
On Spetral Clustering:Analysis and an algorithmAndrew Y. NgCS DivisionU.C. Berkeleyang�s.berkeley.edu Mihael I. JordanCS Div. & Dept. of Stat.U.C. Berkeleyjordan�s.berkeley.edu Yair WeissShool of CS & Engr.The Hebrew Univ.yweiss�s.huji.a.ilAbstratDespite many empirial suesses of spetral lustering methods|algorithms that luster points using eigenvetors of matries de-rived from the data|there are several unresolved issues. First,there are a wide variety of algorithms that use the eigenvetorsin slightly di�erent ways. Seond, many of these algorithms haveno proof that they will atually ompute a reasonable lustering.In this paper, we present a simple spetral lustering algorithmthat an be implemented using a few lines of Matlab. Using toolsfrom matrix perturbation theory, we analyze the algorithm, andgive onditions under whih it an be expeted to do well. Wealso show surprisingly good experimental results on a number ofhallenging lustering problems.1 IntrodutionThe task of �nding good lusters has been the fous of onsiderable researh inmahine learning and pattern reognition. For lustering points in Rn|a main ap-pliation fous of this paper|one standard approah is based on generative mod-els, in whih algorithms suh as EM are used to learn a mixture density. Theseapproahes su�er from several drawbaks. First, to use parametri density estima-tors, harsh simplifying assumptions usually need to be made (e.g., that the densityof eah luster is Gaussian). Seond, the log likelihood an have many loal minimaand therefore multiple restarts are required to �nd a good solution using iterativealgorithms. Algorithms suh as K-means have similar problems.A promising alternative that has reently emerged in a number of �elds is to usespetral methods for lustering. Here, one uses the top eigenvetors of a matrixderived from the distane between points. Suh algorithms have been suessfullyused in many appliations inluding omputer vision and VLSI design [5, 1℄. Butdespite their empirial suesses, di�erent authors still disagree on exatly whiheigenvetors to use and how to derive lusters from them (see [11℄ for a review).Also, the analysis of these algorithms, whih we briey review below, has tended tofous on simpli�ed algorithms that only use one eigenvetor at a time.One line of analysis makes the link to spetral graph partitioning, in whih the se-



ond eigenvetor of a graph's Laplaian is used to de�ne a semi-optimal ut. Here,the eigenvetor is seen as a solving a relaxation of an NP-hard disrete graph parti-tioning problem [3℄, and it an be shown that uts based on the seond eigenvetorgive a guaranteed approximation to the optimal ut [9, 3℄. This analysis an beextended to lustering by building a weighted graph in whih nodes orrespond todatapoints and edges are related to the distane between the points. Sine the ma-jority of analyses in spetral graph partitioning appear to deal with partitioning thegraph into exatly two parts, these methods are then typially applied reursivelyto �nd k lusters (e.g. [9℄). Experimentally it has been observed that using moreeigenvetors and diretly omputing a k way partitioning is better (e.g. [5, 1℄).Here, we build upon the reent work of Weiss [11℄ and Meila and Shi [6℄, whoanalyzed algorithms that use k eigenvetors simultaneously in simple settings. Wepropose a partiular manner to use the k eigenvetors simultaneously, and giveonditions under whih the algorithm an be expeted to do well.2 AlgorithmGiven a set of points S = fs1; : : : ; sng in Rl that we want to luster into k subsets:1. Form the aÆnity matrix A 2 Rn�n de�ned by Aij = exp(�jjsi � sj jj2=2�2) ifi 6= j, and Aii = 0.2. De�ne D to be the diagonal matrix whose (i; i)-element is the sum of A's i-throw, and onstrut the matrix L = D�1=2AD�1=2.13. Find x1; x2; : : : ; xk, the k largest eigenvetors of L (hosen to be orthogonalto eah other in the ase of repeated eigenvalues), and form the matrix X =[x1x2 : : : xk℄ 2 Rn�k by staking the eigenvetors in olumns.4. Form the matrix Y from X by renormalizing eah of X's rows to have unit length(i.e. Yij = Xij=(Pj X2ij)1=2).5. Treating eah row of Y as a point in Rk , luster them into k lusters via K-meansor any other algorithm (that attempts to minimize distortion).6. Finally, assign the original point si to luster j if and only if row i of the matrixY was assigned to luster j.Here, the saling parameter �2 ontrols how rapidly the aÆnity Aij falls o� withthe distane between si and sj , and we will later desribe a method for hoosingit automatially. We also note that this is only one of a large family of possiblealgorithms, and later disuss some related methods (e.g., [6℄).At �rst sight, this algorithm seems to make little sense. Sine we run K-meansin step 5, why not just apply K-means diretly to the data? Figure 1e shows anexample. The natural lusters in R2 do not orrespond to onvex regions, and K-means run diretly �nds the unsatisfatory lustering in Figure 1i. But one we mapthe points to Rk (Y 's rows), they form tight lusters (Figure 1h) from whih ourmethod obtains the good lustering shown in Figure 1e. We note that the lustersin Figure 1h lie at 90Æ to eah other relative to the origin (f. [8℄).1Readers familiar with spetral graph theory [3℄ may be more familiar with the Lapla-ian I �L. But as replaing L with I �L would ompliate our later disussion, and onlyhanges the eigenvalues (from �i to 1� �i) and not the eigenvetors, we instead use L.



