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Abstract

In this article, we propose a new class of priors for Bayesian inference with multiple Gaussian 

graphical models. We introduce Bayesian treatments of two popular procedures, the group 

graphical lasso and the fused graphical lasso, and extend them to a continuous spike-and-slab 

framework to allow self-adaptive shrinkage and model selection simultaneously. We develop an 

EM algorithm that performs fast and dynamic explorations of posterior modes. Our approach 

selects sparse models efficiently and automatically with substantially smaller bias than would be 

induced by alternative regularization procedures. The performance of the proposed methods are 

demonstrated through simulation and two real data examples.

1. Introduction

Bayesian formulations of graphical models have been widely adopted as a way to 

characterize conditional independence structure among complex high-dimensional data. 

These models are popular in scientific domains including genomics (Briollais et al., 2016; 

Peterson et al., 2013), public health (Dobra, 2014; Li et al., 2017b), and economics 

(Dobra et al., 2010). In practice, data often come from several distinct groups. For 

example, data may be collected under various conditions, at different locations and time 

periods, or correspond to distinct subpopulations. Assuming a single graphical model in 

such cases can lead to unreliable estimates of network structure, whereas the alternative, 

estimating different graphical models separately for each group, may not be feasible for high 

dimensional problems.

Several approaches have been proposed to learn graphical models jointly for multiple 

classes of data. Much of this work extends the penalized maximum likelihood approach 

to incorporate additional penalty terms that encourage the class-specific precision matrices 

to be similar (Guo et al., 2011; Danaher et al., 2014; Saegusa & Shojaie, 2016; Ma & 

Michailidis, 2016). In the Bayesian literature, Peterson et al. (2015) and Lin et al. (2017) 

utilize Markov Random Field priors to model a super-graph linking different graphical 

models. Tan et al. (2017) uses a logistic regression model to link the connectivity of 
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nodes to covariates specific to each graph. These approaches only model the similarity of 

the underlying graphs, and thus are limited in their ability to borrow information when 

estimating the precision matrices. Borrowing strength is especially important when some 

classes have small sample sizes.

In this work, we introduce a new Bayesian formulation for estimating multiple related 

Gaussian graphical models by leveraging similarities in the underlying sparse precision 

matrices directly. We first present two shrinkage priors for multiple related precision 

matrices, as the Bayesian counterpart of joint graphical lasso estimators (Danaher et al., 

2014). We then propose a doubly spike-and-slab mixture extension to these priors, which 

allows us to achieve simultaneous shrinkage and model selection, as well as handle missing 

observations. In Section 5 and 6, we extend from the recent literature on deterministic 

algorithms for Bayesian graphical models (Gan et al., 2018; Li & McCormick, 2019; 

Deshpande et al., 2019) and provide a fast Expectation-Maximization (EM) algorithm to 

quickly identify the posterior modes. We also propose a procedure to sequentially explore a 

series of posterior modes. We then demonstrate the substantial improvements in both model 

selection and parameter estimation over the original joint graphical lasso approach using 

both simulated data and two real datasets in Section 7. Finally, in Section 8 we discuss future 

directions for improvements.

2. Preliminaries

2.1. The joint graphical lasso

We first briefly introduce the notation used throughout this paper. We let G denote the 

number of classes in the data, and let Ωg and Σg denote the precision and covariance matrix 

for the g-th class. We let ωjk
(g) denote the (j, k)-th element in Ωg and ωjk = {ωjk

(g)}g = 1, …, G

denote the vector of all the (j, k)-th elements in {Ω}. Suppose we are given G datasets, 

X(1),…, X(G), where X(g) is a ng × p matrix of independent centered observations from the 

distribution Normal(0, Ωg
−1). As maximum likelihood estimates of Ωg can have high variance 

and are ill-defined when p > ng, the joint penalized log likelihood for the G dataset is usually 

considered instead:

