
Duality between predictability and reconstructability in complex systems

Charles Murphy,1, 2, ∗ Vincent Thibeault,1, 2 Antoine Allard,1, 2 and Patrick Desrosiers1, 2, 3
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Predicting the evolution of a large system of units using its structure of interaction is a funda-
mental problem in complex system theory. And so is the problem of reconstructing the structure
of interaction from temporal observations. Here, we find an intricate relationship between pre-
dictability and reconstructability using an information-theoretical point of view. We use the mutual
information between a random graph and a stochastic process evolving on this random graph to
quantify their codependence. Then, we show how the uncertainty coefficients, which are intimately
related to that mutual information, quantify our ability to reconstruct a graph from an observed
time series, and our ability to predict the evolution of a process from the structure of its interactions.
Interestingly, we find that predictability and reconstructability, even though closely connected by
the mutual information, can behave differently, even in a dual manner. We prove how such dual-
ity universally emerges when changing the number of steps in the process, and provide numerical
evidence of other dualities occurring near the criticality of multiple different processes evolving on
different types of structures.

I. INTRODUCTION

The relationship between structure and function is fun-
damental in complex systems [1–3], and important efforts
have been invested in developing network models to bet-
ter understand it. In particular, models of dynamics on
networks [4–7] have been proposed to assess the influence
of network structure over the temporal evolution of the
activity in the system. In turn, data-driven models [8, 9],
dimension-reduction techniques [10–13] and mean-field
frameworks [14–18] have deepened our predictive capa-
bilities. Among other things, these mathematical tools
helped shed light on the relationship between dynam-
ics criticality and many network properties such as the
degree distribution [14, 16], the eigenvalue spectrum [19–
21] and their group structure [17, 22, 23]. Fundamentally,
these contributions justify our inclination for measuring
and using real-world networks as a proxy to predict how
their internal dynamics behave.

Models of dynamics on networks have also been—
sometimes implicitly—used as reverse engineering tools
for network reconstruction [24], when the networks of in-
teractions are unavailable, noisy [25–27] or faulty [28].
The network reconstruction problem has stimulated
many technical contributions [29]: Thresholding matri-
ces built from correlation [30] or other more sophisti-
cated measures [31, 32] of time series, bayesian inference
of graphical models [33–38] and models of dynamics on
networks [39], among others. These techniques are com-
monly used in neurosciences [40–42], genetics [43], epi-
demiology [39, 44] and finance [45], to name a few, in
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order to build proxy networks on which the network sci-
ence framework can be applied.

Interestingly, dynamics prediction and network recon-
struction are usually considered separately, even though
they are related to one another. The emergent field of the
network neuroscience [46, 47] is perhaps the most actively
using both notions: Network reconstruction for build-
ing brain connectomics from functional time series, then
dynamics prediction for inferring various brain disor-
ders from these connectomes [48, 49]. Recent theoretical
works have also taken advantage of these notions to show
that dynamics hardly depend on the structure [50], but
their claim lacks a theoretical bedrock which would care-
fully define and relate predictability and reconstructabil-
ity. Furthermore, recent breakthroughs in deep learning
on graphs have benefited from proxy network substrates
to enhance the predictive power of their models [51–53],
with applications in epidemiology [9, 54], and pharma-
ceutics [55, 56]. However, they omitted to provide the-
oretical justifications—other than numerical evidence of
the performance—supporting their use of graph neural
networks and those proxy network substrates. As a re-
sult, their assessment of enhanced predictability remains
to be fully corroborated. In retrospect, there is a need for
a solid, theoretical foundation of reconstructability, pre-
dictability and their relationship in networked systems.

In this work, we establish a rigorous framework that
lays such a foundation based on information theory. We
use the mutual information as a measure of codependence
between structure and dynamics, and demonstrate its
natural connection to predictability and reconstructabil-
ity in dynamics on networks. Of course, the use of in-
formation theory in networks and dynamics is not new.
In the context of network science, it has been used to
characterize random graph ensembles [57–59]—e.g. the
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FIG. 1. Information diagram of dynamics on random
graphs. (a) Areas represent amounts of information: The
entropies related to G are shown on the left in blue and those
related to X are on the right in orange. Mutual informa-
tion, in red, corresponds to the information shared by both G
and X. (b) The highly predictable / weakly reconstructible
scenario, where H(X) � H(G) meaning that I(X;G) con-
tains most of the information related to the dynamics, but
only a small fraction of the information related to the graph.
(c) The reverse scenario, i.e., highly reconstructible / weakly
predictable, where H(G)� H(X) meaning that I(X;G) con-
tains most of the information related to the graph, but only
a small fraction of the information related to the dynamics..

configuration model [60, 61] and stochastic block mod-
els [62, 63]—, develop network null models [64] and per-
form community detection [65, 66]. In stochastic dynam-
ical systems, information-theoretical measures have been
propose to quantify their predictability [67–69] and com-
plexity [70, 71]. Moreover, in statistical mechanics, infor-
mation transmission has been shown to reach a maximum
value near the critical point of spin systems in equilib-
rium [72, 73]. Here, we aim to combine these ideas in
a single framework, building on recent works [74, 75] in-
volving spin dynamics on lattices. Our work extends to
a formulation of networked systems beyond equilibrium
spin dynamics on lattice for quantifying the structure-
function relationship in complex systems, which in addi-
tion establishes a quantifiable relationship between pre-
dictability and reconstructability in dynamics on net-
works.

II. INFORMATION THEORY OF DYNAMICS
ON RANDOM GRAPHS

Let us consider a random graph G whose support, GN ,
consists in the set of all graphs of N vertices, each of

which having its respective non-zero prior probability
P (G∗) with G∗ ∈ GN . From the Bayesian perspective,
the random graph G represents our prior knowledge on
the structure of the system of interest. We also consider
a stochastic process (also called a dynamics hereafter) of
length T , noted X, evolving on a realization of G and
representing the possible dynamic states of the system.
We note P (X|G) the probability of a random time series
X = (Xi,t)i,t conditioned on G, where Xi,t is the random
state, with support Ω, of vertex i at time t. Together, X
and G form a Bayesian chain G → X, where the arrow
indicates conditional dependence [76].

We are interested in the mutual information between G
and X—denoted I(X;G)—which is a symmetric measure
that quantifies the codependence between G and X [77],
with I(X;G) = 0 corresponding to statistical indepen-
dence. It is equivalently given by [77]

I(X;G) = H(G)−H(G | X)

= H(X)−H(X | G) ,
(1)

where H(G) = −〈logP (G)〉 and H(X) = −〈logP (X)〉
are respectively the marginal entropies of G and X,
and H(G|X) = −〈logP (G|X)〉 and H(X|G) =
−〈logP (X|G)〉 are their corresponding conditional en-
tropies. In the previous equations, the marginal dis-
tribution for X, the evidence, is defined as P (X) =∑
G∗∈GN P (G∗)P (X|G∗), and the posterior distribu-

tion is obtained from Bayes’ theorem as P (G|X) =
P (G)P (X|G)/P (X). In the case where Ω is a countable
set (i.e. vertices have discrete dynamical states), I(X;G)
is a non-negative measure bounded by 0 ≤ I(X;G) ≤
min {H(G), H(X)}. Figure 1(a) provides an illustration
of Eq. (1).

