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SUMMARY

Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there
are several fields in applied research where the limits of detection of modern measurement technologies
make the use of this estimator theoretically unfounded, even when the assumption of a multivariate
Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and
flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying
genetic networks from these data very challenging. In this article, we propose an �1-penalized Gaussian
graphical model for censored data and derive two EM-like algorithms for inference. We evaluate the
computational efficiency of the proposed algorithms by an extensive simulation study and show that,
when censored data are available, our proposal is superior to existing competitors both in terms of network
recovery and parameter estimation. We apply the proposed method to gene expression data generated by
microfluidic Reverse Transcription quantitative Polymerase Chain Reaction technology in order to make
inference on the regulatory mechanisms of blood development. A software implementation of our method
is available on github (https://github.com/LuigiAugugliaro/cglasso).

Keywords: Censored data; Expectation-Maximization algorithm; Gaussian graphical model; Graphical Lasso; High-
dimensional data.

1. INTRODUCTION

An important aim in genomics is to understand interactions among genes, characterized by the regulation
and synthesis of proteins under internal and external signals. These relationships can be represented by
a genetic network, i.e. a graph where nodes represent genes and edges describe the interactions among
them. Genetic networks can be used to gain new insights into the activity of biological pathways and to
deduce unknown functions of genes from their dependence on other genes.

Gaussian graphical models (Lauritzen, 1996) have been widely used for reconstructing a genetic net-
work from expression data. The reason of their widespread use relies on the statistical properties of the
multivariate Gaussian distribution, which allow the topological structure of a network to be related to the
non-zero elements of the concentration matrix, i.e. the inverse of the covariance matrix. Thus, the problem
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e2 L. AUGUGLIARO AND OTHERS

of network inference can be recast as the problem of estimating a concentration matrix. The graphical lasso
(Yuan and Lin, 2007) is a popular method for estimating a sparse concentration matrix, based on the idea of
adding an �1-penalty to the likelihood function of the multivariate Gaussian distribution. Nowadays, this
estimator is widely used in applied research (e.g. Menéndez and others, 2010; Vinciotti and others, 2016)
and widely studied in the computational as well as theoretical (e.g. Bickel and Levina, 2008; Friedman
and others, 2008; Witten and others, 2011) literature. The interested reader is referred to Augugliaro and
others (2016) for an extensive review.

Despite the widespread literature on the graphical lasso estimator, there is a great number of fields in
applied research where modern measurement technologies make the use of this graphical model theoret-
ically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. A first
example of this is Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), a popular
technology for gene expression profiling (Derveaux and others, 2010). This technique is used to measure
the expression of a set of target genes in a given sample through repeated cycles of sequence-specific
DNA amplification followed by expression measurements. The cycle at which the observed expression
first exceeds a fixed threshold is commonly called the cycle-threshold (McCall and others, 2014). If a
target is not expressed, the threshold is not reached after the maximum number of cycles (limit of detec-
tion) and the corresponding cycle-threshold is undetermined. For this reason, the resulting data is naturally
right-censored (McCall and others, 2014; Pipelers and others, 2017).Another example is given by the flow
cytometer, which is an essential tool in the diagnosis of diseases such as acute leukemias and malignant
lymphomas (Brown and Wittwer, 2000). A flow cytometer measures a limited range of signal strength
and records each marker value within a fixed range, such as between 0 and 1023. If a measurement falls
outside this range, then the value is replaced by the nearest legitimate value; that is, a value smaller than
0 is censored to 0 and a value larger than 1023 is censored to 1023. A direct application of the graphical
lasso for network inference from data such as these is theoretically unfunded since it does not consider
the effects of the censoring mechanism on the estimator of the concentration matrix.

In this article, we propose an extension of the graphical lasso estimator that takes into account the
censoring mechanism of the data explicitly. Our work can be related to Städler and Bühlmann (2012),
who propose an �1-penalized estimator of the inverse covariance matrix of a multivariate Gaussian model
based on the assumption that the data are missing at random. As we shall see in the following of this
article, failure to take into account the censoring mechanism causes a poor behavior of this approach
when compared with our proposal. Our proposal can also be related to the work of Perkins and others
(2013), Hoffman and Johnson (2015), and Pesonen and others (2015), who provide a maximum likelihood
estimator of the covariance matrix under left-censoring. However, these works do not address the estimation
of the precision matrix under a sparsity assumption and for this reason they are applicable only when the
sample size is larger than the number of nodes in the network.

The remaining part of this article is structured as follows. In Section 2, we extend the notion of
Gaussian graphical model to censored data and in Section 3, we propose the extension of the graphical
lasso estimator to a censored graphical lasso estimator and two Expectation-Maximization (EM) algo-
rithms for inference of parameters in the censored Gaussian graphical model. Section 4 is devoted to
the evaluation of the behavior of the proposed algorithms and the comparison of the proposed estimator
with existing competitors. Finally, in Section 5, we study a real dataset and in Section 6, we draw some
conclusions.

2. THE CENSORED GAUSSIAN GRAPHICAL MODEL

In order to describe the technical details of the proposed method, let X = (X1, . . . , Xp)
� be a p-dimensional

random vector. Graphical models allow to represent the set of conditional independencies among these
random variables by a graph G = {V , E}, where V is the set of nodes associated to X and E ⊆ V × V
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�1-Penalized censored Gaussian graphical model e3

is the set of ordered pairs, called edges, representing the conditional dependencies among the p random
variables (Lauritzen, 1996).