ℓ({Ω}) = 1
2 ∑

g = 1

G
ng log det Ωg − tr(SgΩg) − pen({Ω}), (1)

where Sg = (X(g))T X(g). The penalty function encourages {Ω} to have zeros on the off-

diagonal elements and be similar across groups. In particular, we consider two useful penalty 

functions studied in Danaher et al. (2014), the group graphical lasso (GGL), and the fused 

graphical lasso (FGL):

pen({Ω}) = λ0
2 ∑

g
∑

j
∣ ωjj

(g) ∣ + λ1∑
g

∑
j < k

∣ ωjk
(g) ∣

+ λ2 ∑
j < k

pen(ωjk),
(2)

Richard Li et al. Page 2

Proc Mach Learn Res. Author manuscript; available in PMC 2021 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where pen(ωjk) = ‖ωjk‖2 for GGL and ∑g < g′ ∣ ωjk
(g) − ωjk

(g′) ∣ for FGL. Both penalties 

encourage similarity across groups when λ2 > 0, and reduce to separate graphical lasso 

problems when λ2 = 0. The group graphical lasso encourages only similar patterns of 

zero elements across the G precision matrices, while the fused graphical lasso encourages 

a stronger form of similarity: the values of off-diagonal elements are also encouraged to 

be similar across the G precision matrices. In practice, λ0 is typically set to 0 when the 

diagonal elements are not to be penalized.

2.2. Bayesian formulation of Gaussian graphical models

One of the most popular approaches for Bayesian inference with Gaussian graphical models 

is the G-Wishart prior (Lenkoski & Dobra, 2011; Mohammadi et al., 2015). The G-Wishart 

prior estimates the precision matrices with exact zeros in the off-diagonal elements and 

enjoys the conjugacy with the Gaussian likelihood. However, posterior inference under 

the G-Wishart prior can be computationally burdensome and has to rely on stochastic 

search algorithms over the large model space, consisting of all possible graphs. In recent 

years, several classes of shrinkage priors have been proposed for estimating large precision 

matrices, including the graphical lasso prior (Wang, 2012; Peterson et al., 2013), the 

continuous spike-and-slab prior (Wang, 2015; Li et al., 2017b), and the graphical horseshoe 

prior (Li et al., 2017a). This line of work draws direct connections between penalized 

likelihood schemes and, as their names suggest, the posterior modes in a Bayesian setting. 

Unlike the G-Wishart prior, these shrinkage priors do not take point mass at zero for 

the off-diagonal elements in the precision matrix, and thus usually lead to efficient block 

sampling algorithms with improved scalability. However, fully Bayesian procedures still 

need to rely on stochastic search to achieve model selection, making it less appealing for 

many problems.

To address this issue, deterministic algorithms have been proposed to perform fast posterior 

exploration and mode searching in Gaussian graphical models (Gan et al., 2018; Li 

& McCormick, 2019; Deshpande et al., 2019). Motivated by the EMVS (Ročková & 

George, 2014) and spike-and-slab lasso (Ročková & George, 2018) procedures in the linear 

regression literature, the idea is to use a two-component mixture distribution, i.e., spike-and-

slab priors, to parameterize off-diagonal elements in the precision matrix, which allows 

simultaneous model selection and parameter estimation. We will utilize a similar strategy for 

model estimation in this paper.

3. Bayesian joint graphical lasso priors

We first provide a Bayesian interpretation of the group and fused graphical lasso estimators. 

From a probabilistic perspective, it is well understood that estimators that optimize a 

penalized likelihood can often be seen as the posterior mode estimator under some suitable 

prior distributions. The Bayesian counterpart to (2) can be constructed by placing the prior 

p({Ω}) ∝ exp(−pen({Ω})) on the precision matrices. Following directly from the Bayesian 

representation of lasso variants demonstrated in Kyung et al. (2010), we can rewrite p({Ω}) 

as products of scale mixtures of normal distributions on the off-diagonal elements. That is, 

for the GGL prior, we can let
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p({Ω} ∣ τ, ρ) = Cτ, ρ
−1 ∏

j < k
Normal(ωjk; 0, (Θjk

(G))−1)

∏
g

∏
j

Exp(ωjj
(g); λ0

2 )1{Ω} ∈ {M+},
(3)

