
Received November 1, 2018, accepted December 11, 2018, date of publication January 1, 2019, date of current version February 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890583

Linear-Time Algorithm for Learning Large-Scale
Sparse Graphical Models
SALAR FATTAHI 1, RICHARD Y. ZHANG1, AND SOMAYEH SOJOUDI 2
1Department of Industrial Engineering and Operations Research, University of California at Berkeley, Berkeley, CA 94720, USA
2Departments of Electrical Engineering and Computer Sciences and Mechanical Engineering, University of California at Berkeley, Berkeley,
CA 94720, USA

Corresponding author: Somayeh Sojoudi (sojoudi@berkeley.edu)

This work was supported in part by the ONR Award N00014-18-1-2526, in part by the NSF Award 1808859, and in part by the
AFOSR Award.

ABSTRACT We consider the graphical lasso, a popular optimization problem for learning the sparse
representations of high-dimensional datasets, which is well-known to be computationally expensive for
large-scale problems. A recent line of results has shown–under mild assumptions–that the sparsity pattern of
the graphical lasso estimator can be retrieved by soft-thresholding the sample covariance matrix. Based on
this result, a closed-form solution has been obtained that is optimal when the thresholded sample covariance
matrix has an acyclic structure. In this paper, we prove an extension of this result to generalized graphical
lasso (GGL), where additional sparsity constraints are imposed based on prior knowledge. Furthermore,
we describe a recursive closed-form solution for the problemwhen the thresholded sample covariance matrix
is chordal. By building upon this result, we describe a novel Newton-Conjugate Gradient algorithm that can
efficiently solve the GGLwith general structures. Assuming that the thresholded sample covariance matrix is
sparse with a sparse Cholesky factorization, we prove that the algorithm converges to an ε-accurate solution
inO(n log(1/ε)) time andO(n) memory. The algorithm is highly efficient in practice: we solve instances with
as many as 200 000 variables to 7–9 digits of accuracy in less than an hour on a standard laptop computer
running MATLAB.

INDEX TERMS Optimization, graphical models, numerical algorithms.

I. INTRODUCTION
With the growing size of the datasets collected from real-
world problems, the graphical models have become a pow-
erful statistical tool to extract and represent the underlying
hidden structure of the variables. These models, commonly
known as Markov Random Fields (MRFs), have simple and
intuitive interpretation: The conditional dependencies of dif-
ferent variables are captured via weighted edges in their asso-
ciated graph representation. The application of MRFs span
from computer vision and natural language processing to
economics [10], [24], [26]. One of themost commonly known
classes of MRFs is Gaussian Graphical Models (GGMs).
The applicability of GGM is contingent upon estimating the
covariance or inverse covariance matrix (also known as con-
centration matrix) based on a limited number of independent
and identically distribution (i.i.d.) samples drawn from a
multivariate Gaussian distribution [5], [13], [28], [45].

In particular, we consider the problem of estimating an
n×n covariance matrix6 (or its inverse6−1) of an n-variate
probability distribution from N i.i.d. samples x1, x2, . . . , xN

drawn from the same probability distribution. In many appli-
cations [10], [24], [26], the matrix6−1 is often sparse, mean-
ing that its matrix elements are mostly zero. For Gaussian
distributions, the statistical interpretation of sparsity in 6−1

is that most of the variables are pairwise conditionally inde-
pendent [13].

Imposing sparsity upon 6−1 gives rise to a shrinkage esti-
mator for the inverse covariance matrix. This is particularly
important in high-dimensional settings where n is large, often
significantly larger than the number of samples N � n.
One popular approach is to solve the following `1-regularized
problem

minimize
X�0

trCX − log detX + λ
n∑
i=1

n∑
j=1

|Xi,j|. (1)

Here, C =
1
N

∑N
i=1(xi − x̄)(xi − x̄)T is the sample

covariance matrix with the sample mean x̄ = 1
N

∑N
i=1 xi,

and X is the resulting estimator for 6−1. This approach,
commonly known as the graphical lasso [13], stems from

12658
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7986-3148
https://orcid.org/0000-0001-7177-7712

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

maximum likelihood estimation of the inverse covariance
matrix in the Gaussian setting. For more general distribu-
tions, (1) corresponds to the `1-regularized log-determinant
Bregman divergence, which is a widely used method for
measuring the distance between the true and estimated second
order moments of a probability distribution [35]. The graph-
ical lasso is known to enjoy surprising statistical guarantees
[35], [38], some of which are direct extensions of earlier work
on the classical lasso [22], [31], [32], [43]. Variations on this
theme are to only impose the `1 penalty on the off-diagonal
elements of X , or to place different weights λ on the elements
of the matrix X , as in the classical weighted lasso.

The decision variable is an n × n matrix, so simply fit-
ting all O(n2) variables into memory is already a significant
issue. General-purpose algorithms have either prohibitively
high complexity or slow convergence. In practice, (1) is
solved using problem-specific algorithms. The state-of-the-
art include GLASSO [13], QUIC [20], and its ‘‘big-data’’
extension BIG-QUIC [21]. These algorithms use between
O(n) and O(n3) time and between O(n2) and O(n) memory
per iteration, but the number of iterations needed to converge
to an accurate solution can be very large. Therefore, while the
`1-regularized problem (1) is technically convex, it is con-
sidered intractable for real large-scale datasets. For instance,
graphical lasso is used in gene regulatory networks to infer the
interactions between various genes in response to different
disease processes [29]. The number of genes in humans can
easily reach tens of thousands; a size that is far beyond
the capability of existing solvers. Graphical lasso is also
a popular method for understanding the partial correlations
between different brain regions in response to physical and
mental activities. According to MyConnectome project,1 the
full brain mask can include hundreds of thousands of voxels,
thus making it prohibitive to solve using available numerical
solvers.

This paper is organized as follows. In the rest of this
section, we explain the existing results on graphical lasso and
thresholding, a summary of our contributions, and its con-
nection to state-of-the-art methods. In Section II, we provide
sufficient conditions for the equivalence between generalized
graphical lasso and a soft-thresholding method. Section III is
devoted to the statement of our recursive closed-form solution
for graphical lasso with chordal structures. Our main iterative
algorithm for solving graphical lasso with general structures
is provided in Section IV. SectionVII focuses on the sketch of
the proofs and the technical details of intermediate lemmas.
The simulation results are demonstrated in Section V.
Notations: Let Rn be the set of n × 1 real vectors, and

Sn be the set of n × n real symmetric matrices. (We denote
x ∈ Rn using lower-case, denote X ∈ Sn using upper-case,
and index the (i, j)-th element of X as Xi,j.) We endow Sn with
the usual matrix inner product X • Y = trXY and Frobenius
norm ‖X‖2F = X • X . Let Sn+ ⊂ Sn and Sn++ ⊂ Sn+ be the

1The reader is referred to http://myconnectome.org/wp/ for more
information.

associated sets of positive semidefinite and positive definite
matrices. We will frequently write X � 0 to mean X ∈ Sn+
and write X � 0 to mean X ∈ Sn++. Sets are denoted by
calligraphic letters. Given a sparsity set G, we define SnG ⊆ Sn
as the set of n × n real symmetric matrices whose (i, j)-th
element is zero if (i, j) /∈ G. For a square matrix M , let
diag(M) be a same-size diagonal matrix collecting the diag-
onal elements of M .

A. GRAPHICAL LASSO, SOFT-THRESHOLDING,
AND MDMC
The high computational cost of graphical lasso has inspired
a number of heuristics that are significantly cheaper to
use. One simple idea is to threshold the sample covariance
matrix C : to examine all of its elements and keep only the
ones whosemagnitudes exceed some threshold. Thresholding
can be fast—even for very large-scale datasets—because it
is embarassingly parallel; its quadratic O(n2) total work can
be spread over thousands or millions of parallel processors,
in a GPU or distributed on cloud servers. When the number
of samples N is small, i.e. N � n, thresholding can also be
performed using O(n) memory, by working directly with the
n×N centeredmatrix-of-samples [x1−x̄, x2−x̄, . . . , xN−x̄].
In a recent line of work [12], [27], [40], the simple heuristic

of thresholding was shown to enjoy some surprising guar-
antees. In particular, [40] and [12] proved that when the `1
regularization is imposed over only the off-diagonal elements
of X , under some assumptions, the sparsity pattern of the
associated estimator from the graphical lasso can be recov-
ered by performing a soft-thresholding operation on C , as in

(Cλ)i,j =

Ci,j i = j,
Ci,j − λ Ci,j > λ, i 6= j,
0 |Ci,j| ≤ λ i 6= j,
Ci,j + λ −λ > Ci,j i 6= j,

(2)

and recovering its sparsity set

G = {(i, j) ∈ {1, . . . , n}2 : (Cλ)i,j 6= 0}. (3)

The support graph of G, shown as supp(G), is obtained
by viewing each element (i, j) in G as an edge between
the i-th and j-th vertex in an undirected graph on n nodes.
Moreover, [40] and [12] showed that the estimator X can be
recovered by solving a version of (1) in which the sparsity set
G is explicitly imposed, as in

minimize
X�0

trCλX − log detX

subject to Xi,j = 0 ∀(i, j) /∈ G. (4)

Recovering the exact value of X (and not just its sparsity
pattern) is important because it provides a quantitative mea-
sure of the conditional dependence between variables.
The assumptions needed for the sparsity pattern of the

graphical lasso to be equivalent to that of the thresholding
are hard to check but relatively mild. Indeed, [12] proved that
these assumptions are automatically satisfied whenever λ is

VOLUME 7, 2019 12659

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

sufficiently large relative to the sample covariance matrix.
Their numerical study found ‘‘sufficiently large’’ to be a fairly
loose criterion in practice, particularly in view of the fact
that large values of λ are needed to induce a sufficiently
sparse estimate of 6−1, e.g. with ≈ 10n nonzero elements.
By building upon this result, [12] introduces a closed-form
solution for graphical lasso that is proven to be optimal when
the soft-thresholded sample covariance matrix induces an
acyclic graph.