The Gaussian graphical model is a member of this class of models based on the assumption that X
follows a multivariate Gaussian distribution with expected value μ = (μ1, . . . , μp)

� and covariance matrix
� = (σhk). Denoting with � = (θhk) the concentration matrix, i.e. the inverse of the covariance matrix,
the density function of X can be written as

φ(x; μ, �) = (2π)−p/2|�|1/2 exp
{
−1

2
(x − μ)��(x − μ)

}
. (2.1)

As shown in Lauritzen (1996), the pattern of non-zero elements in � defines the corresponding graph,
namely the undirected edge (h, k) is an element of the edge set E of the corresponding conditional
independence graph if and only if θhk �= 0.

Let X be a (partially) latent random vector with density function (2.1). In order to include the censoring
mechanism inside our framework, let us denote by l = (l1, . . . , lp)

� and u = (u1, . . . , up)
�, with lh < uh for

h = 1, . . . , p, the vectors of known left and right censoring values. Thus, Xh is observed only if it is inside the
interval [lh, uh] otherwise it is censored from below if Xh < lh or censored from above if Xh > uh. Under this
setting, a rigorous definition of the joint distribution of the observed data can be obtained using the approach
for missing data with ignorable mechanism (Little and Rubin, 2002). This requires the specification of
the distribution of a p-dimensional random vector, denoted by R(X ; l, u), used to encode the censoring
patterns. Formally, the hth element of R(X ; l, u) is defined as R(Xh; lh, uh) = I (Xh > uh) − I (Xh < lh),
where I (·) denotes the indicator function. By construction R(X ; l, u) is a discrete random vector with
support in the set {−1, 0, 1}p and probability function

Prob{R(X ; l, u) = r} =
∫

Dr

φ(x; μ, �)dx,

where Dr = {x ∈ R
p : R(x; l, u) = r}.

Given a censoring pattern, we can simplify our notation by partitioning the set I = {1, . . . , p} into
the sets o = {h ∈ I : rh = 0}, c− = {h ∈ I : rh = −1} and c+ = {h ∈ I : rh = +1} and, in the
following of this article, we shall use the convention that a vector indexed by a set of indices denotes the
corresponding subvector. For example, the subvector of observed elements in x is denoted by xo = (xh)h∈o

and, consequently, the observed data is the vector (x�
o , r�)�. As explained in Little and Rubin (2002), the

joint probability distribution of the observed data, denoted by ϕ(xo, r; μ, �), is obtained by integrating
X c+ and X c− out of the joint distribution of X and R(X ; l, u), which can be written as the product of the
density function (2.1) and the conditional distribution of R(X ; l, u) given X = x. As shown in Schafer
(1997), this results in

ϕ(xo, r; μ, �) =
∫ +∞

uc+

∫ lc−

−∞
φ(xo, xc− , xc+ ; μ, �)dxc−dxc+ I (lo ≤ xo ≤ uo)

=
∫

Dc

φ(xo, xc; μ, �)dxcI (lo ≤ xo ≤ uo), (2.2)

where c = c− ∪ c+ and Dc = (−∞, lc−) × (uc+ , +∞). The density function (2.2) is used in Lee and
Scott (2012) inside the framework of a mixture of multivariate Gaussian distributions with censored data.
Using (2.2) the censored Gaussian graphical model can be formally defined.
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e4 L. AUGUGLIARO AND OTHERS

DEFINITION 1 Let X be a p-dimensional Gaussian distribution whose density function φ(x; μ, �) factorizes
according to an undirected graph G = {V , E} and let R(X ; l, u) be a p-dimensional random censoring-data
indicator defined by the censoring vectors l and u. The censored Gaussian graphical model (cGGM) is
defined to be the set {X , R(X ; l, u), ϕ(xo, r; μ, �), G}.

A closer look at Definition 1 reveals that the proposed notion of censored Gaussian graphical model is
characterized by a high degree of generality since it covers also the special cases of the classical Gaussian
graphical model (lh = −∞, uh = +∞ for any h), and the cases in which there is only left-censored data
(uh = +∞ for any h) or right-censored data (lh = −∞ for any h).

3. �1-PENALIZED ESTIMATOR FOR CENSORED GAUSSIAN GRAPHICAL MODEL

3.1. The censored graphical lasso estimator

Consider a sample of n independent observations drawn from the censored Gaussian graphical model
{X , R(X ; l, u), ϕ(xo, r; μ, �), G}. For ease of exposition, we shall assume that l and u are fixed across the
n observations, but the extension to the cases where the censoring vectors are specific to each observation
is straightforward and does not require a specific treatment. If these values are unknown we suggest to use
the smallest and largest observed value for each variable as possible estimates for lh and uh, respectively.