Θjk
(G) = diag({ 1

ρjk
+ 1

τjkg
}g = 1, …, G), (4)

p(τ, ρ) ∝ Cτ, ρ ∏
j < k

exp( − λ1
2

2 ∑
g

τjkg − λ2
2

2 ρjk)ρjk
− 1

2

∏
g

(τjkg( 1
τjkg

+ 1
ρjk

))− 1
2 ,

(5)

where Cτ,ρ is a normalizing constant and M+ denotes the space of symmetric positive 

definite matrices. The normalizing constant is analytically intractable due to this constraint, 

but it cancels out in the marginal distribution of p({Ω}). Such cancellation has been studied 

by several authors (Wang, 2012; 2015; Liu et al., 2014). Similarly, the FGL prior can be 

defined as

p({Ω} ∣ τ, ϕ) = Cτ, ϕ
−1 ∏

j < k
Normal(ωjk; 0, (Θjk

(F ))−1)

∏
g

∏
j

Exp(ωjj
(g); λ0

2 )1{Ω} ∈ {M+},
(6)

Θjk
(F ) =

θgg = 1
τjkg

+ ∑g ≠ g′
1

ϕjkgg′
g = 1, …, G

θgg′ = − 1
ϕjkgg′

g′ ≠ g
(7)

p(τ, ϕ) ∝ Cτ, ϕ ∏
j < k

∣ Θjk
(F ) ∣−

1
2 exp( − λ1

2

2 ∑
g

τjkg

− λ2
2

2 ∑
g < g′

ϕjkgg′)∏
g

τjkg
− 1

2 ∏
g < g′

ϕjkgg′
− 1

2 .
(8)

It is also worth noting that both of the above priors are proper, and we leave the proof of the 

following proposition in the supplement.

Proposition 1. The priors defined in (3)-(5) and (6)-(8) are proper and the posterior mode 
of {Ω} is the solution of the group and fused graphical lasso problem with penalty terms 
defined in (2).
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4. Bayesian joint spike-and-slab graphical lasso priors

The Bayesian formulation of the joint graphical lasso problems discussed in the previous 

section provide shrinkage effects at the level of both individual precision matrices and 

across different classes. However, two issues remain. First, shrinkage priors alone do not 

produce sparse models since the posterior draws are never exactly 0. Thus, additional 

thresholding is needed to obtain a sparse representation of the graph structure. Second, the 

fixed penalty term, λ1 and λ2 may be too restrictive, as the non-zero elements in {Ω} are 

penalized equally to elements close to zero (Li & McCormick, 2019). To reduce the bias 

from over-penalizing the large elements, different hyper-priors on λ1 have been proposed to 

adaptively estimate the penalty term in Bayesian graphical lasso (Wang, 2012; Peterson et 

al., 2013).

Here we address both challenges simultaneously using the spike-and-slab approaches in 

Bayesian variable selection (George & McCulloch, 1993). In particular, we employ a set of 

latent indicators to construct a “selection” prior on both the group level and within-groups 

for the similarity penalties. We first let binary variables δ = {δjk}j<k denote the existence of 

each edge in the graph, indexing the 2p(p–1)/2 possible models at the group level, so that δjk 

= 1 indicates the (j, k)-th edge is selected for all precision matrices. We then let another set 

of binary variables ξ = [ξjk]j<k denote the non-existence of ‘similarities’ among the elements 

in the same cell of different precision matrices, so that ξjk = 0 indicates the (j, k)-th element 

is expected to be similar. We use the term ‘similarity’ here as a broad term parameterized by 

λ2, since the behavior of the similarity depends on the form of the penalization. Conditional 

on the two binary indicators, we replace the fixed penalty parameters λ1 and λ2 by a 

mixture of edge-wise penalties that take values from {λ1/v0, λ1/v1}, and {λ2/v0, λ2/v1} 

respectively, with fixed v1 > v0 > 0. That is, we introduce the following penalties conditional 

on δ and ξ, and we propose the doubly spike-and-slab extensions to GGL and FGL as

pen({Ω} ∣ δ, ξ) = λ0
2 ∑

g
∑

j
∣ ωjj

(g) ∣ + λ1∑
g

∑
j < k

∣ ωjk
(g) ∣

vδjk

λ2 ∑
j < k

pen(ωjk)
vξjk

∗ ,
(9)

where pen(ωjk) is defined as before and ξjk
∗ = ξjkδjk. The prior defined in (9) relate to the 

unconditional penalties by pen({Ω}) = pen({Ω}∣δ, ξ) – log(p(δ, ξ)), and we will refer to 

them as DSS-FGL and DSS-GGL.