The mutual information I(X;G) is related to the re-
constructability of a random graph and to the predictabil-
ity of a dynamics. Intuitively, the predictability measures
our ability to predict the outcome ofX ahead of time sim-
ply by knowing G and conversely, the reconstructability
measures our ability to reconstruct G by observing X
only. In other words, I(X;G) represents the knowledge
gained about G when X is known or, by symmetry, the
knowledge gained about X when G is known. When
measured in bits, I(X;G) can be interpreted as the av-
erage reduction of the number of binary questions that
needs to be answered: Knowing X, is there an edge be-
tween vertices i and j? Knowing G, was vertex i ac-
tive at time t? We say that a system is perfectly pre-
dictable when the mutual information contains all the
information about X, that is when I(X;G) = H(X) [see
Fig. 1(b)]. Likewise, we say that it is perfectly recon-
structable when I(X;G) = H(G) [see Fig. 1(c)]. Yet,
the magnitude of the mutual information is not a good
measure of predictability and reconstructability in itself.
Indeed, a specific value of I(G;X) may correspond to
opposing scenarios when it comes to predictability and
reconstructability, as shown in Fig. 1(b-c). We thus in-
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FIG. 2. T -duality in binary dynamics evolving on small Erdős-Rényi random graphs: (a) Glauber dynamics, (b)
SIS dynamics and (c) Cowan dynamics. Each panel shows the reconstructability coefficient U(G |X) ∈ [0, 1] (blue) and the
predictability coefficient U(X |G) ∈ [0, 1] (orange) as a function of the number of time steps T . We used graphs of N = 5
vertices and E = 5 edges, meaning an average degree of 〈k〉 = 2. Each symbol corresponds to the average value measured over
1000 samples. We also show different values of the coupling parameters—normalized by the average degree—using different
symbols: (a) J〈k〉 ∈

{
1
2
, 1, 2

}
for Glauber, (b) λ〈k〉 ∈ {1, 2, 4} for SIS and (c) ν〈k〉 ∈ {1, 2, 4} for Cowan.

troduce the uncertainty coefficients

U(X |G) =
I(X;G)

H(X)
, (2a)

U(G |X) =
I(X;G)

H(G)
, (2b)

as measures, bounded between 0 and 1, of the recon-
structability and the predictability, respectively.

III. θ-DUALITY BETWEEN PREDICTABILITY
AND RECONSTRUCTABILITY

Predictability and reconstructability in dynamics on
random graphs offer two perspectives of the same infor-
mation shared by G and X—two sides of the same coin.
However, it does not mean that predictability and re-
constructability go hand in hand even though they are
related: A high value of U(G |X) does not necessarily
imply a high value of U(X |G), which can somewhat be
counterintuitive. This observation is well illustrated by
Figs. 1(b)–(c), where U(G |X) and U(X |G) can take op-

posing values, depending on H(G) and H(X), for a same
value of I(X;G). As an example, let us consider X to be
a Markov chain evolving on a random graph G for differ-
ent values of the number of time steps, T . Theorem 1 (see
App. B) states that, for any Markov chain whose entropy
rate is non-zero and for sufficiently large T , U(G |X) is
an increasing function of T , while U(X |G) is a decreas-
ing one. This is a consequence of the fact that the mu-
tual information is strictly increasing with T , and so is
U(G |X) whenever H(G) is independent of T . Yet, we
show in App. B that I(X;G) increases more slowly than
H(X) with T , which results in a decreasing U(X |G).
We refer to this opposing behavior as a duality between
U(G |X) and U(X |G) with respect to T , or a T -duality
for short [78].

Figure 2 illustrates the universality of the T -duality
using different binary Markov chains (i.e. Ω = {0, 1}).
In each of these chains, the probability P (X|G) is

P (X|G) =

T∏
t=1

P (Xt+1 | Xt, G) , (3)

where

P (Xt+1 | Xt, G) =

N∏
i=1

{[
α(ni,t,mi,t)

](1−Xi,t)Xi,t+1
[
1− α(ni,t,mi,t)

](1−Xi,t)(1−Xi,t+1)

[
β(ni,t,mi,t)

]Xi,t(1−Xi,t+1)[
1− β(ni,t,mi,t)

]Xi,tXi,t+1

} (4)

is the transition probability from state Xt to state Xt+1. We also denote the activation (0 → 1) and the deacti-
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vation (1 → 0) probability functions with α(ni,t,mi,t)
and β(ni,t,mi,t), respectively, where ni,t and mi,t de-
note the number of active and inactive neighbors of ver-
tex i at time t. We consider three well known Markov
chain models of different origins: The Glauber dynam-
ics, the Suspcetible-Infectious-Susceptible (SIS) dynam-
ics and the Cowan dynamics. The Glauber dynamics [79],
which have been used to describe the time-reversible evo-
lution of magnetic spins aligning in a crystal, have been
tremendously studied because of its critical behavior and
its phase transition. Its stationary distribution is given
by the Ising model which have found many applications
in condensed-matter physics [80] and statistical machine
learning [76, 81]. The SIS dynamics represents a canon-
ical model of simple contagion describing how infectious
diseases spread into a population of individuals, where
susceptible individuals can get infected by their infectious
contacts. Finally, the Cowan dynamics [82] has been pro-
posed to model the neuronal activity in the brain. In
this model, quiescent neurons fire if their received action
potential, coming from their firing neighbors, is above
a given threshold. For each model, we can identify an
inactive state—down, susceptible or quiescent—and an
active one—up, infectious or firing. The corresponding
activation and deactivation probabilities are given in Ta-
ble I.

Figure 2 validates Theorem 1 and clearly illustrates the
T -duality for each dynamics and with different values of
their parameters. We used the Erdős-Rényi model as
the random graph on which these dynamics evolve. The
support GN is the set of all simple graphs of N vertices
with E edges, and

P (G) =

((N
2

)
E

)−1

. (5)

The observation of the T -duality begs for a more gen-
eral definition of duality for any arbitrary parameter θ
(see Appendix A). In fact, we say that U(G |X) and
U(X |G) are dual with respect to θ, or θ-dual, in an
interval Θ if and only if the signs of their derivative with
respect to θ are different for every θ∗ ∈ Θ:[

∂U(G |X)

∂θ

∂U(X |G)

∂θ

]
θ=θ∗

< 0 . (6)

This criterion formally relies on the existence of regions
Θ where the variations of U(G |X) and U(X |G) with
respect to θ are contradictory, regardless of their am-
plitude. We use this criterion to relate the existence of
extrema of U(G |X) and U(X |G) with that of regions
of θ-duality (see Lemma 1 in App. A), and to prove The-
orem 1.