B. SUMMARY OF CONTRIBUTIONS
The purpose of this paper is three-fold.
Goal 1: We derive an extension of the guarantees derived

in [12], [27], and [40] for a slightly more general version of
the problem that we call generalized graphical lasso (GGL):

X̂ = minimize
X�0

trCX − log detX +
n∑
i=1

n∑
j=i+1

λi,j|Xi,j|

subject to Xi,j = 0 ∀(i, j) /∈ H. (5)

GGL is (1) penalized by a weighted regularization coefficient
λi,j on the off-diagonals, and with a priori sparsity set H
imposed as an additional constraint. We use the sparsity
setH to incorporate prior information on the structure of the
graphical model. For example, if the sample covariance C is
collected over a large-scale graph–such as gene regulatory
networks, social networks, and transportation systems–then
far-away variables can be assumed as pairwise conditionally
independent [7], [19], [34]. Including these neighborhood
relationships into H can regularize the statistical problem,
as well as reduce the numerical cost for a solution.

In Section II, we describe a procedure to transform
GGL (5) into maximum determinant matrix completion
(MDMC) problem–which is the dual of the problem (4)–in
the same style as prior results by [12] for graphical lasso.
More specifically, we soft-threshold the sample covariance C
and then project this matrix onto the sparsity set H. We give
conditions for the resulting sparsity pattern to be equivalent
to the one obtained by solving (5). Furthermore, we prove
that the resulting estimator X can be recovered by solving an
appropriately designed MDMC problem.
Goal 2: Upon converting the GGL to an MDMC problem,

we derive recursive closed-form solutions for the cases where
the soft-thresholded sample covariance has a chordal struc-
ture. More specifically, we show that the optimal solution
of (5) can be obtained using a closed-form recursive formula
when the soft-thresholded sample covariance matrix has a
chordal structure. As previously pointed out, most of the
numerical algorithms require a large number of iterations
(at least O(n)) for solving the graphical lasso and have the
worst-case per-iteration complexity of O(n3). We show that
our proposed recursive formula requires a number of itera-
tions growing linearly in the size of the problem, and that
the complexity of each iteration is dependent on the size
of the maximum clique in its support graph. Therefore, given
the soft-thresholded sample covariance matrix (which can be

obtained while constructing the sample covariance matrix),
the complexity of solving the graphical lasso for sparse and
chordal structures reduces from O(n4) to O(n).
Goal 3: Based on the connection between the GGL and

MDMC problems and the closed-form recursive solution for
chordal structures, we develop an efficient iterative algorithm
for the GGL with nonchordal structures. In particular, instead
of directly solving the GGL, we solve its MDMC counterpart
based on the chordal embedding approach of [2], [3], and [8]
and then recover the optimal solution.We embedGH = G∩H
within a chordal G̃ ⊃ GH to result in a convex optimiza-
tion problem over Sn

G̃
, namely the space of real symmetric

matrices with the sparsity pattern G̃. This way, the constraint
X ∈ Sn

G̃
is implicitly imposed, meaning that we simply

ignore the nonzero elements not in G̃. This will significantly
reduce the number of variables in the problem. After the
embedding step, we solve the GGL (or to be precise, its
associated MDMC) on Sn

G̃
–as opposed to significantly larger

cone of positive definite matrices–using a custom Newton-
CG method.2 Roughly speaking, this will enable us to take
advantage of fast operations on chordal structures, such as
inversion, multiplication, and projection, in order to achieve
a cheap per-iteration complexity in the algorithm, thereby
significantly reducing its running time. The main idea behind
our proposed algorithm is to use an inner conjugate gradi-
ents (CG) loop to solve the Newton subproblem of an outer
Newton’s method. The proposed algorithm has a number of
features designed to exploit problem structure, including the
sparse chordal property of G̃, duality, and the ability for CG
and Newton to converge superlinearly; these are outlined in
Section IV.

Assuming that the chordal embedding is sparse with
|G̃| = O(n) nonzero elements, we prove in Section IV-D, that
in the worst-case, our algorithm converges to an ε-accurate
solution of MDMC (4) in

O(n · log ε−1 · log log ε−1) time and O(n) memory. (6)

fromwhich the optimal solution of the GGL can be efficiently
recovered. Most importantly, the algorithm is highly efficient
in practice. In Section V, we present computation results
on a suite of test cases. Both synthetic and real-life graphs
are considered. Using our approach, we solve sparse inverse
covariance estimation problems as large as n = 200, 000
(more than 20 billion variables in graphical lasso), in less
than an hour on a laptop computer, while the state-of-the-art
methods cannot even start their iterations for these instances.

C. RELATED WORK
1) GRAPHICAL LASSO WITH PRIOR INFORMATION
A number of approaches are available in the literature to
introduce prior information to graphical lasso. The weighted
version of graphical lasso mentioned before is an example.

2The MATLAB source code for our solver can be found at
http://alum.mit.edu/www/ryz

12660 VOLUME 7, 2019

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

[11] introduced a class of graphical lasso in which the true
graphical model is assumed to have a Laplacian structure.
This structure commonly appears in signal and image pro-
cessing [30]. Pathway graphical model is introduced in [17]
which takes into account a priori knowledge on the condi-
tional independence between different variables.

2) ALGORITHMS FOR GRAPHICAL LASSO
Algorithms for graphical lasso are usually based on some
mixture of Newton [33], proximal Newton [20], [21], iterative
thresholding [36], and (block) coordinate descent [13], [41].
All of these suffer fundamentally from the need to keep
track and act on all O(n2) elements in the matrix X decision
variable. Even if the final solution matrix were sparse with
O(n) nonzeros, it is still possible for the algorithm to traverse
through a ‘‘dense region’’ in which the iterate X must be fully
dense. Thresholding heuristics have been proposed to address
issue, but these may adversely affect the outer algorithm and
prevent convergence. It is generally impossible to guarantee
a figure lower than O(n2) time per-iteration, even if the
solution contains only O(n) nonzeros. Most of the algorithms
mentioned above actually have worst-case per-iteration costs
of O(n3).

3) ALGORITHMS FOR MDMC
Our algorithm is inspired by a line of results [2], [3], [8],
[23] for minimizing the log-det penalty on chordal sparsity
patterns, culminating in the CVXOPT package [4]. These
are Newton algorithms that solve the Newton subproblem
by explicitly forming and factoring the fully-dense Newton
matrix. When |G̃| = O(n), these algorithms costO(nm2

+m3)
time andO(m2) memory per iteration, wherem is the number
of edges added to G to yield the chordal G̃. In practice, m is
usually a factor of 0.1 to 20 times n, so these algorithms are
cubicO(n3) time andO(n2) memory. Our algorithm solves the
Newton subproblem iteratively using CG. We prove that CG
requires just O(n) time to compute the Newton direction to
machine precision (see Section IV-D). In practice, CG con-
verges much faster than its worst-case bound, because it is
able to exploit eigenvalue clustering to achieve superlinear
convergence. The preconditioned CG (PCG) algorithm of [8]
is superficially similar to our algorithm, but instead applies
PCG directly to the log-det minimization. Its convergence
is much slower than the companion sparse interior-point
method, as demonstrated by their numerical results.

II. EQUIVALENCE BETWEEN GGL AND THRESHOLDING
Let PH(X) denote the projection operator from Sn onto SnH,
i.e. by setting all Xi,j = 0 if (i, j) /∈ H. Let Cλ be the sample
covariance matrix C individually soft-thresholded by [λi,j],
as in

(Cλ)i,j =

Ci,j i = j,
Ci,j − λi,j Ci,j > λi,j, i 6= j,
0 |Ci,j| ≤ λi,j i 6= j,
Ci,j + λi,j −λi,j > Ci,j i 6= j,

(7)

In this section, we state the conditions for PH(Cλ)—the
projection of the soft-thresholdedmatrixCλ in (7) ontoH—to
have the same sparsity pattern as the GGL estimator X̂ in (5).
For brevity, the technical proofs are omitted; these can be
found in Section VII.

Before we state the exact conditions, we begin by adopting
some definitions and notations from the literature.
Definition 1 [12]: Given a matrix M ∈ Sn, define GM =
{(i, j) : Mi,j 6= 0} as its sparsity pattern. Then, M is called
inverse-consistent if there exists a matrix N ∈ Sn such that

M + N � 0 (8a)

N = 0 ∀(i, j) ∈ GM (8b)

(M + N)−1 ∈ SnGM (8c)

The matrix N is called an inverse-consistent complement of
M and is denoted by M (c). Furthermore, M is called sign-
consistent if for every (i, j) ∈ GM , the (i, j)-th elements of M
and (M +M (c))−1 have opposite signs.
Example 1: Consider the matrix:

M =

1 0.3 0 0
0.3 1 −0.4 0
0 −0.4 1 0.2
0 0 0.2 1

 (9)

We show that M is both inverse- and sign-consistent. Con-
sider the matrix M (c) defined as

M (c)
=

0 0 −0.12 −0.024
0 0 0 −0.08
−0.12 0 0 0
−0.024 −0.08 0 0

 (10)

(M +M (c))−1 can be written as

1
0.91

−0.3
0.91

0 0

−0.3
0.91

1+
0.09
0.91
+

0.16
0.84

0.4
0.84

0

0
0.4
0.84

1+
0.16
0.84
+

0.04
0.96

−0.2
0.96

0 0
−0.2
0.96

1
0.96

(11)

Note that:

• M +M (c) is positive-definite.
• The sparsity pattern of M is the complement of that
of M (c).

• The sparsity pattern of M and (M +M (c))−1 are equiv-
alent.

• The nonzero off-diagonal entries ofM and (M+M (c))−1

have opposite signs.