In practice, we find it usually reasonable to enforce all elements from the spike distribution 

to also be similar, since the spike distribution is always chosen to have large penalization 

and leads to posterior modes at exactly 0. However, other types of element-wise dependence 

between δjk and ξjk are also possible with minor modifications. For example, we can also fix 

ξjk to be 1, so that the two penalty terms will always be proportional. We refer to this setting 

as spike-and-slab group and fused lasso (SS-GGL and SS-FGL) and discuss their behavior 

in the supplements.

Richard Li et al. Page 5

Proc Mach Learn Res. Author manuscript; available in PMC 2021 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The original GGL and FGL suffer from the same bias induced by the excessive shrinkage 

of lasso estimates. With the introduction of v0 and v1, we can adaptively estimate which 

ωjk to penalize in a data-driven way. As we discuss in more detail in Section 6, this 

adaptive shrinkage property can indeed significantly reduce bias imposed on the lasso 

penalty. That is, by choosing the hyperparameters so that λi/v0 ≫ λi/v1, we impose only 

minimal shrinkage on values arising from the slab distribution. From now on, in order to 

avoid confusion from the overparameterization, we always fix v1 = 1, and report results with 

the effective shrinkage parameters λi/vj, i, j ∈ {1, 2}. At this point, it may still seem that 

we need introduced one more hyperparameter that needs to be tunned, but as we show in 

Section 6, model selection can be achieved automatically without cross-validation.

For a Bayesian setup, we employ standard priors on the binary indicators to allow the edges 

to further share information on the sparsity level. The full generative model for {Ω} is:

p({Ω} ∣ δ, ξ, θ) = Cθ
−1Cδ, ξ

−1 exp( − pen({Ω} ∣ δ, ξ))1{Ω} ∈ {M+}, (10)

p(δ, ξ ∣ πδ, πξ) ∝ Cδ, ξ ∏
j < k

πδ
δjk(1 − πδ)1 − δjk

πξ
ξjk(1 − πξ)1 − ξjk .

(11)

where θ denote (τ, ρ) for DSS-GGL, and (τ, ϕ) for DSS-FGL. Cδ,ξ is another intractable 

normalizing constant. We put standard Beta hyperpriors on the sparsity parameters so that 

πδ ~ Beta(a1, b1) and πξ ~ Beta(a2, b2). Throughout this paper, we let a1 = a2 = 1 and b1 = 

b2 = p.

Additionally, the above prior can be easily reparameterized with scale mixture of normal 

prior distributions similar as before by modifying the precision matrix Θ into the following 

form, and they can be shown to be proper priors (the proofs can be found in the supplement):

Θjk
(F ) =

θgg =
vδjk
τjkg

+ ∑g < g′
vξjk

∗

ϕjkgg′
g = 1, …, G

θgg′ = −
vξjk

∗

ϕjkgg′
g′ ≠ g

(12)

Θjk
(G) = diag({

vξjk
∗

ρjk
+

vδjk
τjkg

}g = 1, …, G) . (13)

Proposition 2. The priors defined in (10)-(13) are proper, and the posterior mode of {Ω} is 
the solution to the corresponding spike-and-slab version of joint graphical lasso penalties.

Finally, it is straightforward to see that the proposed DSS-GGL and DSS-FGL penalties 

reduce to their non spike-and-slab counterparts when δ and ξ are fixed to be 1. Several other 

spike-and-slab formulations in the literature can be seen as the special case of this prior 

when G = 1 as well. For example, the spike-and-slab mixture of double exponential priors 
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considered in Deshpande et al. (2019) is a special case with λ2 = 0. The spike-and-slab 

Gaussian mixtures in Li & McCormick (2019) can also be considered as a special case 

where we further fix τjkg = ∞. This approach is also related to the work on sparse group 

selection in linear regression, as has been discussed in Xu et al. (2015) and (Zhang et al., 

2014). As opposed to the point mass priors for the spike distribution commonly in the 

literature, our doubly spike-and-slab formulation of continuous mixtures allows the spike 

distribution to absorb small non-zero noises and facilitates fast dynamic explorations, as we 

will show in Section 6.

