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PREFACE 

The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans 
and Beckmann to model a plant location problem. Since then the QAP has been 
object of numerous investigations by mathematicians, computers scientists, opera-
tions researchers and practitioners. Nowadays the QAP is widely considered as a 
classical combinatorial optimization problem which is (still) attractive from many 
points of view. In our opinion there are at last three main reasons which make the 
QAP a popular problem in combinatorial optimization. First, the number of real-
life problems which are mathematically modeled by QAPs has been continuously 
increasing and the variety of the fields they belong to is astonishing. To recall just 
a restricted number among the applications of the QAP let us mention placement 
problems, scheduling, manufacturing, VLSI design, statistical data analysis, and 
parallel and distributed computing. Secondly, a number of other well known com-
binatorial optimization problems can be formulated as QAPs. Typical examples 
are the traveling salesman problem and a large number of optimization problems 
in graphs such as the maximum clique problem, the graph partitioning problem 
and the minimum feedback arc set problem. Finally, from a computational point of 
view the QAP is a very difficult problem. The QAP is not only NP-hard and NP-
hard to approximate, but it is also practically intractable: it is generally considered 
as impossible to solve (to optimality) QAP instances of size larger than 20 within 
reasonable time limits. Notice that the remarkable progress in data structures and 
algorithmic developments, as well as major advances in computer hardware, have 
enabled a tremendous increase in the size of NP-hard problems which can be solved 
in practice. Recall for example large-scale instances of combinatorial problems such 
as the maximum clique problem on graphs with thousands of vertices and millions 
of edges, or the traveling salesman problem with thousands of cities which can be 
solved in practice. In this context, the quadratic assignment problem remains a 
challenging exception. 

Despite the toughness of the QAP and also because of it, the literature on this 
problems abounds in results on almost all usually considered aspects of combina-
torial optimization problems. This monograph aims at giving a general overview 
on the most studied aspects of the problem and the obtained results, as well as 
at outlining a number of research directions on the QAP which currently seem 

IX 
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to be promising. In this way this monograph might probably serve as a relevant 
reference to researchers and students interested in the QAP, but also to practition-
ers who face the QAP and wish to better understand this problem in its inherent 
complexity. 

The monograph is organized in 7 chapters. In Chapter 1, after introducing the 
problem and briefly describing some of its numerous applications, we present a 
number of linearizations of the QAP together with the first significant results con-
cerning the QAP polytope and the investigation of the QAP from a polyhedral 
point of view. Further, a picture on the computational complexity of the QAP is 
given by summarizing a number of results concerning this aspect of the problem. 
In Chapter 2 algorithms to solve the QAP to optimality are considered. We focus 
on bounding procedures as a crucial component of such algorithms. (Recall that 
the QAP is NP-hard and therefore, enumeration methods are the only approach 
towards solving it to optimality.) The first part of Chapter 3 gives an overview on 
heuristic approaches which have been used to approximately solve the QAP. Fur-
ther, the asymptotic behavior of the QAP is described in the second part of this 
chapter. In Chapters 4, 5 and 6 restricted versions of the QAP are considered. We 
point out polynomially solvable special cases of the QAP, as well as provably hard 
versions of the problem, aiming at drawing a border-line between polynomially 
solvable versions of the problem and NP-hard ones. The restricted versions of the 
QAP investigated in these three chapter arise either by imposing specific combina-
torial properties on the coefficient matrices or as QAP formulations of optimization 
problems in graphs. The special coefficient matrices may posses Monge-like prop-
erties (Monge, Anti-Monge or Kalmanson matrices), may be diagonally structured 
(Toeplitz or circulant matrices), may be graded on the rows, on the columns or on 
both rows and columns etc. Restricted versions of the QAP where the coefficient 
matrices have properties as those mentioned above are discussed and analyzed in 
Chapter 4 and 5. The matrix classes which are characterized by this properties, 
and a number ofrestricted versions of the QAP with coefficient matrices taken from 
this classes are discussed in Chapter 4. Another restricted version of the QAP with 
special coefficient matrices, the so-called Anti-Monge-Toeplitz QAP, together with 
some of its applications is discussed in Chapter 5. This problem is considered in 
a separate chapter for two reasons. First, because of its interesting applications 
this restricted version of the QAP seems to be more relevant than the others. Sec-
ondly, in our opinion the methods used to deal with this problem which basically 
are quite simple, are however somewhat specific from the mathematical point of 
view. Chapter 5 is concluded by a brief discussion on permuted polynomially solv-
able cases of the QAP. Chapter 6 reviews and reformulates in the language of the 
QAP some results on optimization problems in graphs which can be formulated as 
QAPs. Among others, packing problems, the minimum feedback arc set problem 
and the linear arrangement problem are considered. This chapter is concluded by 
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a theorem on the complexity of the so called pyramidal QAP. Finally, we present a 
generalization of the QAP, the so called biquadratic assignment problem (BiQAP), 
which is the mathematical formulation of a problem arising in VLSI design. This 
problem which seems to be interesting because of its above mentioned application, 
is apparently very difficult. Some results obtained for QAPs, e.g. results concerning 
linearizations, the Gilmore-Lawler bound or the asymptotic behavior, can also be 
generalized for the BiQAP. However, such results are of no particular relevance in 
terms of the solvability of BiQAPs which arise in real-life applications and hence, 
a lot remains to be done in this direction. 

My most special thanks are due to Prof. Rainer Burkard at the Technical Univer-
sity Graz who introduced the Quadratic Assignment Problem to me, supervised 
my graduate studies, and encouraged me to write this monograph. His guidance 
and support during the preparation of my Ph. D. thesis of which this monograph 
is an extension and generalization, and his suggestions and remarks during the 
preparation of this monograph gave me an invaluable help. 

I would like to express my deepest gratitude to Gerhard Woeginger for his tutelage 
and guidance during my graduate studies, when I was mainly working on the QAP. 
Most of the results on special cases of the QAP presented in Chapter 4, 5, and 6 
are result of our joint work. 

I am gratefully indebted to Stefan Karisch, Bettina Klinz, Ulrich Pferschy, Rudiger 
Rudolf, and Marc Wennink, for carefully reading parts of the manuscript and 
pointing out many errors in earlier versions, as well as for their helpful suggestions 
which have been indispensable for improving the presentation. Of course, I am the 
only responsible for the remaining mistakes and errors: I apologize in advance; 

I would also like to thank Prof. Panos Pardalos for encouraging me to extend my 
thesis into a monograph and for his willingness to propose the inclusion of this 
monograph in the series "Combinatorial Optimization" edited by P.Pardalos and 
D.-Zh. Du. 

Last but not least, I gratefully acknowledge the financial support that I received 
from the "Fonds zur Forderung der wissenschaftlichen Forschung (FWF)" , research 
project "Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich 
Diskrete Optimierung" which made possible the writing of this monograph. 
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1 
PROBLEM STATEMENT AND 

COMPLEXITY ASPECTS 

In this chapter we introduce the quadratic assignment problem (QAP). We start 
with the definition of the QAP and some frequently used formulations for it. Then, 
we consider the applications of the QAP and discuss in more details the most 
celebrated ones: applications in facility location and applications in wiring prob-
lems. Further, three mixed integer linear programming (MILP) formulations of 
the QAP are introduced: the Kaufman and Broeckx linearization [141], the Frieze 
and Yadegar linearization [83], and the linearization of Padberg and Rijal [177]. 
These formulations are chosen among numerous MILP formulation proposed in the 
literature in the hope that they can better help for a deep understanding of the 
QAP and its combinatorial structure. Consider that the linearization of Kaufman 
and Broeckx is perhaps the smallest QAP linearizations in terms of the number of 
variables and constraints, whereas some of the best existing bounding procedures 
for the QAP are obtained by building upon the linearization of Frieze and Yadegar. 
Furthermore, the linearization of Padberg and Rijal is the basis of recent significant 
results on the QAP polytope. Based on this linearization, the affine hull and the 
dimension of the QAP polytope (symmetric QAP polytope) have been computed. 
Moreover, some valid inequalities for the QAP polytope and some facet defining 
equalities for the symmetric QAP polytope have been identified. Finally, we con-
sider computational complexity aspects of the QAP, discussing among others the 
complexity of approximating the problem, and the complexity of the local search. 

We hope this chapter will fulfill its goal to provide the reader with a clear under-
standing of the problem and the extent of its applications and difficulty. 

1 
E. Çela, The Quadratic Assignment Problem
© Springer Science+Business Media Dordrecht 1998



2 CHAPTER 1 

1.1 PROBLEM STATEMENT 
Consider the set {1,2, ... ,n} and two n x n matrices A = (aij), B = (bij). The 
quadratic assignment problem with coefficient matrices A and B, shortly denoted 
by QAP(A,B), can be stated as follows 

(1.1 ) 

where Sn is the set of permutations of {I, 2, ... , n p. That is, QAP(A,B) is the 
problem of finding a permutation 7r E Sn which minimizes the double sum in the 
above formulation. Obviously, the value of this sum depends on the matrices A 
and B and on the permutation 7r. To formalize these dependencies we denote: 

n n 

Z(A, B, 7r) = L L a7r(i)7r(j)bij. 
i=l j=l 

The function Z(A, B, 7r) is called the objective function ofQAP(A,B) and a permu-
tation 7ro which minimizes it over Sn is called an optimal solution to QAP(A,B). 
The corresponding value of the objective function, Z(A, B, 7ro), is called the op-
timal value of QAP(A,B). The size n of the coefficient matrices A and B is the 
size of QAP(A,B). Given an n x n matrix A = (aij) and a permutation 7r E Sn, 
we denote by A7r = (aij the matrix obtained from A by permuting its rows and 
columns according to permutation 7r, i.e., aij = a7r(i)7r(j) , for 1 ~ i,j ~ n. A similar 
notation is adopted for an n-dimensional vector V = (Vi)' where V 7r = (vi) is the 
vector obtained from V by permuting its elements according to permutation 7r, i.e., 
vi = V7r(i) , for 1 ~ i ~ n. 

If any ofthe coefficient matrices A, B is symmetric, QAP(A,B) is termed symmetric 
QAP. Otherwise, QAP(A,B) is said to be asymmetric. A matrix A = (aij) is said 
to fulfill the triangle inequality if for each triple of indices (i, j, k) the following 
inequality holds: 

aij ~ aik + akj 

A matrix A is said to be Euclidean if it is the distance matrix of a set of points 
in the Euclidean space IRd with some lp norm, where d and p are two natural 
numbers. If any of the matrices A, B fulfills the triangle inequality (is Euclidean), 
we say that QAP(A,B) fulfills the triangle inequality (is Euclidean). 

IThe adjective "quadratic" in the name of the problem is related to the formulation of the 
problem as an integer program with quadratic cost function. 
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The QAP defined in (1.1) is often called Koopmans-Beckmann QAP[141] in order 
to distinguish it from a more general problem due to Lawler [152] 

n n 

min L L d7f (i)i7f(j)j, 
7fE S n . 1 . 1 1= J= 

(1.2) 

where D = d ki1j is a 4-dimensional array of reals,i, j, k, 1= 1,2, ... , n. The QAP 
(1.2) will be also called Lawler QAP throughout the rest of this monograph. Ob-
viously, in the case that the numbers dkilj fulfill the equalities dkilj = aklbij, for 
1 :s i, j, k, I :s n, the problem given in (1.2) is equivalent to QAP(A,B) defined in 
(1.1). In this monograph we mainly focus on the Koopmans-Beckmann version of 
the problem as defined in (1.1). However, most of the results presented in the first 
three chapters extend also to the more general QAP (1.2). 

A slightly different problem also addressed as a QAP, and investigated by several 
authors is the following. Besides the two coefficient matrices A and B we are given 
a third matrix C = (Cij), whose entries are the coefficients of a linear term in the 
objective function: 

:~~: (~t, a.(i).(j)bij + ~ '.(i)i) , m (1.:3) 

:~i~ (~t, d.(i).(j)ij + ~ '.(i)i) . (1.4) 

These problems will be called generalized Koopmans-Beckmann QAP and general-
ized Lawler QAP, respectively. In the case that Cij = 0, for all 1 :s i, j ::s n, we get 
the problems formulated in (1.1) and (1.2), respectively. Again, most of the results 
presented in the first three chapters extend also to problems (1.3) and (1.4). 

1.2 APPLICATIONS 

The first occurrence of the QAP dates back to 1957, when Koopmans and Beck-
mann [141] derived it as a mathematical model of assigning a set of economic 
activities to a set of locations. Thus, the QAP occurred at first in the context of 
facility location problems which still remain one of its major applications. Nowa-
days, a large variety of other applications of the QAP is known including such 
areas as scheduling [91], wiring problems in electronics [215], parallel and dis-
tributed computing [22], statistical data analysis [41, 124, 223], design of control 
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panels and typewriter keyboards [39, 186], sports [118], chemistry [224, 80], arche-
ology [107, 143], balancing of turbine runners [149, 210], and computer manufac-
turing [104, 127]. Recently, Malucelli [161] has proposed some applications of the 
QAP and its relatives in the field of transportation. 

In the following, we shortly describe applications of the QAP in the field of facility 
location and in wiring problems. 

Facility location. In this context n facilities are to be assigned to n locations. 
A = (aij) is the flow matrix, i.e. aij is the flow of materials moving from facility i 
to facility j, per time unit, and B = (bij) is the distance matrix, i.e. bij represents 
the distance from location i to location j. The cost of simultaneously locating 
facility 1T(i) to location i and facility 1T(j) to location j is a7r(i)7r(j)bij . Obviously, 
an assignment of all facilities to locations can be represented mathematically by 
a permutation 1T E Sn. In this model, the total cost of an assignment 1T of all 
facilities to locations is equal to Z(A, B, 1T). The objective is to find an assignment 
1T of locations to facilities such that the total cost Z(A, B, 1T) is minimized. This 
amounts to solving QAP(A,B). Concrete applications of the QAP in a facility 
location context are described by Dickey and Hopkins in [68] and by Elshafei [72]. 
In [68] a campus planning model is presented, whereas in [72] the design of a 
hospital layout is modeled as a QAP. 

In the following we will often refer to the QAP in the facility-location context. The 
terms "facility" and "location" will be used even if there is no concrete occurrence 
of a facility location problem. 

Wiring problems. In such problems a number of modules have to be placed 
on a board. The modules are pairwise connected by a number of wires. We 
wish to find a placement of the modules on the board, such that the total length 
of the connecting wires is minimized. Again, an assignment of n modules to n 
places provided for them on the board can be represented mathematically by a 
permutation 1T of {I, 2 ... , n}. Assume that the number of wires connecting two 
modules i and j is given by aij, and the distance between two places i and j on 
the board is given by dij, 1 ~ i, j ~ n. Then, the length of the wires needed 
for connecting the modules 1T( i) and 1T(j) which are assigned to the places i and 
j, respectively, is given by a7r(i)7r(j)bij , and the overall length of the wires needed 
for connecting all pairs of modules is equal to Z(A, B, 1T), where A = (aij) and 
B = bij . Hence, looking for an assignment 1T which minimizes the overall length of 
the connecting wires amounts to solving QAP(A,B). 
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Steinberg [215] describes in detail a concrete application of the QAP in backboard 
wiring in electronics. 

1.3 TWO ALTERNATIVE FORMULATIONS 
OF THE QAP 

We usually refer to QAP(A,B) as defined in (1.1). The main reason for this is that 
the problem formulation (1.1) expresses the combinatorial structure of the QAP 
better than the alternative equivalent formulations. However, when powerful tech-
niques such as subgradient optimization, integer or mixed integer programming, 
and semidefinite programming, are applied, or when the facial structure of the 
QAP polytope is investigated [177], the alternative formulations turn out to be 
useful. 

Koopmans and Beckmann formulation. The following formulation of the 
QAP used initially by Koopmans and Beckmann [141] relies basically on the one-to-
one correspondence between the set of permutations Sn and the set of permutation 
matrices defined as follows. 

Definition 1.1 Let X = (Xij) be an n x n matrix. If the entries Xij fulfill the 
following conditions 

n 
LXij = 1, 
i=l n 
I: Xij = 1, 
j=l 

Xij E {O, I}, 

l<i<n (1.5) 

l~i,j~n 

then X is called a permutation matrix. The set of all n x n permutation matrices 
is denoted by lin. 

The one-to-one correspondence mentioned above is realized by associating a per-
mutation 7rx E Sn to each permutation matrix X = (Xij) E lin, where 7rx(i) = j 
if and only if Xij = 1. Then, it is easy to see that QAP(A,B) is equivalent to the 
following minimization problem on the set of permutation matrices. 

n n n n 
mm L L I: I: aijbklXikXjl 

i=l j=l k=ll=l 
subject to 
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n 
L Xij = 1 
i=1 n 
L Xij = 1 
j=1 
Xij E {a, 1} 

CHAPTER 1 

1 < i < n (1.6) 

1::; i,j ::; n 
The problem formulation given in (1.6) is called Koopmans-Beckmann formulation 
of the QAP. 

The equivalence of the problems (1.1) and (1.6) becomes more clear in the facility 
location context. Namely, Xij = 1 if facility i is placed at location j and Xij = ° 
otherwise. The other restrictions in (1.6) formalize the constraints that each facility 
should be assigned to exactly one location and that to each location exactly one 
facility should be assigned. The term aijbklxikxjl contributes to the objective 
function with a value equal to aijbkl if and only if Xik = Xjl = 1, that is, if and 
only if facility i is assigned to location k and facility j is assigned to location I. 

In the case that we wish to minimize a linear function over variables Xij, 1 < 
i, j ::; n, fulfilling the so-called assignment constraints (1.5), we obtain the linear 
assignment problem (LAP) 

n n 
mm L L CijXij 

i=lj=1 
subject to 

n 
LXij=1 l::;j::;n (1.7) 
i=1 n 
L Xij = 1 1 < i < n 
j=1 
xijE{O,l} l::;i,j::;n, 

where C = (Cij) an n x n cost matrix. LAP is a fundamental combinatorial 
optimization problem which is very well studied. It is solvable in polynomial time 
(O(n3)) for example by the Hungarian method. LAP can be seen as a special 
case of the general QAP (1.2). Indeed, a LAP with an n x n cost matrix (Cij) is 
equivalent to the QAP (1.2) with d-coefficients defined as follows: dijkl = nCik, 
1 ::; i, j, k, I ::; n. For bibliographical pointers to this problem the reader is referred 
to [66]. 

Trace formulation. Another equivalent formulation of the QAP can be derived by 
using the notion of permutation matrices. Namely, for a QAP instance QAP(A,B) 
of size n, a function fA,B can be defined on the set lIn of permutation matrices: 

fA,B: lIn -+ IR 
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x ~ tr(AXBXt), 
where the superscript t denotes the transposed of the corresponding matrix, and 
tr(A) is the trace of matrix A, i.e. tr(A) = 2:7=1 ajj, for any n x n matrix A. 
Now, QAP(A,B) is equivalent to the following minimization problem on the set of 
permutation matrices Iln : 

min fA,B(X) = min tr(AXBXt) 
XEnn XEnn 

(1.8) 

This formulation of the QAP, called trace formulation, was introduced by Edwards 
in [70, 71]. It may be used for a flexible algebraic manipulation of the problem 
data. In the next chapter we will see how this formulation is used for deriving the 
so-called eigenvalue related lower bounds. 

1.4 LINEARIZATIONS 

When dealing with QAPs, it seems that the quadratic form in its objective func-
tion destroys every hope of finding efficient solution methods. One of the first 
ideas to cope with the quadratic form was the so-called linearization of the QAP. 
This is an equivalent transformation of the quadratic form in the QAP objective 
function into a linear one. Numerous QAP linearizations have been proposed by 
different authors. Most of them are mixed integer linear programs (MILP) with 
a large number of variables and equations and are hardly exploited in numerical 
computations. For real life QAPs even solving the related relaxed linear programs 
to derive lower bounds cannot be done within reasonable time limits. An extensive 
list of literature pointers to various QAP linearizations can be found in [184] and 
some linearizations are described in detail in [28]. We present two of them here: 
The linearization of Kaufman and Broeckx [138], which is one of the "smallest" 
linearizations ever proposed for the QAP, and the linearization of Frieze and Yade-
gar [83], which has turned out to be the ground stone of many other linearizations 
leading to the best known lower bounds for the QAP. 

Although, as mentioned above, several authors have proposed linearizations of the 
QAP, almost nothing was known about the structure of the associated integer 
QAP polytopes. A lot of efforts were paid to obtain compact linearizations, i.e. 
linearizations with relatively few variables and constraints. Of course, the "size" of 
the linearization matters in the case that pure enumeration procedures (implicit or 
not) are applied to the problem at hand. However, as pointed out by Padberg and 
Rijal in [177], " ... these considerations do not matter at all if the overall problem 
is embedded into a continuum, such as it is done when we use linear programming, 
assignment problem-type relaxations and the like ... " . 
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We describe in the following the ideal linear description of the QAP proposed in 
[177]. The approach of Padberg et al. is based on the concept of a locally ideal 
linearization which is an ideal, i.e. minimal and complete, linearization for the pairs 
of variables which appear as interacting in the quadratic objective function. (In our 
case these are the pairs (Xij, Xkt), for indices i, j, k, I fulfilling specific conditions due 
to the structure of the set of feasible solutions.) Moreover, the first steps towards 
understanding the facial structure of the resulting QAP polytope are done and 
some valid inequalities have been identified. Such efforts may finally lead to the 
construction of efficient polyhedral cutting plane algorithms for the QAP. For a 
detailed information on this topic and on the related theoretical background the 
reader is addressed to [128, 129, 177] and [17£], respectively. 

1.4.1 Kaufman and Broeckx linearization 

Kaufman and Broeckx [138] derived a formulation of the QAP as an MILP with 
O(n2 ) Boolean variables, O(n2) real variables and O(n2 ) constraints. This lin-
earization, which is probably the smallest one in terms of the number of variables 
and constraints, works also for the more general QAP defined in (1.2). 

Consider the Koopmans and Beckmann formulation (1.6) of QAP(A,B). For 1 :s 
i, k :s n, let us introduce real variables Yik by 

n n 

Yik := Xik2: 2: ajjbklXjl 
j=l 1=1 

(1.9) 

Using these new variables the objective function of QAP(A,B) In (1.6) can be 
linearized: 

n n n n n n 

2: 2: 2: 2: aijbklXjkXjl = 2: 2: Yik 
i=lj=lk=ll=l i=lk=l 

Moreover, define new constants dik , 1 :s i, k :s n, by 
n n 

dik = L L aijbkl 
j=ll=l 

(1.10) 

(1.11) 

The following theorem due to Kaufman and Broeckx, whose proof can also be found 
in [28], gives a linearization of QAP(A,B). 

Theorem 1.1 (Kaufman and Broeckx [138], 1978) 
QAP(A,B) given in (1.1) is equivalent to the following MILP with n 2 Boolean 
variables, n 2 real variables, and n 2 + 2n constraints: 
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mm L:~=1 L:~=1 Yik 
subject to 

n 
L: Xik = 1 i=l n 

l<k<n 

L: Xik = 1 1 < i < n 
k=l 
dikXik + L:j=l L:~=1 aijhlXjl - Yik :s dik 

Xik E {O, I}, Yik ~ 0, 1:S i,k:S n 

where dik are defined in (1.11). 

9 

(1.12) 

1 :s i, k :s n 

o 

The idea of the proof relies on showing that each feasible solution (Xij, Yik), 1 :s 
i, j, k :s n, of (1.12) fulfills (1.9). Then it is proven that there exists a one-to-
one correspondence between feasible solutions of (1.12) and feasible solutions of 
the Koopmans-Beckmann formulation (1.6), which preserves the objective function 
values. 

Notice that for large n even this linearization which perhaps the smallest one, has 
a large number of variables and constraints. Under these conditions, even powerful 
tools to cope with linear integer programs such as Benders' decomposition [18] or 
cutting planes [19] do not help a lot. It turns out that for QAPs arising in practical 
applications even solving the relaxed linear program is computationally a hard job. 

1.4.2 Frieze and Yadegar linearization 

Again, consider the Koopmans and Beckmann formulation of QAP(A,B) of size n 
in (1.6). Introduce n4 new Boolean variables Yijkl by: 

Yijkl := XikXjl for 1 :s i, j, k, I :s n 

By using these variables Frieze and Yadegar derive a linearization of QAP as shown 
by the following theorem. 

Theorem 1.2 (Frieze and Yadegar [83], 1983) 
QAP{A,B) in (1.6) is equivalent to the following MILP with n4 real variables, n2 

Boolean variables, and n4 + 4n3 + n2 + 2n constmints: 
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mm 

subject to 

n 
2: Xik = 1 l<k<n 
i=l n 
2: Xik = 1 1 < i < n 
k=l n 
2: Yijkl = Xjl l~j,k,l~n 
i=l n 
2: Yijkl = Xik l~i,k,l~n 
j=l 

n (1.13) 
2: Yijkl = Xjl 1 ~ i,j, I ~ n 
k=l n 
2: Yijkl = Xik 1 ~ i,j, k ~ n 
1=1 
Yiikk = Xik 1 ~ i, k ~ n 
xikE{O,I} 1 ~ i, k ~ n 
o ~ Yijkl ~ 1 l~i,j,k,l~n o 

Frieze and Yadegar use this mixed integer programming formulation to derive lower 
bounds for the QAP by solving a Lagrangean relaxation of it. Queyranne observes 
that only half of the variables Yijkl are really needed in (1.13), since Yijkl = Yjilk, 
for alII ~ i,j,k,l ~ n (see [161]). Considering this formulation of the QAP, he 
proposes some valid inequalities for the QAP polytope. These inequalities have 
not been proved to be facet defining. However, they can be used for improving 
the performance of lower bound computations when solving relaxations of MILP 
formulations for the QAP, as done by Malucelli in [161]. 

1.4.3 Padberg and Rijal linearization 

The general QAP. This linearization involves again real variables of the form 
Yijkl = XikXjl, but over a restricted set of indices 1 ~ i < j ~ n, 1 ~ k =1= I ~ n. 

Indeed, exploiting the equalities Yijkl = XikXjl = XjlXik = Yjilk, we can restrict our 
attention to variables Yijkl with i < j. Moreover, simple properties of the set of 
feasible solutions such as the implications 

'VI ~ k =1= I ~ n, (Xik = 1) ::::} (Xii = 0) 
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VI :s i =1= j :s n, (Xik = 1) => (Xjk = 0) 
allow us to further restrict the set of the considered Yijkl variables to those with 
i < k and j =1= t. 

The set of constraints is built as the union of subsets of "locally ideal" constraints. 
More concretely, let us introduce the following notations. 

D= 

D(l,l) = 

(x, y) E JRn 2+n 2(n-1)2/ 2 : 

2:7=1 Xik = 1, 
2:~=1 Xik = 1, 
Yijkl = XikXjl, 
XikE{O,l}, 

l<k<n 
l<i<n 

1 :s i < j :s n, 1 :s k =1= I :s n 
1 :s i, k :s n 

1, 
1, 
X1k Xj1, 

(x, y) E JRn 2-1: 

2:~=1 Xlk 

2:7=1 Xi1 
Y1jk1 

X1k E {0,1}, 
1 < k :s n, 1 < j :s n 
l<k<n 

Furthermore, let us introduce the so-called local polytope P as the convex hull of 
all points in D(l,l), P = conv(D(l,l)), and the QAP polytope of size n, QAPn , as 
the convex hull of all points in D, QAPn = conv(D). 

Padberg and Rij al [177] give an ideal linear description of the local polytope P. 

Lemma 1.3 (Padberg and Rijal [177], 1996) 
The following system of equalities and inequalities is an ideal linear description of 
the local polytope P 

n 
2: Xlk 1 
k=l n 
2: Xi1 1 
i=l 

n 
-X1k + 2: Y1ik1 0 2<k<n 

i=2 n 
-Xi1 + 2: Y1ik1 0 1<i<n-1 (1.14) 

k=2 
Xll > 0 

Y1ik1 > 0 2 :s i, k :s n, 
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That is, if PL is the polytope consisting of all (x, y) E IRn2 _ 1 which fulfill (J.14), 
then P = PL. 0 

First, Padberg and Rijal consider all equalities and inequalities which result from 
the locally ideal linearization of all variables giving rise to quadratic terms in ob-
jective function of the QAP. Then, by removing redundant equations so that the 
remaining system of constraints has full rank, the following linearization of the 
QAP (1.6) is obtained: 

mIll I:: I:: qijklYijkl 
1~i<j~n 1~ktl~n (1.15 ) 

subject to 

n 
LXik 1 l<k<n (1.16) 
i=1 

n 
LXik 1 l<i<n ( 1.17) 
k=1 

j-1 n 1::; k -:j:.l ::; n, 1::; j::; n - 1, 
-Xjl + LYijkl + L Yjilk 0 (1.18) or 1 ::; l < k ::; n, j = n 

i=1 i=j+1 

k-1 n 1 :s k :s n, 1 :s i :s n - 3, 

-Xik + L Yijkl + L 0 i<j::;n-l or (1.19) Yijkl 1 ::; k ::; n - 1, i = n - 2, 
1=1 l=k+1 j=n-l 

k-1 n 
1::; k ::; n - 1,1::; i::; n - 3, 

-Xjk + LYijlk + L Yijlk 0 ( 1.20) i<j::;n-l 
1=1 l=k+1 

Yijkl > 0 l::;i<j::;n,l::;k-:j:.l::;n (1.21) 

Xik E {O, I} 1::; i, k ::; n , (1.22) 

where qijkl = aijbkl + ajiblk, for 1 ::; i, j, k, l ::; n. Concerning this linearization 
Padberg and Rijal prove the following theorem. 

Theorem 1.4 (Padberg and Rijal [177], 1996) 
(i) The mixed 0-1 linear program (1.15), ... , (J.22) is equivalent to the QAP(A,B) 

in (J.6). It has n 2 + n 2 (n - 1)2/2 variables and 2n(n - 1)2 - (n - l)(n - 2) 
equations. 
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(ii) The rank of (1.16), ... , (1.20) equals 2n(n - 1)2 - (n - l)(n - 2). 

(ii) The system of equalities (1.16), ... , (1.20) is an ideal linear description of the 
affine hull of the set D. 

(ii) The dimension of QAPn equals 1 + (n - 1)2 + n(n - l)(n - 2)(n - 3)/2, for 
all n ~ 3, and the inequalities (1.21) define distinct facets of QAPn , for all 
n > 4. o 

Padberg and Rijal [177] identified two classes of valid inequalities for QAPn , the 
so-called clique inequalities and cut inequalities. This terminology is due to the 
interpretation of these inequalities in an undirected graph G = (V, E) with n2 

vertices and n2(n - 1)2/2 edges associated to QAPn and constructed as described 
below. 

The vertex set V consists of all pairs of indices (i, k) with 1 ~ i, k ~ n. The edge 
set E consists of pairs of vertices ((i, k), (j, I)) for which i '# j and k '# I. Hence, 
the Boolean variables Xik are in one-to-one correspondence with the vertices (i, k) 
of G, and the real variables Yijkl, 1 ~ i < j ~ n, 1 ~ k '# 1 ~ n, are in one-to-
one correspondence with the edges ((i, k), (j, I)) of the graph. A clique C in this 
graph is a set of pairs (i, k) such that each two elements of C are connected by an 
edge, or equivalently, for each two elements (il' kl ), (i2' k2) in C, the inequalities 
i l "# i2 and kl "# k2 hold. If (C, E(C)) is a maximal clique in G, where E(C) 
is the set of all edges from E which have both endpoints in C, the variables Xik 
defined by the equalities Xik = 1 for (i, k) E E(C) and Xik = 0 otherwise, fulfill the 
assignment constraints (1.16), (1.17), (1.22). Vice-versa, every permutation matrix 
X = (Xij) E TIn gives rise to a maximal clique C = {(i,k):Xik = I} in G. Thus, 
there is a one-to-one correspondence between permutation matrices X E TIn and 
maximal cliques in G. Consequently, there are exactly n! maximal cliques in G and 
each of those has cardinality equal to n. 

For 5 ~ V, T ~ V \ 5, we denote 

(5 : T) = {( i, k), (j, I)) E E: (i, k) E 5, (j, 1) E T} , x(5) = L Xik 
(i,k)e S 

y(E(5)) = L Yijkl, 
«i,k ),(j ,1))eE(S) 

y(5: T) = L L Yijkl 
(i,k)eS (i,l)eT 

Then, it is not difficult to see that the following proposition holds. 
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Proposition 1.5 (Padberg and Rijal [177], 1996) 

(i) For any C ~ V and any integer a, the clique inequality 

ax(C) - y(E(C)) ~ a(a + 1)/2 

is satisfied by all (x, y) E QAPn . 

(ii) For any S C V with lSI 2: 1 and T ~ V \ S, ITI 2: 2, the cut inequality 

-X(S) - y(E(S)) + y(S : T) - y(E(T)) ~ 0 

is satisfied by all (x, y) E QAPn . 

D 

Clearly, not all of these inequalities are facet defining. Today, the identification of 
the facet defining inequalities among them is an open question. However, the first 
efforts in solving this problem have led to the identification of a set of conditions 
under which the cut inequalities are not facet defining (see Proposition 7.3 in [177]). 
Moreover, the authors conjecture that at least one of these conditions is necessarily 
satisfied by some cut inequality which is not facet defining. 

The symmetric QAP. For the symmetric QAP Padberg and Rijal [177] pro-
pose a special linearization which is "smaller" than that for the general QAP. The 
proposed linearization is obtained by introducing n2(n - 1)2/4 variables Yijkl 
XikXjl + XilXjk, for 1 ~ i < j ~ n, 1 ~ k < I ~ n. 

The symmetric QAP polytope of size n, denoted by SQAPn , is then the convex 
hull of all points in SD: 

SD= 

(x, y) E JRn 2+n 2(n-l)2/4 : 

I:~=l Xik = 1, 
I:~=l Xik = 1, 

Yijkl = XikXjl + XUXjk, 
Xik E {O, I}, 

l<k<n 
l<i<n 

1 ~ i < j ~ n, 1 ~ k < I ~ n 
1 ~ i, k ~ n 

For obtaining their linearization the authors proceed analogously as for the general 
case, introducing the so-called local symmetric polytope (SP) as the convex hull of 
all points in SD(1,2): 
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SD(1,2) = 

( ) IR3n-l 
X,Y E : 

2:::~=1 Xik 

2:::7=1 Xik < 
Y121k 

1, l<i<2 
1, 1 < k < n 
XllX2k + X1kX21, 2 < k < n 

15 

Xik E {O, I}, 1::; i::; 2" 1::; k::; n 

First, linear description for the symmetric local polytope SP is given, and it is 
conjectured that this linearization is (locally) ideal. Then, the authors put together 
all equations and inequalities resulting from the local linearizations for all variables 
which give rise to quadratic terms in the objective function of the symmetric QAP. 
The following linearization for the symmetric QAP is obtained from these equalities 
and inequalities by keeping only a maximal set of independent constraints. 

subject to 

k-1 n 

n 

LXik 
k=l 

n 

LXik 
i=l 

-Xik - Xjk + LYijlk + L Yijkl 
1=1 l=k+1 

j-1 n 

-Xjk - Xjl + LYijkl + L Yjikl 
i=l i=j+1 

1 

1 

o 

o 

Yijkl > 0 

Xik > 0 

l<i<n 

l<k<n-l 

l::;i<j::;n 
1 ::; k ::; n, 

l::;j::;n 
1 ::; k ::; n - 3, 
l::;k<l::;n-l 
l::;i<j::;n 
l<k<l<n - -

1 ::; i, k ::; n 

Xik E {0,1} l::;i,k::;n 
where qijkl = aijbkl + ajiblk, for 1 ::; i, j, k, I ::; n. 

(1.23) 

(1.24) 

(1.25 ) 

(1.26 ) 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

The following results have been proven partially by Padberg and Rijal [177] and 
partially by Jiinger and Kaibel [129]. 
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Theorem 1.6 (Padberg and Rijal [177], 1996, Junger and Kaibel [129], 1996) 
(i) The mixed 0-1 linear program (1.23), ... , (1.30) is equivalent to the symmetric 

QAP(A,B) in (1.6). It has n2 + n2 (n -1)2/4 variables and n2 (n - 2) + 2n-1 
equations. 

(ii) The rank of (1.24), ... , (1.27) equals n2 (n - 2) + 2n - 1. 

(ii) The system of equalities (1.24), ... , (1.27) is a linear description of the affine 
hull of the set SD. 

(ii) The dimension of the SQAPn equals (n - 1)2 + n2 (n - 3)2/4, for all n ~ 4, 
and the inequalities (1.28), (1.29) define facets of SQAPn , for all n ~ 3. 0 

Recently, Junger and Kaihel [129] have identified the first non-trivial facet defining 
inequalities for the SQ APn , the so-called curtain inequalities. The curtain inequal-
ities are divided into row and column curtain inequalities. The names arise from 
the interpretation of these inequalities and the linearization (1.23), ... , (1.30) in a 
hypergraph with vertex set V as defined in the case of the general QAP. 

The row curtain inequalities are 

- L Xik + L Yijkl + L Yiljk ::; 0 
kES k,IES k.IES 

k<1 k>1 

for 1 ~ i < j ~ n, S <; {1,2, ... ,n}. 

Analogously, the column curtain inequalities are 

-L Xik + L Yijkl + L Yjikl ::; 0 
iES i,jES i,jES 

i<i i>j 

for 1::; k < I::; n, S c;, {1,2, ... ,n}. 

Theorem 1.7 (Junger and Kaibel [129], 1996) 
All curtain inequalities with 3 ::; lSI::; l ~ J define facets of the SQAPn . 
3 ::; l ~ J implies n ~ 6). 

(Clearly, 
o 

In [129] the curtain inequalities are used in a cutting planes approach for strength-
ening the LP relaxation of the MILP formulation (1.23), ... ,(1.30) for the symmetric 
QAP. The numerical results, which are preliminary, as stated by the authors, show 
that the curtain inequalities are not very attractive from the computational point 
of view. As the complexity of the separation problem for these inequalities is still 
open, a heuristic separation approach is used. 
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1.5 COMPUTATIONAL COMPLEXITY 
ASPECTS 
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This section is dedicated to computational complexity aspects of the QAP. All 
results in this section bring evidence to the fact that the QAP is a "very hard" 
problem from the theoretical point of view. Other results presented in the coming 
chapters will show that the QAP is a big challenge also from the practical point of 
VIew. 

We first show that QAP belongs to the class of NP-hard problems. Then we discuss 
the complexity of approximately solving the QAP in general and QAPs with an 
arbitrarily large optimal value in particular, showing that these approximation 
problems are hard to solve. In the second part of this section the complexity 
of finding a locally optimal solution of the QAP is considered. Two underlying 
neighborhood structures which lead to PLS-complete problems are described. 

1.5.1 The complexity of optimally and 
approximately solving QAPs 

The following two theorems reformulate two early results obtained by Sahni and 
Gonzalez [206] in 1976. Throughout this monograph we use basic concepts from 
complexity theory following in the main lines the seminal work of Garey and John-
son [88]. Therefore, the formulations given below differ slightly from those given 
in [206]. 

Theorem 1.8 (Sahni and Gonzalez [206], 1976) 
The quadratic assignment problem is strongly NP-hard. 

Proof. The proof consists of showing that the existence of a polynomial time 
algorithm for solving QAPs with the entries of the coefficient matrices belonging 
to {O, 1, 2} implies the existence of a polynomial time algorithm for an NP-complete 
decision problem. This would imply then by definition that the QAP is strongly 
NP-hard. The above mentioned NP-complete decision problem is the Hamiltonian 
cycle problem (for short He) (see [136, 88]). 

(He) Given a graph G = (V, E) with vertex set V and edge set E. Does 
G contain a Hamiltonian cycle? 
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Assume that there exists a polynomial time algorithm for solving QAPs with coeffi-
cients in {O, 1, 2}. Consider an arbitrary instance of the Hamiltonian cycle problem, 
i.e. we seek a Hamiltonian cycle in an arbitrary graph G = (V, E). Let IVI = n, 
V = {Vl, V2, .. " vn }. Define two n x n matrices A = (aij) and B = (bij) as follows: 

a" _ { 1 if (Vi, Vj) E E 
'J - 2 otherwise 

b .. _ { 1 if 
'J -

° 
j = i + 1, 1 ~ i ~ n - 1 

or i = n, j = 1 
otherwise 

and consider QAP(A,B). It is easily seen that the optimal value of QAP(A,B) is 
equal to n if and only if G contains a Hamiltonian cycle. Thus, we translate the 
given instance of HC to an instance of QAP as above and apply the polynomial 
algorithm which is assumed to exist. Then ,we check whether the solution provided 
by this algorithm is equal to n. All this can be done in polynomial time with 
respect to the size of the HC instance. Therefore, we would have a polynomial 
time algorithm for the Hamiltonian cycle problem. 0 

In addition, Sahni and Gonzalez proved that even finding an (-approximate solution 
for QAPs is a hard problem, in the sense that the existence of a polynomial (-
approximation algorithm implies P = NP. 

Let us first introduce the notion of an (-approximation algorithm for the QAP (or, 
similarly, for an optimization problem in general). 

Definition 1.2 Given a real number ( > 0, an algorithm l' for the QAP is said to 
be an (-approximation algorithm if and only if for every instance QAP( A,B) the 
following holds: 

Z(A, B, 7rT) - Z(A, B, 7r opd 
( ) < ( , 

Z A,B,7ropt -
(1.31 ) 

where 7rT is the solution to QAP( A,B) computed by algorithm l' and 7r opt is 
an optimal solution to QAP(A,B). The solution of QAP(A,B) produced by an (-
approximation algorithm is called an (-approximate solution. 

Theorem 1.9 (Sahni and Gonzalez [206], 1976) 
For an arbitrary ( > 0, the existence of a polynomial time (-approximation algo-
rithm for the QAP implies P = Np. 

Proof. We prove the theorem by showing that the existence of a polynomial time 
(-approximation algorithm for the QAP implies the existence of a polynomial time 
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algorithm for the Hamiltonian cycle problem, which is an NP-complete decision 
problem. 

Indeed, assume that l' is a polynomial time (-approximation algorithm for the 
QAP, for some fixed (. Making use of the algorithm l', we can design a polynomial 
time algorithm for HC. Consider an instance of HC in an arbitrary graph G = (V, E) 
with vertex set V = {Vl' ... , vn }. Construct (in polynomial time) a QAP instance 
QAP(A,B) by defining two n x n coefficient matrices A = (aij) and B = (bij) as 
follows: 

if (Vi, Vj) E E 
otherwise 

b .. _ { 1 if 
'J - o 

j = i + 1, 1 ~ i ~ n - 1 
or i = n,j = 1 

otherwise 

where w > 1 + nf. Apply algorithm l' to QAP(A,B). Denote by 1rT the solution 
produced by l' and by 1ropt an optimal solution to QAP(A,B). Inequality (1.31) 
implies 

Z(AB1r »Z(A,B,1rT) 
, , opt - 1 + ( 

This inequality shows that if Z(A,B,1rT) > n(l + (), then Z(A,B,1ropd > n, 
and therefore G does not contain a Hamiltonian cycle. Vice versa, if G does not 
contain a Hamiltonian cycle, then Z(A, B, 1r) ~ n-1+w > n(l+(), for all1r E Su. 
Thus, Z(A, b, 1rT) > n(l + (). Hence, HC in G has an answer "yes" if and only 
if Z(A,B,1rT) > n(l + (). Then, our polynomial time algorithm for solving HC 
consists of three steps. 

(1) Translate the HC instance into an appropriate QAP instance as above. 

(2) Apply the algorithm l' to the QAP instance. 

(3) Check the objective function value Z(A, B, 1rT) ofthe solution 1rT provided by 
algori thm l'. 

Noticing that these three steps can be performed in polynomial time completes the 
procl. 0 

Considering the general belief that P i- NP and Theorem 1.9, it seems very 
unlikely to find a polynomial time (-approximation algorithm for the QAP, for 
some ( > O. Thus, solving the QAP to optimality or even finding an (-approximate 
solution to it are considered to be hard problems. 
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Queyranne [188J derives a stronger result which further confirms the widely spread 
belief on the inherent difficulty of the QAP even in comparison with other difficult 
combinatorial optimization problems. It it well known and very easy to see that the 
traveling salesman problem (TSP) is a special case of the QAP. Namely, the TSP 
on n cities can be formulated as a QAP(A,B) where A is the distance matrix of the 
TSP and B is the adjacence matrix of a Hamiltonian cycle on n vertices (matrix 
B in the proof of Theorem 1.9). In the case that the distance matrix is symmetric 
and satisfies the triangle inequality, the TSP is approximable in polynomial time 
within 3/2 [51J. Queyranne [188J showed that, unless P = NP, QAP(A,B) is not 
approximable in polynomial time within some finite approximation ratio, even if A 
is the distance matrix of some set of points on the Euclidean line and B is a block 
diagonal symmetric matrix. 

In order to formulate Queyranne's result we need one more definition related to 
the theoretical analysis of the performance of heuristics (cf. [88]). 

Definition 1.3 Let Y be a heuristic for the QAP. The performance ratio Ry (A, B) 
for heuristic Y with respect to an instance QAP( A,B) is given as 

Ry(A, B) = Z(A, B, 1l'y) , 
Z(A, B, 1l'opt} 

where 1l'y is the solution produced by Y when applied to QAP(A,B) and 1l'opt lS an 
optimal solution to QAP(A,B). 
The absolute performance ratio Ry for heuristic Y is given as 

Ry = inf{r 2: 1: Ry(A, B) ~ r for all matrices A, B} 

The asymptotic performance ratio R'T for heuristic Y is given by the following 
equality: 

RT' = inf {r 2: 1: 3m E IN, Ry(A, B) ::; r VA, B with Z(A, B, 1l'opt} 2: m} 

Theorem 1.10 (Queyranne [188]), 1988) 
The existence of a polynomial time heuristic Y with a bounded asymptotic perfor-
mance ratio for the QAP( A,B) fulfilling the triangle inequality, that is, the existence 
of a constant J{ 2: 1 such that R'T ::; J{, implies P = Np. 0 

In other words, unless P = NP, for each polynomial time algorithm Y and for 
each J{ 1, J{ 2 E IN, there exist a matrix A fulfilling the triangle inequality and 
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an arbitrary matrix B, such that the optimal value of QAP(A,B) is at least Kl, 
Z(A, B, 1l"opt} ;::: K 1 , and 

Z(A,B,1l"T) K 
Z(A, B, 1l"opt};::: 2, 

where 1l"T is the permutation produced by l' when applied to QAP(A,B). The proof 
consists of a reduction from the 3-Partition Problem (see [88]). As mentioned above 
the instance QAP(A,B) involved in the reduction has a very restrictive structure. A 
is the distance matrix of a set of points on the Euclidean line and B is a symmetric 
matrix with block diagonal structure. Namely, for a prespecified sequence So = 
o < Sl < ... < s/, I < n, the n x n matrix B = (bij) is symmetric with zeroes on 
the diagonal and the entries bij , i < j are given as follows 

b .. _ {'Y Sk-1 < i < j::; sk,for some 1::; k::; l 
~J - w otherwise (1.32) 

where 'Y > w ;::: O. It is easy to see that QAP(A, B) is equivalent to a QAP(A, B'), 
where the matrix B' is a symmetric 0-1 matrix with zeroes on the diagonal, whose 
entries are obtained by (1.32) for 'Y = 1 and w = O. From Queyranne's result follows 
that such a QAP(A, B') is NP-hard to approximate within a finite asymptotic 
performance ratio. 

A recent result of Arora, Frieze and Kaplan [6] answers partially one of the open 
questions stated by Queyranne in [188]: What happens if matrix A is the distance 
matrix of n points which are regularly spaced on the Euclidean line, i.e. points with 
abscissae given by xp = p, p = 1, ... , n? This special case of the QAP is termed 
linear arrangement problem and it is a well studied NP-hard problem. In the linear 
arrangement problem the matrix B is not restricted to have the block diagonal 
structure described above, but is simply a symmetric 0 - 1 matrix. This problem 
will be reconsidered in Chapter 6 where some polynomially solvable special cases of 
it are described. Arora et al. give a polynomial time approximation scheme (PTAS) 
for the linear arrangement problem in the case that the 0 - 1 matrix B is dense, 
i.e. the number of I-entries in B is in O(n2 ). This restricted version of the problem 
is termed dense linear arrangement problem. Arora et al. show that for each 
£ > 0 there exists an £-approximation algorithm for the dense linear arrangement 
problem with time complexity depending polynomially on n and exponentially on 
1/£, and hence being polynomial for each fixed £ > O. 

Proposition 1.11 (Arora, Frieze and Kaplan [6], 1996) 
For each £ > 0, there exists an £-approximation algorithm for the 
arrangement problem with time complexity 0 (n (1 /f)) . 

dense linear 
o 
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Proposition 1.11 is a corollary of a more general result presented in [6] which 
concerns the approximability of optimizing (minimizing or maximizing) polynomial 
of degree d in the variables Xij, 1 ~ i, j ~ n, where Xij fulfill the assignment 
constraints (1.5). The proof exploits a new procedure to round the fractional 
solutions of linear programs which represent continuous relaxations of the linear 
assignment problem (1.7) with additional linear constraints. 

1.5.2 The complexity of local search 

In combinatorial optimization we often seek an optimal solution to an NP-hard 
problem, a task which can be prohibitively difficult even for problem instances of 
relatively small size. In the case that we are not able to find an optimal solution 
of the problem we are dealing with, we often content ourselves with a solution 
which is provably "good" in some sense, although it is probably not optimal. For 
example, instead of looking for the best solution among all feasible ones, we may 
seek a solution which is the best out of a subset of feasible solutions. Intuitively, 
finding such a solution could be easier than finding the optimal one. 

Formalizing this kind of compromise leads to so-called local search approaches. 
Consider an instance of an optimization problem P obtained by specifying a ground 
set &, a feasible solution set :F C 2£ and a cost function c: & -t JR. This cost func-
tion c implies an objective function I::F -t JR defined by I(S) = L:xESc(X), for 
all S E:I'. The goal is to find a feasible solution which minimizes or maximizes 
the objective function. Assume for concreteness that P is a minimization problem 
and let S E :F be a feasible solution. Define a set N(S) C :F consisting of feasible 
solutions which are somehow "close" to S. Such a set N(S) is called a neighbor-
hood of S. By defining neighborhoods N(S) for all S E :F we obtain a so-called 
neighborhood structure {N(S): S E :F}. Now, instead of looking for an optimal 
solution of the problem P, that is an S· E :F such that 

I(S·) = min I(S) 
Se:F 

we look for a locally optimal solution or (in our case) local minimum of P, that is 
an 8 E :F such that 

1(8) = min_ I(S) 
SeN(s) 

A local minimum is not necessarily the optimal solution, or in other words the 
global minimum of P. However, the global minimum is a local minimum. The local 
optimality of a solution is strongly related with the neighborhood structure we are 
considering. If the neighborhoods N(S) are replaced by new neighborhoods N'(S), 
one would generally expect changes in the local optimality status of a solution. 
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As mentioned above, sometimes it is reasonable and convenient to look for local 
optima rather than for global optima. The algorithms that do this job, i.e. the al-
gorithms which produce locally optimal solutions, are frequently called local search 
algorithms. Basically, every local search algorithm makes use of an improving rou-
tine which can be generally defined as follows: 

{
any S' E N(S) with I(S') < I(S), 

improve(S) = 
output "s is local optimum" , 

if such an S' exists 

otherwise 

In general, a local search algorithm starts with some initial feasible solution S E :F 
and uses the subroutine improve to search for a better solution in the neighborhood 
of the current solution. As long as an improvement exists, the current solution is 
updated and the neighborhood search is repeated. The algorithm stops when it 
reaches a locally optimal solution. The implementation of a local search algo-
rithms involves a number of important choices. Two very important decisions are 
the choice of a feasible starting solution, and the choice of a "good" neighborhood 
structure for the problem at hand together with an appropriate method for search-
ing through it. It is beyond the scope of this monograph to provide general criteria 
for distinguishing a "good" neighborhood structure from a "bad" one, in particular, 
and to present a detailed theory of local search, in general. The reader interested in 
theoretical aspects of local search is referred to [181, 208]. Some results concerning 
applications of local search algorithms to QAPs are presented in Chapter 3. More-
over, in Section 7.6 some local search approaches for the biquadratic assignment 
problem (BiQAP) are described. 

Obviously, everything we said about an arbitrary optimization problem P applies 
also for the QAP. In this subsection we consider the intriguing question "Is it easy 
to find a locally optimal solution for the QAP?" , whose answer clearly depends on 
the definition of the neighborhood structure that is considered. 

The theoretical basis for facing this kind of problems was introduced by Johnson, 
Papadimitriou and Yannakakis in [130]. They define the so-called polynomial-
time local search problems, shortly P LS problems. A pair (P, N), where P is 
a (combinatorial) optimization problem P and N is an associated neighborhood 
structure, defines a local search problem which consists of finding a locally optimal 
solution of P with respect to the neighborhood structure N. Neglecting the details, 
for which the interested reader is addressed to the original paper of Johnson et al., 
we can consider a PLS problem as a local search problem for which local optimality 
can be checked in polynomial time. The class ofPLS problems is denoted by pes. 
In analogy with decision problems, the existence of complete problems in this 
class can be shown. In analogy with the NP-complete decision problems, the PLS-
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complete problems, are - in the usual complexity sense - the most difficult problems 
in the class pes. Again, the notion of reduction, here called PLS-reduction, is 
crucial for the whole theory. 

Murthy, Pardalos and Li [171] introduce a neighborhood structure for the QAP 
and show that the corresponding local search problem is PLS-complete. The pro-
posed neighborhood structure is similar to the neighborhood structure proposed 
by Kernighan and Lin [139] for the graph partitioning problem. For this reason 
we will call it a K-L type neighborhood structure for the QAP. 

A K-L type neighborhood structure for the QAP. Consider QAP(A,B) and 
an arbitrary permutation 11"0 E Sn. A swap of 11"0 is a permutation 11" E Sn obtained 
from 11"0 by applying a transposition (i, j) to it, 11" = 11"0 0 (i, j). A transposition 
(i,j) is defined as a permutation which maps i to j, j to i, and k to k for all 
k tJ. {i, j}. In the facility location context a swap is obtained by interchanging the 
facilities assigned to two locations i and j. A greedy swap of permutation 11"0 is 
a swap 11"1 which minimizes the difference Z(A, B, 11") - Z(A, B, 11"0) over all swaps 
11" of 11"0. Let 11"0, 11"1, ••• ,11"/ be a set of permutations in Sn, each of them being 
a greedy swap of the preceding one. Such a sequence is called monotone if for 
each pair of permutations 1I"k, 1I"t in the sequence, {ik,jd n {it,jd = 0, where 
1I"k (1I"t) is obtained by applying transposition (ik,jk) ((it,jt}) to the preceding 
permutation in the sequence. The neighborhood of 11"0 consists of all permutations 
which occur in the (unique) maximal monotone sequence of greedy swaps starting 
with permutation 11"0. Let us denote this neighborhood structure for the QAP by 
NK-L. It is not difficult to see that, given a QAP(A,B) of size n and a permutation 
11" E Sn, the cardinality of NK_d1l") does not exceed In/2J + 1. 