Knowing the existence of the T -duality and having a
general definition of θ-duality, it is now natural to ask
if there exist other types of θ-dualities in dynamics on
random graphs. A large variety of parameters could lead
to interesting θ-dualities—some controlling the general
behavior of the dynamics, and others controlling some

Dynamics α(n,m) β(n,m) Coupling

Glauber [79] σ[2J(n−m)] σ[2J(m− n)] J

SIS [5] 1−
(

1− λ
β

)m
β λ

Cowan [82] σ[a(νm− µ)] β ν

TABLE I. Activation and deactivation probability functions,
α(n,m) and β(n,m), respectively, for the binary dynamics
considered in this study, where n corresponds to the number
of inactive neighbors whose states are 0, and m corresponds to
the number of active neighbors whose states are 1. We define
σ(x) = [exp(−x)+1]−1 as the logistic function. Some of these
parameters are fixed throughout the paper: β = 0.5 for SIS
and Cowan, and a = 7 and µ = 1 for Cowan. The coupling
parameters (J for Glauber, λ for SIS and ν for Cowan) are
specified in each figure. Also, to prevent the SIS dynamics
from being completely inactive, we allow the inactive vertices
to spontaneously activate with probability ε = 10−3 [83].

structural properties of the random graph which, in turn,
also impact the dynamics. Most of them require the sys-
tem to be larger, if the effects over X and G of varying
θ are to be significant (e.g. phase transitions). However,
in high-dimensional systems, theoretical and numerical
challenges arise in the evaluation of the reconstructabil-
ity and the predictability, which complicate the search for
dualities. We address this problem in the next section.

IV. EVALUATION OF THE MUTUAL
INFORMATION IN LARGE SYSTEMS

The exact evaluation of the mutual information, H(X)
and H(G|X) for large systems becomes rapidly tedious as
the size N of the system increases. This challenge arises
because of the graph enumeration needed to evaluate the
log-evidence probability, namely

logP (X) = log

[ ∑
G∗∈GN

P (G∗)P (X | G∗)
]
, (7)

becomes quickly intractable with N . This difficulty fre-
quently arises in Bayesian model selection [84–86] and
machine learning [34, 36], and is known as the marginal
likelihood, partition function or evidence probability es-
timation problem. Fortunately, several approaches exist
to circumvent this problem: We considered two different
estimators of the log-evidence probability to compute the
mutual information (see App. C). These two estimators
are biased, but we show that they in fact bound the mu-
tual information below and above, which will be useful
to ensure their numerical validity (see App. C).

The first estimator (noted MF) is based on a vari-
ational mean-field (MF) approximation [87], where the
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posterior probability is bounded such that

P (G | X) ≥ PMF(G | X) =
∏
i<j

[
πij(X)

]Aij
[
1−πij(X)

]1−Aij

,

(8)
where Aij is the element (i, j) of the adjacency matrix
of the undirected graph G (Aij = 1 if there exists an
edge between vertices i and j, Aij = 0 otherwise), and
πij(X) is the marginal posterior probability that edge
(i, j) exists given X. The MF estimator is biased and
converges to a lower bound of the posterior probability,
hence yielding a lower bound for I(X;G), U(G |X) and
U(X |G) when used in Eqs. (1), (2a) and (2b).

The second estimator (noted AIS) was presented in
Ref. [86] as a stepping-stone algorithm for computing the
evidence probability—a version of annealed importance
sampling (AIS) [84]. This estimator converges to a lower
bound of the evidence probability, but its bias can be
arbitrarily reduced by increasing the number K of tem-
perature steps. Therefore, when used to estimate Eq. (1),
we show that this biased estimator of mutual information
converges to an upper bound of I(X;G), U(G |X) and
U(X |G) (see App. C). Altogether, these two estimators
allow us to bound the mutual information even when its
exact evaluation is intractable.

Figure 3(a) shows the behavior of I(X;G) in the
Glauber dynamics on a small Erdős-Rényi random graph
as approximated using the MF and AIS estimators, and
compares them to an exact evaluation based on an ex-
plicit graph enumeration used in Fig. 2. As expected the
two estimators provide a lower and an upper bound for
I(X;G), and these bounds are fairly tight.

Several caveats are in order. On the one hand, the
bias of the AIS estimator can, in principle, be reduced
arbitrarily by increasing the number K of temperature
steps, but its evaluation becomes quickly computation-
ally costly. On the other hand, the evaluation of MF esti-
mator is comparatively quicker, but cannot be improved
by further sampling. The AIS estimator is accordingly
closer to the exact value throughout, but it can some-
times overestimate the mutual information above its up-
per bound since H(X) is overestimated while H(X|G)
is not. The MF estimator can also yield negative val-
ues of I(X;G) for small values of J—i.e. regimes where
H(G|X) ' H(G)—due to an overestimated H(G|X) be-
coming larger than H(G).

Figure 3(b) shows the same experiment as in Fig. 3(a)
but with larger graphs of N = 100 vertices and leads to
similar observations: the AIS estimator is always greater
than the MF estimator, and both estimators sometimes
yields approximated values for I(X;G) outside of the
valid range [0,max {H(G), H(X)}]. Interestingly, these
bounds are nevertheless fairly close to one another, as in
the case N = 5.

With reliable estimations of the mutual information in
hand, it is now possible to investigate the existence of
other θ-dualities in more complicated systems, which is
the subject of the next section.
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FIG. 3. Estimators of the mutual information in the
Glauber dynamics on Erdős-Rényi graphs as a func-
tion of the normalized coupling parameter J 〈k〉: (a)
N = 5, E = 5 and T = 100 (b) N = 100, E = 250 and
T = 1000. The solid line in (a) corresponds to the exact eval-
uation of I(X;G) and is the same line as the one in Fig. 2(a).
The circles and square in both (a) and (b) represent the values
of I(X;G) computed using the AIS and the MF estimators,
respectively. The dashed line indicates the upper bound of
I(X;G), i.e., max {H(G), H(X)}. We also show with a gray
area the admissible values of I(X;G) bounded by the biased
MF and AIS estimators (see App. C).

V. DUALITY AND CRITICALITY

Despite their different nature and range of applica-
tions, the three models presented in Table I share several
properties of interest. For instance, each model has a cou-
pling parameter that controls the influence of the state of
the first neighbors on the transition probabilities. They
also all feature a phase transition in the infinite size limit
whose position is determined by the coupling parameter
(see Fig. 5 and App. E). We now investigate the influence
of criticality over the existence of θ-dualities, where θ is
a coupling parameter.