5. Model estimation

Given fixed λ1, λ2, and v0, The representation of p({Ω}) with the scale mixture of normal 

distributions allows the posterior to be sampled using a block Gibbs algorithm, as described 

in the supplement. However, choosing the hyperparameters can usually be a nontrivial task. 

Instead, we focus on faster deterministic methods to detect posterior modes under different 

choices of hyperparameters (Ročková & George, 2014). We present an EM algorithm that 

maximizes the complete-data posterior distribution p({Ω}, δ, ξ, πδ, πξ∣X) by treating 

the binary latent variables as “missing data.” Similar ideas have been explored in recent 

work for linear regression (Ročková & George, 2014; 2018) and single graphical model 

estimation (Deshpande et al., 2019; Li & McCormick, 2019). Our EM algorithm maximizes 

the objective function Eδ, ξ ∣ {Ω}(t), πδ
(t), πξ

(t), X(log p({Ω}, πδ, πξ ∣ X ∣ ⋅ ) by iterating between the 

E-step and M-step until changes in {Ω} are within a small threshold.

In the E-step, we compute the conditional expectation terms in the objective function. It 

turns out that it suffices to find the conditional distribution of (δjk, ξjk). The corresponding 

cell probabilities are proportional the the following mixture densities:

pδjk, ξjk
∗ (j, k) ∝

πδ(1 − πξ)
λ1λ2
v0v1

ψ(v1, v0) δjk = 1, ξjk = 0

πδπξ
λ1λ2
v1

2 ψ(v1, v1) δjk = 1, ξjk = 1

(1 − πδ)(1 − πξ)
λ1λ2
v0

2 ψ(v0, v0) δjk = 0, ξjk = 0

where ψ(a, b) = exp( − λ1∑g ∣ ωjk
(g) ∣ ∕ a − λ2pen(ωjk) ∕ b).

It is interesting to note that the three scenarios above represent three types of 

relationships among ωjk: weak shrinkage but strong similarity, weak shrinkage and weak 

similarity, and strong shrinkage across classes. E·∣·(δjk) and E·∣· (ξjk) are then simply 

the marginal probabilities in this 2 by 2 table, i.e., E ⋅ ∣ ⋅ (δjk) = p1, 0
∗ (j, k) + p1, 1

∗ (j, k), and 

E ⋅ ∣ ⋅ (ξjk) = E ⋅ ∣ ⋅ (δjkξjk) = p1, 1
∗ (j, k). The EM algorithm also handles missing cells in X 

naturally. Assuming missing at random, the expectation can also be taken over the space of 

missing variables, by additionally computing E·∣·(tr(SgΩg)) = tr(E·∣·((X(g))TX(g))Ωg)), using 
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the conditional Gaussian distribution of xi, miss
(g) ∣ xi, obs

(g) . We relegate the derivations of the 

objective function to the supplement.

Given the expectations calculated in the E-step, one might proceed with conditional 

maximization steps using gradient ascent similar to the Gibbs sampler (Li & McCormick, 

2019). Alternatively, since the maximization step is equivalent to solving the following joint 

graphical lasso problem:

{Ω} = argmax{Ω}∑
g

ng
2 log ∣ Ωg ∣ − 1

2 ∑
g

tr(SgΩg)

−
λ0
2 ∑

j
∑
g

∣ ωjj
(g) ∣

− ∑
j < k

λ1(
p0, 0
∗ (j, k)

v0
+

1 − p0, 0
∗ (j, k)
v1

)∑
g

∣ ωjk
(g) ∣

− ∑
j < k

λ2(
1 − p1, 1

∗ (j, k)
v0

+
p1, 1
∗ (j, k)

v1
)pen(ωjk),

meaning we can use the ADMM algorithm described in Danaher et al. (2014).