3 Analysis of algorithm3.1 Informal disussion: The \ideal" aseTo understand the algorithm, it is instrutive to onsider its behavior in the \ideal"ase in whih all points in di�erent lusters are in�nitely far apart. For the sake ofdisussion, suppose that k = 3, and that the three lusters of sizes n1, n2 and n3are S1, S2, and S3 (S = S1[S2[S3, n = n1+n2+n3). To simplify our exposition,also assume that the points in S = fs1; : : : ; sng are ordered aording to whihluster they are in, so that the �rst n1 points are in luster S1, the next n2 in S2,et. We will also use \j 2 Si" as a shorthand for sj 2 Si. Moving the lusters\in�nitely" far apart orresponds to zeroing all the elements Aij orresponding topoints si and sj in di�erent lusters. More preisely, de�ne Âij = 0 if xi and xj arein di�erent lusters, and Âij = Aij otherwise. Also let L̂, D̂, X̂ and Ŷ be de�nedas in the previous algorithm, but starting with Â instead of A. Note that Â and L̂are therefore blok-diagonal:Â = 24 A(11) 0 00 A(22) 00 0 A(33) 35 ; L̂ = 24 L̂(11) 0 00 L̂(22) 00 0 L̂(33) 35 (1)where we have adopted the onvention of using parenthesized supersripts to indexinto subbloks of vetors/matries, and L̂(ii) = (D̂(ii))�1=2A(ii)(D̂(ii))�1=2. Here,Â(ii) = A(ii) 2 Rni�ni is the matrix of \intra-luster" aÆnities for luster i. For fu-ture use, also de�ne d̂(i) 2 Rni to be the vetor ontaining D̂(ii)'s diagonal elements,and d̂ 2 Rn to ontain D̂'s diagonal elements.To onstrut X̂, we �nd L̂'s �rst k = 3 eigenvetors. Sine L̂ is blok diagonal, itseigenvalues and eigenvetors are the union of the eigenvalues and eigenvetors of itsbloks (the latter padded appropriately with zeros). It is straightforward to showthat L̂(ii) has a stritly positive prinipal eigenvetor x(i)1 2 Rni with eigenvalue1. Also, sine A(ii)jk > 0 (j 6= k), the next eigenvalue is stritly less than 1. (See,e.g., [3℄). Thus, staking L̂'s eigenvetors in olumns to obtain X̂, we have:X̂ = 264 x(1)1 ~0 ~0~0 x(2)1 ~0~0 ~0 x(3)1 375 2 Rn�3 : (2)Atually, a subtlety needs to be addressed here. Sine 1 is a repeated eigenvaluein L̂, we ould just as easily have piked any other 3 orthogonal vetors spanningthe same subspae as X̂'s olumns, and de�ned them to be our �rst 3 eigenvetors.That is, X̂ ould have been replaed by X̂R for any orthogonal matrix R 2 R3�3(RTR = RRT = I). Note that this immediately suggests that one use onsiderableaution in attempting to interpret the individual eigenvetors of L, as the hoieof X̂ 's olumns is arbitrary up to a rotation, and an easily hange due to smallperturbations to A or even di�erenes in the implementation of the eigensolvers.Instead, what we an reasonably hope to guarantee about the algorithm will bearrived at not by onsidering the (unstable) individual olumns of X̂, but insteadthe subspae spanned by the olumns of X̂ , whih an be onsiderably more stable.Next, when we renormalize eah of X̂ 's rows to have unit length, we obtain:Ŷ = 24 Ŷ (1)Ŷ (2)Ŷ (3) 35 = 24 ~1 ~0 ~0~0 ~1 ~0~0 ~0 ~1 35R (3)where we have used Ŷ (i) 2 Rni�k to denote the i-th subblok of Ŷ . Letting ŷ(i)j



denote the j-th row of Ŷ (i), we therefore see that ŷ(i)j is the i-th row of the orthogonalmatrix R. This gives us the following proposition.Proposition 1 Let Â's o�-diagonal bloks Â(ij), i 6= j, be zero. Also assumethat eah luster Si is onneted.2 Then there exist k orthogonal vetors r1; : : : ; rk(rTi rj = 1 if i = j, 0 otherwise) so that Ŷ 's rows satisfyŷ(i)j = ri (4)for all i = 1; : : : ; k; j = 1; : : : ; ni.In other words, there are k mutually orthogonal points on the surfae of the unitk-sphere around whih Ŷ 's rows will luster. Moreover, these lusters orrespondexatly to the true lustering of the original data.3.2 The general aseIn the general ase, A's o�-diagonal bloks are non-zero, but we still hope to reoverguarantees similar to Proposition 1. Viewing E = A � Â as a perturbation to the\ideal" Â that results in A = Â+E, we ask: When an we expet the resulting rowsof Y to luster similarly to the rows of Ŷ ? Spei�ally, when will the eigenvetorsof L, whih we now view as a perturbed version of L̂, be \lose" to those of L̂?Matrix perturbation theory [10℄ indiates that the stability