For the Glauber dynamics, this parameter is the
coupling constant J , which dictates the reduction (in-
crease) in the total energy of a spin configuration when
two neighboring spins are parallel (antiparallel). The
Glauber dynamics features a continuous phase transition
at a critical point Jc between a disordered and an ordered
phase, where for J < Jc the spins are disordered resulting



6

0.0 0.1 0.2 0.3

Coupling constant J

0

0.25

0.5

0.75

1.0

R
ec

on
st

ru
ct

ab
il

it
y J
c

(a)

Glauber

0.12 0.14

0.7

0.8

0.00 0.05 0.10 0.15 0.20

Transmission rate λ

λ
c

(b)

SIS

0.2 0.3 0.4 0.5 0.6

Potential gain ν

ν
b c ν
f c

(c)

Cowan

0

0.025

0.05

0.075

0.1

P
red

ictab
ility

7

8
×10−3

Reconstructability Predictability

FIG. 4. Dynamics evolving on configuration model graphs with negative binomial degree distribution: (a)
Glauber dynamics, (b) SIS dynamics and (c) Cowan dynamics. We generated graphs of N = 1000 vertices, where the degree
distribution ρ(k) = (1−p)pk is a geometric distribution with p = 〈k〉 /(1+ 〈k〉) and 〈k〉 = 5, and time series of length T = 2000.
See Table I for the remaining parameters. Similar to Fig. 2, U(G |X) is shown in blue (left axis) and U(X |G) is shown
in orange (right axis). We show, for each dynamics, the uncertainty coefficients as a function of the—normalized—coupling
parameter, J 〈k〉 for Glauber, λ 〈k〉 for SIS and ν 〈k〉 for Cowan. The vertical dotted-dashed lines correspond to the phase
transition thresholds of each dynamics, which are estimated from Monte Carlo simulations (see Appendix E). For the Cowan
dynamics, the forward and backward branches are shown with their corresponding thresholds and dual regions (see main text).

in a vanishing magnetization, and for which this magne-
tization is non-zero when J > Jc. For the SIS dynam-
ics, it is the transmission rate λ that acts as a coupling
parameter. Like the Glauber dynamics, the SIS dynam-
ics possesses a continuous phase transition where, when
λ < λc, the system reaches an absorbing—or inactive—
state from which it cannot escape, and an active state,
when λ > λc, where a non-zero fraction of the vertices
remain active over time [88]. The Cowan dynamics can
both feature a continuous or a first-order phase transi-
tion between an inactive and an active phase depending
on the value of slope a, for which the coupling parameter
is ν, i.e. the potential gain for each firing neighbors. The
continuous and first-order phase transitions of the Cowan
dynamics are quite different in that the latter is charac-
terized by two thresholds, namely the forward and back-
ward thresholds νb

c < νf
c, respectively (see Appendix E

for further details). Hence, the Cowan dynamics has a
first-order phase transition that exhibits a bistable region
ν ∈ (νb

c , ν
f
c), where both the inactive and active phases

are reachable depending on the initial conditions.

To account for the heterogeneous network structure
observed in a wide range of complex systems [1], we sim-
ulate the dynamics on the configuration model, a ran-
dom graph whose—potentially heterogeneous—degree
sequence k is fixed and whose support GN corresponds
to the set of all loopy multigraphs of degree sequence k.
The probability of a graph G∗ in this ensemble is

P (G∗) =
(2E)!!

(2E)!

∏
i ki!∏

i<jMij !
∏
iMii!!

, (9)

where Mij counts the number of edges connecting ver-
tices i and j in the multigraph G∗ and 2E =

∑
i ki is the

number of half-edges in G∗. Like the Erdős-Rényi model,
the configuration model fixes the number of edges, but
also fixes the degree distribution ρ(k).

Figure 4 shows the predictability and reconstructabil-
ity of the three dynamics evolving on graphs drawn from
the configuration model whose distribution, ρ(k), is geo-
metric, as estimated by the MF estimator. First, these
results allow us to compare the dynamics with one an-
other. For example, on the one hand, the Glauber dy-
namics is globally less predictable than the other two,
since its predictability coefficient is overall smaller. In
other words, the knowledge of a graph G∗ provides less
information about X∗ in the Glauber dynamics in com-
parison with the others, relatively to the total amount
of information needed to reconstruct X∗. This is related
to the time reversibility of the Glauber dynamics, which
allows any vertex to transition from the inactive to the
active state (and vice versa) with non-zero probability, at
any time, effectively making the Glauber dynamics more
random them the others. On the other hand, the SIS
and Cowan dynamics are portrayed by the MF estimator
as practically unpredictable and unreconstructable when
their coupling parameter is below their respective crit-
ical point. This precisely occurs in the inactive phase,
where no mutual information can be generated after a
short time, when the system reaches the inactive state.
By contrast, the Glauber dynamics does not reach an in-
active state below its critical point, which explains the
gradual increase in predictability and reconstructability
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in that region.
Several additional observations are worth making. All

dynamics exhibit maxima for U(X |G) and U(G |X)
which delineate a region of duality illustrated by the
shaded areas (two for Cowan, that is one for each
branch). These regions are close to, but systematically
above, their respective phase transition thresholds. A
similar phenomenon in spin dynamics on non-random
lattices has been reported by previous works [74, 75], in
which the information transmission rate between spins—
a measure akin to I(X;G)—is maximized above the crit-
ical point. Our numerical results are consistent with
theirs, and suggest that their findings regarding near-
critical systems even apply beyond spin dynamics on
fixed lattices, to other types of processes on more het-
erogeneous and random structures.

VI. CONCLUSION

In this work, we used information theory to character-
ize the structure-function relationship with mutual infor-
mation. We showed how mutual information is a natural
starting point to define both predictability and recon-
structability in dynamics on networks, in turn showing
how they are intrinsically related. Our approach is quite
general allowing the exploration of different configura-
tions of dynamics on networks of the form G→ X, thus
varying the nature of the process itself as well as the ran-
dom graph on which it evolves. Our framework could be
extented to adaptive systems [89–92] where both X and
G influence each other (i.e. X ↔ G). The relationship
between X and G could also go the other way around: A
system in which X generates a graph G (i.e., X → G).
Hyperbolic graphs [93, 94] falls into this category, where
X represents a set of coordinates, and our framework
could be extended to quantifying the feasibility of net-
work geometry inference [95–97].

We found efficient ways to estimate the mutual infor-
mation numerically, thus allowing us to investigate rel-
atively large systems. More work on this front is re-
quired, however, since the evaluation of these estima-
tors remains quite computationally costly. It would be
worth investigating simpler models, for which it is possi-
ble to analytically—or at least approximately—evaluate
U(X |G) and U(G |X). Approximate mean-field models
of the sort described in Refs. [11, 13, 98] come to mind
and could potentially provide reliable approximations of
I(X;G), U(X |G) and U(G |X).

Central to our findings is the peculiar discovery that
predictability and reconstructability are not only re-
lated, but sometimes dual to one another. We proved
that such θ-duality appears when the length of the pro-
cesses changes and presented numerical evidence of du-
ality near the criticality in three different dynamics on
random heterogeneous networks. These findings general-
ize and formalize—while being consistent with—previous
works [74, 75] and suggest that criticality in these systems

is intrinsically related to the duality between predictabil-
ity and reconstructability in complex systems.
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pute Canada for their technical support and computing
infrastructures.

Appendix A: Formal definition of θ-duality

In what follows, we define the duality between pre-
dictability and reconstructability by taking a more gen-
eral stance: Instead of considering a stochastic process X
evolving on a random graph G, we let X be conditioned
on an arbitrary discrete random variable Y . First, we
define the local duality of the uncertainty coefficients.
The latter are considered as continuously differentiable
functions with respect to a parameter θ whose domain is
some non-empty interval of the real line.