It is easily seen that the local search problem (QAP,NK_d is a member ofPCS. 
Indeed, generating a feasible solution to the QAP and computing the corresponding 
value ofthe objective function can be obviously done in polynomial time. Moreover, 
we can determine in polynomial time whether a given permutation 11" is a local 
optimum and, if it is not, generate a better permutation among its r n/21 neighbors. 
In [184] it is shown that a PLS-complete problem, namely the graph partitioning 
problem with the neighborhood structure defined by Kernighan and Lin [139] is 
PLS-reducible to (QAP,NK - L ). This implies the following theorem. 

Theorem 1.12 (Pardalos, Rendl and Wolkowicz [184], 1994) 
The local search problem (QAP,NK_L ), where NK-L is the Kernighan-Lin type 
neighborhood structure for QAP, is PLS-complete. 0 
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The PLS-completeness of (QAP,NK_d implies that, in the worst case, a general 
local search algorithm as described above involving the Kernighan-Lin type neigh-
borhood finds a local minimum only after a time which is exponential in the size 
of the problem. However, numerical results show that such local search algorithms 
perform quite well when applied on QAP test instances, as reported in [171]. 

Another simple and frequently used neighborhood structure in Sn is the so-called 
pair-exchange (or 2-opt) neighborhood N2• The pair-exchange neighborhood of a 
permutation 1l'0 E Sn consists of all permutations 1l' E Sn obtained by 1l'0 when 
applying some transposition (i,j) to it. Thus, N2(1l') = {(i,j) 0 1l': i # j, 1 ~ i,j ~ 
n}. 

It can be shown that (QAP,N2) is PLS-complete. Namely, Schaffer and Yan-
nakakis [209] have proven that the graph partitioning problem with a neighborhood 
structure analogous to N2 is PLS-complete. A similar PLS-reduction as in [184] 
implies the following result. 

Theorem 1.13 The local search problem (QAP, N2 ), where N2 is the pair-exchan-
ge neighborhood, is PLS-complete. 0 

Again, Theorem 1.13 implies that the time complexity of a general local search 
algorithm for the QAP involving the pair-exchange neighborhood is exponential in 
the worst case. 

At this point, it should be mentioned that no local criteria are known for deciding 
how good a locally optimal solution is as compared to a global one. From the 
complexity point of view, deciding whether a given permutation is an optimal 
solution to a given instance of QAP, is a hard problem. 

Theorem 1.14 (Papadimitriou and Wolfe [182]' 1985) 
Let 1 be an algorithm which outputs whether an input permutation 1l' E Sn is a 
(globally) optimal solution to QAP(A,B), where A and B are part of the input 1 
is not a polynomial time algorithm, unless P = NP. 0 



2 
EXACT ALGORITHMS AND LOWER 

BOUNDS 

This chapter gives a summary on approaches and methods used for solving QAPs 
to optimality. Since the QAP is an NP-hard problem, only explicit (simple and 
straightforward) and implicit enumeration methods are known for solving it exact-
ly. For a long time, branch and bound algorithms have been the most successful 
optimization approaches to QAPs, outperforming cutting plane algorithms whose 
convergence running time is simply unfeasible. Recently, theoretical results ob-
tained on the combinatorial structure of the QAP polytope have raised new hopes 
that, in the future, polyhedral cutting planes can be successfully used for solving 
reasonably sized QAPs. Clearly, the design of efficient branch and cut methods 
in the vein of those already developed for the TSP (see for example [178]) is con-
ditioned by the identification of new valid and possibly facet defining inequalities 
for the QAP polytope, and the development of the corresponding separation algo-
rithms. Hence, quite a lot of efforts are required before the current size limits of 
solvable QAPs can be significantly improved. 

Nowadays, the results achieved by applying the best existing exact algorithms 
(branch and bound) are modest: generally problems of size larger than 20 cannot 
be solved to optimality in reasonable time [58, 156] and problems of size larger 
than 15 are considered to be difficult. Recently, two "stubborn" test instances 
from QAPLIB [37], the Nugent et al. instances of size 21 and 22, were solved by a 
parallel implementation of a branch and bound algorithm [26]. 

The low efficiency of branch and bound algorithms for the QAP is mainly due 
to a lack of efficient bounding approaches for problems of relatively large size, 
which confirms implicitly the inherent difficulty of the QAP. As the performance 
of branch and bound methods depends very much on the quality of the involved 
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lower bounds, quite a lot of efforts have been spent for designing efficient lower 
bounding schemes. 

In the following we describe in some detail the most interesting and successful 
techniques developed to date for the generation of lower bounds for the QAP. 
Further, we focus on branch and bound and cutting plane approaches, which are 
essentially the types of algorithms used for solving QAPs to optimality. We review 
the application of the principal fundamental ideas for the design of such algorithms 
in the case of the QAP. 

2.1 LOWER BOUNDS 

The computation of lower bounds is the most studied topic on the QAP. Although 
a lot of efforts have been done to derive tight and computationally efficient lower 
bounds, such bounds have not been found yet. Lower bounds are a component 
of crucial importance in branch and bound techniques. Moreover, they are also a 
basic tool for testing the quality of the solutions produced by heuristics. When 
considering branch and bound methods, both the tightness of the bounds and the 
computation time requirements are important. In the case that the lower bounds 
are used for evaluation of heuristics, the emphasis is on their tightness rather than 
on the computation time requirements. In this section we shortly describe the 
major bounding techniques for QAPs. The lower bounds for the QAP known to 
date can be classified in five main groups: Gilmore-Lawler and related lower bounds, 
eigenvalue related lower bounds, reformulation based bounds, lower bounds based on 
LP relaxations and lower bounds based on semidefinite relaxations. 

2.1.1 The bound of Gilmore-Lawler and other 
Gilmore-Lawler-like bounds 

The Gilmore-Lawler bound (GL). One of the first lower bounds for QAPs 
proposed in the literature [92, 152] is the so-called Gilmore-Lawler bound. Consider 
a QAP(A,B) of size n. Define a new n x n matrix C = (Cij) by 

l~i,j~n 

It is well known that the entries Cij can be easily computed by sorting the vectors 
A(i,.) and BU,.) in increasing and decreasing order, respectively, where AU,.) is the 
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i-th row of matrix A. This follows from an early result due to Hardy, Littlewood, 
and Polya in [115] (pp. 260-270), which will turn out to be useful in many proofs 
throughout the rest of this monograph. Before formulating these results we intro-
duce some notations. The scalar product of two n dimensional vectors U = (Uj) 
and V = (Vi)' denoted by (U, V), is defined by 

n 

(U, V) := L: UiVi 
i=l 

Consider three permutations q;, 'l/J, p E Sn such that U1>(l) ::s: U1>(2) ::s: ... ::s: u1>(n), 
Up(l) ~ Up(2) ~ ... ~ Up(n) and V'IjJ(l) ~ V'IjJ(2) ~ ... ~ v'IjJ(n)' As we will see more 
than once in this chapter, the scalar products (U1>, V'IjJ) and (UP, V'IjJ) playa special 
role and therefore we introduce special notations for them. 

With these notations the above mentioned result of Hardy et al. reads as follows. 

Proposition 2.1 (Hardy, Littlewood and Polya [115], 1952) 
Let U = (Ui) and V = (Vi) be two n dimensional vectors. 
inequalities hold, for any 7r E Sn, 

Then, the following 

o 

Now let us return to the Gilmore-Lawler bound. Assume that a preprocessing step 
has been performed for sorting the rows of both matrices A and B in increasing 
and decreasing order, respectively. Then, it takes O(n3 ) elementary operations to 
compute all Cij and the preprocessing step takes O(n2 log n) elementary operations. 
It is easily seen that the following equalities and inequalities hold, for each 7r E Sn: 

n n n n 

i=l j=l i=l i=l 

The last inequality implies 
n 

min Z(A, B, 7r) ~ min L: Crr(i)i =: GL 
rrES. rrES •. 

1=1 

Thus, G L is a lower bound for the optimal value of QAP(A,B). This is called the 
Gilmore-Lawler bound for QAP(A,B). Once the entries of matrix C have been 
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computed, it takes O(n3 ) time to compute GL by solving a linear assignment 
problem. Hence, the overall time complexity for the computation of the Gilmore-
Lawler bound amounts to O(n3 ) for the Koopmans-Beckmann QAP. Analogously, 
the GL bound can be also computed for the Lawler QAP (1.2). In this case, the 
computation of the entries Cij is done by solving a linear assignment problem for 
each 1 ::; i, j ::; n. 

n 

Cij := min "di7r (k)jk, 
1rESn: L..J l::;i,j::;n 
,..(j)=i k=l 

Hence, the computation of the matrix (Cij) can be done in O(n5) time, and this is 
also the time complexity for the computation of the GL bound in this case. 

The Gilmore-Lawler bound is one ofthe simplest and cheapest bounds to compute, 
but unfortunately this bound is not tight. Moreover, in general, the gap between 
the Gilmore-Lawler bound and the optimal solution increases quite fast as the size 
of the problem increases. 

Reduction methods. One would expect that the quality of the GL bound could 
be improved by transforming the coefficient matrices A and E to new matrices A 
and 13 with smaller entries. Then, the quadratic term Z(A, 13, IT) will generally have 
a smaller value than Z(A, E, IT), IT E Sn, and also the gap between the lower bound 
and the optimal value of the objective function is expected to be smaller. The 
transformation of the coefficient matrices yields an additional term in the objective 
function. This term should also be minimized over Sn. The crucial point is to use 
only such transformations of A, E to A, 13, that lead to a linear additional term. 
In this case, the minimal value of the additional term over Sn could be computed 
exactly. This kind of approaches are generally termed reduction methods. They 
were originally introduced by Conrad [60] and further studied by several authors 
[27,28,71,78, 83, 199]. 

Generally, a reduction approach transforms the coefficient matrices A = (aij) and 
E = (bij ) in new matrices A = (iiij) and 13 = (bij) by using formulas of the form 

bij = bij - fi - ej 1::; i, j ::; n, i oF j 
After this transformation one gets the so-called reduced QAP with a linear term in 
its objective function as in (1.3). For the quadratic term in the objective function 
of the reduced QAP the costs Cij, 1 ::; i, j ::; n, are computed. These coefficients 
Cij are updated by adding to them the coefficients of the additional linear term in 
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the objective function resulting from the reduction. Further, a linear assignment 
problem (LAP) with the new matrix C is solved. The optimal value of the LAP 
is an obvious lower bound for the reduced QAP and therefore, also for the original 
QAP. Clearly, different reduction schemes, i.e. different choices for the vectors (Ii), 
(/;)' (ei), (e;) above, yield G L bounds of different quality. 

There is no clear evidence showing that some reduction scheme is better than the 
others. Frieze and Yadegar [S3L have shown that the reduction along the rows is 
redundant, that is we can set Ii = 0, ei = 0, for 1 :S i :S n. Further, the same 
authors have shown that the best among the GL bounds obtained by applying 
reductions of the form 

aij - Ij 
bij - ej 

l:Si,j:Sn, iij 
l:Si,j:Sn, iij (2.1) 

equals the optimal value of a Lagrangean relaxation of the MILP (1.13) with best 
possible values for the Lagrangean multipliers. Frieze et al. use two different 
subgradient approaches for finding approximate values for the best Lagrangean 
multipliers and get two new lower bounds, denoted by FYI and FY2, which are 
generally better than the GL bound (even that obtained after reduction). As we 
will see in more details in the coming paragraphs, Resende, Ramakrishnan and 
Drezner [196] tried to exploit the theoretical result achieved by Frieze and Yadegar 
for deriving better lower bounds. Namely, Frieze and Yadegar notice that for each 
QAP(A,B) the lower bound obtained as solution of an LP relaxation of (1.13) is 
at least as good as each GL bound obtained after some reduction of the form 2.1. 
In [196] an interior point method is used for solving the LP relaxation proposed by 
Frieze and Yadegar. 

Finally, note that, given a QAP(A,B), checking whether the corresponding Gilmore-
Lawler bound equals the optimal solution or not is an NP-complete problem (cf. 
[156]) . 

Christofides and Gerrard bound (CG). Another, more general, but essentially 
similar bounding procedure is proposed by Christofides and Gerrard in 19S1 [54]. 
This bounding procedure is based on the following graph theoretical interpreta-
tion of the QAP. Consider a QAP(A,B) of size n. A and B are considered to 
be the weighted adjacency matrices of two complete graphs GI and G2 on n ver-
tices, respectively. Obviously, each 1l' E Sn is an isomorphism between G I and G2 . 

Z(A, B, 1l') is considered to be the cost of this isomorphism. Solving QAP(A,B) 
means finding an isomorphism between G I and G2 which has minimum cost. The 
basic idea of Christofides and Gerrard consists of decomposing the graphs G I and 
... (1) (2) (k) (1) (2) (k) G2 mto IsomorphIC subgraphs GI ,GI , ... , GI and G2 ,G2 , ... , G2 ,respec-
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tively. The subgraphs G~i) (G~i») should have the same vertex set as Gl (G2) and 
each edge of G l (G2) should occur in at least one of the corresponding subgraphs. 
Moreover, the number of occurrences of an edge e of G l (G2 ) in the subgraphs G~i) 
(G~i) ) is a constant, say d, for all edges e. An isomorphism between Gl and G2 

maps each subgraph G~i) to exactly one subgraph G~), 1 ~ i,j ~ k. Let us denote 
the cost of such a mapping, which is an isomorphism between the corresponding 
subgraphs, by Cij. Clearly, the optimal value of the linear assignment problem with 
cost matrix C = (Cij) multiplied by 1/ d is a lower bound for the optimal value of 
QAP(A,B). This bound is denoted by CG. 

Obviously, this approach makes sense only in the case that the costs Cij can be 
computed in polynomial time. For the sake of efficiency, the size of the linear 
assignment problem to be solved at the end of the bounding procedure should 
preferable not be larger than O(n2 ). These two requirements restrict the choice for 
the subgraphs used for the decomposition. Examples of good subgraphs used for 
the decomposition are stars, double stars and graphs consisting of a single edge [54]. 
A star has a special vertex, called central vertex which is connected by an edge to 
all other vertices in G and is incident with all edges of G. A double star has two 
central vertices which are connected by edges to all other vertices. Moreover, each 
edge of a double star is incident with only one of the central vertices. Figure 2.1 
represents a star and a double star with 7 vertices, respectively. 

(a) (b) 

Figure 2.1 (a) A star with 7 vertices and central vertex labelled by 1. (b) A 
double star with 7 vertices and central vertices labelled by 1 and 2. 

The time complexity for the computation of the CG bounds depends on the struc-
ture of the decomposing subgraphs. Their structure determines both the number 
of the entries Cij to be computed, and the time needed for the computation of 
each of them. For example, in the case of decomposition into a star we have n 
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decomposing subgraphs, that is n2 entries Cij to compute, and the computation 
of each of these entries requires O( n) elementary operations, after a preprocessing 
step which sorts the columns of the coefficient matrices A, B. Summarizing, the 
time complexity of computation of the CG bound amounts to O(n3 ), in this case. 
Notice that the CG bound for a decomposition into stars is exactly the GL bound. 

The application of the CG bound for a decomposition into graphs consisting of 
single edges leads to a bound proposed originally by Land [148] and by Gavett and 
Plyter [89]. In this case, there are n2 decomposing subgraphs, hence n4 entries Cij 

to be computed. Each of these entries can be computed in constant time. At the 
end, an LAP of size n2 has to be solved, and this can be done in O(n6 ) time which 
is also the time complexity of this CG bound computation. 

A decomposition into double stars leads to bounds which are tighter than those 
arising from other decompositions. However, the computation of the this CG bound 
is expensive. There are O(n2) decomposing subgraphs, and hence O(n4) entries 
Cij to be computed. Since the computation of each of these entries requires the 
solution of an LAP, the computation of the whole matrix (Cij) amounts to O( n 7) 

which is also the time complexity for the computation of this CG bound. 

Variance reduction based lower bounds. This class of lower bounds, proposed 
by Li, Pardalos, Ramakrishnan and Resende [156], is based on optimal reduction 
schemes for the QAP. Consider a QAP(A,B) of size n and a partition of A and B 
ofthe form A = Al +A2' B = Bl +B2, where Al = (a~Jl), A2 = (aU l ), Bl = (bg l ) 
and B2 = (bUl). For each pair (i,j), 1::; i,j::; n, denote by iji the solution of the 
following minimization problem: 

The key observation is that the solution of the following linear assignment problem 
n 

min Li7r(ili 
7rES n i=l 

is a lower bound for QAP(A,B) (cf. [156]): 

(2.3) 

Obviously, different choices for Ai, A 2, Bl and B2 yield different lower bounds. 
The GL bound is obtained from (2.3) for Ai = A, A2 = (0) and Bl = Band 
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B2 = (0), i.e. by applying the new bounding approach without partitioning the 
matrices A and B. The partitions considered in [156] are such that the variances of 
the matrices A1 , A2, B1 , B2 and the average oftheir row variances are minimized. 
For an n x m matrix M, its average -y(M) and its variance V(M) are defined as 
follows: 

1 n m 
-y(M) := - L L mij mn .. 

'=13=1 

n m 

V(M) := L L (-y(M) - mij)2 
i=l j=l 

The total variance T(M, >.) of matrix M depends on the parameter >., 0 ~ >. ~ 1, 
and is defined by 

n 

T(M, >.) := >. L V(M(i,.)) + (1 - >')V(M), 
i=l 

where M(i,.) is the ith row vector of M considered as a 1 x m matrix. Thus, the total 
variance of M is a convex combination of the sum of the row variances of M and 
the variance of M. Considering partitions of the type A1 = A +~, A2 = -~ and 
trying to minimize the total variances of matrices A1 and A2, we get the following 
minimization problem: 

min BT(A + ~,>.) + (1 - B)T( -~, >.), 
AEIRnx n 

(2.4) 

for fixed values of the control parameters 0 :S () :S 1 and 0 :S >. :S 1. It turns out 
that the minimization of each of the summands in the above sum is independent 
from >.. Two approximate solutions are proposed for (2.4) giving the entries Oij of 
matrix ~. 

i,j = 1, .. . ,n. 

i,j=I, ... ,n. 

Obviously, the quality of the bounds which arise when (Rd, (R2) are applied, 
depends on the control parameter B. When applying reduction scheme (Rd with 
B = 0 one gets the GL bound. Experimental results have shown that the best 
choices for the parameter Bare: B = 0.5, if (Rd is applied, and B = 1, if (R2) is 
applied. Matrix B is partitioned in an analogous way. 

The partition of each of the matrices A, B according to R1 or R2 involves O(n2) 
elementary operations. Then, the computation of each lji entry requires the solu-
tion of an LAP which can be done in O(n3 ) time. Hence the computation of the 
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whole matrix (Iji) requires O(n5 ) elementary operations, and this is also the time 
complexity of the computation of the variance reduction based lower bound. 

In order to speed up the computation of these bounds, the entries Iji are replaced by 
lower bounds for the problems (2.2). These lower bounds are obtained as the sum 
of the optimal objective function values of the linear assignment problems arising 
when all summands in (2.2) are minimized separately. With this modification, 
the computation of the variance reduction lower bound for a given partitioning 
A 1 ,A2 , Bl,B2 takes O(n3 ) elementary steps, assuming that a preprocessing step 
has been applied for sorting the rows of all involved matrices. It has been proven 
experimentally that this bound, which is fast to compute, is in general much better 
than the GL bound, and competes successfully with the other "cheap" bounds1 . 

For problems with high variances of the coefficient matrices, the new bounding 
procedure often yields the best existing Gilmore-Lawler-like bounds. 

Lower bounds for the QAP based on a dual formulation. Recently, a new 
bounding procedure has been proposed by P. Hahn and T. Grant [108, 109]. This 
procedure combines Gilmore-Lawler bound ideas with reduction steps in a general 
framework which works also for the Lawler QAP (1.2). The resulting bound will 
be denoted by DP through the rest of this chapter. Without loss of generality we 
may assume that all dijkl in (1.2) are nonnegative 2. The four dimensional array 
D = (dkil j ) is thought as being an n 2 x n 2 matrix composed of n2 submatrices 
D(ki), 1 ~ i, k ~ n, where each D(ki) is an n x n matrix given by D(ki) = (dkilj). 
This structure of the array (dkilj) complies with the structure of the Kronecker 
product X 0 X, where X is an n x n permutation matrix. The entries dkiki are 
called leaders. Clearly, there is only one leader in each submatrix. The objective 
function value corresponding to permutation 11" consists of the sum of those entries 
dkilj which correspond to I-entries in the Kronecker product X'/l" 0 X'/l", where X'/l" is 
the permutation matrix corresponding to permutation 7r. Hence, entries of the form 
dkili, k =1= I, or dkikj, i =1= j, do not contribute to the value of the objective function. 
Such entries are called disallowed entries. Entries which are not disallowed are said 
to be allowed. 

The bounding procedure uses the following classes of operations acting on the array 
(dijkl) : 

(R1) Add a constant to all allowed entries of some row (column) of some submatrix 
D(ik) and either subtract the same constant from the allowed entries of another 

1 Bounds whose computation involves 0 (n3 ) elementary operations are considered as "cheap". 
21£ this is not the case, a large (enough) constant M can be added to all entries dijkh so as to 

obtain a new QAP which is equivalent to the original one. 
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row (column) of the same submatrix, or subtract it from the leader in that 
submatrix. 

(R2) Add a constant to all allowed entries of some row (column) of the n2 x n2 

matrix (dijkL). 

Let D' be the four dimensional array obtained from D after applying to it some 
of the above defined operations. If the applied operation belongs to class Rl the 
objective function values corresponding to permutations of {I, 2, ... , n} remain un-
changed. Thus, operations of class Rl maintain the values of the objective function 
but redistribute the entries of the submatrices D(ik). If the applied operation be-
longs to class R2, the amount added to the row or column of D is added to the 
objective function value corresponding to each permutation. Hence, operations of 
class R2 maintain the ordering of the permutations with respect to the correspond-
ing value of the objective function. The main idea of the method is the following. 
If the operations applied on D decrease the objective function value corresponding 
to each permutation by an amount R, and are performed in such a way that the 
entries of the transformed array D' remain nonnegative, then, clearly, R is a lower 
bound for the optimal solution of the given QAP. If, moreover, the O-entries in the 
transformed matrix D' comply with the pattern of zeros in the Kronecker product 
X tr ®Xtr for some permutation matrix X tr , then R is the optimal objective function 
value of the original QAP and permutation 7r is an optimal solution. 

The procedure developed to find such a lower bound R, or possibly, to optimally 
solve the problem, is essentially similar to the Hungarian method for the linear 
assignment problem. It uses operations of classes Rl and R2 to redistribute the 
entries of D so as to obtain a pattern of zeros which complies with the pattern 
of zeros of the Kronecker product X ® X for some permutation matrix X. It 
is an iterative approach which starts by applying the Hungarian method to each 
of the submatrices D(ik), 1 < i, k < n. Then, the optimal values are added to - -
the corresponding leaders and the Hungarian method is applied to the matrix of 
the leaders. The resulting optimal value R is added to some dummy "superlead-
er" element which is initially set to O. As argued above, R is a lower bound for 
the original problem. After the first iteration this lower bound coincides with the 
Gilmore-Lawler bound. Then, it is checked whether the pattern of zeroes of the 
transformed array D, that is the array resulting after the above n2 + 1 applica-
tions of the Hungarian method, coincides with the pattern of zeros of X ® X, for 
some permutation matrix X. If this is the case, the procedure terminates with 
an optimal solution. If this is not the case, it is checked whether the matrix of 
leaders contains some non-zero elements. If it does not, the procedure terminates 
with a lower bound for the original problem. Otherwise, the non-zero leaders are 
distributed (uniformly) over the elements of the corresponding submatrices by ap-
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plying operations of class Rl. Again, the Hungarian method is applied to each of 
the resulting submatrices D(ik) and the whole process is repeated until the value 
of the superleader, i.e. the lower bound R cannot be improved any more or some 
other termination criterion is fulfilled. 

In summary, the whole process is a repeated computation of Gilmore-Lawler bounds 
on iteratively transformed problem data, where the transformations generalize the 
ideas of reduction methods, described before. The time complexity of each iteration 
is basically that of the GL bound computation for a Lawler QAP, i.e. O(n 5 ). The 
additional computational load for the redistribution of the non-zero leaders over the 
elements of the corresponding submatrices amounts to O(n) elementary operations 
for each of the leaders, hence O( n3 ) elementary operations altogether, which is 
irrelevant in comparison with 0 (n 5 ) . 

A deeper investigation of this bounding procedure reveals that it is an iterative 
approach in which the dual of some LP relaxation of the original problem is solved 
and reformulated iteratively. The reformulation step makes use of the information 
furnished by the preceding solution step. 

As reported in [108] this bounding procedure has been tested on small and middle 
sized QAP instances from QAPLIB. The computational results show that the new 
bounds are competitive with the best existing lower bounds in terms of quality and 
superior in terms of computation times. In another paper of Hahn et al.[109] the 
DP bounds are used in a branch and bound approach for the QAP. The proposed 
algorithm is tested on instances from QAPLIB and, among others, on the very 
difficult Nugent et al. problem of size 20. The computation time needed for solving 
this instance is about three times less than that needed by the branch and bound 
algorithm of Clausen et al. [58] for solving the same instance3 . As pointed out in 
[109], the good performance of the proposed branch and bound algorithms seems 
to be mainly due to the good quality of the DP bounds and the efficiency of their 
computation, as well as to the iterative nature of this bounding procedure, which 
permits stopping the computation as soon as the lower bound has reached the 
best existing upper bound. Other favorable features of the DP bounds are their 
reasonable memory requirements, their being potentially parallelizable, and the 
fact that they allow to produce "good" feasible solutions in early stages of search, 
far from the leaves of the branch and bound tree. 

3Considering that the algorithm of Clausen et al. is a parallel one, in order to have a fair 
comparison, the running time reported in [58] is multiplied by an appropriate speed-up coefficient 
based on the number of processors involved in the computation. 
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2.1.2 Eigenvalue related lower bounds 

The eigenvalue related bounding techniques for the QAP are based on the rela-
tionship between the objective function value of the QAP in the trace formulation 
and the eigenvalues of its coefficient matrices. These bounding techniques work for 
the Koopmans-Beckmann QAP, but cannot be applied to the Lawler QAP (1.2). 
When designed and implemented carefully, these techniques produce bounds of 
good quality in comparison with Gilmore-Lawler type lower bounds or, more gen-
erally, with bounds based on linear relaxations (to be discussed in more detail in 
the coming sections). However, these bounds are quite expensive in terms of com-
putation time requirements and hence, are not really appropriate to be used as 
basic bounding techniques within branch and bound algorithms. Eigenvalue based 
bounds for QAP(A,B), with A and B being symmetric matrices, are proposed by 
several authors in a series of papers [78, 111, 113, 194]. 

Bound EV. Consider the trace formulation of the QAP (1.8). The matrices A and 
B are assumed to be symmetric in order to guarantee their eigenvalues to be reals. 
Let Al :::; A2 :::; ... :::; An be the eigenvalues of matrix A and JlI ~ Jl2 ~ ... ~ Jln be 
the eigenvalues of matrix B. There exist two orthogonal matrices PI and P2 and 
two diagonal matrices, ie. matrices whose off-diagonal elements are equal to zero, 
Al = Diag(AI, A2,"" An)and A2 = Diag(Jll, Jl2,·· ., Jln), such that A = PIA1P{, 
B = P2A2Pi. As shown in [78], the following equality holds: 

tr(AXBXt) = AtS(X)Jl, VX E II, (2.5) 

where S(X) = ((PI (.,i),XP2(.,j))2) and PI (")' P2(.,i) are the column vectors of 
matrices PI and P2 4 . A and Jl are the vectors of the eigenvalues: A = (Ai) and 
Jl = (Jl;). The following inequality establishes the first eigenvalue related bound 
for the QAP(A,B), proposed by Finke et al. in 1987 [78]. 

n n 

i=1 i=1 

The bound 2::7=1 AiJli, denoted by EV, is usually very poor because of the large 
variance of the eigenvalues Ai, Jli. In most cases the EV bound is found to be 
negative. The time complexity for computing this bounds is determined by the 
computation of the eigenvalues of the symmetric matrices A and B, and hence 
amounts to O(n3 ) (by using standard algorithms, e.g. the tridiagonalization and 
the symmetric QR algorithm [99]), where n is the size of the problem. 

4 Pl(.,i)' P 2 (.,i) are also the eigenvectors of A and B, respectively. 
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Bound EVl. One possibility to sharpen the EV bound is to try to decrease the 
difference L;=l An-H11l; - L;=l Ailli. This can be done by reducing the spreads 
of the matrices A and B, where the spread sd(A) is defined as follows 

sd(A) = max{,V 1 ~ i ~ n} - min{A;: 1 ~ i ~ n}. 

According to this definition, in our case we have 

sd(A) = An - A1 and sd(B) = III - Iln 

There exist no simple formulas for computing the spread of a given matrix, but 
there exists a simple formula which gives an upper bound for it. Making use of 
these formulas one tries to replace the coefficient matrices A, B by new symmetric 
matrices A and 8 with smaller spreads. These ideas lead to the application of 
reduction methods which turn out to be successful for improving the EV bound, 
whereas their role in improving the GL bound is disputable. In [78] the following 
reduction formulas are used 

(2.7) 

where F1, F2 are matrices with constant columns, FI, F~ are their transposed 
matrices, and D1, D2 are diagonal matrices. F1, D1, F2 and D2 are appropriately 
chosen in order to minimize the upper bounds on the spreads sd(A) and sd(8). 
F1, D1, F2 and D2 can be easily computed by using explicit formulas (see [78]). 
Similarly as in the case of the GL bound, the reduction gives rise to an additional 
linear term in the objective function. Then, for the quadratic term the bound EV 
can be applied, whereas the linear term can be minimized efficiently. The sum of 
the lower bound for the quadratic term and the minimum of the linear term is a 
new lower bound for the QAP denoted by EVl. The bound EVI is generally better 
than EV, especially for QAPs of size larg~r than 20. 
The reduction, i.e. the computation of the new matrices A, 8 and of the coefficients 
of the additional linear term in the objective function involves O(n2 ) elementary 
operations. Thus, the time complexity for the computation of the bound EVI is 
dominated by the time for the computation of the eigenvalues of the matrices A, 
8, which amounts to O(n3 ), for the problem of size n. 

Bound EV2. If the symmetric matrices A and B have zero diagonal elements, 
the EVI bound can be further improved. For the sake of simplicity let us assume 
that we reduce only one of the coefficient matrices, say A 5 . After the reduction, 
the objective function looks as follows: 

n n n 

(2.8) 
;=1 j=l i=l 

5 Every thing goes through analogously in the case that both matrices A, B will be reduced .. 
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where Cj = 2/kj for any k E {I, 2, ... , n} and dj = 'LJ=l bij . We denote C = (Cj), 
D = (dj), and have EVI = (,\, p)_ + (C, D)_, where ,\ and p are the vectors 
of the eigenvalues of matrices A and B sorted in increasing and decreasing order, 
respectively. Separately bounding the quadratic and the linear part of the objective 
function as done by EVl, does not have to yield always good bounds. An idea for 
a compromising lower bound is given by Rendl [191]. He introduces the so-called 
measure of linearity L for the QAP(A,B) as follows: 

A small L indicates a small influence of the quadratic term in (2.8) as compared to 
the linear term. In this case it is suggested to order the scalar products (C1T, D), 7r E 
Sn, in increasing order and compute the objective function values corresponding 
to the respective permutations. Assume that the permutations 7rj, 1 ~ i ~ k, yield 
the k best values ofthe scalar product (C1T, D) over Sn Rendl [191] proves that the 
following inequalities hold: 

Z(A, B, 7rd 2 z(A, B, 7r2) 2 ···2 z(A, B, 7rk) 2 (,\, p)- + (C 1Tk, D) 2 ···2 
('\, p)_ + (C1Tl, D) 

Moreover, if Z(A,B,7rj) > ('\,p)_ + (C1ri,D) then ('\,p)_ + (C1Ti,D) is a lower 
bound for QAP(A,B) (obviously, at least as good as EVl), otherwise 7ri is an 
optimal solution to QAP(A,B). The bound obtained in this manner is often denoted 
by EV2. Finding k permutations which yield the k smallest values for the scalar 
product (C 1r , D) over Sn takes O(n log n + (n + log k)k) time [191]. Hence, in this 
case, the overall time complexity for the computation of the bound EV2 amounts 
to O(n3 + (n + k) logk). The bounds produced by this approach are much better 
than EVI for matrices A and B whose row sums cover a relatively large interval of 
values. 

The remaining case is when the value of the ratio L is large. A large value of 
L indicates a negligible linear term in (2.8). In this case, an improvement for 
the eigenvalue bound (,\, M- of the quadratic term is obtained as follows. The 
quadratic term of the objective function in (2.8) can be written as 

n n n n 

i=l j=l j=l j=l 

where X 1T is the permutation matrix corresponding to 7r, ,\j, Pi, 1 ~ i ~ n, are 
the eigenvalues of matrices A, B (appropriately sorted), and Ui , Vi, 1 ~ i ~ n, are 
their eigenvectors, respectively. The entries (Ui, X 1T Vj)2 are bounded as 

iij ~ (Uj,X1TVj)2 ~ Uij, 
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for all 11" , where Uij = max { (Ui, Vj):., (Ui' Vj)~} and 

if (Ui, Vj) - , (Ui, Vj) + have different signs 
otherwise 

Replacing (5.., J-!) in EV1 by the optimal value of the following capacitated trans-
portation problem, yields the improved lower bound EV2: 

n n 
mm L: L: 5.. i J-!j Xij 

subject to 
i=lj=l 

n 
L: Xij = 1 
i=l n 
L: xij = 1 
j=l 
iij ::; Xij ::; Uij 

In this case, the time complexity for the computation of the bound EV2 amounts 
to O(n3 ), being determined by the computation of the eigenvalues for the matrices 
..4, B, and the solution of a capacitated transportation problem. 

Other eigenvalue related bounds. The reduction used to improve bound EV 
in order to get bound EV1 is performed independently for the matrices A, B, and 
the linear term of the reduced QAP is then bounded separately from the quadratic 
term. A way to obtain better bounds is to consider all these factors jointly. This 
idea is developed in Rendl and Wolkowicz [194]. 

Consider QAP(A,B) and the generic reduction formula in (2.7). Obviously, the 
matrices A, B and also the matrix C, which defines the additional linear term of 
the reduced QAP, depend on the matrices F1, F2 , D1 and D2 • As the matrices 
F1 , F2 have constant columns, and the matrices D1 , D2 are diagonal matrices, 
the above generic reduction is completely defined by a 4n-dimensional parameter 
vector. Let us denote it by f. Further, let us denote the minimal value ofthe scalar 
products of the eigenvalues 5.., ji of ..4, jj obtained by the reduction with parameter 
f, by msp(f) := (5.., ji) _. Moreover, denote 

n n 

lap(f) := min L L Clr(i)i, 
lrES" 

i=l j=l 

(2.9) 

for C obtained by the reduction with parameter f. Clearly, for each parameter 
vector f, msp(r) +lap(f) is a lower bound for the QAP(A,B). The natural goal is 
to find a parameter vector f which maximizes this bound, i.e. 

max {msp(r) + lap(r): f E R4nX1} (2.10) 
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msp(f) is a differentiable function (at least when the eigenvalues have multiplicity 
1), whereas lap(f) is a piecewise linear concave function. In [194], problem (2.10) 
is solved by using a steepest ascent algorithm. This procedure produces sometimes 
the best existing bounds for QAPs with symmetric coefficient matrices. However, 
it is quite time-consuming as an EV bound must be computed in each iteration 
(which amounts to a time complexity of O(n3 ) per iteration), and a large number 
of iterations is needed to solve (2.10). 

Another bounding idea related to the eigenvalues of the coefficient matrices arises 
when considering relaxations of the trace formulation of the QAP (1.8). It is well 
known that the class of permutation matrices is the intersection of three matrix 
classes: the class of orthogonal matrices, the class of matrices with columns and 
rows sums equal to 1 and the class of matrices with nonnegative entries. (The 
intersection of the last two classes yields the doubly stochastic matrices.) Minimiz-
ing the objective function of the problem (1.8) over one of these three classes of 
matrices, or over intersections of pairs ofthem, would yield relaxations ofthe QAP. 
The relaxation of (1.8) over the class of orthogonal matrices has been proven to be 
useful. Rendl and Wolkowicz [194] show that the EV bound is actually the optimal 
solution of the relaxation of the QAP (1.8) on the class of orthogonal matrices. 
The relaxation of (1.8) on the class of orthogonal matrices which additionally have 
row and column sums equal to 1 is studied by Hadley et al. [113]. The constraints 
on the sums over the rows and columns of matrix X are reformulated to obtain a 
projected problem. The latter is an n - 1 dimensional minimization problem which 
is reformulated as a QAP relaxation on the set of (n - 1) x (n - 1) orthogonal ma-
trices. But this relaxation can be solved to optimality by an eigenvalue approach 
as described above. In the literature the bounds obtained by this procedure are 
often termed elimination bounds (ELI). More recently, the relaxation ofQAP (1.8) 
on the class of orthogonal matrices with row and column sums equal to one has 
further been studied in relationship with trust region problems [134]. 

All eigenvalue related bounds described up to now work only for symmetric QAPs. 
If only one matrix is symmetric, the other one can be symmetricized yielding an 
equivalent QAP. Hadley, Rendl and Wolkowicz [112] propose also a technique to 
transform an asymmetric QAP to a QAP with (complex) Hermitian coefficient 
matrices. Then, an eigenvalue type bound analogous to EV is obtained for the 
transformed QAP (and equivalently for the given QAP) by applying the Hoffman-
Wielandt inequality for Hermitian matrices. 

All eigenvalue related approaches produce in most of the cases high quality bounds, 
but their computation is too expensive. Another reason why these bounds are 
not well suited for use within branch and bound algorithms concerns the quick 
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deterioration of their quality when searching lower levels of the branch and bound 
tree (see [57]). 

2.1.3 Bounding techniques based on 
reformulations 

First of all, let us remark that lower bounds of this class can be applied to the 
general QAPs formulated as in (1.2) and (1.4). Obviously, they can be also applied 
to the Koopmans-Beckmann QAP. However, in this case, they cannot take advan-
tage of the specific structure of the objective function coefficients . Consider the 
generalized Lawler QAP, below denoted by P. 

subject to 
(P) n 

I: Xik = 1 1 < k < n 
i=l 

n 
I: Xik = 1 1 < i < n 
k=l 
Xik E {O,I} 1::; i,k::; n 

As already mentioned above, we may assume without loss of generality that the 
coefficients d ijk /, 1 ::; i, j, k, I ::; n are nonnegative. 

A reformulation of the QAP P is another QAP pI of the same form as P, but with 
new coefficients d;jk/' 1 ::; i, j, k, I ::; n, and c:k , 1 ::; i, k ::; n, such that for all (xii) 
fulfilling the assignment constraints 

n n n n n n 

L L dijklXikXjl + L Cikxik = L L d:jklXikXjl + L C:kXik 
i ,k=l j ,l=l i ,k=l i,k=l j,l=l i ,k=l 

The basic idea of these methods is to derive a sequence of reformulations Po 
P, P1, ... , Pk for a given problem P by applying some "appropriate" reformulation 
rule. As pointed out by Carraresi and Malucelli in [44], the new coefficients can be 
derived by the following generic equalities: 

d;jkl = d ijkl + 1"ijkl - D:ijl - (3jkl + (Jik 1::; i, j, k, I::; n 
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n n 

C~k = Cik + I>~ijk + L,8ikl - (n - 1)Bik 1:::; i, k :::; n 
j=1 1=1 

Clearly, not all choices of the parameters T, a, ,8 and B in the above formulas 
produce a reformulation of P, but there are settings of those parameters which do, 
as shown in [7, 43]. 

To each of the reformulations Pi, 0 :::; i :::; k, a bounding procedure is applied, for 
example the GL bound, and a lower bound, say Bi, is derived. The reformula-
tion rule is "appropriate" if the sequence of the lower bounds Bi is monotonically 
nondecreasing: Bo :::; B1 :::; ... :::; Bk. Usually, the construction of a new refor-
mulation exploits the previous reformulations and the bounds obtained for them. 
The procedure is repeated iteratively until a stop criterion is fulfilled. The lower 
bound for the last reformulation is a valid lower bound for the original problem. In 
principle, any bounding technique can be involved in such a reformulation scheme. 
However, as this approach performs one lower bound computation per iteration, 
it is reasonable to choose cheap and easy-to-compute bounds (for example the GL 
bound) to be applied in each reformulation. 

This type of bounding strategies has been proposed by Carraresi and Malucelli [43] 
and Assad and Xu [7]. Both procedures compute GL bounds for each reformulation 
of the original problem. The parameters a, ,8, T and B are updated in each iteration 
(reformulation step). Their values are determined by making use of the lower 
bound obtained for the last reformulation, the optimal values and the optimal dual 
variables of the linear assignment problems solved during the last GL computation. 

More concretely, the bounds proposed by Assad and Xu [7] can be embedded into 
the above reformulation scheme by setting Tijkl = 0, aijk = 0, ,8ijk = 0, for 
1 :::; i, j, k, 1 :::; n Brk = 0, 1 :::; i, k :::; n, and 

B~~+1) = B~!) + z;!) j(n - 1) 

B~!) are the values of the parameter B used for the t-th reformulation and z;!) is the 
optimal value of the following linear assignment problem 

(Pg)) min {C~!) + j~ d~;Lxjl: (Xj') fulfill (1.5)} , 
(j.I)~(i.k) 

where d~;~, and c~!) in the last equality are the coefficients of the t-th reformulation 
Pt. The termination criterion is 

max z~t) - min z~t) < € 
1~i,k~n ,k 19,k~n ,k -
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for some prespecified small accuracy measure f. The bounds computed in this way 
are usually denoted by AX. The time complexity amounts to O(n5 ) per iteration. 
This is due to the computation of the coefficients of the corresponding reformulation 
which requires the solution of n2 LAPs. Numerical experiments on the Nugent et 
al. test instances have shown that this algorithm converges quickly in practice. 
The produced bounds are comparable to the bounds FYI and FY2 of Frieze and 
Yadegar [83] in terms of quality, while requiring less computation time. However, to 
the best of our knowledge, no theoretical proof for the convergence of this algorithm 
has been given yet. 

The bounds proposed by Carraresi and Malucelli [43] can be embedded into the 
above reformulation scheme by setting (I;!) = 0, 1 ~ i, k ~ n, for all t, and 

Tg:Z1) dgL - dJ~lk 
(t+1) (t) 

(Xijl uijl 

j3 (t+1) (t) 
jkl vjkl 

(2.11) 

(2.12) 

(2.13) 

for 1 ~ i, j, k, I ~ n, where u~}L VJ~I are the optimal values of the dual variables 
of the linear assignment p}t) defined analogously to Pi~) above. The termination 
criterion is zi!+l) = zi!) , for all 1 ~ i, k ~ n. The authors show that this stop 
criterion is fulfilled after finitely many reformulations steps. The bounds computed 
in this way are usually denoted by CMl. 

Slightly different reformulation formulas have been proposed by Carraresi and 
Malucelli in [44]. The setting for the T, (X and j3 parameters are those given in 
(2.11), (2.12)' (2.13), whereas the coefficients O(t) are computed as follows: 

n(t+1) __ 1_ ( (t) + (t) + (t)) 
(lik - 1 cik u i vk , n- 1 ~ i, k ~ n, 

where u~t), vkt) are the optimal dual variables of the following linear assignment 
problem 

and zi!) are defined as previously. The bound produced with these settings is often 
denoted by CM2 in the literature. 

Analogously as for the bound AX, it can per shown that the time complexity for the 
bounds CMl, CM2, amounts to O(n5 ) elementary operations per iteration. Com-
putational results show that the reformulation schemes generally produce bounds 
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of good quality. However, these bounding techniques are quite time-consuming, as 
n2 + 1 linear assignment problems per iteration have to be solved. Moreover, when 
computing bounds CMl, CM2 and AX for a Koopmans-Beckmann QAP(A,B), 
the nice structure of the objective function coefficients is not preserved by the re-
formulation rules. That is, even if in the above sequence of reformulations Po is 
a Koopmans-Beckmann QAP, the problems Pi, i 2: 1, are (generalized) Lawler 
QAPs of the form (1.2) or (1.4). Notice that the computation of the GL bound 
for a Lawler QAP takes O(n5 ) time, whereas for a Koopmans-Beckmann QAP it 
takes only O(n3). Thus, CMl, CM2, AX are computed in O(kn5) time, where k 
is the number of iterations (reformulations). Finally, notice that, in the case that 
dijkl = d ji1k , for alII:::; i,j,k,l :::; n, the general reformulation scheme cannot 
produce lower bounds which are better than the optimal value of the LP relaxation 
of the MILP formulation (1.13) of Frieze and Yadegar, as shown in [43]. 

2.1.4 Bounds based on linear programming 
relaxations 

Several authors have proposed mixed integer linear programming (MILP) formu-
lations for the QAP. In Chapter 1 we have described the most significant among 
them, in terms of their size, their impact for the computation of the lower bounds, 
and the analysis and understanding of the QAP polytope. In the context of low-
er bound computation the MILP formulation of Frieze and Yadegar (1.13) is of 
essential importance. (Bounds FYI and FY2 are obtained in terms of this MILP.) 

Clearly, the optimal solution of the LP relaxation of an MILP formulation is a lower 
bound for the optimal value of the corresponding QAP. Moreover, each feasible 
solution of the dual LP is also a lower bound. As already mentioned in this chapter, 
good lower bounds should be tight, in the sense that they should be as close as 
possible to the optimal value of the QAP, and also efficient to compute. In order 
to derive bounds which match this requirements several efforts have been made 
concerning the identification of appropriate LP relaxations of MILP formulations, 
and also the development of solution methods for solving these LP relaxations or 
the corresponding duals. 

Among the MILP formulations for QAPs, the one proposed by Adams and John-
son [2] and obtained by building upon the MILP formulation of Frieze and Yade-
gar (1.13) (see Chapter 1), is of particular significance. The optimal value of the 
corresponding LP relaxation is provably at least as good as most of the Gilmore-
Lawler-like or reformulation lower bounds known to date for the QAP. Moreover, 
the solution method for the corresponding LP relaxation generalizes and uni-
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fies most of the bounding techniques which rely on reduction and reformulation 
ideas [2]. The MILP formulation of Adams and Johnson denoted by AJ through 
the rest of this chapter, is presented below. The authors make use of the vari-
ables Yijkl = XikXjl, 1::; i,j,k,l::; n, introduced by Frieze and Yadegar, and show 
that two groups of constraints of the MILP (1.13) are redundant under the con-
straint Yijkl = Yjlik, 1 ::; i, j, k, I ::; n. In this way, they obtain the following MILP 
formulation: 

n n n n 
mInimiZe LL L L aijbklYikjl 

i=l j=l k=11=1 
subject to 

n 
L Xik = 1 l<k<n 
i=l 

n 
L Xik = 1 1 < i < n 

(AJ) 
k=l 

n 
L Yikjl = Xik l::;i,k,l::;n 
j=l 

n 
L Yikjl = Xik 1::; i,j, k::; n 
1=1 
Yjlik = Yikjl 1::; i,j, k,l::; n (*) 
Xik E {O, I} 1 ::; i, k ::; n 
o ::; Yikjl ::; 1 1::; i,j, k,l::; n 

In [2] it is shown that the constraints of the continuous relaxation of (1.13) can be 
obtained as a linear combination of the constraints of the continuous relaxation of 
AJ. Moreover, in the case that both coefficient matrices A = (aij) and B = (bij) are 
symmetric, the optimal value of CAJ is equal to the optimal value of the continuous 
relaxation of (1.13). The continuous relaxation of AJ is denoted by CAJ throughout 
the rest of this chapter. Among the constraints of AJ the equalities (*) play a 
special role. For solving CAJ approximately, a Lagrangean dual is considered, 
where the constraints (*) are added to the objective function multiplied by the 
Lagrangean multipliers Uikjl, 1 ::; i, j, k, I ::; n. So we get 

n n n n 
mInimiZe L L L L (aijbkl - Uikjz)Yikjl-

i=l i=1 k=l 1=1 
i>i l;tk 

n n n n n n 
L L L L (aijbk1 - Ujlik)Yikjl + L L aikbikXik 
i=l i=1 k=l 1=1 i=l k=l 

i<i l;tk 

subject to 
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n 
L Xik = 1 l<k<n 
i=l 

n 
L Xik = 1 1 < i < n 
k=l 

n 

(AJ(u)) L Yijkl = Xik l'.5: i ,k,I'.5: n 
j=l 

n 
L Yijkl = Xik 1 '.5: i, j, k '.5: n 
1=1 
xikE{O,I} 1 '.5: i, k '.5: n 
o '.5: Yijkl '.5: 1 1'.5: i,j,k,I'.5: n 

Let B(u) be the optimal value of AJ(u). It is a well known result in dual linear 
programming that maXu B( u) equals the optimal objective function value of CAJ. 
An iterative dual ascent procedure is applied for solving CAJ approximately. In 
each iteration the u-multipliers are first kept fixed and the problem AJ(u) is solved 
to optimality. Its optimal value B( u) is a lower bound for the optimal value of CAJ. 
Notice that for any fixed set of u-multipliers, the x and Y variables in the problem 
AJ(u) can be separated and AJ(u) can be solved to optimality by solving n2 + 1 
linear assignment problems (LAPs). Then, the values of the multipliers Uijkl are 
updated, using the information contained in the dual variables of the LAPs solved 
during the current iteration, and the procedure is repeated. The procedure stops 
after having performed a prespecified number of iterations. The proposed updating 
rule leads to a non-decreasing sequence of lower bounds B( u) with the increasing 
number of the iterations. The time complexity of this method is dominated by 
the solution of n2 + 1 LAPs in each iteration and hence, amounts to O(n5 ) per 
iteration. 

In [2] it is shown that B(O) equals the Gilmore-Lawler bound for the QAP, whereas 
the other Gilmore-Lawler-like bounds which are obtained after some reduction (see 
Subsection 2.1.1) equal B( u) for special settings of the Lagrangean multipliers Uijkl. 
The theoretical relationship between the lower bounds proposed lately by Hahn et 
al. [108] and the bounds related to the AJ formulation of the QAP, is not clear 
yet. According to the numerical results reported in [2, 108], the bounds proposed 
by Hahn et al. outperform those obtained by the dual ascent procedure proposed 
by Adams et al., in terms of quality, whereas the latter procedure seems to be 
considerably faster. As for the reformulation based bounds (Section 2.1.3) in [2] 
it is argued that the reformulation bounds can be obtained by applying a dual 
ascent procedure as described above with specific update rules for the Lagrangean 
mul ti pliers. 

Hence, these bounds cannot exceed the optimal value of the CAJ. The dual proce-
dure proposed in [2] was tested on the Nugent et al. test examples from QAPLIB. 
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The resulting bounds are, as expected, better than most of the other LP-based 
bounds described in the literature. 

As for other solution methods for the CAJ, Adams et al. point out that this problem 
is highly degenerated and degeneracy poses a problem for primal approaches. As 
reported in [2], preliminary computational experiments show that primal methods 
indeed perform poorly. Another effort for solving the LP relaxation of the MILP 
formulation AJ is done by Resende, Ramakrishnan and Drezner [196]. They use 
an interior point approach, the so-called approximate dual projective algorithm of 
Karmarkar and Ramakrishnan [135], and obtain bounds which beat those obtained 
by Adams et al. in [2], in terms of quality. The algorithm of Resende at al. does 
not solve the CAJ exactly. In general it computes a "good" solution for the dual, 
this being obviously a lower bound for the primal. The linear systems arising in 
each iteration of the algorithm are solved by a preconditioned conjugate gradient 
approach. 

Because of memory requirements, the bounds of Resende et al., frequently denoted 
by IPLP, are tested on QAP instances from QAPLIB of size smaller than or equal 
to 30. The IPLP bounds turn out to be the best existing bounds for a large number 
of QAP test instances from QAPLIB. In terms of quality, they are beaten only by 
the so-called triangle decomposition bounds (to be considered below)6. However, 
the computation of the IPLP bounds requires very high computation times, which 
is mainly due to a huge number of calls of the preconditioned conjugate gradient 
routine, cf. Resende et al. [196]. 

Due to these high computation time requirements, the IPLP bounds cannot be 
used for practical purposes in bounding subroutines within branch and bound al-
gorithms, despite the good quality. 
The DP bound of Hahn et al. [108] is the only bound which can compete with the 
IPLP, in terms of tightness. Moreover, generally, the DP bounds can be comput-
ed much faster than the IPLP bounds. As an illustrative example consider the 
Nugent at al. test problem od size 20 from QAPLIB, where the gap between the 
IPLP and the DP bound is about 0.3%, and the CPU time requirements amount 
to 3611.4 and 382.7 seconds for the computation of the IPLP and the DP bounds, 
respectively. The computations were performed on a Silicon Graphics Challenge 
computer with a 150 MHz IP19 processor and a SPARC 10 workstation with a 75 
MHz SuperSparc processor, for IPLP and DP, respectively. 

6The triangle decomposition bounds can be computed only for specially structured QAPs, the 
so-called grid QAPs. 
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Finally, let us mention an application of dynamic programming to compute lower 
bounds for the QAP based on MILP formulations. In 1989, Christofides and Be-
navent [52] considered a special case of the Koopmans-Beckmann QAP(A,B), the 
so-called tree-QAP. In the tree QAP A is an arbitrary matrix, and B is the weight-
ed adjacency matrix of a tree. It is easily seen that this special case of the QAP 
is NP-hard, since it contains the shortest Hamiltonian path problem as a special 
case. Christofides and Benavent give a MILP formulation for this special QAP, and 
consider several relaxations which can be solved in polynomial time, producing in 
this way lower bounds for the original problem. Among others, they distinguish a 
Lagrangean type relaxation which, due to the special structure of the problem, can 
be solved in polynomial time by a fast dynamic programming approach. In general, 
the bounds produced by solving this relaxation are of very good quality and even 
match the optimal solution of the MILP formulation in many cases. When involved 
in a branch and bound algorithm these bounds produce a relatively small branch 
and bound tree. This allows the authors to solve to optimality test instances of 
size up to 25, within reasonable time limits (less than 600 seconds of CPU time on 
a UNIVA 1100/60, in almost all cases). Recall that nowadays QAPs of size larger 
than 22 arc considered intractable. 

