplicity) can be ob-
tained by solving equation (4.10). To compute the value r(m) a population needs to be
kept for the soft part of the distribution Psoft, eq. (4.2). It is important to stress that
when evaluating the if conditions on lines 15,19 and 23 we consider as frozen only the
incoming fields created at line 13.

PD-Hard-Soft(r(k), q(l), N, T,m)

1 Initialize randomly N -component array {ψ ← Rand};
2 η ← 1;
3 for t = 1, . . . , T :
4 do i← 1;
5 h← 0; Zhard ← 0; Zsoft ← 0;
6 while i ≤ N :
7 do Draw an integer k from the distribution r(k);
8 Znew ← 1;
9 for d = 1, . . . , k:

10 do Draw an integer l from the distribution q(l);
11 for r = 1, . . . , l:
12 do if Rand < η
13 then Set ψr to be a frozen field;
14 else Draw ψr uniformly from {ψ};
15 if No contradiction between the frozen fields in {ψ1, . . . , ψl}
16 then Compute χd from {ψ1, . . . , ψl} using eq. (1.16b);
17 Znew ← Znew · Zd, Zd is the norm. from (1.16b);
18 else goto line 7;
19 if No contradiction between the frozen fields in {χ1, . . . , χk}
20 then Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);
21 Znew ← Znew · Zd, where Zd is the norm. from eq. (1.16a);
22 else goto line 7;
23 if ψnew is a frozen field
24 then Zhard ← Zhard +

(

Znew

)m
;

25 h← h + 1;
26 else Zsoft ← Zsoft +

(

Znew

)m
;

27 ψi ← ψnew;
28 wi ← (Znew)m;
29 i← i+ 1;
30 r ← (Zsofth)/(ZhardN);
31 Update η according to eq. (4.10);
32 {ψ} ← Reweighting-Faster(N, {ψ}, {w});
33 return array {ψ}, η;

E.5 The population of populations

The general 1RSB equations take form (2.33), the order parameter P[P (ψ)] is a distribu-
tion (over the graph ensemble) of distributions (over the clusters). It can be represented
by a population {{ψ}} of N -component populations {ψ}i, where i = 1, . . . ,M . We



116 APPENDIX E. POPULATIONS DYNAMICS

sketch here the corresponding population dynamics of populations. Again this has been
first described in [MP01].

Population-of-Populations(r(k), q(l), N,M, T,m)

1 Initialize randomly M ×N -component array {{ψ}};
2 for t = 1, . . . , T :
3 do for i = 1, . . . ,M :
4 do Draw an integer k from the distribution r(k);
5 for d = 1, . . . , k:
6 do Draw an integer ld from the distribution q(l);
7 Draw indexes i(d, 1), . . . , i(d, ld) uniformly in {1, . . . ,M};
8 {ψ}new ← One-Step({{ψ}}, {i(1, 1), . . . , i(k, lk)}, {l}, k, N,m);
9 {ψ}i ← {ψ}new;

10 return array {{ψ}};

One-Step({{ψ}}, {i(1, 1), . . . , i(k, lk)}, {l}, k, N,m)

1 for j = 1, . . . , N :
2 do Znew ← 1;
3 for d = 1, . . . , k:
4 do Draw indexes j(d, 1), . . . , j(d, ld) uniformly in {1, . . . , N};
5 Compute χd from {ψi(d,1),j(d,1), . . . , ψi(d,ld),j(d,ld)} using (1.16b);
6 Znew ← Znew · Zd, Zd is the norm. from (1.16b);
7 Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);
8 Znew ← Znew · Zd, Zd is the norm from (1.16a);
9 wj ←

(

Znew

)m
;

10 ψj ← ψnew;
11 {ψ} ← Reweighting-Faster(N, {ψ}, {w});
12 return array {ψ};

Depending on the problem we are about to solve the population of populations might
also be combined with the reweighting of populations or the separation of the frozen and
soft fields, see e.g. appendix D of [ZDEB-5].

E.6 How many populations needed?

We make a summary of which level of the population dynamics technique is needed
depending on the problem. References are just examples and are biased towards works
presented in this thesis.

• Analytical solution

– Belief propagation on regular graphs [ZDEB-1, ZDEB-5, ZDEB-9].

– General warning propagation with integer warnings [ZDEB-1, ZDEB-3].

– Frozen variables at m = 1 [ZDEB-5, ZDEB-9].

– Survey propagation on regular graphs (frozen variables at m = 0, energetic
cavity) [KPW04] or [ZDEB-5, ZDEB-9].
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• Single population

– General belief propagation in models with discrete variables [ZDEB-1, ZDEB-
5, ZDEB-9].

– General survey propagation (1RSB at m = 0, energetic cavity) on model with
integer warnings [ZDEB-3, ZDEB-9], or very precise numerics in [MMZ06].