Definition 1 (Local duality). The uncertainty coeffi-
cients U(X|Y ) and U(Y |X) are locally dual with respect
to θ at θ = θ∗ if and only if[

∂U(X|Y )

∂θ

∂U(Y |X)

∂θ

]
θ=θ∗

< 0 . (A1)

The definition of the θ-duality, a global property, fol-
lows that of the local duality.

Definition 2 (θ-Duality). The uncertainty coefficients
U(X|Y ) and U(Y |X) are dual with respect to θ, or θ-
dual, in the interval Θ if and only if they are locally dual
for all values of θ∗ in Θ.

From these definitions, we relate the presence of ex-
trema of U(X|Y ) and U(Y |X) with the existence of a
θ-duality.

Lemma 1. Let Θ be a non-empty subinterval of the vari-
able θ whose one endpoint is a local extremum of U(X|Y )
and the other, a local extremum of U(Y |X). Moreover,
suppose that U(X|Y ) and U(Y |X) do not have critical
points in Θ. Then the extrema points delineate a region
of θ-duality if and only if they are both maxima (or both
minima).
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Proof. Let θR and θP be the extrema points of U(Y |X)
and U(X|Y ), respectively. Thus

∂U(Y |X)

∂θ

∣∣∣∣
θ=θR

=
∂U(X|Y )

∂θ

∣∣∣∣
θ=θP

= 0 . (A2)

Suppose for a moment that θR < θP and let Θ =

(θR, θP ). This implies that ∂U(Y |X)
∂θ changes sign at θR,

before ∂U(X|Y )
∂θ , for which the sign change happens at θP .

On the one hand, if the extrema points θR and θP are

both maxima (or minima), then ∂U(Y |X)
∂θ and ∂U(X|Y )

∂θ
have different signs in Θ. Hence, inequality (A1) is veri-
fied in this region. The uncertainty coefficients are there-
fore θ-dual in Θ.

On the other hand, if the uncertainty coefficients are θ-
dual in Θ, then inequality (A1) is satisfied in this interval.
This in turn implies that either U(Y |X) decreases in Θ
while U(X|Y ) increases or U(Y |X) increases in Θ while
U(X|Y ) decreases. Therefore, the endpoints of Θ are
either both maximum points or both minimum points.

Finally, repeating the same arguments with θR > θP
and Θ = (θP , θR) leads to the same conclusions about
θ-duality of U(X|Y ) and U(Y |X) in Θ.

Appendix B: Universality of the T -duality

We demonstrate the universality of the T -duality,
where T is the number of steps in the process X. First,
we need to show that the mutual information is a mono-
tonically increasing function of T .

Lemma 2. Let X = (X1, X2, · · · , XT ) be a Markov
chain of length T whose transition probabilities are con-
ditional to some discrete random variable Y that is in-
dependent of T and such that H(Xt+1|Xt) > 0 for all
t ∈ {1, . . . , T − 1}. Suppose moreover that the state
spaces of X and Y are finite. Then the mutual infor-
mation I(X;Y ) is nonzero and monotonically increasing
with T ∈ Z+.

Proof. Let us define a Markov chain X ′ =
(X1, X2, · · · , XT−1) of size T − 1, such that the
concatenation of X ′ with state variable XT yields X.
Hence, we can express the mutual information between
X and Y in terms of X ′ as I(X;Y ) = I(X ′, XT ;Y ).
Furthermore, proving the monotonicity of mutual in-
formation can be reformulated as proving the following
inequality:

I(X ′, XT ;Y )− I(X ′;Y ) > 0 , (B1)

for all T . By the chain rule for conditional mutual infor-
mation, that is I(X ′, XT ;Y ) = I(XT ;Y |X ′) + I(X ′;Y ),
inequality (B1) becomes

I(XT ;Y |X ′) = H(XT |X ′)−H(XT |X ′, Y ) > 0 . (B2)

The term H(XT |X ′) − H(XT |X ′, Y ) is always at least
non-negative, by virtue of the non-negativity of mu-
tual information [77, Theorem 2.6.5]. Then, to prove

inequality (B2), we must verify that H(XT |X ′) never
equals H(XT |X ′, Y ). Recalling that H(XT |X ′) ≥
H(XT |X ′, Y ) ≥ 0, inequality (B2) does not hold if
(i) H(XT |X ′) = 0 or if (ii) XT is independent of Y
(i.e. I(XT ;Y |X ′) = 0). According to the hypothesis
H(Xt+1|Xt) > 0 for all t ∈ {1, . . . , T − 1}, condition
(i) cannot be true. Moreover, condition (ii) implies that
I(X;Y ) = I(XT , X

′;Y ) = I(X ′;Y ) = 0. Therefore, the
only instance where Eq. (B1) is not satisfied is when the
Markov chain X is independent of Y , i.e. I(X;Y ) = 0 for
all length T . However, this contradicts the assumption
about the transition probabilities. Hence, I(X;Y ) > 0
and monotonically increases with T .

Before presenting the main result of this section, let
us make a few remarks about the restrictions imposed in
the last lemma. The condition H(Xt+1|Xt) > 0 for all
t ∈ {1, . . . , T − 1} only asserts that the Markov chain is
nondeterministic in the sense that knowing the state of
the chain at time t does not completely eliminate the un-
certainty about the state at time t+ 1. This condition is
satisfied for wide variety of stochastic processes, includ-
ing the irreducible Markov chains, where there is always
a nonzero probability to transition from a state to any
other state in a finite number of time steps. Moreover,
the finiteness of the state spaces for the chain X and
the variable Y is imposed to make H(X), H(Y ), and
I(X;Y ) finite. This in turn ensures that the uncertainty
coefficients U(Y |X) and U(X|Y ) are well defined for all
T ∈ Z+, a property that is necessary to prove the next
lemma.

Lemma 3. Let X = (X1, X2, · · · , XT ) and Y respec-
tively be a Markov chain and a discrete random vari-
able as in Lemma 2. Then the uncertainty coefficients
U(Y |X) and U(X|Y ), interpreted as functions of T ∈
Z+, can be uniquely generalized to functions, respectively
f(T ) and g(T ), that are real analytic for all T ∈ R+.
Moreover, H(X) can be extended to a function h(T ) that
is analytic for all T ∈ R+ except where f(T ) = 0.

Proof. We first consider U(X|Y ) and U(Y |X), which are
defined in Eqs. (2a)–(2b). These can be interpreted as
functions of T ∈ Z+ whose values belong to the interval
[0, 1]. According to Guichard’s Theorem [99, Theorem
5.2.1] (see also [100, Theorem 15.13]), there exist two
functions of z ∈ C, denoted f and g, that are holomorphic
in the whole complex plane and whose values at z = T ∈
Z+ equal those of U(X|Y ) and U(Y |X), respectively.