2.1.5 Bounds based on semidefinite relaxations 

Semidefinite programming (SDP) is a generalization of linear programming where 
the variables are taken from the Euclidean space of matrices with the trace operator 
acting as an inner product (see below). The non-negativity constraints are replaced 
by semidefiniteness constraints and the linear constraints are formulated in terms 
of linear operators on the above mentioned Euclidean space of matrices. From the 
early 90's on, semidefinite programming was a subject of renewed interest in discrete 
optimization. This is due to successful applications of semidefinite programming 
in discrete optimization as presented in [96, 146]. 

Recently, semidefinite programming relaxations for the QAP were considered by 
Karisch [132]' Zhao [231]' and Zhao, Karisch, Rendl and Wolkowicz [232]. The 
SDP relaxations considered in these papers are solved by interior point methods 
or cutting plane methods, and the obtained solutions are valid lower bounds for 
the QAP. The solution methods described in [132, 231, 232] require at least O(n6 ) 

time per iteration, where n is the size of the problem. In terms of quality the 
bounds obtained in this way are competitive with the best existing lower bounds 
for the QAP. For many test instances from QAPLIB, such as some instances of 
Hadley, Roucairol, Nugent et al. and Taillard, they are the best existing bounds. 
However, due to prohibitively high computation time requirements, the use of such 
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approaches as basic bounding procedures within branch and bound algorithms is 
impossible. 

We refer to [132, 232] for a detailed description of SDP approaches to the QAP. 
The semidefinite programming relaxations used for the lower bound computations 
in these papers, are presented below. 

As already mentioned in this chapter, the set of n x n permutation matrices TIn 
is the intersection of the set of n x n 0-1 matrices, denoted by Zn, and the set of 
n x n matrices with row and column sums equal to 1, denoted by lln throughout 
the rest of this chapter. Moreover, TIn is also the intersection of Zn with the set of 
n x n orthogonal matrices, denoted by On. Hence 

Recall that 
On = {X E IRnxn : XXt = xt X = I} and 

lln = {X E IRnxn:XE = XtE = E}, 

where I is the n x n identity matrix and E is the n-dimensional vector of all ones. 
Then, the trace formulation of QAP(A,B) (1.8) with the additional linear term 

n n 

-2 LLCijXij 
i=1 j=1 

(see Section 1.3) can be represented equivalently as follows: 

mm tr(AXBXt - 2CXt) 
subject to 

(QAP}£) XX t = XtX = I 
XE=XtE=E 
xlj - Xij = 0 

In order to obtain a semidefinite relaxation for the QAP from the formulation 
QAP1{ above, we introduce first an n2-dimensional vector vec(X). vec(X) is ob-
tained as a column-wise ordering of the entries of matrix X. Then the vector 
vec(X) is lifted into the space of (n2 + 1) x (n2 + 1) matrices by introducing a 
matrix Yx 

Y ( Xo 
X = vec(X) 

vec(X)t ) 
vec(X)vec(X)t 
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Thus, Yx has some entry Xo in the left-upper corner followed by the vector vee(X) 
in its first row (column). The remaining terms are those of the matrix 

vee(X)vee(X)t 

sitting on the right lower n2 x n2 block of Yx. 

Secondly, the coefficients of the problem are collected in an (n 2 + 1) x (n 2 + 1) 
matrix K given as 

K = ( vee~C) -vee(C)t ) 
B®A ' 

where the operator vee is defined as above and B ® A is the Kronecker product of 
Band A. 

It is easy to see that with these notations the objective function of QAP1i equals 
tr(KYx). By setting Yoo := Xo = 1 as done in Zhao et al. [232], one obtaines two 
additional constraints to be fulfilled by the matrix Yx: Yx is positive semidefinite 
and matrix Yx is a rank-one matrix. Whereas the semidefiniteness and the equality 
Yoo = 1 can be immediately included in an SDP relaxation, the rank-one condition 
is hard to handle and is discarded in an SDP relaxation. In order to assure that 
the rank-one positive semidefinite matrix Yx is obtained by an n x n permutation 
matrix as described above, other constraints are to be imposed on Yx. Such condi-
tions can be formulated as valid constraints of an SDP formulation for the QAP by 
means of some new operators, acting on matrices or vectors as introduced below. 
diag(A) produces a vector containing the diagonal entries of matrix A in their nat-
ural order, i.e. from top-left to bottom-right. The adjoint operator Diag acts on 
a vector V and produces a square matrix Diag(V) with off-diagonal entries equal 
to ° and the components of V on the main diagonal. Clearly, for an n dimensional 
vector V, Diag(V) is an n x n matrix. 
arrow acts on an (n 2 + 1) x (n 2 + 1) matrix Y and produces an n2 + 1 dimen-
sional vector arrow(Y) = diag(Y) - (0, YO,1:n2), where (0, Y(O,1:n2)) is an n 2 + 1 
dimensional vector with first entry equal to ° and other entries coinciding with 
the entries of Y lying on the O-th row and in columns between 1 and n 2 , in their 
natural order 7 . The adjoint operator Arrow acts on an n 2 + 1 dimensional vector 
Wand produces an (n2 + 1) x (n 2 + 1) matrix Arrow(W) 

( wo 
Arrow(W) = 1/2 TXT YY(1:n2) 

where W(1:n2) is the n 2 dimensional vector obtained from W by removing its first 
entry woo 

7Note here that the rows and columns of an (n2 + 1) X (n2 + 1) matrix are indexed by 0,1, ... ,n2 • 
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Further, we are going to consider an (n 2 + 1) x (n 2 + 1) matrix Y as composed of 
its first row Y(O,.), of its first column Y(,O), and of n2 submatrices of size n x n each, 
which are arranged in an n x n array of n x n matrices, and produce its remaining 
n2 x n2 block. The entry Ya(3, 1:::; 0:,(3:::; n2, will be also denoted by Y(ij)(kl), with 
1:::; i,j,k,l:::; n, where 0: = (i-l)n+j and (3 = (k-l)n+l. Hence, Y(ij)(kl) is the 
element with coordinates (j, I) within the n x n block with coordinates (i, k). These 
ideas are illustratited in Figure 2.2. In this figure the entries Ya(3 of the matrix Y 
are denoted by Y~. This is done for technical reasons and ease of presentation8 . 

y= 

yO yl yn n(n-l)+1 n' 
0 0 0 Yo Yo 

yO yl yn n(n 1)+1 yn' 
1 1 1 y, 1 

yO yl yn .. " 
n(n-I)+1 n' 

n n n Yn Yn 

y~(n-l)+1 Y!(n-l)+1 Y:(n-l)+1 
n(n ')+, 

Yn(n-I)+1 
... n 2 

Yn(n-l)+1 

yO yl yn n(n-l)+1 n' 
D' n' n' Yn' Yn' 

yg y~ y[; 
n(n-l)+1 

Yo 
n' \ 

Yo 

Y~ 

Y~ 
Y(I,.)(I,.) Y(1,. )(n,.) 

y= 

Y~(n-l)+1 

0 Yn , 
Y(n,.)(I,.) Y(n,.)(n,.) 

Figure 2.2 An (n2 + 1) X (n 2 + 1) matrix Y considered as an n X n array of n X n 
matrices Y(i,.)(j,.), for 1 ~ i,j ~ n. 

\ 

With these formal conventions let us define now the so-called block-O-diagonal and 
off-O-diagonal operators, acting on an (n 2 + 1) x (n 2 + 1) matrix Y, and denoted 

8If the usual notations Yo.{3 would have been used, the width of the figure would exceed the 
pagewidth. 
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by bOdiag and oOdiag, respectively. bOdiag(Y) and oOdiag(Y) are n x n matrices 
given as follows: 

n n 

bOdiag(Y) = LY(k,.)(k,.) oOdiag(Y) = LY(.,k),(.,k), 
k=l k=l 

where, for 1 :S k :S n, Y(k,.)(k,.) is the k-th n x n matrix on the diagonal of the 
n x n array of matrices, defined as described above. Analogously, Y(.,k),(.,k) is an 
n X n matrix consisting of the diagonal elements sitting on the position (k, k) of the 
n x n matrices (n 2 matrices altogether) which form the n2 x n2 lower right block 
of matrix Y. The corresponding adjoint operators BO Diag and 0° Diag act on an 
n x n matrix S and produce (n 2 + 1) x (n2 + 1) matrices as follows: 

Finally, let us denote by Eo the n 2 + 1 dimensional unit vector with first component 
equal to 1 and all other components equal to 0, and let D be the (n 2 + 1) x (n 2 + 1) 
matrix given by 

where S is the n x n matrix of all ones. 

With these notations, a semidefinite relaxation for QAP1/. is given as follows 

mm tr(KY) 
subject to 

bOdiag(Y) = I 
(QAPRO) oOdiag(Y) = I 

arrow(Y) = Eo 
tr(DY) = 0 
Y »- 0 

where :S is the so-called Lowner partial order, i.e. A :S B if and only if B - A t 0, 
that is B - A is positive semidefinite. 

Zhao et al. [232] have shown that an equivalent formulation for the considered 
QAP is obtained from QAPRO by imposing one additional condition on the matrix 
Y, namely, the rank-one condition. On the other hand, it is not very difficult 
to see that any feasible solution of QAPRO is singular, and hence the set of the 
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feasible solutions of QAPRO has empty interior. This may be inconvenient for the 
application of interior point methods to solve this problem. In order to avoid such 
difficulties, the authors project the problem onto the so-called minimal face of the 
semidefinite cone. The minimal face is characterized by an (n 2 + 1) x [( n - 1) 2 + 1] 
full-rank matrix V given as 

1 
~(E ® E) 

where V is an n x (n - 1) matrix whose columns form a basis of the orthogonal 

complement of E, i.e. Vt E = O. In [132, 232] V = (!nt-l ) is chosen. The 
en - 1 

minimal face of the semidefinite cone contains only matrices of the form V RVt, for 
some arbitrary [(n - 1)2 + 1] x [(n - 1)2 + 1] matrix R. The feasible solutions of 
the QAP are then required in the form Y = V RVt and the following semidefinite 
relaxation for the QAP, called basic semidefinite relaxation is obtained: 

(QAPRl) 

mm 
subject to 

bOdiag(V RVt) = I 
oOdiag(V RVt) = I 
arrow (V RVt) = Eo 
R~O 

It can be shown that the operators block-O-diagonal and off-O-diagonal produce 
many redundant constraints in QAPRl. Moreover, the dimensions of the image 
spaces of both operators are (n 2 - 3n)/2 (see [232]). Therefore, only parts of 
those operators which cover systems of linearly independent inequalities, need to 
be considered. 

The set of the feasible solutions of the relaxation QAPRO is convex but not poly-
hedral. This set may contain, among others, matrices with non-zero elements in 
places where all affine combinations ofthe matrices Yx, X E II, have zeroes. Hence, 
the relaxation QAPRl can be strengthened by requiring that the feasible solutions 
have zeroes in the above mentioned places. To this end, the so-called gangster 
operator is introduced. Let J be the set of pairs (i,j), 0 :::; i,j :::; n2 , such that 
Yij = 0, for every (n2 + 1) x (n2 + 1) matrix Y generated by some permutation 
matrix X9. The gangster operator 9 operates on an (n 2 + 1) x (n 2 + 1) matrix 

9See [232) for an explicit description of J. 
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Y and produces a new (n 2 + 1) x (n 2 + 1) matrix 9(Y), with components 9(Y)ij 
given by 

9(Y)ij = { ~j if (i,j) E J 
otherwise 

By means of the gangster operator the following simple SDP relaxation of the QAP 
is obtained: 

mm tr(eVt/{V)R) 
QAPR2 

subject to 

We add to this relaxation the simple inequalities Y(ij),(kl) 2: 0, which are facet 
defining for the QAP polytope, as shown in [128, 177]. Moreover, we require the 
non-positivity of the elements which should be equal to zero, in order to fulfill 
the condition described by the gangster operator. This amounts to the following 
stronger SDP relaxation for the QAP: 

mm 
subject to 

bOdiageV RVt) = I 
oOdiageV RVt) = I 
arroweV R\rt) = Eo 
VRVt > 0 
9eV RVt) ::; 0 
R'rO 

In [232] it is shown that the optimal solution of the SDP relaxation QAPR3 pro-
duces a bound which is larger, and thus better, than that obtained by solving to 
optimality the continuous relaxation CAJ of the MILP formulation for the QAP 
proposed by Adams and Johnson [2]. As mentioned above, the SDP relaxations 
are basically solved by interior point methods. Unfortunately, it is extremely time-
consuming to solve QAPR3 to optimality by means of such methods. Therefore a 
combined approach is applied, where QAPRl is solved to optimality and then vio-
lated inequalities from QAPR3 are added, in the vain of a cutting plane approach. 
In order to maintain the computation time within certain limits, a maximum for 



Exact Algorithms and Lower Bounds 57 

the number of the added inequalities is defined previously. This maximum turns 
out to be too low for problems of size larger than 20. For such instances the bound 
obtained by solving QAPR2 outperforms the bound resulting from the approximate 
solution of QAPR3, as described above. 

However, the bounds obtained by semidefinite relaxations are competitive with 
the best existing bounds for QAPs, in terms of quality. As shown in [232], the 
SDP based bounds outperform the IPLP bounds in 12 out of 25 instances (from 
QAPLIB) for which both types of bounds are available. The experiments with these 
bounding techniques are performed on different machines and, to the best of our 
knowledge, no systematic investigations concerning the comparison of computation 
times have been made. However, the SDP based bounds, similarly as those obtained 
by Ramakrishnan et al., are very time-consuming. As an illustrative example 
consider that solving the QAPR3 relaxation for the Nugent et al. instance of size 
20 takes 316.17 minutes of CPU time on a DEC 3000-900 Alpha AXP computer 
(275 MHz with 256 Mbytes and 643 Mbytes of RAM). 

The quality of the SDP bounds and the related computation times could be im-
proved if "stronger" cuts would be performed by the respective cutting plane rou-
tines. Most probably this requires, however, the derivation of "tighter" valid or 
facet defining inequalities for the QAP polytope. Clearly, LP-based lower bounds 
would take advantage of such results, too. Hence, it seems that, currently, the SDP 
techniques can not bring an essential improvement in the state of the art of the 
lower bound computation for the QAP. 

2.1.6 Improving bounds by means of 
decompositions 

The idea of applying the so-called decompositions to improve lower bounds for 
specially structured QAPs was initially proposed by Chakrapani and Skorin-Ka-
pov [49], and then further elaborated by Karisch and Rendl [133]. Although the 
applicability of this approach seems to be restricted to QAPs with a very special 
structure, the so-called grid QAPs (or rectilinear QAPs) to be described below, we 
devote to this approach a section on its own. We do so for two reasons. First, this 
approach combines in a powerful bounding procedure different mathematical ideas, 
such as combinatorial reduction of problems to simple instances, and eigenvalue and 
convex optimization. This procedure yields the best existing bounds for almost all 
grid QAP instances from QAPLIB. Secondly, we hope that similar ideas can be 
applied to other specially structured QAPs, this approach being the only first step 
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towards using easily and specially solvable QAPs for the solution of more general 
problems. 

A grid QAP is a Koopmans-Beckmann QAP(A,B), where A = (aij) is the distance 
matrix of a uniform rectangular grid. That is, the indices 1 ::; i, j ::; n represent 
the vertices of the grid, numbered from the left to the right and from the bottom 
to the top, and aij is the number of edges in the shortest path connecting i and j 
on the grid. If aij = aik + akj, we say that k is on the shortest path connecting 
i and j. The triple u = (i, j, k) is then called a shortest path triple. The shortest 
path triple v = (i, j, k) for which aik = akj = 1 is called a shortest triangle. 

We associate a matric Ru = (ptf)) to each shortest path triple u = (k, I, m), and 
a matrix Tv = (t}j)) to each shortest triangle v = (k', I', m/), where Ru and Tv are 
defined by 

R(u) - r(u) - r(u) - r(u) - 1 r(u) - r(u) - -1 and r\';') - 0 if {i J'} If {k I m} kl - lk - ml - 1m - , km - mk -, 'J - , y- " 

(v) (v) (v) (v) (v) (v) 1 d (v) O'f {' '} rt {k I } tk'm' = tl'm' = tm'l' = t/'k' = tk'm' = tm'k' = an t ij = I Z, J:t: "m 
The set of all shortest path triples is denoted by n and the set of all shortest 
triangles is denoted by T 

The key observation is that, for each u E n and for each vET, QAP(A, Ru) 
and QAP(A, Tv) are solved to optimality by the identity permutation id, id(i) = i, 
1 :s i :s n. The optimal values for these QAPs are 0 and 8, respectively. These 
simple special QAPs can be used for improving the quality of lower bounds for an 
arbitrary grid QAP(A,B). Namely, the matrix B is decomposed as 

B = L O:uRu + L f3v T v + Br (2.14) 
uE'R vET 

where Br is the residual matrix given as 

Br := B - L O:uRu + L f3v T v 
uE'R VET 

For every choice of the parameters O:u > 0, u E n, and f3v > 0, vET, and for any - -
permutation IjJ we have 

(2.15) 

and therefore, 

minZ(A, B, 1jJ) > 8'" f3v + minZ(A, B r , 1jJ) > 
c/> -L..J c/> -

vET 
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8 L (3v + LB(QAP(A, Br)), 
vET 

where LB(QAP(A, Br)) is any lower bound for QAP(A, Br). Clearly, the expres-
sion on the right hand side of (2.15) is a lower bound for QAP(A, B). This lower 
bound, which depends on the vectors 0' = (0',,), (3 = ((3v) , is denoted by h(O',(3). 
Then, h(O,O) equals LB(QAP(A, B)), and therefore, 

max h(O', (3) 2: LB (QAP(A, B)), 
O<~o,,6~o 

where a vector is said to be nonnegative if all its components are nonnegative. 
Hence, maXa~o,,6~o h(O', (3) is an improvement upon the bound LB(QAP(A, B)). 

So far everything works analogously even if only one of the matrix classes {R"},, En, 
{Tv}vET is used for the decomposition, and an arbitrary lower bound, say LB, is 
involved. Chakrapani et al. [49] improve the Gilmore-Lawler bound (GL), and the 
elimination bound (ELI), by using only the matrices R", u E n, for the decom· 
position. Karisch et al. [133] use the decomposition scheme (2.14) to improve the 
elimination bound (ELI) (introduced in [113]). The authors show that the result-
ing bound h( 0', (3) is a concave function which, furthermore, attains the maximum 
for 0' 2: 0, (32:0. So, the maximization of h(O', (3) turns out to be a convex opti-
mization problem over a convex set. It is worth noticing here that h(O', (3) is not 
everywhere differentiable. (Consider that only simple eigenvalues of a symmetric 
matrix A(x) are guaranteed to be differentiable on x.) 
This optimization problem is solved approximately by a supergradient approach. 
The solution procedure involves one supergradient computation per iteration, which 
is performed in O(n3 ) time (cf. [133]), where n is the size of the considered QAP. 
The resulting bounds are often termed triangle decomposition bou.nds (TDB). 

The numerical results reported in [133] show that a very good trade-off between 
computation time and bound quality can be found for almost all instances of grid 
QAPs from QAPLIB. According to these results, TDB beats all existing bounds 
for 22 out of 23 grid QAP instances from QAPLIB. In general, the running times 
are surprisingly low in comparison with those of other bounding procedures which 
yield comparably good bounds. For example, for the Nugent et al. problem of 
size 30, the TDB bound, which is in the same time the best existing bound, equals 
5772 and is computed in 200 iterations with 0.5 seconds per iteration, as reported 
in [133]. For the same problem, the LP relaxation bound of Ramakrishnan et 
al. [196] mentioned in Subsection 2.1.4, amounts to 4805 with a total computation 
time of 25589.5 seconds. Concluding, the TDB bounds, which cleverly exploit the 
combinatorial structure of the problem at hand, seems to be invincible for almost 
all grid QAPs from QAPLIB. 
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2.1.7 Bounding techniques: Conclusions 

At this point, after having described more or less in detail the most frequently 
used bounding procedures for the QAP, the reader is probably confused by the 
most natural questions in this context: Which is the winner among all bounds for 
the QAP? Which procedure should be used for solving a given QAP instance, say 
from QAPLIB, by a branch and bound method? 

Our current knowledge and understanding of the QAP, in general, and of the 
bounding approaches, in particular, do not enable us to give a mathematically 
rigorous answer to these questions. However, we can comment upon the obtained 
results and determine open questions to be handled in the near future. 

Among the bounding techniques proposed in the literature, the best quality bounds 
seem to be produced by the most time-consuming approaches. The bounds of Ra-
makrishnan et al. [196], based on an LP relaxation, and those of Zhao et al. [232], 
based on SDP relaxations, beat all other bounds in terms of quality, for almost all 
(non-specially structured) test instances from QAPLlB. However, the time needed 
for computing these bounds is certainly prohibitive, when willing to incorporate 
them in branch and bound schemes as basic bounding procedures. Clearly, the 
LP-based bounds and the SDP-based bounds would benefit from a better under-
standing of the QAP polytope, in general, and the new results concerning valid 
and (possibly) facet defining inequalities, in particular. Considering the progress 
made recently in this direction, there is room and hope for improvement in terms 
of cost and quality. 

For almost all grid QAPs from QAPLIB the triangle decomposition bounds (TDB) 
[49, 133J are by far the best ones in terms of solution quality and computation 
time-solution quality trade-off. The success of such decomposition approaches sug-
gests that the combinatorial properties of specially structured QAPs could be well 
useful for deriving strong bounds for special classes of the problem. However, a 
recent study of Clausen, Karisch, Perregaard and Rendl [57] shows that the TDBs 
are not very well suited for use within branch and bound algorithms. The quality 
of these bounds deteriorates relatively fast when moving towards higher levels of 
the branch and bound tree. Clausen et al. investigate the applicability of 5 dif-
ferent bounding techniques in branch and bound algorithms: The Gilmore-Lawler 
bound GL, the elimination bound ELl, the GL bound improved by decomposition 
techniques (TGL), the ELI improved by decomposition techniques (TELl), and the 
bound of Carraresi and Malucelli CM2. The numerical experiments are performed 
on the Nugent et al. test instances from QAPLIB [37J. It turns out that the CM2 
is the best suited for solving "large problems", i.e. problems of size larger than 20. 
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This is due to the high quality of this bound, which is preserved also in higher 
levels of the branch and bound tree. For "large" instances, the branch and bound 
approaches involving CM2 show the lowest running times, although CM2 is the 
most expensive among the investigated bounds, and moreover, it is clearly beaten 
by TELl in terms of quality, when computed at the root of the branch and bound 
tree10 . 

The somewhat surprising results presented in [57] show that the applicability of 
different bounding techniques within branch and bound schemes is a well worth 
studying and by far non-trivial topic. Moreover, these results testimony that the 
behavior of the bounding techniques used in a branch and bound scheme may 
significantly depend on the size of the problem we are dealing with. This fact, 
which is not surprising, suggests the investigation of the performance of bounding 
techniques depending on the size of the problems we are willing to solve. To the 
best of our knowledge, Clausen et al. are the first authors addressing such topics, 
and much more remains to be done concerning the investigation of the applicability 
of other bounding techniques on larger sets of test instances. 

For general QAPs, the dual procedure (DP) proposed recently by Hahn et al. [108] 
seems to offer the best trade-off between bound quality and computation time. The 
DP bounds are almost as good as the LP-based bounds of Ramakrishnan et al., 
and require about 70 times less running time, as reported by Hahn et al. Moreover, 
preliminary results show that the DP bounds are well suited for use in branch and 
bound algorithms (cf. [109]). However, more experimental work is needed in order 
to investigate their applicability. 
The interesting thing about the DP bounds, is that they seem to combine in a single 
approach many ingredients from other bounding procedures such as reduction or 
reformulation ideas, GL bound computation, and LP-based techniques. Recall 
that Adams and Johnson [2] unify and generalize many bounding procedures in 
a dual ascent approach for the Lagrangean dual of an MILP formulation for the 
QAP. It remains an interesting question to investigate whether the DP bounds fit 
somehow in the scheme of Adams et al. Such investigations would also help for a 
better understanding of the DP procedure, in order to exploit the potential of this 
method as well as possible. 

IONowadays, in general, QAPs of size larger than 22 cannot be solved to optimality. The 
numerical results related to QAPs of size larger than 22 are based on estimations obtained by 
partially searching the branch and bound tree. 
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2.2 BRANCH AND BOUND APPROACHES 
Many authors have proposed sequential and parallel implementations of branch 

and bound approaches for the QAP. These approaches can be classified in three 
main groups with respect to the branching rule: 

1. Single assignment methods 

2. Pair assignment methods 

3. Relative positioning methods. 

All these algorithms start with an empty partial permutation (i.e. in the facility 
location context, no facility is assigned to any location) and step by step extend it 
to a full permutation (a permutation which assigns all facilities to locations). 

The single assignment methods were the first approaches applied to QAPs. Al-
gorithms belonging to this group assign a single (not yet located) facility, say i, 
to a not yet occupied location, say j, at each branching step. From a historical 
point of view, single assignment methods date back to the algorithm proposed by 
Gilmore [92] for the QAP(A,B). This algorithm was then generalized by Lawler 
[152] for the more general Lawler QAP defined in (1.2). Other single assignment 
branch and bound algorithms for QAPs have been proposed by several authors 
[35,71, 131, 183, 164]. 
The choice of the above mentioned pair of indices (i, j) is done according to the 
selection rule and usually depends on the used bounding technique. As almost all 
bounding techniques end up by solving a linear assignment problem, the choice of 
the pair (i, j) is often based on the so-called alternative costs Pij given as 

Pij = min{cik: k =F j, 1 :S k:S n} + min {Ckj: k =F i, 1 :S k:S n}, 

where the coefficients cij are the reduced cost of the last linear assignment problem 
solved when calculating the current lower bound. The alternative cost Pij is a lower 
bound for the increment of the current lower bound, in the case that the current 
permutation is extended by assigning facility i to location j. In [28] Burkard pro-
posed the maximization of the alternative costs as a natural criterion for choosing 
the pair of indices (i,j). Another rule to choose the pair (i,j) has been considered 
by Bazaraa and Kirca [17]. They use a combination of the following two criteria: 

• Try to minimize the sum of all lower bounds at the next branch and bound 
tree level. 
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• Try to minimize the number of branches at the next branch and bound tree 
level. 

Another interesting criterion for the choice of the pair (i, j) is proposed by Mautor 
and Roucairol in [164]. They also calculate the alternative costs Pij as above. 
Assume that ~ and z are the lower and the upper bound at the current node of the 
branch and bound tree, respectively. If Pij + ~ ~ z then the pair (i, j) is forbidden. 
i is chosen to be the index with the largest number of forbidden pairs having i as 
first element. The chosen index j is an allowed index, i.e. the pair (i, j) is not a 
forbidden one, for which the sum of the allowed entries of the corresponding column 
of the matrix (Pij) is maximized. Ties are broken by maximizing the alternative 
cost. This selection rule seems to work pretty well and seems to produce a much 
smaller branch and bound tree than other rules. 

The pair (i,j) could also be selected with respect to a previously fixed order, as 
proposed for example in [17]. The advantageous consequence of using this rule 
is that the partial permutation is completely determined by the position of the 
corresponding node in the branch and bound tree. 

The pair assignment methods allocate a pair of facilities to a pair of locations at 
each branching step. Computational experiments developed by a number of authors 
[89, 148, 174] have shown that these algorithms do not produce good results. 

Relative positioning methods. This type of branch and bound method was proposed 
by Mirchandani and Obata [168]. Here, the levels of the branch and bound tree 
do not correspond to the assignment of facilities to locations. The partial permu-
tations at each level are determined in terms of distances between facilities, i.e. 
their relative positions. This approach is claimed to be appropriate for QAPs with 
sparse matrices, henceforth called sparse QAPs. 

Another interesting branching rule, which does not belong to any of the above 
groups, was developed by Roucairol [200]. It is called the polytomic or k-partite 
branching rule and it is well suited for use in parallel implementation of branch and 
bound algorithms for the QAP. The branch and bound produced by this algorithm 
is not a binary tree as in most of the other approaches. In this case, the solution 
of the last linear assignment problem solved for calculating the lower bound at the 
current note of the branch and bound tree is considered. Assume that this solution 
is the permutation p E Sn (for a problem of size n). Let S~i) be the subset of Sn 
consisting of those permutations 7r E Sn, such that 7r( i) = p( i). Analogously, S~i) 
is the set of permutations 7r E Sn, such that 7r(i) =f:. p(i). Then, the current node is 
branched into n + 1 new nodes, whose corresponding sets of feasible solutions are 
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. c 11 S(I) S(I) n S-(2) S(I) n S(2) n n S(n-l) n S-(n) S(I) n S(2) n gIven as 10 ows n , n n, ... , n n . . . n n , n n 
... n SAn). (Clearly the nodes corresponding to the two last feasible sets are trivial 
in the sense that the first of these sets is empty and the second one consists only 
of permutation p.) 

Concluding this paragraph, let us remark that better results on solving large size 
problems have been achieved lately by using parallel implementations [26, 58, 150, 
183]. The above mentioned papers show that a linear speed-up can typically be re-
alized as the number of the involved processors increases. This holds for a relatively 
low number of processors. The author is not aware of any experiments on solving 
QAPs with massively parallel computers. However, a less than linear speed-up can 
be expected due to the communication load between the processors. 

Some of the most celebrated branch and bound algorithms for QAPs are listed in 
Table 2.1 together with the size of the Nugent et al. test instance which can be 
solved by themll . Recently the Nugent et al. test instance ofsize 22 (see QAPLIB) 
was solved to optimality by a parallel branch and bound algorithm [26] which uses 
basically the GL bound. To the best of our knowledge, this is the largest Nugent et 
al. test instance which has been ever solved to optimality. The progress in solving 

Table 2.1 The evolution of branch and bound approaches for the QAP 

Authors II Year I Size I 
Gilmore 1962 8 
Lawler 1963 8 

Gavett and Plyter 1965 8 
Burkard 1973 8 

Bazaraa and Sherali 1980 6 
Burkard and Derigs 1980 15 
Bazaraa and Kirca 1983 15 

Roucairol 1987 12 
Pardalos and Crouse 1988 15 

Mautor and Roucairol 1992 19 
Clausen and Perregaard 1994 20 

Bruenegger et al. 1996 22 

11 The Nugent et al. test instances which are considered as very stubborn QAPs, are the obvious 
challenge for every new algorithm designed for solving QAP to optimality. 
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always larger QAP instances with state of the art algorithms is probably mainly 
due to hardware improvements. However, recent results confirm the effectiveness 
of the appropriate combination of the available algorithmic ideas with the most 
suitable hardware. 

2.3 CUTTING PLANE METHODS 
Among cutting plane methods one has to distinguish between traditional approach-
es and the so-called polyhedral cutting planes which are used in complex branch 
and cut algorithms. Several traditional cutting plane type algorithms have been 
developed for solving QAPs, see for example Kaufman and Broeckx [138], Bazaraa 
and Sherali [18, 19] and Balas and Mazzola [13]. As for polyhedral cutting planes, 
the experience of applying such methods to the QAP is still very limited. This 
is due to a lack of deep understanding of the QAP polytope and its structural 
combinatorial properties. Only recently, the first nice results in this direction have 
been obtained. 

2.3.1 Traditional cutting planes 
This type of algorithms makes use of mixed integer linear programming (MILP) 
formulations for the QAP which lend themselves very well to Benders' decompo-
sition, and either solve the QAP to optimality or compute a lower bound. In the 
vein of Benders, the MILP formulation is divided into a master problem and a 
subproblem, often called also slave problem. The master problem contains the 
original assignment variables (these are the x variables in our MILP formulations 
in Chapter 1), and the slave problem contains the additional variables introduced 
to linearize the objective function. For a (fixed) solution of the initial problem, the 
slave problem is a linear program and hence, solvable in polynomial time. This 
problem is solved and the optimal values for its dual variables are determined. The 
master problem is a linear program formulated in terms of the original assignment 
variables and of the dual variables of the slave problem. Hence, the master problem 
is solvable in polynomial time for fixed values of the dual variables. The algorithms 
work typically as follows. First, a heuristic is used to make a feasible choice for the 
assignment variables. (The QAP has always a feasible solution and it is trivial to 
find one.) Then the slave problem is solved for this fixed choice of the assignment 
variables in order to compute the corresponding optimal primal and dual variables. 
If the dual solution of the slave problem satisfies all constraints of the master prob-
lem, we have an optimal solution for the original MILP formulation of the QAP. 
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Otherwise, at least one of the constraints of the master problem is violated. In this 
case, the master problem is solved with fixed values for the dual variables of the 
slave problem, the obtained solution (in terms of the assignment variables) is given 
to the slave problem, and the procedure is repeated until the solution of the slave 
problem fulfills all constraints of the master problem. 

Any solution of the master problem obtained by fixing the dual variables of the 
slave problem to some feasible values, is a lower bound for the objective func-
tion of the considered QAP. On the other side, the objective function value of the 
QAP corresponding to any setting of the assignment variables is un upper bound. 
The algorithm terminates when the lower and the upper bounds coincide. From 
a computational point of view these methods perform badly even for problems of 
moderate size, since the time needed for the upper and the lower bounds to con-
verge to a common value is too large. However, heuristics derived from cutting 
plane approaches produce good suboptimal solutions in early stages of the search. 
Consider, for example, the cutting plane type heuristics proposed in [29, 19]. Such 
approaches can be also adapted so as to compute a lower bound for the QAP, by 
combining them with a heuristic method which produce a relatively good solu-
tion, i.e. upper bound. The algorithm terminates when the gap between the lower 
bound produced by cutting plane algorithm, and the upper bound produced by the 
heuristic, is less than some prespecified limit. 

Such an approach was applied by Kaufman and Broeckx to the MILP formulation 
(1.12) presented in Section 1.4. For a set of variables (Zi/e), 1 :s i, k :s n, which 
fulfill the assignment constraints (1.5), the following slave problem is solved: 

n n 
minimize I: I: Yik 

i=1 k=1 
subject to 

n n 
Yik ~ dik(Zik - 1) + I: I: aijbk1zjl 1:S i, k :s n 

j=II=1 
Yik ~ 0 1:S i, k :s n 

Consider the dual of the slave problem, and denote by P the set of indices for the 
vertices of its feasible region. Let these vertices be given by the vectors (u~t)), 
pEP. In terms of the extremal values of the dual variables u~~), pEP, of the 
slave problem, the master problem is formulated as follows: 

mlmmlze z 
subject to 
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n 
L Xik = 1 1 < k < n 
i=1 

n 
L Xik = 1 1 < i < n 
k=1 
XikE{O,I} l~i,k~n 

z > 0 

Bazaraa and Sherali [18] use the following MILP formulation for the QAP, involving 
n 2 integer and n 2 (n - 1) 2 /2 continuous variables and 2n 2 linear constraints. 

n n 

n-l n n n 
mm1m1ze L L L L aijbklYikjl 

i=1 k=1 j=i+1 :;! 
subject to 

l<i<n-l 
L LYikjl - (n - i)Xik 0 l<k<n j=i+l 1=1 

I~k 

j-l n 
2~j~n 

L LYikjl - (j - I)Xjl 0 1 < I < n 
i=1 k=1 

k~1 

n 
LXik 1 quad 1 < k < n 
;=1 
n 

LXik 1 l<i<n 
k=1 

Xij E {O,I} l~i,j~n 

(2.16) 

(2.17) 

o ~ Yikjl < 1 1 ~ i ~ n - 1, ~ ~ II ~ j ~ n (2.18) 
1 ~ k,l ~ n, 

where Yikjl = XikX jl, for 1 ~ i ~ n - 1, i + 1 ~ j ~ nand 1 ~ k, I ~ n, k i- I. For a 
fixed set of variables (Xij) which fulfill the assignment constraints (1.5), the slave 
problem is given as follows: 

{
n-l n n n } 

min ~ j~1 ~ 2 aijbklYikjl: Y fulfills (2.16), (2.17), (2.18) 
I~k 
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The master problem, formulated in terms of the assignment variables (Xij) and the 
vertices (u~~), vjf) , W~~}I)' pEP, of the dual feasible region for the slave problem, 
where P is defined as before, is given as follows: 

mInImIZe z 
subject to 

z > 
n-l n 
I: I: u;~)(n-i)Xik+ 
i=1 k=1 t t v~f)(j -l)xjl- w(p) 
j=21=1 J 

pEP 

(1.5) 

n-l n n n 
where w(p) = I: I: I: I: W~~}I' According to the numerical results reported 

i=1 j=i+l k=I :;~ 

in [18], the developed cutting plane method produces relatively good bounds for 
several QAP instances, whereas it fails on proving optimality even for the Nugent 
QAP instance of size 7 (see [37], for a detailed information on QAP test instances). 

A quite different approach is proposed by Balas and Mazzola [9, 10, 11]. In [9] 
the authors give the following formulation for the QAP with positive coefficient 
products aijbkl 2: O. 

minimize z 
subject to 

z > .t (h,Yj, + . t aijbklYik) Xjl-
J,I=1 I,k=1 (2.19) 

n 
I: hlYjl 

j,k=1 

where hI = max{I:'?,I=1 aijbklxik: (Xij) fulfill (1.5)}. In the later papers [10, 11] 
the authors presented a cutting plane algorithm for general nonlinear 0-1 program-
ming problems with linear objective function. Clearly, this algorithm can also be 
applied to the above formulation of the QAP (2.19). In this algorithm, for every 
nonlinear constraint an equivalent family of linear constraints is defined. This fam-
ily contains among others the so-called cover inequalities. A linear programming 
relaxation of the given nonlinear program is build up by considering a number of 
these linear constraints. This relaxation is solved to optimality. If the optimal 
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solution of the relaxation is feasible for the original problem, this is also an opti-
mal solution of it. Otherwise, the solution of the linear relaxation violates some 
constraint of the original problem. Some of the corresponding linear inequalities 
are added then to build a "stronger" linear relaxation. The latter is solved, and 
the procedure is repeated until the optimal solution of the linear relaxation is also 
a feasible solution for the nonlinear problem. 

Based on the linearization approach of Balas et al., Burkard and Bonniger [29] 
derive a heuristic for general 0-1 quadratic programming problems. The heuristic 
is an iterative approach which solves a linear program with only one constraint in 
each iteration. This constraint is associated with a feasible solution of the original 
problem, and gives a certain measure of its quality. The feasible solution, and with 
it the corresponding constraint of the linear program, is updated in each iteration. 
The update is based on an empirical rule which aims to improving the objective 
function value corresponding to the current feasible solution. The procedures stops 
after a prespecified number of iterations, and gives as output the best feasible 
solution found so far. This heuristic was applied to the MILP formulation (2.HI) 
for the QAP, and turned out to be competitive with other heuristic approaches 
known at that time. 

2.3.2 Polyhedral cutting planes 

As we saw in the first chapter, only a few properties in general, and few facet 
defining inequalities of the QAP polytope in particular, are known yet. Hence, 
polyhedral cutting plane methods for the QAP are not yet backed by a strong 
theory. As a matter of fact, the author is aware of a single effort to design such an 
algorithm for the QAP, described in [177] and tested on small test instances from 
QAPLIB [37]. However, since a lot of promising results on the QAP polytope have 
been obtained recently [128, 129, 177] and a lot of research work is going on in this 
direction, we find it useful to shortly describe here generic polyhedral cutting plane 
approaches, or branch and cut algorithms 12, in contrast with traditional cutting 
plane algorithms. 

Both traditional cutting plane approaches and branch and cut algorithms are gen-
eral methods which make use of an LP or MILP relaxation of the combinatorial 
optimization problem to be solved, in our case the QAP. Additionally, polyhedral 
cutting plane methods make use of a class of (nontrivial) valid inequalities known 
to be fulfilled by all feasible solutions of the original problem and which, in the 
most favorable case, are facet defining for the polytope of the original problem. 

12This term was originally used by Padberg and Rinaldi [179]. 
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If the solution of the relaxation is feasible for the original problem, we are done. 
Otherwise, some of the above mentioned valid inequalities are probably violated. 
In this case a "cut" is performed, that is, one or more of the violated inequalities 
are added to the LP or MILP relaxation of our problem. The latter is solved again 
and the whole process is repeated. In the case that none of the valid inequalities 
is violated, but some integrality constraint is violated, the algorithm performs a 
branching step by fixing (feasible) integer values for the corresponding variable. 
The branching steps produce the so-called search tree like in branch and bound 
algorithms. Each node of this tree is processed as described above by performing 
cuts and then by branching it, if necessary. Other elements of a branch and bound 
algorithm such as fathoming and upper bounds (in the case of minimization prob-
lems) are also maintained, as well as questions like "Which node is to be processed 
next?" or "Which variable should be fixed next"? Hence, such an approach really 
combines elements of cutting plane and branch and bound methods and the term 
"branch and cut" is fully justified. 

The main difference between polyhedral and traditional cutting planes is that 
whereas polyhedral cutting planes use cuts generated by inequalities which are 
valid for the whole polytope of the feasible solutions and possibly facet defining, 
traditional cutting planes frequently rely on cuts generated by inequalities which 
are not valid for the whole polytope of the feasible solutions, let alone being facet 
defining. For example, if Gomory cuts are used, the cuts are not valid for the 
whole polytope after some variable fixing. This feature causes one of the main 
drawbacks of traditional cutting plane algorithms versus polyhedral methods. If 
the cuts are not valid for the whole polytope, the whole computation is to be done 
from scratch for different variable fixings. This means that the cuts should be 
stored and treated separately for different nodes of the search tree. This requires 
additional running time and additional amounts of memory. The second and not 
less important drawback of traditional cutting plane algorithms is their slow con-
vergence. Mathematically, this is due to the "weakness" of the cuts generated by 
these algorithms. In contrast with cuts defined by the facet defining inequalities, 
the weak cuts generated by traditional algorithms are not able to quickly direct 
the search towards interesting regions of the polytope of the feasible solutions. 

It is beyond the scope of this monograph to give a detailed description of cutting 
plane methods, either traditional or polyhedral, and to go through the numerous 
questions which arise while designing such an algorithm for a given problem. For 
more information on these topics the reader is referred among others to [120, 173, 
178, 179]. We would like to conclude this section by mentioning the four main 
ingredients of a polyhedral cutting plane algorithm, in the vein of Padberg and 
Rinaldi [178]: a heuristic procedure to produce a good initial solution, and hence 
good upper bounds, a separation algorithm which identifies violated valid (facet 
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defining) inequalities and adds them to the relaxation of the problem, a good LP 
solver interface, and a branch and bound procedure which will appropriately answer 
questions like "Which node to process next?", "Which variable to fix next?". A 
first effort to combine these ingredients in an algorithm for the QAP has been made 
by Padberg and Rijal in [177]. The algorithm was tested on sparse QAPg instances 
from QAPLIB and the numerical results are encouraging, although the developed 
software is of preliminary nature, as claimed by the authors. The size of the linear 
programs to be solved within the branch and cut solver seem to be reasonable in 
comparison with the overall number of variables and constraints. Concluding, it is 
certainly worthwhile spending more efforts in developing the appropriate theoretical 
background for a better suited branch and cut algorithm for the QAP. 



3 
HEURISTICS AND ASYMPTOTIC 

BEHAVIOR 

We saw in the previous section that only small QAP instances (instances of size 
up to 22) can be solved to optimality. On the other side, the large spectrum of 
applications of the QAP often leads to instances of much larger size. Under these 
conditions, polynomial time heuristics providing suboptimal solutions to the QAP 
abound in the literature. Without pretending to mention all kinds of heuristic 
approaches which have been applied to QAPs, we try to review the main and most 
fruitful ideas in this research direction. There are five main streams of heuristic 
approaches to QAP, listed in chronological order below. 

1. Construction methods 

2 .. Limited enumeration methods 

3. Improvement methods 

4. Tabu search algorithms 

5. Simulated annealing approaches 

6. Genetic algorithms 

7. Greedy randomized search 

In the second part of this chapter we present some basic results on the asymptotic 
behavior of the QAP. More specifically it is shown that, under natural probabilistic 
conditions on the entries of the coefficient matrices, the ratio between the best and 
the worst value of the objective function of the QAP approaches almost surely 1, 
as the size of the problem tends to infinity. Hence, the QAP - which is widely 
considered as a very difficult problem from a theoretical and from a practical point 
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of view - becomes somehow trivial when its size approaches infinity. There is a 
whole class of combinatorial optimization problems which show such an intriguing 
asymptotic behavior. All these problems share a combinatorial property identified 
by Burkard and Fincke [36]. The QAP is a notoriously hard problem which belongs 
to this class, whereas the TSP is a famous combinatorial optimization problem 
which does not belong to it. 

3.1 CONSTRUCTION AND LIMITED 
ENUMERATION METHODS 

Construction methods. Construction methods are considered to be the simplest 
heuristic approaches to the QAP, from a conceptual and an implementation point 
of view. This simplicity is often associated with a poor quality of the resulting 
solutions. Basically, all construction methods start with an empty partial solution 
(permutation) and recursively assign locations to facilities according to certain 
criteria until all facilities have been assigned. These methods are probably the 
oldest ones, dating back to the early 60s with a heuristic proposed by Gilmore [92]. 
A refined version of the simple construction method introduced by Gilmore is 
suggested by Burkard [28]. Another construction method which yields relatively 
good results in comparison with other construction methods is proposed by Miiller-
Merbach [172]. This is the so-called method of the increasing degree of freedom. 
It works with an iteratively updated partial permutation and completes it into a 
permutation of {1, 2, ... , n}. A partial permutation of {1, 2, ... , n} is an injective 
mapping rr of a subset X C {1,2 ... ,n} into {1,2, ... ,n}, rr:X -+ {1,2, ... ,n}, 
where X # {1, 2, ... , n}. The approach of Miiller-Merbach starts with the empty 
partial permutation, i.e. set X is the empty set, and with a fixed order of the 
indices 1,2, ... ,n, say TI,T2, ... ,Tn, where n is the size of the considered QAP. 
For some M ~ {1, 2, ... , n} let rr(M) = {rr(i): i EM}. Let rr: Mrr -+ {1, 2, ... , n} 
be the current partial permutation, where Mrr = {TI, T2, ... , Tk-d. Construct a 
new permutation rr':Mrr , -+ {1,2, ... ,n} with Mrr' = Mrr u{Td, where Tk is the 
first unassigned index in {TI, T2, . .. , Tn}. Permutation rr' is constructed as follows. 
First, assign Tk to some j t/:. rr(Mrr), and compute the corresponding increase of 
the value of the objective function tl.Zj. Then consider the assignment of Tk to an 
index j E rr(Mrr). Let Tj E {TI, T2, ... , Tk-d such that rr(Tj) = j. Denote by tl.Zjl 
the change in the objective function which results from assigning Tk to j and Tj 
to I, for some It/:. rr(Mrr). Among these k(n - k + 1) possibilities for constructing 
rr', choose the one which yields the smallest increase or change in the value of the 
objective function. Repeat this procedure until each facilities Tj, 1 < i < n, is 
assigned to some location in {1, 2, ... , n}. - -
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As mentioned above, the quality of the solutions produced by construction meth-
ods is generally not satisfactory. However, these approaches are generally simple 
to implement and exhibit modest requirements on computing resources. Due to 
these properties, construction methods may well be used as parts of more clever 
algorithms for the QAP. 

Limited enumeration methods. Limited enumeration methods are strongly 
related to exact methods such as branch and bound approaches or cutting plane 
algorithms. Limited enumeration methods based on branch and bound algorithms 
basically rely on the fact that a good solution, i.e. a solution which is either optimal 
or close to the optimum, is often found at an early stage of the search. Then, a 
relatively large amount of time is spent to prove the optimality or to (slightly) 
improve the quality of this early found solution. Limit enumeration methods try 
to take advantage from this behavior in order to produce good solutions for the 
QAP (solutions which are either optimal or close to the optimum) in a reasonable 
time. 

A first approach is to impose so-called time limits. We can stop the enumeration 
process either after a prespecified time limit has been reached or in the case that 
no improvement has been made during a time interval which is longer than a pre-
specified one. Obviously, the prespecified parameters need to be chosen according 
to the problem size. 

A second approach is to increase the lower bounds in those nodes of the branch and 
bound tree which have not been branched yet, once certain criteria are fulfilled. 
For example, if no improvement has been found after a certain prespecified time 
interval, then the lower bounds are increased by a certain percentage. Obviously, 
such an approach may cut off the optimal solution and the optimal value opt of the 
objective function may be never reached, but in any case it speeds up the search. 
Moreover, the suboptimal solution produced by such an algorithm yields a value of 
the objective function which is smaller than or equal to all values Z of the objective 
function with Z ~ opt +~. Here ~ is the difference between the largest among 
the increased bounds and the smallest lower bound before the increase, where the 
maximum and the minimum are taken over all nodes of the branch and bound tree 
which have not been branched yet. 

Methods based on statistical evaluations of the value of the objective function can 
be also classified as limited enumeration methods. For instance, Graves and Whin-
ston [102] calculate the expectation and the variance of the objective function value 
of solutions obtained when completing a given partial permutation. West [228] uses 
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these ideas for constructing the starting solution of an improvement method for the 
QAP (see below). 

Limited enumeration has been also applied to speed up cutting plane algorithms. 
Heuristics of this type have been developed, for example, by Bazaraa and Sher-
ali [18] and Burkard and Bonniger [29]. As described in Section 2.3 Bazaraa and 
Sherali [18] formulate the QAP as a mixed integer linear program (MILP) and 
apply Benders' decomposition [20] for solving it. One of the resulting problems 
(the slave problem) is a transportation problem and can be solved to optimality 
in polynomial time. The other problem (the master problem) is a 0-1 MILP and 
is solved by a cutting plane method. A heuristic approach is derived by applying 
a limited number of cuts for solving the master problem. Although this approach 
is quite sensitive as regards the initial solution, it yields suboptimal solutions of 
good quality. Rather than computation time requirements, large memory require-
ments are the most significant drawback of this approach. Such large memory 
requirements cause sometimes the failure of the exact algorithm, i.e. the approach 
without time or cut limits. Burkard and Bonniger [29] make use of a 0-1 linear 
programming formulation of the QAP proposed by Balas and Mazzola [9]. The cor-
responding linear program (LP) has an exponential number of constraints, where 
each feasible solution of the QAP leads to one constraint of this LP. Burkard and 
Bonniger propose a heuristic to solve this LP. The proposed heuristic is an iterative 
approach which starts with an initial feasible solution and solves a relaxation of the 
LP formulation of the QAP in each iteration. In each iteration, the relaxation to 
be solved is obtained from the LP formulation by considering only one constraint, 
namely, the constraint which correspond to the current feasible solution. The other 
constraints are currently discarded. The optimal value of the current relaxation is 
used to update the current feasible solution according to a prespecified rule. (The 
goal is to determine an update rule which leads to a small optimal value of the 
LP relaxation to be solved in the subsequent iteration.) The computation of the 
new feasible solution involves the solution of a linear assignment problem (LAP). 
In the subsequent iteration a new relaxation of the LP formulation - determined 
by the new feasible solution - is solved, and the whole procedure is iteratively re-
peated. Usually the stop criterion is a maximum number of iterations. In contrast 
to the approach of Bazaraa and Sherali described in [18] this method seems to 
be quite stable in the sense that the quality of the produced suboptimal solution 
only marginally depends on the starting solution. From a point of view of the 
solution quality both approaches, the one of Bazaraa and Sherali [18] and the one 
of Burkard and Bonniger [29], are comparable, whereas the latter is advantageous 
with respect to memory and running time requirements. 
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3.2 IMPROVEMENT METHODS 
Improvement methods are already classical approaches to solve difficult combina-
torial optimization problems. These methods belong to the larger class of local 
search algorithms. 

As described in the first chapter, a local search procedure starts with an initial 
feasible solution. It is an iterative approach which tries to improve the current 
solution by substituting it with a (better) feasible solution from the neighborhood 
of the current one. This iterative step is repeated until no further improvement 
can be found. Clearly, the definition of the neighborhood is a crucial point for 
this type of heuristics. Frequently used neighborhoods for QAPs are the pair-
exchange neighborhood and the cyclic triple-exchange neighborhood. In the case 
of pair-exchanges the neighborhood of a given solution (permutation) consists of all 
permutations which can be obtained from the given one by applying a transposition 
to it. In this case, scanning the whole neighborhood takes O( n3 ) time, as the size 
of the neighborhood itself is (~) and the objective function value Z(A, B, 11") for 
a neighbor 11" of 11' can be calculated in O(n) time, once the value Z(A, B, 11') is 
known. If the neighborhood of 11' is already scanned and 11" is a neighbor of 11', then 
the neighborhood of 11" can be scanned in O(n 2 ). This is a simple but important 
result of Frieze et al. [84] which can be used to save computation time in the case 
that a complete neighborhood evaluation is required. 

In the case of cyclic triple-exchanges, the neighborhood of a solution (permutation) 
11' consists of all permutations obtained from 11' by a cyclic exchange of three indices. 
For example, if the triple of indices to be exchanged is (i,j,k), we obtain two new 
permutations 11" and 11''' defined as follows: 

{ 
1I'(x) 

, 1I'(k) 
11' (x) = 1I'(i) 

1I'(j) 

x ~ {i,j, k} 
x=z 
x = J 
x=k 

x~{i,j,k} 
X=l 
x=j 
x=k 

The size of this neighborhood is 2 (~) . This increase of the neighborhood size 
slows down the corresponding local search approaches. Moreover, cyclic triple-
exchanges do not really lead to considerably better results when compared with 
pair-exchanges. 

Some efforts have been invested on combining pair-exchange and cyclic triple-
exchange neighborhoods. As an example, consider the results obtained by Mir-
chand ani and Obata [168], where, along with all pair-exchanges, some cyclic triple-
exchanges and cyclic quadruple-exchanges are evaluated. The important point here 
is that the size of the neighborhood remains O(n 2 ). 
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Another important ingredient of local search algorithms and improvement methods 
is the order in which the neighborhood of the current solution is scanned. The scan-
ning can be done either in a previously fixed order or in a randomly chosen order. 
For a fixed neighborhood structure and a fixed scanning order, there still remains 
one degree of freedom in the determination of a local search procedure. Namely, 
different updating rules can be used to update the current feasible solution (from 
an iteration to the subsequent one). In the case of pair-exchange neighborhood the 
following updating rules are frequently used: 

• Method of first improvement 

• Method of best improvement 

• Heider's method [119] 

The method of first improvement updates the current solution as soon as the first 
improving neighbor solution is found. The method of best improvement scans the 
whole neighborhood and chooses the best improving neighbor solution if there ex-
ists an improving neighbor solution at all. In other words an improving neighbor 
solution is chosen which yields the smallest value of the objective function among 
all improving neighbor solutions. Heider's method starts by scanning the neigh-
borhood of the initial solution in a prespecified cyclic order. Namely, the order of 
the transpositions to be applied to the current solution for generating its neighbors 
is previously fixed. The transpositions are ordered cyclically, i.e. 
the first transposition is the successor of the last one. The current solution is up-
dated as soon as an improving neighbor solution is found. The neighbors of the 
new solution are generated by applying to it the transpositions in the prespecified 
order, starting with the successor of the last transposition which is applied to the 
previously current solution. 