Therefore, it can be inferred thatM is both inverse- and sign-
consistent, and M (c) is its inverse-consistent complement. �
Definition 2: We take the usual element-wise max-norm

to exclude the diagonal, as in ‖M‖max = maxi 6=j |Mij|, and

VOLUME 7, 2019 12661

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

adopt the β(G, α) function defined with respect to the sparsity
set G and scalar α > 0:

β(G, α) = max
M�0
‖M (c)

‖max (12)

s.t. M ∈ SnG and ‖M‖max ≤ α (13)

Mi,i = 1 ∀i ∈ {1, . . . , n} (14)
We are now ready to state the conditions for soft-

thresholding to be equivalent to GGL.
Theorem 1: Define Cλ as in (7), define CH = PH(Cλ) and

let GH = {(i, j) : (CH)i,j 6= 0} be its sparsity pattern. Assume
that the normalized matrix C̃ = D−1/2CHD−1/2 where
D = diag(CH) satisfies the following conditions:
1) C̃ is positive definite,
2) C̃ is sign-consistent,
3) We have

β
(
GH, ‖C̃‖max

)
≤ min

(k,l)/∈GH

λk,l − |Ck,l |√
Ck,k · Cl,l

(15)

Then, CH has the same sparsity pattern and opposite signs
as X̂ in (5), i.e.

(CH)i,j = 0 ⇐⇒ X̂i,j = 0,

(CH)i,j > 0 ⇐⇒ X̂i,j < 0,

(CH)i,j < 0 ⇐⇒ X̂i,j > 0.
Proof: See Section VII. �

Remark 1: Theorem 1 is an extension to Theorem 12
in [12], which shows that, under similar conditions, the soft-
thresholded sample covariance matrix has the same sparsity
pattern as the optimal solution of graphical lasso. We have
extended these results to the GGL by considering an interme-
diateweighted graphical lasso and showing that, by carefully
selecting the weights of the regularization coefficients, one
can adopt the same arguments in [12] to show the equiva-
lence between the GGL and thresholding; a detailed discus-
sion can be found in Section VII.

Note that the diagonal elements of C̃λ are 1 and its
off-diagonal elements are between −1 and 1. A sparse solu-
tion for GGL requires large regularization coefficients. This
leads to numerous zero elements in C̃ and forces the magni-
tude of the nonzero elements to be small. This means that,
in most instances, C̃ is positive definite or even diagonally
dominant. Furthermore, the next two propositions reveal that
the second and third conditions of Theorem 1 are not restric-
tive when the goal is to recover a sparse solution for the GGL.
Proposition 1: There exists a strictly positive constant

number ζ (GH) such that

β
(
GH, ‖C̃‖max

)
≤ ζ (GH)‖C̃‖2max, (16)

and therefore, Condition 3 of Theorem 1 is satisfied if

ζ (GH)‖C̃‖2max ≤ min
k 6=l

(k,l)/∈GH

λk,l − |Ck,l |√
Ck,k · Cl,l

(17)

Proof: The proof is similar to that of [12, Lemma 13].
The details are omitted for brevity. �

Proposition 2: There exist strictly positive constant num-
bers α0(GH) and γ (GH) such that C̃ is sign-consistent if
‖C̃‖max ≤ α0(GH) and

γ (GH)× ‖C̃‖2max ≤ ‖C̃‖min (18)

where ‖C̃‖min is defined as the minimum absolute value of
the nonzero off-diagonal entries of C̃.

Proof: The proof is similar to that of [12, Lemma 14].
The details are omitted for brevity. �
Both of these propositions suggest that, when λ is

large, i.e., when a sparse solution is sought for the GGL,
‖C̃‖max � 1 and hence, Conditions 2 and 3 of Theorem 1
are satisfied.
Theorem 1 leads to the following corollary, which asserts

that the optimal solution of GGL can be obtained by maxi-
mum determinant matrix completion: computing the matrix
Z � 0 with the largest determinant that ‘‘fills-in’’ the zero
elements of CH = PH(Cλ).
Corollary 1: Suppose that the conditions in Theorem 1 are

satisfied. Define Ŝ as the solution to the following MDMC
problem

Ŝ = maximize
S�0

log det S

subject to Si,j = CH for all (i, j) where (CH)i,j 6= 0

(19)

Then, Ŝ = X̂−1, where X̂ is the solution of (5).
Proof: Under the conditions of Theorem 1, the (i, j)-th

element of the solution X̂i,j has opposite signs to the corre-
sponding element in (CH)i,j, and hence also Ci,j. Replacing
each |Xi,j| term in (5) with sign(X̂i,j)Xi,j = −sign(Ci,j)Xi,j
yields

X̂ = minimize
X�0

trCX −
∑

(i,j)∈G
sign(Ci,j)λi,jXi,j︸ ︷︷ ︸

≡trCλX

− log detX

subject to Xi,j = 0 ∀(i, j) /∈ H . (20)

The constraint X ∈ SnH further makes trCλX =

trCλPH(X) = trPH(Cλ)X ≡ trCHX . Taking the
dual of (20) yields (19); complementary slackness yields
Ŝ = X̂−1. �
Recall that the main goal of the GGL is to promote sparsity

in the estimated inverse covariance matrix. Corollary 1 shows
that, instead of merely identifying the sparsity structure of
the optimal solution using Theorem 1, the soft-thresholded
sample covariance matrix can be further exploited to convert
the GGL to the MDMC problem; this conversion is at the
core of our subsequent algorithms for solving the GGL to
optimality.

III. WARM-UP: CHORDAL STRUCTURES
In this section, we propose a recursive closed-form solution
for the GGLwhen the soft-thresholded sample covariance has
a chordal structure. To this goal, we first review the properties
of sparse and chordal matrices and their connections to the
MDMC problem.

12662 VOLUME 7, 2019

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

A. SPARSE CHOLESKY FACTORIZATION
Consider solving an n× n symmetric positive definite linear
system

Sx = b

by Gaussian elimination. The standard procedure comprises
a factorization step, where S is decomposed into the (unique)
Cholesky factor matrices LDLT , in which D is diagonal and
L is lower-triangular with a unit diagonal, and a substitution
step, where the two triangular systems of linear equations
Ly = b and DLT x = y are solved to yield x.

In the case where S is sparse, the Cholesky factor L is often
also sparse. It is common to store the sparsity pattern of L
in the compressed column storage format: a set of indices
I1, . . . , Id ⊆ {1, . . . , d} in which

Ij = {i ∈ {1, . . . , d} : i > j,Li,j 6= 0}, (21)

encodes the locations of off-diagonal nonzeros in the jth

column of L. (The diagonal elements are not included because
the matrix L has a unit diagonal by definition).
After storage has been allocated and the sparsity structure

has been determined, the numerical values of D and L are
computed using a sparse Cholesky factorization algorithm.
This requires the use of the associated elimination tree T =
{V, E}, which is a rooted tree (or forest) on n vertices, with
edges E = {{1, p(1)}, . . . , {d, p(d)}} defined to connect each
jth vertex to its parent at the p(j)th vertex (except root nodes,
which have ‘‘0’’ as their parent), as in

p(j) =

{
min Ij |Ij| > 0,
0 |Ij| = 0,

(22)

in which min Ij indicates the (numerically) smallest index
in the index set Ij [25]. The elimination tree encodes the
dependency information between different columns of L,
thereby allowing information to be passed without explicitly
forming the matrix.

B. CHORDAL SPARSITY PATTERNS
For a sparsity set S, recall that its support graph, denoted
by supp(S), is defined as a graph with the vertex set
V = {1, 2, ..., n} and the edge set S. Moreover, S is said to
be chordal if its support graph does not contain an induced
cycle with length greater than three.S is said to factor without
fill if every U ∈ SnS can be factored into LDLT such that
L+LT ∈ SnS . IfS factors without fill, then its support graph is
chordal. Conversely, if the support graph is chordal, then there
exists a permutationmatrixQ such thatQUQT factors without
fill for every matrix U ∈ SnS [14]. This permutation matrix Q
is called the perfect elimination ordering of the chordal set S.

C. RECURSIVE SOLUTION OF THE MDMC PROBLEM.
An important application of chordal sparsity patterns is the
efficient solution of the MDMC problem (19). The first-order
optimality conditions for the GGL entails that

PGH (X̂−1) = Cλ (23)

On the other hand, Corollary 1 shows that

Ŝ = X̂−1 (24)

In the case that the sparsity set GH factors without fill,
[2] showed that (23) is actually a linear system of equations
over the Cholesky factor L and D of the solution X̂ = LDLT ;
their numerical values can be explicitly computed using a
recursive formula.

Algorithm 1 [2, Algorithm 4.2]
Input. Matrix Cλ ∈ SnGH

that has a positive definite comple-
tion.
Output. The Cholesky factors L and D of X̂ = LDLT ∈ SnGH
that satisfy PGH (X̂−1) = Cλ.
Algorithm. Iterate over j ∈ {1, 2, . . . , n} in reverse, i.e.
starting from n and ending in 1. For each j, compute Dj,j and
the jth column of L from

LIj,j = −V
−1
j (Cλ)Ij,j,

Dj,j = ((Cλ)j,j + (Cλ)TIj,jLIj,j)
−1

and compute the update matrices

Vi = PTIi∪{i},Ii

[
Cj,j CT

Ij,j
CIj,j Vj

]
PIi∪{i},Ii

for each i satisfying p(i) = j, i.e. each child of j in the
elimination tree.

Note that finding the perfect elimination ordering is
NP-hard in general. However, if GH is chordal, then we may
find the perfect elimination ordering Q in linear time [42],
and apply the above algorithm to the matrix QCHQT , whose
sparsity set does indeed factor without fill.

The algorithm takes n steps, and the jth step requires
a size-|Ij| linear solve and vector-vector product. Define
w = maxj |Ij| − 1, which is commonly referred to as the
treewidth of supp(GH) and has the interpretation of the largest
clique in supp(GH) minus one. Combined, the algorithm has
the time complexityO(w3n). This means that the matrix com-
pletion algorithm is linear-time if the treewidth of supp(GH)
is on the order ofO(1). Note that, for acyclic graphs, we have
w = 1.
Next, we show that if the equivalence between the thresh-

olding method and GGL holds, the optimal solution of the
GGL can be obtained using Algorithm 1.
Proposition 3: Suppose that the conditions in Theorem 1

are satisfied. Then, Algorithm 1 can be used to find X̂ if GH
is chordal.