Now, U(X|Y ) and U(Y |X), and consequently f(z) and
g(z), have bounded values for all z = T ∈ Z+. Moreover,
f and g are holomorphic, so their restriction to the axis
z = T ∈ R is real analytic. Hence, on that axis, f and
g are Lipschitz continuous, which means that there are
positive and finite constants, a and b, such that |f(T )−
g(T ′)| ≤ a|T − T ′| and |g(T )− g(T ′)| ≤ b|T − T ′| for all
T, T ′ ∈ R. Choosing T = T ′+ε with T ′ ∈ Z+ and |ε| < 1,
we conclude that f(T ) and g(T ) have finite values for all
T ∈ R+.
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The functions f and g are thus holomorphic in the
whole complex plane and bounded on the positive real
axis. This allows to use a special case of Carlson’s Theo-
rem [101, Theorem 2.8.1] according to which holomorphic
functions that are bounded on the positive real axis are
uniquely defined by their values on the set Z+. There-
fore, f is the unique extension U(X|Y ) that is analytic
for all T ∈ R+. The same conclusion holds for g and
U(Y |X).

To finish the proof, we need to tackle H(X). We can-
not use the same strategy as above because H(X) is not
a bounded function of T ∈ Z+. However, by definition,
the identity

H(X) =
H(Y )U(Y |X)

U(X|Y )
. (B3)

is valid whenever U(X|Y ) > 0. Now, according to
Lemma 2, I(X;Y ) > 0 and hence U(X|Y ) > 0 for all
T ∈ Z+. This means that Eq. (B3) is well defined for all
T ∈ Z+. To extend the domain of validity of the identity,
we use the analytic functions f and g introduced above
and define a new function h as

h(T ) = H(Y )
g(T )

f(T )
. (B4)

The values of h coincide with those of H(X) for all t ∈
Z+, so that Eq. (B3) defines a unique extension of H(X).
Moreover, h is analytic for all T ∈ R+ except at the
points t where f(t) = 0.

With Lemmas 2 and 3 in hand, we now proceed to
prove our main theoretical result: the universality of the
T -duality in Markov chains.

Theorem 1. Let X = (X1, X2, · · · , XT ) and Y respec-
tively be a Markov chain and a discrete random variable
as in Lemma 2. Suppose additionally that X has a finite
nonzero entropy rate and that Y has a nonzero entropy.
Then there exists a positive constant τ such that the un-
certainty coefficients U(Y |X) and U(X|Y ) are T -dual for
all T ≥ τ .

Proof. According to Lemma 3, the quantities U(X|Y ),
U(Y |X), and H(X), which were originally defined as real
functions of T ∈ Z+, have unique analytic extensions
on the positive real axis, i.e., T ∈ R+. This allows us
to treat U(X|Y ), U(Y |X), and H(X) as continuously
differentiable functions with respect to T .

Now, by hypothesis, the entropy rate of the Markov

chainX, R := limT→∞
H(X)
T , is well defined and nonzero.

Hence, H(X) ∼ RT , i.e., H(X) is positive and asymp-
totically linearly increasing with T . Moreover, since Y
is independent of T and I(X;Y ) > 0, it follows that
I(X;Y ) is monotonically increasing with respect to T by

Lemma 2. As a result, U(Y |X) = I(X;Y )
H(Y ) is also mono-

tonically increasing, since its denominator is independent
of T , by assumption. This translates to the strict inequal-

ity ∂U(Y |X)
∂T > 0. If there exists a T -duality, i.e., there is

a domain of T where Eq. (A1) is true, then U(X|Y ) must

be monotonically decreasing with T—or ∂U(X|Y )
∂T < 0—

in that domain. To prove this, note that we can relate the
two uncertainty coefficients using Eq. (B3). This leads
to the following differential equation

∂

∂T
[logU(X|Y )] =

∂

∂T
[logU(Y |X)]− ∂

∂T
[logH(X)] ,

(B5)

where we used the fact that ∂H(Y )
∂T = 0. Hence, to show

that U(X|Y ) is monotonically decreasing with T , the fol-
lowing inequality must hold

∂

∂T
[logU(Y |X)] <

∂

∂T
[logH(X)] . (B6)

Suppose for a moment that U(X|Y ) is in fact increas-
ing, such that Eq. (B6) is false. This will eventually
give rise to a contradiction. Let g(T ) := U(Y |X) and
h(T ) := H(X) be continuous functions of T such that
their derivative with respect to T are respectively given

by g′(τ) := ∂f(T )
∂T

∣∣∣
T=τ

and h′(τ) := ∂h(T )
∂T

∣∣∣
T=τ

. Note

that 0 < f(τ) ≤ 1 and h(τ) > 0 for all τ ∈ R+. If
Eq. (B6) is false, then

(log g(T ))′ ≥ (log h(T ))′ . (B7)

Using Grönwall’s inequality [102, Theorem 1.2.1], we get

g(T )

g(a)
≥ h(T )

h(a)
, 0 < a < T. (B8)

So far, we have established that h(T ) = H(X) ∼ RT
and that U(Y |X) is monotonically increasing. We have
also proved that if U(X|Y ) is not monotonically decreas-
ing with T , then inequality (B8) is satisfied. However,
the latter inequality and h(T ) ∼ RT readily imply that
g(T ) belongs to the class Ω(T ), which is the set of all
g̃(T ) such that there exist positive constants, S and T ∗,
for which g̃(T ) ≥ ST for all T ≥ T ∗ (i.e. Knuth’s Big
Omega [103]).

Two cases must be considered. First, if ST ∗ > 1, then
g̃(T ) ≥ ST ∗ > 1, which is in direct contradiction with
g(T ) ≤ 1 whenever T ≥ T ∗. Second, if ST ∗ ≤ 1, then
choose T ∗∗ > S−1 ≥ T ∗, so that g̃(T ) ≥ ST ∗∗ > 1 for all
T ≥ T ∗∗. This again contradicts the inequality g(T ) ≤ 1
whenever T ≥ T ∗∗. As a result, inequality (B8) cannot
be satisfied when T ≥ τ , with τ = max {T ∗, T ∗∗}. We
thus conclude that U(X|Y ) is monotonically decreasing
for all T ≥ τ . Therefore, U(Y |X) and U(X|Y ) are T -
dual in the interval [τ,∞).

Appendix C: Estimators of the mutual information

The mutual information I(X;G) is generally in-
tractable. Its intractability stems from the evaluation
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of the evidence probability, which is defined by the fol-
lowing equation:

P (X) =
∑
G∈GN

P (G)P (X | G) . (C1)

Indeed, this sum potentially counts a number of terms
which grows exponentially with the number of vertices
N in the random graph. More specifically, the evidence
probability appears in two entropy terms needed to com-
pute the mutual information, namely the marginal en-
tropy H(X) = −〈logP (X)〉 and the reconstruction en-

tropy H(G | X) = −
〈

log P (G)P (X|G)
P (X)

〉
, where 〈f(Y )〉 de-

notes the expectation of f(Y ). Fortunately, the evidence
probability, and in turn the mutual information, can be
estimated efficiently using Monte Carlo techniques, which
we present in this section.