Let ri be the ith realization of the random vector R(X i; l, u). Then the ith observed data is the vector
(x�

ioi
, r�

i )�, with oi = {h ∈ I : rih = 0}. Using the density function (2.2), the observed log-likelihood
function can be written as

�(μ, �) =
n∑

i=1

log
∫

Dci

φ(xioi , xici ; μ, �)dxici =
n∑

i=1

log ϕ(xioi , ri; μ, �), (3.1)

where, as before, ci = c−
i ∪ c+

i , with c−
i = {h ∈ I : rih = −1} and c+

i = {h ∈ I : rih = +1}, and
Dci = (−∞, lc−

i
) × (uc+

i
, +∞). Although inference about the parameters of this model can be carried

out via the maximum likelihood method, the application of this inferential procedure to real datasets,
such as the gene expression data described in Section 5, is limited for three main reasons. Firstly, the
number of measured variables is larger than the sample size, and this implies the non-existence of the
maximum likelihood estimator even when the dataset is fully observed. Secondly, even when the sample
size is large enough, the maximum likelihood estimator will exhibit a very high variance (Uhler, 2012).
Thirdly, empirical evidence suggests that gene networks or more general biochemical networks are not
fully connected (Gardner and others, 2003). In terms of Gaussian graphical models this evidence translates
in the assumption that � has a sparse structure, i.e. only few θhk are different from zero, which is not
obtained by a direct (or indirect) maximization of the observed log-likelihood function (3.1).

All that considered, in this article, we propose to estimate the parameters of the censored Gaussian
graphical model by generalizing the approach proposed inYuan and Lin (2007), i.e. by maximizing a new
objective function defined by adding a lasso-type penalty function to the observed log-likelihood (3.1).
The resulting estimator, called censored graphical lasso (cglasso), is formally defined as

{μ̂ρ , �̂ρ} = arg max
μ,�
0

1

n

n∑
i=1

log ϕ(xioi , ri; μ, �) − ρ
∑
h �=k

|θhk |. (3.2)

Like in the standard graphical lasso estimator, the nonnegative tuning parameter ρ is used to control the
amount of sparsity in the estimated concentration matrix �̂ρ = (θ̂

ρ

hk) and, consequently, in the correspond-
ing estimated graph Ĝρ = {V , Êρ}, where Êρ = {(h, k) : θ̂

ρ

hk �= 0}. When ρ is large enough, some θ̂
ρ

hk are
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�1-Penalized censored Gaussian graphical model e5

shrunken to zero resulting in the removal of the corresponding link in Ĝρ ; on the other hand, when ρ is
equal to zero and the sample size is large enough the estimator �̂ρ coincides with the maximum likelihood
estimator of the concentration matrix, which implies a fully connected estimated graph.

3.2. Fitting the censored graphical lasso model

Using known results about the multivariate Gaussian distribution, the conditional distribution of X ci given
X oi = xoi is also a multivariate Gaussian distribution with concentration matrix �cici = (θhk)h,k∈ci and
conditional expected value equal to Eci |oi (X ci ) = μci |oi

= μci
− �−1

cici
�cioi (xioi − μoi

), where �cioi =
(θhk)h∈ci ,k∈oi . As we shall show in the next theorem, the conditions characterizing the cglasso estimator are
based on the first and second moment of the Gaussian distribution φ(xci ; μci |oi

, �cici ) truncated over the
region Dci . To this end, we let

xi,h(μ, �) =
{

xih if rih = 0
Eci |oi (Xih | X ici ∈ Dci ) otherwise,

xi,hk(μ, �) =

⎧⎪⎪⎨⎪⎪⎩
xihxik if rih = 0 and rik = 0
xihEci |oi (Xik | X ici ∈ Dci ) if rih = 0 and rik �= 0
Eci |oi (Xih | X ici ∈ Dci )xik if rih �= 0 and rik = 0
Eci |oi (XihXik | X ici ∈ Dci ) if rih �= 0 and rik �= 0,

where Eci |oi ( · | X ici ∈ Dci ) denotes the expected value computed using the conditional distribu-
tion of X ici given xioi truncated over Dci . Finally, we let x̄h(μ, �) = ∑n

i=1 xi,h(μ, �)/n, x̄(μ, �) =
{x̄1(μ, �), . . . , x̄p(μ, �)}�, shk(μ, �) = ∑n

i=1 xi,hk(μ, �)/n − x̄h(μ, �)x̄k(μ, �), and S(μ, �) =
{shk(μ, �)}. Using this notation, Theorem 1 gives the Karush–Kuhn–Tucker conditions for the proposed
estimator.

THEOREM 1 Necessary and sufficient conditions for {μ̂ρ , �̂ρ} to be the solution of the maximization
problem

max
μ,�
0

1

n

n∑
i=1

log ϕ(xioi , ri; μ, �) − ρ
∑
h �=k

|θhk |,

are

x̄h(μ̂
ρ , �̂ρ) − μ̂

ρ

h = 0

σ̂
ρ

hk(μ̂
ρ , �̂ρ) − shk(μ̂

ρ , �̂ρ) − ρv̂hk = 0

}
(3.3)

where v̂hk denotes the subgradient of the absolute value function at θ̂
ρ

hk , i.e., v̂hk = sign(θ̂
ρ

hk) if θ̂
ρ

hk �= 0 and
|v̂hk | ≤ 1 if θ̂

ρ

hk = 0.