In order to get better results, local search algorithms are performed several times 
starting with different initial solutions. They may be easily combined with con-
struction algorithms. A construction algorithm is run first in order to generate a 
reasonably good initial solution. However, there are no widely accepted strategies 
concerning the choice or the construction of an initial solution. The computational 
experiments of Bruijs [25] suggest that, in general, there is no strong argument in 
favor of initial solutions of good quality. 
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3.3 TABU SEARCH ALGORITHMS 
The computational experience of many researches and practitioners suggests that 
tabu search is a useful heuristic for solving hard combinatorial optimization prob-
lems in general and the QAP in particular. A detailed description of specific aspects 
of tabu search and its applications to various optimization problems is given in [95]. 
Tabu search was introduced by Glover [93, 94] as a technique to overcome local op-
timality in local search approaches applied to combinatorial optimization problems. 
The main ingredients of tabu search are the neighborhood structure, the moves, the 
tabu list and the aspiration criterion. A move is an operation which, when applied 
to a certain solution 11', generates a neighbor 11" of it. In the case of QAPs the 
moves are usually transpositions and the neighborhood is the pair-exchange neigh-
borhood. A tabu list is a list of forbidden moves, i.e. moves which are not allowed 
to be applied to the current solution. Forbidden moves are also called tabu moves. 
Clearly, the tabu list is updated during the search, i.e. the tabu status of the moves 
changes along with the search. An aspiration criterion is a condition which, when 
fulfilled by a tabu move, cancels its tabu status. 

A generic tabu search procedure works as follows. It starts with an initial feasible 
solution S and selects a best-quality solution, i.e. a solution which yields the smallest 
value of the objective function, among (a part of) the neighbors of S obtained by 
non-tabu moves. Note that this neighboring solution does not necessarily improve 
the value of the objective function corresponding to the current solution. Then the 
current solution is updated, i.e. it is substituted by a solution selected as above, and 
the search in the neighborhood is repeated. Obviously, this procedure can cycle, 
i.e. visit some solution more than once. In an effort to avoid this phenomenon some 
identification criteria are introduced for moves which are expected to lead to cycles. 
Such moves are then added to the tabu list. As, however, forbidding certain moves 
could prohibit visiting "interesting" solutions, an aspiration criterion is introduced. 
It serves to distinguish the potentially interesting moves among the forbidden ones. 
The tabu list has a prespecified length which may vary during the search. In order 
to maintain the length of the tabu list within the prespecified limits, some tabu 
moves have to be canceled from the list. Usually, a first-in first-out (FIFO) rule is 
used to keep the length of the tabu list within the prespecified limits. The search 
procedure stops when a stop criterion is fulfilled. The stop criterion is often limit 
on the running time or a limit on the number of iterations. 

Below we give a more formal description of a generic tabu search algorithm with 
fixed size of the tabu list, for a general combinatorial optimization problem as 
described in Section 1.5.2. The input consists of an initial feasible solution So 
and two control parameters: the prespecified maximum length of the tabu list 
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denoted by size, and a parameter r which determines the number of the neighbors 
of the current solution which have to be scanned before updating the latter. The 
variables used by the algorithms are: the current length of the tabu list denoted 
by length, the best value of the objective function found so far denoted by Zbe't' 
the best value of the objective function among values which are yielded by the 
neighbors of the current solution scanned so far denoted by lac_best, the neighbor 
solution yielding lac_best denoted by neigh_best, a counter for the neighbors of 
the current solution scanned so far denoted by lac_count, and finally, the counter 
of iterations denoted by i. The algorithm involves also a parameter M, which is 
an arbitrary positive constant. The routines used by the algorithm are described 
below. For a feasible solution 5, Z(5) returns the corresponding value of the 
objective function, that is Z(5) = EXES f(x). For two feasible solution 5, 5', 
.6.(5,5') denotes the change in the value of the objective function when moving 
from 5 to 5', i.e . .6.(5,5') = Z(5') - Z(5). move(5) is a function which returns a 
neighboring solution of 5. 

Tabu Search(So, size, r) 
5 := 50; 1* generate some initial solution in 50 E :F * / 
5 be,t := 50; 1* Initialize the best known solution * / 
Zbe.t := Z(50); 1* Initialize the best known obj. func. value * / 
length := 0; 1* Initialize the length of the tabu list * / 
i := 0; 1* Initialize the iterations counter * / 
repeat 

lac_best := - M; 1* initialize the best neighbor * / 
loc_count := 0; /* initialize the local counter * / 
repeat 

5' := move(5); 1* find a neighbor 5' of 5, e.g. randomly * / 
lac_count := lac_count + 1; 
if the move 5 -+ 5' is non-tabu and lac_best> .6.(5,5') then 

lac_best := .6.(5,5'); 
neigh_best := 5' 1* update the best neighbor * / 

endif 
if 5 -+ 5' is tabu and fulfills the aspir. criterion then 

if .6.(5,5') < lac_best then 
lac_best := .6.(5,5'); 
neigh_best := 5' /* update the best neighbor * / 

endif 
endif 
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update the tabu list; 
untilloc_count = r 
S := neigh_best; /* update the current solution * / 
if Z(S) < Zbe,' then 

Sbe., := S; 1* update the best known solution * / 
Zbe,' := Z(S); 1* update the best known obj. func. val. * / 

endif 
i := i + 1; 1* Update the iteration counter * / 

until a stop criterion is fulfilled 
return Sbe." Zbe,'; 
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One of the first tabu search approaches for QAPs was proposed by Skorin-Kapov 
[213]. She used a tabu list of fixed size, where the size is a control parameter, 
a parameter belonging to the input, whose value influences the performance of 
the algorithm. The appropriate value of this parameter depends strongly on the 
problem instance. The mathematical nature of this dependence is unknown, and 
consequently it is quite difficult to tune this parameter. In [213], a move is declared 
as tabu if the transposition defining it has been applied for updating the current 
solution during the last f iterations, where f is another control parameter. The 
procedure stops after a fixed number of iterations have been performed, this number 
being the third control parameter of the procedure. An important drawback of 
this algorithm is the difficulty of tuning its control parameters. The dependence 
of suitable values of the control parameters on the problem instance is strong, but 
not clear. This leads to a bad behavior of the algorithm in terms of robustness. 

In an effort to overcome this difficulty Taillard [218] proposes a new version of 
tabu search for the QAP, the so-called robust tabu search. His version differs from 
the version of Skorin-Kapov in two main points. First, a move is declared tabu if 
it locates both interchanged facilities to locations they had occupied within the s 
most recent iterations, where s is the length of the tabu list. Secondly, the length 
of the tabu list is frequently changed by choosing its value at random between 
a minimum and a maximum value. The minimum and the maximum value for 
the length of the tabu list are prespecified as control parameters. The following 
choice of the control parameters produces quite good solutions: O(n2) iterations 
and length of the tabu list between lO. 9n J and r 1.1 n 1, where n is the size of the 
problem. This algorithm is more robust than the previous one, in the sense that 
its performance is less sensitive as regards the values of the control parameters. 

Recently, another version of tabu search, the so-called reactive tabu search (RTS), 
was proposed by Battiti and Tecchiolli [15]. RTS produces quite good results when 
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applied to QAPs. Reactive tabu search aims at weakening the dependence of the 
performance of tabu search on the prespecified values of the control parameters. 
It involves a simple mechanism for adapting the length of the tabu list according 
to the properties of the considered instance of the problem. RTS notices when a 
cycle occurs, i.e. when a certain solution is revisited, and increases the tabu list 
size according to the length of the detected cycle. Once in a while the size of the 
tabu list is reduced in order to keep it within reasonable limits. If, moreover, the 
number of the solutions which are revisited a "large" number of times (this large 
number of times is a control parameter) exceeds a certain parameter called CHAOS 
(another control parameter), a random diversification of the search towards new 
feasible solutions is forced. Numerical results on test problems from the literature 
show that in most of the cases the reactive tabu search converges to the best known 
solution faster than any other known tabu search scheme. 

The reader is referred to Taillard [219] for a comparison of different tabu search 
schemes for the QAP. The author proposes a classification of the most studied QAP 
instances. For each class of problems he points out the algorithm which shows the 
best performance when applied to problems of this class. More recently, also par-
allel implementations of tabu search have been proposed, see e.g. Chakrapani and 
Skorin-Kapov [48]. Tabu search algorithms allow a natural parallel implementation 
by dividing the burden ofthe search in the neighborhood among several processors. 

3.4 SIMULATES ANNEALING 
APPROACHES 

Simulated annealing approaches are another group of heuristic methods which try 
to overcome local optimality in solving hard combinatorial optimization problems. 
From a technical point of view, simulated annealing approaches inherit the struc-
ture and some properties of local search algorithms. From a theoretical point of 
view, simulated annealing approaches are based on the interesting analogy be-
tween combinatorial optimization problems and problems from statistical mechan-
ics . Kirkpatrick, Gelatt and Vecchi [140] were among the first authors who rec-
ognized and exploited the similarities between these two fields. They showed how 
the Metropolis algorithm [167] used to simulate the behavior of a physical many-
particle system can be naturally applied as a heuristic method in optimization. In 
an attempt to apply these ideas to the traveling salesman problem (TSP), they 
introduced the so-called simulated annealing. The same method for the TSP was 
developed independently by Cerny [47]. Burkard and Rendl [40] showed that sim-
ulated annealing is a general approach which can be applied to each combinatorial 
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optimization problem as soon as a neighborhood structure has been introduced on 
the set of the feasible solutions. The analogy between a combinatorial optimization 
problem and a many-particle physical system basically relies on the following two 
facts: 

• Feasible solutions of the combinatorial optimization problem correspond to 
states of the physical system. 

• The value of the objective function value for a feasible solution of the combi-
natorial optimization problem corresponds to the energy of the a state of the 
physical system. 

In condensed matter physics annealing is known as a thermal process for obtaining 
lower energy states of a solid in a heat bath. The process runs through two phases. 
First, one increases the temperature of the heat bath to a maximum value at 
which the solid melts. Secondly, one decreases carefully (slowly) the temperature 
of the heat bath until the particles arrange themselves in the ground state of the 
solid. Notice that the ground state is characterized by a minimum of energy. The 
Metropolis algorithm which simulates the evolution of a solid in a heat bath in 
thermal equilibrium is based on Monte Carlo techniques for generating a sequence 
of states of the solid. Let i be the current state with energy Ei. A subsequent state 
j, with energy Ej, is generated by applying a small perturbation to the current 
state, say displacing one of the particles. If the energy difference Ej - Ei is negative, 
then state j is accepted as the next current state. Otherwise, j is accepted with a 
certain probability given by exp( Ek~~j ), where t denotes the temperature and kB 
is the so-called Boltzmann constant. If the temperature is decreased sufficiently 
slowly, the solid can reach the thermal equilibrium at each temperature. In the 
Metropolis algorithm this is achieved by generating a large number of states at a 
given temperature value. The thermal equilibrium is characterized by the so-called 
Boltzmann distribution which gives the probability of the solid being at a state i 
with energy Ej at temperature t: 

P({X = i}) = Q~t) exp (~:;) , 

where X is a random variable denoting the current state of the solid. Q(t) is the 
so-called partition function defined by 

-E-
Q(t) = L exp( k ;), 

i B 

where the summation extends over all possible states. The Boltzmann distribution 
plays an essential role in the theoretical analysis of the convergence of simulated 
annealing-based algorithms. 
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Like tabu search, simulated annealing belongs to the group of the so-called meta-
heuristics, as it can be applied to any combinatorial optimization problem with a 
neighborhood structure specified on its set of feasible solutions. Below we give a 
more formal description of a generic simulated annealing algorithm for a general 
combinatorial optimization problem described in Section 1.5.2. The input consists 
of an initial solution So, the initial value to of a control parameter t which is called 
temperature (for the sake of the analogy with the temperature of a physical sys-
tem), and a function 9 which formalizes the rule for the update of the temperature 
during the annealing process. The variables involved in this algorithm are the fol-
lowing: the current feasible solution denoted by S, a feasible solution S' which is 
a neighbor of S, the best feasible solution known so far denoted Sb •• " the value 
of the objective function yielded by Sbeo' denoted by Zb •• , , an iteration counter i, 
the value of the temperature at the i-th iteration denoted by ti, and a decision 
variable accept which takes the values "yes" or "no" in the case that the current 
solution should be updated or not. The routines used by the algorithm are the 
following: move(S) , ~(S, S'), Z(S) which are already introduced as routines of 
the generic tabu search algorithm, the function 9 which returns the value ti of the 
temperature in the current iteration i and takes as argument the value ti-l of the 
temperature in the previous iteration, and Rand(O, 1) which generates a random 
number between 0 and 1. The number generated by Rand(O, 1) serves to decide 
whether the current feasible solution will be updated, i.e. substituted by its most 
recently generated neighbor or not, in the case that this neighbor solution does 
not lead to an improvement of the value of the objective function. The sequence 
of values ti, 0 :$ i is often referred to as a temperature schedule. Usual theoretical 
conditions to be fulfilled by the temperature schedule are the inequality ti < ti-l, 
for all i > i, and lim ti = O. 

- i-+oo 

Simulated Annealing(So, to, g) 
S := So; 1* generate some initial solution in So E :F * / 
Sb •• , := So; 1* Initialize the best known solution * / 
Zb •• , = Z(So); 1* Initialize the best known obj. func. value */ 
i := 0; 1* Initialize the iterations counter * / 
ti := to; 1* Initialize the initial temperature to * / 
repeat 

repeat 
S' := move(S); 
if ~(S, S') < 0 then 

accept := yes; 
if Z(S') < Zbeo' then 

S .- S'· Z .- Z(S')· belt·- , best·- , 
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endif 
endif 

if f1(5, 5') ~ 0 and exp (-t~~~i~/)) > Rand(O, 1) then 
accept := yes; 
if accept = yes then 

5:= 5'; 
endif 

endif 
until equilibrium is approached sufficiently closely; 
i := i + 1; 1* Update the iteration counter * / 
ti := g(ti-l); 1* Update the current temperature * / 

until a stop criterion is fulfilled; /* "the system is frozen" * / 
return X be,,, Zbe't; 
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Different authors formalize in different ways the fact that "equilibrium is ap-
proached sufficiently closely". The simplest way is to run the corresponding "repeat 
- until" loop a prespecified (large) number of times, for each fixed value ti of the 
temperature. A more complicated way is to run the corresponding "repeat-until" 
loop until the average of the values of the objective function yielded by the accepted 
solutions stabilizes in some sense, e.g. it changes only marginally during the last k 
iterations. Here k is a control parameter and the marginal changes are formalized 
by another control parameter. 

The generic simulated annealing algorithm presented above can be modeled math-· 
ematically by an inhomogeneous ergodic Markov chain. (For an introduction to 
the theory of Markov chains see e.g. [125].) Its transition probabilities which are 
probabilities of moving from a feasible solution to some neighboring one depend 
on the change of the value of the objective function caused by the corresponding 
move and on the current value of the temperature. Clearly, they depend indi--
rectly on the neighborhood structure as well. The theory of Markov chains has 
been used for the probabilistic analysis of the convergence of simulated annealing 
algorithms. Some authors have derived conditions on the neighborhood structure 
which guarantee the convergence of the generic algorithm to a (globally) optimal 
solution with probability equal to one, when the number of iterations approaches 
infinity, see for example [76). Other authors essentially require a slow enough cool-
ing I or more concretely ti = lor i' where r ~ d and d is a constant depending on 
the combinatorial structure of tte considered problem. For a detailed discussion on 
different theoretical aspects of simulated annealing methods, the reader is referred 
to [1, 147). The investigation of the speed of the above mentioned asymptotic 
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probabilistic convergence and its practical impact on the performance of simulated 
annealing approaches for certain combinatorial optimization problems, remains an 
(apparently difficult) open problem. 

Simulated annealing has been proven to be a useful approach to optimization prob-
lems arising in chip design, wiring, component placement in VLSI design, as well 
as to traditional combinatorial optimization problems as the traveling salesman 
problem and the QAP. Its main drawback is the relatively high number of control 
parameters and the absence of a widely accepted and well argued strategy for choos-
ing their values. The first who derived a simulated annealing scheme for the QAP 
were Burkard and Rendl [40]. In [40] (and in all simulated annealing versions for the 
QAP known to the author) the pair-exchange neighborhood structure is used. The 
computational experiments in [40] confirm the expectations on the behavior of the 
algorithm: its performance strongly depends on the temperature schedule. How-
ever, a careful tuning of the control parameters often yields high quality solutions. 
A more sophisticated simulated annealing approach for the QAP was proposed by 
Wilhelm and Ward [229]. The algorithm proposed in {229] uses a so-called "equi-
librium state", in an attempt to find a better mathematical model for the state of 
the "thermal equilibrium". The authors report solutions of quite good quality, but 
they do not motivate their choices for the control parameters. Connolly [59] tries 
to analyze the role of the optional components of simulated annealing approaches 
such as temperature schedule and random or sequential neighborhood search. He 
introduces a so-called optimal value of the temperature that is a temperature state 
where most of the search should be performed. This idea will be discussed in more 
details in Section 7.6, where three simulated annealing schemes for a generaliza-
tion of the QAP, namely the biquadratic assignment problem (BiQAP), are briefly 
reviewed. Laursen [151] argues on the choice of several control parameters and in-
vestigates experimentally the benefit of different strategies for setting their values. 

There is no general agreement concerning the comparison of the performance of sim-
ulated annealing approaches with that of tabu search approaches for the QAP. Bat-
titi and Tecchiolli [16] have compared a standard simulated annealing scheme with 
a reactive tabu search algorithm on a small sample of instances from QAPLIB [37]. 
They conclude that in the long run both methods are competitive with respect to 
the quality of the produced solutions. When the running time limits increase (the 
stop criterion is formulated in terms of running time), the reactive tabu search 
provides in general better solutions, whereas simulated annealing gets more easily 
stucked in local optima. 
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3.5 GENETIC ALGORITHMS 
The so-called genetic algorithms, henceforth abbreviated by GA, are another nature 
inspired approach to large scale combinatorial optimization problems. The underly-
ing motivation of such algorithms is the attempt to borrow ideas from the selection 
process in nature which develops complex and well adapted species through rel-
atively simple evolutionary mechanisms. The basic idea is to adapt these simple 
evolutionary mechanisms to combinatorial optimization problems. The first ge-
netic algorithm for optimization problems was proposed by Holland [121] in 1975. 
Recently, a lot of research has been done in deriving good GAs for different com-
binatorial optimization problems. There are (at least) two evident reasons for the 
intensification of the research work in this direction: the generality of GAs and the 
simplicity of parallel implementations of GAs. 

Basically, a genetic algorithm starts with a set of initial feasible solutions (generated 
randomly or by using some heuristic) called the initial population. The elements of a 
population are usually termed "individuals" or "members". The algorithm selects 
a number of pairs of individuals from the current population and uses so-called 
cross-over rules to produce a new feasible solution out of each pair of individuals. 
For each selected pair, the individuals are called parents and the new solution 
produced by applying cross-over rules is called a child. Further, a number of "bad" 
solutions is thrown out of the current population. This process is repeated until a 
stop criterion is fulfilled. The stop criterion may often be a time limit, a limit on 
the number of iterations, or a measure for the convergence of the algorithm, e.g. 
the current population consists of copies of a small number of pairwise different 
individual where "small" is formalized by the above mentioned measure. During 
the run of the algorithm, a mutation or an immigration is applied periodically to 
the current population, trying to improve its overall quality by modifying some 
of the individuals or replacing them by better ones, respectively. Very often local 
optimization tools are used periodically in order to improve the performance of 
the algorithm, in general, and to speed up its convergence, in particular. For 
the diversification of the search so-called tournaments are used. In principal, a 
tournament consists of applying several runs of a GA starting from different initial 
populations and stopping them before they converge. A "better" population is 
derived as a union of the final populations of these different runs. Then a new run 
of the GA is started with this union as an initial population. For a good coverage 
of theoretical and practical issues on genetic algorithms the reader is referred to 
[62,97]. 

Below we present a general scheme of a genetic algorithm without tournaments 
for a minimization problem. The input of the algorithm consists of an initial 
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population :fa, generated e.g. randomly, and a parameter M which is the number 
of iterations the algorithm runs through. The variables involved in this algorithm 
are the following: the current population :f, the best individual Sbe't in the current 
population, i.e. the individual (solution) which yields the smallest value of the 
objective function among all individuals of the current population, Zbeot which 
is the value of the objective function yielded by Sbe't' Sl, S2, two individuals 
from the current population :f selected as current parents, S3 the child of Sl 
and S2, an iteration counter i, and finally, three decision variables immig, mut 
and Ls which are set to "true" or "false" in the case that immigration, mutation, 
local search should be performed or not, respectively. The routines used by this 
algorithm are described below. Best gets as input a set of feasible solutions of the 
considered optimization problem and outputs the best among them (with respect 
to the value of the objective function). Usually such a best solution is found by 
explicit or implicit enumeration. As in Sections 3.2, 3.4, Z(S) returns the value of 
the objective function yielded by a feasible solution S. Select selects two parents 
out of the current population. The selection is made randomly or is biased towards 
high quality solutions according to some appropriate prespecified rules. Cross gets 
as input the parents Sl and S2 and outputs a child S3 according to a prespecified 
cross-over operator. Cleanse gets as input the current population :f and singles 
out a number of solutions which are to be deleted from the current population. 
The goal is that the cardinality of the population remains unchanged at the end of 
each iteration. The solutions to be deleted may be chosen randomly or in a biased 
way according to appropriate prespecified rules. The routine I mmigr adds new 
solutions to the population, for the sake of diversification. The routine M ut changes 
the current population by applying some systematic perturbation which improves 
the quality of the affected solutions. The routine 1-S is an attempt to intensify the 
search towards high quality solutions. It applies a local search procedure a number 
of times, starting at selected solutions from the current population. The there-by 
produced local minima are added to the current population. Finally, notice that 
because of the diversification of the search, e.g. by immigration and/or mutation, 
the quality of the best solution in the current population is not an increasing 
function. Therefore, it is necessary that the three last routines keep track of the 
best solution found so far by the algorithm and the corresponding value of the 
objective function. This is done by comparing each new solution with the best 
solution known so far. 

Genetic Algorithm(:fo, M) 
:f := :fa; 1* :fa initial population generated ego randomly * / 
Sbe't := Best(:f); 1* Initialize the best known solution * / 
Zbe't := Z(Sb."); /* Initialize the best known obj. func. value * / 
i := 0; 1* Initialize the iterations counter * / 
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repeat 
repeat 

i:=i+1; 
(Sl,S2):= Select(.1); 1* select two individuals in.1 */ 
S3 := Cross 1 , S2); 1* produce S3 from Sl and S2 * / 
.1 := .1 U {S3}; 1* update population * / 
if Z(S3) < Zbe.t 

Sbut := S3; 1* update the best known solution * / 
Zbe.t := Z (S3); 1* update the best known value * / 

endif 
until i = M; 1* nr. of iterations reaches M * / 
V := Cleanse(.1); /* Generate a set of "bad" solutions * / 
.1 := .1 \ D; 1* Remove the "bad" solutions from .1 * / 
if immig = true 

.1 := Immigr(.1); 1* Perform immigration * / 
endif 
if mut = true then 

.1:= Mut(.1); /* Perform mutation */ 
endif 
if Ls = true then 

.1 := 1-S(.1); /* Perform local search * / 
endif 

until a stop criterion is fulfilled; 
return Sbe,., Zbe"; 
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Several genetic algorithm approaches have been applied to the QAP. The algorithm 
developed by Tate and Smith [222), a more or less standard one, reveals some of 
the drawbacks of such algorithms, despite encouraging numerical results. This 
algorithm does not find the best known solution for the Nugent problems of size 
20 and 30. For larger problems of size up to 100 it cannot really compete with 
tabu search procedures. In an attempt to overcome these difficulties, Fleurent and 
Ferland [79] propose so-called hybrid approaches which are derived by combining 
genetic algorithms with other heuristic procedures for QAP, in particular local 
search and tabu search. They manage to improve the best solutions known at 
that time for most of the large scale test problems of Taillard and Skorin-Kapov 
(see QAPLIB), respectively. However, the computational times spent for these 
improvements are very large, sometimes reaching more than 20 hours of CPU time 
for large problems. Recently, Ahuja, Orlin and Tivari [4] obtained very promising 
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results on large scale QAPs from QAPLIB by applying a version of GA called by 
them a greedy genetic algorithm. The greedy genetic algorithm is tested on all 
problems from QAPLIB, obtaining the best known solutions for 103 out of 132 test 
problems. The solutions obtained for 28 out of the 29 remaining problems deviate 
less than 1 % from the best known ones. These results are obtained by applying the 
algorithm only once and within reasonable limits on the computation time. The 
greedy elements incorporated in this algorithm seem to help in maintaining the 
balance between biased search and diversity of the population. 

3.6 GREEDY RANDOMIZED ADAPTIVE 
SEARCH 

The greedy randomized adaptive search procedure, so-called GRASP, was intro-
duced by Feo and Resende [77] as a heuristic approach to hard combinatorial 
optimization problems. G RASP was applied to the QAP by Li, Pardalos and 
Resende [157] in 1994. GRASP is a combination of greedy elements with random 
search elements in a two phase heuristic. It consists of a construction phase and 
a local improvement phase. In the construction phase GRASP starts by assigning 
two facilities io, io to two locations ko, lo, respectively. According to the greedy 
component, GRASP selects this pair of assignments among those with minimal cost. 
That is, for a QAP(A, B) of size n, the greedy component would select i o, jo, ko, 
10 such that 

The random element gives some freedom to the search procedure and modifies this 
selection with the hope of avoiding to get trapped in locally optimal solutions of 
poor quality. To this end a control parameter 0 < f3 < 1 is introduced. The 
non-diagonal entries of the matrix A = (aij) are sorted non-decreasingly and the 
r smallest entries are denoted by ai 1 jl> ai2 i2, ... , airir' where r = lf3( n2 - n) J. 
Analogously, the non-diagonal entries of the matrix B = (bij) are sorted non-
increasingly and the r largest entries are denoted by bk1l1 , bk212, ... , bkr1r . Then we 
get: 

bk111 2: bk212 2: ... 2: bkr1r 

The costs of the possible pairs of assignments 
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are then sorted non-decreasingly and the smallest r' = lap(n2 - n)J are taken 
further into consideration. Here 0 < a < 1 is a second control parameter. Then 
the locations io, jo and the facilities ko, 10 , are chosen randomly among (it, jt) and 
(kt, It), respectively, for 1 ~ t ~ r', and the initial assignments io t--t ko, jo t--t lo 
are made. In the next steps of the construction phase the remaining facilities 
are assigned to the remaining locations, one facility to one location at a time. 
Assume that we are performing the (t + l)-th iteration of the construction phase 
and r = {(il' kl), (i2, k2), ... , (it, kt)} is the set of the already made assignments. 
The cost Cjl of locating some facility j, j ¢ {il' i 2 , •.. , it}, to some location l, 
1 ¢ {kl' k2 , ••• , ktl, with respect to the already made assignments is given by 

Cjl = L (aijbkl + ajiblk). 
(i,k)Er 

Cjl is referred to as an intermediate cost. If there are m pairs (j, l) of unassigned 
facilities and locations, select one pair at random among pairs which yield the 
lam J smallest intermediate costs Cjl. Add the selected pair to r and repeat this 
step until a permutation of {I, 2, ... , n} has been constructed. Here terminates the 
construction phase of GRASP. 

The local improvement phase consists of a standard local search algorithm starting 
with the solution constructed in the first phase. The whole procedure is repeated a 
certain number oftimes, where this number is the third and last control parameter. 
In [157] GRASP is tested on almost all of the test problems from QAPLIB as well as 
on two classes of QAP instances with known optimal solution generated by Li and 
Pardalos in [154]. (The generation of QAP instances with known optimal solution is 
discussed in the next section.) The version of GRASP tested in [157] involves a local 
search approach with the pair-exchange neighborhood. The control parameters a 
and P are equal to 0.5 and 0.1, respectively, and the maximum number of iterations 
is equal to 100000. This implementation of GRASP yields best known solutions for 
most of the tested instances and even improves the best known solutions in a few 
cases. Moreover, its running times are reasonable compared to other heuristic 
approaches. Some more recent experimental results presented in [4] show that 
the greedy genetic algorithm of Ahuja et al. mentioned in the previous section 
outperforms GRASP in terms of the quality of the solutions produced within a 
reasonably long, common running time limit for both algorithms. However, the 
same experiments show that GRASP produces better solutions in early stages of 
the search, i.e. GRASP seems to be advantageous in the short run. 
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3.7 QAP INSTANCES WITH KNOWN 
OPTIMAL SOLUTIONS 

In this section we discuss two generators of QAP instances with known optimal 
solution. Such generators are important since QAP instances with known optimal 
solution can be used as test problems for the evaluation and the comparison of 
heuristics. 

Palubeckis' generator 

The first method for generating QAP instances with a known optimal solution 
was proposed by Palubeckis [180] in 1988. The input of the Palubeckis' algorithm 
consists of the size n of the instance to be generated, the optimal solution (permu-
tation) 7r of the output instance, two control parameters wand z, where z < w, 
and the distance matrix A of an r x s grid with rs = n. Throughout the rest of 
this section, such a grid has r knots per row and s knots per column, the knots 
being labeled from the left to right and then from the top to the bottom. We use 
rectilinear distances, also called Manhattan distances, i.e. the distance aij between 
two given knots i, j lying in rows ri, rj and in columns Ci, Cj, respectively, is given 
by aij = Iri - rj I + ICi - Cj I. The algorithm starts with a trivial QAP instance 
with known optimal solution QAP(A, B), where B = (bij ) is a constant matrix 
with bij = w. Notice that such a QAP(A, B) is a trivial problem, in the sense 
that all permutations yield the same value of the objective function and thus, are 
optimal solutions. Hence, also the identity permutation id is an optimal solution 
of QAP(A, B). The algorithm leaves matrix A unchanged and transforms step-by-
step matrix B so that it is not a constant matrix any more. This transformation 
is done so that the identity permutation id remains an optimal solution to all in-
termediate QAP instances. In the last step, the algorithm uses a simple standard 
trick for transforming the QAP instance with optimal solution id to another QAP 
instance with optimal solution 7r. A more formal description of Palubeckis' algo-. 
rithm is given below. The input of the algorithm consists of the dimensions r, s 
of the grid, two parameters z, w with z < w, and a permutation 7r of {I, 2, ... , n} 
which will be the optimal solution of the QAP instance to be generated by the 
algorithm, where n is the size of the QAP to be generated given by n = rs. The 
variables involved in this algorithm are the following: the entries aij, bij of the co-
efficient matrices A and B of the QAP instance to be generated, the optimal value 
of this QAP instance denoted by Zop" the auxiliary variables i, j, k, I, m, ~, Z, ], 
h, 12 , Ul, U2, the auxiliary matrices G = (9ij), T = (tij), and a decision variable 
decide which serves to decide whether to perform further changes on matrix A or 
not. The routines called by the algorithm are: Choose_max with arguments A, G 
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which returns a pair of indices (I, m), 1::; I, m ::; n, such that aim = . ~ax {aij}, 
(',J):gij~O 

Choose_rand with arguments n, h, /2, U1, U2 which chooses uniformly at random 
an index k, 1 ::; k ::; n, such that the following inequalities are fulfilled 

(3.1) 

Finally, Rand with argument z which generates a number between 0 and z uni-
formly at random. 

Palubeckis' Generator(r, s, z, W, 11") 
n := rs; 1* fix the QAP size n *1 
for i = 1 to n do 

z:= rilrl; 1* fix the auxiliary variable z *1 
for j = 1 to n do 

] : = fj I r 1; 1* fix the auxiliary variable] * I 
aij := Iz - ] 1 + 1 (i - j) + G - z)rl; 1* set aij as rectilinear distance 

between knot i and j on the grid * I 
bij := w; 1* initialize entry bij of matrix B *1 
gij := 2 - aij; 1* compute entry gij of the auxiliary matrix G * I 

endfor 
endfor 
decide := false; 1* initialize the decision variable * I 
for i = 1 to n do 

for j = 1 to n do 
if % ::; 0 then 

decide := true; /* update the decision variable * / 
endif 

endfor 
endfor 
while decide do 

(I, m) := Choose_max(A, G); 1* choose two indices 1::; I, m ::; n *1 
II := minHllrl, rmlrl}; 1* first aux. lower bound *1 
U1 := maxHllrl, rmlrl}; 1* first aux. upper bound *1 
l2 := min{l - r(fllr 1 - 1), m - r(f mlr 1 - I)}; 1* second aux. 

lower bound * I 
U2 := max{l - r(fllr 1 - 1), m - r(f mlr 1 - I)}; 1* second aux. 

upper bound * I 
k:= Choose]and(n,h,12,u1,u2); 1* choose 1::; k::; n randomly *1 
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~ := Rand(z); 1* choose 0 ~ ~ ~ z uniformly at random * / 
blm :=~; btk := btk + (w - ~); 1* update matrix B */ 
bkm := bkm + (w - ~); 1* update matrix B */ 
9lm := 1; 9km := 1; 9lk := 1; 1* update matrix G * / 
bml :=~; bmk := bmk + (w - ~); 1* update matrix B */ 
bkl := bkl + (w - ~); 1* update matrix B */ 
9mt := 1; 9mk := 1; 9kl := 1; 1* update matrix G * / 
decide := false; 1* reinitialize the decision variable * / 
for i = 1 to n do 

for j = 1 to n do 
if 9ij ~ 0 then 

decide := true; 1* update the decision variable * / 
endif 

endfor 
endfor 

endwhile 
for i = 1 to n do 

for j = 1 to n do 
tij := b'/T(i)'/T(j); 1* permute matrix B according to permut. 7r * / 

endfor 
endfor 
for i = 1 to n do 

for j = 1 to n do 
bij := tij; 1* update matrix B * / 

endfor 
endfor 
Zapt := w 2:7=12:';=1 aij; 
return A = (aij), B = (bij), Zapt; 

We show next the correctness of the Palubeckis' generator. 

Theorem 3.1 (Palubeckis [180], 1988) 
Let A and B be the n x n matrices generated by Palubeckis' generator. The input 
permutation 7r is an optimal solution to QAP( A,B) with optimal value equal to 
w L:7=1 L:j=l aij· 
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Proof. By induction on the number of repetitions of the while loop, we prove 
that the identity permutation id is an optimal solution of QAP(A, B), where B 
is the matrix obtained after the completion of the "while" loop. Denote by B(t), 
t > 0, matrix B after the t-th execution of the "while" loop. At the moment 
when the while loop is executed for the first time matrix B = B(O) is a con-
stant matrix and therefore QAP(A, B(O») is a constant QAP, i.e. Z(A, B(O), ¢) = 
W E~=1 'L/i=l aij, for each ¢ E Sn. (Recall that Sn is the set of permutations of 
{I, 2, ... , n}. Thus, permutation id is an optimal solution to QAP(A, B(O»). As-
sume that the identity permutation id is an optimal solution to QAP(A, B(t») with 
optimal value w E?=l Ej=l aij· We show that id is also an optimal permutation 
to QAP(A, B(t+l»). According to the update of the entries bij within the "while" 
loop, we have B(t+l) = B(t) + B, where B = (bij) is given by: 

{ 
w - Ll if i = I and j = k 

b .. _ w - Ll if i = m and j = k 
13 - Ll - w if i = I and j = m 

o otherwise 

An elementary calculation reveals that Z(A, B, id) = O. The last equality implies 
that id is an optimal solution to QAP(A, B). By considering additionally the fact 
that equality 

Z(A, B(t+l), ¢) = Z(A, B(t), ¢) + Z(A, B, ¢), 

holds for each ¢ E Sn, it is easily seen that the identity permutation id is an 
optimal solution to QAP(A, B(t+1») with optimal value w E?=l E~=l aij. Assume 
that the "while" loop has been applied f. times. Thus after "endwhiie" we have B = 
B(l) and id is an optimal solution of QAP(A, B), as shown by induction. Finally 
the algorithm updates matrix B by permuting its rows and columns according 
to permutation 7r and outputs matrix B'/r = (b'/r(i)'/r(j»). Now the claim follows 
immediately, since Z(A, B'/r, ¢) = Z(A, B, ¢ 0 7r) for each ¢ E Sn. 0 

Once a generator of test instances is proposed, a natural question arises concern-
ing the difficulty of the generated instances. If these instances are in some sense 
"easy", while the considered problem is "difficult", then the generated instances 
are not representative for the general problem and hence, they are not appro-
priate for use in evaluation of heuristics. Cyganski, Vaz and Virball [56] have 
observed that the QAP instances generated by Palubeckis' generator are "easy" in 
the sense that their optimal value can be computed in polynomial time, by solving 
an auxiliary linear program. In order to show this result we need some more def-
initions. Consider all ordered pairs of the form ((i,j),k) where the indices i,j,k, 
1 S; i,j, k S; n, are pairwise distinct. There are (~)(n - 2) such pairs, where n is 
as usually the size of the considered QAP. Assume that these pairs are numbered 
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by the integers 1,2, ... , (~) (n - 2) and that each pair is identified with its corre-
sponding number. If p is the pair ((i, j), k), let T1+) = {(i, k), (k, i), (j, k), (k, j)} 
and T1-) = {( i, j), (j, i)}. Now, the above mentioned result can be formulated as 
follows. 

Theorem 3.2 Consider QAP( A,B) of size n whose coefficient matrices A and B 
have been generated by Palubeckis' generator. Assume that we do not know the 
values of the input parameters z and w involved in the corresponding run of the 
Palubeckis' generator. The optimal value of QAP( A,B) is equal to if.; 2:::7=1 2:::j=l aij, 
where if.; is the optimal value of the following linear program 

mm w 
subject to 

w - 2::: O:p + 2::: O:p = bij 1 ~ i, j ~ n 
(i,j)ET~-) (i,j)ET~+) 

w-z~O:p~w p=I,2, ... ,(~)(n-2) 

z < w 
w>O 
z>O 

(3.2) 

Proof. Let us consider a modification of Palubeckis' generator the so-called weak 
generator. The weak generator result by making two modifications. First, the 
routine Choose_rand of the Palubeckis' generator selects any k between 1 and 
n neglecting the inequalities (3.1) to be fulfilled by the chosen k. Secondly, we 
do not make use of the auxiliary matrix G = (gij) to determine the number 
of the executions of the "while" loop, but we just execute this loop a prespec-
ified number of times. In this case, Choose_max returns a pair (l, m) such that 
aim = max{ aij: 1 ~ i, j ~ n} Clearly, for matrices A, B generated by the weak gen-
erator the input permutation 11' is not necessarily an optimal solution of QAP(A,B). 
However, the optimal value of this QAP(A,B) would be larger than or equal to 
w "'~ '-1 aiJ·· w',J-
Now assume that the given QAP(A,B) of size n is obtained by applying Palubeckis' 
generator with values of the input parameters w, z, equal to w*, z*, (z* < w*), 
respectively. As the matrix A is the distance matrix of an r X s grid, n = rs, we 
can assume w.l.o.g. that rand s are known. Let 0:; := 0 for all p. Let p be the 
number which corresponds to the pair ((I, m), ko), where (I, m) is the pair of indices 
chosen by Choose_max, and ko the index chosen by Choose_rand during the first 
execution of the "while" loop. Set 0:; := 0:; + w* - D., where D. is the random 
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number chosen by Rand during the first execution of the "while" loop. Update a; 
in an analogous way after each execution ofthe "while" loop. After having done so 
we have a; := 0 for the indices p, 1 ::; p ::; (~)(n - 2), which occur in no execution 
of the "while" loop. With these settings w*, z* and a;, for 1 ::; p ::; (~) (n - 2), 
constitute a feasible solution of the linear program (3.2). Further, the optimal value 
of QAP(A,B) equals w* 2:7,j=1 aij. Now, let iV, Z, lip, for 1 ::; p::; (~)(n - 2), be 
an optimal solution of (3.2). Then, iV 2:7,j=l aij ::; w* 2:7,j=l aij' Moreover, there 
exists a run of the weak generator which produces QAP(A,B) (or more precisely, 
matrix B) under the input w := iV, z := z and A = (Aj). This run executes the 
"while" loop G) (n - 2) times, and chooses ~ := lip and a triple (l, m, ko) at the 
p-th execution such that ((I, m), ko) is the p-th pair (see the last paragraph before 
Theorem 3.2). According to the observation made at the beginning of the proof 
we have then 

n n 

Z(A, B, 11"*) ::; iV L aij ::; w* L aij = Z(A, B, 11"*), 
i,j=l i,j=l 

where 11"* is an optimal solution of QAP(A, B). From the last inequalities follows 
iV 2::7,j=l aij = Z(A, B, 11"*), and this completes the proof. 0 

It is worthy to notice that nothing is known about the computational complexity 
of QAP instances generated by Palubeckis' generator. We believe that finding an 
optimal solution to these QAPs is NP-hard, although the corresponding decision 
problem is polynomially solvable. 

Finally, notice that instead of using the distance matrix of a grid graph, one can 
start Palubeckis' generator with A being an arbitrary Euclidean matrix. The in-
dices I, m, ko at the "Random" step should correspond then to three point which 
are collinear in the respective Euclidean space. 

The generator of Li and Pardalos 

Li and Pardalos [154] propose another generator of QAP instances with known op-
timal solution, called Li&Pardalos' generator. This generator shares the basic idea 
of Palubeckis' generator. It starts with a trivial QAP instance with known optimal 
solution and transforms its coefficient matrices so that the resulting QAP instance 
has the same optimal solution as the initial QAP, but is not trivial any more. The 
strategy for transforming the coefficient matrices is based on Proposition 2.1. A 
more formal description of Li&Pardalos' generator is given below. The input of 
the algorithm consists of the dimensions n of the QAP instance to be generated, 
two positive parameters ~A and ~B, and a permutation 11" of {I, 2, ... , n} which 
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will be the optimal solution of the QAP instance to be generated by the algorithm. 
The variables involved in this algorithm are the following: the coefficients aij, bij 
of the QAP instance to be generated, the optimal value of this QAP instance de-
noted by ZoPt, the auxiliary variables i, j, an auxiliary n(n -I)-dimensional vector 
X = (Xi), and the auxiliary matrices R = (rij) with zeros on the diagonal. Matrix 
R is used to save the output of routine Rank which is introduced below. The 
routines called by the algorithm are Rank, Sort and Rand, introduced below. The 
routine Rank takes as argument an n x n matrix (matrix B in our case), considers 
its non-diagonal entries as the elements of an n(n - I)-dimensional vector, sorts 
these elements non-decreasingly (without changing the input matrix), and for each 
element bij saves its rank rij, i.e. the number showing its position in the above 
mentioned non-decreasing ordering. Rank outputs then the matrix R = (rij). The 
routine Sort takes as input an n(n - I)-dimensional vector (X = (Xi) in our case) 
and sorts it non-decreasingly. The output is the updated (sorted) vector X. Final-
ly, Rand takes as argument a real number z (in our case ~A or ~B) and generates 
a number between 0 and z uniformly at random. 

Li&Pardalos' Generator(n, .6.A, .6.B, 11") 
for i = 1 to n do 

for j = 1 to n do 
if if: j then 

aij := ~A; /* initialize non-diagonal entries aij * / 
bij := Rand(~B); /* initialize non-diagonal entries bij * / 

endif 
else 

aij := 0; 1* set to 0 the diagonal entries aii * / 
bij := 0; 1* set to 0 the diagonal entries bii * / 

endelse 
endfor 

endfor 
R := Rank(B); 1* Sort bij non-decreasingly and output the ranks * / 
for i = 1 to n(n - 1) do 

Xi := Rand(~A); 1* Generate X = (Xi) at random * / 
endfor 
X := Sort(X) 1* sort Xi, 1 ::; i ::; n(n - 1), non-decreasingly * / 
for i = 1 to n do 

for j = 1 to n do 
ifi f: j then 

aij := aij - xrij 1* update the entries aij * / 
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endif 
endfor 

endfor 

Zopt := I:~=1 I:J=l aijbij ; 
for i = 1 to n do 

for j = 1 to n do 
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iij := b7r(i)7r(j); /* permute matrix B according to permut. 1T * / 
endfor 

endfor 
for i = 1 to n do 

for j = 1 to n do 
bij := iij; /* update matrix B * / 

endfor 
endfor 
return A = (aij), B = (bij), Zopt; 

The following theorem, whose simple proof is not given here, states the correctness 
of the Li&Pardalos' generator. 

Theorem 3.3 (Li and Pardalos [154], 1992) 
Assume that the input of the Li&Pardalos' generator consists of a natural number 
n, a permutation 1T and two constants LlA and LlB. Then the generator outputs 
two n x n matrices A, B and a number Zopt such that 1T is an optimal solution 
to QAP(A,B) and Zopt is its optimal value. This is done in O(n2 logn) time, 
assuming constant time for the generation of a random number. 0 

A more general scheme for generating QAP instances with known optimal solution 
is described in [154]. This scheme makes use of the so-called sign-subgraphs of a 
given graph. The application of this scheme with different sign-subgraphs yields 
different QAP generators. In this context, the Li&Pardalos' generator is obtained 
when the sign-subgraphs are as simple as possible: each of them consists of a single 
edge. It is interesting and surprising that QAP instances generated by applying the 
general scheme with more complex sign-subgraphs such as triangles and spanning 
trees are "easier" to solve than those generated by the Li&Pardalos' generator. Here 
a QAP instance is considered to be "easy", if most heuristics applied to it find a 
solution near to the optimal one in a relatively short time. Another interesting 
but less surprising observation is the following. Instances of rectilinear QAPs seem 
to be easier to solve than instances of symmetric QAPs, and the latter seem to 
be easier to solve than instances of asymmetric QAPs, in terms of the quality of 
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solutions produced by different heuristics. On the other hand, the above order of 
simplicity seems to be reversed when the computation times needed to find good 
solutions are considered. An intuitive explanation for this behavior would be the 
large number of equal entries in symmetric matrices and in distance matrices of 
grids. This implies the existence of large groups of feasible solutions with the 
same value of the objective function, a property which confuses matters for most 
heuristics. Notice that Theorem 3.2 does not apply to QAP instances generated by 
the generator of Li and Pardalos. The proof of this theorem, as well as Palubeckis' 
generator itself, essentially exploit the triangle inequality fulfilled by the matrix A, 
whereas none of the two matrices generated by Li&Pardalos' generator needs to be 
Euclidean. 

In Chapter 7 we will see how to use the generator of Li and Pardalos for the 
generation of instances of the BiQAP with known optimal solution. 

3.8 ASYMPTOTIC BEHAVIOR 
This section presents some results on the asymptotic behavior of QAPs. Among 
others, it is shown that if certain probabilistic conditions on the coefficient ma-
trices of QAP(A,B) are fulfilled, the ratio between its "best" and "worst" values 
of the objective function approaches 1 almost surely, as the size of the problem 
approaches infinity. As most of the known results on QAPs confirm the general 
belief on the extreme difficulty of this problem, this kind of asymptotic behavior is 
somewhat astonishing. Actually, it suggests that the relative error of every heuris-
tic method vanishes almost surely, as the size of the problem tends to infinity, i.e. 
every heuristic finds almost always an almost optimal solution when applied to 
QAP instances which are large enough. In other words, under certain probabilistic 
assumptions concerning the problem data, the QAP becomes in some sense trivial 
as the size of the problem increases. Burkard and Fincke [36] identify a common 
combinatorial property of a number of problems which, under natural probabilistic 
conditions on the problem data, behave as described above. This property seems 
to be also the key for the specific asymptotic behavior of the QAP. Later on, this 
general result of Burkard and Fincke and a stronger result of Szpankowski [217] 
will be used for showing that also the biquadratic assignment problem (BiQAP) 
behaves asymptotically as described above. 

Next some general results on the asymptotic behavior of combinatorial optimization 
problems are presented and then the asymptotic behavior of the QAP is discussed. 
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3.8.1 On the asymptotic behavior of some 
combinatorial optimization problems 
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Consider a sequence Pn , n E IN, of combinatorial optimization (minimization) 
problems with sum objective function, as described in Section 1.5.2. Let £n and :Fn 
be the ground set and the set of the feasible solutions of problem Pn , respectively. 
Moreover, let cn:£n ~ IR+ and J::F ~ IR+ be the nonnegative cost function and 
the objective function for problem Pn , respectively, For n E IN, a worst solution 
Xwor E :Fn is defined as follows: 

f(Xwor ) = " cn(x) = maxf(X) = max" cn(x) L.J XE:F XE:F L.J 
xEXwor xEX 

We will consider the ratio between the objective function values corresponding to 
an optimal (or best) and a worst solution. In [36] Burkard and Fincke show that 
this ratio is strongly related to the ratio between the cardinality of the set of the 
feasible solutions and the cardinality of an arbitrary feasible solution, under the 
assumption that all feasible solutions have the same cardinality. For the proof of 
this result we make use of a lemma of Renyi [195]. 

Lemma 3.4 Let Y1, Y2, ••• Yn be independent random variables with IYk - E(Yk) I ~ 
K, 1 ~ k ~ n, where E(Yk) is the expected value of Yk and K is some positive 
number. Let 

n 

D'- L (72(Yk), 
k=l 

where (72 (Yk) is the variance of Yk. Let p be a positive real number with p ~ ~. 
Then 

Theorem 3.5 (Burkard and Fincke [36], 1985) 
Let Pn be a sequence of combinatorial minimization problems with sum objective 

function as described above. Assume that the following conditions are fulfilled: 

(BFl) For all X E :Fn , IXI = Ix(n)l, where x(n) is some feasible solution in :Fn . 

(B F2) The costs Cn (x), x EX, X E :F n, n E IN, are random variables identically 
distributed on [0,1]. The expected value E = E(cn(x)) and the variance (72 = 
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0'2(Cn(X)) > 0 of the common distribution are finite. Moreover, for all X E Fn, 
n E IN, the variables Cn (x), x EX, are independently distributed. 

(BF3) IFni and Ix(n)1 tend to infinity as n tends to infinity and moreover, 

lim AaIX(n)I-In IFnl-+ +00 
n-+oo 

where Aa is defined by Aa := ((00'/((0 + 20'2))2 and (0 fulfills 

for a given ( > o. 

Then 

E+(a 
and 0 < -E-- ~ 1 + (, 

- (0 

{
max E cn{x) } XE:Fnx X 

P . E () < 1 + ( 2: 1 - 21 F nl exp( -Ix(n) lAo) -+ 1 as mIn Cn X 
XE:Fn xEX 

Proof. The proof basically relies on showing that 

(3.3) 

n -+ 00. 

P{3X E Fn: L (Cn(X) - E) 2: (aIXI} ~ 21Fnl exp(-IX(n) lAo) -+ 0 (3.4) 
xEX 

as n -+ 00. Let us consider the following chain of inequalities: 

P {3X E Fn: L (cn(x) - E) 2: (aIXI} < 
xEX 

I: P { I: (cn(x) - E) 2: (aIXI} < 
XE:Fn xEX 

IFnlP { ~ (",(x) - E) ~ ,of!' #Iu } Pl , 

xEX 

where X is the feasible solution for which the above considered probability becomes 
maximum. Now the lemma of Renyi [195] can be applied. Set 

D = I: 0'2(cn(x)) = #10' and ]{ = 1 
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and define 
fO.ji"il 

J.l:= . 
(J' 

(Due to assumption (3.3) J.l is defined correctly as required in Renyi's lemma.) By 
the definition of AO, we get 

p, < 2IF"lexp(-("~)'/2(1+'"~,~qn 
2I F nl exp(-AoIXI) = 2IFnlexp(-AoIX(n)1) =: P2 

Assumption (BF3) implies P2 -+ 0 and consequently, P1 -+ 0 which proves (3.4). 
Note that (3.4) is equivalent to 

P {\:IX E Fn: L (cn(x) - E) < folXI} ~ 1- 21Fnl exp(-IX(n) lAO) -+ 1 
xEX 

as n -+ 00. The last inequality and (3.3) imply 

max I: C (x) 
XEFn xEX n folx(n)1 + Elx(n)1 

. < <l+f mm I: cn(x) -folx(n)1 + EIX(n)1 -
XEFnxEX 

with probability 1 as n approaches +00. o 

The combinatorial condition represented by the limit in (BF3) means basically 
that the cardinality of the feasible solutions is large enough with respect to the 
cardinality of the set of feasible solutions. Namely, the result of the theorem is true 
if the following equality holds: 

lim In IFni = 0 
n-+oo IX(n)1 

The other conditions of Theorem 3.5 are natural probabilistic requirements on 
the coefficients of the problem. Two problems which fulfill condition (*) are the 
quadratic assignment problem and the minimum perfect matching problem for 
graphs where the number of the perfect matchings is not "too large" in the sense 
of condition (*). The traveling salesman problem (TSP) and the linear assignment 
problem (LAP) are two examples of problems which do not fulfill (*). 

Theorem 3.5 states that for each f > 0, the ratio between the best and the worst 
value of the objective function lies on (1 - f, 1 + f), with probability tending to 1, 
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as the "size" of the problem approaches infinity. Thus, we have convergence with 
probability. Under one additional natural (combinatorial) assumption (condition 
(S3) of the theorem below), Szpankowski strengthens this result and improves 
the range of the convergence to almost surely. In the almost sure convergence the 
probability that the above mentioned ratio tends to 1 is equal to 1. The almost sure 
convergence implies the convergence with probability but not vice-versa. (Detailed 
explanations on the probabilistic notions used in this section can be found in every 
textbook on the fundamentals of probability.) 

Theorem 3.6 (Szpankowski [217], 1995) 
Let Pn be a sequence of combinatorial minimization problems with sum objective 
function as above. Assume that the following conditions are fulfilled: 

(S1) For all X E Fn , IXI = Ix(n)I, where x(n) is some feasible solution in Fn. 

(S2) The costs cn(x), x E X, X E Fn, n E 1N, are random variables identically 
and independently distributed on [0,1]. The expected value E = E(cn(x)), the 
variance, and the third moment of the common distribution are finite. 

(S3) The worst values of the objective function, max E en (x), form a nonde-
XE:Fn xEX 

creasing sequence for increasing n. 

(S4) IFni and Ix(n)1 tend to infinity as n tends to infinity and moreover, In IFni = 
o(lx(n) I). 