6. Dynamic posterior exploration

The algorithm proposed in the previous section requires a fixed set of hyperparameters, (λ0, 

λ1, λ2, v0). The posterior is relatively insensitive to the choice of λ0 as long as it is not too 

large (Wang, 2015). Furthermore, unlike the original joint graphical lasso, where two tuning 

parameters need to be selected using cross-validation or model selection criterion, it turns 

out that we can leverage the self-adaptive property from the doubly spike-and-slab mixture 

setup to achieve automatic tuning using a path-following strategy (Ročková & George, 

2018). Specifically, we consider a sequence of decreasing v0 = {v0
1, …, v0

L} and some small 

λ1 and λ2. We initiate {Ω}0 so that Ωg0 = (Sg/ng + cI)−1, and iterative estimate {Ω}l with 

v0 = v0
l . After fitting the l-th model, we use the estimated graph structure to warm start the 

(l + 1)-th model by initiating Ωg to be Ωg0 ∘ 1δ > 0
l

, where 1δ > 0
l

 denotes the group level 

graph structure at the l-th iteration. As v0 decreases, the shrinkage imposed on the spike 

elements steadily increases and leads to sparser models. As noted in Ročková & George 

(2018), the solution path from such dynamic reinitialization procedure usually ‘stabilizes’ as 

v0 becomes closer to 0 in linear regression. We found similar behavior in our spike-and-slab 

joint graphical lasso models too, as illustrated in Figure 1.

To demonstrate the dynamic posterior exploration in action, we simulated a small dataset 

from two classes, with ng = 150 for g = 1, 2, and p = 100. The two underlying graphs differ 

by 5 edges: The first precision matrix contains a 10-node block with an AR(1) precision 

matrix where (Ω−1)jk = ρ1
∣ j − k ∣ , and ρ1 = 0.7; the second precision matrix in the second 

class contains a common 5-node AR(1) block with ρ2 = 0.9. The rest of the nodes are all 

independent. We fit the fused graphical lasso with a sequence of λ1, and fixed λ2 = 0.1, 

which leads to the best performance in this experiment; and DSS-FGL with λ1 = 1, and λ2 

Richard Li et al. Page 8

Proc Mach Learn Res. Author manuscript; available in PMC 2021 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 1. Figure 1 shows the FGL and DSS-FGL solution path. Unlike the continuous shrinkage 

of FGL, the zero and non-zero elements under DSS-FGL tend to be separated into two stable 

clusters as the effective shrinkage λ1/v0 increases beyond a critical point. Danaher et al. 

(2014) noted that graph selection using AIC tends to favor large models. This example also 

confirms this observation as the likelihood evaluation for smaller models suffers from the 

overly aggressive shrinkage. In this example, AIC selects 27 edges in both classes, leading 

to 41 false positives. Assuming we know the true graphs, the best model in terms of edge 

selection along the FGL solution path contains one false negative edge as shown in Figure 

1. However, without accurate prior knowledge of graph sparsity, correctly identifying this 

model is typically difficult, if not impossible. On the other hand, the stable model from the 

DSS-FGL solution path yields 4 false positive edges in the second graph, but with clear 

visual separation from the regularization plot: only one false positive edge stabilizing to a 

larger value away from 0. Thus in practice, the solution path also provides a visual tool to 

threshold the small values close to 0. Additionally, the bias of the final precision matrices 

compared to the truth is also much smaller than the best FGL solution.

We also find that the converged region is insensitive to the choice of λ1 and λ2 in all our 

experiments, as the model allows a flexible combination of shrinkage through the adaptive 

estimation of p*. The supplement includes an empirical assessment of sensitivity in the 

simulation experiments.