A proof of Theorem 1 is reported in the supplementary material available at Biostatistics online. The
stationary conditions (3.3) show that, while in the standard graphical lasso the parameter μ can be estimated
by the empirical average regardless of ρ and the inference about the concentration matrix can be carried
out using the profile log-likelihood function, inside our framework the two inferential problems cannot
be separated, since the tuning parameter also affects the estimator of the expected value. Furthermore, the
conditions suggest that, for a given value of the tuning parameter, the cglasso estimator can be computed
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e6 L. AUGUGLIARO AND OTHERS

using the EM algorithm (Dempster and others, 1977). This algorithm is based on the idea of repeating
two steps until a convergence criterion is met. The first step, called E-Step, requires the calculation of
the conditional expected value of the complete log-likelihood function using the current estimates. The
resulting function, called Q-function, is maximized in the second step, i.e. the M-Step. As explained in
McLachlan and Krishnan (2008), the EM algorithm can be significantly simplified when the complete
probability density function is a member of the regular exponential family. In this case, the E-Step simply
requires the computation of the conditional expected values of the sufficient statistics. In our case, if
we denote by {μ̂ρ

ini, �̂
ρ
ini} an initial estimate of the parameters, the E-Step reduces to the computation of

xi,h(μ̂
ρ

ini, �̂
ρ
ini) and xi,hk(μ̂

ρ

ini, �̂
ρ
ini), for i = 1, . . . , n. From this, conditions (3.3) can be written as

x̄h(μ̂
ρ

ini, �̂
ρ
ini) − μ̂

ρ

h = 0

σ̂
ρ

hk(μ̂
ρ , �̂ρ) − shk(μ̂

ρ

ini, �̂
ρ
ini) − ρv̂hk = 0

}
(3.4)

which are the stationary conditions of a standard graphical lasso problem (Witten and others, 2011) with
S(μ̂

ρ

ini, �̂
ρ
ini) used as the current estimate of the empirical covariance matrix. The conditions (3.4) imply

that in the M-Step the parameter μ is estimated by x̄(μ̂
ρ

ini, �̂
ρ
ini), while � is estimated by solving the

following maximization problem:

max
�
0

Q(� | �̂
ρ
ini) = max

�
0
log det � − tr{�S(μ̂

ρ

ini, �̂
ρ
ini)} − ρ

∑
h �=k

|θhk |, (3.5)

which is a standard graphical lasso problem. The following steps summarize the proposed EM algorithm
for the derivation of the cglasso estimator:

1. Let {μ̂ρ

ini, �̂
ρ
ini} be initial estimates;

2. E-step: Compute x̄(μ̂
ρ

ini, �̂
ρ
ini) and S(μ̂

ρ

ini, �̂
ρ
ini);

3. M-step: Let μ̂
ρ = x̄(μ̂

ρ

ini, �̂
ρ
ini) and solve the problem (3.5) using S(μ̂

ρ

ini, �̂
ρ
ini);

4. If a convergence criterion is met then return {μ̂ρ , �̂ρ} else let μ̂
ρ

ini = μ̂
ρ and �̂

ρ
ini = �̂ρ ;

5. Repeat steps 2–4.

Although the maximization problem (3.5) can be efficiently solved using, for example, the algorithm
proposed by Friedman and others (2008), Rothman and others (2008), or Witten and others (2011),
the previous steps reveal that the main computational cost of the proposed EM algorithm comes from
the evaluation of the moments of the multivariate truncated Gaussian distribution, which are needed to
compute x̄(μ̂

ρ

ini, �̂
ρ
ini) and S(μ̂

ρ

ini, �̂
ρ
ini). These can be computed using the methods proposed by Lee (1983),

Leppard and Tallis (1989), or Arismendi (2013), but these methods require complex numerical algorithms
for the calculation of the integral of the multivariate normal density function (see for a review, Genz and
Bretz, 2002), and they are computationally infeasible also for moderate size problems. A possible solution
is to approximate the moments using Monte Carlo methods. Our preliminary study, however, shows that the
Monte Carlo error causes an increment in the number of EM steps required for convergence of the proposed
algorithm, thus removing the gain from using the faster approach for the calculation of the moments. Taking
all of this into consideration, we propose a different approximate EM algorithm. In particular, following
the idea proposed by Guo and others (2015), we approximate the quantities Eci |oi (XihXik | X ici ∈ Dci ), for
any h �= k , by:

Eci |oi (XihXik | X ici ∈ Dci ) ≈ Eci |oi (Xih | X ici ∈ Dci )Eci |oi (Xik | X ici ∈ Dci ). (3.6)
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�1-Penalized censored Gaussian graphical model e7

As shown by Guo and others (2015), the approach works well when the real concentration matrix is sparse
or the tuning parameter is sufficiently large. The main advantage coming from the approximation (3.6)
is that now, in order to evaluate the quantities x̄(μ̂

ρ

ini, �̂
ρ
ini) and S(μ̂

ρ

ini, �̂
ρ
ini), we only need to compute

Eci |oi (Xih | X ici ∈ Dci ) and Eci |oi (X
2
ih | X ici ∈ Dci ), for h = 1, . . . , p. These quantities can be computed

by using exact formulas (Johnson and others, 1994) and require only the evaluation of the cumulative
distribution function of the univariate Gaussian distribution. In the following of this article, we denote by
S̄(μ̂

ρ

ini, �̂
ρ
ini) the approximate estimate of the empirical covariance matrix resulting from this approach. By

an extensive simulation study, in Section 4.1, we shall study the behavior of the proposed algorithm based
on the usage of the matrix S̄(μ̂

ρ

ini, �̂
ρ
ini) in steps 2 and 3.