– 1RSB at m = 1 [MM06a, MRTS08] or [ZDEB-4, ZDEB-5].

– 1RSB on random regular graphs [ZDEB-4, ZDEB-5].

– 2RSB at m = 0 (energetic cavity) on regular graphs [Riv05].

• Population of populations

– General 1RSB (also finite temperature) [MP01, MPR05, MRTS08] or [ZDEB-
4, ZDEB-5, ZDEB-6].

– 2RSB of random regular graphs [ZDEB-6].

– 2RSB at m = 0 (energetic cavity).

– 3RSB at m = 0 (energetic cavity) on regular graphs.

We are not aware on any work where the last two points would be implemented. More
levels of replica symmetry breaking would require more levels of populations. We are not
aware of any work where more than population of populations would be treated. Rather
than pushing the numerics in this direction new theoretical works are needed for models
where the 1RSB solution is not correct.
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Appendix F

Algorithms

Here we do not aim to provide a complete summary of algorithms used to solve the
random constraint satisfaction problems. We just define and briefly discuss algorithms
which were used, generalized or tested in the context of this thesis. Strictly speaking we
are almost always dealing with incomplete solvers, that is algorithms which might find a
solution but never provide a certificate of unsatisfiability. It is an open and interesting
questions if the methods presented in this thesis can imply something for certification of
unsatisfiability.

F.1 Decimation based solvers

A large class of algorithms for CSPs is based on the following iterative scheme:

Decimation

1 repeat Choose a variable i ;
2 Choose a value si ;
3 Assign i the value si and simplify the formula;
4 until Solution or contradiction is found;

The nontrivial part is how to choose a variable in step 1 and how to choose its value
in step 2. In the following we describe several more or less sophisticated or efficient
strategies.

Note that all these strategies can be improved by backtracking, that is if a contradiction
was found we return to the last variable where another value than the one we chose was
possible and make this choice instead.

F.1.1 Unit Clause propagation

One of the simplest (and obvious) strategies is to choose and assign a variable which
is present in a constraint which is compatible with only one value of that variable. In
K-SAT this is equivalent to assigning variables belonging to clauses which contain only
this variable, hence the name unit clause. If no such variable exists one possibility (the
random heuristics) is to choose an arbitrary variable and assign it a random value from
the available ones. The unit clause propagation combined with the random heuristics
(without backtracking) is not very efficient solver of K-SAT. But the situation is more
fortunate for some other constraint satisfaction problems. The most interesting example
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being perhaps the 1-in-K SAT [ACIM01] and [ZDEB-3]. The random 1-in-K SAT exhibits
a sharp satisfiability phase transition for K ≥ 3. Moreover, if the probability of negation
of variables lies in the interval (0.2726, 0.7274) (for K = 3) then:

• In the satisfiable phase the unit clause propagation combined with the random
heuristics finds a solution with finite probability in every run.

• In the unsatisfiable phase every run of the unit clause propagation leads to a con-
tradiction with finite probability after the assignment of the very first variable.

Hence, with random restarts the random 1-in-3 SAT is almost surely solvable in poly-
nomial time in the whole phase space (given the probability of a negation is as specified
above). At the same time the 1-in-3 SAT is an NP-complete problem, it thus provides
a rare example of an on average easy NP-complete problem with a satisfiability phase
transition.

Unit clause propagation is the main element of all the exact solvers of constraint
satisfaction problems. The most studied example being the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [DP60, DLL62] for K-SAT which combines the unit clause
propagation with the pure literal elimination (pure literal appears either only negated or
non-negated) with backtracking. It was mostly this algorithm which was used when the
connection between the algorithmical hardness and phase transitions was being discovered
[MSL92, CKT91]. Moreover, all the modern complete solvers of the satisfiability problem
follow a similar, more elaborated, path.

F.1.2 Belief propagation based decimation

Belief propagation [Pea82] computes, or on general graphs approximates, marginal proba-
bilities. These can then be used to find an actual solution. In some problems the marginals
give the solution directly, e.g. in the error correcting codes [Gal68], in the matching
[BSS05, BSS06], or the random field Ising model at zero temperature [KW05, Che08]
etc. In constraint satisfaction problems, typically, marginals do not give a direct infor-
mation about a solution. For example in coloring of random graphs, the BP equations
always converge to all marginals being equal to 1/q. Belief propagation based decimation
strategies have been studied recently.

In every cycle of the algorithm Decimation, the belief propagation equations are
updated until they converge or a maximal number of updates per variable Tmax is reached.
At least two strategies how to choose the decimated variable and its value were tested
and studied, see e.g. [ZDEB-4] and [MRTS07]:

• Uniform BP decimation – Choose a variable at random and assign its value accord-
ing to the marginal probability estimated by BP.

