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Abstract
We compute spectra of symmetric random matrices describing graphs with
general modular structure and arbitrary inter- and intra-module degree
distributions, subject only to the constraint of finite mean connectivities. We
also evaluate spectra of a certain class of small-world matrices generated from
random graphs by introducing shortcuts via additional random connectivity
components. Both adjacency matrices and the associated graph Laplacians are
investigated. For the Laplacians, we find Lifshitz-type singular behaviour of
the spectral density in a localized region of small |λ| values. In the case of
modular networks, we can identify contributions of local densities of state from
individual modules. For small-world networks, we find that the introduction
of short cuts can lead to the creation of satellite bands outside the central band
of extended states, exhibiting only localized states in the band gaps. Results
for the ensemble in the thermodynamic limit are in excellent agreement with
those obtained via a cavity approach for large finite single instances, and with
direct diagonalization results.

PACS numbers: 02.50.−r, 05.10.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The past decade has seen a considerable activity in the study of random graphs (see, e.g., [1]
or [2–4] for recent reviews), as well as concurrent intensive studies in spectral properties
of sparse random matrices [2, 5–8], the latter providing one of the key tools to study
properties of the former. Moments of the spectral density of an adjacency matrix describing
a graph, for instance, give complete information about the number of walks returning to
the originating vertex after a given number of steps, thus containing information about
local topological properties of such graphs. Spectral properties, specifically properties of
eigenvectors corresponding to the largest eigenvalue of the modularity matrices of a graph
and of its subgraphs—matrices closely related to the corresponding adjacency matrices—can
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be used for efficient modularity and community detection in networks [9], and so on. Much
of this activity has been motivated by the fact that a large number of systems, natural and
artificial, can be described using network descriptions of underlying interaction patterns, and
the language and tools of graph theory and random matrix theory for their quantitative analysis.

Though the study of spectral properties of sparse symmetric matrices was initiated by
Bray and Rodgers already in the late 1980s [10, 11], fairly complete analytic and numerical
control over the problem has emerged only recently [12, 13], effectively using generalizations
of earlier ideas developed by Abou-Chacra et al [14] for Bethe lattices. Analytical results
for spectral properties of sparse matrices had typically been based either on the single defect
or effective medium approximations (SDA, EMA) [5, 15–17] or were restricted to the limit
of large average connectivity [18, 19]. Alternatively, spectra for systems with heterogeneity
induced by scale-free or small-world connectivity [8, 20] or as a result of an explicitly
modular structure [21] were obtained through numerical diagonalization. Analytical results
for spectra of modular systems [22] and for systems with topological constraints beyond degree
distributions [23] are still very recent.

The purpose of this paper is to expand the scope of [22] in two ways: (i) by providing
spectra of random matrices describing graphs with general modular structure and arbitrary
inter- and intra-module degree distributions, subject only to the constraint of finite mean
connectivities, and (ii) by computing spectra for a class of small-world systems, constructed
as regular random graphs with an additional connectivity component providing long-range
interactions and thus shortcuts. The connection between these two seemingly different
problems is mainly provided by the close similarity of the methods used to study these
systems.

Our study is motivated by the fact that modularity of systems, and thus networks of
interactions are a natural property of large structured systems; think of compartmentalization
in multi-cellular organisms, sub-structures and organelles inside cells and the induced
structures, e.g. in protein–protein interaction networks, or think of large corporates with
several subdivisions, to name but a few examples.

In section 2.1 we introduce the type of multi-modular system and the associated random
matrices we are going to study. A replica analysis of the problem is described in section 2.2,
with (replica-symmetric) self-consistency equations formulated in section 2.3, but the bulk
of the derivation relegated to the appendix. Section 3 introduces a class of small-world
networks generated from (regular) random graphs by introducing shortcuts via a second, long-
range connectivity component, and briefly describes the rather minimal modifications in the
theoretical description needed to analyse those systems as well. In section 4 we present a
selection of results. Our main conclusions are outlined in section 5.

2. Modular systems

2.1. Multi-modular systems and associated random matrices

We consider a system of size N which consists of m modules Nμ, μ = 1, . . . , m. We use Nμ

to denote the size of the module Nμ and assume that each module occupies a finite fraction of
the entire system, Nμ = fμN , with fμ > 0 for all μ and

m∑
μ=1

fμ = 1 . (1)

Details of the modular structure are encoded in the N × N connectivity matrix c = (cij ),
whose matrix elements cij describe whether a link between nodes i and j exists (cij = 1) or
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not (cij = 0). To each site i of the system, we assign a connectivity vector ki = (
kν
i

)
, whose

components

kν
i =

∑
j∈Nν

cij (2)

give the number of connections between site i and (other) sites in module ν. The ki are taken
to be fixed according to some given distribution which we assume to depend only on the
module to which i belongs, and which has finite means〈

kν
i

〉
μ

= cμν, i ∈ Nμ (3)

for the components, but is otherwise arbitrary. We use 〈. . .〉μ to denote an average over the
distribution of coordinations for vertices in module Nμ. Consistency required by symmetry
entails cμν/Nν = cνμ/Nμ or alternatively fμcμν = fνc

νμ.
We note in passing that it is possible to include extensive intra-module and inter-module

connections in addition to the finite connectivity structure described above as in [22], but we
have decided not to do so here. Also we point out that in the modular graphs considered here,
the vertices are always associated with irreducible degrees of freedom. Thus, in the protein
example mentioned above we would associate a vertex for instance with a single unique protein
species. The fact that proteins are active in, or interact with, more than one cellular component
is in our formulation described by the fact that the given vertex can have interactions to vertices
in several other modules. This should cover the majority of cases; further generalizations are
possible by treating a given protein acting in different cell components as distinct species for
each component.