Proof: According to Algorithm 1, the output satisfies
PGH (X̂−1) = Cλ which is the first-order optimality condition
for the GGL. Together with the uniqueness of the optimal
solution, this concludes the proof. �

Proposition 3 suggests that solving the GGL through its
MDMC counterpart is much easier and can be performed
in linear time using Algorithm 1 when the soft-thresholded

VOLUME 7, 2019 12663

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

sample covariance matrix has a sparse and chordal structure.
Inspired by this observation, in the next section, we propose
a highly efficient iterative algorithm for solving the GGL
with nonchordal soft-thresholded sample covariance matrix,
which is done by converting it to an MDMC problem and
embedding its nonchordal structure within a chordal pattern.
Through this chordal embedding, we show that the number
of iterations of the proposed algorithm is essentially constant,
each with a linear time complexity.

IV. GENERAL CASE: NONCHORDAL STRUCTURES
This section describes our algorithm to solve MDMC (4)
in which the sparsity set G is nonchordal. If we assume
that the input matrix Cλ is sparse, and that sparse Cholesky
factorization is able to solve Cλx = b in O(n) time, then our
algorithm is guaranteed to compute an ε-accurate solution in
O(n log ε−1) time and O(n) memory.
The algorithm is fundamentally a Newton-CG method, i.e.

Newton’s method in which the Newton search directions are
computed using conjugate gradients (CG). It is developed
from four key insights:

1. Chordal embedding is easy via sparse matrix
heuristics. State-of-the-art algorithms for (4) begin by com-
puting a chordal embedding G̃ for G. The optimal chordal
embedding with the fewest number of nonzeros |G̃| is NP-
hard to compute, but a good-enough embedding with O(n)
nonzeros is sufficient for our purposes. Obtaining a good G̃
with |G̃| = O(n) is exactly the same problem as finding
a sparse Cholesky factorization Cλ = LLT with O(n) fill-
in. Using heuristics developed for numerical linear algebra,
we are able to find sparse chordal embeddings for graphs
containing millions of edges and hundreds of thousands of
nodes in seconds.

2. Optimize directly on the sparse matrix cone. Using
log-det barriers for sparse matrix cones [2], [3], [8], [42],
we can optimize directly in the space Sn

G̃
, while ignoring all

matrix elements outside of G̃. If |G̃| = O(n), then only O(n)
decision variables must be explicitly optimized. Moreover,
each function evaluation, gradient evaluation, and matrix-
vector product with the Hessian can be performed in O(n)
time, using the numerical recipes in [2].

3. The dual is easier to solve than the primal. The primal
problem starts with a feasible point X ∈ Sn

G̃
and seeks to

achieve first-order optimality. The dual problem starts with
an infeasible optimal point X /∈ Sn

G̃
satisfying first-order

optimality, and seeks to make it feasible. We will show that
feasibility is easier to achieve than optimality for the GGL,
so the dual problem is easier to solve than the primal.

4. Conjugate gradients (CG) converges in O(1) itera-
tions. Our main result (Theorem 2) bounds the condition
number of the Newton subproblem to be O(1), independent
of the problem dimension n and the current accuracy ε.
It is therefore cheaper to solve this subproblem using CG
to machine precision δmach in O(n log δ−1mach) time than it is
to solve for it directly in O(nm2

+ m3) time, as in existing

methods [2], [3], [8]. Moreover, CG is an optimal Krylov sub-
spacemethod, and as such, it is often able to exploit clustering
in the eigenvalues to converge superlinearly. Finally, comput-
ing the Newton direction to high accuracy further allows the
outer Newton method to also converge quadratically.
The remainder of this section describes each considera-

tion in further detail. We state the algorithm explicitly in
Section IV-E. For the sake of simplicity of notation, we use
G instead of GH–which is the intersection of the sparsity sets
G andH–in the rest of this section.

A. EFFICIENT CHORDAL EMBEDDING
Following [8], we begin by reformulating (4) into a sparse
chordal matrix program

X̂ = minimize trCX − log detX

subject to Xi,j = 0 ∀(i, j) ∈ G̃\G.
X ∈ SnG̃ . (25)

in which G̃ is a chordal embedding for G: a sparsity pattern
G̃ ⊃ G whose support graph contains no induced cycles
greater than three. This can be implemented using standard
algorithms for large-and-sparse linear equations, due to the
following result.
Proposition 4: Let C ∈ SnG be a positive definite matrix.

Compute its unique lower-triangular Cholesky factor L sat-
isfying C = LLT . Ignoring perfect numerical cancellation,
the sparsity set of L + LT is a chordal embedding G̃ ⊃ G.

Proof: The original proof is due to [37]; see
also [42]. �
Note that G̃ can be determined directly from G using a

symbolic Cholesky algorithm, which simulates the steps of
Gaussian elimination using Boolean logic. Moreover, we can
substantially reduce the number of elements added to G by
reordering the columns and rows of C using a fill-reducing
ordering.
Corollary 2: Let5 be a permutation matrix. For the same

C ∈ SnG in Proposition 4, we compute the unique Cholesky
factor satisfying 5C5T

= LLT . Ignoring perfect numerical
cancellation, the sparsity set of 5(L + LT)5T is a chordal
embedding G̃ ⊃ G.

Proof: See [42]. �
The problem of finding the best choice of5 is known as the

fill-minimizing problem, and is NP-complete [44]. However,
good orderings are easily found using heuristics developed
for numerical linear algebra, like minimum degree order-
ing [15] and nested dissection [1], [16]. In fact, [16] proved
that nested dissection is O(log(n)) suboptimal for bounded-
degree graphs, and noted that ‘‘we do not know a class of
graphs for which [nested dissection is suboptimal] by more
than a constant factor.”

If G admits sparse chordal embeddings, then a good-
enough |G̃| = O(n) will usually be found using minimum
degree or nested dissection. In MATLAB, the minimum
degree ordering and symbolic factorization steps can be per-
formed in a few lines of code; see the snippet in Figure 1.

12664 VOLUME 7, 2019

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

FIGURE 1. MATLAB code for chordal embedding. Given a sparse
matrix (C), compute a chordal embedding (Gt) and the number
of added edges (m).

B. LOGARITHMIC BARRIERS FOR SPARSE MATRIX CONES
Define the cone of sparse positive semidefinite matrices K,
and the cone of sparse matrices with positive semidefinite
completions K∗, as the following

K = Sn+ ∩ S
n
G̃, K∗ = {S • X≥0 : S∈SG̃}=PG̃(S

n
+) (26)

Then, (25) can be posed as the primal-dual pair:

arg min
X∈K
{C • X + f (X) : AT (X) = 0}, (27)

arg max
S∈K∗,y∈Rm

{−f∗(S) : S = C − A(y)}, (28)

in which f and f∗ are the ‘‘log-det’’ barrier functions on K
and K∗ as introduced by [2], [3], [8]:

f (X) = − log detX , f∗(S) = −min
X∈K
{S • X − log detX}.

The linear map A : Rm
→ Sn

G̃\G
converts a list of m variables

into the corresponding matrix with the sparsity set G̃\G. The
gradients of f are simply the projections of their usual values
onto Sn

G̃
, as in

∇f (X) = −PG̃(X
−1), ∇

2f (X)[Y] = PG̃(X
−1YX−1).

Given any S ∈ K∗ let X ∈ K be the unique matrix satisfying
PG̃(X

−1) = S. Then, we have

f∗(S) = n+ log detX , (29a)

∇f∗(S) = −X , (29b)

∇
2f∗(S)[Y] = ∇2f (X)−1[Y]. (29c)

Assuming that G̃ is sparse and chordal, all six operations
can be efficiently evaluated in O(n) time and O(n) memory,
using the numerical recipes described in [2].

C. SOLVING THE DUAL PROBLEM
Our algorithm actually solves the dual problem (28), which
can be rewritten as an unconstrained optimization problem

ŷ ≡ arg min
y∈Rm

g(y) ≡ f∗(Cλ − A(y)). (30)

After the solution ŷ is found, we can recover the optimal
estimator for the primal problem via X̂ = −∇f∗(Cλ − A(y)).
The dual problem (28) is easier to solve than the primal (27)
because the origin y = 0 often lies very close to the solution ŷ.
To see this, note that y = 0 produces a candidate estimator

X̃ = −∇f∗(Cλ) that solves the chordal matrix completion
problem

X̃ = argmin{trCλX − log detX : X ∈ SnG̃},

which is a relaxation of the nonchordal problem posed over
SnG since G̃ ⊃ G. As observed by several previous authors [8],
this relaxation is a high quality guess, and X̃ is often ‘‘almost
feasible’’ for the original nonchordal problem posed over SnG ,
as in X̃ ≈ PG(X̃). Simple algebra shows that the gradient ∇g
evaluated at the origin has the Euclidean norm ‖∇g(0)‖ =
‖X̃ − PG(X̃)‖F , so if X̃ ≈ PG(X̃) holds true, then the origin
y = 0 is close to optimal. Starting from this point, we can
expect Newton’s method to rapidly converge at a quadratic
rate.