• Maximal BP decimation – Find the variable with the most biased BP marginal and
assign it the most probable value.

The other two combinations where a random variables is assigned its most probable value
or when the most biased variable is assigned random value according to its marginal prob-
ability can be think of. The BP decimation, as described above, runs in quadratic time.
In eventual practical implementations a small fraction of variables should be decimated
at each step, thus reducing the computational complexity to linear (or log-linear if the
maximum convergence time increases as logN).
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The empirically best strategy is the maximal BP decimation. This can be understood
from the fact that this strategy aims to destroy the smallest possible number of solutions
in every step, as argued on a more quantitative level in [Par03]. We gave as an example
the performance of the maximal BP decimation in the 3- and 4-coloring of random Erdős-
Rényi graphs [ZDEB-5] in fig. 3.3.

The uniform BP decimation is less successful, because it aims not only to find a
solution but also to sample solutions uniformly at random. Indeed, if an exact calculation
of marginal probabilities would be used instead of the BP estimates the uniform exact
decimation would lead to a perfect sampling. The uniform exact decimation is a process
which can be analyzed using the cavity method. The result then sheds light on the
limitations of the BP decimation. This analysis was developed in [MRTS07], and we give
an example for the factorized occupation problems in the following.

Maximal BP decimation on the random coloring

We implemented the maximal BP decimation algorithm on the random graph coloring.
We chose Tmax = 10, if a solutions is not found we restart with Tmax = 20 and eventually
once again with Tmax = 40. The fraction of successful runs is plotted in fig. 3.3 and we
see that this algorithm works even in condensed phase where the BP marginals are not
asymptotically correct, or in a phase where the equations do not even converge. The
non-convergence of the belief propagation equations is ignored (in 3-coloring from the
beginning, in 4-coloring after a small fraction, typically around 10%, of variables was
fixed). It thus seems that in coloring the BP decimation is a very robust algorithm.

What is the reason for the failure of the maximal BP decimation at higher connectiv-
ities? A straightforward suggestion would be that is should not work in the condensed
phase where the BP marginals are not asymptotically correct. But we do not observe
anything particular in the performance curves at the condensation transition. A second
natural suggestion would be that BP should converge in order that the algorithm works,
this also does not seem to be the case, as BP does not converge in the 3-coloring for
connectivity c > 4 and yet the algorithm is perfectly able to find solutions. Moreover,
even in 4-coloring where the BP equations converge on large formulas in all the satisfiable
phase, after a certain (rather small) fraction of variables is decimated the convergence is
lost. As we argued in appendix C the non-convergence of BP is equivalent to the local
instability of the replica symmetric solution. It thus seems that the reduced problem,
after a certain fraction of variable was fixed, is even harder from the statistical physics
perspective than the original problem. Yet, this does not seem to be fatal for the finding
of solutions. Finally, in the region where the BP decimation algorithm really does not
succeed we observed that a precursor of the failure exists. The normalizations in the BP
equations (1.16a-1.16b) gradually decreases to zero, meaning that the incoming beliefs
become almost contradictory.

Analysis of the uniform exact decimation

The uniform exact decimation after θN steps is equivalent to taking a solution uniformly
at random and fixing its first θN variables. Such a procedure can be analyzed [MRTS07]
and conclusions made about the influence of small errors in the BP estimates of marginals.

Given an instance of the CSP, consider a solution {s} taken uniformly at random and
reveal the value of each variable with probability θ. Denote Φ the fraction of variables
which were either revealed or are directly implied by the revealed ones. To compute Φ(θ)
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we derive the cavity equations on a tree. Denote Φi→b
s the probability that a variable i is

fixed conditioned on the value s of the variable i and on the absence of the edge (ib):

Φi→b
s = θ + (1− θ)

[

1−
∏

a∈∂i−b

(1− qa→i
s )

]

. (F.1)

Meaning that the variable i was either revealed or not, and if not it is implied if at least
one of the incoming constraints implies it. The qa→i

s is a probability that constraint a
implies variable i to be s conditioned on: 1) variable i taking the value s ∈ {s} in the
solution we chose, 2) variable i was not revealed directly and 3) the edge (ai) is absent.