Starting from the modular structure defined by the connectivity matrix c, we consider two
types of random matrix inheriting the modular structure. The first is defined by giving random
weights to the links, thereby defining random matrices M of the form

Mij = cijKij , (4)

where we assume that the statistics of the Kij respects the modular structure defined by c in
that it only depends on the modules to which i and j belong. The second is related to the first
by introducing zero row-sum constraints, resulting in matrices of the form

Lij = cijKij − δij

∑
k

cikKik . (5)

In the special case Kij = const., one recovers the connectivity matrices themselves and the
discrete graph Laplacians, respectively.

The spectral density of a given matrix M can be computed from its resolvent via

ρM(λ) = lim
ε↘0

1

π
ImTr[λε11 − M]−1

= lim
ε↘0

−2

Nπ
Im

∂

∂λ
ln det[λε11 − M]−1/2, (6)

in which λε ≡ λ − iε, and the inverse square root of the determinant is obtained as a Gaussian
integral. We are interested in the average spectral density obtained from (6) by taking an
average over the ensemble of matrices considered, thus in

ρ(λ) = lim
ε↘0

−2

Nπ
Im

∂

∂λ

〈
ln

[∫ ∏
i

dui√
2π/i

exp

{
− i

2

∑
ij

ui

[
λεδij − Mij

]
uj

}]〉
, (7)

where angled brackets on the rhs denote an average over connectivities {cij } and weights
{Kij } of the non-vanishing matrix elements. For the ensembles considered here the spectral
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density is expected to be self-averaging, i.e. that (6) and (7) agree in the thermodynamic limit
N → ∞.

The distribution of connectivities is taken to be maximally random compatible with the
distribution of coordinations. Vertices i ∈ Nμ and j ∈ Nν are connected with a probability
proportional to k

μ

i kν
j . This can be expressed in terms of a fundamental distribution p

μν

0 of
connectivities (between sites i ∈ Nμ and j ∈ Nν)

p
μν

0 (cij ) =
(

1 − cμν

Nν

)
δcij ,0 +

cμν

Nν

δcij ,1 (8)

as

P(c|{ki}) = 1

N
∏
μ

{{ ∏
i<j∈Nμ

p
μμ

0 (cij )δcij ,cji

}
×

∏
ν(>μ)

{ ∏
i∈Nμ

∏
j∈Nν

p
μν

0 (cij )δcij ,cji

}}

×
∏
μ

∏
i∈Nμ

{∏
ν

δ	j∈Nν cij ,k
ν
i

}
(9)

where N is a normalization constant, and the Kronecker-deltas enforce the prescribed
coordinations. This is what is commonly referred to as a micro-canonical ensemble
of connectivites. Alternatively one could generate a canonical ensemble by choosing
p(cij ) = (

1 − k
μ

i kν
j /(c

μνNν)
)
δcij ,0 + k

μ

i kν
j /(c

μνNν)δcij ,1, independently for pairs of indices
i ∈ Nμ and j ∈ Nν , which will reproduce only distributions of coordinations in the large N
limit. In this paper we use the micro-canonical approach for averaging.

The average of the logarithm in (7) is evaluated using the replica

ρ(λ) = lim
ε↘0

−2

Nπ
Im

∂

∂λ
lim
n→0

1

n
ln〈Zn

N 〉 , (10)

with

Zn
N =

∫ ∏
ia

duia√
2π/i

exp

⎧⎨
⎩− i

2

∑
a

∑
ij

uia

[
λεδij − Mij

]
uja

⎫⎬
⎭ . (11)

Here a = 1, . . . , n enumerates the replica. We initially describe the process for matrices of
type (4), and briefly mention the modifications to treat matrices of type (5) with zero row-sum
constraints later.

2.2. Disorder average

To evaluate the average, one uses integral representations of the Kronecker-deltas

δ	j∈Nν cij ,k
ν
i

=
∫

dϕν
i

2π
eiϕν

i (	j∈Nν cij −kν
i ). (12)

The average of the replicated partition function for matrices of type (4) becomes

〈Zn
N 〉 = 1

N

∫ ∏
iν

dϕν
i

2π

∏
ia

duia√
2π/i

exp

⎧⎨
⎩− i

2
λε

∑
ia

u2
ia − i

∑
μν

∑
i∈Nμ

ϕν
i k

ν
i

+
∑

μ

cμμ

2Nμ

∑
i 
=j∈Nμ

(〈
exp

{
iK

∑
a

uiauja

}〉
μμ

eiϕμ

i +iϕμ

j − 1

)

+
∑
μ<ν

cμν

Nν

∑
i∈Nμ

∑
j∈Nν

(〈
exp

{
iK

∑
a

uiauja

}〉
μν

eiϕν
i +iϕμ

j − 1

)⎫⎬
⎭ (13)
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where 〈. . .〉μν represents an average over the Kij distribution, connecting vertices i ∈ Nμ and
j ∈ Nν , which is as yet left open.

