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Convergence for the Wang-Landau density of states
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The Wang-Landau method of estimating the density of states g(E) has become a powerful tool in statistical
mechanics. Here it is shown that the distribution of random walkers sampled using an estimated density of states
can always be used to improve the estimate. Specifically, this can be done without resorting to an auxiliary
modification factor f , which previously has been used to find g(E) self-consistently through a procedure that
reduces f incrementally toward unity. This straightforward approach is validated for multiple, independent
random walkers.
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Calculations in statistical mechanics usually involve a
large number of degrees of freedom which define a high-
dimensional phase space. Frequently, calculations over the
points—or microstates—in this phase space involve a series
of random steps from one microstate to another microstate, and
a particular trajectory is thought of in terms of a simulation that
involves a Markov random walker jumping from microstate to
microstate following some probabilistic formula. The concept
of detailed balance refers to the constraint that the net flux
of random walkers between any two microstates in the phase
space is zero, which in turn ensures the formula describes
an equilibrium calculation. By extension, detailed balance
implies the flux from the set of all microstates with energy E

to the set of those with energy E′ must be equal in magnitude
to the flux in the other direction

�(E → E′) = �(E′ → E). (1)

For importance-sampling Monte Carlo (MC) [1,2] the flux �

is usually factored into the average density of walkers n, the
probability P of proposing a move from a microstate with
energy E to one with energy E′, and A the probability of
accepting that move. Detailed balance then implies

n(E)P (E → E′)A(E → E′)
= n(E′)P (E′ → E)A(E′ → E). (2)

Usually the method for proposing moves is symmetric in the
sense g(E)P (E → E′) = g(E′)P (E′ → E), with g(E) the
density of states (DOS), i.e., the relative fraction of microstates
with energy E. Accepting moves with the Metropolis [1]
formula A(E → E′) = min[1,w(E′)/w(E)], with w(E) a
function that weights the choices, will generate a sequence of
microstates that satisfy detailed balance. Using the Metropolis

formula, Eq. (2) can be rewritten

nw(E)w(E′)g(E′) = nw(E′)w(E)g(E), (3)

with the density of walkers associated with a particular choice
of w written as nw(E). For any energy E or E′ detailed balance
thus enforces the ratio between nw, w and g [3]

nw(E)

w(E)g(E)
= nw(E′)

w(E′)g(E′)
= 1, (4)

with the normalization chosen to be unity for convenience.
If the Boltzmann factor is used as the weight function
w(E) = e−E/kBT , the average walker density will have the
same probability distribution as the canonical ensemble

nw(E′)
nw(E)

= e−(E′−E)/kBT e[S(E′)−S(E)]/kB = e−(F ′−F )/kBT , (5)

with S = kB ln[g(E)] the entropy and F = E − T S the
Helmholtz free energy. The expectation value of a quantity
X in the canonical ensemble is

〈X〉 =
∑

E X(E)g(E)e−E/kBT

∑
E g(E)e−E/kBT

. (6)

Using the Boltzmann weighting factor for the random walker
reduces this, using Eq. (5), to

〈X〉 =
∑

E X(E)nw(E)∑
E nw(E)

, (7)

which is equivalent to the average value of X sampled over the
random-walk simulation.

In contrast, the Wang-Landau approach to importance
sampling [4] uses an estimated value for the density of
states for the weighting function in the Metropolis acceptance
formula w(E) = g−1

i (E). The estimated density of states gi(E)
is calculated successively along with the associated density of
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walkers ni(E) until it is converged to a self-consistent value,
where i is used to index each stage in the sequence of estimates.
While finding the self-consistent estimate,

g(E) = lim
i→∞

gi(E) (8)

takes significant computational resources, and once deter-
mined it can be used to evaluate Eq. (6) at all temperatures
at essentially no cost. It is not surprising that understanding
the convergence of gi(E) for the Wang-Landau method, and
trying to optimize it, is a very active topic [5].

Detailed balance provides an avenue for understanding the
convergence in the estimated density of states. At stage i,
detailed balance formulated as Eq. (4) gives

ln [g(E)] = ln [gi(E)] + ln [ni(E)]. (9)

The value of ni(E) is estimated during the course of K

sampling steps nK
i (E). There are two contributions to nK

i (E).
The dominant contribution is the difference between the
logarithm of the estimated density of states and the exact
value; Eq. (9) is what provides a convergence procedure for the
Wang-Landau method. There is a second contribution due to
the random nature of the walkers even if the estimated density
of states is exactly equal to the true value. In this case of
unbiased diffusion gi(E) = g(E), sampling of the equilibrium
distribution will contain statistical fluctuations and nK

i (E) will
converge only for very large K . Determining convergence in
the Wang-Landau method often depends on the behavior of
these statistical fluctuations.