We write the expression for qa→i
s only for random occupation CSPs on random regular

graphs where the replica symmetric equation is factorized. Then also qa→i
s and Φi→b

s are
factorized, that is independent of a, b, i. The conditioned probability qs is the ratio of
the probability that variable i takes the value s and is implied by the constraint a and
probability that variable i takes the value s:

q1 =
1

ψ1Zreg

∑

Ar+1=1,Ar=0

(

k

r

)

(ψ1)
lr(ψ0)

l(k−r)
s1
∑

s=0

(

r

s

)

Φk−r
0 Φr−s

1 (1− Φ1)
s , (F.2a)

q0 =
1

ψ0Zreg

∑

Ar=1,Ar+1=0

(

k

r

)

(ψ1)
lr(ψ0)

l(k−r)
s0
∑

s=0

(

k − r

s

)

Φr
1Φ

k−r−s
0 (1− Φ0)

s ,(F.2b)

where l = L−1, k = K−1. The indexes s1, s0 in the second sum of both equations are the
largest possible but such that s1 ≤ r, s0 ≤ K−1−r, and

∑s1
s=0Ar−s = 0,

∑s0
s=0Ar+1+s =

0. The terms Φr
1Φ

k−r−s
0 (1 − Φ0)

s and Φr−s
1 ΦK−r−1

0 (1 − Φ1)
s are the probabilities that a

sufficient number of incoming variables was revealed such that the out-coming variable is
implied (not conditioned on its value). The first sum goes over all the possible numbers of

1’s being assigned on the incoming variables, r. The term ψlr1 ψ
l(k−r)
0 is then the probability

that such a configuration took place. The cavity probabilities that the corresponding
variable takes value 0/1, ψ0, ψ1 are taken from the BP equations (4.16a-4.16b), Zreg is
the normalization in (4.16a-4.16b). The first condition on r takes care about the values
of the incoming neighbours being compatible with the value of the variable i on which is
conditioned, the second condition on r is satisfied if and only if the value of the variable
i is implied by the incoming configuration.

Once a solution for qs is found (from initial conditions Φ = θ) the total probability
that a variable is fixed is computed as

Φ(θ) = θ + (1− θ)
{

µ1[1− (1− q1)
L] + µ0[1− (1− q0)

L]
}

, (F.3)

where µ0, µ1 are the total BP marginals, µs = ψLs /(ψ
L
0 + ψL1 ).

Notice the complete analogy between eqs. (F.2b-F.2a) and the equations for hard
fields at m = 1 (4.20b-4.20a). To compute the function Φ(θ) for a general CSP on
a general graph ensemble a derivation in the lines of app. A have to be adapted, see
also [MRTS07]. Finally note that as the probabilities ψ1, ψ0 are taken from the belief
propagation equations the form (F.2b-F.2a) is not correct in the condensed phase (but
in the locked problems the satisfiable phase is never condensed).

The Failure of Decimation in the Locked problems

In the locked problems, see sec. 4.3, the BP decimation algorithm does not succeed to find
a satisfying assignment even at the lowest possible connectivity. To give an example in
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the 1-or-3-in-5 SAT on truncated Poissonian graphs the maximal BP decimation succeeds
to find a solution in only about 25% at the lowest average connectivity l = 2, and this
fraction drops down to less than 5% at already l = 2.3 (to be compared with the clustering
threshold ld = 3.07, or the satisfiability threshold ls = 4.72).

Interestingly, the precursors of the failure of the BP decimation algorithm observed in
the graph coloring are not present in the locked problems. In particular the BP equations
converge during all the process and the normalizations in the BP equations (1.16a-1.16b)
stays finite. However, the above analysis of the function Φ(θ) sheds light on the origin of
the failure.
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Figure F.1: Analytical analysis of the BP inspired uniform decimation. Number of vari-
ables directly implied Φ(θ) plotted against number of variables fixed θ.

In fig. F.1 we compare the function Φ(θ) (F.3) with the experimental performance of
the uniform BP decimation. Before the failure of the algorithm (when a contradiction
is encountered) the two curves collapse perfectly. The reason why the algorithm fails to
find solutions is now transparent.

• Avalanche of direct implications – In some cases the function Φ(θ) has a disconti-
nuity at a certain spinodal point θs (θs ≈ 0.46 at L = 3 of the 1-or-3-in-5 SAT).
Before θs after fixing one variable there is a finite number of direct implications. As
the loops are of order logN these implications never lead to a contradiction. At the
spinodal point θs after fixing one more variable and extensive avalanche of direct
implications follows. Small (order 1/N) errors in the previously used BP marginals
may thus lead to a contradiction. This indeed happens in almost all the runs we
have done. For more detailed discussion see [MRTS07].