Decoupling of sites is achieved by introduction of the replicated ‘densities’

ρ(μν)(u, ϕ) = 1

Nμ

∑
i∈Nμ

∏
a

δ(ua − uia)δ
(
ϕ − ϕν

i

)
(14)

and their ϕ integrated versions

ρ(μν)(u) =
∫

dϕ ρ(μν)(u, ϕ) eiϕ. (15)

It turns out that only the latter and their conjugate densities ρ̂(μν) are needed, and
equation (13) can be expressed as a functional integral

〈Zn
N 〉 = 1

N

∫ ∏
μν

{Dρ(μν)Dρ̂(μν)} exp {N [G1 + G2 + G3]} , (16)

with

G1 = 1

2

∑
μν

fμcμν

(∫
dρ(μν)(u)dρ(νμ)(v)

〈
exp

{
iK

∑
a

uava

}〉
μν

− 1

)
(17)

G2 = −i
∑
μν

fμ

∫
duρ̂(μν)(u)ρ(μν)(u) (18)

G3 =
∑

μ

fμ

〈
ln

∫ ∏
a

dua√
2π/i

∏
ν

(iρ̂(μν)(u))k
ν

kν!
exp

{
−i

λε

2

∑
a

u2
a

}〉
μ

. (19)

Here we have exploited the symmetry relation fμcμν = fνc
νμ, introduced the shorthand

notations dρ(μν)(u) ≡ du ρ(μν)(u) for integrals over densities where appropriate, and 〈. . .〉μ
in (19) for the average over the distribution of coordinations of sites in module Nμ.

2.3. Replica symmetry and self-consistency equations

The functional integral (16) is evaluated by the saddle point method. As in the extensively
cross-connected case, the saddle point for this problem is expected to be both replica-symmetric
and rotationally symmetric in the replica space. In the present context this translates to an
ansatz of the form

ρ(μν)(u) = ρ
(μν)

0

∫
dπ(μν)(ω)

∏
a

exp
[ − ω

2 u2
a

]
Z(ω)

,

ρ̂(μν)(u) = ρ̂
(μν)

0

∫
dπ̂ (μν)(ω̂)

∏
a

exp
[ − ω̂

2 u2
a

]
Z(ω̂)

,

(20)

with normalization constants

Z(ω) =
∫

du exp
[
−ω

2
u2

]
=

√
2π/ω , (21)

i.e. an uncountably infinite superposition of complex Gaussians (with Re[ω] � 0 and
Re[ω̂] � 0) for the replicated densities and their conjugates [12, 22]. The ρ

(μν)

0 , ρ̂
(μν)

0 in
the expressions for ρ(μν) and ρ̂(μν) in (20) are determined such that the densities π(μν) and
π̂ (μν) are normalized.

5
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This ansatz translates path integrals over the replicated densities ρ(μν) and ρ̂(μν) into path
integrals over the densities π(μν) and π̂ (μν), and integrals over the normalization factors ρ

(μν)

0

and ρ̂
(μν)

0 . These integrals are evaluated using the saddle-pint method, giving rise to a pair
of self-consistency equations for the densities π(μν) and π̂ (μν). Details are described in the
appendix. In this case we get equations which closely resemble those derived in [12, 22],
namely

π̂ (μν)(ω̂) =
∫

dπ(νμ)(ω′)
〈
δ(ω̂ − �̂(ω′,K)

〉
μν

(22)

π(μν)(ω) =
〈

kν

cμν

∫
{dπ̂ (μ)}k\kν δ

(
ω − �

(μ)

k\kν

)〉
μ

(23)

with

�̂(ω′,K) = K2

ω′ , �
(μ)

k\kν = iλε + 	k\kν ω̂ . (24)

Here, we the use the shorthand notation {dπ̂ (μ)}k\kν to denote a product of integration

measures of the form {dπ̂ (μ)}k\kν ≡ ∏
ν̃(
=ν)

∏kν̃

ν̃=1 dπ̂ (μν̃)(ω̂ν̃
) × ∏kν−1

ν=1 dπ̂ (μν)(ω̂ν
) from

which dπ̂ (μν)(ω̂kν ) is excluded. An analogous construction applies to the sum 	k\kν ω̂ (see
the appendix).

The structure of these equations suggests solving them via a population-based algorithm.
The spectral density is obtained from (6); note that only the explicit λ dependence in G3 in

(19) or its replica-symmetric version (A.4) contributes. We obtain a formal result analogous
to that obtained earlier for homogeneous systems, or for cross-connected modules of equal
size with Poisson distributions of inter-module coordinations [22]

ρ(λ) = 1

π
Re lim

ε↘0

[∑
μ

fμq
(μ)

d

]
, (25)

where

q
(μ)

d =
〈 ∫

{dπ̂ (μ)}k〈u2〉{ω̂}k

〉
μ

=
〈 ∫

{dπ̂ (μ)}k 1

iλε + 	kω̂

〉
μ

. (26)

Here 〈. . .〉{ω̂}k is an average w.r.t. the Gaussian weight in terms of which Zλ(	k ω̂) is defined.
It is important to note that the ε ↘ 0 limit of the (real part of the) integrand in (26)

is singular in λ for ω̂ combinations for which 	k ω̂ is purely imaginary. Indeed, writing
	k ω̂ = Rk + iIk with real Rk and Ik, we have

Re
1

iλε + 	kω̂
= ε + Rk

(ε + Rk)2 + (λ + Ik)2
,

so that for Rk = 0 we have the limit

lim
ε↘0

Re
1

iλε + 	kω̂
= πδ(λ + Ik) .