D. CG CONVERGES IN O(1) ITERATIONS
The most computationally expensive part of Newton’s
method is the solution of the Newton direction 1y via the
m× m system of equations

∇
2g(y)1y = −∇g(y). (31)

The Hessian matrix ∇2g(y) is fully dense, but matrix-vector
products with it cost just O(n) operations. This insight moti-
vates the solution of (31) using an iterative Krylov subspace
method like conjugate gradients (CG). We defer to standard
texts [6] for implementation details, and only note that CG
requires a single matrix-vector product with the Hessian
∇

2g(y) at each iteration, in O(n) time and memory when
|G̃| = O(n). Starting from the origin p = 0, the method
converges to an ε-accurate search direction p satisfying

(p−1y)T∇2g(y)(p−1y) ≤ ε|1yT∇g(y)|

in at most ⌈√
κg log(2/ε)

⌉
CG iterations, (32)

where κg = ‖∇2g(y)‖‖∇2g(y)−1‖ is the condition number
of the Hessian matrix [18], [39]. In many important convex
optimization problems, the condition number κg grows like
O(1/ε) or O(1/ε2) as the outer Newton iterates approach
an ε-neighborhood of the true solution. As a consequence,
Newton-CG methods typically require O(1/

√
ε) or O(1/ε)

CG iterations.
It is therefore surprising that we are able to bound κg

globally for the MDMC problem, over the entire trajectory
of Newton’s method. Below, we state our main result, which
asserts that κg depends polynomially on the problem data
and the quality of the initial point, but is independent of
the problem dimension n and the accuracy of the current
iterate ε.
Theorem 2: The condition number of the Hessian matrix

is bound

cond (∇2g(yk)) ≤
λmax(ATA)
λmin(ATA)

(
2+

φ2maxλmax(X0)

λmin(X̂)

)2

VOLUME 7, 2019 12665

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

where:
- φmax = g(y0)− g(ŷ) is the initial infeasibility,
- A = [vecA1, . . . , vecAm] is the vectorized data matrix,
- X0 = −∇f∗(C − A(y0)) satisfies PG̃(X

−1
0) = C − A(y0),

X0 ∈ K,
- and X̂ = −∇f∗(C − A(ŷ)) satisfies PG̃(X̂

−1) = C − A(ŷ),
X̂ ∈ K.

Proof: See Section VII. �
Note that, without loss of generality, we assume

λmin(ATA) > 0; otherwise, the linearly-dependent rows of
AT can be eliminated until the reduced AT is full row-rank.
Applying Theorem 2 to (32) shows that CG solves each
Newton subproblem to ε-accuracy in O(log ε−1) iterations.
Multiplying this figure by theO(log log ε−1) Newton steps to
converge yields a global iteration bound of

O(log ε−1 · log log ε−1) ≈ O(1) CG iterations.

Multiplying this by the O(n) cost of each CG iteration proves
the claimed time complexity in (6). The associated memory
complexity isO(n), i.e. the number of decision variables in G̃.

In practice, CG typically converges much faster than this
worst-case bound, due to its ability to exploit the clustering
of eigenvalues in ∇2g(y); see [18], [39]. Moreover, accurate
Newton directions are only needed to guarantee quadratic
convergence close to the solution. During the initial Newton
steps, we may loosen the error tolerance for CG for a signif-
icant speed-up. Inexact Newton steps can be used to obtain a
speed-up of a factor of 2-3.

E. THE FULL ALGORITHM
In this subsection, we assemble the previously-presented
steps and summarize the full algorithm. To begin with,
we compute a chordal embedding G̃ for the sparsity pattern G
of Cλ, using the code snippet in Figure 1. We use the embed-
ding to reformulate (4) as (25), and solve the unconstrained
problem ŷ = miny g(y) defined in (30), using Newton’s
method

yk+1 = yk + αk1yk ,

1yk ≡ −∇2g(yk)−1∇g(yk)

starting at the origin y0 = 0. The function value g(y), gradient
∇g(y) and Hessian matrix-vector products are all evaluated
using the numerical recipes described by [2].

At each k-th Newton step, we compute the Newton search
direction1yk using conjugate gradients. A loose tolerance is
used when the Newton decrement δk = |1yTk ∇g(yk)| is large,
and a tight tolerance is used when the decrement is small,
implying that the iterate is close to the true solution.

Once a Newton direction 1yk is computed with a suffi-
ciently large Newton decrement δk , we use a backtracking
line search to determine the step-size αk . In other words,
we select the first instance of the sequence {1, ρ, ρ2, ρ3, . . . }
that satisfies the Armijo–Goldstein condition

g(y+ α1y) ≤ g(y)+ γα1yT∇g(y),

in which γ ∈ (0, 0.5) and ρ ∈ (0, 1) are line search
parameters. Our implementation used γ = 0.01 and ρ =
0.5. We complete the step and repeat the process, until
convergence.

We terminate the outer Newton’s method if the Newton
decrement δk falls below a threshold. This implies either
that the solution has been reached or that CG is not con-
verging to a good enough 1yk to make significant progress.
The associated estimator for 6−1 is recovered by evaluating
X̂ = −∇f∗(Cλ − A(ŷ)).

V. NUMERICAL RESULTS
Finally, we benchmark our algorithm3 against QUIC [20],
commonly considered the fastest solver for graphi-
cal lasso or RGL.4 (Another widely-used algorithm is
GLASSO [13], but we found it to be significantly slower than
QUIC.) We consider three case studies:

1) Banded graphs without thresholding, to verify the
claimed O(n) complexity of our MDMC algorithm on
problems with a nearly-banded structure.

2) Banded graphs, to verify the ability of our threshold-
MDMC procedure to recover the correct GL solution
on problems with a nearly-banded structure.

3) Real-life Graphs, to benchmark the full threshold-
MDMC procedure on graphs collected from real-life
applications.

Experiments 1 and 3 are performed on a laptop computer with
an Intel Core i7 quad-core 2.50 GHz CPU and 16GB RAM.
Experiment 2 is performed on a desktop workstation with a
slower Intel Core CPU, but 48 GB of RAM. The reported
results are based on a serial implementation in MATLAB-
R2017b. Both our Newton decrement threshold and QUIC’s
convergence threshold are 10−7.

We implemented the soft-thresholding set (7) as a serial
routine that uses O(n) memory by taking the n × N matrix-
of-samples X = [x1, x2, . . . , xN] satisfying C = 1

NXX
T as

input. The routine implicitly partitions C into submatrices of
size 4000 × 4000, and iterates over the submatrices one at a
time. For each submatrix, it explicitly forms the submatrix,
thresholds it using dense linear algebra, and then stores the
result as a sparse matrix.

After thresholding, we use our Newton-CG algorithm to
solve the MDMC problem with respected to the thresholded
matrix Cλ. We measure the quality of the resulting X by the
following two metrics:

relative optimality gap ≡
‖PG(Cλ − X−1)‖F

‖Cλ‖F
, (33)

relative infeasibility ≡
‖PG(X)− X‖F
‖X‖F

, (34)

where G is the sparsity pattern associated with Cλ. If X is an
exact solution to MDMC (4), then the first-order optimality

3The MATLAB source code for our solver can be found at
http://alum.mit.edu/www/ryz

4QUIC was taken from http://bigdata.ices.utexas.edu/software/1035/

12666 VOLUME 7, 2019

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

condition would read PG(X−1) = Cλ while the associated
feasibility condition X ∈ SnG would imply PG(X) = X .
In this case, both the relative optimality gap and the relative
infeasibility are identically zero.

A. CASE STUDY 1: BANDED PATTERNS WITHOUT
THRESHOLDING
The first case study aims to verify the claimedO(n) complex-
ity of our algorithm for MDMC. Here, we avoid the proposed
thresholding step, and focus solely on the MDMC (4) prob-
lem. Each sparsity pattern G is a corrupted banded matrices
with the bandwidth 101. The off-diagonal nonzero elements
of C are selected from the uniform distribution in [−2, 0)
and then corrupted to zero with probability 0.3. The diagonal
elements are fixed to 5. Our numerical experiments fix the
bandwidth and vary the number of variables n from 1,000 to
200,000. A time limit of 2 hours is set for both algorithms.

Figure 2a compares the running time of both algorithms.
A log-log regression results in an empirical time complexity
of O(n1.1) for our algorithm, and O(n2) for QUIC. The extra
0.1 in the exponent is most likely an artifact of our MATLAB
implementation. In either case, QUIC’s quadratic complexity
limits it to n = 1.5 × 104. By contrast, our algorithm solves
an instance with n = 2 × 105 in less than 33 minutes. The
resulting solutions are extremely accurate, with optimality
and feasibility gaps of less than 10−16 and 10−7, respectively.

B. CASE STUDY 2: BANDED PATTERNS
In the second case study, we repeat our first experiment over
banded patterns, but also include the initial thresholding step.
We restrict our attention to the RGL version of the problem,
meaning that the bandwidth is known ahead of time, but the
exact location of the nonzeros are unknown. The quality of an
estimator X̂ compared to the true inverse covariance matrix
2 ≡ 6−1 is measured using the following three standard
metrics:

relative Frobenius loss ≡ ‖X̂ −2‖F/‖2‖F , (35)

TPR ≡
|{(i, j) : i 6= j, X̂i,j 6= 0,2i,j 6= 0}|
|{(i, j) : i 6= j,2i,j 6= 0}|

, (36)

FPR ≡
|{(i, j) : i 6= j, X̂i,j 6= 0,2i,j = 0}|
|{(i, j) : i 6= j,2i,j = 0}|

. (37)

In words, the relative Frobenius loss is the normalized error
of the estimator. The true positive rate (TPR) is a measure of
sensitivity, and is defined as the proportion of actual nonze-
ros that are correctly identified as such. The false positive
rate (FPR) is a measure of specificity, and is defined as
the portion of zero elements that are misidentified as being
nonzero.

The results are shown in Table 1. The threshold-MDMC
procedure is able to achieve the same statistical recovery
properties as QUIC in a fraction of the solution time. In larger
instances, both methods are able to almost exactly recover the
true sparsity pattern. However, only our procedure continues
to work with n up to 200000.

FIGURE 2. CPU time Newton-CG vs QUIC: (a) case study 1; (b) case
study 2.

C. CASE STUDY 3: REAL-LIFE GRAPHS
The third case study aims to benchmark the full thresholding-
MDMC procedure for sparse inverse covariance estima-
tion on real-life graphs. The actual graphs (i.e. the sparsity
patterns) for 6−1 are chosen from SuiteSparse Matrix
Collection [9]—a publicly available dataset for large-and-
sparse matrices collected from real-world applications. Our
chosen graphs vary in size from n = 3918 to n = 201062, and
are taken from applications in chemical processes, material
science, graph problems, optimal control and model reduc-
tion, thermal processes and circuit simulations.