of the eigenvetors of amatrix is determined by the eigengap. More preisely, the subspae spanned by L̂'s�rst 3 eigenvetors will be stable to small hanges to L̂ if and only if the eigengapÆ = j�3 � �4j, the di�erene between the 3rd and 4th eigenvalues of L̂, is large. Asdisussed previously, the eigenvalues of L̂ is the union of the eigenvalues of L̂(11),L̂(22), and L̂(33), and �3 = 1. Letting �(i)j be the j-th largest eigenvalue of L̂(ii), wetherefore see that �4 = maxi �(i)2 . Hene, the assumption that j�3 � �4j be large isexatly the assumption that maxi �(i)2 be bounded away from 1.Assumption A1. There exists Æ > 0 so that, for all i = 1; : : : ; k, �(i)2 � 1� Æ.Note that �(i)2 depends only on L̂(ii), whih in turn depends only on A(ii) = Â(ii),the matrix of intra-luster similarities for luster Si. The assumption on �(i)2 has avery natural interpretation in the ontext of lustering. Informally, it aptures theidea that if we want an algorithm to �nd the lusters S1; S2 and S3, then we requirethat eah of these sets Si really look like a \tight" luster. Consider an examplein whih S1 = S1:1 [ S1:2, where S1:1 and S1:2 are themselves two well separatedlusters. Then S = S1:1 [ S1:2 [ S2 [ S3 looks like (at least) four lusters, and itwould be unreasonable to expet an algorithm to orretly guess what partition ofthe four lusters into three subsets we had in mind.This onnetion between the eigengap and the ohesiveness of the individual lustersan be formalized in a number of ways.Assumption A1.1. De�ne the Cheeger onstant [3℄ of the luster Si to beh(Si) = minI Pj2I;k 62I A(ii)jkminfPj2I d̂(i)j ;Pk 62I d̂(i)k g : (5)where the outer minimum is over all index subsets I � f1; : : : ; nig. Assume thatthere exists Æ > 0 so that (h(Si))2=2 � Æ for all i.2This ondition is satis�ed by Â(ii)jk > 0 (j 6= k), whih is true in our ase.



A standard result in spetral graph theory shows that Assumption A1.1 impliesAssumption A1. Reall that d̂(i)j = Pk A(ii)jk haraterizes how \well onneted"or how \similar" point j is to the other points in the same luster. The term inthe minIf�g haraterizes how well (I; I) partitions Si into two subsets, and theminimum over I piks out the best suh partition. Spei�ally, if there is a partitionof Si's points so that the weight of the edges aross the partition is small, and sothat eah of the partitions has moderately large \volume" (sum of d̂(i)j 's), then theCheeger onstant will be small. Thus, the assumption that the Cheeger onstantsh(Si) be large is exatly that the lusters Si be hard to split into two subsets.We an also relate the eigengap to the mixing time of a random walk (as in [6℄)de�ned on the points of a luster, in whih the hane of transitioning from point ito j is proportional to Aij , so that we tend to jump to nearby-points. AssumptionA1 is equivalent to assuming that, for suh a walk de�ned on the points of anyone of the lusters Si, the orresponding transition matrix has seond eigenvalue atmost 1�Æ. The mixing time of a random walk is governed by the seond eigenvalue;thus, this assumption is exatly that the walks mix rapidly. Intuitively, this will betrue for tight (or at least fairly \well onneted") lusters, and untrue if a lusteronsists of two well-separated sets of points so that the random walk takes a longtime to transition from one half of the luster to the other. Assumption A1 an alsobe related to the existene of multiple paths between any two points in the sameluster.Assumption A2. There is some �xed �1 > 0, so that for every i1; i2 2 f1; : : : ; kg,i1 6= i2, we have that Pj2Si1 Pk2Si2 A2jkd̂j d̂k � �1: (6)To gain intuition about this, onsider the ase of two \dense" lusters i1 and i2 ofsize 
(n) eah. Sine d̂j measures how \onneted" point j is to other points inthe same luster, it will be d̂j = 
(n) in this ase, so the sum, whih is over O(n2)terms, is in turn divided by d̂j d̂k = 