As demonstrated in [12], the contributions to (26) with Rk = 0 can be identified with pure-
point contributions to the spectral density, associated with localized states. In an evaluation
of (25) and (26) via sampling from a population, one would miss these contributions to the

6
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spectral density, as finding a ω̂-combination for which λ + Ik = 0—for Rk = 0 they are
according to the above analysis the only ones contributing in the ε ↘ 0-limit—would be a
probability-zero event. Thus, in order to see the pure-point contributions, a small non-zero
regularizing ε must be kept, which amounts to replacing δ-functions by Lorentzians of width
ε, resulting in a density of states which is smoothed at the scale ε. A simultaneous evaluation
of (26) for non-zero ε and in the ε ↘ 0-limit then allows us to disentangle pure-point and
continuous contributions to the total density of states (25). For further details on this matter
we refer to [12].

If we are interested in spectra of the generalized graph Laplacians L defined by (5) instead
of the weighted adjacency matrices M, we need to evaluate

〈Zn
N 〉 = 1

N

∫ ∏
iν

dϕν
i

2π

∏
ia

duia√
2π/i

exp

⎧⎨
⎩− i

2
λε

∑
ia

u2
ia − i

∑
μν

∑
i∈Nμ

ϕν
i k

ν
i

+
∑

μ

cμμ

2Nμ

∑
i 
=j∈Nμ

(〈
exp

{
− i

K

2

∑
a

(uia − uja)
2
}〉

μμ
eiϕμ

i +iϕμ

j − 1

)

+
∑
μ<ν

cμν

Nν

∑
i∈Nμ

∑
j∈Nν

(〈
exp

{
− i

K

2

∑
a

(uia − uja)
2
}〉

μν
eiϕν

i +iϕμ

j − 1

)⎫⎬
⎭ (27)

instead of (13), the only difference being the translationally invariant form of the interactions
in this case3. The structure of the theory developed above and the fixed point equations (22)
and (23) remain formally unaltered, apart from a modification of the definition of Z2(ω, ω′,K)

of (A.6) due to the modified interaction term

Z2(ω, ω′,K) =
∫

dudv exp
[ − 1

2 (ωu2 + ω′v2 + iK(u − v)2)
]

= Z(ω′ + iK)Z

(
ω +

Kω′

K − iω′

)
, (28)

here expressed in terms of the normalization constants Z(·) of (21). As already noted in [12]
this only requires a modified definition of �̂(ω′,K) in (24), namely

�̂(ω′,K) = Kω′

K − iω′ , (29)

but leaves the the self-consistency equations otherwise unchanged.

2.4. Cavity equations for finite instances

Rather than studying the ensemble in the thermodynamic limit, one can also look at large
but finite single instances. The method of choice to study these is the cavity approach [13],
for which the additional structure coming from modularity does not cause any additional
complication at all, and the original setup [13] applies without modification, apart from that
related to generating large modular graphs with the prescribed statistics of inter- and intra-
module connectivities.

Equations (11) of [13], when written in terms of the notation and conventions used in this
paper, translate into

ω̂
(j)

 = K2
j

ω
(j)



, ω
(i)
j = iλε +

∑
∈∂j\i

ω̂
(j)

 , (30)

3 There is a typo, a missing minus sign, in front of the translationally invariant interaction term in the last unnumbered
equation on p 15 of [12].
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in which ∂j denotes the set of vertices connected to j , and ∂j \ i the set of neighbours of j ,
excluding i.

These equations can be solved iteratively [13] even for very large system sizes, showing
fast convergence except at mobility edges, where we observe critical slowing-down.

The density of states for a single instance of a matrix M is obtained from the self-consistent
solution via

ρM(λ) = lim
ε↘0

1

Nπ

∑
j

Re

[
1

ωj

]
(31)

with

ωj = iλε +
∑
∈∂j

ω̂
(j)

 . (32)

The modifications required to treat generalized graph Laplacians are once more
straightforward.

To discuss the time complexity of the cavity algorithm for finite instances, note that the
number of ω̂

(j)

 variables is O(cN) for a system of N vertices with average connectivity c.
According to equation (30) each individual update requires one division and on average c − 1
summations. As the number of update sweeps through, the system required for convergence
is itself independent of system size (except at mobility edges); the computational effort to
determine the spectral density for a single large instance at fixed resolution of λ values scales
linearly with N.

3. Small-world networks

Small-world networks can be constructed from any graph, by introducing a second, random
connectivity component which introduces shortcuts in the original graph, as long as the second
component is sufficiently weakly correlated with the first.

The standard example is a closed ring, with additional links between randomly chosen
pairs along the ring. Alternatively, one could start with a regular random graph of fixed
coordination ki = 2 (this gives an ensemble of loops with typical lengths diverging in the
thermodynamic limit N → ∞), and then introducing a second sparse connectivity component
linking randomly chosen vertices of the original graph.

Clearly the original graph need not be a ring; it could be a d dimensional lattice, a Bethe
lattice, or a (regular) random graph of (average) connectivity different from 2, and one could
introduce several additional random connectivity components to create shortcuts.

In what follows, we look at (finitely coordinated) random graphs with several connectivity
components between the vertices of the graphs. The setup is rather close to that of multi-
modular systems as described above, except that there is only a single module, having m
connectivity components linking the vertices of this single module.