For each sparsity pattern G, we design a corresponding
6−1 as follows. For each (i, j) ∈ G, we select (6−1)i,j =
(6−1)j,i from the uniform distribution in [−1, 1], and then
corrupt it to zero with probability 0.3. Then, we set each
diagonal to (6−1)i,i = 1 +

∑
j |(6

−1)i,j|. Using this 6,
we generate N = 5000 samples i.i.d. as x1, . . . , xN ∼
N (0, 6). This results in a sample covariance matrix C =
1
N

∑N
i=1 xix

T
i .

VOLUME 7, 2019 12667

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

TABLE 1. Details of case study 2. Here, ‘‘n’’ is the size of the covariance matrix, ‘‘m’’ is the number of edges added to make its sparsity graph chordal,
‘‘`F ’’ is the relative Frobenius loss, ‘‘TPR’’ is the true positive rate, ‘‘FPR’’ is the false positive rate, ‘‘sec’’ is the running time in seconds, ‘‘gap’’ is the
relative optimality gap, ‘‘infeas’’ is the relative infeasibility, ‘‘diff. gap’’ is the difference in duality gaps for the two different methods, and ‘‘speed-up’’ is
the fact speed-up over QUIC achieved by our algorithm.

TABLE 2. Details of case study 3. Here, ‘‘n’’ is the size of the covariance matrix, ‘‘m’’ is the number of edges added to make its sparsity graph chordal,
‘‘sec’’ is the running time in seconds, ‘‘gap’’ is the relative optimality gap, ‘‘feas’’ is the relative infeasibility, ‘‘diff. gap’’ is the difference in duality gaps for
the two different methods, and ‘‘speed-up’’ is the fact speed-up over QUIC achieved by our algorithm.

We solve graphical lasso and RGL with the C described
above using our proposed soft-thresholding-MDMC algo-
rithm and QUIC, in order to estimate 6−1. In the case of
RGL, we assume that the graph G is known a priori, while
noting that 30% of the elements of 6−1 have been corrupted
to zero. Our goal here is to discover the location of these
corrupted elements. In all of our simulations, the threshold
λ is set so that the number of nonzero elements in the the
estimator is roughly the same as the ground truth. We limit
both algorithms to 3 hours of CPU time.

Figure 2b compares the CPU time of the two algorithms for
this case study; the specific details are provided in Table 2.
A log-log regression results in an empirical time complexity
of O(n1.64) and O(n1.55) for graphical lasso and RGL using
our algorithm, and O(n2.46) and O(n2.52) for the same using
QUIC. The exponents of our algorithm are ≥ 1 due to the
initial soft-thresholding step, which is quadratic-time on a
serial computer, but ≤ 2 because the overall procedure is
dominated by the solution of the MDMC. Both algorithms
solve graphs with n ≤ 1.5 × 104 within the allotted time

limit, though our algorithm is 11 times faster on average. Only
our algorithm is able to solve the estimation problem with
n ≈ 2× 105 in a little more than an hour.
To check whether thresholding-MDMC really does solve

graphical lasso and RGL, we substitute the two sets of
estimators back into their original problems (1) and (5).
The corresponding objective values have a relative
difference ≤ 4 × 10−4, suggesting that both sets of esti-
mators are about equally optimal. This observation verifies
our claims in Theorem 1 and Corollary 1 about (1) and (5):
thresholding-MDMC does indeed solve graphical lasso
and RGL.

VI. CONCLUSIONS
Graphical lasso is a widely-used approach for estimating a
covariance matrix with a sparse inverse from limited samples.
In this paper, we consider a slightly more general formu-
lation called restricted graphical lasso (RGL), which addi-
tionally enforces a prior sparsity pattern to the estimation.
We describe an efficient approach that substantially reduces

12668 VOLUME 7, 2019

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

the cost of solving RGL: 1) soft-thresholding the sample
covariance matrix and projecting onto the prior pattern, to
recover the estimator’s sparsity pattern; and 2) solving a
maximum determinant matrix completion (MDMC) prob-
lem, to recover the estimator’s numerical values. The first
step is quadratic O(n2) time and memory but embarrassingly
parallelizable. If the resulting sparsity pattern is sparse and
chordal, then the second step can be solved in closed-form.
But more generally, if the resulting sparsity pattern has a
sparse chordal embedding, then the second step can be per-
formed using the Newton-CG algorithm described in this
paper. In either case, the complexity of this second step is
linearO(n) time andmemory.We tested the algorithm on both
synthetic and real-life data, solving instances with as many as
200,000 variables to 7-9 digits of accuracy within an hour on
a standard laptop computer. Our algorithm achieves the same
Frobenius loss, true positive rate, and false positive rate as
the existing state-of-the-art, but using just a fraction of the
computation time.

VII. PROOFS
In this section, we present the technical proofs of Theorems 1
and 2. To this goal, we need a number of lemmas.

A. PROOF OF THEOREM 1
To prove Theorem 1, first we consider the optimality (KKT)
conditions for the unique solution of the GGL with SnH = Sn.
Lemma 1: X̂ is the optimal solution of the GGL with

SnH = Sn if and only if it satisfies the following conditions
for every i, j ∈ {1, 2, ..., n}:

(X̂)−1i,j = Ci,j if i = j (38a)

(X̂)−1i,j = Ci,j + λi,j × sign(X̂i,j) if X̂i,j 6= 0 (38b)

Ci,j − λi,j ≤ (X̂)−1i,j ≤ 6i,j + λi,j if X̂i,j = 0 (38c)
Proof: The proof is straightforward and omitted for

brevity. �
Now, consider the following optimization:

minimize
X�0

tr C̃X − log detX

+

∑
(i,j)∈H

λ̃i,j|Xi,j| + 2
∑

(i,j)/∈H
|Xi,j| (39)

where

C̃i,j =
Ci,j√

Ci,i × Cj,j
λ̃i,j =

λi,j√
Ci,i × Cj,j

(40)

Let X̃ denotes the optimal solution of (39) and recall
D = diag(C). The following lemma relates X̃ to X̂ .
Lemma 2: We have X̂ = D−1/2X̃D−1/2.
Proof: To prove this lemma, we define an intermediate

optimization problem as

min
X∈Sn+

f (X) = trCX − log detX +
∑

(i,j)∈H
λi,j|Xi,j|

+ 2max
k
{Ck,k}

∑
(i,j)/∈H

|Xi,j| (41)

Denote X] as the optimal solution for (41). First, we show
that X] = X̂ . Trivially, X̂ is a feasible solution for (41) and
hence f (X]) ≤ f (X̂). Now, we prove that X] is a feasible
solution for the GGL. To this goal, we show that X]i,j = 0 for

every (i, j) /∈ H. By contradiction, suppose X]i,j 6= 0 for some

(i, j) /∈ H. Note that, due to the positive definiteness of X]−1,
we have

(X])−1i,i × (X])−1j,j − ((X])−1i,j)
2 > 0 (42)

Now, based on Lemma 1, one can write

(X])−1ij = Ci,j + 2max
k
{Ck,k} × sign(X]i,j) (43)

Considering the fact that C � 0, we have |Ci,j| ≤
maxk{Ck,k}. Together with (43), this implies that |(X])−1i,j | ≥
maxk{Ck,k}. Furthermore, due to Lemma 1, one can write
(X])−1i,i = Ci,i and (X])−1j,j = Cj,j. This leads to

(X])−1i,i × (X])−1j,j − ((X])−1i,j)
2
= Ci,i × Cj,j − (max

k
{Ck,k))2

≤ 0 (44)

contradicting (42). Therefore, X] is a feasible solution for the
GGL. This implies that f (X∗) = f (X]). Due to the uniqueness
of the solution of (41), we have X∗ = X]. Now, note that (41)
can be reformulated as

min
X∈Sn+

tr C̃D1/2XD1/2
− log detX

+

∑
(i,j)∈H

λi,j|Xi,j| + 2max
k
{Ck,k}

∑
(i,j)/∈H

|Xi,j| (45)

Upon defining

X̃ = D1/2XD1/2 (46)

and following some algebra, one can verify that 41 is equiv-
alent to

min
X̃∈Sn+

tr C̃X̃ − log det X̃

+

∑
(i,j)∈H

λ̃i,j|X̃i,j| + 2
∑

(i,j)/∈H
|X̃i,j| + log det(D) (47)

Dropping the constant term in (47) gives rise to the opti-
mization (39). Therefore, X̂ = D−1/2X̃D−1/2 holds in light
of 46. �
Proof of Theorem 1:Define C̃λ = D−1/2CλD−1/2 and note

that, due to Lemma 2, C̃λ and X̃ have the same signed sparsity
pattern as Cλ and X̂ , respectively. Therefore, it suffices to
show that the signed sparsity structures of C̃λ and X̃ are
the same, which can be done by analyzing the optimization
problem (39) and its connection to the GGL (explained in
Lemma 2). Since (39) is the weighted analog of graphical
lasso, the arguments made in the proof of Theorem 12 in [12]
can be adopted to prove Theorem 1. The details are omitted
for brevity. �

VOLUME 7, 2019 12669

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

B. PROOF OF THEOREM 2
Recall the definition of the cone K and its dual K∗ as in 26.
Being dual cones, K and K∗ satisfy Farkas’ lemma.
Lemma 3 (Farkas’ Lemma): Given an arbitrary Y ∈ SnV
1) Either Y ∈ K, or there exists a separating hyperplane

S ∈ K∗ such that S • Y < 0.
2) Either Y ∈ K∗, or there exists a separating hyperplane

X ∈ K such that Y • X < 0.
From the definition of g(y) in (30) and the relations (29),

we see that the Hessian matrix ∇2g(y) can be written it terms
of the Hessian ∇2f (X) and the unique X ∈ K satisfying
PG̃(X

−1) = C − A(y), as in

∇
2g(y) = AT (∇2f (X)−1[A(y)]) = AT

∇
2f (X)−1A,

in which A = [vecA1, . . . , vecAm]. Moreover, using the
theory of Kronecker products, we can write

vec∇2f (X)[Y] = QT (X−1 ⊗ X−1)QvecY

in which the 1
2n(n + 1) × |G̃| matrix Q is the orthogonal

basis matrix of Sn
G̃
in Sn. Because of this, we see that the

eigenvalues of the Hessian ∇2g(y) are bound

λmin(ATA)λ2min(X
−1) ≤ λi(∇2g(y))

≤ λmax(ATA)λ2max(X
−1), (48)

and therefore its condition number is bound by the eigenval-
ues of X

cond (∇2g(y)) ≤
λmax(ATA)
λmin(ATA)

(
λmax(X)
λmin(X)

)2

. (49)

Consequentlymost of our effort will be expended in bounding
the eigenvalues of X .