1. Graph enumeration approach

For sufficiently small random graphs (N ≤ 5), the ev-
idence probability can be efficiently computed by enu-
merating all graphs of GN and by adding explicitly each
term of Eq. (C1). Then, we can estimate the mutual
information by sampling M graph-states pairs, denoted
(G∗(m), X∗(m)), and by computing the following arith-
metic average:

I(X;G) ' 1

M

M∑
m=1

logP
(
X∗(m) | G∗(m)

)
− logP

(
X∗(m)

)
.

(C2)

The variance of this estimator scales with the inverse of√
M . In Fig. 2, we used this estimator to compute the

mutual information, where M = 1000.

2. Variational mean-field approximation

In this approach, we estimate the posterior probability
instead of the evidence probability. According to Bayes’
theorem, the posterior probability is

P (G | X) =
P (G)P (X | G)

P (X)
. (C3)

Behind this estimator is a variational mean-field (MF)
approximation that assumes the conditional indepen-
dence of the edges. For simple graphs, the MF posterior
is

PMF(G | X) =
∏
i≤j

[πij(X)]Aij [1− πij(X)]1−Aij , (C4)

where πij(X) := P (Aij = 1 | X) is the marginal condi-
tional probability of existence of the edge (i, j) given X.

For multigraphs, a similar expression can be obtained,
but instead involves a probability πij(ω|X) := P (Mij =
ω|X) that there are ω multi-edges between i and j. In
this case, the MF posterior becomes

PMF(G | X) =
∏
i<j

∞∏
ω=0

[πij(ω|X)]δω,Mij , (C5)

where δx,y is the Kronecker delta. The MF approxima-
tion allows to compute a lower bound of the true posterior
entropy, such that

H(G | X) ≥ −〈logPMF(G | X)〉 , (C6)

as a consequence of the conditional independent between
the edges [77, Theorem 2.6.5]. Using the MF approxi-
mation and a strategy similar to the exact estimator, we
compute the MF estimator of the mutual information as
follows:

I(G | X) ≥ 1

M

M∑
m=1

[
logPMF

(
G∗(m) | X∗(m)

)
− logP

(
G∗(m)

)]
.

(C7)

To compute PMF

(
G∗(m) | X∗(m)

)
, we sample a set

Q(m) :=
{
G
∗(m)
1 , · · · , G∗(m)

Q

}
of Q graphs from the pos-

terior distribution P (G|X∗(m)). Then, we estimate the

probabilities πij(X) ' n
(m)
ij

Q using their corresponding

maximum likelihood estimate, where n
(m)
ij is the number

of times the edge (i, j) is seen in Q(m). An analogous
maximum likelihood estimate is made in the multigraph

case, where πij(ω|X) ' n
(m)
ij;ω

K and n
(m)
ij;ω counts the num-

ber of times there were ω multiedges between i and j
in Q(m). This estimator is a lower bound of the mu-
tual information—a consequence of Eq. (C6). Hence, it
is biased, and the extent of this bias is dependent on
the quality of the conditional independence assumption
with respect to the true random graph. Note that the
MF estimator can yield negative estimates of the mutual
information (see Fig. 3).

In Figs. 3 and 4, we fix the number of graphs sampled
from the posterior distribution to Q = 1000, and propose
5N moves between each sample, as also mentioned in
App. D.

3. Annealed important sampling

Whereas the MF estimator represents a biased estima-
tor of the posterior probability P (G | X), there exists
other Markov chain Monte-Carlo (MCMC) techniques
that tackle the problem of estimating the evidence prob-
ability directly. The one we consider in this paper is
obtained from an annealed importance sampling (AIS)
procedure called the stepping-stone (SS) algorithm [86].
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The procedure of the stepping-stone algorithm takes
advantage of the fact that it is possible to sample effi-
ciently from the posterior distribution P (G | X) using
MCMC (see Section D). In order to compute an accurate
estimator of the evidence probability P (X), the proce-
dure samples the space GN according to Pβ(G | X),
where 0 ≤ β ≤ 1 is an inverse temperature parameter
that dampens the influence of the likelihood such that

Pβ(G | X) ∝ [P (X | G)]βP (G) . (C8)

The inverse temperature basically allows the Markov
chain to navigate GN efficiently to construct an accurate
estimator of P (X), that is where the graph samples are
not all too close or too far from the maximum posterior.
More specifically, the AIS estimator is defined by

PAIS(X) =

K∏
k=1

〈
[P (X | G∗k)]βk−βk−1

〉
, (C9)

where 0 = β0 < · · · < βK−1 = 1 and the expectation is
evaluated with respect to G∗k ∼ Pβk

(G | X∗), for each
k. Similarly to the mean-field estimator, we estimate

this expectation by collect a sample Q(m)
k of Q graphs

distributed according to Pβk
(G | X∗(m)), for each k.

Taking the log of this equation gives us an estimator
of the log-evidence probability, which we can use to com-
pute the mutual information directly:

logPAIS(X) =

K∑
k=1

log
{〈

[P (X | G∗k)]βk−βk−1
〉}

. (C10)

Although the estimator for PAIS is unbiased, the one for
the log-evidence probability introduces a bias:

logP (X) ≥ logPAIS(X) . (C11)

This bias can be arbitrarily reduced by increasing K [86],
although we found that doing so provides diminishing re-
turns. Using the AIS estimator of the evidence probabil-
ity, we obtain an AIS estimator of the mutual information
such that

I(G;X) ≤ 1

M

M∑
m=1

[
logP

(
X∗(m) | G∗(m)

)
− logPAIS

(
X∗(m)

)]
.

(C12)

Following Ref. [86], we use values of βk distributed ac-
cording to a beta distribution Beta(α, 1), where βk =(
k
K

)1/α
, such that increasing α controls how skewed

around zero the sequence {βk}k is. For Fig. 3, we fix
α = 0.5 and K = 20 and, for each value of βk, we sam-
ple 1000 graphs from Pβk

(G | X∗), proposing 5N moves
in-between each sample (see Appendix D).

4. Biases of the uncertainty coefficients

When an estimation of the mutual information is bi-
ased, it necessarily follows that an estimation of the re-
sulting uncertainty coefficients will also be biased. Fortu-
nately, we can show that the direction of the bias does not
change either for the reconstructability U(G|X) or the
predictability U(X|G). Suppose that Iε = I(X;G)(1+ε)
is an estimator of the mutual information, where ε ∈ R
is a small bias which can be either positive or negative.
Then, the corresponding estimators of the uncertainty co-
efficients, that we denote Pε andRε for the predictability
and the reconstructability, respectively, are

Pε =
Iε

H(X|G) + Iε
. (C13)

and

Rε =
Iε

H(G)
= U(G|X)(1 + ε) , (C14)

Note that we also suppose that H(G) and H(X|G) are
not affected by the bias ε. For the first expression, we
consider the first-order development of Pε with respect
to ε:

Pε = U(X|G)
[
1 +

(
1− U(X|G)

)
ε−O

(
ε2
)]
. (C15)

Indeed, given that U(X|G) ≥ 0, the leading biased term(
1− U(X|G)

)
ε must have the same sign as ε. The sec-

ond expression clearly shows that the bias of Rε is ex-
actly given by ε. Therefore, both Pε and Rε retain the
direction of bias of Iε.