The formal structure of the theory is therefore very similar to that described earlier and
we just quote the final fixed point equations, and the result for the spectral density, without
derivations.

We need to solve the following set of fixed point equations:

π̂ (ν)(ω̂) =
∫

dπ(ν)(ω′)〈δ(ω̂ − �̂(ω′,K)〉ν (33)

π(ν)(ω) =
〈

kν

cν

∫
{dπ̂}k\kν δ(ω − �k\kν )

〉
(34)

8
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with

�̂(ω′,K) = K2

ω′ , �k\kν = iλε + 	k\kν ω̂, (35)

where now 〈. . .〉ν in (33) denotes an average over the weight distribution of the νth coupling
component

{
K

(ν)
ij

}
, and the average 〈. . .〉 in (34) is over the distribution of m-dimensional

coordinations ki = (
kν
i

)
with

〈
kν
i

〉 = cν . The (average) spectral density is then given by

ρ(λ) = 1

π
Re lim

ε↘0

〈 ∫
{dπ̂}k 1

iλε + 	kω̂

〉
. (36)

If one were to look at the graph Laplacian for this type of small-world network, rather
than at weighted adjacency matrices, one would once more only have to substitute (29) for �̂

in (35), as discussed in for the multi-modular case above.

4. Results

4.1. Modular systems

For the multi-modular systems, there are clearly far too many possible parameters and
parameter combinations to even begin to attempt giving an overview of the phenomena one
might see in such systems. Hence, we restrict ourselves to just one illustrative example chosen
to highlight how the total density of states in different parts of the spectrum may be dominated
by contributions of local densities of states of specific sub-modules.

We present a system consisting of three modules, with fractions f1 = 1/2, f2 = 1/3, and
f3 = 1/6 of the system, respectively. Modules 1 and 3 have fixed intra-modular connectivities
with coordinations 3 and 2, respectively, while module 2 has Poisson connectivity with average
2. Inter-module connectivities are all Poissonian with averages c12 = 1 and c13 = c23 = 1/2
(c21, c31 and c32 follow from the consistency requirements). Non-zero couplings are chosen
bi-modal ±1/

√
ct with ct = ∑

μν fμcμν apart from intra-module couplings in modules 1 and
3, which have values of ±1/2

√
ct and ±2/

√
ct , respectively.

Figure 1 shows the results for this system. We observe that the central cusp at λ = 0
and the δ-function contributions to the total density of states at λ = 0 and at λ � ±0.463
essentially originate from module 2 (with Poisson connectivity of average coordination 2); a
regularizing ε = 10−4 has been used to exhibit the δ-function contributions. The humps at
the edges of the spectrum mainly come from module 3 with the fixed coordination 2, whereas
the shape of the shoulders at intermediate λ values are mostly determined by the largest
module 1 with fixed coordination 3. Note that there are small tails of localized states for
|λ| � 2.415.

We found results computed for a single instance of this modular structure containing
N = 60 000 vertices to be virtually indistinguishable from the ensemble results, except for
finite sample fluctuations in the extreme tails where the expected DOS becomes too small to
expect more than a few eigenvalues for the N = 60 000 system.

The δ-peaks at λ � ±0.463 originate from isolated dimers as part of module 2 which
remain isolated upon cross-linking the different modules. For the three-module system in
question, the weight a2 of each of the δ-peaks can be shown to be 1

6 e−8 � 5.6 × 10−5 in the
thermodynamic limit, compatible with a rough estimate of a2 = (5 ± 1) × 10−5 from our
numerical ensemble results. We note in passing that pure-point contributions to the spectral
density would be generated by many other finite isolated clusters; the ones with the next
highest weight would be generated by isolated open trimers, but these are more than an order
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Figure 1. Spectrum of the three-module system described in the main text (red full line), along
with its unfolding according to contributions of local densities of states contributed by the three
sub-modules as suggested by equation (39) (green long dashed: module 1, blue short dashed:
module 2, and magenta dot-dashed: module 3). Ensemble results are displayed together with the
corresponding results for a single instance of size N = 60 000. The former are plotted on top of
the latter, so colour-coded lines for the finite instance results (light blue: module 1, yellow: module
2, black dashed: module 3, and light-red dashed for the total DOS) remain basically invisible due
to the nearly perfect match.

of magnitude less likely to occur, so that we have not picked them up at the precision with
which we have performed the λ scan in figure 1.

4.2. Small-world networks

The small-world networks we consider here have a small fraction of long-range connections
added to a regular random graph of fixed coordination 2. The system without long-range
interactions is effectively an infinite ring; it can be diagonalized analytically; for couplings of
unit strength it has a band of extended states for |λ| � 2, and the density of states exhibits
the typical integrable van Hove singularity ρ(λ) ∼ | |λ| − 2|−1/2 of a one-dimensional regular
system.

When a small amount of weak long-range interactions is introduced into the system,
this central band will initially slightly broaden, and the van Hove singularity gets rounded
(the integrable divergence disappears). As the strength of the long-range connections is
increased, the central band is widened further. At the same time the density of states acquires
some structure, which becomes more intricate, as the strength of the long-range interactions
is increased, including side-peaks which themselves acquire sub-structure, and typically a
depression of the DOS near the location of the original band edge. This depression deepens
with increasing strength of the long-range interactions, and eventually becomes a proper band
gap, which we find to be populated only by localized states. Further increase in interaction
strength introduces ever more structure, including depressions in the DOS inside side-bands
which in turn develop into proper band gaps.