(n2). Thus, as long as the individual Ajk 'sare small, the sum will also be small, and the assumption will hold with small �1.Whereas d̂j measures how onneted sj 2 Si is to the rest of Si, Pk:k 62Si Ajkmeasures how onneted sj is to points in other lusters. The next assumption isthat all points must be more onneted to points in the same luster than to pointsin other lusters; spei�ally, that the ratio between these two quantities be small.Assumption A3. For some �xed �2 > 0, for every i = 1; : : : ; k, j 2 Si, we have:Pk:k 62Si Ajkd̂j � �2 �Pk;l2Si A2kld̂kd̂l��1=2 (7)For intuition about this assumption, again onsider the ase of densely onnetedlusters (as we did previously). Here, the quantity in parentheses on the right handside is O(1), so this beomes equivalent to demanding that the following ratio besmall: (Pk:k 62Si Ajk)=d̂j = (Pk:k 62Si Ajk)=(Pk:k2Si Ajk) = O(�2).Assumption A4. There is some onstant C > 0 so that for every i = 1; : : : ; k,j = 1; : : : ; ni, we have d̂(i)j � (Pnik=1 d̂(i)k )=(Cni).This last assumption is a fairly benign one that no points in a luster be \too muhless" onneted than other points in the same luster.Theorem 2 Let assumptions A1, A2, A3 and A4 hold. Set � =pk(k � 1)�1 + k�22.



If Æ > (2+p2)�, then there exist k orthogonal vetors r1; : : : ; rk (rTi rj = 1 if i = j,0 otherwise) so that Y 's rows satisfy1n kXi=1 niXj=1 jjy(i)j � rijj22 � 4C �4 + 2pk�2 �2(Æ �p2�)2 : (8)Thus, the rows of Y will form tight lusters around k well-separated points (at 90Æfrom eah other) on the surfae of the k-sphere aording to their \true" luster Si.4 ExperimentsTo test our algorithm, we applied it to seven lustering problems. Note that whereas�2 was previously desribed as a human-spei�ed parameter, the analysis also sug-gests a partiularly simple way of hoosing it automatially: For the right �2,Theorem 2 predits that the rows of Y will form k \tight" lusters on the surfaeof the k-sphere. Thus, we simply searh over �2, and pik the value that, afterlustering Y 's rows, gives the tightest (smallest distortion) lusters. K-means inStep 5 of the algorithm was also inexpensively initialized using the prior knowledgethat the lusters are about 90Æ apart.3 The results of our algorithm are shown inFigure 1a-g. Giving the algorithm only the oordinates of the points and k, thedi�erent lusters found are shown in the Figure via the di�erent symbols (and ol-ors, where available). The results are surprisingly good: Even for lusters that donot form onvex regions or that are not leanly separated (suh as in Figure 1g),the algorithm reliably �nds lusterings onsistent with what a human would havehosen.We note that there are other, related algorithms that an give good results on asubset of these problems, but we are aware of no equally simple algorithm thatan give results omparable to these. For example, we noted earlier how K-meanseasily fails when lusters do not orrespond to onvex regions (Figure 1i). Anotheralternative may be a simple \onneted omponents" algorithm that, for a threshold� , draws an edge between points si and sj whenever jjsi � sj jj2 � � , and takes theresulting onneted omponents to be the lusters. Here, � is a parameter that an(say) be optimized to obtain the desired number of lusters k. The result of thisalgorithm on the threeirles-joined dataset with k = 3 is shown in Figure 1j.One of the \lusters" it found onsists of a singleton point at (1:5; 2). It is learthat this method is very non-robust.We also ompare our method to the algorithm of Meila and Shi [6℄ (see Figure 1k).Their method is similar to ours, exept for the seemingly osmeti di�erene thatthey normalize A's rows to sum to 1 and use its eigenvetors instead of L's, and donot renormalize the rows of X to unit length. A re�nement of our analysis suggeststhat this method might be suseptible to bad lusterings when the degree to whihdi�erent lusters are onneted (Pj d̂(i)j ) varies substantially aross lusters.3Briey, we let the �rst luster entroid be a randomly hosen row of Y , and thenrepeatedly hoose as the next entroid the row of Y that is losest to being 90Æ fromall the entroids (formally, from the worst-ase entroid) already piked. The resultingK-means was run only one (no restarts) to give the results presented. K-means with themore onventional random initialization and a small number of restarts also gave identialresults. In ontrast, our implementation of Meila and Shi's algorithm used 2000 restarts.