To simplify notation, we will write y0, ŷ, and y as the initial
point, the solution, and any k-th iterate. From this, we define
S0, Ŝ, S, with each satisfying S = C − A(y), and X0, X̂ ,
and X , the points in K each satisfying PV (X−1) = S.

Our goal is to bound the extremal eigenvalues of X . To do
this, we make two observations. The first is that the sequence
generated by Newton’s method is monotonously decreasing,
as in

g(ŷ) ≤ g(y) ≤ g(y0).

Evaluating each f∗(S) as n + log detX yields our first key
inequality

log det X̂ ≤ log detX ≤ log detX0. (50)

Our second observation is the fact that every Newton direc-
tion 1y points away from the boundary of dom g.
Lemma 4 (Newton Direction Is Positive Definite): Given

y ∈ dom g, define the Newton direction 1y =

−∇
2g(y)−1∇g(y). Then, 1S = −A(1y) ∈ K∗.
Proof: The Newton direction is explicitly written as

1y = −[AT
∇f∗(X)−1A]−1AT vecX

and 1S = −A(1y). For any W ∈ K, we have by
substituting

W •1S = (vecW)T (vec1S)

= (vecW)T (A[AT
∇

2f (X)−1A]−1AT)vecX

≥ c1(vecW)T (vecX) = c1(W • X)

≥ c2trW > 0

where c1 = σmin(A[AT
∇

2f (X)−1A]−1AT) ≥ cond−1

(ATA)λ−2max(X) > 0 and c2 = λmin(X) > 0. Since there can
be no separating hyperplaneW •1S < 0, we have1S ∈ K∗
by Farkas’ lemma. �
Finally, we introduce the following function, which often

appears in the study of interior-point methods

φ(M) = trM − log detM − n ≥ 0,

and is well-known to provide a control on the arthmetic and
geometric means of the eigenvalues of M . Indeed, the func-
tion attains its unique minimum at φ(I) = 0, and it is
nonnegative precisely because of the arithmetic-geometric
inequality. Let us show that it can also bound the arithmetic-
geometric means of the extremal eigenvalues of M .
Lemma 5: Denote the n eigevalues of M as λ1 ≥ · · · ≥ λn.

Then

φ ≥ λ1 + λn − 2
√
λ1λn = (

√
λ1 −

√
λn)2.

Proof: Noting that x − log x − 1 ≥ 0 for all x ≥ 0,
we have

φ(M) =
n∑
i=1

(λi − log λi − 1)

≥ (λ1 − log λ1 − 1)+ (λn − log λn − 1)

= λ1 + λn − 2 log
√
λ1λn − 2

= λ1 + λn − 2
√
λ1λn + 2(

√
λ1λn − log

√
λ1λn − 1)

≥ λ1 + λn − 2
√
λ1λn.

Completing the square yields φ(M) ≥ (
√
λ1 −

√
λn)2. �

The following upper-bounds are the specific to our
problem, and are the key to our intended final claim.
Lemma 6: Define the initial suboptimality φmax =

log detX0 − log det X̂ . Then we have

φ(X̂X−1) ≤ φmax, φ(XX−10) ≤ φmax.

Proof: To prove the first inequality, we take first-order
optimality at the optimal point ŷ

∇g(ŷ) = AT (X̂) = 0.

Noting that X̂ ∈ SnV , we further have

X−1 • X̂ = PV (X−1) • X̂ = [C − A(y)] • X̂ = C • X̂

− yT AT (X̂)︸ ︷︷ ︸
=0

= [PV (X̂−1)+ A(ŷ)] • X̂

= PV (X̂−1) • X̂ = n

12670 VOLUME 7, 2019

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

and hence φ(X−1X̂) has the value of the suboptimality at X ,
which is bound by the initial suboptimality in (50):

φ(X−1X̂) = X−1 • X̂︸ ︷︷ ︸
n

− log detX−1X̂ − n

= log detX − log det X̂

≤ log detX0 − log det X̂ = φmax.

We begin with the same steps to prove the second inequality:

X−10 • X = PV (X
−1
0) • X = [C − A(y0)] • X

= [PV (X−1)+ A(ŷ)] • X − A(y0) • X

= n+ A(y− y0) • X .

Now, observe that we have arrived at y by taking Newton
steps y = y0 +

∑k
j=1 αj1yj, and that each Newton direction

points away from the boundary of the feasible set, as in
−A(1y) ∈ K∗ (See Lemma 4). Since X ∈ K, we must always
have

X • A(y− y0) = αj
k∑
j=1

X • A(1yj)

= −αj

k∑
j=1

X •1S ≤ 0.

Substituting yields the second bound and applying (50) yields

φ(X−10 X) = X−10 • X − log detX−10 X − n

= (n+ A(y− y0) • X − log detX−10 X)− n

= log detX0X−1︸ ︷︷ ︸
≤φmax

+A(y− y0) • X︸ ︷︷ ︸
≤0

≤ φmax.

�
Using the two upper-bounds to bound the eigenvalues of

their arguments is enough to derive a condition number bound
on X , which immediately translates into a condition number
bound on ∇2g(y).
Proof of Theorem 2: Here, we will prove

λmax(X)
λmin(X)

≤ 2+
φ2maxλmax(X0)

λmin(X̂)
,

which yields the desired condition number bound on ∇2g(y)
by substituting into (49). Writing λ1 = λmax(X) and λn =
λmin(X), we have from the two lemmas above:

φmax ≥ λmin(X̂)(
√
λ−1n −

√
λ−11)2 > 0,

φmax ≥ λmin(X
−1
0)(

√
λ1 −

√
λn)2 > 0.

Multiplying the two upper-bounds and substituing
λmin(X

−1
0) = 1/λmax(X0) yields

φ2maxλmax(X0)

λmin(X̂)
≥

(√
λ1

λn
−

√
λn

λ1

)2

=
λ1

λn
+
λn

λ1
− 2.

Finally, bounding λn/λ1 ≥ 0 yields the desired bound. �

REFERENCES
[1] A. Agrawal, P. Klein, and R. Ravi, ‘‘Cutting down on fill using nested

dissection: Provably good elimination orderings,’’ in Graph Theory and
Sparse Matrix Computation. New York, NY, USA: Springer, 1993,
pp. 31–55.

[2] M. S. Andersen, J. Dahl, and L. Vandenberghe, ‘‘Logarithmic barriers for
sparse matrix cones,’’ Optim. Methods Softw., vol. 28, no. 3, pp. 396–423,
2013.

[3] M. S. Andersen, J. Dahl, and L. Vandenberghe, ‘‘Implementation of
nonsymmetric interior-point methods for linear optimization over sparse
matrix cones,’’ Math. Program. Comput., vol. 2, nos. 3–4, pp. 167–201,
2010.

[4] M. S. Andersen, J. Dahl, and L. Vandenberghe. (2013).CVXOPT: A Python
Package for Convex Optimization. [Online]. Available: https://cvxopt.org

[5] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, ‘‘Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary
data,’’ J. Mach. Learn. Res., vol. 9, pp. 485–516, Mar. 2008.

[6] R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, vol. 43. Philadelphia, PA, USA: SIAM, 1994.

[7] D. Croft et al., ‘‘Reactome: A database of reactions, pathways and
biological processes,’’ Nucleic Acids Res., vol. 39, pp. D691–D697,
Nov. 2010.

[8] J. Dahl, L. Vandenberghe, and V. Roychowdhury, ‘‘Covariance selection
for nonchordal graphs via chordal embedding,’’ Optim. Methods Softw.,
vol. 23, no. 4, pp. 501–520, 2008.

[9] T. A. Davis and Y. Hu, ‘‘The University of Florida sparse matrix collec-
tion,’’ ACM Trans. Math. Softw., vol. 38, no. 1, p. 1, 2011.

[10] S. N. Durlauf, ‘‘Nonergodic economic growth,’’ Rev. Econ. Stud., vol. 60,
no. 2, pp. 349–366, 1993.

[11] H. E. Egilmez, E. Pavez, and A. Ortega, ‘‘Graph learning from data under
Laplacian and structural constraints,’’ IEEE J. Sel. Topics Signal Process.,
vol. 11, no. 6, pp. 825–841, Sep. 2017.

[12] S. Fattahi and S. Sojoudi. (2017). ‘‘Graphical lasso and thresh-
olding: Equivalence and closed-form solutions.’’ [Online]. Available:
https://arxiv.org/abs/1708.09479

[13] J. Friedman, T. Hastie, and R. Tibshirani, ‘‘Sparse inverse covariance esti-
mation with the graphical lasso,’’ Biostatistics, vol. 9, no. 3, pp. 432–441,
Jul. 2008.

[14] D. Fulkerson and O. Gross, ‘‘Incidence matrices and interval graphs,’’
Pacific J. Math., vol. 15, no. 3, pp. 835–855, 1965.

[15] A. George and J. W. Liu, ‘‘The evolution of the minimum degree ordering
algorithm,’’ SIAM Rev., vol. 31, no. 1, pp. 1–19, 1989.