Figure 2 shows a system for which the average additional long-range coordination is
c = 0.5, so that long-range interactions are associated with fewer than half of the nodes on the
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Figure 2. Central part of the spectrum the small-world system described in the text. The four
curves correspond to long-range interactions of strengths J = 0.1 (red full line), J = 0.5 (green
long dashed), J = 1.0 (blue short dashed), and J = 2.0 (light-blue dot-dashed).
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Figure 3. Spectrum of the small-world system with c = 0.5 at J = 5, showing both the DOS
of the extended states (green long dashed line) and the total DOS including contributions from
localized states (red full line). A regularizing ε = 10−3 has been used to exhibit the latter.

ring. The figure displays the central region of the spectrum for a range of interaction strengths
of the long-range couplings, which exhibit increasing amounts of structure with increasing
interaction strengths.

Figure 3 shows the entire spectrum of this system at J = 5, and separately exhibits the
contribution of the continuous spectrum. Now four distinct separate side-bands of continuous
states can clearly be distinguished on each side of the central band, with proper band gaps
(filled with localized states) between them.
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The spectrum shown in figure 3 displays structure at many levels. To mention just two of
the more prominent ones: the original edge of the central band develops a sequence of peaks
which extends into the localized region. Side-bands too acquire multi-peak structures, with
individual peaks exhibiting further sub-structure.

Subject to limitations of computational power, our algorithm is able to exhibit these
structures to any desired level of accuracy, though in some regions—predominantly at band
edges—our data for the continuous DOS remain somewhat noisy; we suspect that in such
regions there is a set of localized states that become dense in the thermodynamic limit, which
is responsible for this phenomenon. Also we have a localization transition at every band edge
which may well induce critical slowing down in the population dynamics algorithm by which
we obtain spectral densities. Quite possibly because of this, finite population-size effects
in the population dynamics are much stronger in the present small-world system than in the
simpler systems without side-bands studied before [12, 13, 22].

We have attempted to verify the localization transitions using numerical diagonalization
and computations of inverse participation ratios [26, 27] in finite instances of increasing size,
but the convergence to asymptotic trends is extremely slow. Although we have gone to system
sizes as large as N = 3200 for this system, the numerical results, while compatible with those
derived from our population dynamics algorithm, are still not forceful enough to strongly
support them. These aspects clearly deserve further study. In this respect a recent result of
Metz et al [28], who managed to compute IPRs within a population dynamics approach, could
well provide the method of choice to clarify the situation, though we have not yet implemented
their algorithm.

4.3. Graph Laplacians

From a dynamical point of view, graph Laplacians (5) are in many ways more interesting than
the corresponding connectivity matrices (4), as they could be used to analyse e.g. diffusive
transport on graphs, to give vibrational modes of structures described by these graphs, or to
define the kinetic energy component of random Schrödinger operators. We have accordingly
also looked at spectra of the graph Laplacian corresponding to the small-world-type structures
discussed in the previous section.

For the regular random graph of fixed coordination 2, the spectrum of the graph Laplacian
is just a shifted version of the spectrum of the connectivity matrix. As for the latter, by
adding a small amount of weak long-range interactions, this translated band initially broadens
slightly, and the van Hove singularities disappear. More or stronger long-range interactions
do, however, not appear to create much structure in the initial band. The tails at the lower
band edge do acquire structure and eventually develop proper band gaps, populated only by
localized states, much as for the connectivity matrix.

Figure 4 shows the spectrum of the graph Laplacian for a small-world system with
the same parameters as in figure 3. We recognize a main band of extended states for
−5.59 � λ � −0.037 and four side bands, two of which are very narrow; they are centred
around λ � −7.2 and λ � −7.3, and are barely distinguishable as separate bands on the scale
of the figure. Although the data for λ < −20 appear noisy, the fine structure in this region
of the spectrum is actually accurate; as shown in the inset, we found them to be very well
reproduced by high precision exact diagonalization of an ensemble of 104 matrices of size
1600×1600, using a fine binning (5000 bins across the entire spectrum, thus �λ � 8×10−3),
to achieve sufficient resolution of details.

The appearance of several bands of extended states, separated by gaps which are populated
only by localized states, implies that transport processes such as diffusion will exhibit several
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Figure 4. Spectrum of the graph Laplacian for a small-world system with c = 0.5 at J = 5,
showing both the DOS of the extended states (green long dashed line) and the total DOS including
contributions from localized states (red full line), regularized at ε = 10−3. The inset compares
the population dynamics results for the total DOS (red full line) with results of direct numerical
diagonalization (blue short dashed line) in the range −25 � λ � −22.

distinct time scales for such systems. Given the way in which the system is constructed, the
appearance of two time scales would not be surprising, as diffusion takes place both along
the ring and via short cuts. The fact that there are several such time scales would not seem
obvious, though.