As with graphical lasso, our proposed method requires a sequence of ρ-values, which should be suit-
ably defined so as to reduce the computational cost needed to compute the entire path of the estimated
parameters. Theorem 2 gives the exact formula for the derivation of the largest ρ-value, denoted by ρmax,
and the corresponding cglasso estimator.

THEOREM 2 For any index h define the sets oh = {i : rih = 0}, c−
h = {i : rih = −1} and c+

h = {i : rih = +1}
and compute the marginal maximum likelihood estimates {μ̂h, σ̂ 2

h } maximizing:

�(μh, σ 2
h ) =

∑
i∈oh

log φ(xih; μh, σ 2
h ) + |c−

h | log
∫ lh

−∞
φ(x; μh, σ 2

h )dx + |c+
h | log

∫ +∞

uh

φ(x; μh, σ 2
h )dx.

Then ρmax = maxh �=k |shk(μ̂, �̂)|, where shk(μ̂, �̂) are the elements of the matrix S(μ̂, �̂) computed using
μ̂ = (μ̂1, . . . , μ̂p)

� and �̂ = diag(σ̂−2
1 , . . . , σ̂−2

p ). Furthermore, μ̂ and �̂ are the corresponding cglasso
estimators.

A proof of Theorem 2 is reported in the supplementary material available at Biostatistics online.
Theorem 2 shows how the maximum value of ρ can be efficiently computed using p optimization problems
which do not involve the tuning parameter, and then calculating S(μ̂, �̂). Once ρmax is calculated, the entire
path of the cglasso estimates is calculated as follow:

1. Compute ρmax as specified in Theorem 2 and let ρmin be the smallest ρ-value;
2. Compute a decreasing sequence {ρ(k)}K

k=1 of distinct ρ-values starting from ρmax to ρmin;
3. for k = 2 to K do
4. Let μ̂

ρ(k)

ini = μ̂
ρ(k−1) and �̂

ρ(k)

ini = �̂ρ(k−1)

5. Use the EM algorithm to compute {μ̂ρ(k) , �̂ρ(k)} with {μ̂ρ(k)

ini , �̂
ρ(k)

ini } as starting values;
6. end for

The previous description shows that the entire path can be computed using the estimates obtained for a
given ρ-value as warm starts for fitting the next cglasso model. This strategy is commonly used also in
other efficient lasso algorithms and R packages (Friedman and others, 2010, Friedman and others, 2018).
In our model, this strategy turns out to be remarkably efficient since using a sufficiently fine sequence
of ρ-values, the starting values defined in Step 4 will be sufficiently close to the estimates computed in
Step 5, thus increasing the speed of convergence of the resulting algorithm.

3.3. Tuning parameter selection

The tuning parameter plays a central role in the proposed cglasso estimator, since it is designed to control
the complexity of the topological structure of the estimated graph. In this article, we propose to select the
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optimal ρ-value of the cglasso estimator by using the extended Bayesian Information Criterion (Foygel
and Drton 2010). For our proposed estimator, this is given by:

BICγ (Êρ) = −2
n∑

i=1

log ϕ(xioi , ri; μ̂, �̂(Êρ)) + a(ρ)(log n + 4γ log p),

where μ̂ and �̂(Êρ) are the maximum likelihood estimates of the Gaussian graphical model specified
by Êρ = {(h, k) : θ̂

ρ

hk �= 0}, and a(ρ) denotes the number of nonzero off-diagonal estimates of �̂ρ . The
measure is indexed by the parameter γ ∈ [0, 1], with γ = 0 corresponding to the classical BIC measure.
Although a grid search can be performed to select the ρ-value that minimizes BICγ (Êρ), the computational
burden related to the evaluation of the log-likelihood function can make this strategy infeasible also for
moderate size problems. For this reason, following Ibrahim and others (2008), we propose to select the
ρ-value by minimizing the following approximate measure:

BICγ (Êρ) = −n[log det �̂ρ − tr{�S(μ̂, �̂(Êρ))}] + a(ρ)(log n + 4γ log p),

which is defined by substituting the exact log-likelihood function with the Q-function used in the M-Step of
the proposed algorithm, which is easily obtained as a byproduct of the EM algorithm. In the supplementary
material available at Biostatistics online, a simulation study is reported where we compare the behavior
of the BICγ (Êρ) and BICγ (Êρ) measures. The results show that the two criteria are equivalent in terms
of false discovery rate and true positive rate. Furthermore, as suggested in Foygel and Drton (2010), the
optimal results are obtained when γ = 0.5.

4. SIMULATION STUDIES

4.1. Evaluating the behavior of the approximate EM algorithm

In a first simulation, we evaluate the effects of the approximation (3.6) on the accuracy of the estimators
obtained with the EM algorithm. As in the real dataset studied in Section 5, we consider right-censored
data and we set the right-censoring value uh equal to 40, for any h = 1, . . . , p. For this simulation, where
we plan to use the full EM algorithm, we set the number of variables p to 10 and the sample size n to
100. To simulate a sample from a sparse right-censored model, we use the following procedure. First,
using the method implemented in the R package huge (Zhao and others, 2015), we simulate a sparse
concentration matrix with a random structure, where we set the probability that a θhk is different from zero
to 0.1. Then, the elements of the parameter μ are selected to obtain a fixed probability of right censoring
for any given random variable. More specifically, we randomly draw a subset D from I = {1, . . . , p} and
for each h ∈ D the value of the parameter μh is such that Prob{R(Xh; −∞, 40) = +1} = 0.25, while
for each h /∈ D the parameter μh is such that the probability of right censoring is approximately equal to
10−11. The cardinality of the set D, denoted by |D|, is used in the study as a tool to analyze the effects
of the number of censored variables on the behavior of the proposed EM algorithm and its approximated
version. Finally, we draw a sample from a multivariate Gaussian distribution with parameters given in
the previous steps and we treat each value greater than 40 as a missing (censored) value. We simulated
100 datasets from this model and for each simulation we compute a path of cglasso estimates using the
proposed EM algorithm and a path using the approximated EM algorithm. In the following of this section,
the estimates belonging to the two paths are denoted by {μ̂ρ