[16] J. R. Gilbert, ‘‘Some nested dissection order is nearly optimal,’’ Inf. Pro-
cess. Lett., vol. 26, no. 6, pp. 325–328, 1988.

[17] M. Grechkin, M. Fazel, D. M. Witten, and S.-I. Lee, ‘‘Pathway graphical
lasso,’’ in Proc. AAAI, 2015, pp. 2617–2623.

[18] A. Greenbaum, Iterative Methods for Solving Linear Systems, vol. 17.
Philadelphia, PA, USA: SIAM, 1997.

[19] J. Honorio, D. Samaras, N. Paragios, R. Goldstein, and L. E. Ortiz, ‘‘Sparse
and locally constant Gaussian graphical models,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2009, pp. 745–753.

[20] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar, ‘‘QUIC:
Quadratic approximation for sparse inverse covariance estimation,’’
J. Mach. Learn. Res., vol. 15, no. 1, pp. 2911–2947, Oct. 2014.

[21] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. K. Ravikumar, and
R. Poldrack, ‘‘BIG & QUIC: Sparse inverse covariance estimation for
a million variables,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 3165–3173.

[22] J. Huang and T. Zhang, ‘‘The benefit of group sparsity,’’ Ann. Statist.,
vol. 38, no. 4, pp. 1978–2004, 2010.

[23] J. Li, M. S. Andersen, and L. Vandenberghe, ‘‘Inexact proximal Newton
methods for self-concordant functions,’’Math.MethodsOper. Res., vol. 85,
no. 1, pp. 19–41, 2017.

[24] S. Z. Li, ‘‘Markov random field models in computer vision,’’ in Proc. Eur.
Conf. Comput. Vis., 1994, pp. 351–370.

[25] J. W. Liu, ‘‘The role of elimination trees in sparse factorization,’’ SIAM J.
Matrix Anal. Appl., vol. 11, no. 1, pp. 134–172, 1990.

[26] C. D. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing. Cambridge, MA, USA: MIT Press, 1999.

[27] R. Mazumder and T. Hastie, ‘‘Exact covariance thresholding into con-
nected components for large-scale graphical lasso,’’ J. Mach. Learn. Res.,
vol. 13, pp. 781–794, Mar. 2012.

VOLUME 7, 2019 12671

S. Fattahi et al.: Linear-Time Algorithm for Learning Large-Scale Sparse Graphical Models

[28] N. Meinshausen and P. Bühlmann, ‘‘High-dimensional graphs and variable
selection with the lasso,’’ Ann. Statist., vol. 34, no. 3, pp. 1436–1462,
2006.

[29] P. Menéndez, Y. A. Kourmpetis, C. J. F. ter Braak, and F. A. van Eeuwijk,
‘‘Gene regulatory networks from multifactorial perturbations using graph-
ical lasso: Application to the DREAM4 challenge,’’ PLoS ONE, vol. 5,
no. 12, p. e14147, 2010.

[30] P. Milanfar, ‘‘A tour of modern image filtering: New insights and methods,
both practical and theoretical,’’ IEEE Signal Process. Mag., vol. 30, no. 1,
pp. 106–128, Jan. 2013.

[31] S. Negahban and M. J. Wainwright, ‘‘Joint support recovery under high-
dimensional scaling: Benefits and perils of l1,∞-regularization,’’ in Proc.
21st Int. Conf. Neural Inf. Process. Syst., 2008, pp. 1161–1168.

[32] G. Obozinski, M. J. Wainwright, and M. I. Jordan, ‘‘Union support recov-
ery in high-dimensional multivariate regression,’’ in Proc. 46th Annu.
Allerton Conf. Commun., Control, Comput., Sep. 2008, pp. 21–26.

[33] F. Oztoprak, J. Nocedal, S. Rennie, and P. A. Olsen, ‘‘Newton-like meth-
ods for sparse inverse covariance estimation,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 755–763.

[34] D. Park and L. R. Rilett, ‘‘Forecasting freeway link travel times with a
multilayer feedforward neural network,’’ Comput. Aided Civil Infrastruct.
Eng., vol. 14, no. 5, pp. 357–367, Sep. 1999.

[35] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, ‘‘High-
dimensional covariance estimation by minimizing `1-penalized
log-determinant divergence,’’ Electron. J. Statist., vol. 5, pp. 935–980,
Jan. 2010.

[36] B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki, ‘‘Iterative
thresholding algorithm for sparse inverse covariance estimation,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2012, pp. 1574–1582.

[37] D. J. Rose, ‘‘Triangulated graphs and the elimination process,’’ J. Math.
Anal. Appl., vol. 32, no. 3, pp. 597–609, 1970.

[38] A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu, ‘‘Sparse permutation
invariant covariance estimation,’’ Electron. J. Statist., vol. 2, pp. 494–515,
Jun. 2008.

[39] Y. Saad, IterativeMethods for Sparse Linear Systems, vol. 82. Philadelphia,
PA, USA: SIAM, 2003.

[40] S. Sojoudi, ‘‘Equivalence of graphical lasso and thresholding for sparse
graphs,’’ J. Mach. Learn. Res., vol. 17, no. 115, pp. 3943–3963,
2016.

[41] E. Treister and J. S. Turek, ‘‘A block-coordinate descent approach for
large-scale sparse inverse covariance estimation,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 927–935.

[42] L. Vandenberghe and S. Martin Andersen, ‘‘Chordal graphs and semidef-
inite optimization,’’ Found. Trends Optim., vol. 1, no. 4, pp. 241–433,
2015.

[43] M. J. Wainwright, ‘‘Sharp thresholds for high-dimensional and noisy spar-
sity recovery using `1-constrained quadratic programming (Lasso),’’ IEEE
Trans. Inf. Theory, vol. 55, no. 5, pp. 2183–2202, May 2009.

[44] M. Yannakakis, ‘‘Computing the minimum fill-in is NP-complete,’’ SIAM
J. Algebr. Discrete Methods, vol. 2, no. 1, pp. 77–79, 1981.

[45] M. Yuan and Y. Lin, ‘‘Model selection and estimation in the Gaussian
graphical model,’’ Biometrika, vol. 94, no. 1, pp. 19–35, 2007.

SALAR FATTAHI received the B.Sc. degree in
electrical engineering from the Sharif University
of Technology, Iran, and the M.Sc. degree in
electrical engineering from Columbia University.
He is currently pursuing the Ph.D. degree in indus-
trial engineering and operations research with UC
Berkeley. He is a recipient of the INFORMS
2018 Data Mining Best Paper Award. He is also
a recipient of the Katta G. Murty Best Paper
Prize and the finalist for the Best Student Paper

Prize in American Control Conference. He has received several presti-
gious awards, including the Best Reviewer Award from the Power and
Energy Society, the Outstanding Graduate Student Instructor Award, and the
Marshall-Oliver-Rosenberger Fellowship Award from UC Berkeley. He has
served as the chair and technical program committee member in different
international conferences.

RICHARD Y. ZHANG received the Ph.D. degree
from the Massachusetts Institute of Technology.
He is currently a Postdoctoral Scholar in indus-
trial engineering and operations research with
UC Berkeley. His research interests are optimiza-
tion theory, control theory, electric power sys-
tems, power electronics, data science, andmachine
learning.

SOMAYEH SOJOUDI received the Ph.D. degree
in control and dynamical systems from the
California Institute of Technology, in 2013. She is
currently an Assistant Professor with the Depart-
ments of Electrical Engineering and Computer
Sciences and Mechanical Engineering, University
of California at Berkeley. She is also on the faculty
of the Tsinghua-Berkeley Shenzhen Institute. She
has worked on several interdisciplinary problems
in optimization theory, control theory, machine

learning, data analytics, and power systems. She is also a member of the
conference editorial board of the IEEE Control Systems Society. She is
a recipient of the 2015 INFORMS Optimization Society Prize for Young
Researchers, and a recipient of the 2016 INFORMS ENRE Energy Best
Publication Award. She was a finalist (as advisor) for the Best Student Paper
Award at the 2018 American Control Conference, and also a finalist (as a
co-author) for the Best Student Paper Award at the 53rd IEEE Conference
on Decision and Control 2014. One of her papers has also received the
INFORMS 2018 Data Mining Best Paper Award. She is an Associate Editor
of the journals of the IEEE TRANSACTIONS ON SMART GRID, the IEEE ACCESS,
and Systems and Control Letters.

12672 VOLUME 7, 2019

	INTRODUCTION
	GRAPHICAL LASSO, SOFT-THRESHOLDING, AND MDMC
	SUMMARY OF CONTRIBUTIONS
	RELATED WORK
	GRAPHICAL LASSO WITH PRIOR INFORMATION
	ALGORITHMS FOR GRAPHICAL LASSO
	ALGORITHMS FOR MDMC

	EQUIVALENCE BETWEEN GGL AND THRESHOLDING
	WARM-UP: CHORDAL STRUCTURES
	SPARSE CHOLESKY FACTORIZATION
	CHORDAL SPARSITY PATTERNS
	RECURSIVE SOLUTION OF THE MDMC PROBLEM.

	GENERAL CASE: NONCHORDAL STRUCTURES
	EFFICIENT CHORDAL EMBEDDING
	LOGARITHMIC BARRIERS FOR SPARSE MATRIX CONES
	SOLVING THE DUAL PROBLEM
	CG CONVERGES IN O(1) ITERATIONS
	THE FULL ALGORITHM

	NUMERICAL RESULTS
	CASE STUDY 1: BANDED PATTERNS WITHOUT THRESHOLDING
	CASE STUDY 2: BANDED PATTERNS
	CASE STUDY 3: REAL-LIFE GRAPHS

	CONCLUSIONS
	PROOFS
	PROOF OF THEOREM 1
	PROOF OF THEOREM 2

	REFERENCES
	Biographies
	SALAR FATTAHI
	RICHARD Y. ZHANG
	SOMAYEH SOJOUDI