Wang and Landau implemented Eq. (9) by adding a factor
ln (fi) at each step of the random walker

ln [gi,j+1(E)] = ln [gi,j (E)] + ln (fi), (10)

with j indexing the random-walk steps within a stage i of
the calculation. To find a self-consistent estimate of g, the
value fi is gradually reduced from e to 1. Within one stage of
constant fi , the histogram ln [gi(E)] is modified until ni(E)
meets some flatness criterion which indicates that the unbiased,
diffusive contribution to ni(E) dominates the deterministic
part driving the convergence. Mathematically, the estimated
density of states is expressed as

ln [gi+1(E)] = ln [gi(E)] + ln (fi)ni(E), (11)

but since gi(E) is modified at each step of the random walker,
ni(E) will depend on the history of the random walk. This
effect can be minimized by delaying the modification of the
density of states, i.e., modifying it only after every K steps of
the random walk [6].

The convergence of this traditional Wang-Landau approach
is illustrated for the Ising model on a square lattice with
Hamiltonian

E = 2NJ − J
∑

〈i,j〉
sisj , (12)

with si = ±1, the sum restricted to nearest-neighbor spins,
and E = 0 when all spins are aligned. The results for the
6 × 6 Ising model are shown in Fig. 1. The true density of
states found by exact enumeration [7] appear as the filled
circles, with g(E) = 2 for the ground state (E = 0) and the
antiferromagnetic configurations (E = 144J ). The curves are
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FIG. 1. (Color online) Convergence of the traditional Wang-
Landau approach for the 6 × 6 Ising model using a flatness criterion
of 0.5. The exact results appear as filled circles, and the estimates for
progressively smaller values of the self-consistent parameter f are
shown as curves, from narrowest to widest, respectively.

nested (color online), with ln (f ) = 1 the innermost curve and
ln (f ) = 1/1024 the one in best agreement with the exact
results. Each curve represents the results of 100 000 Monte
Carlo steps of the random walker at fixed fi (with K = 1),
more than sufficient to meet the traditional flatness criterion of
Wang and Landau with a value of 0.5. Increasing the number
of Monte Carlo steps at each stage does not change the results.
The results of 500 independent runs of the ith stage were
averaged together to yield smooth results.

For large values of fi , the estimated gi(E) is a parabola
whose curvature is determined by a minimum curvature that
appears to be inherent to the algorithm, and which can be
motivated as follows. Numerically, the second derivative can
be determined using the difference formula

ln [gi(E)]′′ = 1

(δE)2
( ln [gi(E + δE)]

+ ln [gi(E − δE)] − 2 ln [gi(E)]), (13)

with δE the difference between adjacent energies. Since
neighboring values of ln [gi(E)] can differ by only ln (f ),
the smallest nonzero value the second derivative can have
is ln [gi(E)]′′ = ln (f )/(δE)2. Qualitatively, this minimum-
curvature effect can be seen in Fig. 1. In order to produce
a good estimate of ln [gi(E)], ln (fi) must be small enough to
avoid this effect. Further reductions in ln (fi) below this level
lead mostly to a smoothing of the estimated density of states.

A more obvious implementation of Eq. (9) is

ln [gi+1(E)] = ln [gi(E)] + ln[ni(E)], (14)

with ni(E) determined while ln [gi(E)] is held fixed. In this
approach there is no convergence parameter ln (fi). Repeated
iterations of sampling for many Monte Carlo steps determine
ni(E) and modify gi(E) according to Eq. (14). This approach
is essentially the same as the f = 1 update of Lee, Okabe, and
Landau [8], the entropic sampling of Lee [9], and the multi-
canonical approach of Berg and Celik [10]. The convergence
of this approach are shown in Fig. 2 with K = 50 000 samples
in each stage indexed by i. In the figure, a thicker curve [orange
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FIG. 2. (Color online) Convergence of the ln-modification
scheme of Eq. (14). The estimated ln [gj (E)] is modified every
5 × 104 samples, and the results shown cover progressively wider
ranges of energy. The results are for the 6 × 6 Ising model, with the
exact results appearing as filled circles. The difference between the
estimate and the exact result are shown in the inset.

online (light gray)] is used for ln [g2(E)], which only exists for
40 � E/J � 104. The estimate ln [g4(E)] [blue online (dark
gray)] exists for all energies except the ground state, while the
estimate for ln [g(E)] agrees visually with the exact result after
500 000 samples. The difference between the estimate and the
exact result are shown in the inset. These results validate the
approach of Eq. (14).