7. Numerical results

Simulation experiments

To assess the performance of the proposed models, we consider a three-class problem 

similar to the study carried out in Danaher et al. (2014). We first generate three networks 

with p = 500 features with 10 equal sized unconnected subnetworks following power law 

degree distributions. Exactly one and two subnetworks are removed from the second and 

third class. The details of the data generating process can be found in the supplement. The 

results comparing the proposed model and joint graphical lasso are shown in Figure 2. As 

discussed before, the DSS-FGL and DSS-GGL achieve model selection automatically. Thus 

we compare the selected models with the average curve of FGL and GGL under different 

tuning parameters. Figure 2(a) and (c) show that DSS-FGL and DSS-GGL usually achieves 

better structure learning performance for both identifying edges and differential edges. The 

differential edges are defined as the edges for the (g, g′) pair with ∣ ωjk
(g) − ωjk

(g′) ∣ > 0.01. 

Figure 2(b) and (d) demonstrate the bias-diminishing property of the proposed models 

compared to the joint graphical lasso estimator at varying sparsity levels, measured by the 

number of edges in (b) and L1 norm of the estimator in (d). On average, both the sum of bias 

as measured by the Frobenius norm, ‖Ωg − Ωg‖F , and the Kullback-Leibler (KL) divergence 

achieved by the proposed model is much smaller.

Symptom networks of verbal autopsy data

We applied the DSS-FGL and DSS-GGL to a gold-standard dataset of verbal autopsy 

(VA) surveys (Murray et al., 2011). VA surveys are widely adopted in countries without 

full-coverage civil registration and vital statistics systems to estimate cause of death. They 
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are conducted by interviewing caregiver of a recently deceased person about the decedent’s 

health history. The standard procedure of preparing the collected data is to dichotomize 

all continuous variables into binary indicators and many algorithms have been proposed to 

automatically assign causes of death using the binary input (Byass et al., 2012; Serina et 

al., 2015; McCormick et al., 2016). However, more information may be gained by modeling 

the continuous variables directly (Li et al., 2017b). Here we focus on modeling the joint 

distribution of the continuous variables. The 27 continuous variables in this dataset contain 

representations of the duration of symptoms, such as response to the question ‘how many 

days did the fever last’, and age of the decedents. It is usually reasonable to assume the 

response to these questions are jointly distributed in similar ways conditional on each cause 

of death. We take the raw responses and transform raw duration xij by log(xij + 1). We 

then let Xij
(g) denote the j-th transformed variable for observation i due to the cause g. The 

full dataset contains death assigned to 34 causes. We applied DSS-FGL with λ1 = λ2 = 1 

to the three largest determined causes of death in this data: Stroke (n = 630), Pneumonia 

(n = 540), and AIDS (n = 542) in Figure 3. The estimated graphs under other models are 

discussed in the supplement. Both DSS-FGL and DSS-GGL estimated similar graphs and 

discovered interesting differential symptom pairs, such as the strong conditional dependence 

between the duration of illness and paralysis in deaths due to stroke. Further incorporating 

the DSS-FGL and DSS-GGL formulation of multiple precision matrices into a classification 

framework would likely improve accuracy over existing methods (e.g. McCormick et al. 

(2016); Byass et al. (2012)) for automatic cause-of-death assignment.

Prediction of missing mortality rates

Beyond structure learning, the bias reduction in estimating {Ω} also makes the proposed 

method more appealing for prediction tasks involving sparse precision matrices. In this 

example, we illustrate the potential of using the proposed methods to impute missing 

mortality rates using a cross-validation study. We construct the data matrices Xij
(g) as the 

log transformed central mortality rate of age group j in year i for subpopulation g (e.g., 

male and female). Standard approaches in demography, such as the Lee-Carter model (Lee 

& Carter, 1992), typically use dimension reduction techniques to estimate mean effects due 

to age and time, and consider the residuals as independent measurement errors. However, 

residuals from such models are usually still highly correlated (Fosdick & Hoff, 2014). We 

consider estimating the residual structure with the 1 × 1 gender-specific mortality table up 

to age 100 in the US over the period of 1960 to 2010 using data obtained from the Human 

Mortality Database (HMD) (University of California, Berkeley (USA), and Max Planck 

Institute for Demographic Research (Germany)). For both the male and female mortality, we 

first randomly selected 25 years and remove 25 data points in each of those years. We then 

fit a Lee-Carter model to estimate the mean model and interpolate the missing rates. Next, 

we estimate the covariance matrices among the 101 age groups in both genders using FGL 

and DSS-FGL from the residuals.