Then, the following equalities hold almost surely: 

o 

3.8.2 On the asymptotic behavior of the QAP 
Theorems 3.5 and 3.6 can be applied to QAP instances whose coefficients fulfill 
natural probabilistic conditions. The main point is that the QAP fulfills the com-
binatorial condition (S4) in Theorem 3.6 (and therefore, also condition (BF3) in 
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Theorem 3.5). Indeed, consider a QAP{A,B) of size n as a general combinato-
rial optimization problem, following the description given in Section 1.5.2. The 
ground set En consists of all quadruples of indices (i,j,k,l), 1 ~ i,j,k,l ~ n, 
En = {(i,j,k,I):1 ~ i,j,k,l ~ n}. The feasible solutions are permutations of 
{I, 2, ... , n}. The cn: En -+ IR are given by cn{i, j, k, l) = aijbkll. For each permu-
tation 11' we get a feasible solution X7r as a subset of En, X7r = {(i,j, 1I'{i), 1I'(j): 1 ~ 
i, j ~ n}. The set Fn of the feasible solutions consists of all feasible solutions 
X7r for 11' E Sn. Thus, IFni = n! and IXI = n2 , for each X E Fn. By applying 
Stirling's formula it is easy to see that lim In(~!) = O. Moreover, notice that both 

n--+oo n 
in Theorem 3.5 and in Theorem 3.6, we can assume w.l.o.g. that the values of the 
cost functions Cn are random variables, identically and independently distributed 
on [0, M], instead on [0,1]' where M is some positive constant. So, we immediately 
get the following corollary: 

Corollary 3.7 Consider a sequence of problems QAP{A(n), B(n»), n E IN, with 
n x n coefficient matrices A(n) = (a}j») and B = (b}j»). Assume that a~j) and 

b}j), n E IN, 1 ~ i, j ~ n, are independently distributed random variables on [0, M], 
where M is a positive constant. Moreover, assume that the entries a}j), n E IN, 
1 ~ i,j ~ n, have the same distribution and the entries b}j), n E IN, 1 ~ i,j ~ n, 
have also the same distribution (which does not necessarily coincide with that of 
a}j»). Furthermore, let these variables have finite expected values, variances and 
third moments. 
Let 11'~;2 and 1I'S~! denote an optimal and a worst solution of QAP{A(n), B(n»), 
respectively, i. e. 

Z (A(n) B(n) 1I'(n») - min Z (A(n) B(n) 11') 
, , opt - 7rES n " 

and 
Z (A(n) B(n) 1I'(n») - maxZ (A(n) B(n) 11') 

, , wor - 7rES n " 

Then the following equality holds almost surely: 

Z (A(n) B(n) 1I'(n») , , opt 
lim = 1 

n--+oo Z (A(n) B(n) 1I'(n») , ,wor 

o 

lThe mathematically correct notation would be c((i,j, k, I)), but we remove the inner paren-
thesis for the sake of readability. 
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The above result suggests that the objective function value of QAP(A(n), B(n») 
(corresponding to an arbitrary feasible solution) gets somehow close to its expected 
value n 2 E(A)E(B), as the size of the problem increases, where E(A) and E(B) 
are the expected values of a~j) and b~j), n E IN, 1 ~ i, j ~ n, respectively. Several 
authors provide different analytical evaluations for this "getting close", by making 
use of different probabilistic conditions. The papers of Frenk, Houweninge and 
Rinnooy Kan [82] and the papers of Rhee [197, 198] can be mentioned here. The 
following theorem states two important results proved in [82] and [198], respectively. 

Theorem 3.8 (Frenk et al. [82], 1986, Rhee [198], 1991) 
Consider the sequence of QAP(A(n), B(n»), n E IN, as in Corollary 3.7. Assume 
that the following conditions are fulfilled: 

(Cl) a~j), b~j), n E IN, 1 ~ i,j ~ n, are random variables independently distribut-
ed on [0, M]. 

(C2) a~j), n E IN, 1 ~ i, j ~ n, have the same distribution on [0, M]. b~j), n E IN, 
1 ~ i, j ~ n, have also the same distribution on [0, M]. 

Let E(A), E(B) be the expected values of the variables a~j) and b~j), respectively. 
Then, there exists a constant K1 (which does not depend on nY, such that the 
following inequality holds almost surely, for 11" E Sn, n E 1N 

. ..;n I Z(A(n), B(n), 11") I 
l~~c!!p 00gn n2E(A)E(B) - 1 ~ K1 

Moreover, let Y be a random variable defined by 

Y = Z (A(n), B(n), 11"~~2) - n2 E(A)E(B), 

where 11"~~2 is an optimal solution of QAP(A(n), B(n»). Then there exists another 
constant K 2, also independent of the size of the problem, such that 

1 K2 n3/ 2(logn)1/2 ~ E(Y) ~ K 2n3/2(logn)1/2 

P{IY - E(Y)I ~ t} ~ 2exp (4n2I1A~rIIBII~) 
for each t ~ 0, where E(Y) denotes the expected value of variable Y and IIAlioo 
~IBlloo) is the so-called row sum norm of matrix A (B) defined by IIAlioo 
maxI ~ i ~ n "2:/;=1 laijl. 0 



4 
QAPS ON SPECIALLY STRUCTURED 

MATRICES 

In this chapter and in the two next chapters we consider polynomially solvable 
and provably difficult (NP-hard) cases of the QAP. As there is no hope to find 
a polynomial time algorithm for solving the general QAP, and as QAP instances 
arising in different practical applications may often have a special structure, it 
is interesting to derive polynomial time algorithms for solving special cases of the 
problem. On the other hand, any information on provably difficult (NP-hard) cases 
of the problem is of particular relevance for a better understanding of the problem 
and its complexity. Nowadays there exist only few, sporadic results concerning 
this challenging but difficult aspect of research on the QAP. We try to give a 
systematic presentation of the already existing results on complexity questions 
related to special cases of the QAP, focusing on methodology issues. Further, we 
formulate a number of open problems which we consider to be a promising object 
of further research in this direction. 

A special case or a restricted version of the QAP consists of all QAP instances 
whose coefficient matrices fulfill certain prespecified properties. In this chapter we 
present results on versions of the QAP whose coefficient matrices have specific com-
binatorial properties, e.g. they belong to some of the following classes of matrices: 
Monge and Anti-Monge matrices, Toeplitz and circulant matrices, sum and prod-
uct matrices, graded matrices. Among polynomially solvable restricted versions 
of QAPs two notable groups can be distinguished: constant QAPs and constant 
permutation QAPs. A constant QAP is a QAP whose objective function value does 
not depend on the feasible solution, i.e. all feasible solutions yield the same value 
of the objective function. More specifically, if we denote the objective function of 
QAP(A, B) by Z(A, B, ¢) (as in the previous chapters), then QAP(A,B) is called 
a constant QAP if and only if the function Z(A, B, ¢) does not depend on the 
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permutation ¢. Clearly, in this case each feasible solution is an optimal solution 
and the problem is trivial. 

A restricted version of the QAP is called a constant permutation QAP if it has 
the following property: For each problem instance there exists an optimal solution 
which depends only on the instance size, but not on the entries of the coefficient 
matrices. For such QAPs, there is usually a rule telling us how to construct the 
above mentioned optimal solution. The permutation constructed according to this 
rule is called constant permutation with respect to the considered QAP version. 
Obviously, the constant permutation is not necessarily the unique optimal solution 
of the constant permutation QAP. The terms constant QAP and constant permu-
tation QAP maintain their meaning throughout this chapter and the next one. 

This chapter is organized as follows. In the first section we introduce the matrix 
classes which we are dealing with and related notations. The second section sum-
marizes some preliminary results and elementary observations. In the third section 
some simple polynomially solvable cases of the QAP are listed. Then, the QAP 
on Monge and Monge-like matrices is investigated in Section 4.4. In Section 4.5 
some QAPs with circulant and limited bandwidth matrices are considered. Results 
on the so-called taxonomy problem are included in this section, too. This series of 
investigations on special cases of the QAP continues then in the next chapter with 
the Anti-Monge-Toeplitz QAP. 

4.1 DEFINITIONS AND NOTATIONS 
In this section we define the classes of matrices we are going to deal with and 
introduce the corresponding notations. 

Monge and Monge-like matrices 

It will turn out that special versions of the QAP with coefficient matrices having 
Monge or Monge-like properties are interesting problems, especially form a theo-
retical point of view. Let us first recall the definition of Monge and Anti-Monge l 

matrices as they usually occur in the literature. 

1 Different authors use different names for Anti-Monge matrices. Some frequent alternative 
names are "inverse Monge" and "contra Monge" . 



QAPs on Specially Structured Matrices 109 

Definition 4.1 A matrix A = (aij) is called a Monge matrix if its elements satisfy 

for 1 < i < r < nand 1 < j < s < n. - - - - (4.1) 

The class of Monge matrices is denoted by MONGE. 

A matrix A = (aij) is called an Anti-Monge matrix if its elements satisfy 

aij + arB ~ ai. + arj ,for 1 ~ i < r ~ nand 1 ~ j < s ~ n (4.2) 

The class of Anti-Monge matrices is denoted by A-MONGE. 

A matrix A = (aij) is called a K almanson matrix if A is symmetric and its elements 
satisfy the following inequalities 

aij + akl < aik + ajl 
ail + ajk < aik + ajl 

for 1 ~ i < j < k < I ~ n 
for 1 ~ i < j < k < I ~ n 

This class of matrices is denoted by KALMANSON. 

(4.3) 
(4.4) 

The classes MONGE, A-MONGE and KALMANSON are closely related to each other. 
It is easy to see that if A = (aij) is a Monge matrix, - A = (-aij) is an Anti-Monge 
matrix, and vice-versa. Further, inequality (4.4) in the definition of Kalmanson 
matrices is the same as that in the definition of Anti-Monge matrices. (The latter 
inequality is sometimes called the Anti-Monge inequality). In a Kalmanson matrix 
the Anti-Monge inequality is fulfilled for quadruples of entries which lie strictly 
over the main diagonal (see (4.4)). Since a Kalmanson matrix is symmetric, the 
Anti-Monge inequality is also fulfilled for quadruples of entries which lie strictly 
under the main diagonal. In this sense, a Kalmanson matrix is "almost" an Anti-
Monge matrix. The only quadruples of entries for which the Anti-Monge inequality 
may be violated are situated "around" the diagonal. 

Othe.r interesting classes of matrices with simple combinatorial structure, which 
are related to Monge-like matrices and lead to well solvable versions of the QAP, 
are defined below. 

Definition 4.2 A matrix A = (aij) is called a sum matrix (product matrix) if 
there exist real numbers at and ai, 1 ~ i ~ n, such that aij = at +aj (aij = at aj), 
for 1 ~ i, j ~ n. The classes of sum and product matrices are denoted by SUM and 
PROD, respectively. (an and (an are called row and column generating vectors, 
respectively. 
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A matrix A = (aij) is called a small matrix (large matrix) if there exist real numbers 
ai and aL I ~ i ~ n, such that aij = min( ai, aj) (aij = max( ai, aj)), for 
1 ~ i, j ~ n. The classes of small and large matrices are denoted by SMALL and 
LARGE, respectively. Again, (an and (ai) are called row and column generating 
vectors, respectively. 

The matrix A = (aij) with aij = (-I)i+j, 1 ~ i,j ~ n, is called a chess-board 
matrix. The class of chess-board matrices is denoted by CHESS. 

The matrix A = (aij) with all entries being equal to some constant K, aij = K, for 
aliI ~ i, j ~ n, is called a constant matrix. 

Clearly, a constant matrix is a sum matrix with generating row and column vectors 
given by ai = aj = K/2, for all i, where K is the constant in the definition of 
constant matrices. It is easy to see that every sum matrix belongs MONGE and 
A-MONGE. Moreover, it is not difficult to see that sum matrices are the only 
matrices which belong simultaneously to MONGE and A-MoNGE. Thus, 

SUM = MONGE n A-MONGE 

Moreover, it is easy to check that a SUM matrix A with generating vectors (an 
and (an is symmetric if and only if the generating vectors fulfill the equalities 
aj - ar = a; - ai, for all I ~ i, j ~ n, or equivalently, if and only if there exists an 
n-dimensional vector (Ai) such that ai = a]' + Ai and ai = a;: + Ai for 1 :S i:S n. 
Consequently, every symmetric sum matrix is also a Kalmanson matrix. Similarly, 
a product matrix A with generating vectors (an and (ai) is symmetric, if and only 
ifthere exists a vector (-y;), such that a[ = Ija1, a[ = Ii a1. With this observation 
it can be easily checked that every symmetric product matrix is a permuted Anti-
Monge matrix, i.e. there exists a permutation ?T such that A(11") = (a11"(i),11"(j)) is 
an Anti-Monge matrix. In our case a permutation which orders the vector (-y;) 
non-increasingly, i.e. /11"(1) ;::: 111"(2) ;::: ... ;::: 111"(n), does the job. 

Graded matrices 

For the so-caned graded matrices we adopt the definition used in [227]. 

Definition 4.3 A matrix A is graded on its rows (graded on its columns) if all 
its rows (columns) have the same monotonicity, i.e. either all of them are non-
decreasing, or all of them are non-increasing. 
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A matrix A = (aij) is called left-higher graded if all its rows and columns are 
non-decreasing, i.e. aij ~ a;,j+1, 1 ~ j ~ n - 1, 1 ~ i ~ n, and aij ~ a;+1,j, 
1 ~ i ~ n - 1, 1 ~ j ~ n. The matrix A is called right-lower graded if both 
its rows and its columns are non-increasing, i.e. aij ~ ai,j+1, 1 ~ j ~ n - 1, 
1 ~ i ~ n, and aij ~ ai+1,j, 1 ~ i ~ n - 1, 1 ~ j ~ n. The terms left-lower graded 
and right-higher graded are defined analogously. The above defined properties are 
abbreviated as LHG, RLG, LLG and RHG, respectively. In a pictorial setting, the 
two first letters of these abbreviations describe the position of the smallest entry in 
the matrix. 

Diagonally structured matrices 

It turns out that some versions of the QAP with diagonally structured matrices can 
be solved in polynomial time. The following definition introduces some interesting 
classes of diagonally structured matrices. 

Definition 4.4 A matrix A = (aij) is a Toeplitz matrix, if there exist 2n - 1 real 
numbers Cl- n , .. . ,Co, . .. , Cn-l such that aij = Ci-j, for all 1 ~ i, j ~ n. The class 
of Toeplitz matrices is denoted by TOEPLITZ. 

If the numbers Ci in the definition of a Toeplitz matrix A fulfill the equalities Ck = 
Ck-n, for all 1 < k < n - 1, then A is called a circulant matrix. This class of 
matrices is denoted by eIRe. 

Consider a matrix A = (aij). In the case that d is the smallest integer having the 
property aij = 0 for all 1 ~ i, j ~ n with Ii - jl ~ d, then matrix A is called a 
bandwidth-d matrix. The class of bandwidth-d matrices is denoted BAND-d. 

More notations 

We use the following definition which does not occur frequently in the literature: 
An n x n matrix A is called an odd matrix if n is an odd integer, and is called an even 
matrix if n is even. Further, a matrix will all entries being positive (nonnegative) 
numbers is called a positive matrix (nonnegative matrix). The abbreviations SYM, 
SKEW, ODD, EVEN, Pos, NNEG, are used to denote the properties symmetric, 
skew symmetric, odd, even, positive and nonnegative respectively. Symmetric and 
skew symmetric matrices are defined as usually: matrix A = (aij) is symmetric 
(skew symmetric) if aij = aji (aij = -aji), for all i,j. 
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Throughout the rest of this chapter we use the notation CLAss(PRopl, PRop2, 
PRop3) for the subclass of matrices in CLASS with properties PROP 1, PRop2 and 
PRop3. For example, the notation MONGE(SYM,LHG,ODD) will be used to denote 
the class of symmetric Monge matrices of odd size with non-decreasing rows and 
columns. 

For a class CLASS of matrices, we denote by PERM CLASS the class consisting of 
matrices A'll" = (a'll"(i)'II"(j)), for all A E CLASS and for all7r E Sn. Obviously, for two 
matrix classes CLAssl and CLAss2 the inclusions PERMCLASSICPERMCLAss2 
and CLASSl~PERMCLAss2 are equivalent. If these inclusions hold, we write 
CLAssl~'II"CLAss2. For example, it is easily seen that PROD(SYM) ~'II"A-MoNGE. 
The case where both inclusions CLAssl~'II"CLAss2 and CLAss2~'II"CLAssl hold si-
multaneously will be abbreviated by CLAssl='II"CLAss2. As an example note that 
LHG='II"RLG and RHG='II"LLG. The significance of these notations becomes clear 
when considering that two problems QAP(A, B) and QAP(Al,Bl ) with matrices 
A ECLAssl, B ECLAss2 and Al~'II"CLAssl, Bl~'II"CLAss2 are equivalent. From 
now on the sentence "the problems QAP(A,B) and QAP(Al , B l ) are equivalent" 
means that once we know an optimal solution to one of these problems, an optimal 
solution to the other one can be constructed in polynomial time. 

The class of problems QAP(A,B) with matrices A E CLAssl and B E CLAss2 is 
denoted by CLAssl XCLAss2. For a class CLASS of matrices, we denote by NCLASS 
the class consisting of matrices -A, for all A ECLASS. As an illustrative example 
consider the equality A-MoNGE=NMoNGE. Finally, the class of all matrices is 
denoted by MATRIX. 

A permutation 7r E Sn will be often given as a sequence of the images 7r(i), 1 ~ i ~ 
n, and denoted by (7r(1), 7r(2), ... , 7r(n)) .. This notation will be called sequential 
representation of 7r. 

The independent-QAP {I-QAP} 
We complete this section by introducing a relaxation of the QAP, the so-called 
independent-QAP, where the rows and the columns of the coefficient matrix A 
may be permuted by two independent permutations 7r, <p E Sn. Namely, 

(4.5) 

We denote this problem by I-QAP. The notations I-QAP(A,B) Z(A, B, <p, 7r), opti-
mal value and optimal solution are defined similarly as for the QAP. Clearly, I-QAP 
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is a relaxation of the QAP, i.e. the following inequality holds: 

(4.6) 

Thus, the optimal value of QAP(A,B) is larger than or equal to the optimal value of 
I-QAP(A,B). If a pair of permutations (11',11') is an optimal solution to I-QAP(A,B), 
then 11' is an optimal solution to QAP(A,B). This relationship between I-QAP(A,B) 
and QAP(A,B) is exploited in several proofs in this chapter. 

4.2 THE CONES OF MONGE-LIKE 
MATRICES 

Before investigating the combinatorial structure of the classes of Monge-like matri-
ces introduced in the previous section, let us formalize the easily seen fact that the 
objective function of the QAP(A,B) is linear with respect to each of the coefficients 
matrices A, B. 

Observation 4.1 Let the matrices A and B be linear combinations of arbitmrily 
given matrices A;, Bi, and constants I-'i, Vi, 1 :::; i :::; k, A = L~=l l-'iAi and 
B = L~=l viBj. Then 

k k 
Z(A,B,1I') = LLl-'iVjZ(A;,Bj,1I'). o 

i=l j=l 

Further, notice that without loss of generality we can assume the coefficient ma-
trices of the QAP to be nonnegative, i.e. have nonnegative entries. Indeed, given 
a QAP(A, B) of size n with coefficient matrices which may contain also negative 
entries, we can add s constant matrix with an enough large constant K. to A and 
B, and obtain a new problem QAP(A, E), where 

A = (aij), aij = aij + K., E = (bij), bij = bij + K.. 

QAP(A, B) and QAP(A, B) are equivalent because for all 11' E Sn we have 

Z(A, E, 11') = Z(A, B, 11') + K.Z(En, B, 11') + K.Z(A, En ,pi) + K. 2 Z(En, En, 11'), 
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where En is the n x n matrix of all ones. Then, for all 7r E Sn we have 

n n n n 

Z(En,B,7r) = LL)ij Z(A, En, 7r) = LLaij 
i=l j=l i=l j=l 

Z(En, En, 7r) = n2 

The above equalities show that QAP(A, B) and QAP(A, B) have the same optimal 
solutions, and hence, they are equivalent. 

Next, we present some results on the combinatorial structure of the classes of 
matrices MONGE, A-MONGE and KALMANSON. It can be shown that each of these 
classes forms a cone. Moreover, for each of these cones, 0-1 matrices generating 
the corresponding extremal rays can be specified explicitly. For more details about 
these results and their proofs the reader is referred to [12, 33, 50, 67, 205]. Here 
we give only sketches of proofs. The proofs apply a general method which can be 
used for all classes of matrices discussed in this section. This method is based on 
the following characterization of polyhedral cones (see e.g. [211]). 

Proposition 4.2 Let a polyhedral cone C = {x E IRn : Ax ~ O} be given, where 
A is an m x n matrix. Let Zl, Z2, ... Zr be a minimal set of vectors generating the 
r-dimensionallinear subspace L = {x E IRn:Ax = O} ofC, and let G1, G2, ... , 
G 3 , be the minimal proper faces of C, i.e. the (r + I)-dimensional faces of C. Each 
Gi can be written as Gi = {x: (ai, x) :s a, Aix = a}, where Ai is a submatrix of A 
and a~ is a row of A such that 

rank ( Aj ) = n - r 
ai 

(4.7) 

and L = {x: (ai, x) = 0, A~x = O}. Now, choose for each i = 1,2, ... , s, a vector Yi 
from Gi \L, i.e. a vector Yi fulfilling (ai, Y) < 0 and A~Yi = O. Then, for each c E C 
there exist nonnegative real numbers Ai, 1 ~ i ~ s, and arbitrary real numbers /lj, 
1 ~ j ~ r, such that 

3 r 

.c= LAiYi+ L/ljZj o 
i=l j=l 

Now assume that we want 1) to prove that a given class CLASS of n x n matrices 
is a polyhedral cone, and 2) to find its extremal rays. Our approach consists of the 
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following steps. First, find a representation of CLASS as CLASS = {X:AX ~ OJ, 
where A is an n2 x n2 matrix of full rank and X E CLASS is thought as an n2_ 

dimensional vector2. Secondly, find the dimension dimL, and a basis for the linear 
space L = {X: AX = O}. Finally, investigate the minimal faces of CLASS, i.e. the 
faces which are determined by {X: (ai, :z:) ~ 0, A~:z: = O}, for some row aL and some 
submatrix A~ of matrix A, which fulfill (4.7). 

Next, let us see how this approach can be applied to different classes of Monge-like 
matrices. 

4.2.1 The cone of Monge matrices 

First, let us introduce the n x n matrices A (p,q) , 1 ~ p, q ~ n - 1, given as follows: 

{
I if i = p, j = q or i = p + 1, j = q + 1 

a}},q)= -1 ifi=p,j=q+lori=p+l,j=q 
o otherwise 

Clearly, there are (n - 1)2 matrices of this type. Denote by A the (n - 1)2 x n2 

matrix whose rows are the matrices A(p,q) (considered as n2-dimensional vectors). 
From the definition of Monge matrices follows immediately that 

MONGE = {X:AX ~ O} 

Moreover, by means of elementary algebra it can be shown that the matrices A(p,q) , 

1 ~ p, q ~ n - 1, form a linear independent system in IR(n-l)2. Hence, rankA = 
(n - 1)2 and, consequently, dimL = n2 - (n - 1)2 = 2n - 1. 

Further, let us show that the matrices H(p) = (hW), V(q) = (vW), 1 ~ p ~ n, 
2 ~ q ~ n, defined as follows, form a basis of the linear space L. 

h(P) _ {I if i = p 
ij - 0 otherwise 

(q) _ {I if j = q 
Vij - 0 otherwise 

Matrix H(p) has a row of I-entries, namely the row with index p, and the rest of its 
entries are equal to O. Similarly, matrix V(q) has a column of I-entries, namely the 
column with index q, and the rest of its entries are equal to O. It is easy to see that 
these matrices which are in fact SUM matrices, fulfill the Monge inequalities (4.1) 
with equality, or equivalently, AH(p) = 0, AV(q) = O. Hence, H(p), V(q), belong 

2Throughout this section we make no difference between an n X n matrix X and the n2 _ 
dimensional vector obtained by a top-to-bottom row-wise ordering of the entries of X. 
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to L. It is not difficult to see that the rank of this system of matrices is 2n - 1, 
and that gives us a basis for L. Indeed, E;=1 H(p) = E;=1 V(q), and H(p), V(q), 
1 ~ p ~ n, 2 ~ q ~ n, are linearly independent. Summarizing, we obtain the 
following lemma. 

Lemma 4.3 The Monge matrices form a cone represented as 

MONGE = {X:AX ~ O} 

where A is as above and rankA = (n - 1)2. The dimension of the corresponding 
linear subspace L = {X: AX = O} equals 2n - 1 and the set of matrices H(p), V(q), 
1 ~ p ~ n, 2 ~ q ~ n, is a basis of L. 

Next we show that each of the rows of A defines a minimal face of the cone MONGE. 
Indeed, for each of the rows A(p,q) , consider the submatrix A(p,q) of A obtained 
from A by deleting the row A (p,q). Clearly 

( A(p,q) ) 
rank A(P,q) = rankA = (n _1)2 = n2 - dimL (4.8) 

Let B(p,q) be the n2-dimensional vector obtained as sum of all rows of A but the 
row A (p,q). Then, the inequality (B(p,q) , X) ~ 0 is fulfilled by all X E MONGE, 
and (B(p,q),X) = 0 only if A(p,q)X = O. Hence, the face defined by the equality 
(B(p,q) ,X) = 0 equals G(p,q) = {X: (A (p,q) ,X) ~ 0, A (p,q) X = O}, and G(p,q) is 
a minimal face due to equality (4.8). Now, for each pair of indices (p, q) let us 
introduce a matrix which belongs to the corresponding face a(p,q) but does not 
belong to the linear space L. Consider the matrices L(p,q) = (l~,q»), 2 ~ p ~ n, 
1 ~ q ~ n - 1 specified as below: 

l~~,q) = {I if i 2: n - p + 1, j ~ q 
13 0 otherwise 

Matrix L(p,q) has a p x q submatrix with I-entries in the left-lower corner; the rest 
of its entries are equal to O. It is not difficult to check that L(p,q) E a(p-1,q) \ L, 
for all 2 ~ p ~ n, 1 ~ q ~ n - 1. Summarizing we get the following lemma: 

Lemma 4.4 The sets a(p,q), 1 ~ p, q ~ n - I, are the minimal faces of the cone 
MONGE. Moreover, L(p,q) E a(p-1,q) \ L for 2 ~ p ~ n, 1 ~ q ~ n - 1. 

Now Proposition 4.2 can be applied and the following characterization of the Monge 
matrices is immediately obtained. 
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Theorem 4.5 For each n x n Monge matrix M, there exist real numbers J.ti, 1 ~ 
i ~ n, and Aj, 2 ~ j ~ n and nonnegative numbers /'i,ij for 2 ~ i ~ n, 1 ~ j ~ n-l 
such that 

n n n n-1 

M = LJ.tiH(i) + LAiV(i) + LL/'i,jjL(i,i) o 
i=1 i=2 i=2 j=1 

The same result was obtained by Rudolf and Woeginger [205] in a direct proof. 
Moreover, Rudolf et al. considered the cone of nonnegative Monge matrices and 
identified its extremal rays. To this end they define the matrices R(p,q) = (r~,q)), 
1 ~ p, q ~ n, as follows: 

A"q) = {I if i ~ p, j ~ n - q + 1 
'J 0 otherwise 

Matrix R(p,q) has a p x q submatrix with I-entries in the right-upper corner; the 
rest of its entries are equal to o. Consider as an illustrative example the 3 x 3 
matrices H(2), V(3), L(1,2) and R(2,2) represented below: 

H(2)~U ~ n 
L(1,2)~ 0 ~ n 

( ~ ~ ~) 
001 

(
0 1 

R(2,2) = 0 1 
o 0 D 

By making use of elementary means of algebra, Rudolf et al. derive the following 
result. 

Proposition 4.6 (Rudolf and Woeginger 1995, [205]) 
The nonnegative n x n Monge matrices form a cone. Its extremal rays are generated 
by the 0-1 matrices H(i), V(i), for 1 ~ i ~ n, and L(i,il, R(i,il, for 1 ~ i, j ~ n. 0 

Sometimes we will restrict our investigations to symmetric Monge matrices which 
obviously form a cone. Similarly as for the cone of nonnegative Monge matrices, 
Rudolf et al. identify the extremal rays of the cone of nonnegative symmetric Monge 
matrices. To this end the matrices S(p) = H(p) + V(p), 1 ~ p ~ n, and T(p,q) = 
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L(p,q) + R(q,p), 1 < p, q < n, p + q < n, are introduced. For example, consider the 
3 X 3 matrices S(2'j and 1'(1,2) give; below: 

( ° 1 0) S(2) = 1 2 1 

° 1 ° 
In terms of matrices S(p) and T(p,q) , the cone of nonnegative symmetric Monge 
matrices is characterized as follows. 

Proposition 4.7 (Rudolf and Woeginger 1995, [205]) 
The nonnegative symmetric n x n Monge matrices form a cone. Its extremal rays are 
generated by the matrices S(i), 1 ~ i ~ n, and T(i,j), 1 ~ i, j ~ n, i + j ~ n. Thus, 
for every nonnegative n x n matrix A in MONGE(SYM), there exist nonnegative 
numbers /'i,i, 1 ~ i ~ n, and Jiij, 1 ~ i,j ~ n, i + j ~ n, such that: 

n n-1n-i 
A = L /'i,iS(i) + L L JiijT(i,j) o 

i=l i=l j=l 

4.2.2 The cone of graded Anti-Monge matrices 
Some of our polynomiality results on QAPs with Monge or Anti-Monge matrices 
will additionally require the Monge-like matrix to be graded, i.e. with monotone 
columns and rows. Analogously to the nonnegative Monge matrices, the non-
negative left-higher graded Anti-Monge matrices and the nonnegative right-lower 
graded Monge matrices form also cones. The following simple observation helps to 
describe the structure. of these matrix classes. 

Observation 4.8 (a) A matrix A is Anti-Monge if and only if 

Aij := aij - ai,j-1 - ai-1,j + ai-1,j-1 ~ 0, for 2 ~ i,j ~ n. (4.9) 

(b) An Anti-Monge matrix is left-higher graded, if its first row and its first column 
are non-decreasing, i.e. if 

Ail := ail - ai-1,1 ~ 0, for 1 < i ~ n, and 
A1j := alj - a1,j-1 ~ 0, for 1 < j ~ n. 

(4.10) 
(4.11) 
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(c) A left-higher gmded Anti-Monge matrix is nonnegative if 

Ll11 := all 2: O. (4.12) 

(d) A matrix A is completely determined by the n2 values Llij, 1 :s i, j :s n. 0 

Note that a matrix A is a nonnegative left-higher graded Anti-Monge matrix, if 
and only if the (n + 1) x (n + 1) matrix obtained by bordering A with an additional 
top row of zeros and an additional left column of zeros is an Anti-Monge matrix. In 
this way, inequalities (4.10)-(4.12) become special cases of (4.9), and the additional 
requirements of monotonicity and non-negativity appear quite natural for Anti-
Monge matrices. 

For the characterization of the cone of nonnegative matrices in A-MoNGE(LHG) 
we can use again Proposition 4.2. First, we derive a description of A-MONGE of 
the form {X: AX :s OJ. Here A will be an n2 x n2 matrix with rows determined 
by the matrices A(p,q) = (a~f,q»), 1 :s p, q :s n, given as follows. 

(1,1) _ {-I if i = j = 1 
aij - 0 otherwise 

if i = 1, j = q - 1 
if i = 1, j = q 
otherwise 

1 if i = P - 1, j = 1 
-1 if i = p, j = 1 
o otherwise 

for p 2: 2 

for q 2: 2 

{
I ifi=p-l,j=qori=p,j=q-l 

a~f,q)= -1 ifi=p-l,j=q-lori=p,j=q 
o otherwise 

for p,q 2: 2 

According to Observation 4.8, the set of nonnegative left-higher graded n x n 
Anti-Monge matrices is given as {X:AX :s OJ. Hence, these matrices forms a 
cone. Moreover, it is easy to see that A has full rank, and hence L = {X: AX = 
O} consists only of the O-matrix, i.e. the matrix with all entries equal to 0, and 
dimL = O. For the characterization of the cone according to Proposition 4.2 we 
have to identify its minimal faces. Similarly as in the previous section, we introduce 
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submatrices A(P,q) of A, 1 $ p, q $ n, obtained by deleting the corresponding row 
A (p,q). Further, similarly as in the case of Monge matrices, it is not difficult to 
show that the sets G(p,q) = {X: (A(p,q) , X) $ 0, A(p,q) X = O}, for 1 $ p, q $ n, 
are the minimal faces of {X:AX $ O}. Now it remains to select a matrix which 
belongs to G(p,q) \ L, for all 1 $ p, q $ n. To this end we introduce the matrices 
C(p,q) = (c~~,q») for 1 < p q < n 

13 - , -

c~~,q) = {1 if i ~ ~ - p + 1, j ~ n - q + 1 
13 0 otherwIse 

c(p,q) is a 0-1 matrix whose ones form a lower-right block of size p x q. It is easy 
to check that AC(p,q) $ 0 for all 1 $ p, q $ n, and (A(p,q) , C(pl,ql») = 0 if and only 
if p' = n - p+ 1, q' = n - q + 1. By applying Proposition 4.2 we get the following 
theorem. 

Theorem 4.9 The nonnegative left-higher graded n x n Anti-Monge matrices form 
a cone. For each matrix M in this cone there exist nonnegative numbers Apq , 
1 $ p,q $ n, such that 

n n 
M = L L ApqC(P,q). 

p=l q=l 

Hence, the 0-1 matrices C(p,q), 1 $ p, q $ n, are the extremal rays of this cone. 0 

Based on the above characterization of the nonnegative left-higher graded Anti-
Monge matrices, we can characterize the nonnegative right-lower graded Monge 
matrices. Notice that MONGE(RLG) = NA-MoNGE(LHG). Hence, the non-
positive right-lower graded Monge matrices are exactly the nonnegative left-higher 
graded Anti-Monge matrices multipled by -1. Each nonnegative right-lower grad-
ed Monge matrix can be obtained by some non-positive right-lower graded Monge 
matrix by adding to the latter some constant which is sufficiently large. Consid-
ering all these facts, it is not difficult to see that the matrices E(p,q) = (e~;t») 
for 1 $ p, q $ n, defined below, will be of interest for the characterization of the 
nonnegative matrices in MONGE(RLG). 

e~p!q) = {1 if i $ p or j $ q 1 <_ p, q <_ n 
1,3 0 otherwise 

E(p,q) is a 0-1 matrix whose zeroes form a lower-right block of size p x q. Consider 
as an illustrating example the 3 x 3 matrices E(2,1) and C(2,1)given below: 

( 1 1 1) E(2,1) = 1 1 1 
100 

C(2,1) = ( ~ ~ ~) 
001 
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Summarizing, we get a straightforward corollary of Theorem 4.9. 

Corollary 4.10 The nonnegative right-lower graded n x n Monge matrices form 
a cone. For each matrix M in this cone there exist nonnegative numbers >"pq, 
1 ::; p, q ::; n, such that 

n n 

M = L L >"pqE(p,q) 

p=lq=l 

Hence the 0-1 matrices E(p,q), 1 ::; p, q ::; n, are the extremal rays of this cone. 

4.2.3 The cone of Kalmanson matrices 

For the characterization of Kalmanson matrices we exploit again Proposition 4.2. 
To this end we need a matrix A such that KALMANSON = {X: AX::; O}. We make 
use of the following description of Kalmanson matrices due to Delneko, Rudolf and 
Woeginger [64]. 

Proposition 4.11 (Deineko, Rudolf and Woeginger [64], 1995) 
A symmetric n x n matrix C = (Cij) is a J{ almanson matrix if and only if the 
following inequalities are fulfilled: 

Cli + Cn ,i+1 ::; Cl,i+l + Cni, for all 2 ::; i ::; n - 2 

Ci,j+l + Ci+1,j ::; Cij + Ci+1,j+l, for all 1 ::; i ::; n - 3, i + 2::; j ::; n - 1 

Note that the dimension of the vector space of the n x n symmetric matrices equals 
n(n + 1)/2, and hence, every symmetric matrix corresponds to an n(n + 1)/2-
dimensional vector. Throughout this section, we make no difference between the 
matrix and the corresponding vector. Further, let the 0-1 matrices B(p) = (b~~)), 
for 2 ::; p ::; n - 2, and B~,q) = (b~~,q)), for 1 ::; p ::; n - 3, p + 2::; q ::; n - 1, be 
defined below 

b(P) = { ~1 !J 
o 

if i = 1, j = p or i = p + 1, j = n 
if i = 1, j = p + 1 or i = p, j = n 
otherwise 

if i = p, j = q + 1 or i = p + 1, j = q 
if i = p, j = q or i = p + 1, j = q + 1 
otherwise 
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Then Proposition 4.11 implies KALMANSON = {X: BX ~ O}, where B is a matrix 
whose rows are n(n + 1)/2-dimensional vectors corresponding to the symmetric 
matrices B(p), B(p,q) defined above. Hence B is an (n(n - 3)/2) x (n(n + 1)/2) 
matrix. Moreover, it can be proven by means of elementary algebra that the rows 
of B are linearly independent, i.e. rankB = n(n - 3)/2 (see [67] for a proof of this 
fact). The last equality implies that dimL = n(n + 1)/2 - n(n - 3)/2 = 2n, where 
L = {X: AX = O}. Further, it can be shown that the matrices p(p,p) = Ui1'p») and 
p(p) = li1) , 1 ~ p ~ n, defined below, belong to L and are linearly independent. 
Hence, these matrices form a basis of L. 

ip,p) - {I ifi = j = P 
ij - 0 otherwise 

i~1!) = {I if p = i, q,# i or p '# i,q = i 
'3 0 otherwise 

Summarizing, we obtain the following lemma. 

Lemma 4.12 The Kalmanson matrices form a cone which can be described as 

KALMAN SON = {X: BX ~ O}, 

where B is introduced above. The matrices p(p,p), p(p), 1 < p < n, form a basis of 
the corresponding linear space L. 

It remains to identify the minimal faces of KALMANSON and a "proper" element 
in each face. Then, Proposition 4.2 can be applied. Analogously as in the cases 
of MONGE and A-MoNGE, let the submatrices B(p,q), 1 < P < n - 3, P + 2 < q < 
n - 1, and B(p), 2 ~ i ~ n - 2, of B be obtained from Ii by-deleting row jj(p,ql, 
B(p), respectively. The analogy goes further to proving that the sets C(p,q) = 
{X:(B(p,q),X) ~ O,B(p,q)X = O}, c(p) = {X:(A(p),X) ~ O,B(p)X = O} are 
minimal faces of KALMANSON. Now, let us introduce the so-called cut matrices3 

w(p) = (w(p»), 3 ~ p ~ n - 1, W(p,q) = (w~,q»), 2 ~ P ~ n - 2, P + 1 ~ q ~ n - 1, 
which will turn out to be "proper" elements of the minimal faces of KALMANSON . 

(P)_{ 1 ifl{i,j}n[p,n]I=1 
wij - 0 otherwise 

w~1?,q) = {I if I{ i, j} n [p, qJl = 1 
'3 0 otherwise 

It is easy to check that w(p) E C(p-l) \ Land w(p,q) E C(p-l,q) \ L. Based on 
these arguments and on Lemma 4.12, Proposition 4.2 can be applied to obtain a 
characterization of the cone KALMANSON. 

Theorem 4.13 (Bandelt et al. [12], 1992, Christopher et al. [50], 1996, Demidenko 
et al. [67], 1995) 

3This term was originally used by DeYneko and Woeginger [65] 
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The n x n Kalmanson matrices form a cone. For each n x n matrix M in this 
cone there exist real numbers ai, fii, 1 ~ i ~ n, and nonnegative numbers Ai, 
3 ~ i ~ n - 1, Ilij, 2 ~ i ~ n - 2, i + 1 ~ j ~ n - 1, such that 

n n-1 n-2 n-1 
M = 2)aiF (i,i) + fiiF(i») + L AiW(i) + L L llijW(i,j) .. o 

i=l ;=3 i=2 j=i+1 

As an illustrative example for the matrices F(p,p) , F(p), W(p) , W(p,q) which generate 
the cone of Kalmanson matrices consider the 5 x 5 matrices F(3), F(3,3), W(3), 
W(2,3). 

0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 

F(3,3) = 1 1 0 1 1 F(3) = 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 

0 0 1 1 1 0 1 1 0 0 
0 0 1 1 1 1 0 0 1 1 

W(3) = 1 1 0 0 0 W(2,4) = 1 0 0 1 1 
1 1 0 0 0 0 1 1 0 0 
1 1 0 0 0 0 1 1 0 0 

4.2.4 The cone-structure and the QAP 
After having discussed the structure of several sets of Monge-like matrices, a nat-
ural question arises: Can we exploit the special structure of these matrix classes 
and their properties for the identification and solution of polynomially solvable 
restricted versions of the QAP? 

As we will see further in this chapter, the answer is yes. More specifically, assume 
that a restricted version of the QAP with specially structured coefficient matrices 
is believed to be a constant permutation QAP. Moreover, assume that some per-
mutation <Po is conjectured to be the constant permutation. In the case that the 
coefficient matrices belong to matrix classes which form cones (as described in the 
previous sections), the coefficient matrices A, B of some instance QAP(A,B) of the 
considered version of the QAP can be expressed as follows: 

A = Sl + LaiAi, 
i 

B = S2 + LfijBj, 
j 
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Here, 8 1 and 8 2 are in most of the cases matrices with a "simple" structure. 
e.g. sum matrices, A;, Bj are 0-1 matrices generating the extremal rays of the 
corresponding cones, and the coefficients ai, /3j are nonnegative. According to 
Observation 4.1, we have 

Z(A,B,4;) = Z(81 , 82, 4;) + L/3jZ(81 , Bj, 4;) + L ai Z (A j,82 ,4;) 
j 

+ L aj/3jZ(Ai, Bj, 4;) 
i,j 

(4.13) 

The QAP with a sum matrix is polynomially solvable, as we will see in the next 
section. Moreover, the QAP with a sum matrix and another specially structured 
coefficient matrix, e.g. a circulant matrix, is a constant QAP (see next section). 
So, let us assume that the problems QAP(81, 82), QAP(S1, Bj), QAP(Aj, S2) are 
constant QAPs, i.e. every permutation is an optimal solution for each of them, 
and concentrate our attention at the problems QAP(Ai , Bj) with 0-1 coefficient 
matrices. Because of (4.13) and the nonnegativity of the numbers aj, /3j, it is 
sufficient to prove that the conjectured constant permutation 4;0 is an optimal 
solution for each of these instances of the QAP. In most of the cases, it is of 
benefit to restrict our investigations to these QAP with 0-1 coefficient matrices, as 
it is much simpler to check the conjecture concerning the optimality of 4;0 for the 
problems QAP(Ai,Bj) than for the original QAP(A,B). 

Clearly, the applicability of this approach, henceforth called reduction to extremal 
rays, is quite limited, as it can be only used if the QAP at hand is a constant per-
mutation QAP. Moreover, we would need a good guess for the eventual constant 
permutation. However, generally, we can try to check whether the given problem is 
the constant permutation QAP by investigating the combinatorial structure of ma-
trices Ai and Bi which generate the extremal rays of the corresponding cones. Such 
investigations could parallelly help to get some feeling concerning the structure of 
the constant permutation, in the case that the latter exists. 

4.3 SIMPLE POLYNOMIALLY SOLVABLE 
CASES OF THE QAP 

The most simple polynomially solvable special cases of the QAP are either constant 
QAPs, in the case that the coefficient matrices have very special properties (e.g. one 
matrix is skew symmetric and the other one is symmetric), or "trivial" problems 
because of the ordering of the entries of the coefficient matrices (the coefficient 
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matrices are "appropriately" graded). Besides such special cases, we also discuss 
in this section QAPs which can be reformulated as linear assignment problems 
(LAPs). Such QAP versions arise if the problem data imply the "linearity" of the 
objective function, as e.g. in the case of sum matrices. 

First, let us recall Proposition 2.1 which is exploited in many proofs throughout 
this chapter: Given two vectors U = (ud and V = (Vi), the minimum of the scalar 
product of the permuted vectors (U(,p) , V(t/I)) over all pairs of permutations (</J,1/;) 
is attained when U(,p) and V(t/I) are sorted in non-increasing and non-decreasing 
order, respectively. The following proposition, probably the very first result on well 
solvable cases of the QAP, is a straightforward corollary of Proposition 2.1. 

Proposition 4.14 (Krushevski 1964, [144]) 
Consider two n x n matrices A = (aij) and B = (bij ) such that for a1l4-tuples of 
indices (i,j,k,l) the following equivalence holds: 

( aij 2: akl ) {:=:::? ( bij ~ bkl ) 

Then, the identity permutation id is an optimal solution to QAP( A,B). 0 

The following theorem states a generalization of Proposition 4.14: 

Theorem 4.15 The identity permutation id is an optimal solution to QAPs on 
the classes LHG x RLG, LLG X RHG. 

Proof. We prove the result only for QAPs on the class LHGxRLG. In the other 
case the proof is completely analogous. Let A = (aij) be an n x n matrix with 
non-decreasing rows and columns and let B = (bij ) be an n x n matrix with 
non-increasing rows and columns. Consider the relaxation I-QAP(A,B) and an 
arbitrary pair of permutations (ip, 11") in Sn. It can be easily seen that the following 
inequalities hold, due to Proposition 2.1: 

n n n n 

Z(A, B, ip, 11") L L a<p(i)1r(j)bij 2: L L ai1r(j)bij 
i=l j=l i=l j=l 

n n 

> L L aijbij = Z(A, B, id, id) (4.14) 
i=l j=l 

Inequalities (4.14) show that (id, id) is an optimal solution to I-QAP(A,B). Hence, 
id is an optimal solution to QAP(A,B). 0 
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Notice that both Proposition 4.14 and Theorem 4.15 describe classes of constant 
permutation QAPs At this point it is probably interesting to notice that the com-
plexity of the apparently simple problem LHG x RHG remains an open question. 
Next we identify another class of constant QAPs, namely the class SKEW x SYM. 

Theorem 4.16 The problem SKEWXSYM is a constant QAP. The value of the 
objective function corresponding to an arbitrary permutation equals O. 

Proof. Let A be a skew symmetric n x n matrix and let B be a symmetric n x n 
matrix. In this case the objective function of QAP(A,B) can be written as 

n n 

Z(A, B, 11') = L: L: a1r (;)1r(j)b;j 
;=1 j=l 

n j-1 n 

L: L: a1r(i)1r(j)bij + L: a1r (i)1r(i)bii 
j=2 i=l i=l 

n i-1 

+ L L a1r(i)1r(j)bij . 
i=2 j=l 

Due to symmetry conditions, the first and the third term on the right hand side 
of the above equality cancel each other. Since the diagonal elements of a skew 
symmetric matrix are equal to 0, the remaining term 2::7=1 a1r(i)1r(i)bii equals 0 and 
this completes the proof. 0 

The next theorem presents an easy-to-prove but still surprising result. Namely, the 
QAP with a sum matrix is polynomially solvable. 

Theorem 4.17 The problem SUMxMATRIX is solvable in O(n3 ) time, where n is 
the size of the problem. 

Proof. The proof basically relies on transforming QAP(A,B) with an n x n sum 
matrix A and an arbitrary n x n matrix B to a linear assignment problem. Let 
(an and (an be the generating vectors of matrix A. The objective function of 
QAP(A,B) can be written as follows: 

(4.15) 
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where f3i, (f3i), 1 ~ i ~ n, is the sum of the i-th row (i-th column) of matrix B. 
Now, consider an n x n matrix D = (djj) defined by 

dij = ai f3j + ai f3J for 1 ~ i, j ~ n 
n 

With this notation we have Z(A, B, 11") = I: d1r(i)j. Hence, solving QAP(A,B) is 
;=1 

n 
equivalent to solving the linear assignment problem min I: d1r (i)i. 

1rESni=l 
o 

If the matrices A and (or) B in the above theorem have some "nice property" 
the problem SUM x MATRIX becomes even "easier". Two results of this type are 
presented by the following theorem. 

Theorem 4.18 (a) The problem SUM X eIRe is a constant QAP, i. e. every per-
mutation 11" E Sn is an optimal solutions to SUM X eIRe of size n. 
(b) If at least one of the matrices A, B is symmetric or skew symmetric, then 
QAP(A,B) with A E SUM is solvable in O(n2 ) time, where n is the size of the 
problem. 

Proof of (a). Consider QAP(A,B) where A = (ajj) and B = (bj j ) are two n x n 
matrices, with A E SUM and B E eIRe. For an arbitrary 11" E Sn, we have: 

(4.16) 

where co, c1, ... , cn -1 are real numbers as introduced in the definition of circulant 
matrices and kj := j (mod n), for j E {I, 2 ... , 2n -I} \ {n} and kn := n. Let (an 
and (ai) be the generating vectors of the sum matrix A. Then the right-hand side 
of equality (4.16) can be written as follows: 

Note that the right hand side of the last equality does not depend on permutation 
11". This completes the proof in this case. 
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Proof of (b). Consider QAP(A,B) with A E SUM and B E MATRIX(SKEW). 
(The three remaining combinations SUMxMATRIX(SYM), SUM(SYM) X MATRIX, 
SUM (SKEW) X MATRIX ,can be discussed analogously.) Denote by f3[ (f3f), 1 ~ i ~ 
n, the sum of the i-th row (i-th column) of matrix B, respectively. As B is skew 
symmetric, f3[ = -f3f, 1 ~ i ~ n. Then, for every 1r E Sn, the following equalities 
holds: 

n n 

Z(A, B, 1r) = L L a7r(i)7r(j)bij 
i=l j=l 

n n 

L a~(i)f3[ + L a~(i)f3f 
i=l i=l 
n 

L (a~(i) - a~(i)) f3[ 
i=l 

Thus, solving QAP(A,B) is equivalent to solving the following minimization prob-
lem 

According to Proposition 2.1, this minimization problem can be solved by sorting 
the n-dimensional vectors (ai - an and (f3i). This takes O(nlogn) time, whereas 
the vector (f3[) can be computed in O( n2 ) time. Here we assume that the generating 
vectors of matrix A, (an and (an, are given. 0 

The next proposition is another early result due to Krushevski [145]. It discusses 
a polynomially solvable case of theQAP where the algebraic structure of the co-
efficient matrices A and B allows us to write the objective function as a quadratic 
form. For more details on this special case the reader is referred to the original 
reference in Russian and to Rendl [193]. 

Proposition 4.19 (Krushevski 1965, [145]) 
Let real numbers U1 ~ U2 ~ ... ~ Un, V1 ~ V2 ~ ... ~ Vn, U = I:~=1 Ui, V = 
I:~=1 Vi, and at, a2, 131, 132 be given. Let the n x n matrices A = (aij) and 
B = (bij) be defined by aij = 131 Vi + f32Vj + ViVj and bij = a1 Ui + a2Uj + UiUj, 
respectively. If I:~=1 UiVi ~ -tJ../2 holds, where 

then the identity permutation yields an optimal solution to QAP(A,B). 
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Proof. For any fixed 71' E Sn consider the scalar product (V1r, U), where U = (u;) 
and V = (v;). The objective function of QAP(A,B) can be written as given below 

n n 

Z(A,B,71') = LLa1r(i)1r(j)bij = (V1r,U}2+~(V1r,U}+(a1,82+a2,8duv (4.17) 
i=l j=l 

The function f(x) = x2 + ~x + b increases for x 2: -~/2. Since by assumption, 
-~/2 ~ (V, U) ~ (V1r, U) holds for each 71' E Sn, the expression in the right hand 
side of (4.17) is minimized by 71' = id. 0 

Remark. Notice that, in general, Proposition 4.19 cannot be derived as a corollary 
from our previous results, although the structure of the matrices A, B is quite 
simple. Namely, A = Al + A2 and B = B1 + B2, where Al = (a1 Vi + a2Vj), 
A2 = (ViVj), B1 = (,81Ui + ,82Uj), B2 = (UiUj), for 1 ~ i,j ~ n. Thus, A is a sum 
of two matrices Al E SUM and A2 E PROO(SYM) and similarly, B = B1 + B2, 
where Bl E SUM and B2 E PROO(SYM). One could think of writing the objective 
function Z(A, B, 71') as sum of the objective functions of four other QAPs with 
a "nicer", already investigated, structure. Namely, Z(A,B,71') = Z(A1,B1,71') + 
Z(A1,B2,71') + Z(A2,B1,71') + Z(A2, B2, 71'), for all 71' E Sn. We can minimize the 
first three summands of the form Z(Ak , Bl, 71'), k, 1= 1,2, in the above equation, by 
applying point (b) of Theorem 4.18. The fourth summand Z(A2 , B2 , 71') is equal to 
(l.:~=1 U1r(i) Vi)2. In the case that all Ui, Vi, 1 ~ i ~ n have the same sign, the latter 
expression can be minimized by applying Proposition 2.1. Otherwise, the problem 
is NP-hard as it will be shown in Theorem 4.24 in the next section. However, even 
if we would have minimized each of the summands, we would be lucky to have also 
minimized Z(A,B,71') only if problems QAP(Ak,BI), k,1 = 1,2, have a common 
optimal solution. But, as described in the proof of Theorem 4.18, this depends on 
the monotonicity of matrices Ak and Bk, k = 1, 2, i.e. on the algebraic signs of 
coefficients a; and ,8;, i = 1,2, and Ui, Vi, 1 ~ i ~ n. In the case that ai, ,8i, i = 1,2, 
and Ui, Vi, i = 1, 2, ... , n, have all the same sign, the problem is obviously solved 
by applying Theorem 4.15, even when condition l.:~=1 UiVi 2: -~/2 is dropped. 
Let us formulate this as a corollary: 

Corollary 4.20 Let U1 ~ U2 ~ .•. ~ Un, VI 2: V2 2: ... 2: Vn, and aI, a2, ,81, 
,82 be real numbers. Let the n x n matrices A = (aij) and B = (bij ) be defined by 
aij = ,81 Vi + ,82Vj + ViVj and bij = al Ui + a2Uj + UiUj, respectively. If the numbers 
ai, ,8;, i = 1,2, and ui, Vi, i = 1,2, ... , n, have all the same sign, then the identity 
permutation yields an optimal solution to QAP( A,B). 
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4.4 QAPS WITH MONGE-LIKE MATRICES 
It is a well known fact that many "difficult" combinatorial optimization problems 
become "easy" to solve when the input is restricted to Monge or Monge-like matri-
ces (or other mathematical structures with Monge or Monge-like properties). The 
traveling salesman problem (TSP) and the transportation problem are two classical 
examples4 . The positive impact of Monge and Monge-like properties in combina-
torial optimization motivated the investigation of the computational complexity of 
restricted versions of the QAP where both coefficient matrices are restricted to be 
Monge-like matrices. It turns out that in most of the cases QAP(A,B) restricted to 
Monge-like matrices remains NP-hard. Anyway, if the coefficient matrices A and B 
fulfill also additional conditions, polynomially solvable versions of the QAP arise. 