• No more free variables – The second reason for the failure is specific to the locked
problems, more precisely to the problems where Φ = 1 is a solutions of (F.2a-F.2b).
In these cases function Φ(θ)→ 1 at some θ1 < 1 (θ1 ≈ 0.73 at L = 4 of 1-or-3-in-5
SAT). In other words if we reveal a fraction θ > θ1 of variables from a random
solution, the reduced problem will be compatible with only that given solution.
Again a little error in the previously fixed variables and the BP uniform decimation
ends up in a contradiction. If on the contrary the function Φ(θ) reaches value 1
only for θ = 1 then the residual entropy is positive and there should everytime be
some space to correct previous small errors, demonstrated on a non-locked problem
in fig. F.2.
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These two reasons of failure of the BP uniform decimation seems quite different. But
they have one property in common. As the point of failure is approached we observe a
divergence of the ratio between the number of variables which were not directly implied
before being fixed and the number of directly implied variables, see fig. F.2. This ratio
can also be computed for the maximal BP decimation and no quantitative difference is
observed for the locked problems, thus the two reasons above explain also the failure of
the, otherwise more efficient, maximal BP decimation.
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Figure F.2: Left: For comparison, the BP uniform decimation works well on the non-
locked problems, the example is for bicoloring. Right: Comparison of the maximal and
uniform decimation. Number of directly implied variables is plotted against number
of variables which were free just before being fixed. Behaviour of the two decimation
strategies is similar.

F.1.3 Survey propagation based decimation

The seminal works [MPZ02, MZ02] not only derived the survey propagation equations,
but also suggested it as a base for a decimation algorithm for random 3-SAT. The perfor-
mance is spectacular, near to the satisfiability threshold on large random 3-SAT formulas
it works faster than any other known algorithm. SP based decimation seem to be able
to find solutions in O(N logN) time up to the connectivity α = 4.252 in 3-SAT [Par03]
(to be compared with the satisfiability threshold αs = 4.267).

Survey propagation equations (1.41-1.42) aim to compute the probability (over clus-
ters) that a certain variables is frozen to take a certain value. This information can then
be used to design a strategy for the Decimation algorithm. In particular, as long as
the result of survey propagation is nontrivial (not all pi→a

0 = 1) the variable with the
largest bias |pi+ − p

i
−| is chosen and is assigned the more probable value. After a certain

fraction of variables is decimated the fixed point of the survey propagation on the reduced
formula is trivial. The suggestion of [MPZ02, MZ02] is that such a reduced formula is
easily satisfiable and some of the well known heuristic algorithms may be used to solve it
(Walk-SAT, see the next section F.2.2, was used in the original implementation). Note
also that the original implementation of [MPZ02, MZ02] decimated a fraction of variables
at each Decimation step, thus reducing significantly the computational time.
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Originally, the success of the survey propagation based algorithm was contributed to
the fact that survey propagation equations take into account the clustering of solutions.
This was, however, put in doubt since. To give an example, in the locked problems,
see sec. 4.3, the survey propagation equations give an identical fixed point as the belief
propagation and as we argued in the previous section F.1.2 the maximal BP decimation
fails to find solutions in the locked problem in the whole range of connectivities.

The true reason for the high performance of survey propagation in 3-SAT thus stays
an open problem. For example, and unlike with BP, there are usually no problems with
SP convergence during the decimation. Two very interesting observations were made in
[KSS07a] for SP the decimation algorithm on K-SAT. First, the SP decimation indeed
makes the formula gradually simpler for local search algorithms, see sec. F.2.2, again in
contrast with BP decimation. Second, the SP decimation on K-SAT does not create any
(or a very small number) of direct implications (unit clauses) during the process. Given
that creation of direct implication makes the decimation fail in the locked problems, as
we just showed, this might be a promising direction for a new understanding.

F.2 Search of improvement based solvers

Here we describe another large class of CSPs solvers, the search of improvement algo-
rithms. All these algorithms start with a random assignment of variables. Then different
rules are adopted to gradually improve this assignment and eventually to find a solu-
tion. The most typical example of that strategy is the simulated annealing [KGV83] or
stochastic local search algorithms like Walk-SAT [SLM92, SKC94].

F.2.1 Simulated annealing

In physics simulated annealing is a popular and very universal solver of optimization
problems. It is based on running the Metropolis [MRR+53] (or other Monte Carlo)
algorithm and gradually decreasing the temperature-like parameter. Simulated annealing
algorithm respects the detailed balance condition, after large time it thus converges to
the equilibrium state, and it is thus guaranteed to find the optimal state in a finite time
for a finite system size. In general, the time can of course depend exponentially on the
system size, and in such a case it is not really of practical interest.

We argued in chap. 2 that at the clustering (dynamical) transition the equilibration
time of a detailed balance local dynamics diverges. However, the clusters which appear at
the dynamical energy Ed > 0 have bottom at an energy Ebottom ≤ Ed and numerical per-
formance of the simulated annealing in the 3-coloring of random graphs [vMS02] suggests
that Ebottom might be zero even if Ed is positive. More precise numerical investigation of
this point is, however, needed.