Another feature which becomes apparent only by zooming into the region of very small
|λ| is the appearance of a mobility edge at λc � −0.037 and a region of localized states for
λ > λc. The behaviour of the spectral density in the localized region λc � λ � 0 shows
singular Lifshitz-type behaviour [29]. For systems with a range of different parameters, both
for the average number c of long-range connections per site, and for their strength J, we find
it to be compatible with the functional form

ρ(λ) � a exp(−b/|λ|2/3), (37)

with a and b depending on c and J. For the c = 0.5, J = 5 system shown in figure 5 we have
a = 4.0 ± 0.1 and b = 0.49 ± 0.003. Three parameter fits which attempt to determine the
|λ| power in the exponential of (37) do give powers slightly different from 2/3 at comparable
values of reduced χ2, but the uncertainties of individual parameters are much larger. It may
be worth mentioning that we have observed similar Lifshitz tails also for Laplacians of simple
Poisson random graphs, both below and above the percolation transition, and for Laplacians
corresponding to modular random graphs such as the one studied in section 4.1.
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Figure 5. Lifshitz tail for small |λ|. Shown are the band edge of the extended states (green long
dashed line), the total DOS including contributions from localized states (red full line), and (37)
(blue short dashed), based on a fit of the data in the interval −0.035 � λ � −0.0075.

5. Conclusions

We have computed spectra of matrices describing random graphs with modular or small-world
structure, looking both at connectivity matrices and at (weighted) graph Laplacians. Spectra are
evaluated for random matrix ensembles in the thermodynamic limit using replica, and for large
single instances using the cavity method. We find excellent agreement between the two sets
of results if the single instances are sufficiently large; graphs containing N = O(104 − 105)

vertices are typically required to achieve agreement with relative errors below 10−3. The
ensemble and single instance results are in turn in excellent agreement with results of direct
numerical diagonalizations, though averages over many samples are required for the latter due
to the comparatively moderate sample sizes that can be handled in the direct diagonalization
approach. As explained in section 2.4, we can associate pure-point contributions to the spectral
density with singular contributions to the integrals (26) which can be exhibited by keeping
small non-zero regularizing values of ε while evaluating those integrals via sampling from a
population.

For a multi-modular system we have seen, by way of example, how the total density
of states in different parts of the spectrum may be dominated by contributions of local
densities of states of specific sub-modules. The ability to identify such contributions
may well become a useful diagnostic tool in situations where one needs to study the
topology of modular systems for which plausible null models of their compositions are
available.

For small-world systems, we have seen how the introduction of shortcuts in a regular
graph adds structure to the spectrum of the original regular random graph from which the
small-world system is derived. Depending on parameters, this may include the possibility
of having one or several satellite bands of extended states separated from the original band
by gaps that are populated only by localized states. Whenever this happens for (weighted)
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graph Laplacians this implies the introduction of different time scales for diffusive transport
described by these Laplacians.

For graph Laplacians we typically observe a region of localized states at small |λ| where
the density of states exhibits singular Lifshitz-type behaviour. We note that the existence of
a small |λ| mobility edge implies that these systems will exhibit a finite maximum relaxation
time for global diffusive modes though there is no corresponding upper limit for the relaxation
times for local modes.

We iterate that our methods are completely general concerning the modular structure of
the matrices. Concerning connectivity distributions, the only requirements are that they are
maximally random subject only to the constraints coming from prescribed degree distributions.
Modular graphs with additional topological constraints beyond degree distributions could be
handled by suitably adapting the techniques of [23].

Appendix. Replica-symmetric analysis

The evaluation of the averaged replicated partition function (16) within the replica symmetric
formulation when re-expressed in terms of path integrals over the densities π(μν) and π̂ (μν)

and the normalization factors ρ
(μν)

0 and ρ̂
(μν)

0 gives rise to

〈Zn
N 〉 = 1

N

∫ ∏
μν

{Dπ(μν)Dπ̂ (μν)dρ̂
(μν)

0 dρ
(μν)

0 } exp {N [G1 + G2 + G3]} , (A.1)

with

G1 � 1

2

∑
μν

fμcμν

[(
ρ

(μν)

0 ρ
(νμ)

0 − 1
)
,

+ n ρ
(μν)

0 ρ
(νμ)

0

∫
dπ(μν)(ω)dπ(νμ)(ω′)

〈
ln

[
Z2(ω, ω′,K)

Z(ω)Z(ω′)

]〉
μν

]
, (A.2)

G2 � −
∑
μν

fμiρ̂(μν)

0 ρ
(μν)

0

[
1 + n

∫
dπ̂ (μν)(ω̂)dπ(μν)(ω) ln

[
Z(ω̂ + ω)

Z(ω̂)Z(ω)

]]
, (A.3)

G3 �
∑

μ

fμ

[∑
ν

(〈
ln(

(iρ̂(μν)

0 )k
ν

kν!
)
〉
μ

)
+ n

〈 ∫
{dπ̂ (μ)}k ln

[
Zλ(	kω̂)

{Z}k

]〉
μ

]
. (A.4)

Here, we have introduced shorthand notations for products of integration measures:
{dπ̂ (μ)}k ≡ ∏

ν

∏kν

ν=1 dπ̂ (μν)(ω̂ν
), for products of partition functions: {Z}k ≡∏

ν

∏kν

ν=1 Z(ω̂ν
), and for ω̂-sums: 	k ω̂ ≡ ∑

ν

∑kν

ν=1 ω̂ν
. Furthermore, we have introduced

the partition functions

Zλ(	kω̂) =
∫

du√
2π/i

exp

[
−1

2
(iλε + 	kω̂)u2

]
=

(
i

iλε + 	kω̂

)1/2

, (A.5)

and

Z2(ω, ω′,K) =
∫

du dv exp

[
−1

2
(ωu2 + ω′v2 − 2iKuv)

]
= 2π√

ωω′ + K2
. (A.6)
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The normalization constant N in (A.1) is given by