Most of the results on QAPs with Monge-like matrices concern versions of the prob-
lem where the coefficient matrices belong to one of the classes MONGE, NMONGE = 
A-MONGE, PROO(SYM), NPROO(SYM), CHESS and NCHESS. Notice here that the 
following inclusions holds: 

(4.18) 

Equivalently, we have NCHESS~7rNPROO(SYM)~7rMoNGE. There exist no general 
methods for dealing with such QAPs. The polynomially solvable cases identified 
up to now are either implicit LAPs or constant permutation QAPs. The implicit 
LAPs arise in the case that the coefficient matrices have a very special structure, 
e.g. in the case of product matrices. The constant permutation QAPs can be 
solved by reduction to extremal rays, as we briefly introduced in Section 4.2.4. 
There is only one case with coefficient matrices having very special properties (large 
symmetric matrices or chess-board matrices), where the corresponding QAPs are 
neither implicits LAPs nor constant permutation QAPs. These problems are solved 
by dynamic programming. 

Table 4.1 summarizes the results known to date on the computational complexity of 
QAPs with both coefficient matrices having Monge-like properties. An entry "poly" 
means that the QAP with input matrices taken from the corresponding row and 
column is solvable in polynomial time, an entry "NP" means that the corresponding 
problem is NP-hard and an entry"???" means that the computational complexity 
of the corresponding problem is unknown. When reading the table, note that 
two N-s cancel each other and that the table indeed contains all information. e.g. 
the complexity of QAP with both input matrices in PROO(SYM) is found at the 

4For a detailed overview on the role of Monge and Monge-like properties in combinatorial 
optimization the reader is referred to [38]. 

5The problem CHEss(EvEN)xMoNGE(EvEN) is proven to be polynomially solvable, whereas 
the complexity of CHESS(OOO) X MONGE( ODD) is still an open question. 



QAPs on Specially Structured Matrices 131 

Table 4.1 The computational complexity of the QAP on Monge-like matrices 

II MONGE NPROD(SVM) NCHESS 
MONGE NP NP NP 
NPROD(SVM) NP NP NP 
NCHESS NP NP(d) polY(a) 
NMONGE ??? 111 polY(b)5 
PROD(SVM) ??? poly(c) poly 
CHESS poly poly poly 

intersection of the NPROD(SvM)-row with the NPRoD(SvM)-column. Because of 
the inclusion relations (4.18)' Table 4.1 has much additional structure. An "NP" 
entry in the upper half makes all other entries in the upper half that lie above 
or to the left of it to "NP" -entries. "poly" -entries produce other "poly" -entries 
below and to the right of them. An analogous statement holds for the lower half. 
Moreover, notice that both the upper and the lower half of Table 4.1 are symmetric 
with respect to the corresponding main diagonals. This is immediately seen for the 
upper half of the table. The symmetry of the lower half of the table is due to the 
equivalence of problems QAP(-A,B) and QAP(A,-B), for arbitrary matrices A and 
B. Due to this structure, the four results marked by subscripts would imply all the 
others in Table 4.1. The results marked by the subscripts (a), (b), (c) and (d) are 
proved in Theorems 4.21, 4.22, 4.23 and 4.24, respectively. 

Theorem 4.21 The problems CHESSXCHESS and CHEssxNCHESS are solvable 
in polynomial time. 

Proof. The objective function Z(A, B, 71") of the problem CHESSXCHESS can be 
written as 

where A, B are two n x n chess-board matrices, 71" E Sn, and m" is the cardinality 
of the set {i E {I, 2, ... , n} I 71"( i) is odd and i is even}. It is easy to check that, 
for each 1 :::; m :::; l n/2 j, there exists a permutation 71" E Sn such that m = m". 
Hence, the optimal value of QAP(A,B) equals min{(n - 4m)210 :::; m :::; ~}. This 
optimal value equals 1 for odd n, 0 for n divisible by four and 4 for n == 2(mod 4). 
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Denote by rna the value of m for which the above minimum is achieved. Then each 
permutation 11" E Sn with rna = m lr is an optimal solution to QAP(A,B). 

For the second problem CHEssxNCHESS, the identity permutation is an optimal 
solution as it yields a value of the objective function equal to _n 2 which is obviously 
the optimal one. 0 

Next, let us consider the more general problem MONGE x CHESS. Notice that this 
problem is a restricted version of MONGEXPROO(SYM) (referred to as an open 
problem in Table 4.1). We show that the problem MONGEXCHESS of even size 
is a constant permutation QAP. The proof exploits the fact that the nonnegative 
Monge matrices form a cone. This result was implicitly proven by Pferschy, Rudolf 
and Woeginger [185]. These authors investigated the maximum balanced bisection 
problem for Monge matrices and showed that it is solvable in polynomial time, if the 
size of the problem is even. An optimal bisection does not depend on the instance 
of the Monge matrix; it always consists of the first half of the rows (respectively 
columns) versus the second half of the rows (respectively columns). Clearly, the 
maximum bisection problem on (even) Monge matrices is equivalent to the problem 
MONGEX CHESS of even size. 

Theorem 4.22 Consider QAP(A,B) where A and Bare n x n matrices, A E 
MONGE and B E CHESS. If n is even, n = 2m, the permutation 11". given by 

{ i if x = 2i - 1, 1 SiS m 
11".(x) = m + i if x = 2i, 1 < i < m 

is an optimal solution to QAP(A,B). 

Proof. First, recall that w.l.o.g. we can assume matrix A to have nonnegative en-
tries (see Section 4.2). Next, notice that QAP(A,B) is equivalent to QAP(A,B(1)), 
where B(l) = ~(B + En) and En is the n x n matrix of all ones. (These problems 
even have a common set of optimal solutions.) This follows easily from Obser-
vation 4.1 and the fact that, for fixed A and 11" E Sn, Z(A, En, 11") is a constant 
independent on 11". So, we prove the theorem for QAP(A,B(1)) instead of proving 
it for QAP(A,B), where Bg) = (bU)) and 

b (1) _ { 1 if i + j is even 
ij - 0 otherwise 

We show that permutation 11". is an optimal solution of QAP(D,B(1)), for all 0-1 
matrices D which generate some extremal ray of the cone of nonnegative n x n 
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Monge matrices described in Section 4.2. Then by exploiting Proposition 4.6 and 
Observation 4.1 this optimality result carries over to all Monge matrices. There are 
four QAP instances to be investigated, corresponding to the four different types 
of 0-1 matrices which generate the cone of nonnegative Monge matrices. In each 
case we show that the objective function value corresponding to permutation 11". is 
a lower bound for the value of the objective function, and consequently, 11". is an 
optimal solution. 

Case 1: D = H(p), 1 < p < n. 
The following equaliti; sh~w that problem QAP(H(p), B(1)) is a constant QAP: 

(4.19) 

where io is such that 1I"(io) = P and J = {j ! j E {1,2, .. . ,n} andj+ io is even}. 
(In the above equality the fact that n is even is essentially used.) Thus, each 
permutation 11" is an optimal solution of QAP(H(p), B(l)) and so does 11" •• 

Case 2: D = V(q), 1 < q < n. 
Analogous to Case 1. It c~n be shown that QAP(V(q), B(l)) is a constant QAP. 

Case 3: D = L(p,q), 1 ~ p, q ~ n. 
In this case the objective function is given by the following simple formula for all 
11" E Sn: 

(4.20) 

where 11"-1 is the inverse permutation of 11" and the sets M1 , M2 are defined below: 

M1 {xE{n-p+l,n-p+2, ... ,n} !1I"-1(x)iseven} 

M2 {XE{1,2, ... ,q} !1I"-1(x)iseven} 

Let us apply formula (4.20) to calculate Z(L(p,q), B(1), 11".). First, notice that for 
the permutation 11";1 inverse of 11". we have: 

-1 {2X - 1 if 1 < x < m 
11". (x) = 2(x _ m) if m + 1 ~ x ~ n 
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D fi t · B(2) - (b(2)) b b(2) - b(l) 1 < . . < I' e ne a new rna fIX - ij Y ij - 'I1';l(i)'I1';l(j)' _ t,) _ n. t IS easy 
to see that 

b(~) = {I if i::; m, j ::; m or . i > m, j > m 
'3 0 otherWIse 

Considering the structure of matrix B(2) and the equalities 
n q 

Z(L(p,q),B(1),11'.) = Z(L(p,q),B(2),id) = L: L:b~;) 
i=n-p+l j=l 

we get: 

o if p::;m q::;m 
(p - m)q if p> m q::; m 
(q - m)p if p::; m q> m 

(4.21) 

(p - m)m + (q - m)m if p> m q> m 

Now, let us show that Z(L(p,q),B(l), 11') ~ Z(L(p,q),B(1),11'.), for all 11' E Sn. This 
can be done by distinguishing the following four subcases: 

(a) p ::; m, q ::; m. As the entries of matrices L(p,q) and B(l) are nonnegative, 
Z(L(p,q) , B(l), 11') ~ 0 = Z(L(p,q),B(1),11'.), for all 11' E Sn. 

(b) p > m, q ::; m. Checking that the following inequalities hold, for all 11' E Sn, 
completes the proof in this case. 

Z(L(p,q) , B(l), 11') IM lIIM21 + (p -IMd)(q -1M2!) 

pq -IMd(q -1M2!) -IM21(p-IM l!) ~ pq - mlM21 
-m(q - 1M2!) = q(p - m) = Z(L(p,q) , B(l), 11'.) 

(c) p::; m, q > m. Analogously as in (b) it can be shown that Z(L(p,q) , B(1), 11') ~ 
p(q - m), for all 11' E Sn. 

(d) p > m, q> m. We show that Z(L(p,q) , B(l), 11') ~ (p - m)m + (q - m)m, for 
all 11' E Sn. First notice that p - m::; IMll ::; m and q - m ::; IM21 ::; m. Now it is 
elementary to see that the function f defined as 

f:{p- m,p- m+ 1, .. . ,m} x {q - m,q - m+ 1, . .. ,m} --t IR+ 

(x, y) I-t xy + (p - x)(q - y) , 
achieves its miIiimumeither at the point (m, q-m) or at the point (p-m, m). The 
minimum value is f(m, q-m) = f(p-m, m) = (p-m)m+ (q -m)m. Considering 
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equality (4.20) we have Z(L(p,q) , B(l), 11") = I(lM11, 1M2!) ~ (p-m)m+(q-m)m = 
Z(L(p,q), B(l), 11".). 

Case 4: D = R(p,q) , 1 < p, q < n. - -
In this case the proof is completely analogous to the proof in Case 3. o 

The complexity of MONGEXCHESS remains open for odd n. The proof of Theo-
rem 4.22 exploits essentially the fact that the size of the problem is even. Also 
the exchange argument in [185], used for solving the balanced bisection problem 
to optimality, fails for problems of odd size. Moreover, notice that the proof of 
Theorem 4.22 strongly relies on the fact that the considered problem is a con-
stant permutation QAP. Problem MONGE x CHESS of odd size is not a constant 
permutation QAP. The following example shows that even the "simpler" problem 
QAP(L(p,q) , B(l)) of odd size, with B(l) defined as in the proof of Theorem 4.22, 
is not a constant permutation QAP. That is, for different pairs (p, q), instances of 
QAP(L(p,q) , B(l)) do not necessarily have a common optimal solution. 

Example 4.1 Consider the 3 x 3 matrices L(1,2), L(2,1), B(l) and permutations 
11"1. 11"2, 11"3, 11"4 E S3, 11"1 = (1,3,2), 11"2 = (2,3,1), 11"3 = (2,1,3) and 11"4 = (3,1,2). It 
can be checked that 

Z(L(1,2), B(l), 1I"t} = Z(L(1,2), B(l), 11"2) = 0 , 

Z(L(1,2), B(l), 11"3) = Z(L(1,2), B(l), 11"4) = 1 , 

Z(L(2,1), B(l), 11"3) = Z(L(2,1), B(l), 11"4) = 0 , 

Z(L(2,2), B(l), 1I"t} = Z(L(2,1), B(l), 11"2) = 1 . 

Moreover, it can be easily seen that 11"1, 11"2 are the only optimal solutions to 
QAP(L(1,2), B(l)), and analogously, 11"3, 11"4 are the only optimal solutions to the 
problem QAP(L(2,1), B(1)). Thus, these two QAPs do not have any common opti-
mal solution. 0 

Next we formulate and prove the result marked by the subscript (c) in Table 4.1. 

Theorem 4.23 The problem PROO(SYM) x NPROO(SYM) is solvable in polynomi-
al time. 

Proof. Consider the n x n matrices A, B, where A = (QjQj) E PROO(SYM), 
B = (-f3d3j) E NPROO(SYM). The QAP(A,B) is equivalent to the following 
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maximization problem 
n 

max { (L: QIr(i),Bd 2} . 
irES" i=l 

By applying Proposition 2.1, the maximum and the minimumofE~=l QIr(i),Bi over 
all permutations 'If' E Sn is determined. The maximum of the two correspond-
ing squared values is the optimal value of the given QAP and the corresponding 
permutation is an optimal solution to it. 0 

As for the problem PROO(SYM)XPROO(SYM), even though this problem seems to 
be quite similar to PROO(SYM) x NPROO(SYM) and its coefficient matrices have the 
same simple structure, it turns out that this problem is NP-hard. Actually, even a 
"more restricted" version ofthe QAP, namely CHESSX PROO(SYM), is NP-hard, as 
shown by the next theorem. The proof of the NP-hardness is done by a reduction 
from the NP-complete EQUIPARTITION problem (cf. Garey and Johnson [88]). 

EQUIPARTITION 
Input: A set {Zl, ... , Z2n} of positive integers. 
Question: Does there exist a subset I C {I, 2, ... , 2n}, III = n, such that 
EiEI Zi = Eie'I Zi holds? 

Theorem 4.24 The problem CHESS x PROO(SYM) is NP-hard. 

Proof. We start with an instance of EQUIPARTITION and define a 2n x 2n symmet-
ric product matrix B = (,Bi,Bj) by,Bi = Zi, .1 ~ i ~ 2n. A is a chess-board matrix, 
i.e. A = ((_I)i+j ). Clearly, QAP(A,B) is an instance of CHESS X PROO(SYM). For 
a given 'If' E S2n denote.llr = {'If'(i): i is even}. Similarly as in the proof of the last 
theorem, Z(A, B, 'If') can be written as follows: 

(4.22) 

Thus, QAP(A,B) is equivalent to the problem min {(EiEI Zi - E'dI Zi)2}. 
IrES2" " II< " 

We show that the answer to the given instance of the EQUIPARTITION problem is 
"YES" if and only if the optimal value of the above defined instance of QAP(A,B) 
is 0, and this completes the proof. 

(if) Assume there exists an I C {l,2, ... ,2n}, III = n, such that EiEIZj = 
Eie'I Zi· Consider a permutation 'If'o E S2n which permutes the numbers 2i, 1 ~ 
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i :s n, into elements of I, i.e. the equality 111:0 = I holds. Then, (4.22) implies 
Z(A, B, 1l'0) = o. 

(only if) Assume that the optimal value of QAP(A,B) is O. Thus, there ex-
ists a permutation 1l'0 E S2n such that Z(A, B, 1l'0) = O. Equality (4.22) implies 
(EiEI "0 Xi - EitlI "0 xil 2 = O. As 1111:01 = n, 111:0 solves the instance ofthe EQUIPAR-
TITION problem by "YES". 0 

Remark. Because of the inclusion CHESS C PROO(SYM), Theorem 4.24 im-
plies that the problem PROO(SYM) x PROO(SYM) is NP-hard. In other words, 
for two vectors (ail and (f3d, minimizing (E7=1 a1l:(i)f3i) 2 over all permutations 
1l' E Sn is NP-hard, whereas maximizing it is polynomially solvable, as shown 
by Theorem 4.23. The complexity of the problems MONGE x PROO(SYM) and 
MONGE x NMONGE remains an open question. Obviously, proving either the poly-
nomialityfor the latter problem, or the NP-hardness for the first one, would answer 
both open questions and complete Table 4.1. 

The following result is a straightforward corollary of Theorem 4.24: 

Corollary 4.25 MONGE(SYM, RLG)xMoNGE(SYM) is NP-h a rd. 

Proof. By Theorem 4.24, problem CHESSXPROO(SYM) is NP-hard. Moreover, it 
is easy to check that the following inclusions hold 

NPROO(SYM, POS)~1I:MONGE(SYM, RLG), NCHESS~1I:MoNGE(SYM) o 

From Theorem 4.24 it follows also that the problem MONGE(SYM)xNCHESS is 
NP-hard. However, it is possible to derive better results for restricted versions 
of MONGE(SYM)xNCHESS, where the Monge matrix is somehow "specially struc-
tured". For example, the problem LARGE(SYM)xNCHESS can be solved poly-
nomially by a dynamic programming approach. Also LARGE(SYM)XCHESS can 
be solved by an analogous dynamic programming scheme. Recall here that the 
problem LARGE(SYM)XCHESS is a special case of MONGE(SYM)XCHESS, and the 
complexity of odd sized instances of the latter problem is still an open question. 

Theorem 4.26 The problems LARGE(SYM)xNCHESS, LARGE(SYM)XCHESS are 
solvable in O(n2) time by dynamic programming, where n is the size of the problem. 
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Proof. We prove the result only for the problem LARGE(SYM) X NCHESS. A com-
pletely analogous proof can be given for the problem LARGE(SYM)XCHESS. Con-
sider QAP(A,B) ofsize n with A E LARGE(SYM)glossarYE and BE NCHESS. First 
we make two important remarks. 

1. W.l.o.g. we can assume the large symmetric matrix A to be left-higher graded, 
because LARGE(SYMK7I'LARGE(SYM,LHG). Indeed, if the generating vector of 
the large symmetric matrix is not sorted in increasing order, we can reorder it 
increasingly. This would result in permuting the rows and the columns of matrix 
A by the same permutation, say t/J, to get a matrix At/! = (at/!(i),t/!U))' Obviously, 
solving QAP(A,B), is equivalent to solving QAP(At/! ,B) because of the equality 
Z(A, B, 11') = Z(At/!, B, t/J-1 011') which holds for all 11' E Sn. 

2. Analogously as in the proof of Theorem 4.22, instead of solving QAP(A,B) we 
may equivalently solve QAP(A,B'), where B' = (b~j) and 

b~. = {O if i + j is even 
I) 1 otherwise 

Next, we construct a dynamic programming scheme for solving QAP(A,B) with 
A E LARGE(SYM,LHG) and B = B'. Let (ai) be the generatin-g vector of A, 
aj :::; ai+1, 1 :::; i :::; n - 1. Due to the equalities aij = aji = ai for i ~ j, the 
objective function of QAP(A,B) can be rewritten as follows: 

n n n i-1 

Z(A, B, 11') = L L aij b7l'-1(i)7I'-lU) = 2 L (ai L b7l'-1(i)7I'-lU)) • 
;=1 j=1 i=2 j=1 

Considering the last equality and the structure of matrix B, it is easy to see that 
the parity of 1I'-1(i), 1 :::; i :::; n, determines the corresponding value Z(A, B, 11') 
of the objective function. Thus, if for two permutations 11'1, 11'2 E Sn the equality 
171'1 = 171'2 holds, then Z(A, B, 1I'd = Z(A, B, 11'2). Here 171' is defined as in the proof 
of Theorem 4.24, i.e. 171' = {11'( i): i is even}, for all 11' E Sn. Hence, in order to 
solve QAP(A,B), it is sufficient to specify the subset 171'0 for an optimal solution 11'0 

rather than determining 11'0 itself. In other words, we are looking for an appropriate 
set 10 C {I, 2, ... , n}, 1101 = ~. Once such a set 10 is found, we can construct a 
permutation 11'0 E Sn such that 171'0 = 10 . 11'0 would then be an optimal solution to 
QAP(A,B)6. We show that the required set 10 can be constructed by a dynamic 
programming approach . 

. 6 Given some 10 , we can construct more than just one permutation 7r having the property 
171' = 10' Namely, there are (Lni2j) In/2J! such permutations. Clearly, all of them are optimal 
solutions to QAP(A,B). 
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For 2 ~ k ~ n, denote by I; the intersection ITr n {I, 2, ldots, k}. Further, for 
2 ~ k ~ n, 0 ~ s ~ min{k, l ~ H, 0 ~ k - s ~ min{k, f~n, consider the auxiliary 
problem P(k, s) defined as follows: 

P(k,s): ~i~ _ {2 t (ai ·I{i: 1 ~ i ~ i-I, 1r-l(i) + 1r-1(j) is odd }I)} 
TrES,.-II .. I-s ;=2 

Problem P(k, s) is a kind of restricted QAP, where the objective function is the 
sum of a part of the entries aTr(i)Tr(j) with 1 ~ 1r(i) , 1r(j) ~ k, and the set offeasible 
solution is a subset of Sn consisting of those permutations which map exactly 
s even numbers from {1,2, ... ,n} to {1,2, ... ,k}. Hence, QAP(A,B) is exactly 
P(n,l ~ J). Denote by Z(k,s) the optimal value of problem P(k,s). Then, Z(n,l ~ J) 
is the optimal value of QAP(A,B). 

Next we introduce our dynamic programming scheme. For a feasible pair (k, s) 
with s < min{k, In/2H and k ~ 3, an optimal solution of problem P(k,s+l) maps 
either an odd number or an even number to k. It is easily seen that the following 
equality holds for all feasible pairs (k, s): 

Z(k, s+ 1) = min {2ak (s+ 1) +Z(k-l, s+ 1), 2ak(k-l-s) +Z(k-l, s)} (4.23) 

Further, notice that Z(2,0) = Z(2,2) = 0, Z(2,1) = 2a2 and Z(k,O) = 0, for 
2 ~ k ~ fn/21. Moreover, set Z(k,s) := +00 for all unfeasible pairs (k,s), 1 ~ 
k, s ~ n. Assume that we know the value of Z(k - 1, s) for all 1 ~ s ~ n. As 
Z(k - 1,0) is also known, we can consecutively calculate Z(k, 1), Z(k, 2), ... by 
applying equality (4.23). Obviously, this can be done in O(n) steps which require 
0(1) time each. Thus, starting with Z(2, s) (k - 1 = 2) and applying the above 
scheme, the computation of Z(n, In/2J) takes 0(n2) elementary operations. Then, 
the set 10 can be specified by backtracking the minima in (4.23) and setting k E 10 
if and only if the corresponding minimum is achieved at the second term in the 
right-hand side of (4.23). 0 

According to Table 4.1, the problem A-MoNGEXCHESS is NP-hard, whereas the 
complexity of A-MoNGEXNCHESS of odd size is unknown. The following straight-
forward corollary of Theorem 4.26 shows that solvable special cases of the above 
problems arise if the Anti-Monge matrix has some additional "nice structure". 

Corollary 4.27 The problems SMALL(SYM) X CHESS and SMALL(SYM)xNCHESS 
are solvable in 0(n2) time by dynamic programming, where n is the size of the 
problem. 
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Proof. According to Proposition 4.1, QAP(A,B) is equivalent to QAP(-A,-B). 
Next, notice that NSMALL(SYM) = LARGE(SYM). Thus, SMALL(SYM) x CHESS 
and SMALL (SYM) x NCHESS are equivalent to the problems LARGE(SYM) XNCHESS 
and LARGE(SYM) x CHESS, respectively. 0 

4.5 QAPS WITH CIRCULANT AND SMALL 
BANDWIDTH MATRICES 

This section and the next one deal with QAPs restricted to diagonally structured 
matrices. There are two main motives for the investigation of QAPs on diagonally 
structured matrices. 

First, several "difficult" combinatorial optimization problems, similar to QAPs with 
respect to their combinatorial structure, become "easy" when restricted to diago-
nally structured matrices. The Hamiltonian path problem on circulant matrices and 
the traveling salesman problem (TSP) on matrices with small bandwidth are two 
typical examples. It is worthy to notice here that the TSP on circulant matrices 
is still a challenging open problem. (For a more detailed discussion on these topics 
see [153]). Some positive results concerning polynomially solvable special cases of 
the QAP with diagonally structured matrices, more concretely Toeplitz matrices, 
were obtained in the 1960's and 1970's [41, 165, 187, 223]. 

The second motive concerns a large number of problems of theoretical and practi-
cal nature, which can be formulated as QAPs with diagonally structured coefficient 
matrices. Among applications of practical relevance let us mention the so-called 
turbine problem and different versions of placement problems. Some of these appli-
cations will be discussed in detail later on in this chapter. The TSP, the taxonomy 
problem, and the problem of finding a spanning set of cycles of fixed length, are 
some theoretical applications. As such problems are NP-hard in their general for-
mulation, the identification of polynomially solvable restricted versions of them 
becomes an interesting question. 

In the current section we consider QAPs with one of the coefficient matrices either 
being a circulant or having a small bandwidth. As we will see, these restrictions on 
the coefficient matrices are too weak to guarantee the polynomiality of the corre-
sponding versions of the QAP. Therefore, we assume the other coefficient matrix to 
have Monge or Monge-like properties. It will turn out that under these conditions 
some polynomially solvable cases arise. The polynomially solvable versions are all 
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constant permutation QAPs and the proofs are done by reduction to extremal rays 
(see Section 4.2.4). 

4.5.1 Two "easy" QAPs with circulant and 
bandwidth-k matrices 

As a straightforward corollary of Theorem 4.24 it can be shown that CIRC x MONGE 
is a "difficult" problem. 

Corollary 4.28 The problem CIRCXMONGE is NP-hard. 

Proof. Recall that in the proof of Theorem 4.24 we have shown the NP-hardness 
of the problem PROD(SYM)XCHEss(EvEN). Clearly, this problem is equivalent 
to NPROD(SYM) x NCHEss(EvEN) and therefore, the latter is NP-hard too. The 
proof is completed by considering the following inclusions: 

NPROD(SYM)~".MONGE , N CHESS (EVEN)~". CIRC o 

We conjecture that the QAP with two circulant matrices, CIRCX CIRC, is NP-
hard. Notice that this problem contains as a special case another celebrated open 
problem, namely, the TSP on circulant matrices. However, in the case that both 
circulant matrices A and B ofQAP(A,B) have very special properties, polynomially 
solvable cases may arise. As an example consider the following theorem which is a 
straightforward corollary of a result on the Hamiltonicity of the so-called circulant 
digraphs with two stripes. For more details on this topic the reader is referred to 
[230]. 

Theorem 4.29 (Yang, Burkard, <;ela and Woeginger 1995, [230]) 
Consider a QAP(A,B) with circulant n x n matrices A and B. Assume that two 
of the numbers Ci, i = 1,2, ... , n - 1, in the definition of the circulant matrix A 
are zero and the others are strictly positive. Additionally, assume that bij > 0 if 
i - j == 1(modn) and bij = 0 otherwise. Then, it can be decided in O(log4 n) time 
(in the unit time model) whether the optimal value of QAP( A,B) equals zero. If 
this is the case, an optimal solution can be founded in O( n) time. 0 

The next theorem gives a result on a polynomially solvable version of the QAP 
from the class MONGE(SYM) x BAND-k. The considered problem arises as a QAP 
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formulation of the spanning set of k-cycles problem. In this problem we are given 
a weighted graph G = (V, E) with vertex set V and edge set E. Let w: E --+ 1R be 
a weight function which joins a weight Wij to each edge (i, j) E E. We can assume 
w.l.o.g. that G is complete. This is done by assigning a weight equal to 00 to all 
non-existent edges. Moreover, let IVI = k·m, m > 1, k > 1. Consider m suhgraphs 
Gi = (V;, Ei), 1 S; i S; m of graph G. Assume that for all 1 S; i S; m Gi is a cycle 
of length k. Moreover, assume that U7=1 V; = V and V; n Vj = 0, i =f:. j. Such a 
set of subgraphs {Gi: 1 S; i S; m} is called a spanning set of k-cycles in G and is 
denoted by Ck. Its weight is given by 

m 

W(Ck) = L L w(e) 
i=l eEEi 

For a given weighted graph G = (V, E), with IVI = mk, k > 1, m > 1, the spanning 
set of k-cycles problem, shortly S-k-CP, is the problem of finding a spanning set 
of k-cycles with minimum weight in G . 

This problem can easily be formulated as a QAP. Indeed, denote by A the weighted 
adjacency matrix of graph G, A = (w;j). Let B(k,m) be the adjacency matrix of a 
graph G' on V which consists of m vertex disjoint cycles of length k each, denoted 
by G~ = (Vi', Ei), 1 S; i S; m, where 

Vi' = {V(i-1)k+{ j = 1, ... , k} and 

Ei = {(V(i-1)k+j, V(i-1)k+i+d:j = 1, ... , k -I} U {(Vik, V(i-1)k+1)}' 

This definition of the km x km matrix B(k,m) is valid throughout the rest of this 
section. Obviously, B(k,m) is a bandwidth-k matrix. As an example consider the 
matrix B(4,3) with k = 4 and m = 3 in Figure 4.1. 

Clearly, with these definitions and notations, the S-k-CP can be formulated as a 
QAP, namely QAP(A, B(k,m)). We show that if A is an n x n symmetric Monge 
matrix, QAP(A, B(k,m)) is a constant permutation QAP (n = km, k, m are integers 
and k > 1, m > 1). Let us denote the corresponding constant permutation by 
p(k,m). Thus, p(k,m) is an optimal solution to all instances of MONGE(SYM) X B(k,m) 
with fixed k and m. Together with p(k,m) E Smk, k > 1, m > 1, let us introduce 
another permutation 1l'* which will play a special role throughout the rest of this 
chapter. 

Definition 4.5 a) For n E IN, the permutation 1l'* E Sn is defined by 1l'* (i) = 2i-1 
for 1 S; i S; r ~ 1, and 1l'* (n + 1 - i) = 2i for 1 S; i S; l ~ J . 
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0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 

B(4,3) = 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 

Figure 4.1 The matrix B(k,m) with k = 4 and m = 3 

b) For fixed k > 1, m> 1, the permutation p(k,m) E Skm is given as follows: 

p(k,m)((i - l)k + j) = (i - l)k + 7r*(j) , 1 ~ i ~ m, 1 ~ j ~ k , where 7r* E Sk. 

In the sequential representation of permutation p(k,m) the numbers 1,2, ... , km 
are divided into m groups, which are then ordered consecutively. The first group 
contains the numbers 1,2, ... , k, the next one contains the numbers k + 1, k + 
2, ... , 2k and so on, ending up with the last group which contains the numbers 
(m - l)k + 1, ... , km. The elements of each group are sorted following the rule 
defined by permutation 7r*: first, sort increasingly the elements placed in odd 
positions within the group, and then sort decreasingly the remaining elements. 
Consider p(4,3) = (1,3,4,2,5,7,8,6,9,11,12,10) as an illustrative example. Here 
the groups are 1,2,3,4, 5,6,7,8, 9,10,11,12 and 13,14,15,16. 

The next theorem formulates our polynomiality result. 

Theorem 4.30 The permutation p(k,m) is an optimal solution to QAP(A, B(k,m)) 

of size n = km, where matrix A E MONGE(SYM), and k > 1, m > 1 are integers. 

The proof is carried through by four lemmas. First, it is shown that the theorem 
holds for m = 2. Then, this result is generalized for an arbitrary m. The proof of 
the theorem in the case m = 2 is itself reduced into two simpler subcases. Namely, 
it is proven that p(k,2) is an optimal solution to QAP(A, B(k,2)) where matrix A 
generates some extremal ray of the cone of nonnegative symmetric Monge matrices 
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of size 2k. The subcases correspond to the two classes of matrices, denoted by 
S(p) and T(p,q) which generate the extremal rays of this cone (see in Section 4.2.1). 
Then, by applying Observation 4.1, this results carries over to all matrices in this 
cone. 

Lemma 4.31 Consider the problem QAP(S(l), B(k,2») of size 2k, k > I, where 
matrix S(l), 1 < 1 < 2k, genemtes some extremal my of the cone of the nonnegative 
symmetric Mo~ge -matrices and is defined in Section 4.2.1. Permutation p(k,2) is 
an optimal solution to this problem. 

Proof. Consider an instance QAP(S(l), B(k,2») defined by some fixed integers 
kandl, where k > 1 and 1 :'S I :'S 2k. We show that this problem is a constant 
QAP, i.e. the objective function value Z(S(l), B(k,2), 11") does not depend on the 
permutation 11". Indeed, for each 11" E S2k the objective function can be written as 
follows. 

(4.24) 

where S(l) = (s~~»). Clearly, there are only two terms in (4.24) with row index or 
(exclusive) column index equal to I. Thus, Z(S(i), B(k,2), 11") = 2. DBefore proving 
the claim for QAP(T(p,q), B(k,2) let us recall a result of Supnick [216] concerning 
the TSP on symmetric Monge matrices. We will use this result in the proof of the 
next lemma. 

Proposition 4.32 (Supnick [216], ) Let D be an n x n symmetric Monge matrix. 
The tmveling salesman problem with D as a distance matrix is solved to optimality 
by the tour 11"*(1) -+ 11"*(2) -+ ... -+ 1I"*(n) -+ 11"*(1). 

Clearly, this result applies also to the matrices T(p,q) which generate some extremal 
rays of the cone of nonnegative symmetric Monge matrices. Moreover, for the TSP 
with T(p,q) as a distance matrix, also the optimal value of the objective function, 
i.e. the length of an optimal tour, can be computed explicitly. 

Observation 4.33 Consider a n x n matrix T(p,q) with 1 < p, q < n and for - -
p + q :'S n, defined in Section 4.2.1. Then the length of an optimal tour of the TSP 
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with T(p,q) as distance matrix is equal to 0, 1 or 2 if p + q < n - 1, p + q = n - 1 
or p + q = n, respectively. 

Proof. According to Proposition 4.32, the permutation 11'* defines an optimal 
tour for the considered TSP. By considering that B(n,l) is the adjacency matrix 
of a cycle of length n, it is easily seen that the length of this tour is equal to 
Z{T(p,q), B(n,l), 11'*). Let us assume for simplicity that p ~ q. (Everything works 
analogously in the symmetric case s > r.) Denote by T~p,q) the matrix obtained 
by T(p,q) = (t~},q)) when permuting its rows and columns by permutation 11'*. 

Thus, T~p,q) = (t~:(l)7r. (j))' It is a matter of elementary calculations to see that 

matrix T~P,q) looks as in Figure 4.2. The 0 (I) entry in the interior of a polygone 
means that all entries of T~s,r) falling inside this polygone are equal to 0 (I). By 

The case p + q < n - 1 The case p + q = k - 1 The case p + q = n 
hl h2 hl h2 --. 1-+ 

0 1 0 !J 

1 o 1 1 0 1 

0 1 0 tl 

Figure 4.2 The n X n matrix T!P,q) for p < q, p + q ~ n. 

considering Figure 4.2, it is easy to see that Z{T~p,q), B(n,l), id) equals 0, 1,2 in the 
case that p + q is smaller than n - 1, equal to n - 1, or equal to n, respectively. 
Recalling that Z{T(p,q), B(n,l), 11'*) = Z{T~p,q) , B(n,l), id) completes the proof. 0 

Now, we can prove the claimed result for QAP{T(p,q), B(k,2)). 

Lemma 4.34 Consider the problem QAP{T(p,q), B(k,2)) of size 2k, k > 1, where 
T(p,q) , 1 ~ p, q ~ 2k, p + q ~ 2k, generates some extremal ray of the cone of non-
negative symmetric Monge matrices and is defined in Section 4.2.1. Permutation 
p(k,2) is an optimal solution to this problem. 
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Proof. Consider an instance QAP(T(p,q), B(k ,2») defined by some fixed integers 
k,p, q, where k> 1 and 1 ~ p, q ~ 2k, p + q ~ 2k. For the sake of convenience we 
distinguish two cases: p ~ q and p > q. 

Case 1. P < q 
First, if q ~ k, then obviously Z(T(p,q), B(k,2), p(k,2») = O. Since the coefficient 
matrices of the considered QAP are nonnegative, we have Z(T(p,q), B(k,2),?T) 2: 0 
for any ?T E S2k, and hence, p(k,2) is an optimal solution. Thus, we may assume 
w.l.o.g. that q > k. Clearly, p + q ~ 2k implies then p < k. Thus, the non-zero 
entries of T(p,q) have either the row index or the column index smaller than k, 
but not both. Notice moreover, that the permutation p(k,2) permutes the elements 
of the set {k + 1, ... , 2k} to elements of the same set {k + 1, ... , 2k}. Therefore, 
the above remark about the indices of the non-zero entries of matrix T(p,q) holds 
also for the matrix obtained after permuting the rows and the columns of T(p,q) 
by p(k,2). The non-zero entries of matrix B(k,2) may either have both row and 
column indices larger than k or both row and column indices smaller than or equal 
to k. Summarizing, only products of entries with row and column indices larger 
than or equal to k may contribute with positive values to the objective function 
Z(T(p,q), B(k,2), p(k,2»). Moreover, for all x E {1, 2, ... , k} we have p(k,2)(k + x) ~ 
k + ?T* (x), where ?T* E Sk. Therefore, the following equality holds: 

Z(T(p,q), B(k,2), p(k,2») = Z(T(p,q-k), B(k,l), ?T*) , (4.25) 

where B(k,l) is the k x k matrix obtained from matrix B(k,2) by deleting the firs:.t 
k rows and the first k columns. Now it is easy to see that QAP(T(p,q-k), B(k,l») 
is the traveling salesman problem (TSP) with the k x k symmetric Monge matrix 
T(p,q-k) as distance matrix. (T(p,q-k) is an extremal ray ofthe cone of nonnegative 
symmetric Monge k x k matrices.) According to Proposition 4.32, ?T* is an optimal 
solution to QAP(T(p,q-k), B(k,l»). By applying Observation 4.33 with q - k and k 
instead of q and n, respectively, we get: 

{ 
0 if p + q < 2k - 1 

Z(T(p,q),B(k,2),p(k,2») = 1 if p+q=2k-1 
2 if p+ q = 2k 

( 4.26) 

Consequently, p(k,2) is an optimal solution to QAP(T(p,q), B(k,2») for matrices T(p,q) 
with p + q < 2k - 1. It remains to prove the claim in the case that 2k - 1 < p + q < 
2k. We show that Z(T(p,q),B(k,2),?T) 2: Z(T(p,q),B(k,2),p(k,2») for any -; E S2;:' 
and this completes the proof in the two remaining cases. Consider an arbitrary 
?T E S2k. Let Zl ~ Z2 ~ ... ~ Zk such that {?T(zd:1 ~ i ~ k} = {1,2, ... ,k} and 
Yl :S Y2 :S ... :S Yk such that {?T(Y;): 1 :S i:S k} = {k+ 1, k+2, ... , 2k}. Denote by 
T(z) (T(Y») the matrix obtained from T(p,q) by deleting the rows and columns with 
indices Vi, 1:S i ~ k (Zj, 1 ~ z:S k). Clearly, T(z) and T(Y) are symmetric Monge 
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matrices 7. Due to the structure of matrix B(k ,2), the following equality holds: 

Z(T(p,q) B(k,2) 7r) - Z(T(z) B(k,l) 7r ) + Z(T(Y) B(k,l) 7r ) , ,- , , z " y , 

where 7rz and try are defined by the equalities 7rz (i) = 7r(Zi) and 7ry(i) = 7r(Y;) - k, 
for 1 < i < k. By the construction, the matrices T(z) and T(J/) are of the form 
T(p.,qJ and T(py,qy) with pz + py = p and qz + qy = q, pz + qz ~ k, py + qy ~ k. 
Then, the inequality p + q ~ 2k - 1 implies that either pz + qz = k, Py + qy ~ k - 1 
or pz + qz ~ k - 1, Py + qy = k. Now, similarly as above, we can apply the result 
of Supnick for the TSP on symmetric Monge matrices. Moreover, in the case that 
the four coefficients Pz,Py,qz,qy are strictly positive we can apply Observation 4.33 
and obtain: 

Z(T(p,q) , B(k,2), 7r) = Z(T(P. ,q.), B(k,l), 7rz ) + Z(T(py,qy), B(k,l), 7ry) ~ 

Z(T(P. ,q.), B(k,l), 7r*) + Z(T(py,qy) , B(k,l), 7r*) ~ 3 ~ Z(T(p,q) , B(k,2), p(k,2») 

It remains to consider the case where one of the four coefficients Pz, PY' qz, qy 
equals O. Assume w.l.o.g. that pz = O. If p + q = 2k - 1, we have Py = p and 
qz ~ k, which imply k - 1 ~ Py + qy ~ k. Thus: 

Z(T(p,q) , B(k,2), 7r) = Z(T(py,qy) , B(k,l), 7ry) ~ Z(T(py,qy) , B(k,l), 7r*) ~ 1 = 
Z(T(p,q) , B(k,2), p(k,2») . 

In the remaining case, p + q = 2k, we again have Py = P and qz ~ k, which imply 
Py + qy = k. This yields 

Z(T(p,q), B(k,2), 7r) = Z(T(py,qy), B(k,l), 7ry) ~ Z(T(py,qy), B(k,l), 7r*) = 2 = 
Z(T(p,q) , B(k,2), p(k,2») . 

Case 2. p> q 
The proof is completely analogous to the proof of Case 1. 

Lemmas 4.31 and 4.34 imply the following results. 

o 

Lemma 4.35 Let a matrix A E MONGE(SYM) be given. Permutation p(k,2) is an 
optimal solution of QAP(A, B(k,2») of size 2k. 

7It is well known and easily seen that submatrices obtained from a symmetric Monge matrix 
by deleting rows and columns with the same set of indices are again symmetric Monge matrices. 
See, ego [38]. 
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Proof. As already argued several times in this chapter, we may assume w.l.o.g. that 
A is a nonnegative matrix. Under this assumption, the proof follows immediately 
(see Section 4.2.4). 0 

Finally, let us show that this result carries over to instances of size mk for m ~ 3. 

Lemma 4.36 Let a matrix A E MONGE(SVM) be given. Permutation p(k,m) is an 
optimal solution to QAP(A, B(k,m») of size mk. 

Proof. Assume that matrix A has nonnegative entries. We show that the following 
inequality holds: 

Z(A, B(k,m), 11") ~ Z(A, B(k,m), p(k,m») , (4.27) 

for an arbitrary 11" E Skm, and this completes the proof. To this end the objective 
function is transformed in such a way that Lemma 4.35 can be used. Let x~j) < 
x~j) < ... < x~) be such that {1I"(x~j»), 1I"(x~\ ... , 1I"(x~»)} = {(j - l)k + 1, (j-
l)k+2, ... ,jk}, for 1:5 j:5 m. Denote XU) = {x~j), ... ,x~)}, for 1:5 j:5 m. 
Denote by AU) the k x k matrix obtained from A by deleting all rows and columns 
except for those with indices in XU). Define additionally the permutations 1I"U) E 
Sk by 1I"U)(i) = 1I"(x~j») - (j -1)k, 1 :5 i :5 k. Clearly, the permutation 11" is uniquely 
determined by the permutations 1I"U) and the sets XU), 1 < j < m. The sets XU) 
and the permutations 1I"U) related to a given permutation -;. a~ termed as partial 
sets and partial permutations of 11" throughout the rest of the proof. Moreover, the 
matrices AU) and the problems QAP(A(j),B(k,l») are called partial matrices and 
partial problems of QAP(A, B(k,m») with respect to 11", respectively. Notice that the 
objective function of QAP(A, B(k,m») is given as a sum of the objective functions 
of its partial problems: 

m 

Z(A, B(k,m), 11") = E Z(AU), B(k,l), 1I"U») (4.28) 
j=l 

Notice moreover that the partial set X!j) of the claimed optimal permutation p(k,m) 
are given by 

X!j) = {(j -1)k + 1, (j -1)k + 2, .. . ,jk}, 

and the partial permutations of p(k,m) are equal to 11"*. Next, we introduce a 
procedure which transforms step by step a given permutation 11" to permutation 
p(k,m) by transforming the corresponding partial sets and partial permutations. In 
each step of this procedure the current permutation f/J is replaced by a permutation 
f/J' with Z(A, B(k,m), f/J) ~ Z(A, B(k,m), f/J'). 
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Next let us describe a generic step of the above mentioned procedure which trans-
forms the current permutation ¢ to a new permutation ¢/. Such a step will be called 
change. Consider two partial problems QAP(AU), B(k,l)), QAP(A(I) , B(k,l)), with 
j < l. Consider additionally the symmetric Monge matrix AU,l) of size 2k x 2k, 
obtained from A by deleting all rows and columns except for those with indices in 
XU) U X(l). Let the permutation ¢(j,l) E S2k be defined by 

U,I)'_{ ¢U)(i) if l~i~k 
¢ (l) - ¢(l)(i) + k if k + 1 ~ i ~ 2k 

For the problem QAP(A(j,l) , B(k,2)) of size 2k we have: 

Z(AU,I), B(k,2), ¢(j,l)) = Z(AU), B(k,l), ¢U)) + Z(A(I) , B(k,l), ¢(l)) . 

On the other hand, Lemma 4.35 implies that the permutation p(k,2) is an optimal 
solution to QAP(AU,I) , B(k,2)). Now, it is easily seen that one of the partial sets 
of p(k,2) say XU) consists of the k smallest elements of XU) U X(l) and the other , , , 
partial set X(I) consists of the remaining elements in X(i) U X(l). Let AU) and 
A(I) be the partial matrices of QAP(AU,I) , B(k,2)) with respect to p(k,2). (These 
matrices are obtained from A by deleting all rows and the columns except for those 
with indices in XU) and XU), respectively.) By applying equality (4.28) we get 

Z(AU,I) , B(k,2), p(k,2)) = Z(AU), B(k,l), 1l'*) + z(A(l) , B(k,l), 1l'*) 

Combining the two last equalities we obtain 

Z(AU), B(k,l), ¢U)) + Z(A(l) , B(k,l), ¢(l)) > Z(AU), B(k,l), 1l'*) 

+Z(A(l) , B(k,l), 1l'*) (4.29) 

Now, change replaces X(i) and X(l) by XU) and X(l), respectively. It also replaces 
both 1l'U) and 1l'(1) by 1l'*, whereas the other partial sets and partial permutations 
remain unchanged. Let ¢' be the permutation determined by the new partial sets 
and the new partial permutations. Equations (4.29) and (4.28) imply Z(A, B, ¢/) ~ 
Z(A,B,¢). 

In order to transform the given 1l' to p(k,m) we apply a series of changes with 
(j, l) = (1,2), (1,3), (1,4), " ., (1, m). Due to the definition of a change, after these 
m - 1 changes all current partial permutations are equal to 1l'*, and the current 
partial set X(1) equals {I, 2, ... , k}. Let 1l" be the current partial permutation. By 
applying k - 2 consecutive changes with (j, l) = (2,3), (2,4)' ... , (2, m) to 1l" the 
latter is transformed into a new permutation with the same partial permutations 
1l'*, the same partial set X(1), and an (eventually) new partial set X(2) = {k + 
1, ... , 2k}. This process is continued by applying other consecutive changes with 
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(j, I) = (3,4), (3,5), ... , (3, m), ... , (m - 1, m), resulting to m(m - 1)/2 changes 
altogether. After this, all partial permutations equal 11"* and the partial sets are 
given by 

XU) = {(j -1)k + 1, (j -1)k + 2, .. . ,jk}, 

Thus, the claimed optimal permutation p(k,m) is obtained and this completes the 
~~ 0 

4.5.2 Special cases of the taxonomy problem 

The general taxonomy problem was introduced by Rubinstein [201]. It belongs to 
a large class of problems dealing with optimal groupings of related objects. The 
problem is very complex in its general formulation. For a detailed description 
and related topics the reader is referred to [202]. Here we only describe a simple 
version of the general taxonomy problem which can be formulated as a QAP. We 
call it taxonomy problem (TP), and all results presented in this section hold for the 
problem TP introduced below. 

Consider a group of n objects to be partitioned into a given number of subgroups 
with prespecified sizes. Assume that the given objects are identified with indices 
from 1 up to n. A communication matrix A = (aij) is given, where the entry aij 
represents a communication rate between object i and object j, 1 :s i,j:S n. The 
goal is to find a partition of the given objects into groups which minimizes the 
weighted sum of communication rates between pairs of objects belonging to the 
same group, where the weights are scaling factors which depend proportionally on 
the size of the group. 

The taxonomy problem (TP) is similar to a version of the set partitioning problem 
defined by Grotschel in [103]. Consider the given objects as a ground set E in a 
partitioning problem. Assign a cost Cs to each subset S of E: Cs = lSI 2::: aij· 

i,jES 
The above mentioned set partitioning problem consists of finding a partition of 
the ground set E into a prespecified number of subsets such that the overall cost 
of the subsets involved in the partition is minimized. In the taxonomy problem 
it is additionally. required that the subsets of the partitioning have prespecified 
cardinali ties. Moreover, the scaling factors I S I are generally replaced by some 
function of lSI. 

The TP can easily be modeled as a QAP. Let the set {I, 2, ... , n} represent the 
n objects and let nt, n2, ... , nk, 2:::7=1 ni = n, be the sizes of the k subgroups. 
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Moreover, let f: IN -+ IR+ be a function which models the scaling factor for the 
communication rates within the subgroups. Finally, let A = (aij) be the commu-
nication matrix, i.e. aij represents the measure of communication of object i with 
object j, 1 < i,j < n. Before formulating TP as a QAP let us introduce one more - -
class of matrices, the definition of so-called taxonomy matrices. 

Definition 4.6 Let a function f: IN -+ IR and the integers ni, 1 < i < k, with 
2:~=1 ni = n, be given. An n x n matrix B is called a taxonomy ~atrix of type 
(I, nl, n2,···, nk) if it is a block-diagonal matrix consisting of k blocks of non-zero 
elements along the diagonal, where for each i the i-th diagonal block is of size nj x nj 
and all entries within this block are equal to f( n;). 

As an example consider a 6 x 6 taxonomy matrix B of type (I, 1,3,2)' where f is 
given by the formula f( x) = 2x: 

2 0 0 0 0 0 
o 6 6 6 0 0 

B= o 6 6 6 0 0 
o 6 6 600 
o 0 0 0 4 4 
o 0 0 044 

Now it is clear that the above described TP is equivalent to QAP(A,B), where A 
is the communication matrix and B is a taxonomy matrix of type (I, nl, n2, ... , 
nk)' The following theorem, formulated by Rubinstein in [203], describes three 
polynomially solvable cases of this version of the QAP. Our proof exploits the fact 
that the classes of matrices MONGE(NNEG) and MONGE(RLG,NNEG) form cones, 
and works with the 0-1 matrices which generate the extremal rays of these cones. 

Theorem 4.37 (Rubinstein 1994, [203]) 
Let A be a Monge matrix and B be a taxonomy matrix of type (I, nl, n2,.··, nk) 
where f is a nonnegative function. Consider moreover the three following conditions 
on the problem input: 

(a) nl = n2 = ... = nk 

(b) A is a right-lower graded matrix, nl < n2 < 
decreasing function. 

< nk, and f tS a non-

(c) A is a left-higher graded matrix, nl ~ n2 ~ ... ~ nk, and f is a non-decreasing 
function. 
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In the cases (a) and (b) the identity permutation id is an optimal solution to 
QAP( A,B). In the case (c) the permutation </> = (n, n - 1, ... ,2,1) is an optimal 
solution to QAP(A,B). 

Proof. We assume w.l.o.g. that matrix A is nonnegative. Recall that according 
to Proposition 4.6, the extremal rays of the cone of n x n nonnegative Monge 
matrices are generated by the 0-1 matrices H(p), V(q), 1 ::; p ::; n, and L(p,q), 
R(p,q) , 1 ::; p, q ::; n, introduced in Section 4.2.1. Further, recall that according 
to Corollary 4.10, the extremal rays of the cone of right-lower graded nonnegative 
Monge matrices are generated by the 0-1 matrices E(p,q), 1 ::; p, q ::; n, introduced 
in Section 4.2.2. Hence, in case (a) it is sufficient to prove the theorem for matrices 
A coinciding with any of the matrices H(p) V(q) L(p,q) and R(p,q) 1 < p q < n " , - , - , 
(cf. Section 4.2.4). Analogously, in case (b) it is sufficient to prove the theorem 
for matrices A coinciding with any of the matrices E(p,q) , 1 ::; p, q ::; n. Then, by 
applying Observation 4.1 the results carryover to all matrices in the respective 
cones. The claim of the theorem in case (c) follows immediately from the claim in 
case (b). 

Proof of (a). Consider a QAP(A,B) of size n = k . nl, where B is a taxonomy 
matrix of type (I, nl, n2,· .. , nk), nl = n2 = ... = nk, and f is a nonnegative 

t 
function. Let So = 0 and St = E nj, for 1 ::; t ::; k. Then the objective function 

i=1 
Z(A, B,?T) can be written as follows: 

k $, $, 

Z(A, B,?T) = f(nt} L (L L a 7r (i)7r(j)) ( 4.30) 
t=1 i=S'_l +1 j=S'_l +1 

We consider separately the following four cases: 

Case 1. A = V(p), 1 < P < n. 
Let ?T E Sn and let Sh be the unique element among So, .•. , Sk-l for which Sh + 1 < 
?T- 1(p)::; Sh+l, where ?T- 1 is the inverse permutation of?T. By plugging A = V(P) 
in (4.30) and get: 

Sh+l 

Z(V(p), B,?T) = f(nt} L v~~(j) = nd(nd , 
j=Sh+ 1 

where V(p) = (v~})). Thus, QAP(V(p) , B) is a constant QAP and therefore id is 
an optimal solution to it. 

Case 2. A = H(p), 1 ::; p ::; n. 
Analogously as in Case 1 it can be shown that QAP(H(p), B) is a constant QAP. 
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Case 3. A = R(p,q), 1 < p,q < n. 
For a given 11" E Sn, defi~e tw: k-dimensional vectors (x ~ 71") ), (Y~ 71") ), 1 ::; t ::; k, as 
follows: 

\{St-l + 1 ::; i ::; St 

\{ St-l + 1 ::; j ::; St 

1::; 1I"(i) ::; p}\ 

n- q+ 1::; 1I"(j)::; n}\ 
Then, the objective function in (4.30) can be written as 

k 
Z(R(p,q), B, 11") = f(nd I>~71")y~71") 

t=l 

Thus, QAP(R(p,q), B) is equivalent to the following minimization problem: 
k 

min'" x(71")y(71") 
71"ES L...J t t 

n t=l 
(4.31) 

By definition, the vectors (x~71"»), (y~71"») have nonnegative integer entries and fulfill 
the following conditions: 

Relaxing the condition that the vectors (x~71"»), (y~71"») are related to some per-
mutation 11" E Sn as described above, we get the following relaxation PI of the 
minimization problem (4.31) 

(Pl) 

k 
mInImIZe I: XtYt 

t=l 
such that 

k 

I: Xt = P 
t=l 

k 
I: Yt = q 
t=l o ::; Xt, Yt ::; nt, 1 < t < k 

X t, Yt integer, l<t<k 
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Obviously, the optimal value of problem PI is a lower bound for the optimal value 
of QAP(R(p,q), B). We show that vectors (x~id») and (y~id») corresponding to the 
identity permutation id yield an optimal solution to PI. This implies then that the 
identity permutation id is an optimal solution to QAP(R(p,q) , B). Indeed, vectors 
(x~id») and (y~id») are given as follows: 

~~ - . { { O}} Xt - mm nt, max P - St-l, , (id) . { { O}} Yt = mm nt, max q - n + St, . 