F.2.2 Stochastic local search

Solving K-SAT by a pure random walk was suggested in [Pap91]:
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Pure-Random-Walk-SAT(Tmax)

1 Draw a random assignment of variables;
2 T ← 0;
3 repeat Draw a random unsatisfied constraint a;
4 Flip a random variable i belonging to a;
5 T ← T + 1;
6 until Solution is found or T > NTmax;

In random 3-SAT this simple strategy seems to work in linear time up to αRW ≈ 2.7
[SM03]. Improvements of the Pure-Random-Walk-SAT have led to a large class
of so-called stochastic local search algorithms. All are based on a random walk in the
configurational space with more complicated rules about which variables would be flipped.
The version called WalkSAT introduced in [SKC94, SKC96] became, next to the DPLL-
based exact solvers, the most widely used solver of practical SAT instances. In random 3-
SAT the Walk-SAT with p = 0.5 was shown to work in linear time up to about αWS = 4.15
[AGK04].

WalkSAT(Tmax, p)

1 Draw a random assignment of variables;
2 T ← 0;
3 repeat Pick a random unsatisfied constraint a;
4 if Exists a variable i in a that is not necessary in any other constraint;
5 then Flip this variable i;
6 else if Rand < p;
7 then Flip a random variable i belonging to a;
8 else Flip i (from a) that minimizes the # of unsat. constraints;
9 T ← T + 1;

10 until Solution is found or T > NTmax;

Several other variants of stochastic local search on random 3-SAT were studied in
[SAO05] showing that with a proper tuning of parameters like p the linear performance
can be extended up to at least α ≈ 4.20. Finally a version of the stochastic local search
called ASAT was introduced in [AA06]. In random 3-SAT ASAT works in a linear time
at least up to α = 4.21 [AA06]. We adapted the implementation of ASAT and studied
its performance in coloring and on the occupation CSPs.
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ASAT(Tmax, p)

1 Draw a random assignment of variables;
2 T ← 0;
3 Create the list {v} of variables which are present in unsatisfied constraints.
4 repeat Pick a random variable i from the list {v};
5 Compute the change of energy ∆E if the value of i is flipped.
6 if ∆E ≤ 0;
7 then Flip i;
8 else if Rand < p;
9 then Flip i;

10 else Do nothing;
11 Update list {v} of variables which are present in unsatisfied constraints.
12 T ← T + 1;
13 until Solution is found or T > NTmax;

In the coloring problem where variables take one from more than two possible values,
the only modification of ASAT is that we choose a random value into which the variable is
flipped on line 5. The performance for the 4-coloring of Erdős-Rényi graphs was sketched
in fig. 2.3.

There are two free parameters in the ASAT algorithm, the maximal number of steps
per variable Tmax and, more importantly, the greediness (temperature-like) parameter p,
which need to be optimized. In [AA06] and [ZDEB-5] it was observed that in the random
K-SAT and random coloring problems the optimal value of p does not depend on the
system size N , neither very strongly on the constraint density α. But these observation
might be model dependent, as it indeed seems to be the case for the locked problems.

F.2.3 Belief propagation reinforcement

A ”search of improvement” solver can also be based on the belief propagation equations.
The idea of the belief propagation reinforcement, introduced in [CFMZ05] 1, is to write
belief propagation equations with an external ”magnetic” field (site potential) µisi

ψa→i
si

=
1

Za→i

∑

Asi+
P

sj
=1

∏

j∈∂a−i

χj→a
sj

, (F.4a)

χi→a
si

=
1

Z i→a
µisi

∏

b∈∂i−a

ψb→i
si

, (F.4b)

and then iteratively update this field in order to make the procedure converge to a
solution given by the direction of the external field ri = argmaxsi

µisi
. At every step

the configuration given by the direction of the external field is regarded as the current
configuration which is being improved.

The question is how to update the external field. The basic idea is to choose the
local potential µisi

in some way proportional to the current value of the total marginal
probability χisi

, which is computed without the external fields as

χisi
=

1

Z i

∏

b∈∂i

ψb→i
si

. (F.5)

1Strictly speaking the reinforcement strategy was fist introduced for the survey propagation equations,
but the concept is the same for belief propagation.
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How exactly, and how often should the value of local potential be updated is open to
many different implementations, some of them can be found in [BZ06, DRZ08]. The same
as in the local search algorithm it is not well understood, beyond a purely experimental
level, how the details of the implementation influence the final performance. We tried
several ways and the best performing seemed to be the following

µi1 = (π)li−1, µi0 = (1− π)li−1, if ξi0 > ξi1 , (F.6a)

µi1 = (1− π)li−1, µi0 = (π)li−1, if ξi0 ≤ ξi1 , (F.6b)

where 0 ≤ π ≤ 1/2, li is the degree of variable i and the auxiliary variable ξisi
is computed

before updating the field µi

ξisi
= (µisi

)
1

li−1 χisi
. (F.7)