The fact that the estimates do not approach the exact value
from below suggests better convergence than occurs for the
traditional Wang-Landau approach, which is consistent with
the results reported in Ref. [8]. However, the underestimation
of ln [gi(E)] keeps ni(E) large for the extreme values of E

and enables the Wang-Landau algorithm to sample a wider
range of energies faster than other methods. This makes
the Wang-Landau algorithm useful in the initial stages of
estimating ln [gi(E)]. Ultimately, it is unable to converge to
the true value of ln [gi(E)], as shown by Belardinelli and
Pereyra [11]. The relative error between the Wang-Landau
estimate and the exact value is shown in Fig. 3 as the dashed
curve. The error is quite large for the first 105 MC steps when
the minimum curvature effects dominate and then steadily
decrease until becoming constant for all times t > 106 MC
steps. Belardinelli and Pereyra suggested an approach that
overcomes this limitation, namely,

ln [gi,j+1(E)] = ln [gi,j (E)] + max[ln (fi),NE/t], (15)

with t the Monte Carlo “time” of the random walker and NE

the number of discrete energy states. This has become known
as the 1/t Wang-Landau method, and its relative error is shown
as the solid curve in Fig. 3. Naturally, it behaves the same as
the traditional Wang-Landau approach at early times, and it
continues to converge to the exact value at larger times. This
makes sense with the observation that ln n ≈ 1 + 1/2 + 1/3 +
· · · + 1/n if the random walker visits each energy on the order
of every NE steps. In terms of Eq. (14), the results for using
Wang-Landau for the first 105 Monte Carlo steps, at which
point all the energies have been visited, followed by sampling
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FIG. 3. The energy-averaged relative error vs Monte Carlo steps
for the 6 × 6 Ising model using all three methods discussed here. The
traditional Wang-Landau algorithm is shown as the dashed curve, and
the convergence is observed to be constant at a finite value after ∼106

steps. The results for the 1/t Wang-Landau algorithm are shown as
the solid curve, and continued convergence is seen throughout the
sampling. A flatness criterion of 0.5 was used for both. The results
for the iterative approach, starting from the Wang-Landau density of
states after 105 steps, is shown as the circles.

for K = 105, 106, 107, and 108 steps are shown as the circles in
Fig. 3. This performs at least as well as the 1/t Wang-Landau
method. Successively longer sampling times are required since
sampling errors will dominate ni(E) after a few updates with
fixed K .

The fixed density of states approach of Eq. (14) is especially
powerful when utilizing many random walkers linked by slow
communication [12]. This is a very real advantage in com-
putational environments with many processing units linked by
high-latency communication, such as GPU-based architectures
or massively parallel supercomputers. The ln [gi(E)] for the
32 × 32 Ising model calculated using 100 independent random
walkers is shown in Fig. 4, with the difference between
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FIG. 4. (Color online) Wang-Landau density of states g(E) for
the 32 × 32 Ising Model for 100 independent Markov walkers. The
initial estimate is shown as the dashed curve, and the estimated DOS
was modified every K = 107 samples. The difference between the
estimate and the exact result are shown in the inset.
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the estimate and the exact result shown in the inset. This
calculation was started with a ln [g0(E)] found by fitting a
parabola to the density of states near the maximum in g(E).
All walkers started from the ferromagnetic configuration, with
K = 107, i.e., 105 steps per walker between modifications.
The difference between the estimate and the exact values are
shown in the inset.

To summarize, the expression governing convergence of
the Wang-Landau method, Eq. (9), can be derived from the
concept of detailed balance. The traditional Wang-Landau
algorithm is observed to generate estimated density of states
that approach the exact value from below, which enables it to
sample a wider range of energies than other algorithms. The
algorithm is unable to converge to arbitrarily precision, and
another method must be used to refine the estimated density
of states. While the 1/t Wang-Landau method achieves this

in a statistical sense, a more natural approach that can be
easily extended to parallel computations is suggested here.
This method appears to converge at least as fast as the 1/t

Wang-Landau approach.
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