It can be easily seen that these vectors are derived by starting with t = 1 and setting 
the entries x~id), Yki~~+1 as large as possible, and then iteratively increasing t by I. 
This procedure is repeated until t = k. As an easy consequence of Proposition 2.1, 
this construction yields an optimal solution to problem PI. 

Case 4. A = L(p,q) , 1 < p, q < n. - -
Analogous to the proof in Case 3. 

Proof of (b). Consider a QAP(A,B) of size n = L~=l nt, where B is a taxonomy 
matrix of type (I, nl, n2,.··, nk), f is a non-decreasing function and A = E(p,q). 
For any rr E Sn the objective function Z(A, B, rr) is given as follows: 

( 4.32) 

where St, 0 < t < k, are defined as in the proof of (a). Set p' = n - p and 
q' = n - q and con~der additionally the matrix C(p',q'), as defined in Section 4.2.2. 
Clearly, E(p,q) + C(p' ,q') = En, where En is the n x n matrix with all entries 
equal to 1. From Observation 4.1 it follows that minimizing Z(E(p,q) , B, rr) over 
all permutations rr E..Sn is equivalent to maximizing Z(C(p',q'),B,rr) over rr E Sn 
in the sense that these problems have the same set of optimal solutions. For an 
arbitrary rr E Sn, Z(C(p ,q'), B, rr) can be written as follows: 

where the vectors (x~7r»), (y}7r») , 1:::; t:::; k, are defined as follows: 

x~7r) I{St-l + 1:::; i :::; St P + 1 :::; rr(i) :::; n}1 
y~7r) I{St-l + 1 :::; j:::; St q + 1:::; rr(j) :::; n}1 
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Thus, QAP(E(p,q), B) is equivalent to the following maximization problem 

(4.33) 

By definition, (x~'/1')), (Y~'/1')) have nonnegative integer entries and fulfill the fol-
lowing conditions: 

Similarly as in the proof of Case 3 of (a), the maximization problem (4.33) can be 
relaxed to get the following problem P2: 

maXImIze 2::=I/(nt}XtYt 
subject to 

(P2) 
~k I L..,t=1 Xt = P 
~k I L..,t=1 Yt = q 

o ~ Xt, Yt ~ nt 1 < t < k 

Xt, Yt integer 1 < t < k 

Obviously, the optimal value of problem P2 is an upper bound for the maxi-
mum value of Z(C(pl,q'),B, 11') over 11' E Sn. We show that the vectors (x~id)), 

(y~id)), corresponding to the identity permutation id yield an optimal solution to 
P2. Clearly, this implies that id is an optimal solution to (4.33) and, equivalently, 
to QAP(E(p,q) , B). The vectors (x~id)), (y~id)) are given as follows: 

(id) . { { I OJ} Xt = mIn nt, max P - n + St, , (id) . { { I OJ} Yt = mm nt, max q - n + St, . 

Proposition 2.1 can be easily generalized to the case of the maximization of the 
"scalar products of three vectors". Burkard, Rudolf and Woeginger [42] show 
that given three non-decreasing n-dimensional vectors (Ui), (Vi), (Wi), the sum 
2:7=1 UiVq,(i)Wt/J(i) where <p, t/J E Sn, is maximized by <p = t/J = id. As the function / 
and the vectors (x~id)), (Yiid)) are non-decreasing the above mentioned result of 
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Burkard et al. can be applied to show that (xiid») , (y~id») yield an optimal solution 
to problem P2. The proof of this claim relies on a simple exchange argument and 
is omitted because of its simplicity. 

Proof of (c). Consider QAP(A,B) of size n with A E MONGE(LHG)' B being a 
taxonomy matrix of type (I, nl, n2, ... , nk), and f being a non-decreasing function. 
Consider, moreover, the permuted matrix A4> = (a4>(i)4>(j») , where ¢ = (n, n -
1, ... ,2,1). The following inequality which holds for 1 ~ i, j ~ n - 1, shows that 
A 4> is a Monge matrix: 

an-i+1,n-j+1 + an-i,n-j ~ 

an-i+I,n-j + an-i,n-j+1 

Moreover, A4> is a right-lower graded matrix, as shown by the following inequalities: 

a4>(i)4>(j) = an-i+I,n-HI ~ an-i,n-HI = a4>(i+I)4>(j) , 1 ~ i ~ n - 1 , 1 ~ j ~ n 

a4>(i)4>(j) = an-i+1,n-Hl ~ an-i+l,n-j = a4>(i)4>(j+1) , 1 ~ i ~ n, 1 ~ j ~ n - 1 

Thus, A4> E MONGE(RLG) and therefore, permutation id is an optimal solution to 
QAP(A4>, B), as proven in (b). The claim follows by considering that the following 
equality holds: 

Z(A, B, ¢ 0 11') = Z(A4>, B, 11'), for all 11' E Sn o 

Remark 1. The first result of Theorem 4.37 was implicitly proven by Pferschy, 
Rudolf and Woeginger in [185]. The authors consider the so-called balanced k-cut 
problem, a special case of the TP where all subgroups have the same size (k is 
the number of subgroups). It is shown that the special case of the balanced k-
cut problem where the communication matrix A is a Monge matrix, is solved to 
optimality by the identity permutation. This is exactly what Theorem 4.37 states 
in case (a). 

Remark 2. It can be shown that both conditions, f being non-decreasing and 
A being a lower-right graded matrix, are essential for the claim of Theorem 4.37 
in case (b). That is, there exist examples where the violation of one of these 
conditions is sufficient to make the identity permutation a non-optimal solution of 
the corresponding QAP. 
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Example 4.2 The conditions of Theorem 4.37 are essential. 
Let n = 3 and let the matrices AI, A 2, B I , B2 be given as: 
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Al = (~ ~ ~) BI = (~ ~ ~) A2 = (~ ; ~) B2 = (~ ~ ~) 
321 011 333 033 

BI is a taxonomy matrix of type (1,1,2), where f(l) = 3, f(2) = 1. Thus, f is 
a decreasing function. Similarly, B2 is a taxonomy matrix and the corresponding 
function is increasing. Further, Al is a right-lower graded Monge matrix and A2 
is a left-higher graded Monge matrix. One can check that Z(Al' B l , id) = 16, 
Z(Al,Bl ,¢) = 14, Z(A2' B2, id) = 34 and Z(A2,B2,¢) = 24, where ¢ = (n,n-
1, ... ,2,1). Thus, id is not an optimal solution for QAP(Al , BI) and QAP(A2, B2). 
o 

Remark 3. Finally, notice that the condition nl :::; n2 :::; ... :::; nk in Theorem 4.37 
is not essential, in the sense that for A E MONGE(LHG) or A E MONGE(RLG) 
and a taxonomy matrix B of type (I, nl, n2, ... , nk) with non-decreasing function 
f, QAP(A,B) is polynomially solvable, even if the vector (nd is not increasingly 
sorted. Indeed, given an arbitrary taxonomy matrix B of type (I, nl, n2, ... , nk), 
there exists a permutation t/J such that the permuted matrix B'" is again a taxonomy 
matrix of type (I, n~, n~, ... , n~), with n~ :::; n~ :::; ... :::; n~ and {nl, ... , nk} = 
{n~, ... , n~}. For example, for the 6 x 6 taxonomy matrix B of type (I, 1,3,2) 
with f( x) = 2x, introduced after Definition 4.6 in this section, the permutation 
t/J = (1,5,6,2,3,4) does the job. So, we get the following straightforward corollary: 

Corollary 4.38 Let A be a Monge matrix and let B be a taxonomy matrix of type 
(I, nl, n2,···, nk). Assume additionally that A is either a left-higher or a right-
lower graded matrix and that f is a non-decreasing function. Then QAP(A,Bj is 
a constant permutation QAP. In the case that A E MONGE(RLG) the constant 
permutation is t/J and in the case that A E MONGE(LHG) the constant permutation 
is ¢ ot/J, where ¢ = (n, n - 1, ... ,2,1) and t/J is determined as described above. 

Proof. From Theorem 4.37 follows that QAP(A, B"') is a constant permutation 
QAP. Its constant permutation is id or ¢ in the cases that A E MONGE(RLG) or 
A E MONGE(LHG), respectively. The proof is completed by considering that the 
equality 

Z(A, B, 7r 0 t/J-l) = Z(A, B"', 7r) 

holds for all 7r E Sn, n = L~=l ni· o 



5 
TWO MORE RESTRICTED 

VERSIONS OF THE QAP 

In this chapter which is a continuation of the previous one, we consider two 
restricted version of the QAP: the Anti-Monge-Toeplitz QAP and the Kalmanson-
Toeplitz QAP. The Anti-Monge-Toeplitz QAP is a restricted version of the QAP, 
where one of the coefficient matrices is a left-higher graded Anti-Monge matrix 
and the other one is a symmetric Toeplitz matrix. The interest in this problem 
is motivated by a number of practical applications, e.g. the turbine problem and 
the data arrangement problem, some of which will be considered in detail in the 
second section of this chapter. Moreover, the Anti-Monge-Toeplitz QAP contains 
the TSP on symmetric Monge matrices as a special case. Despite the very special 
structure of the Anti-Monge-Toeplitz QAP, i.e., the quite restrictive conditions 
to be fulfilled by its coefficient matrices, the problem is NP-hard. Namely, the 
turbine problem which is a special case of the Anti-Monge-Toeplitz QAP is NP-
hard, as shown by Burkard, Cela, Rote and Woeginger [33]. However, for Toeplit.z 
matrices satisfying some additional conditions, (e.g. benevolent, k-benevolent, 
or bandwidth-2 matrices), the Anti-Monge Toeplitz QAP becomes polynomially 
solvable. These polynomially solvables special cases of the problem which are 
constant permutation QAPs, will be described in detail in the first section of this 
chapter. Then, a polynomially solvable version of the Kalmanson-Toeplitz QAP, 
which i.e. a QAP with a Kalmanson and a Toeplitz matrix, is described. Further, 
so-called permuted polynomially solvable cases of the QAP are briefly discussed. 
The concluding section summarizes the results on special cases of the QAP obtained 
in the current and in the previous chapter. Here we also outline some open problems 
which could be object of further research. 
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5.1 POLYNOMIALLY SOLVABLE CASES OF 
THE ANTI-MONGE-TOEPLITZ QAP 

The proofs of these results are based on two ideas: relaxation and reduction to 
extremal rays. First, a relaxation of the QAP at hand, namely the correspond-
ing independent-QAP (I-QAP), is investigated. It is shown that the permutation 
claimed to be optimal for the QAP solves also the corresponding relaxation, i.e., the 
independent QAP. The claim is proven by exploiting the cone structure of the in-
volved coefficient matrices. In case of benevolent matrices (to be introduced in the 
next section) the I-QAP over the corresponding extremal rays can be formulated 
equivalently as a selection problem. The latter can then be solved by elementary 
means. Here, we will provide only sketches of the proofs, whereas the complete 
proofs can be found in [33]. 

5.1.1 Benevolent Toeplitz matrices 

Let us first give the definition of so-called benevolent functions and benevolent 
matrices. 

Definition 5.1 A function f: { -n + 1, ... , n - I} -+ IR is called benevolent if it 
fulfills the following three properties. 

(BENI) f(-i) = f(i) for aliI < i < n-1. 

(BEN2) f(i)~f(i+I) forallI~i~l~J~1. 

(BEN3) f(i) ~ f(n - i) for aliI ~ i ~ r~l- 1. 

An n x n matrix B = (bij ) is called a benevolent matrix if it is a Toeplitz matrix 
generated by a benevolent function as above, i.e., bij = f(j - i) for all 1 ~ i, j ~ n. 

Example 5.1 The function f: {-7, -6, ... ,0,1, ... 7} -+ IR defined by 

f(O) = 3, f(I) = 1, f(2) = 2, f(3) = 3, f(4) = 4, 

/(5) = 5, /(6) = 5, /(7) = 3 
is benevolent. The graph of this function is shown in Figure 5.1. Note that the 
graph of this function for x E {5, 6, 7} U {-5, -6, -7} lies above the thin lines, 
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• • • • 

-1 0 1 

Figure 5.1 The graph of the benevolent function f 

this being the geometric equivalent of property (BEN3). The benevolent matrix A 
generated by f is given below: 

A= 

31234553 
1 3 1 2 3 4 5 5 
2 1 3 1 234 5 
3 2 131 234 
43213 123 
5 4 321 312 
5 5 4 3 2 131 
3 5 543 2 1 3 

Notice that by property (BEN1), a benevolent Toeplitz matrix is symmetric. 0 

It is easy to see that the nonnegative benevolent matrices form a cone. (These 
matrices are defined by certain homogeneous linear equalities and inequalities to 
be fulfilled by their entries.) Which are the extremal rays of this cone? We show 
that all nonnegative benevolent functions can be represented as nonnegative linear 
combinations of special benevolent functions, which take only 0-1 values. Hence, 
these 0-1 functions generate the extremal rays of the cone of nonnegative benevolent 
functions. These special 0-1 benevolent functions are introduced below, 

Definition 5.2 For l ~ J + 1 ~ a ~ n-1, define a function gO<: { -n+ 1, ... , n-1} -t 
{0,1} by 

for x E {-a, a} 
for x ~ {-a,a}. 

For 1 ~ f3 ~ l ~ J, define a function hi3 : { -n + 1, ... , n - 1} -t {O, 1} by 

for f3 ~ Ixl ~ n - f3 
otherwise. 
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Example 5.2 For n = 8 and a = 5 the function g5: {-7, -6, ... ,0,1, ... , 7} ~ 
{O, 1} is defined by g5(5) = g5{ -5) = 1 and g5{X) = 0, for'x tf. {-5, 5}. 
For n = 8 and {3 = 2 the function h2: {-7, -6, ... ,0,1, ... , 7} ~ {O, 1} is defined 
by h2(0) = h2(1) = h2{-1) = 0, h2(7) = h2{-7) = 0 and h2{x) = 1, for x E 
{2, 3, 4, 5, 6} U {-2, -3, -4, -5, -6}. The Toeplitz matrices generated by these 
functions are 

00000 1 0 0 
000 000 1 0 
00000001 
00000000 
00000000 
100 000 0 0 o 1 0 000 0 0 o 0 1 0 0 0 0 0 

00111110 
000 1 111 1 
1 000 1 1 1 1 
1 100 0 1 1 1 
1 1 1 0 001 1 
1 1 1 1 000 1 
11111000 
01111100 

Observe the circular structure of the second matrix, which is typical of the functions 
hf3 : Going from one row to the next corresponds to a circular right shift, and this 
remains true when returning from the last row to the first row. The same holds 
for the columns. 0 

Consider the set of real functions defined on { -n + 1, ... , n -1} with the traditional 
operations "addition" and "scalar product". That is, if f and 9 are two functions 
which map {-n + 1, ... , n - 1} to IR and a E IR, then f + 9 and af are defined 
by (f + g)(x) = f(x) + g(x) and (af)(x) = af(x), for x E {-n + 1, ... , n - I}. 
This set of functions with these two operations forms a linear space. The following 
lemma states that the subset consisting of the benevolent functions which map 0 
to 0 forms a cone in this space. 

Lemma 5.1 The nonnegative benevolent functions f: {-n + 1, ... , n - 1} ~ IR 
with f(O) = 0 form a cone. The extremal rays of this cone are generated by the 
functions glX and hf3. 

Proof. Since nonnegative benevolent functions are defined by linear equations and 
inequalities with right-hand side equal to zero, they form a cone. The functions gO 
and hf3 are clearly benevolent and hence, belong to this cone. In fact, each of these 
functions satisfies precisely one of the characterizing inequalities (BEN2), (BEN3), 
and f(l) ~ 0 as a strict inequality and the remaining ones with equality. Further, 
we show that an arbitrary nonnegative benevolent function f with f(O) = 0 is a 
nonnegative linear combination of functions glX and hf3. For this purpose we define 
two auxiliary functions which map {-n + 1, ... ,0, ... , n -1} to IR and are related 
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to f in the following way: 

{ 
f(i) for 

!1(i) = f(n-i) for 
f(-n + i) for 

and 

Iii::; l ~ j 
i> l ~j 
i<-l~J 

for 
for h(i) = { f(i) - ~(n - i) 

f(i) - f( -n + i) for 

Iii::; l ~ j 
i> l ~J 

i < -l ~ j 

163 

It is easily seen that f(i) = !1 (i) + h(i) holds for all i in {-n + 1, ... , n - I}. 
Finally, observe that 

Ln/2J n-l 
!1 = L (f(i) - f(i - 1)]· hi h = L [f(i) - f(n - i)]· gi (5.1) 

i=l i=Ln/2J+l 

and apply conditions (BEN2) and (BEN3) to see that all coefficients in these expres-
sions are nonnegative. Hence, both !1 and h are nonnegative linear combinations 
of functions gO< and hf3 and this completes the proof. 0 

5.1.2 The Anti-Monge-To~plitz QAP with a 
benevolent matrix 

In this section we will consider the Anti-Monge-Toeplitz QAP(A,B) where the 
Toeplitz matrix B is benevolent. We show that this problem is a constant permu-
tation QAP and 11"* is an optimal solution (i.e. the constant permutation). Recall 
that 11"* E Sn is defined by 11"* (i) = 2i - 1 for 1 ::; i ::; r ~ 1 and 11"* (n + 1 - i) = 2i 
for 1 ::; i ::; l ~ j (cf. Section 4.5.1). Summarizing we prove the following theorem 
which is also the maiIl'result in this section. 

Theorem 5.2 The permutation 11"* solves QAP(A, B) where A is a left-higher 
graded Anti-Monge matrix and B is a symmetric Toeplitz matrix generated by a 
benevolent function. 

Since the structure of a left-higher graded Anti-Monge matrix and that of a benevo-
lent matrix do not change when adding a constant to all entries of the corresponding 
matrices, we can assume w.l.o.g. that both coefficient matrices A, B are nonneg-
ative. Moreover, for the sake of convenience and in order to avoid trivialities, all 
matrices in this section will be of dimension n x n, for some fixed n ~ 3. If all 
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diagonal entries of matrix B are equal to a certain constant, the value of this con-
stant does not influence the optimal solution of QAP(A, B) but only its optimal 
value. Thus, we may assume w.l.o.g. that all Toeplitz matrices in this section 
have O-entries on the diagonal. Consequently, f(O) = 0 holds for any function f 
generating some Toeplitz matrix in this section. 

In order to prove that 11'* solves QAP(A, B), where A and B are specially structured 
matrices as discussed above, we will show an even stronger statement. Consider the 
relaxation I-QAP(A,B) of QAP(A,B), where the columns and the rows of matrix 
A may be permuted by different permutations independently of each other (see 
Section 4.1): 

n n 

(I-QAP(A,B») L L a,,(;)1P(j)b;j 
;=1 j=l 

It will turn out that the objective function of I-QAP(A,B) is minimized by 11' = 
'I/J = 11'*. This guarantees that 11'* is also an optimal solution of QAP(A, B). Thus, 
instead of proving Theorem 5.2 we prove the following theorem: 

Theorem 5.3 The pair of permutations (11'*,11'*) solves I-QAP( A,B) where A is a 
nonnegative left-higher graded Anti-Monge matrix and B is a symmetric Toeplitz 
matrix generated by a nonnegative benevolent function f with f(O) = o. 

We have already seen that the set of nonnegative left-higher graded Anti-Monge 
matrices A is a cone. Moreover, the nonnegative benevolent Toeplitz matrices B 
with zeros on the diagonal form a cone, too. Then, clearly, (11'*,11'*) must solve 
I-QAP(A,B) with A and B being generating matrices for the extremal rays of 
the respective cones. On the other hand, it is easy to see that the general result 
(Theorem 5.3) follows from the optimality of (11'*,11'*) over the extremal rays, and 
hence, only such I-QAPs need to be considered. Indeed, this is a straightforward 
application of the following observation. 

Observation 5.4 Assume that I-QAP(A1' B) and I-QAP(A2' B) are both solved 
by the pair of permutations (11'0, 'l/Jo). Then for any two rea Is k1, k2 2: 0, the problem 
I-QAP(k1A1 +k2A2,B) is also solved by (1I'0,'l/Jo). 

Proof. The proof follows directly from the equality 
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o 

Similarly, an analogous statement holds for the linear combinations of the second 
matrix B. 

To complete the proof of Theorem 5.3 and hence of Theorem 5.2, we have to 
show that (11"*,11"*) solves I-QAP(A,B), where A is one of the matrices A = C(p,q) 
generating the cone of left-higher graded nonnegative Anti-Monge matrices (see 
Section 4.2.2), and B is a Toeplitz matrix generated by one of the functions gOi. 
or hI~. Let us first specialize A to one of the matrices C(p,q) and keep B as a 
general Toeplitz matrix. Then, I-QAP( C(p,q) ,B) can be formulated as a selection 
problem which is more convenient to handle. Namely, we have to select prows 
and q columns of matrix B such that the total sum of all pq selected entries is 
minimized. The rows to be selected are those which are mapped to the last prows 
n - p + 1, ... , n, of A by permutation 11", and the selected columns are those which 
are mapped to the last q columns n - q + 1, ... , n, of A by permutation 'IjJ. The 
solution of this selection problem in case of benevolent matrices is given by the 
following lemma. 

Lemma 5.5 (The optimal selection lemma) Let 1 ~ p, q ~ n. Let B be a 
nonnegative Toeplitz matrix generated by a benevolent function f with f(O) = O. 
Suppose that p rows and q columns of matrix B have to be selected such that the 
total sum of all pq selected entries is minimized. Then it is optimal to select the 
last p elements of the sequence 

1, n, 2, n - 1,3, . . . (5.2) 

as row indices and the last q elements of this sequence as column indices. 0 

To see that Theorem 5.3 (and hence Theorem 5.2) follows from Lemma 5.5 note 
that row i of A = C(p,q) is mapped to row 1I"-1(i) of B. Thus, the rows with the 
I-entries in A are mapped to the last p elements of the sequence 

1I"-1(1),1I"-1(2), ... ,1I"-1(n). 

For 11" = 11"* this sequence coincides with the sequence given in (5.2) and hence, 
under the assumption that Lemma 5.5 holds, permuting the rows according to 11"* 

in I-QAP(A,B) will be optimal. The same argument applies to the columns. By 
Observation 5.4, this result carries over from C(p,q) to all left-higher nonnegative 
Anti-Monge matrices A and this concludes the proof of Theorem 5.3 (hence of 
Theorem 5.2). 
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For definiteness, let us write down the rows and columns to be selected according 
to the above lemma. The claimed optimal solution selects the p rows from 

fn - pl PI:= -2- + 1 to In - pJ P2:= n- -2- (5.3) 

and the q columns from 

fn - ql qI:= -2- +1 to In - qJ q2 :=n- -2- . (5.4) 

The optimal selection lemma (Lemma 5.5) is proven separately for Toeplitz matri-
ces B generated by the functions gCY. (Lemma 5.6) and h f3 (Lemma 5.8). Since the 
above formulation as a selection problem for rows and columns is merely another 
formulation of the I-QAP, Observation 5.4 can then be used to obtain Lemma 5.5. 

Lemma 5.6 The pair of permutations (11"*,11"*) solves I-QAP{A,B) with A = C(p,q) 
and a symmetric Toeplitz matrix B generated by gCY., for any 1 S; p, q S; n and any 
l I J + 1 S; a S; n - 1. In other words, selecting p rows and q columns from B 
according to Lemma 5.5 will minimize the sum of the selected elements. 

Sketch of the proof. First, it is shown that p + q - 2a is a lower bound for the 
value of the objective function. Indeed, instead of selecting p rows and q columns 
of the matrix B, let us take the opposite view and delete n - p rows and n - q 
columns from B. The matrix B contains originally 2(n - a) I-entries and no two 
of them are in the same row or in the same column. Thus, by deleting n - prows 
and n - q columns we may delete at most (n - p) + (n - q) I-entries, which gives a 
sim pIe lower bound of 2 (n - a) - (( n - p) + (n - q)) = p + q - 2a for the remaining 
number of I-entries. 

Secondly, it is shown by elementary means that the claimed solution achieves the 
value max{O, p + q - 2a}, and this completes the proof. A full version of the proof 
can be found in [33]. 0 

Now let us turn to the functions h f3 which generate the other extremal rays of the 
cone of benevolent functions 1 with 1(0) = O. For the proof it is convenient to work 
with a certain quantity Q(b, m) whose definition is given below together with some 
properties. The simple and elementary proofs of these properties can be found in 
[33]. 



Two more restricted versions of the QAP 167 

Definition 5.3 For two integers b, m 2: 0, the quantity Q(b, m) denotes the sum 
of the first b terms of the following sum: 

min{1, m} + min{1, m} + min{2, m} + min{2, m} + min{3, m} + min{3, m} + .... 

Lemma 5.7 For fixed m, the difference Q (b + 1, m) - Q (b, m) increases with b. 
Therefore the function Q(b, m) is a convex function in b with Q(O, m) = 0, and so 
we have in particular 

We also have 
Q(b + 1, m) ~ Q(b, m) + m. 

An explicit representation of Q(b, m) is 

Q(b,m) = { l U¥fJ 
m(b+ 1- m) 

for b < 2m - 2 

for b 2: 2m - 2 

(5.5) 

(5.6) 

o 

Now we can give the solution of the selection problem in the case of nonnegative 
benevolent matrices B generated by functions hi3 . 

Lemma 5.8 The pair of permutations (11"*,11"*) solves I-QAP(A,B) with A = C(p,q) 
and B being a symmetric Toeplitz matrix generated by hi3 , for any 1 ~ p, q ~ n 
and any 1 ~ f3 ~ l!} J . In other words, selecting p rows and q columns from B 
according to Lemma 5.5 will minimize the sum of the selected elements. 

Sketch of the proof:' Suppose we have selected a certain set of q columns. Let 
Xi, i = 1, ... , n, denote the sum of the entries ofthe i-th row lying on the q selected 
columns. Clearly, in order to minimize the sum of the entries, we have to select the 
p rows with the smallest Xi values. We shall state some simple conditions on the 
sequence of numbers (Xi), and from this we will derive lower bounds for the sum 
of the p smallest numbers Xi. The lower bounds hold for any choice of q columns, 
and thus they provide a lower bound on the optimum value z* of the objective 
function. This lower bound matches the objective function value of our proposed 
solution, and therefore this solution is optimal. 

Each column of B has a very simple structure. If we arrange the row indices in a 
circular sequence 1,2, ... , n, 1,2, ... , the 1-entries in column j form a single circular 
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interval of length, := n - 2/3 + 1. This circular interval of I-entries starts at row 
j + /3 and ends at row j + n - /3, wrapping around from row n to row 1, if necessary. 
(In this section all indices are taken modulo n.) It is easy to see that for each set 
of q selected columns, the row sums Xi fulfill the following conditions: 

0< Xi 5:q l<i<n (5.7) 

q+,-n5: Xi 5:, 1 < i < n (5.8) 
n 

LXi q, (5.9) 
i=l 

IXi-Xi-ll < 1, l<i<n (5.10) 

The constraints (5.7) and (5.8) imply 

p . max{O, q +, - n} 5: z* 5: p . min{q,,}. 

We will first deal with the cases in which these simple bounds are sufficient. Let 
us look at the vector Xi corresponding to our proposed optimal selection for the 
columns. Figure 5.2 shows such a sequence for the case n = 19, q = 5 and, = 8. 

5 
4 
3 
2 
1 
0 

Xi 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19=n 
al b1 al 

Figure 5.2 The vector (Xi) corresponding to the claimed optimal selection of 
columns for n = 19, q = 5, and 'Y = 8 ({3 = 6). The indices of the selected columns 
are 8, 9, 10, 11 and 12. If p = 10 or p = 11, the p-smallest Xi has the value I = 2 
indicated by the horizontal line. 

i 

Since we select q "adjacent" columns, the circular sequence of values Xi consists 
of two horizontal intervals connected by a rising and a falling interval of slope ±l. 
By analyzing the situation in detail, one can make the following statements about 
the two horizontal pieces. The higher piece looks as follows: 
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• Case VI, q ~ 'Y: The maximum value of Xi is 'Y and it occurs for q - 'Y + 1 
adjacent positions (rows). 

• Case V2, q ::; T The maximum value of Xi is q and it occurs for 'Y - q + 1 
adjacent positions. (This is the case in figure 5.2.) 

The lower piece looks as follows: 

• Case Ll, q+'Y ::; n: The minimum value of Xi is 0 and it occurs for n -q -'Y+ 1 
adjacent positions.(This is the case in figure 5.2.) 

• Case L2, q + 'Y ~ n: The minimum value of Xi is q + 'Y - n, and it occurs for 
q + 'Y - n + 1 adjacent positions. 

These maximum and minimum values of Xi coincide with the ones given by (5.7) 
and (5.8). One can also check that in the sequence given by (5.2), the first rows 
selected (i.e., the last elements of the sequence) correspond to the positions where 
Xi has the minima, and the last rows selected correspond to the positions where 
Xi has its maxima. Therefore, if p has such a small value that only the minimal 
positions are selected, we know that the solution is optimal. So we get the solution 
for the following cases (which are not mutually exclusive): 

• Case 11 (q + 'Y ::; n): If p ::; n - q - 'Y + 1, then 

z* = o. (5.11) 

• Case L2 (q + 'Y ~ n): If p ::; q + 'Y - n + 1, then 

z* = p( q + 'Y - n). (5.12) 

Similarly, if p is big enough so that all elements except possibly the largest elements 
are selected, the solution is guaranteed to be optimal, taking into account that the 
total sum of all entries is constant, by (5.9). So we get the solutions for the following 
additional cases: 

• Case VI (q ~ 'Y): If p ~ n - (q - 'Y + 1), then 

z* = q'Y - (n - ph = (p + q - n h (5.13) 
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• Case U2 (q ::; ,): If p ~ n - b - q + 1), then 

z* = n - (n - p)q = (p+, - n)q. (5.14) 

The remaining case that has to be considered is In - q -,I + 1 < p < n -Iq - ,I-I. 
Also in this case one can check that the p rows which are selected in our proposed 
optimal solution correspond to the p smallest xi-values, if the q columns have 
been selected according to Lemma 5.5 (see [33] for more details and arguments). 
Consequently, the objective function value z* corresponding to the solution claimed 
to be optimal can be evaluated as follows: 

• Case L1 (q +, ::; n): z* = (n - q -,+ 1)·0+ [1 + 1 +2+2+3+ 3+···], where 
p - (n - q - , + 1) numbers are taken from the sum in brackets. According to 
Lemma 5.7 we have 

l(p+q+,-n)2J z*=Q(p+q+,-n-1,00)= 2 . (5.15) 

• Case L2 (q +, ~ n): According to the above description of the vector Xi, 

every Xi is at least q + 'Y - n, and this value is taken by q + 'Y - n + 1 elements 
Xi. Summing separately the excess of Xi over q + 'Y - n, we can write 

z* = p( q + , - n) + (q + , - n + 1) . 0 + [1 + 1 + 2 + 2 + 3 + 3 + ... ], 

where p - (q +, - n + 1) numbers are taken from the sum in brackets. This 
yields 

z* p(q +, - n) + Q(p - (q +, - n + 1),00) 

l4P(q +, - n) + ~ - (q +, - n))2 J = l (p + q ~' - n)2 J ' 

which coincides with (5.15). 

Further, it is shown that the value of the objective function for the claimed optimal 
solution is a lower bound for the number of the selected entries in an arbitrary se-
lection, and this completes the proof. The proof of this last fact is rather technical, 
although elementary, and can be found in [33]. 0 
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Remark 1. A different proof of Lemma 5.8 can be given by using a result of Qela 
and Woeginger (Theorem 4.1 in [46]). Translated into the language of Lemma 5.5, 
the authors show that there always exists an optimal selection consisting of a block 
of p (cyclically) adjacent rows and of a block of q (cyclically) adjacent columns. 
The result is formulated in a graph-theoretic setting, and the proof is based on an 
exchange argument. 

Remark 2. Formula (5.15) can be combined with the previous bounds (5.11)-
(5.14) for the easy cases L1, L2, VI and V2 into one closed-form expression for 
the optimum objective function value. Let N := max{O, p + q + 'Y - n} and k := 
min{p,q,'Y, IN/2J}. Then 

z* = N . (N - k). 

It is perhaps astonishing that this formula is completely symmetric in p, q, and ~(. 

5.1.3 The Anti-Monge-Toeplitz QAP with a 
periodic Toeplitz matrix 

In this section we consider the Anti-Monge-Toeplitz QAP with a Toeplitz ma-
trix generated by a periodic function. Again, the problem is NP-hard despite its 
very special structure. However, a polynomially solvable case arises if the periodic 
Toeplitz matrix has some additional property, namely if it is k-benevolent. The 
resulting version of the problem is again a constant permutation QAP, and the 
proof of this facts exploits the result obtained in the previous section on the Anti-
Monge-Toeplitz QAP with a benevolent matrix. The k-benevolent matrices are a 
generalization of benevolent matrices, obtained by a periodic extension. 

Toeplitz matrices generated by k-benevolent functions 

The notion of a benevolent function can be generalized to obtain the so-called k-
benevolent function as a result of the periodic continuation of a benevolent function. 
Then, analogously to the benevolent matrices, the k-benevolent matrices can be 
introduced. 

Definition 5.4 Let k ~ 1 and n = kn'. A function f: { -n + 1, ... , n - I} -r IR is 
called k-benevolent if it fulfills the following four properties. 

(i) f (i) :::; f (i + 1), for 0 :::; i :::; l ~' J - 1. 
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(ii) f(i) = f(n' - i), for os: i S: r~/l-1. 
(iii) f(i) = f(i + jn'), for os: is: n' - 1, 1 S: j S: k - 1. 

(iv) f( -i) = f(i), for os: i S: n - 1. 

CHAPTER 5 

A matrix B = (bij ) is called a k-benevolent matrix if it is a Toeplitz matrix gener-
ated by a k-benevolent function f, i.e., bij = f(j - i) for aliI S: i,j S: n. 

Properties (i), (ii) and (iv) are the same as the properties of benevolent functions 
for the range {-n' + 1, ... , n' - I}, with two exceptions: The symmetry condition 
(ii) requires equality, and f(O) is involved in (i). Property (iv) provides the periodic 
continuation with period n'. 

Example 5.3 Let n = 15, k = 3, n' = 5. Define a 3-benevolent function 
f:{-14,-13, ... ,0,1, ... ,14} -4 IR by f(O) = 1, f(l) = 2, f(2) = 3. The graph 
offunction f and the 3-benevolent matrix generated by it are presented below. 
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Figure 5.3 The graph of the 3-benevolent function f. 

233 2~ 123 3 2~ 12332 
2 1 2 3 3 ~ 2 1 2 3 3 ~ 2 1 233 
3 2 1 23; 3 2 1 23; 3 2 123 
333 1 2 ~ 3 3 3 1 2; 3 3 3 1 2 
23321:23321123321 

• 

14 

.. T .... ·2· .... '3·· .. '3·· .. '7,'·r .. 'C .... 2· .... 3· .... 3 .. · .. 2 .. 1 .. T' .. ··r .... 3· .. ·'3' .. T. 
2 1 2 3 312 1 2 331 2 1 233 

B= 32123132123132123 
333 1 2; 3 3 3 1 2; 3 3 3 1 2 
2 332 112 3 3 2 112 3 3 2 1 .. T .... ·2 ...... 3 .. ···3· .... rr .. l .... ·2·· .. ·3· .... 3 .. · .. 2 .. 1 .. T· .. ·'7,'· .... 3· .... 3 .. · .. 2 .. 
2 1 2 33; 2 1 2 3 3; 2 1 233 
321 231 3 2 1 231 3 2 123 
333 1 213 3 3 1 213 3 3 1 2 
23321123321123321 

One can clearly see that matrix B consists of 3 x 3 = 9 identical blocks of size 
n' X n' = 5 x 5 each. Two columns whose indices are congruent modulo n' = 5 are 
identical, and the same holds for the rows. 0 
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We will show that QAP(A,B) of size n = kn', with A being a left-higher graded 
Anti-Monge matrix and B being a k-benevolent matrix is a constant permutation 
QAP. The constant permutation 71'(k) which will be optimal for such a constant 
permutation QAP(A,B) is described below. Recall from Definition 4.5 that 71'* = 
(1,3,5,7,9, ... ,8,6,4,2). In this subsection, 71'* will be regarded as a permutation 
of {I, ... , n'}. The permutation 71'(k) E Sn (with n = kn') is constructed in terms 
of 71'* E Sn' as follows: 

71'(k)((U - l)n' + i) = k7l'*(i) - (u - 1), for 1 ~ u ~ k, 1 ~ i ~ n'. 

Example 5.4 For k = 3, n' = 5, n = kn' = 15, we have 

71'(4) = (3,9,15,12,6, 2,8,14,11,5, ,1, 7, 1~, 10,5)---------- -------

(5.16) 

The sequence (7I'(k)(I), 71'(k) (2), ... 71'(k) (20)) is naturally divided into k = 3 groups 
with n' = 5 elements each. The first group, corresponding to u = 1 in (5.16), is 
obtained from 71'* = (1,3,5,4,2) by multiplying every element by k = 3. Each 
successive group is obtained from the previous one by subtracting one from each 
entry. Thus, the numbers in the i-th group are those numbers between 1 and 
n = 15 which are congruent to -(i - 1) modulo k. 

Next, let us divide the set of indices {I, 2, ... , n} into k blocks. The set of indices 
belonging to the u-th block is denoted by Nu and is given below: 

Nu := {(u - l}n' + 1, ... , un'} 1 < u < k. 

As mentioned above, these blocks partition the row and column indices of matrix 
B in such a way that all submatrices But! whose rows are selected by some block 
Nu and whose columns are selected by some block Nt! are identical. 

The next theorem states our polynomialityresult on the Anti-Monge-Toeplitz QAP 
with a k-benevolent matrix. 

Theorem 5.9 The permutation 71'(k) solves QAP(A, B), where A is a left-higher 
graded Anti-Monge matrix and B is a k-benevolent matrix. 

Similarly as for the Anti-Morige-Toeplitz QAP with a benevolent matrix, one can 
show that (7I'(k) , 71'(k») solves even I-QAP(A,B), with a left-higher graded Anti-
Monge matrix A, and a k-benevolent matrix B. Again, A is w.l.o.g. assumed to 
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be nonnegative. Moreover, one can achieve f(O) = 0 by subtracting a constant 
from all values of f, where f is the function generating the k-benevolent matrix 
B. Clearly, this does not change the combinatorial structure of matrix B, and 
since f(O) is the smallest value of f, the resulting matrix B will be nonnegative. 
Summarizing, we can prove the theorem. formulated below. 

Theorem 5.10 The pair of permutations (lI'(k) , lI'(k») solves I-QAP(A,B), where 
A is a nonnegative left-higher graded Anti-Monge matrix and B is a k-benevolent 
matrix with zeros on the diagonal. 

As in Section 5.1.3, we can restrict our attention to the matrices A = C(p,q) which 
generate the extremal rays of the cone of nonnegative left-higher graded Anti-
Monge matrices. Hence, Theorem 5.10 (and therefore, Theorem 5.9) follows from 
the following lemma. 

Lemma 5.11 For any 1 ~ p, q ~ n, the pair of permutations (lI'(k) , lI'(k») solves 
I-QAP(A,B), with A = C(p,q) and a Toeplitz matrix B generated by a k-benevolent 
function f with f(O) = O. 

In order to prove this lemma, we could find the extremal rays of the cone of k-
benevolent matrices with zeroes on the diagonal, and then proceed similarly as in 
the previous section. But we can also give a shorter proof which relies directly on 
some lemmas from Section 5.1.3. 

Proof of Lemma 5.11. We know that this problem can be seen as the problem 
of selecting p rows and q columns from matrix B such that the total sum of all 
pq selected entries is minimized. Now suppose that some q columns have already 
been selected and we have to select the rows. Let 3:j, for i = 1, ... , n, denote the 
sum of the selected entries in row i. Clearly, we have to select those p rows with 
the smallest 3:j values. Since rows of B whose indices i are congruent modulo n' 
are identical, the numbers 3:j corresponding to these rows are equal. Therefore, if 
Vl < V2 < ... < Vj are the values taken by 3:j, 1 ~ i ~ n, and Vi = {3:i: 3:j = vt}, 
then IViI is a multiple of k, for any 1 ~ t ~ j. Moreover, the elements of Vi "are 
uniformly distributed in blocks", i.e., there are IViI/k elements of Vi belonging to 
each block Nu of row indices. Thus, we may impose the following structure on the 
selected set of rows. 

Claim 5.12 There is an optimal selection of p rows, where the number Pu of se-
lected rows in each block N u is either lp / k J or r p / k 1· 
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Since we can equally apply the argument to the columns once the rows are selected 
(in accordance with Claim 5.12), we also get: 

Claim 5.13 There is an optimal selection of p rows and q columns, where, in 
addition to the property of Claim 5.12, the number qv of selected columns in each 
block N v is either lq/kJ or rq/kl· 

The entries of B which lie in the selected rows and columns can be summed sepa-
rately for each block B uv , 1 ::; u, v ::; k. Moreover, all blocks Buv are identical to a 
certain n' x n' benevolent matrix B'. By Lemma 5.5 we know how to optimally se-
lect a given number p' of rows and a given number q' of columns from B', if we want 
to minimize the overall sum of the selected entries. Let us denote by z (B' , p' , q') 
the optimal value of this problem, i.e., the optimal value of I-QAP(C(plql), B'). 
Summarizing, we get the following lower bound for our problem: 

k k 
Z(C(pq), B, 7r, 1/;) ~ L L z(B' ,Pu, qv) 

u=lv=l 

Let us denote rp := p mod k. Then, rp of the values Pu must be equal to rp/k 1 and 
the remaining k - rp of the values Pu are equal to lp/kJ. Similarly, T'q := q mod k 
of the values qv are equal to r q / k 1 and k - T' q....:Jf them are equal to I q / k J. To finish 
the proof of the lemma, we have to show that the permutation 7r(k) indeed selects 
the optimal set of Pu rows out of each block of rows Nu and the optimal set of qv 
columns out of each block of columns Nv , as specified by Lemma 5.5. This is easy 
to check: The indices i of selected rows and and the indices j of selected columns 
satisfy 7r(k) (i) > n - p or 7r(k) (i) > n - q, respectively. By the way how 1l'(k) is 
constructed, if we look at the indices of selected rows in each block Nu , these are 
precisely those indices which are mapped by 7r* to the Pu largest numbers among 
1,2, ... , n' : 

7r(k)((U - l)n' + i) > n - p if and only if 7r*(i) > n' - Pu, 

for 1 ::; u ::; k, 1 ~ i ::; n', where 

{ rp/k 1 
Pu = lp/kJ 

for u= 1, ... ,rp , 

for u = T'p + 1, ... , k. 

The same situation holds for the columns and this is just in accordance with Lem-
ma 5.5. 0 
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Toeplitz matrices generated by general periodic functions 

The simplest non-trivial periodic functions f for generating a Toeplitz matrix B 
have period n' = 2 and thus, take only two values: f(O) = f(i), for all even i, 
and f(l) = f(i), for all odd i. These two values form a chess-board pattern in the 
matrix B. The case f(O) :::; f(l) was treated above. It leads to a k-benevolent 
function (if n is even) and hence to a constant permutation QAP. The other case, 
f(O) > f(l) leads to an NP-hard problem. It is no loss of generality to assume 
f(O) = 1 and f(l) = -1. In this case B = (bij ) can be written as bij = (_l)i+j . 

Theorem 5.14 QAP(A,B) is NP-hard even if A is a (2k) x (2k) nonnegative left-
higher graded Anti-Monge matrix and B = (bij) is a (2k) x (2k) symmetric 0-1 
Toeplitz matrix with bij = (-1 )i+j . 

Proof. The Toeplitz matrix B which fulfills the conditions of the theorem is a 
chess-board matrix. Further, Table 4.1 shows that A-MoNGEXCHESS is NP-hard. 
Recall that this fact was proven in Theorem 4.24 and the reduction used there 
actually leads to a nonnegative symmetric product matrix. With an appropriate 
sorting of the generating vector such a product matrix is a nonnegative left-higher 
graded Anti-Monge matrix, and this is just what we need. Thus, QAP(A, B) is 
NP-hard. 0 

5.1.4 Symmetric Toeplitz matrices with small 
bandwidth 

According to Definition 4.4 the bandwidth of a Toeplitz matrix generated by func-
tion f is the smallest i such that f(j) = 0, for all j 2: i. In the first part of this 
section we show that symmetric Toeplitz matrices with bandwidth equal to 2 lead 
to constant permutation QAPs. In the second part we give some examples which 
show that for any bandwidth larger than two, the resulting problem is no longer a 
constant permutation QAP. 

Toeplitz matrices with bandwidth two 

Let us investigate the Anti-Monge-Toeplitz QAP with a symmetric Toeplitz matrix 
with bandwidth two. It turns out that QAP(A,B) with A E A-MoNGE(LHG) and 
a bandwidth-2 Toeplitz matrix B is a constant permutation QAP. By modifying 
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the main diagonal we may assume that 1(0) = 0 and hence 1(1) = 1(-1) are the 
only two non-zero values of I. 

The case 1(1) = 1(-1) ~ 0 leads to a benevolent function, and hence, is covered by 
Theorem 5.2. The remaining interesting case is 1(1) = 1(-1} > O. By scaling we 
may then assume without loss of generality that 1 (1) = 1 ( -1) = 1. The optimal 
permutation of this special version of the Anti-Monge-Toeplitz QAP is the so-called 
zig-zag permutation. 

Definition 5.5 The zig-zag permutation 7rz E Sn is defined as follows: 

{ 
n - i 

7rz(i) = i. 

n -1 

if i ~ I and i is odd 
if i ~ I and i is even 
if i > I and n - i is even 
if i > I and n - i is odd 

Example 5.5 For n = 12 we have 7rz = (1l,2,f1.,4,1.,6,Q,8,~,10,1,12) and for 
n =: 13 we have 7rz = (12,2,10,4,li,6,7,Q,9,~,11,1,13). The underlined entries 
are those which are computed as 7rz (i) = n - i in the above formula. Note that, 
for pven n, the distinction between the cases i ~ I and i > I is irrelevant. 0 

As in the case ofthe Anti-Monge-Toeplitz QAP with a benevolent or a k-benevolent 
matrix, we can consider the relaxation I-QAP(A,B) with a left-higher graded Anti-
Monge matrix A, and B being a symmetric Toeplitz matrix with bandwidth equal 
to 2. It can be shown that this problem is solved by the pair of permutations 
(7rz ,7l'z), and consequently, 7rz is an optimal solution of QAP(A, B) with A and B 
as specified above. The proof concerning the solution of I-QAP(A,B) is done again 
by reduction to extremal rays. 

Theorem 5.15 The pair of permutations (7rz,7rz) solves I-QAP(A, B), where A 
is a left-higher graded Anti-Monge matrix, and B is a symmetric Toeplitz matrix 
generated by the function I: {-n + 1, .. . ,n -I} -t {O, I}, with 1(1) = 1(-1) = 1 
and I(i) = 0 for i 1- ±1. 

Proof. It is sufficient to show that permutation 7rz is an optimal solution of I -
QAP(A, B) for all A = C(p,q) with 1 :S p, q :S n. We use again the formulation of 
I-QAP(A,B) as a selection problem: p rows and q columns of the matrix B must be 
selected, such that the total sum of all pq selected entries is minimized. The claim 
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is that it is optimal to select the rows 1I";1(i), for i ~ n - p + 1, and the columns 
1I";1(j), for j ~ n - q + 1, where 11";1 is the inverse permutation of 1I"z. 

First, we compute the value of the objective function for the claimed optimal 
selection. This value depends on the quantity h := p + q - n and is given below. 

if h < 0 
if h = 1, p :f= q 
if h = 1, p = q = nil 
if h > 2. 

(5.17) 

Then, it will be easy to show that this expression is a lower bound for the value of 
the objective function of I-QAP( C(p,q) , B). 

To compute Z(C(p,q) , B, 1I"z, 1I"z), recall that bij = 1 if j = i + 1 or j = i-I, and 
bij = 0 otherwise. Thus, each pair (i, j) with j = i ± 1 with 1I"z( i) ~ n - p + 1 and 
1I"zU) ~ n - q + 1 contributes with 1 to the sum 

n n 

Z(C(pq) B ) - '"' '"' C(p,q) b·· , ,1I"z, 1I"z - L..J L..J 'll'z(i),'II'z(j) IJ 
i=l j=l 

For a given value u = 1I"z(i) we call the values 1I"z(i ± 1) the two neighbors of 
u. The neighbors are the two numbers which are adjacent to u in the sequence 
(1I"z(1), 1I"z(2), ... ) (see also Example 5.5). Of course, 1I"z(1) = n - 1 and 1I"z(n) = n 
have only one neighbor each. We distinguish two cases. 

Case 1. n is even. 
In this case the sum of two neighbors is always equal to n - lor n + 1, as can be 
checked from Definition 5.5. More precisely, we have: 

• Every index 1 5 usn - 2 has two neighbors u' and u". For one of them, the 
sum u + u' = n + 1, and for the other one, U + u" = n - 1. 

• The indices u = n -1 and u = n have one neighbor u' each, and u + u' = n + 1. 

Now let us look at the numbers u ~ n - p+ 1 and see how many neighbors u' with 
u' ~ n - q + 1 they have. An easy calculation shows that the following holds: 

• If uS q - 2 (and hence, usn - 2), then both neighbors u' = n + 1 - u and 
u" = n - 1 - u fulfill u', u" ~ n - q + 1. 
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• If u = q - 1 or u = q, then just one neighbor of u, namely u' = n + 1 - u, 
fulfills u' ~ n - q + 1. 

• If u ~ q + 1, no neighbor u' of u fulfills u' ~ n - q + 1. 

Thus, by counting the number of neighbors u'(u") with u' ~ n-q+l (u" ~ n-q+l) 
for each u = n - p + 1, ... , n, we get 

2 ·I{n - p + 1, ... , n} n {I, ... , q - 2}1 + I{n - p + 1, ... , n} n {q - 1, q}l, 

This sum can be checked to be given by the right-hand side of (5.17). (The third 
case in (5.17) cannot occur when n is even.) 

Case 2. n is odd. 
The situation is similar as in Case 1, with the only exception that the sum of the 
two neighbors 1T"z(n;l) = n;l and 1T"z(~) = ~ equals n, and not n± 1. The 
situation concerning the sums of the neighbors for each index u, changes as follows: 

• For u = n;l, we have a neighbor u' = ~ with sum u + u' = n, instead of 
u + u' = n - 1. 

• On the other hand, for u = ~, we have a neighbor u" = n;l with sum 
u + u' = n instead of u + u" = n + 1. 

The effects of these two changes cancel each other except in one special case: p = 
q = nil. In this case, we lose one pair of neighbors and get Z(C(p,q), B, 1T"z, 1T"z) = 0, 
instead of the value 1 obtained for p + q - n = 1 in the case that n is even. 

To complete the proof, let us show that (5.17) provides a lower bound for the value 
of the objective function. Instead of selecting p rows and q columns of the matrix 
B, let us take the opposite view and delete n - p rows and n - q columns from 
B. The matrix B originally contains 2n - 2 I-entries, and each row or column 
contains at most two I-entries. Thus, by deleting n - p rows and n - q columns we 
may delete at most 2(n - p) + 2(n - q) ones, which gives an easy lower bound of 
Z(C(pq) , B, 1T", 'IjJ) ~ 2n-2- (2(n-p) +2(n-q)) = 2(p+q-n-l) for the remaining 
number of I-entries. This proves that (5.17) provides a lower bound in the case 
that p + q -:f. n + 1 or p = q. In the case that p + q = n + 1 and p -:f. q, if (1T" z, 1T" z) is 
not an optimal solution of I-QAP(C(p,q), B), there is a possibilty of deleting n - p 
rows and n - q columns from B so that no I-entries remain. Since there are 2( n - 1) 
I-entries altogether, it follows that with each of the n - p rows and n - q columns 
deleted from B, we have to delete precisely two I-entries. Moreover, some I-entry 
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which is contained in a deleted row must not be contained in a deleted column. 
Now, we show that there exists no such deletion strategy, and this completes the 
proof. Consider b12 = 1. If we delete row 1, we would qelete only one 1-entry; 
therefore b12 must be deleted by deleting column 2. Similarly, b21 = 1 must be 
deleted by deleting row 2. Elements b23 = 1 and b32 = 1 are now also deleted. Now 
consider b34 = 1. Row 3 contains the already deleted element b32 and therefore b34 
must be deleted by deleting column 4. Similarly, we have to delete row 4, and so 
on. This process can be continued until all elements are deleted, only if the number 
n - p of deleted rows and the number n - q of deleted columns are equal to n;-l. 
But this is not the case because we have assumed p :f. q. 0 

Toeplitz matrices with larger bandwidth 

Next, let us show that the bandwidth equal to 2 is an essential condition for The-
orem 5.15. If one tries to find other 0-1 Toeplitz matrices which lead to con-
stant permutation QAPs and have small bandwidth, the simplest matrices one can 
think about are those of type T(1) or T(2) which are generated by the functions 
j(1), j(2): {-n + 1, -n + 2, ... ,0, ... , n - 1} ---+ {O, 1}, respectively: 

j(1)(x) = {1 if X E ~-2,-1,1,2} o otherWIse 

These matrices look as follows: 
011 o 0 000 
10110 000 
1 1 011 000 
o 1 1 o 1 0 o 0 

T(l) = o 0 1 1 0 000 

00000 0 1 1 
00000 101 
00000 110 

j(2) (x) = { 1 ifxE~-2,2} o otherWIse 

o 0 100 000 
00010 000 
1 000 1 000 
o 1 000 000 

T(2) = o 0 100 000 

o 0 0 0 0 001 
o 0 0 0 0 000 
o 0 000 100 

Both T(1) and T(2) have bandwidth 3 and are 0-1 Toeplitz matrices. We give 
two examples showing that the Anti-Monge-Toeplitz QAPs QAP(A, T(1») and 
QAP(A, T(2») are not constant permutation QAPs. 
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Example 5.6 For n = 6 the 6 x 6 matrices T(1), C(4,4) and C(1,4) look as follows: 

011000 
101100 
110110 
o 1 101 1 
00110 1 
000110 

, C(4,4) = 
000000 1 000000 
00 1 1 1 1 C(1,4) _ 
001111' -
001 1 1 1 
001111 

000000 1 000000 
000000 
000000 
000000 
00111 1 

We will show that for each permutation 11"0 which is an optimal solution for problem 
QAP(C(4,4), T(1»), the set I'lrQ := {1I"0 1(3), 11"0 1(4), 11"-1 (5), 11"-1(6)} must be equal to 
{I, 2, 5, 6}, whereas no optimal solution of QAP(C~1,4), T(1~) shares this property. 
This implies that QAP(A, T(1») with a left-higher graded Anti-Monge matrix A is 
not a constant permutation QAP. 