e ; �̂ρ
e } and {μ̂ρ

a ; �̂ρ
a }, respectively. For each

path, the largest value of the tuning parameter was computed using the results given in Theorem 2 while
the smallest value was set equal to 1 × 10−3.

The first part of the Table 1 reports the average CPU times for computing the path. As expected, the
computational time needed to compute a path is always an increasing function of the number of the
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Table 1. Results of the simulation study on evaluating the effect of the approximation (3.6): first part reports
the average CPU time for computing a path, whereas second part reports the average of maxρ ‖�μ̂

ρ‖2

and maxρ ‖��̂ρ‖2
F

Number of censored variables

2 3 4 5 6 7 8

Average CPU time (s)
Exact EM 9.60 25.87 68.36 104.77 140.01 249.40 374.34

(2.79) (7.39) (18.87) (28.53) (34.39) (57.13) (96.26)
Approx. EM 5.08 7.89 13.81 15.31 16.26 21.28 24.90

(1.02) (1.44) (2.23) (2.20) (2.33) (2.64) (3.10)
Difference between the two estimates

maxρ ‖�μ̂
ρ‖2 2.9×10−6 8.2×10−6 1.7×10−5 2.2×10−5 7.8×10−5 1.1×10−4 2.1×10−4

(8.6×10−6) (2.1×10−5) (3.7×10−5) (3.1×10−5) (1.0×10−4) (1.2×10−4) (2.3×10−4)
maxρ ‖��̂ρ‖2

F 3.0×10−5 8.3×10−5 2.0×10−4 2.6×10−4 2.3×10−3 2.6×10−3 6.6×10−3

(8.5×10−5) (2.0×10−4) (3.7×10−4) (3.8×10−4) (3.1×10−4) (2.4×10−3) (6.0×10−3)

Standard deviations are shown in brackets.

censored variables but, when we use the matrix S(μ̂
ρ

ini, �̂
ρ
ini) in the E-step, the table reveals that the form

of the relationship between the CPU time and |D| is almost exponential implying that the computation
of the cglasso estimator is infeasible also for relatively small datasets. In contrast to this, when we
use the matrix S̄(μ̂

ρ

ini, �̂
ρ
ini) to approximate the current estimate of the empirical covariance matrix, the

table shows an almost linear dependence of the CPU time, which implies a significant reduction of the
computational complexity compared with the full EM algorithm. Although the results showed in Table 1
strongly suggest the use of the approximated EM algorithm to compute the cglasso estimator, they do not
provide information about the difference between the two estimates. For this reason, we also computed
the largest Euclidean distance between μ̂

ρ

e and μ̂
ρ

a , denoted as maxρ ‖�μ̂
ρ‖2, and the largest Frobenius

distance between �̂ρ
e and �̂ρ

a , denoted by maxρ ‖��̂ρ‖2
F . The average and standard deviations of these

values are reported in the second part of the Table 1. All the results clearly show that the two estimators are
sufficiently close to each other, and point to the use of the approximated EM algorithm for the derivation
of the cglasso estimator.

4.2. Comparison of methods on data simulated from a censored Gaussian graphical model

In a second simulation study, we compare our proposed estimator with MissGlasso (Städler and Bühlmann,
2012), which performs �1−penalized estimation under the assumption that the censored data are missing at
random, and with the glasso estimator (Friedman and others, 2008), where the empirical covariance matrix
is calculated by imputing the missing values with the limit of detection. These estimators are evaluated
in terms of both recovering the structure of the true graph and the mean squared error. We use a similar
approach to the previous simulation for generating right censored data. In particular, we set the right
censoring value to 40 for any variable and the sample size n to 100. We generate a sparse concentration
matrix with random structure and set the probability of observing a link between two nodes to k/p, where
p is the number of variables and k is used to control the amount of sparsity in �. Finally, we set the mean
μ in such a way that μh = 40 for the H censored variables, i.e. Prob{R(Xh; −∞, 40) = +1} = 0.50,
while for the remaining variables μh is sampled from a uniform distribution on the interval [10; 35]. At
this point, we simulate a sample from the latent p-variate Gaussian distribution and treat all values greater

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/21/2/e1/5092385 by guest on 01 M

ay 2024



e10 L. AUGUGLIARO AND OTHERS

than 40 as missing. The quantities k , p, and H are used to specify the different models used to analyze the
behavior of the considered estimators. In particular, we consider the following cases:

• Model 1: k = 3, p = 50 and H ∈ {25, 35}. This setting is used to evaluate the effects of the
number of censored variables on the behavior of the proposed estimators when n > p.