Appendix D: Markov chain Monte-Carlo algorithm

To sample from the posterior distribution, we use a
Markov chain Monte-Carlo (MCMC) algorithm where,
starting from a graph G, we propose a move, de-
noted Ḡ∗ ← G∗, according to a proposition probability
P (Ḡ∗|G∗), and accept it with the Metropolis-Hastings
probability:

min

(
1, e− log ∆P (G∗|Ḡ∗)

P (Ḡ∗|G∗)

)
, (D1)

where ∆ = P (Ḡ∗)P (X∗|Ḡ∗)
P (G∗)P (X∗|G∗) is the ratio between the joint

probability of the two graphs with X∗. This ratio can
be computed efficiently in O (T ), by keeping in memory
ni,t, the number of inactive neighbors, and mi,t, a num-
ber of active neighbors, for each vertex i at each time t
(see Ref. [39]). Equation (D1) allows to sample from the
posterior distribution P (G|X) without the requirement
to compute the intractable normalization constant P (X).
We collect graph samples at every Nδ moves, where we
fix δ = 5 in all experiments.
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FIG. 5. Numerical evaluation of the phase transition thresholds: (a) Glauber dynamics, (b) SIS dynamics, (c) Cowan dynamics.
For panels (a) and (b), the left axis (green) shows the order parameter (green circles), and the right axis (purple) shows the
susceptibility (purple squares). For panel (c), only the order parameter is shown but for both the forward (right triangle) and
backward (left triangle) branches. The values of the thresholds are indicated by the vertical dashed lines. We used the same
parameters as those of Fig. 4, but increased the number of steps T = 104 to better sample from the dynamics. Each marker
has been average over 48 realizations.

We consider two types of random graphs with differ-
ent constraints: The Erdős-Rényi model and the config-
uration model. Hence, we need two different sampling
propositions to apply our MCMC algorithm, that is one
for each model. We assume that the support of the Erdős-
Rényi model is the set of all simple graphs of N vertices
with E edges. In this case, we consider an hinge flip
move, where an edge (i, j) is sampled uniformly from the
edge set of the graph G and a vertex k is sampled uni-
formly from its vertex set. Then, with probability 1

2 , we
rewire edge (i, j) by either selecting i or j to connect with
k. Note that, because we consider the support GN of G
to be a space of simple graphs, all moves resulting in the
addition of a self-loop or a multiedges are rejected with
probability 1. As a result, the proposition probability is
the same for any move Ḡ∗ ← G∗:

P (Ḡ∗|G∗) =
1

EN
⇒ P (G∗|Ḡ∗)

P (Ḡ∗|G∗) = 1 . (D2)

For the configuration model, we assume that the support
is the set of all loopy multigraphs of N vertices whose
degree sequence is k. In this case, we propose double-edge
swap moves according to the prescription of Ref. [104].
We refer to it for further details.

Appendix E: Numerical estimation of the phase
transition thresholds

We evaluate the phase transition thresholds of each dy-
namics using standard finite-size scaling techniques and
Monte Carlo simulations (see Fig. 5). For Glauber, an
adequate order parameter to visualize the phase transi-
tion is the magnetization M := 1

N

∑
i |2Xi − 1|, where

the absolute value breaks the spin symmetry [81]. In this
process, it is well known that the susceptibility of the
order parameter M , given by

χM =

〈
M2
〉
− 〈M〉2
〈M〉 , (E1)

diverges at the threshold J = Jc of the phase transition
for infinite size systems [81]. In finite systems, χM in-
stead reaches a maximum at J = Jc. We use this fact to
locate Jc and show the corresponding results in Fig. 5(a).

For the SIS dynamics, a similar finite-size scaling anal-
ysis can be carried out, but a suitable order parameter
is rather the average state X̄ := 1

N

∑
iXi. We also use

a definition of the susceptibility that is more convenient
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for spreading processes [19], given in terms of X̄:

χX̄ =

〈
X̄2
〉
−
〈
X̄
〉2〈

X̄
〉 , (E2)

which also diverges at the phase transition threshold λ =
λc for infinite size systems. We show the results for SIS
in Fig. 5(b).

Finally, for the Cowan dynamics, we have a first-order
phase transition characterized by a discontinuity of the
order parameter X̄ in the infinite size limit, and a bistable
region bounded by two thresholds νbc < νfc . To find these
two thresholds, we evaluate the order parameter X̄ for
varying values of the parameter ν, and find the location
where the discontinuity occurs. We obtain the forward
and backward branches by using different initial con-
ditions, where the system is nearly inactive—with one

active vertex—and completely active—with no inactive
vertex—, respectively.

For the Cowan dynamics, it is important to mention
that since we consider relatively small systems (N =
1000 vertices), the bistable region is not clearly defined.
Hence, a system starting in the forward branch can jump
on the backward branch with a non-zero probability.
This is why the expected discontinuity at the threshold
is, in fact, populated (see Fig. 5(c)). This finite-size ef-
fect should be reduced for considering larger systems, but
increasing N is unfortunately too computationally costly
at the moment. Hence, to get a reasonable estimation of
the thresholds in this scenario, we uniformly sample the
set of ν’s, compute

〈
X̄
〉

for all values of ν and find the
point ν∗ corresponding to the maximum gap between two
points. Then, to increase the precision or this estimation,
we zoom on a region centered at ν∗ and do it again, until
it converges. This method provides reasonably accurate
thresholds for our purposes.
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and G. Bianconi, “Universal nonlinear infection ker-
nel from heterogeneous exposure on higher-order net-
works,” Phys. Rev. Lett. 127, 158301 (2021).

[19] S. C. Ferreira, C. Castellano, and R. Pastor-
Satorras, “Epidemic thresholds of the susceptible-
infected-susceptible model on networks: A comparison
of numerical and theoretical results,” Phys. Rev. E 86,
041125 (2012).

[20] C. Castellano and R. Pastor-Satorras, “Relating topo-
logical determinants of complex networks to their spec-
tral properties: Structural and dynamical effects,”
Phys. Rev. X 7, 041024 (2017).

[21] R. Pastor-Satorras and C. Castellano, “Eigenvector lo-
calization in real networks and its implications for epi-
demic spreading,” J. Stat. Phys. 173, 1110–1123 (2018).

[22] L. Hébert-Dufresne, P.-A. Noël, V. Marceau, A. Allard,
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“The effect of a prudent adaptive behaviour on disease
transmission,” Nat. Phys. 12, 1042–1046 (2016).

[92] A. Khaledi-Nasab, J. A. Kromer, and P. A. Tass,
“Long-Lasting Desynchronization of Plastic Neural Net-
works by Random Reset Stimulation,” Front. Physiol.
11, 622620 (2021).

[93] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat,
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