BP-Reincorcement(Tmax, n, π)

1 Initialize µisi
and ψa→i

si
randomly;

2 T ← 0;
3 Compute the current configuration ri = argmaxsi

µisi
;

4 repeat Make n sweeps of the BP iterations (F.4a-F.4b);
5 Update all the local fields µisi

according to (F.6a-F.6b);
6 Update ri = argmaxsi

µisi
;

7 T ← T + 1;
8 until {r} is a solution or T > Tmax;

How should the strength of the forcing π be chosen? Empirically we observed three
different regimes:

a) πBP−like < π < 0.5: When the forcing is weak the BP-Reinforcement converges
very fast to a BP-like fixed point, the values of the local fields do not point towards
any solution. On contrary many constraints are violated by the final configuration
{ri}.

b) πconv < π < πBP−like: The BP-Reinforcement converges to a solution {ri}.

c) 0 < π < πconv: When the forcing is too strong the BP-Reinforcement does not
converge. And many constraints are violated by the configuration {ri} which is
reached after Tmax steps.

When the constraint density in the CSP is large the regime b) disappears and πconv =
πBP−like. For an obvious reason our goal is to find πconv < π < πBP−like. The point πBP−like

is very easy to find, because for larger π the convergence of BP-Reinforcement to a
BP-like fixed point happens in just several sweeps. Thus in all the runs we chose π to be
just bellow πBP−like, that is to hit the possible gap between πBP−like and πconv. The value
of π chosen in this way does not seem to depend on the size of the system, it, however,
depends slightly on the constraint density.

Experimentally it seems that the optimal number of BP sweeps on line 4 of BP-

Reinforcement is very small, typically n = 2, in agreement with [CFMZ05]. We
observed with a surprise that when n is much larger not only the total running time is
larger but the overall performance of the algorithm is worse.

In the regime where the BP-reinforcement algorithm performs well the median
running time T seems to be independent of the size, leading to an overall linear time
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complexity. The total CPU time is comparable to the time achieved by the stochastic
local search ASAT.

There is an imperfection of our implementation of the BP-reinforcement, because
in small fraction of cases, for all connectivities, the algorithm is blocked in a configuration
with only 1-3 violated constraints. If this happens we reinforce stronger the problematic
variables which sometimes shifts the problem to a different part of the graph, where it
might be resolved. Also a restart leads to a solution.

We tested the BP-Reinforcement algorithm mainly in the occupation CSPs, the
results are shown in sec. 4.3. Survey propagation reinforcement can be implemented in a
similar way, as was done originally in [CFMZ05].
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[ZDEB-1]

”The number of matchings in random
graphs”

L. Zdeborová, M. Mézard, J. Stat. Mech, P05003 (2006).

arXiv:cond-mat/0603350v2

This article develops a way how to count matchings in random graphs. We used this
as an example to introduce the replica symmetric method in sec. 1.5.4. The main result
of this work is that the belief propagation estimates asymptotically correctly the entropy
of matchings, this was partially proven on a rigorous level in [BN06].
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[ZDEB-2]

”A Hike in the Phases of
the 1-in-3 Satisfiability”

E. Maneva, T. Meltzer, J. Raymond, A. Sportiello, L. Zdeborová, In
proceedings of the Les Houches Summer School, Session LXXXV 2006 on

Complex Systems.

arXiv:cond-mat/0702421v1

This work on the 1-in-K SAT problem started as a student project on the sum-
mer school in Les Houches 2006: Complex Systems, organized by M. Mézard and J.-P.
Bouchaud. This short note contains a non-technical overview of our findings, and ap-
peared in the collection of lecture notes from the school.
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[ZDEB-3]

”The Phase Diagram of 1-in-3 Satisfiability”

J. Raymond, A. Sportiello, L. Zdeborová, Phys. Rev. E 76, 011101
(2007)

arXiv:cond-mat/0702610v2

In this article we present in detail the energetic 1RSB solution of the 1-in-3 SAT
problem. We also analyze the performance of the unit clause propagation algorithms.
We show how the phase diagram changes from an on average easy to K-SAT like when
the probability of negating a variable is varied. An interesting point is the existence of a
region where the replica symmetric solution is unstable, yet the unit clause propagation
provably finds solutions in a randomized polynomial time. This work is a continuation
of [ZDEB-2]. We used the 1-in-K SAT to present the energetic 1RSB solution in sec. 1.7.
Note that 1-in-K SAT on factor graphs without leaves is one of the locked problems, this
article however studies the Poissonian graph ensemble.
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[ZDEB-4]

”Gibbs States and the Set of
Solutions of Random Constraint

Satisfaction Problems”