• Model 2: k ∈ {1, 5}, p = 50 and H = 30. This setting is used to evaluate the effects of the sparsity
of the matrix � on the considered estimators when n > p.

• Model 3: k = 3, p = 200 and H = 100. This setting is used to evaluate the impact of the high
dimensionality on the estimators (p 
 n).

For each model, we simulate 100 samples from the right-censored model and in each simulation we
compute the coefficients path using cglasso, MissGlasso, and glasso. Each path is computed using an
equally spaced sequence of 30 ρ-values. Figure 1a shows the precision-recall curves for Model 1 with
H = 25. The curves report the relationship between precision and recall for any ρ-value, which are
defined by:

Precision(ρ) = number of θ̂
ρ

hk �= 0 and θhk �= 0

number of θ̂
ρ

hk �= 0
, Recall(ρ) = number of θ̂

ρ

hk �= 0 and θhk �= 0

number of θhk �= 0
.

The curves show how cglasso gives a better estimate of the concentration matrix both in terms of precision
and recall, for any given value of the tuning parameter. Figure 1b shows the distributions of the quantity
minρ MSE(�̂ρ), which gives the minimum value of the mean squared error attained along the path of
solutions. These box-plots emphasize that, not only the cglasso has a mean squared error much smaller
than glasso and MissGlasso, but also that it is much more stable than its competitors. The same behavior
was also observed in the other models used in our numerical study, and can be found in the Supplementary
Material available at Biostatistics online. Table 2 reports the summary statistics from all the simulations.
In addition to the quantity described above (second meta-column), the first meta-column shows the mean
squared error in the estimation of the mean (denoted by minρ MSE(μ̂

ρ
)) and the third meta-column reports

the Area Under the precision-recall Curve (AUC). Note that the considered measures allow us to study
the behavior of the estimators along the entire path. The distribution of the minimum value of the mean
squared errors shows that, not only our estimator is able to recover the structure of the graph but also
outperforms the competitors in terms of both estimation of μ and �. We did not report minρ MSE(μ̂

ρ
)

for glasso since this method does not allow to estimate the parameter μ. The results on the AUC suggest
that cglasso can be used as an efficient tool for recovering the structure of the true concentration matrix
of a Gaussian graphical model from censored data.

4.3. Testing the robustness of the method on more realistic biological data

In a third simulation study, we test the robustness of the method on more realistic biological data.
In particular, we consider expression data from Wille and others (2004) on the extensively studied
Arabidopsis thaliana biological system. The study reports data from n = 118 experiments on p = 39
genes, whose regulatory network is of interest. Although the data are fully observed, we test our method
on a dataset where observations are made artificially right censored, similarly to Städler and Bühlmann
(2012). In particular, we produce three datasets at different levels of right censoring, by recording as miss-
ing the 10%, 20%, and 30% of the highest values, respectively. Then, we compare our method, cglasso,
with MissGlasso (Städler and Bühlmann, 2012) and with three additional methods, which impute missing
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Fig. 1. Results of the comparative simulation study based on Model 1 with H = 25. (a) The average precision-recall
curves are shown; (b) The box-plots of minρ MSE(�̂ρ) for the considered estimators is shown.

Table 2. Comparison between cglasso and two existing methods on simulated data: for each measure the
table reports the average value and standard deviation between parentheses

Model minρ MSE(μ̂
ρ
) minρ MSE(�̂ρ) AUC

p H/p k/p cglasso MissGlasso cglasso glasso MissGlasso cglasso glasso MissGlasso

50 0.5 0.06 0.47 14.50 8.76 103.35 96.75 0.48 0.37 0.19
(0.11) (0.69) (0.64) (14.43) (16.01) (0.04) (0.03) (0.02)

50 0.7 0.06 0.48 21.00 10.11 139.76 131.99 0.47 0.33 0.15
(0.10) (0.76) (0.84) (15.94) (18.81) (0.05) (0.03) (0.02)

50 0.6 0.02 0.47 18.31 6.92 128.60 119.65 0.61 0.42 0.16
(0.10) (0.81) (0.82) (17.75) (17.38) (0.08) (0.05) (0.03)

50 0.6 0.10 0.46 17.39 12.02 113.84 105.70 0.43 0.34 0.20
(0.10) (0.92) (0.85) (14.79) (15.71) (0.04) (0.03) (0.02)

200 0.5 0.015 1.92 63.34 41.57 398.02 373.86 0.32 0.21 0.13
(0.19) (1.54) (1.52) (29.78) (32.46) (0.02) (0.02) (0.01)

values first and then infer the network using graphical lasso on the imputed values. As in Städler and
Bühlmann (2012), we consider k-nearest neighbor imputation, which we denote with missknn, and impu-
tation using random forests, which we denote with MissForest. These methods are based on a missing
at random assumption. We further consider a method which relies on multivariate Gaussian data under a
censoring mechanism which we denote with imputeLCMD (Lazar, 2015).