The estimated residuals for the missing values can then be obtained by the E-step in our EM 

algorithm, or as the expectation from the conditional Gaussian distributions with covariance 

matrices estimated by FGL. The average mean squared errors (MSEs) for the prediction 
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of missing log rates are summarized in Table 1. Imputation based on DSS-FGL precision 

matrix reduces the MSE by 27.8% compared to simple interpolation of the mean model (i.e., 

assuming i.i.d errors), compared to the 6.5% reduction from the FGL precision matrix with 

the same complexity. The estimated graphs are in the supplement.

8. Discussion

In this paper, we introduced a new class of priors for joint estimation of multiple 

graphical models. The proposed doubly spike-and-slab mixture priors, DSS-FGL and DSS-

GGL, provide self-adaptive extensions to the joint graphical lasso penalties, and achieves 

simultaneous model selection and parameter estimation. Moreover, while taking advantage 

of the flexible class of penalty functions, the dynamic posterior exploration procedure allows 

the penalties to be adaptively estimated in a data-driven way, thus freeing practitioners from 

choosing multiple tuning parameters. This is especially useful in domains where sample 

sizes are too small to reliably perform cross-validation. Finally, additional procedures such 

as multiple random initializations and deterministic annealing may be further incorporated 

into the proposed algorithm to better expore the posterior surface. While not discussed in the 

main paper, we note that the posterior uncertainty may be estimated using the Gibbs sampler 

described in the supplement.

The proposed framework can be extended in a few directions. First, we have assumed 

all classes to be exchangeable, as reflected in the penalty functions for the between-

class similarity. When the classes exhibit hierarchical structures or different strengths of 

similarities, the indicator ξ may be modeled as functions of the class membership as 

well. Markov Random Field priors discussed in Saegusa & Shojaie (2016) and Peterson 

et al. (2015) may also be used to model the between-class similarities. Second, we have 

considered the estimation of missing values in the data matrices. It is also straightforward to 

extend to data with missing class labels. In this way, the proposed methods can be extended 

to classification or discriminant analysis based on sparse precision matrices (Hao et al., 

2016). Finally, the proposed model is estimated using an EM algorithm that is iteratively 

solving the joint graphical lasso problem. It may be interesting to construct coordinate 

ascent algorithms that optimize on the objective function directly, similar to that described in 

Ročková & George (2018) for linear regression.

The codes for the proposed algorithm are available at https://github.com/richardli/SSJGL.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The solution paths and estimated precision matrices of FGL (upper row) and DSS-FGL 

(lower row). The red nodes correspond to true edges and the gray nodes correspond to 0’s. 

The two vertical lines in the FGL solution path indicate the model that best matches the true 

sparsity (left) and the model with the lowest AIC (right). The block containing the edges is 

plotted for the estimated values (upper triangular) against the truth (lower triangular). The 

model that best matches the true graphs is plotted for FGL. The off-diagonal values are 

rescaled and negated to partial correlations, and 0’s are colored with light gray background 

for easier visual comparison. The bias of the estimated precision matrix as measured by the 

Frobenius norm, ‖Ωg − Ωg‖F , is also printed in the captions.
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Figure 2. 
Performance of FGL, GGL, DSS-FGL, and DSS-GGL over 100 replications. The dots 

represent the metrics for the 100 selected models under DSS-FGL and DSS-GGL, and 

the lines represent the average performance of FGL and GGL over 100 replications under 

different tuning parameters.
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Figure 3. 
Estimated edges between the symptoms under the three causes using DSS-FGL. The width 

of the edges are proportional to the size of ∣ ωjk
(g) ∣. Common edges across all groups are 

colored in blue, and the differential edges are colored in red.
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Table 1.

Average and standard deviation of the mean squared errors from 50 cross-validation experiments. The FGL 

model is selected to have the same number of edges as the DSS-FGL.

i.i.d FGL DSS-FGL

Average MSE 0.00372 0.00348 0.00268

SE of the MSEs 0.00030 0.00031 0.00028
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