F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L.
Zdeborová, Proc. Natl. Acad. Sci. 104, 10318 (2007).

arXiv:cond-mat/0612365v2

In this article the clustering transition was defined via the extremality of the uniform
measure over solutions, or equivalently via the onset of a nontrivial solution of the 1RSB
equations at m = 1. The derivation of the 1RSB equations on trees is sketched. This is
a basis of our chapter 2. The condensation transition in constraint satisfaction problems,
different from the clustering one, was discovered here. This is a basis of our chapter 3.
The use of the belief propagation as a solver in the clustered but non-condensed phase
was suggested here and studied. The results of this short article are developed in greater
detail in [ZDEB-5] for the graph coloring, and in [MRTS08] for the K-SAT problem. This
article is addressed mainly to a mathematical and computer science audience.
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[ZDEB-5]

”Phase transition in the Coloring of
Random Graphs”

L. Zdeborová, F. Krzakala, Phys. Rev. E 76, 031131 (2007).

arXiv:0704.1269v2

This is a detailed article about the phase diagram of the random coloring problem,
summarized in chapter 5. We give an overview of the entropic 1RSB solution of the
problem. We derive many results about the clustering and condensation transitions.
The cavity method study of the frozen variables, as presented in 4.2, is developed here.
The conjecture about freezing of variables being relevant for the computational hardness,
which we discuss in 4.4, is made here.
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[ZDEB-6]

”Potts Glass on Random Graphs”

F. Krzakala, L. Zdeborová, Eur. Phys. Lett. 81 (2008) 57005.

arXiv:0710.3336v2

In this letter we present the finite temperature phase diagram of the coloring problem,
or in other words the antiferromagnetic Potts model on random graphs. We showed the
phase diagram in sec. 5.4. We also analyze the stability of the 1RSB solution and in
particular show that the colorable phase is 1RSB stable (at least for q ≥ 4). This is
reviewed in more detail in appendix D.
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[ZDEB-7]

”Phase Transitions and Computational
Difficulty in Random Constraint

Satisfaction Problems”

F. Krzakala, L. Zdeborová, J. Phys.: Conf. Ser. 95 (2008) 012012.

arXiv:0711.0110v1

In this article we present in a accessible and non-technical way the main new results
for the phase diagram of the random coloring. This might be a good reading for unini-
tialized audience. We also summarize the present ideas about the origin of the average
computational hardness. This article was presented in the Proceedings of the Interna-
tional Workshop on Statistical-Mechanical Informatics, Kyoto 2007. Chapter 5 is largely
inspired by this colloquial presentation.

145



146 REPRINT OF PUBLICATION [ZDEB-7]



[ZDEB-8]

”Random subcubes as a toy model for
constraint satisfaction problems”

T. Mora, L. Zdeborová, J. Stat. Phys. 131 n.6 (2008) 1121-1138.

arXiv:0710.3804v2

In this article we introduced the random subcubes model. It plays the same role for
constraint satisfaction problems as the random energy model played for spin glasses. It
is an exactly solvable toy model which reproduces the series of phase transitions studied
in CSPs. The condensation transition comes out very naturally in this simple model, see
sec. 3.1. The space of solutions in the random subcubes model compares even quantita-
tively to the space of solutions in the q-coloring and K-SAT in the limit of large q and
K near to the satisfiability threshold, as explained in sec. 5.3.1. We also introduced an
energy landscape and showed that the glassy dynamics in this model can be understood
purely from the static solution.
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[ZDEB-9]

”Locked constraint satisfaction problems”

L. Zdeborová, M. Mézard, to be accepted in Phys. Rev. Lett.

arXiv:0803.2955v1

In this letter we introduce the locked constraint satisfaction problems, presented in
sec. 4.3. The space of solutions of these problems have an extremely easy statistical
description, as illustrated e.g. by the second moment computation of the entropy in
app. B. On the other hand these problems are algorithmically very challenging, none of
the algorithms we tried is able to find solutions in the clustered phase. Some classical
algorithms do not work at all in these problems, for example the belief propagation
decimation analyzed in app. F. A more detailed version of this article is in preparation.
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[ZDEB-10]

”Exhaustive enumeration unveils clustering
and freezing in random 3-SAT”

J. Ardelius, L. Zdeborová, submitted to Phys. Rev.

arXiv:0804.0362v2

In this letter we study via an exhaustive enumeration the phase space in the random 3-
SAT. The main question we addressed here is the relevance of the asymptotic predictions
to instances of moderate size. We show that the complexity of clusters compares strikingly
well to the analytical prediction. We also locate for a first time the freezing transition and
show that it practically coincides with the performance limit of the survey propagation
based algorithms. Results of this work appear on several places of the thesis, mainly
figs. 1.3, 2.2, and 4.1.
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