Table 3 shows the Euclidean norm between the true observed data and the imputed one for the five
methods considered and across the three different levels of censoring. The results show how the perfor-
mance of all methods decreases the higher the level of censoring and how cglasso is overall superior to the
other methods across all comparisons, followed closely in some cases by imputeLCMD. The areas under
the precision-recall curves of the networks inferred by the five methods compared with the graphical lasso
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e12 L. AUGUGLIARO AND OTHERS

Table 3. Comparison of methods on the Arabidopsis thaliana expression data: Euclidian distance (ED)
between the observed and imputed data and area under the precision-recall curve (AUC) across the five
methods and the three levels of censoring

Percentage censored cglasso imputeLMCD MissGlasso missknn missForest

ED 10% 9.95 13.49 27.89 31.37 33.31
20% 15.22 18.60 37.73 40.16 46.21
30% 19.76 24.38 46.65 50.08 57.54

AUC 10% 0.93 0.88 0.78 0.79 0.77
20% 0.90 0.86 0.70 0.72 0.68
30% 0.87 0.85 0.63 0.70 0.61

network selected by BIC0.5(Êρ) from the fully observed data show how the proposed cglasso method leads
to a significant gain in network recovery over MissGlasso, missknn, and MissForest even with 30% of
censored data.

5. APPLICATION TO SINGLE CELL-DATA: MEGAKARYOCYTE-ERYTHROID PROGENITORS

Recent advances in single-cell techniques have provided the opportunity to finely dissect cellular het-
erogeneity within known populations and to uncover rare cell types. In a study about the formation of
blood cells, Psaila and others (2016) have recently identified three distinct subpopulations of cells, which
are all derived from hematopoietic stem cells through cell differentiation. One of these sub-populations,
denoted by MK-MEP, is a previously unknown, rare population of cells that are bipotent but primarily
generate megakaryocytic progeny. In this section, we look closely at this sub-population and investigate
the molecular mechanisms of regulation within these cells. To this end, we used data available from Psaila
and others (2016) on 87 genes and 48 single human MK-MEP cells profiled by multiplex RT-qPCR.

As discussed in the Introduction, RT-qPCR data are typically right-censored. In this particular study,
the limit of detection is fixed by the manufacturer to 40. Raw data have been mean normalized using the
method proposed in Pipelers and others (2017) and using the two housekeeping genes provided. Figure 2a
shows the relationship between the proportion of right-censored data and the mean of the normalized
cycle-threshold. Two main conclusions can be drawn from this figure. Firstly, the proportion of censored
data is an increasing function of the mean of the normalized cycle-threshold: this is expected and it means
that the assumption of missing-at-random is not justified on this dataset. Secondly, there are some genes
with a very high proportion of censoring (see the points above the dashed line): these may be genes whose
transcription failed to amplify, in which case they should be treated as missing rather than censored.
Following this explorative analysis and considering also the possible computational problems caused by
the inclusion of these genes, we filtered out the genes with a proportion of censoring above 85% for
subsequent analysis. The resulting data set contains the expression of 63 genes measured on 48 cells.

The normalized cyclic thresholds of the remaining genes are used to fit a right-censored GGM by using
the proposed cglasso estimator. Figure 2b shows the path of the BIC0.5(Êρ) measure and the vertical dashed
line is traced in correspondence of the optimal ρ-value. The resulting estimated graph (see Figure 2c)
contains about 0.6% of all possible edges and about 19% of the considered genes. Consistent with the
existing knowledge about this subpopulation, the estimated graph shows the central role of two genes,
CD42 (glycoprotein 1b) and MYB (Psaila and others, 2016). The first one, CD42, is a megakaryocyte
gene whose expression was found to be significantly high in the MK-MEP subpopulation. In particular, it
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Fig. 2. Real data analysis. (a) The proportion of right-censored data versus the mean of the normalized cycle-threshold;
the black line is obtained by fitting a logistic regression model, while the dashed line identifies the threshold used to
filter out the genes from the study. (b) Path of the BIC0.5(Êρ) measure; the vertical dashed line identifies the optimal
value of the tuning parameter. (c) The estimated graph.

is expressed later during megakaryocyte differentiation and has been associated with unipotent megakary-
opoietic activity in mouse models. The link between CD42 and VWF, another highly expressed genes in
this subpopulation (Psaila and others, 2016), was discovered by Chan and others (2017) as well as other
connections, such as the link between the genes CD42 and CD61 and that between CD42 and TGFB1.
The second central gene, MYB, is a transcription factor that is known to enhance erythroid differentiation
at the expense of megakaryopoiesis.

6. CONCLUSION

In this article, we have proposed a computational approach to fit Gaussian Graphical models in the
presence of censored data. The approach includes both the cases of right- and left-censored data. Since
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e14 L. AUGUGLIARO AND OTHERS

classical Gaussian graphical models cannot be used in high-dimensional settings, we also introduced �1-
penalization to produce sparsity (model selection) and parameter estimation simultaneously. The resulting
estimator is called censored graphical lasso (cglasso). The computational problem of estimating the mean
and conditional independence graph of a Gaussian graphical model from censored data is solved via an
EM-algorithm. An extensive simulation study showed that the proposed estimator overcomes the existing
estimators both in terms of parameter estimation and of network recovery. The analysis of a real RT-qPCR
dataset showed how the method is able to infer the regulatory network underlying blood development
under high levels of censoring.

In addition, we have proposed an approximated EM-algorithm, which is computationally more efficient
and makes the method feasible for high-dimension settings. This approach relies on an efficient approx-
imation of the mixed moments of the latent variables conditional on the observed. The approximation
is exact under conditional independence and has thus been found to work well under sparse settings, as
shown by Guo and others (2015) and our own simulations. Future work will investigate the theoretical
justifications for this as well as refining the scenarios under which a good performance is to be expected.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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