N =
∫ ∏

iν

dϕν
i

2π
exp

⎧⎨
⎩
∑

μ

cμμ

2Nμ

∑
i 
=j∈Nμ

(eiϕμ

i +iϕμ

j − 1)

+
∑
μ<ν

cμν

Nν

∑
i∈Nμ

∑
j∈Nν

(eiϕν
i +iϕμ

j − 1) − i
∑
μν

∑
i∈Nμ

ϕν
i k

ν
i

⎫⎬
⎭ . (A.7)

Site decoupling is achieved by introducing

ρ
(μν)

0 = 1

Nμ

∑
i∈Nμ

eiϕν
i (A.8)

and a corresponding set of conjugate-order parameters to enforce these definitions. Note
that we use a notation previously employed for normalization factors of replicated densities.
This duplication is intentional, as it reveals terms in the numerator and denominator of (A.1)
exhibiting the same exponential scaling in N when evaluated at the saddle point, and hence
cancel. We get

N =
∫ ∏

μν

dρ̂
(μν)

0 dρ
(μν)

0

2π/Nμ

exp

{
N

[
1

2

∑
μν

fμcμν
(
ρ

(μν)

0 ρ
(νμ)

0 − 1
)

− i
∑
μν

fμρ̂
(μν)

0 ρ
(μν)

0 +
∑
μν

fμ

(〈
kν ln iρ̂(μν)

0

〉
μ

− 〈ln kν!〉μ
)]}

, (A.9)

which is also evaluated by the saddle point method.
Before we derive the saddle point conditions, we note that the functions G1, G2 and G3

in the numerator of (A.1) contain both O(1) and O(n) contributions in the n → 0 limit, such
that the integrand in the numerator contains both terms that scale exponentially in N and in
Nn. The denominator (N ), however, scales exponentially in N. Since the ratio (A.1) scales
exponentially in Nn, the O(1) contributions to G1, G2 and G3 should cancel with those of N
at the saddle point, which is indeed the case.

Evaluating first the stationarity conditions for G = G1 + G2 + G3 at O(1) gives

iρ̂(μν)

0 = cμνρ
(νμ)

0 and ρ
(μν)

0 = 〈kν〉μ
iρ̂(μν)

0

= cμν

iρ̂(μν)

0

(A.10)

from which we obtain

iρ̂(μν)

0 ρ
(μν)

0 = cμν and ρ
(μν)

0 ρ
(νμ)

0 = 1. (A.11)

The stationarity conditions for the saddle point of N are exactly the same. Since (A.11)
exhibits the gauge symmetry

ρ
(μν)

0 → ρ
(μν)

0 a(μν), iρ̂(μν)

0 → iρ̂(μν)

0 /a(μν), ρ
(νμ)

0 → ρ
(νμ)

0 /a(μν), (A.12)

the correct scaling in Nn is obtained, provided that the same gauge is adopted in both the
numerator and the denominator of (A.1). The saddle point contribution is determined from
stationarity conditions with respect to variations of the π(μν)(ω) and the π̂ (μν)(ω̂).

Using (A.11), the stationarity conditions for the π(μν)(ω) read∫
dπ̂ (μν)(ω̂) ln

[
Z(ω̂ + ω)

Z(ω̂)Z(ω)

]
=

∫
dπ(νμ)(ω′)

〈
ln

Z2(ω, ω′,K)

Z(ω)Z(ω′)

〉
μν

+ φμν (A.13)

with φμν a Lagrange multiplier to enforce the normalization of π(μν).
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The stationarity conditions for the π̂ (μν)(ω̂) are

cμν

∫
dπ(μν)(ω) ln

[
Z(ω̂ + ω)

Z(ω̂)Z(ω)

]
=

〈
kν

∫
{dπ̂ (μ)}k\kν ln

Zλ

(
ω̂ + 	k\kν ω̂

)
{Z}k\kν

〉
μ

+ φ̂μν (A.14)

where φ̂μν is the Lagrange multiplier to enforce the normalization of π̂ (μν)(ω̂), and where
{dπ̂ (μ)}k\kν denotes the product {dπ̂ (μ)}k of integration measures from which dπ̂ (μν)(ω̂kν )

is excluded, i.e. the product {dπ̂ (μ)}k\kν ≡ ∏
ν̃(
=ν)

∏kν̃

ν̃=1 dπ̂ (μν̃)(ω̂ν̃
) × ∏kν−1

ν=1 dπ̂ (μν)(ω̂ν
).

Analogous constructions apply to the product {Z}k\kν and the sum 	k\kν ω̂.
Following [24, 25], the stationarity conditions for π(μν)(ω) and π̂ (μν)(ω̂) are rewritten in

the form (22)–(24) given in section 2.3. These equations generalize those obtained in [12, 22]
for the unstructured and two-module cases, respectively.

References

[1] Newman M E J, Strogatz S H and Watts D J 2001 Random graphs with arbitrary degree distributions and their
applications Phys. Rev. E 64 026118

[2] Albert R and Barabási A-L 2002 Statistical mechanics of complex networks Rev. Mod. Phys. 74 47–97
[3] Newman M E J 2003 The structure and function of complex networks SIAM Rev. 45 167–256
[4] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: From Biological Networks to the Internet and

WWW (Oxford: Oxford University Press)
[5] Dorogovtsev S N, Goltsev A V, Mendes J F F and Samukhin A N 2003 Spectra of complex networks Phys. Rev.

E 68 046109
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