Let 11" be an arbitrary permutation in 86 • Z(C(4,4), T(1), 11") is equal to the number 
of I-entries in T(1) whose row and column indices fall in the set I'Ir' defined similarly 
as I'lrQ above. There are (~) = 15 distinct sets I'Ir for all 11" E 86 . It can be checked 
that for any I C {I, 2, ... , 6} with III = 4, the number of the I-entries in T(1) 
whose row and column indices fall in I is larger than or equal to 4. Equality holds 
only fo).' I = {I, 2, 5, 6}. Thus, I'lrQ = {I, 2, 5, 6} holds for each optimal solution 11"0 
to QAP(C(4,4),T(1»). On the other hand, for all 11" E 86 , Z(C(I,4),T(1),1I") equals 
the number of I-entries in T(I) lying on row 11"-1 (6) with column indices falling 
in I'lr' We have I'lrQ = {I,2,5,6}, for each of the above optimal permutations 
11"0. If we select columns {I, 2, 5, 6} from T(1) we see that there exists no row 
with only zero entries on columns {I, 2, 5, 6}. Thus, regardless of the value of 
11"0 1(6), we have Z(C(1,4),T(1),1I"0)?: 1. However, Z(C(I,4),T(1), 1/1) = 0 for 1/1 = 
(6,1,2,3,4,5). Hence, 11"0 cannot be an optimal solution for QAP(C(1,4), T(1») 
and the problems QAP(C(4,4), T(1»), QAP(C(1,4), T(1») have no common optimal 
solution. This completes the proof. 0 

Example 5.7 For n = 9 the 9 x 9 matrices T(2) , C( 4,9) and C(3,7) look as follows: 

001 .. ·0 00 .. ·00 000 .. ·0 
000 .. ·0 00 .. ·00 000 .. ·0 
100 .. ·0 

T(2) == 
010 .. ·0 

C(4,9) = C(3,7) = 00 .. ·00 000 .. ·0 
11 .. ·11 000 .. ·0 

000 .. ·1 11 .. ·11 001 .. ·1 
000 .. ·0 11 .. ·11 001 .. ·1 
000 .. ·0 11 .. ·11 001 .. ·1 

Consider the problem QAP(C(4,9), T(2»). For any permutation 11" E 89 denote 
I'Ir = {1I"-1(6), 11"-1(7),11"-1(8), 1I"-1(9)}. Note that Z(C(4,9),T(2),1I") is equal to 
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the number of I-entries in T(2) lying on the rows whose indices fall in T,r. From 
this observation it follows immediately that Z(C(4,9),T(2),1r) 2: 4, for all1r E 
S9, and that the equality holds only for permutations 1r with Irr = {I, 2, 8, 9}. 
Thus, if 1ro is an optimal solution to QAP(C(4,9),T(2)), then Irro = {1,2,8,9}. 
Now consider QAP(C(3,7), T(2)). It is easy to check that a permutation 1/J yields 
an objective function value equal to 0, Z( C(3,7), T(2), 1/J) = 0, if and only if the 
equalities {1/J(1), 1/J(5) , 1/J(9)} = {7, 8, 9} and {1jJ(3) , 1/J(7)} = {l,2} hold. (We have 
to find 3 distinct rows whose all ones lie on no more than 2 distinct columns.) Thus, 
for an optimal solution to QAP( C(3, 7), T(2)) these equalities must hold. Clearly, 
{1/J(I), 1/J(5) , 1/J(9)} = {7, 8, 9} is not fulfilled by a permutation 1ro as above which is 
an optimal solution to QAP( C(4,9), T(2)). Thus, there exists no common optimal 
solution to problems QAP(C(4,9), T(2)) and QAP(C(3,7), T(2)). Consequently, the 
Anti-Monge-Toeplitz QAP QAP(A, T(2)) is not a constant permutation QAP. 0 

Finally, let us remark that when n is a multiple of 4, QAP(A, T(2)) is a constant 
permutation QAP, for A E A-MoNGE(LHG). The optimal permutation is obtained 
by "interleaving" two "copies" of 1r z, one copy permuting the even indices and the 
other copy permuting the odd indices. More generally, we conjecture that if T(k) is 
an n x n Toeplitz matrix generated by a function f: {-n+ I, ... ,0, ... n-l} ~ {O, I} 
with f(k) = f(-k) = 1, f(x) = 0, x i= ±k, and A is a left-higher graded Anti-
Monge matrix, QAP(A, T(k)) is a constant permutation QAP, whenever n is a 
multiple of 2k. 

Before concluding this section let us summarize in a table the complexity results 
on the Anti-Monge-Toeplitz QAP. An entry in row i corresponds to a QAP(A,B) 
where matrix B belongs to the class of matrices indicated at the left-most entry 
of the row i. The table will have only one column as we are considering the Anti-
Monge-Toeplitz QAP(A,B) and we know that A E A-MoNGE(LHG). Similarly as 
in Table 4.1 the entries of the table will be "NP", "poly" or "???". An entry "NP" 
means that the corresponding QAP is NP-hard, an entry "poly" means that the 
corresponding QAP is polynomially solvable and an entry"???" means that the 
computational complexity of the corresponding QAP is unknown. We will denote 
by BENEVOLENT and k-BENEVOLENT the classes of benevolent and k-benevolent 
matrices, respectively. Further we will denote by PERIOD the property of a Toeplitz 
matrix which is generated by a periodic function. 
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Table 5.1 The computational complexity of the Anti-Monge-Toeplitz QAP 

II A-MONGE(LHG) I 
TOEPLITZ(SYM) NP 
BENEVOLENT poly 
TOEPLITZ(SYM,PERIOD) NP 
k-BENEVOLENT poly 
TOEPLITZ(SYM) n BAND-k ??? 
TOEPLITZ(SYM) n BAND-2 poly 

5.2 THE ANTI-MONGE-TOEPLITZ QAP: 
APPLICATIONS 

In this section we describe three well known combinatorial optimization problems 
that can be modeled via A-MoNGE(LHG)xToEPLITZ(SYM): 1) The so-called tur-
bine problem, i.e., the assignment of given masses to the vertices of a regular poly-
gon such that the distance of the center of gravity of the resulting system to the 
center of the polygon is minimized. 2) The traveling salesman problem on symmet-
ric Monge matrices. 3) A data arrangement problem concerning the arrangement 
of data records with given access probabilities in a linear storage medium in order 
to minimize the average access time. 

First, we consider the turbine problem which was shown to be NP-hard [33]. This 
implies that the general problem A-MoNGE(LHG) x TOEPLITZ(SYM) is NP-hard. 
Then, we investigate the two other combinatorial optimization problems and show 
how the polynomiality result of Theorem 5.2 generalizes and unifies several earlier 
results related to those problems. 

5.2.1 The turbine problem 

Hydraulic turbine runners as used in electricity generation consist of a cylinder 
around which a number of blades are welded at regular spacings. Due to inaccura-
cies in the manufacturing process, the weights of these blades differ slightly, and it 
is desirable to locate the blades around the cylinder in such a way that the distance 
between the center of mass of the blades and the axis of the cylinder is minimized. 
This problem was introduced by Mosevich [170] in 1986. 
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Laporte and Mercure [149] observed that this problem can be formulated as a QAP 
in the following way. The places at regular spacings on the cylinder are modeled by 
the vertices VI, ... ,Vn of a regular n-gon on the unit circle in the Euclidean plane. 
Thus 

( . (2i11') (2i11')) 1 . Vj= sm -;:; ,cos -;:; , ~z~n. 

The masses of the n blades are given by the positive reals 0 < ml ~ m2 ~ ... ~ mn . 
The goal is to assign the n masses to the n vertices in such a way that the center 
of gravity of the resulting mass system is as close to the origin as possible, i.e., to 
find a permutation <p E Sn that minimizes the Euclidean norm of the vector 

n (Sine~1r)) t; m¢>(i) cos( 2~1r) . 

An easy calculation reveals that minimizing the Euclidean norm of this vector is 
equivalent to minimizing the expression 

n n (2(' .)) t; j; m¢>(i)m¢>(j) cos z ~ J 11' . (5.18) 

But this is a quadratic assignment problem QAP(A, B). Note that the matrix 
A = (ajj) defined by aij = mi . mj is a symmetric product matrix and there-
fore a left-higher graded Anti-Monge matrix, since the masses mi are sorted in 
non-decreasing order. The matrix B = (bij) defined by bij = cos e(i~j)1r) is 
a symmetric Toeplitz matrix. Note that the function I(x) = cos(211'xjn) which 
generates B is not benevolent, and therefore, Theorem 5.2 cannot be applied to 
solve the turbine problem. Laporte and Mercure [149] and Schlegel [210] proposed 
and tested several heuristics for this problem. However, no fast (polynomial time) 
algorithm to solve the turbine problem to optimality has been derived till today. 
This is not a coincidence: Burkard at al. in [33] show that the turbine problem is 
NP-hard and hence, the existence of a polynomial solution algorithm would imply 
P=Np. 

Proposition 5.16 (Burkard, Qela, Rote and Woeginger [33], 1996) 
The turbine problem, i.e., the minimization of (5.18) over all permutations <p E Sn, 
is an NP-hard problem. 

On the other hand, notice that the function I' = -I with I'(x) = -cos (211'xjn) 
which generates matrix -B is benevolent. Since matrix -B is benevolent, Theo-
rem 5.2 implies that QAP(A, - B) is a constant permutation QAP and 11'* is its 
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constant permutation. This problem corresponds to the maximization of (5.18). 
Hence, Theorem 5.2 can be applied to solve the maximization version of the turbine 
problem, i.e., the version of the problem where the goal is to maximize the distance 
of the center of gravity of the mass system from the axis of the cylinder. 

Corollary 5.17 The maximization version of the turbine problem, i.e., the maxi-
mization of (5.18) over all permutations ¢ E Sn, is solved to optimality by permu-
tation 11"*. 0 

5.2.2 The TSP on symmetric Monge matrices 

The traveling salesman problem (TSP) consists on finding a shortest closed tour 
through a set of cities with a given distance matrix. This problem is a fundamental 
problem in combinatorial optimization and well-known to be NP-hard. For more 
information, the reader is referred to the comprehensive book edited by Lawler, 
Lenstra, Rinnooy Kan, and Shmoys [153]. Several restricted versions of the TSP 
with special combinatorial structures of the distance matrix, are known to be solv-
able in polynomial time. For more information on polynomially solvable special 
cases of the TSP the reader is referred additionally to the recent review article 
of Burkard, De'lneko, Van Dal, Van der Veen and Woeginger [34]. Several special 
cases of the TSP are known to be solvable in polynomial time due to special com-
binatorial structures in the distance matrix. The following proposition states one 
of the first results of this flavor which was obtained by Supnick [216]. We show 
that this result can be easily derived as a corollary of Theorem 5.2. 

Proposition 5.18 (Supnick [216], 1957) 
Every instance of the TSP with a symmetric Monge distance matrix D = (dij) is 
solved by the permutation 11"* • 

Proof. Let A = 2 max{ldij I: 1 :5 i,j :5 n} and define a sum matrix S = (Sij) 
by Sij = (i + j)A. Moreover, let us define a symmetric Toeplitz matrix B by its 
generating benevolent function f(l) = f(-l) = f(n -1) = f(-n + 1) = -1 and 
f(i) = 0 for i ¢ {±(n - 1),±1}. The proof relies on the following three simple 
steps. 

Firstly, QAP(S - D, B) is solved by 11"*: Since Sand -D both are Anti-Monge 
matrices, so is S - D. Moreover, it is straightforward to verify that the matrix 
S - D is left-higher graded. Since B is a symmetric Toeplitz matrix generated by 
the benevolent function f (defined above), Theorem 5.2 applies. 
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Secondly, QAP( -8, B) is solved by 11"*: Since -8 is a sum matrix and B is a circu-
lant matrix, Theorem 4.18 implies that QAP( -8, D) is solved by every permutation 
1I"E 8n • 

Finally, based on Observation 4.1, we can sum up 8 - D and 8 and get that 
QAP( -D, B) is solved by 11"*. Since QAP( -D, B) and QAP(D, -B) are equivalent, 
the problem QAP(D, -B) is also solved by 11"*. 

Now, it is easily checked that matrix -B is the adjacency matrix of an undirected 
cycle on n vertices. Hence, QAP(D, -B) is exactly the TSP with distance matrix 
D. 0 

5.2.3 Data arrangement in a linear storage 
medium 

Consider a set of n records r1, ... , rn which are referenced repetitively, where the 
reference is to record ri with probability Pi, and different references are indepen-
dent. Without loss of generality the records are numbered such that PI ::; P2 ::; 
... ::; Pn. The goal is to place these records into a linear array of storage cells, 
like a magnetic tape, such that the expected distance between two consecutively 
referenced records is minimized, i.e., one wishes to minimize 

n n 

L: L:P7r(i)p7r(j)dij , 
i=1 j=1 

(5.19) 

where dij is the distance between the records placed at cells i and j. In the late 
1960s and early 1970s, much research has been done on the special case of this 
problem where the distance dij is given as dij = I(/i - j/), I: {O, ... , n - I} -t JR, 
i.e., dij only depends on the absolute value of the difference between i and j. 
The following proposition summarizes three of these results in order of increasing 
generality. 

Proposition 5.19 (a) Ifdij = /i-jl, then the data arrangement problem is solved 
by permutation 11"*. (Timofeev and Litvinov [223], 1969) 

(b) If dij = I(/i - j/) with a non-decreasing and convex function J. then the data 
arrangement problem is solved by permutation 11"*. (Burkov, Rubinstein and 
Sokolov [41], 1969) 

(c) If dij = I(/i - j/) with a non-decreasing function I. then the data arrangement 
problem is solved by permutation 11"*. (Metelski [165], Pratt [187], 1972) 0 
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Metelski [165] and Pratt [187] realized that the above results are all contained in 
the following result due to Hardy, Littlewood and P6lya, here formulated in the 
language of the QAP and proved by applying our Theorem 5.2. 

Proposition 5.20 (Hardy, Littlewood and P6lya [114], 1926) 
Let A = (aij) be defined by aij = XiYj for nonnegative real numbers Xl ::; .•. ::; Xn 
and YI ::; ... ::; Yn. Let B = (b ij ) be a symmetric Toeplitz matrix generated by a 
function I that is non-decreasing on {O, ... , n}. Then QAP(A, B) is solved by 11"*. 

Proof. It is easy to verify that matrix A is a left-higher graded Anti-Monge matrix. 
Since, moreover, matrix B is generated by a benevolent function I, Theorem 5.2 
can be applied. 0 

Motivated from the data arrangement problem, Rubinstein [201] showed that the 
result stated in Proposition 5.20 holds also for left-higher graded Anti-Monge ma-
trices instead of product matrices. Obviously, this result is also contained as a 
special case in Theorem 5.2. 

5.3 THE KALMANSON-TOEPLITZ QAP 
Another restricted version of the QAP which leads to polynomially solvable cases of 
the problem is the so-called Kalmanson-Toeplitz QAP. In an instance QAP(A,B) 
of the Kalmanson-Toeplitz QAP, matrix A is a Kalmanson matrix and B is a 
symmetric Toeplitz matrix. The complexity of the Kalmanson-Toeplitz QAP 
is an open problem. In the case that the Toeplitz matrix possesses some ad-
ditional properties, a polynomial solvable case arises, as shown by De'ineko and 
Woeginger [65]. Namely, if A is a Kalmanson matrix and the generating function 
f: {-n + 1, ... , -1, 0,1, ... , n - I} ~ 1R of an n x n Toeplitz matrix B fulfills the 
c~mdi~ions (i)-(iii) gh:en below, QAP(A, B) is solved by the identity permutation. 
(1) I(z) = I(-z), for z = 1,2, ... ,n-l. 
(ii) I(i) = I(n - i), for i = 1,2, ... , l~J 
(iii) I(i - 1) ~ I(i), for i = 1, ... , l ~ J 

Proposition 5.21 (De'ineko and Woeginger [65], 1996) 
The QAP(A,B) with a Kalmanson matrix A and a Toeplitz matrix B generated by 
a function I which fulfills conditions (i)-(iii) above, is solved to optimality by the 
identity permutation. 
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Sketch of the proof. The proof is done by reduction to extremal rays. Theo-
rem 4.13 gives a description of the cone of Kalmanson matrices. Further, it can be 
easily shown that the nonnegative Toeplitz matrices generated by functions fulfill-
ing conditions (i)-(iii) form a cone. The extremal rays of this cone are the Toeplitz 
matrices generated by the functions f (3) , for 0 ~ /3 ~ l ~ J, given by 

f((3) (i) = {I if Iii ~./3 or Iii ~ n - /3 o otherwIse 

Thus, if we denote by D((3) the Toeplitz matrix generated by f((3) , every Toeplitz 
matrix B fulfilling the conditions of the theorem can be written as 

l~J 
B = f{ + L O(3D((3) 

(3=0 

where f{ is a constant matrix, ie., a matrix with all entries having the same value, 
and 0(3 are nonnegative coefficients. As argued in Section 4.2.4 and in accordance 
with Observation 4.1, it is sufficient to prove that the identity permutation solves 
the special problem QAP(AI,Bt), where Al is one of the matrices F(p,p), F(p), 
W(p,q), w(p) , 1 ~ p, q ~ n, which generate the cone of Kalmanson matrices, and 
BI is either a constant matrix or one of the matrices D((3) , ° ~ /3 ~ l ~ J. A QAP 
with one of its coefficient matrices being a constant matrix is a constant QAP, i.e., 
it is solved by every permutation. QAP(F(p,p), B), 1 ~ p ~ n, with a Toeplitz 
matrix B, is also a constant QAP. Indeed, the diagonal entries of a Toeplitz matrix 
have all the same value and F(p,p) is a 0-1 matrix with only one I-entry lying on 
the diagonal, on the p-th row and the p-th column. Analogously QAP(F(P), B), 
1 ~ p ~ n, with a circulant matrix B, is a constant QApi. This is due to the 
following two facts. Firstly, the row (column) sum of the off-diagonal elements of a 
circulant matrix has a constant value which does not depend on the specific row or 
column. Secondly, F(p) is a 0-1 matrix with ones all over the p-th row and the p-th 
column except for the diagonal element, and zeroes elsewhere. So, what remains to 
be investigated are the problems QAP(W(p,q), D((3)) and QAP(WP, D((3)). These 
problems can be formulated as a graph packing problem as follows (see also [65]). 
Consider the (undirected) graphs G1, G2, with adjacence matrices given by W(p,q) 
(W(p)) and D((3) , respectively. It is not difficult to see that G1 is a complete 
bipartite graph of the form f{a,n-o/) where Q' = q-p in the case of W(p,q) , and Q' = P 
in the case of W(p). G2 is a circulant graph, i.e., each node i, i = 0, 1, ... , n - 1, is 
connected only with the nodes i + 1, i + 2, ... , i + /3, i -1,i - 2, ... , i - /3, where all 
node indices are taken modulo n. In this setting the problem is to map the vertices 

1 Notice that a Toeplitz matrix generated by a function f fulfilling conditions (i)-(iii) is a 
symmetric circulant matrix. 



Two more restricted versions of the QAP 189 

of G1 = KO/ n-O/ into the the vertices {O, 1, ... , n - 1} of G2 , so that the number 
of edges of Ch which are mapped to edges of G2 is minimized. Derneko et al. [65]" 
have shown by elementary arguments that the identity permutation is the required 
optimal mapping. The authors give also the number of the edge coincidences in 
an optimal mapping, i.e., the value of the objective function of the two QAPs 
mentioned above, in terms of a = q - p and f3. Namely, 

Z(w(p,q) , D«(3) , id) = 

Z(w(p) , D«(3) , id) 

{ 
2(q - p)(2f3 + 1 + p - q) 

2f3(f3 + 1) 

if q - p < f3 or 
n-f3".5,q-p 

iff3".5,q-p".5,n-f3 

{ 2p(2f3 + 1 - p) if p ".5, f3 or if n - f3 ".5, p 

2f3(f3+1) iff3".5,p".5,n-f3 

5.4 PERMUTED POLYNOMIALLY 
SOLVABLE CASES 

o 

As already mentioned in Section 4.1, two problems QAP(A, B) and QAP(Al, Bd 
with A ECLAss1, B ECLAss2, Al EPERMCLAss1, Bl EPERMCLAss2 are equiva-
lent. More concretely, if A1 = At/> and B1 = B"', the equality 

Z(A1,B1'1l') = Z(A,B,/foo1l'o1/l-1) 

holds for each permutation 1l', where "0" denotes the composition of permuta-
tions and 1/1-1 is the inverse permutation of 1/1. This equality implies that if 
1l'1 is an optimal solution to QAP(A1, Bd, 1l' = /fo 0 1l'1 01/1-1 is an optimal so-
lution of QAP(A,B), and conversely, if p is an optimal solution of QAP(A,B), 
P1 = /fo -1 0 P 0 1/1 is an optimal solution of Q AP (A 1 , B 1) . Let us assume that the 
QAP CLASS 1 x CLASS 2 is polynomially solvable. What can be said upon the com-
plexity of the so-called permuted problem PERMCLAss1xPERMCLAss2? Clearly, 
if for each matrix A of PERMCLAssi, i = 1,2, a permutation 1l' with A" ECLAssi 
can be found in polynomial time, then the permuted problem is also solvable in 
polynomial time. Form a practical point of view, the identification of such a permu-
tation 1l' is strongly related to another problem, the so-called recognition problem 
for the corresponding class of matrices. For a matrix class CLASS the recognition 
problem can be formulated as follows: Given a matrix A, decide whether it belongs 
to PERM CLASS , and if the answer is "yes" find a permutation 1l' such that A" E 
CLASS. Obviously, if CLASS 1 x CLAss2 is polynomially solvable and the recogni-
tion problems for CLAssl and CLAss2 are polynomially solvable, then the problem 
PERM CLASS 1 x PERMCLAss2 is polynomially solvable, too. 
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All polynomially solvable restricted versions of the QAP presented in this chapter 
involve matrix classes with quite restrictive properties. Consequently, the class 
of polynomially solvable QAPs is still very small. However, notice that this class 
is a bit larger than it seems, due to the polynomial solvability of most of the 
corresponding permuted problems. The polynomial solvability of the permuted 
problem follows from the fact that the recognition problems for the involved matrix 
classes are polynomially solvable. Let us briefly recall these matrix classes and 
discuss the related recognition problems. 

Monge, Anti-Monge and Kalmanson matrices. Given an n x n matrix A, it 
can be decided in O(n 2 ) whether there exists a permutation 7r such that A1r is a 
Monge (Anti-Monge) matrix. The algorithm is a straightforward modification of 
the algorithm of De'ineko and Filonenko [63] for the analogous recognition problem 
where the rows and columns are permuted by (possibly) different permutations 
(see also Rudolf [204]). An n x n permuted Kalmanson matrix can be recognized 
in O(n 2 ) time by an algorithm of Christofer, Farach and Trick [50]. 

(Symmetric) Sum matrices and symmetric product matrices. Clearly, 
a permuted sum (product) matrix is a sum (product) matrix, i.e., if A is a sum 
(product) matrix, A1r is also a sum (product) matrix. Since a sum matrix is defined 
in terms of n2 linear equations which involve 2n variables (or n variables, in the case 
of symmetric matrices), the recognition of a (symmetric) sum matrix can be done 
by solving such a system of linear equations. The recognition of symmetric product 
matrices is trivial: for an n x n symmetric product matrix A with generating vector 
(O'i) we have aii = 0'7, 1 ::; i ::; n. Thus, O'i = ±Jliii. Notice that if A is a 
symmetric product matrix generated by a vector (O'i), then A is also generated by 
( -O'i). Due to this property we can arbitrarily choose 0'1 to be positive or negative 
and then argue upon the sign of the other elements O'j with j > 1, based on the 
equalities aij = O'lO'j for j > 1. Then it is straightforward to check in O( n 2 ) 

whether the resulting vector (O'i) indeed generates matrix A. 

Large (small) symmetric matrices. A permuted large (small) symmetric ma-
trix is again a large (small) symmetric matrix. So, the problem consists of recog-
nizing the (large) small symmetric matrices, and this is trivial. Indeed, if A = (aij) 
is a large (small) symmetric matrix, there exists a generating vector (O'i) such that 
aij = max{O'i,O'j} (aij = min{O'j,O'J), from which follows that O'i = aii, for all i. 

Toeplitz matrices fulfilling conditions (i)-(iii) in the Kalmanson-Toeplitz 
QAP. The recognition of this kind of permuted Toeplitz matrices is discussed in 
[65]. The authors give an elementary O(n2 ) algorithm, where n is the size of the 
matrix to be recognized. 
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Benevolent and k-benevolent matrices. Without going into details, let us 
mention that the recognition of permuted k-benevolent matrices can be done anal-
ogously as that of Toeplitz matrices fulfilling (i)-(iii) (see [65]). As for benevolent 
matrices the problem is not completely solved. Permuted benevolent matrices, 
which fulfill BEN3 with equality (see Definition 5.1) can be recognized by apply-
ing the approach of De'lneko et al. [65]2. In the case that BEN3 is fulfilled with 
inequality the recognition problem remains open, to author's knowledge. 

2-bandwidth symmetric Toeplitz matrices. The entries of a permuted 2-
bandwidth symmetric Toeplitz matrices take only two values, 0 and v i O. The 
recognition of such matrices is trivial: Check whether the graph with vertex set 
{1,2, ... ,n} and an edge (i,j) whenever aij = aji = v, is a Hamiltonian path, 
where n is the size of the given matrix. In the affirmative case each of the two 
permutations describing the ordering of the vertices along the path transform the 
given matrix into a 2-bandwidth symmetric Toeplitz matrix. 

Taxonomy matrices and (negative) chess-board matrices. Due to their 
block-diagonal structure, the recognition of the permuted taxonomy matrices is 
trivial and takes O( n2) elementary operations, where n is the size of the matrix. A 
necessary condition for a matrix A = (aij) to be a permuted taxonomy matrix is 
that aii = 0 implies aij = aji = 0, for all 1 ~ j ~ n. Let us consider the following 
relation n defined on the set of indices {i: 1 ~ i ~ n, aii i a}: inj if and only if 
aij i 0 or aji i O. It is not difficult to see th~ a matrix A which fulfills the above 
described necessary condition is a permuted taxonomy matrix if and only if n is 
an equivalence relation. The permutation 7r which transforms the given matrix in 
a taxonomy matrix can be easily constructed in terms of the classes of equivalence 
of n. If I = {il' i2, ... , ik} is some equivalence class of n, then 7r permutes the 
indices i 1 , i2, ... , ik to a contiguous interval of indices, say t, t + 1, ... , t + k - 1. 

As for the permuted (ne$ative) chess-board matrices notice that by applying some 
linear transformation such matrices can be transformed into 0 - 1 taxonomy ma-
trices with two almost equally sized blocks of ones along the diagonal. Though 
we do not need to make this transformation. Given a matrix with entries equal 
to ±1, we check whether the relation n', defined by in' j if and only if aij = 1 
or aji = 1 (aij = -lor aji = -1 in the case of negative chess-board matrices), 
is an equivalence relation with two equivalence classes. In the affirmative case we 
check whether the cardinality of the two equivalence classes is equal to l ~ J and 
r ~ 1, respectively. 

2If a benevolent matrix which fulfills BEN3 with equality is multiplied by -1, all but the 
diagonal entries of the resulting Toeplitz matrix fulfill properties (i)-(iii). 
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Graded matrices. The recognition of the permuted graded matrices is a straight-
forward matter. Basically, the problem we are facing here is the following: Given 
n n-dimensional vectors, can we find a permutation 1r E Sn such that all given 
vectors are transformed into non-decreasing (non-increasing) ones when permuted 
according to 1r? It is straightforward to construct an O(n2 10gn) time algorithm 
to solve this problem. In the case of a matrix, one just needs to permute the given 
matrix iteratively so as to produce one more row (and/or column) with the required 
monotonicity in each iteration, without destroying the monotonicity of the already 
sorted rows (and/or columns). If this is possible, the composition of all permuta-
tions applied to the given matrix, in the order of their application, produces the 
required permutation which transforms the given matrix into a graded one. 

5.5 OPEN PROBLEMS AND CONCLUSIONS 
In this chapter we investigated restricted versions of the QAP with coefficient 

matrices possessing special combinatorial properties. We tried to draw a line of 
separation between polynomially solvable cases and NP-hard ones. In this con-
text we first considered QAPs, where both coefficient matrices belong either to 
the matrix class MONGE or the matrix class A-MONGE. It is shown that this re-
striction does not simplify the problem in general, i.e., QAP(A,B) where both A 
and B are Monge (or Anti-Monge) matrices remains NP-hard. Moreover, in gener-
al, even coefficient matrices which possess more restrictive properties do not yield 
polynomially solvable cases of the QAP. Recall, for example, that the problems 
NPROO(SYM)xNPROO(SYM) and NPROO(SYM)xNCHESS are NP-hard. Only in 
the "very special" case where both matrices A and B are (negative) chess-board 
matrices, the problem QAP(A,B) is polynomially solvable. 

The scenario of QAPs with a Monge matrix and an Anti-Monge matrix is more 
optimistic. The problem PROO(SYM) x NPROO(SYM) and the even-sized instances 
of CHESSxMoNGE are polynomially solvable, whereas the complexity of the odd 
sized instances of the latter problem remains an open question. Here, an interesting 
open question concerns the computational complexity of the more general problem 
MONGEXPROO(SYM), or even MONGEXA-MoNGE. Proving the NP-hardness of 
the first one or the polynomiality of the latter would complete Table 4.1. 

Further, we have shown that the QAP with a circulant and a Monge matrix re-
mains NP-hard, although there is at least one solvable case of it, namely the TSP 
on Monge matrices. We singled out several solvable cases of QAPs with one Mon-
ge matrix and the other matrix being a small bandwidth matrix. Solvable cases 
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arising from the taxonomy problem are also classified into this group of problems. 
It should be noticed that in all these solvable cases the Monge matrix possesses 
also additional properties. All these polynomially solvable problems are constant 
permutation QAPs. A big open question related to QAPs with circulant matrices 
is the complexity of the problem eIRe x eIRe. Recall that eIRe x eIRe contains as 
a special case the so-called circulant TSP whose complexity is still a challenging 
open question, see [153]. 

Further, we investigated the Anti-Monge-Toeplitz QAP, i.e., the QAP with a left-
higher graded Anti-Monge matrix and a symmetric Toeplitz matrix. It can be 
shown that the Anti-Monge-Toeplitz QAP is NP-hard. However, additional con-
ditions on the Toeplitz matrix yield polynomially solvable versions of this problem 
which are constant permutation QAPs. Among these solvable cases, the most cele-
brated arises when the Toeplitz matrix is generated by a benevolent function. The 
other solvable cases involve k-benevolent matrices or Toeplitz matrices with band-
width two, Generally, for Toeplitz matrices with larger bandwidth the problem 
A-MoNGE(LHG)xToEPLITZ is not a constant permutation QAP. A more recent 
result on QAPs with a Monge-like matrix and a Toeplitz matrix concerns the 
Kalmanson-Toeplitz QAP. Under specific conditions on the Toeplitz matrix, sim-
ilar to those fulfilled by benevolent matrices, this problem becomes polynomially 
solvable. 

Concerning the problem A-MONGE(LHG) x TOEPLlTZ, we believe that more can 
be done in order to derive other properties of the Toeplitz matrix which yield 
constant permutation QAPs. The results presented here are only the first steps in 
this direction. However, deriving a characterization of all Toeplitz matrices which 
yield constant permutation problems from the class A-MONGE(LHG) X TOEPLITZ 
is an open problem whose complete solutIon is currently out of sight. 

Summarizing, the results presented in this chapter bear evidence of the fact that the 
QAP is a very difficult problem from a theoretical point of view. Much structure 
on the coefficient matrices is required in order to obtain polynomially solvable 
special cases. Some of the solvable cases are inherently linear assignment problems 
(eg. PROO(SYM,NNEG)XPROO(SYM,NNEG)), whereas others are constant QAPs 
and thus, inherently trivial. More interesting are those solvable cases which can 
be solved in O(n) time as constant permutation QAPs, where n is the size of 
the problem. There are only a few solvable cases which cannot be classified as 
members of any of these groups. In our opinion, the fact that almost all solvable 
cases of the problem discussed in this chapter are either constant QAPs or constant 
permutation QAPs is very intriguing. Is this behavior an inherent characteristic of 
the problem or is it due to our poor knowledge? There is no hope to answer this 
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question without identifying other solvable and provably hard cases of the problem 
at hand. 

The general method used to solve the constant permutation QAPs and also to 
prove their polynomiality, can be specified as reduction to extremal rays. In all 
cases certain (experimental) hints are exploited in order to make a guess for the 
constant permutation. In turn, the advantageous combinatorial structure of the 
problem data is exploited. Since the corresponding matrix classes form cones, 
the investigations can be restricted on simpler instances with 0-1 coefficients only. 
Proving that the guessed constant permutation is really an optimal solution for 
such instances is done - in most of the cases - by a simple but peculiar case-analysis 
or by exchange arguments. Often, the relaxation I-QAP of the problem has been 
considered, where the rows and the columns of the corresponding coefficient matrix 
are permuted independently by two different permutations, say 7r and 1{;. Further, 
it is shown that the I-QAP is also a constant permutation problem with an optimal 
solution which permutes both rows and columns by the same permutation, say 7ro. 

Then, clearly, 7ro is an optimal solution to the original QAP. 

The constant QAPs or QAPs which inherently are linear assignment problems are 
usually quite easy to handle. The work to be done amounts on recognizing these 
properties by finding an appropriately equivalent reformulation of the problem. 
While analyzing the methods used in this chapter, we should notice that in one 
single case, namely when dealing with problems of the classLARGE(SYM)xNCHEss, 
a dynamical programming approach is applied. 

Concluding, the challenging and difficult research on polynomially solvable special 
cases of the QAP is still in its infancy. A lot remains to be done in the future 
towards drawing a borderline between easy and hard versions of the QAP. 



6 
QAPS ARISING AS OPTIMIZATION 

PROBLEMS IN GRAPHS 

Many optimization problems in graphs can be formulated as QAPs with a special 
structure. Most of these optimization problems in graphs are NP-hard. However 
a number of polynomially solvable special cases have been identified for them. We 
believe that the general knowledge and understanding of the QAP can benefit from 
a closer look at these problems and the corresponding formulations as QAPs. This 
is the motivation for writing this chapter. 

We present a number of well known results for placement problems (linear arrange-
ment problems, in particular) , feedback arc set problems and packing problems, 
translated into the language of the QAP. In some cases, graph theoretical results 
related to the problems mentioned above lead to algorithmic approaches for solv-
ing the corresponding special cases of the QAP, e.g. in the case of packing prob-
lems. Some optimization problems in graphs lead to the so-called generalized QAP 
(GQAP) which is a straightforward generalization of the QAP. As in the QAP, 
also in the GQAP we are given two coefficient matrices A, B and wish to minimize 
the objective function -?,(A, B, ¢) of the related QAP. The difference to the QAP 
consists of the fact that here the minimization is done over a subset of the set Sn of 
all permutations of {I, 2, ... , n}, where n is the size of the problem, i.e. the size of 
the matrices A, B. Thus, the set of the feasibles solutions of the GQAP is a subset 
lln of Sn. An instance of the GQAP is specified by its coefficient matrices A, B, 
and its set of feasible solutions lln ~ Sn, and is denoted by GQAP(A, B, lln). 
In the case of lln = Sn we obtain the QAP as a special case of the GQAP. In 
this chapter we present some NP-hard and some polynomially solvable cases of the 
GQAP. Most of these GQAPs occur in the context of an optimization problem on 
isomorphic graphs,namely the problem of finding an isomorphism with "minimum 
weight" for two given isomorphic graphs. Along with polynomially solvable and 
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provably hard special versions of the QAP, this chapter provides a number of open 
questions which could be attacked and hopefully solved in the future. 

The chapter is organized as follows. In the first section the placement problem is 
introduced. We focus on the linear arrangement problem and review some well 
known results which lead to solvable cases of the QAP. In the second section spe-
cial cases of the QAP arising from the feedback arc set problem are considered. A 
detailed analysis of QAP formulations of graph packing problems and their com-
plexity analysis follows in Section 6.3. Finally, in the fourth section some results 
on polynomially solvable and provably hard cases of the GQAP are presented. We 
conclude by showing that the so-called pyramidal QAP is NP-hard, in contrast to 
the pyramidal TSP which is known to be polynomially solvable (see e.g. [153]). 

6.1 QAPS RELATED TO PLACEMENT 
PROBLEMS 

In placement problems we are given n modules that have to be placed in a one-
dimensional array at unit intervals. The modules are pairwise connected by a 
number of wires. Let aij denote the number of wires connecting the modules i and 
j. The objective is to place the modules in such a way that the overall length of 
the connecting wires is minimized. Clearly, this problem can be formulated as a 
QAP(A,B), where the n x n symmetric matrix A = (aij) represents the number of 
the wire-connections, and B = (bij) is a symmetric Toeplitz matrix defined by bij = 
Ii - jl, 1 :s i, j :s n. Thus, QAP(A,B) belongs to MATRIX(SYM) x TOEPLITZ(SYM). 

This problem was originally introduced in 1961 by Steinberg [215] and was called 
"the backboard wiring problem". The problem was reconsidered in 1972 by Hanan 
and Kurtzberg [110] under the name "the module placement problem". The special 
case of the above problem, where matrix A is the adjacency matrix of a graph is 
known as the linear ordering or the linear arrangement problem (or sometimes as 
the minimum sum labeling problem). In general, this problem is NP-complete (see 
Garey and Johnson [88]). Evan and Shiloach [75] have shown that even restricted 
versions like the linear arrangement problem in acyclic digraphs or in bipartite 
graphs are NP-complete. What does this mean in terms of QAPs? Consider a 
topological labeling of an acyclic digraph G on n vertices (i.e. a labeling of the 
vertices of the graph such that the tail of every arc has smaller label than its 
head). Then, if A = (aij) is the adjacency matrix of G, aij = 0 for all i ~ j, 
1 :s i, j :s n. Thus, the adjacency matrix A of a topologically labeled acyclic 
digraph is a upper triangular matrix, i.e. all entries of A lying on and under the 
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diagonal are equal to O. Now, the result of Evan and Shiloach can be formulated 
in the QAP language as follows. 

Theorem 6.1 (Evan and Shiloach [75], 1975) 
Let the n x n matrix B = (bi}) be given by bi} = Ii - ii, 1 :::; i, i :::; n. Consider an 
n x n upper triangular matrix A with entries equal to 0 or 1. Then QAP(A, B) is 
NP-complete. 0 

Throughout the rest of this section we will review several polynomiality results on 
the linear arrangement problem, formulating them in the language of the QAP. 
The first result concerns (undirected) trees. In 1976 Goldberg and Klipker [98) 
proved that the linear arrangement problem on (undirected) trees is polynomially 
solvable. They proposed an O(n3 ) algorithm, where n is the size ofthe problem, i.e. 
the number of vertices of the tree. In 1979 Shiloach [212) derived a new algorithm 
improving the time complexity to O(n2.2 ). Finally, in 1984, Chung [55) improved 
the time complexity to O(nA), where .x can be chosen to be any real which satisfies 
.x > log2 3 ~ 1.58. 

Theorem 6.2 (Goldberg and Klipker [98], 1976, Shiloach [212], 1979, Chung [55], 
1984) 
Consider the n x n matrices A and B = (bij), where A is the adjacency matrix 
of a tree on n vertices and bij = Ii - ii, 1 :::; i, i :::; n. QAP(A, B) is solvable in 
polynomial time by an O(nA) algorithm, where.x > log23 . 0 

Both Chung and Shiloach propose recursive algorithms where the optimal linear 
arrangement for the given tree results as an appropriate combination of optimal 
linear arrangements for some suitably chosen rooted subtrees. The improvement 
in the time complexity results from a more efficient use of the subtrees in the 
recursive process rather then from some principally new idea. Note that the result 
of Proposition 6.2 applies only in the case that A = (aij) is a 0-1 matrix, i.e. 
the entries aij are either equal 0 or equal to 1. None of the above algorithms 
works in the case that A is the weighted adjacency matrix of a weighted tree. To 
our knowledge the time complexity of QAP(A, B) in this case remains an open 
question. 

A polynomially solvable version of the linear arrangement problem, where A is 
the weighted adjacency matrix of a rooted tree, was identified by Adolphson and 
Hu [3). In this version of the problem not all permutations are considered as 
feasible arrangements. A feasible arrangement 11' has the property that for each arc 
(i, i) in the rooted tree, vertex i should be embedded to the left of vertex i, i.e. 
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7r( i) < 7r(j). Notice that because of this additional restriction this problem is a 
GQAP. Adolphson and Hu [3] propose a rather technical O(nlogn) algorithm for 
this problem. 

Theorem 6.3 (Adolphson and Hu [3], 1973) 
Let A = (aij) be the n x n weighted adjacency matrix of a rooted tree, where the 
entries which correspond to non-existing edges are equal to O. Let the n x n matrix 
B = (bij) be given by bij = Ii - jl, 1 ~ i, j ~ n. Denote by S: the set of those 
permutations 7r of {l, 2, ... , n} such that 7r( i) < 7r(j) for each pair of indices i, j 
with aij:f. O. Then the problem GQAP(A,B,S:) is solvable in O(nlogn) time. 

(GQAP(A, B, S:») o 

Another polynomially solvable version of the linear arrangement problem occurs 
in the context of network flows. Assume that A = (aij) is the weighted adjacency 
matrix of a symmetric, undirected, edge weighted network. Gomory and Hu [101] 
defined the so-called Gomory-Hu tree that gives a concise representation of the 
maximum flows between any pair of vertices in the network. For any two vertices 
i and j in the network, the value of the maximum flow (minimum cut) from i to 
j equals the weight of the shortest edge on the path joining i to j in the Gomory-
Hu tree. The weights on the edges of the network are the capacities involved in 
the related maximum flow problems. A given symmetric n x n matrix A can be 
considered as weighted adjacency matrix of a network with edge capacities equal 
to the corresponding entries in the matrix. The Gomory-Hu tree of this network is 
termed then as Gomory-Hu tree associated with matrix A. If the Gomory-hu tree 
associated with matrix A has a special structure, namely, in the case that this tree 
is a path, polynomially solvable cases of the linear arrangement problem arise. 

Theorem 6.4 (Adolphson and Hu [3], 1973) 
If the Gomory-Hu tree associated with a symmetric n x n matrix A is a path and 
matrix B = (bij) is defined by bij = Ii - jl, 1 ~ i, j ~ n, then QAP(A, B) is 
polynomially solvable. 

Sketch of the proof. This result is derived by Adolphson and Hu [3] as a corol-
lary of a more general result. Let N A be a symmetric (undirected), (edge) weighted 
network and let A be the symmetric matrix of the edge weights (capacities). It 
can be shown that the overall sum of the edge weights of the Gomory-Hu tree cor-
responding to NA is a lower bound on the objective function value of QAP(A, B). 
In the case that the Gomory-Hu tree is a path, it can be shown that the sum 
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of its edge weights equals Z(A, B, 11"), where 1I"(i) denotes the position of vertex i 
on the Gomory-Hu path. Thus, such a permutation 11" is an optimal solution to 
QAP(A, B). (Clearly, there exist at least two optimal solutions 11"1 and 11"2 which 
are related by the equality 1I"1(i) = 1I"2(n - i + 1), for all i = 1,2, ... , n.) Thus, 
in this case, the QAP(A, B) can be solved by computing the Gomory-Hu path for 
the network NA . As the Gomory-Hu tree for a given symmetric, undirected, edge 
weighted network can be computed in polynomial time (see e.g. Gomory and Hu 
[101] for an O(n3 ) algorithm), QAP(A, B) is polynomially solvable. 0 

It would be nice to have a characterization of networks whose Gomory-Hu tree is 
a path, or at least sufficient or necessary combinatorial conditions for symmetric, 
edge weighted networks which have this property. To our knowledge this problem 
has not been investigated up to now. 

To conclude this section notice that in the case that A is a left-higher graded Anti-
Monge matrix (see Section 4.1), the corresponding placement problem is solved 
by the permutation 11"* defined in the previous chapter. This is a straightforward 
corollary of Theorem 5.2, since matrix B = (Ii - jl) is a Toeplitz matrix generated 
by a benevolent function (see Section 4.1 and Definition 5.1). 

6.2 SPECIAL CASES RELATED TO THE 
FEEDBACK ARC SET PROBLEM 

In the minimum weight feedback arc set problem (FAS) a weighted digraph G = 
(V, E) with vertex set V and arc set E is given. The goal is to remove a set of 
arcs from E with minimum overall weight, such that all directed cycles, so-called 
dicycles, in G are dest{oyed and an acyclic directed subgraph remains. Clearly, 
the minimum weight" feedback arc set problem is equivalent to the problem of 
finding an acyclic subgraph of G with maximum weight. It is worthy to notice 
here that this problem was sometimes termed as linear ordering problem, as for 
example in [190]. Notice however that the problem considered in this section is 
completely different from that treated in the previous section under the name 
linear ordering (arrangement) problem. We have adopted the terminology used 
(among others) by Garey and Johnson in [88] for both the linear ordering problem 
and the minimum weight feedback arc set problem. The unweighted version of 
the FAS, that is a FAS where the edge weights of the underlying digraph equal 0 
or 1, is often called the acyclic subdigmph problem and is treated extensively by 
Junger [126]. An interesting application of FAS is the so-called triangulation of 
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the input-output tables which arises along with input-output analysis in economics 
(details and further references can be found in [190]). 

The minimum weight feedback arc set problem can be formulated as a QAP. Since 
the vertices of an acyclic subdigraph can be labeled topologically (i.e. in such a way 
that the tail of every arc a has smaller label than its head), the FAS is equivalent 
to QAP(A,B), where A is the weighted adjacency matrix of G and matrix B equals 
the lower triangular matrix Ln = (iij) , where iij = -1 if i ::; j and iij = 0, 
otherwise. 

The FAS is well known to be NP-complete (see Karp [136], Garey and Johnson 
[88]). Gavril [90] proved NP-completeness even for the case of an unweighted 
digraph where every vertex has in-degree and out-degree at most three. 

Theorem 6.5 (Gavril [90], 1977) 
Let A be an n x n 0-1 matrix where every row and every column contains at most 
three entries of value 1. Then the problem QAP(A, Ln) is NP-complete. 0 

Throughout the rest of this section we review some results on polynomially solvable 
cases of the problem QAP(A, Ln). The cornerstone for most of the polynomiality 
results on FAS presented in this section is a fundamental minimax theorem of 
Lucchesi and Younger [160], which is probably the very first result of this kind. 
Most of the later results, both algorithmic and theoretical ones, make use of the 
theorem of Lucchesi and Younger or generalize its basic idea. In order to formulate 
the result of Lucchesi and Younger, we need the definition of a dicut and the 
definition of a transversal of dicuts. 

Definition 6.1 (a) Consider a digraph G = (V, E) with vertex set V and edge set 
E. A directed cut (dicut) in G is a set of arcs with tail in 8 and head in V \ 8, 
provided that there are no arcs going from V \ 8 to 8 and 8 is a strict subset of 
V, i.e. 8e V, 8-::j:.0, 8-::j:. V. 

(b) Consider a set of subsets of E, {El' E2, ... , Ek}, Ei ~ E, 1::; i::; k, k E IN. A 
transversal of {El' E2, ... , Ek} in G is a set of arcs E', E' ~ E, with the property 
that each of the sets Ei, 1 ::; i ::; k, contains at least one arc from E'. In the 
case that {El, E2, ... , Ek} is the set of all dicycles or all dicuts in G, we have a 
transversal of dicycles or a transversal of dicuts, respectively. 

( c) Assume that G is a weighted digraph with a weight function w: E -t IN, e t-t 
w(e). The weight of a set of arcs E', E' ~ E, is given as sum of the weights of all 
its elements: w(E') = LeEE' w(e). 
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Proposition 6.6 (Lucchesi [159], 1976, Lucchesi and Younger [160], 1978) 
Consider a digraph G. The minimum cardinality of a transversal of dicuts in G 
equals the maximum cardinality of a collection of pairwise disjoint dicuts. 0 

Let us give an illustrating example for dicuts, transversals and for Proposition 6.6. 

Example 6.1 Dicuts and transversals. 
Consider the digraph presented in Figure 6.1. It is easy to see that there are only 
three dicuts in this digraph: Dl = {(1,2),(1,4)}, D2 = {(1,4),(2,4),(2,3)} and 
D3 = {(2, 3), (4, 3)}. The set of arcs T = {(I, 2), (2,3), (2,4)} is a transversal 
of these dicuts, since Tn Di i= 0, for i = 1,2,3. Notice that Dl n D2 n D3 = 
o and D2 n D3 = {(2,4)}. Thus, the maximum cardinality of a collection of 
pairwise disjoint dicuts equals 2. In fact, the only collection of pairwise disjoint 
dicuts is {D1 , D3}. According to Proposition 6.6 there exists a transversal of dicuts 
with cardinality equal to 2. Indeed, the set {(1,3),(2,4)} is such a transversal. 
According to Proposition 6.6 there exist no transversal of dicuts with cardinality 
1. Indeed, the existence of such a transversal would imply Dl n D2 n D3 i= 0. 0 

4 

Figure 6.1 Dicuts and transversals. 

Several alternative, sometimes constructive proofs for Proposition 6.6 have been 
given in [81,137,158]. Moreover, many authors have generalized this basic theorem 
for weighted digraphs and have obtained the following more general result. 

Proposition 6.7 (Lucchesi [159], 1976, Edmonds and Giles [69], 1977, Frank [81], 
1981) 
Consider a weighted digraph G = (V, E) with nonnegative integral weights w(e) on 
its arcs e E E. The minimum weight of a transversal of dicuts in G equals the 
ma;vimum weight of a collection C of directed cuts with the property that e occurs 
in at most w(e) dicuts from C, for all e E E. 0 

As a corollary of Proposition 6.7, the following result was implicitly proven by 
different authors, Lucchesi [159], Frank [81] and Gabow [85]. 
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Theorem 6.8 (Lucchesi [159], 1976, Frank [81], 1981, Gabow [85], 1993) 
Let A be the weighted adjacency matrix of a weighted planar digraph G = (V, E). 
Then QAP(A, Ln) is solvable in polynomial time, where Ln is a t'riangular matrix 
as defined previously in this section. 

Sketch of the proof. Let G = (V, E) be a weighted planar digraph with weights 
w( e) on its arcs e E E, and let G* be its dual digraph. With each arc e' of the dual 
digraph G* associate a weight w( e') equal to the weight of its corresponding arc e 
in G, w(e') = w(e). It is well known that the one to one correspondence between 
arcs of G and arcs of G* implies a one to one correspondence between directed 
cycles (dicycles) in G and dicuts in G*. Clearly, there is also a one to one corre-
spondence between transversals of dicycles in G and transversals of dicuts in G*. 
Under these conditions, corresponding objects (dicuts and dicycles, transversals of 
dicuts and transversals of dicycles) have the same weight. Thus, as a corollary of 
Proposition 6.7, we get: 

The minimum weight of a transversal of dicycles in a weighted planar digraph 
G = (V, E), with nonnegative integral weights w(e) on its edges e E E, equals the 
maximum weight of a collection C of dicycles in G, with the property that e occurs 
in at most w(e) dicycles from C, for all e E E. 

Solving QAP(A, Ln) is equivalent to finding a transversal of dicycles in G with min-
imum weight. Indeed, once such a transversal is found, the arcs of the transversal 
are removed from G and the remaining graph contains no dicycles. Hence, this 
graph can be sorted topologically (in polynomial time) and the corresponding la-
beling of vertices yields an optimal solution to QAP(A, Ln). On the other side, 
finding a transversal of dicycles with minimum weight in G is equivalent to finding 
a transversal of dicuts in G* with minimum weight G* . Lovasz [158] has pointed 
out that finding a minimum weight transversal of dicuts in G* is equivalent to 
finding a minimum weight set of arcs whose contraction transforms G* in a strong-
ly connected digraph. Frank [81] derived an O(n5 ) combinatorial algorithm for 
finding such a set of arcs in an arbitrary weighted digraph on n vertices. 0 

As far as we know, the best algorithm for solving QAP(A, Ln), where A is the 
weighted adjacency matrix of a planar digraph, is due to Gabow [85]. Its time 
complexity is O( n3), where n is the size of the problem. 

Notice that the problem QAP(A, Ln) of size n with a symmetric matrix A is trivial. 
In this case QAP(A, Ln) is a constant QAP (see the introduction of Chapter 4. 
This version of the QAP corresponds to the weighted feedback edge set problem 
for (undirected) graphs with a symmetric weighted adjacency matrix. 



QAPs A rising as Optimization Problems in Graphs 203 

In Theorem 6.8, the condition that Ais a weighted adjacency matrix of a planar 
digraph is a sufficient condition for the polynomial solvability of QAP(A, Ln), 
but not a necessary one, as shown by polynomiality results on QAP(A, Ln) to 
be presented next. The propositions formulated below are results concerning the 
FAS or its unweighted version, the acyclic subdigraph problem, formulated in the 
language of the QAP. The first of these results deals with the FAS on so-called 
reducible flow graphs which are defined as follows. 

Definition 6.2 A flow graph (sometimes also-called a rooted directed graph) is 
a directed graph G = (V, E, r) with vertex set E, arc set E, and a distinguished 
vertex r, such that there is a directed path in G from r to every vertex in V \ {r}. 
A reducible flow graph is a flow graph which can be transformed in a single vertex 
by some sequence of transformations of type (i) or (ii): 
(i) If an arc e = (v, v) exists in E, remove e from E. 
(ii) Let V2 be a vertex in V \ {r} and let it have a single incoming arc (VI, V2). 

Replace (VI, V2) by a single vertex v. Predecessors of VI become predecessors of v. 
Successors of VI and V2 become successors of v. There is an arc (v, v) if there was 
formerly an arc (V2' VI) or (VI, VI). 

Theorem 6.9 (Ramachandran [189], 1988) 
Let A be the weighted adjacency matrix of Ct reducible flow graph on n vertices. 
QAP(A, Ln) is solvable in O(n2mlog(r;:)) steps, where m is the number of the 
non-zero entries of A. In the case that A is the 0-1 adjacency matrix of a reducible 
flow graph, QAP(A, Ln) can be solved in O(m2) time. 

Sketch of the proof. The proof is based on a simple idea but is however technical 
and goes through several steps. The proof makes use of an alternative characteri-
zation of reducible flow'graphs as rooted digraphs for which the depth first search 
acyclic digraph (DAG) is unique (see Tarjan [221]). This characterization implies 
that the arcs of a reducible flow graph can be partitioned in a unique way into 
two sets, as DAG or forward and backward arcs. In the following we give a coarse 
description of the algorithm. 

First, dominance relations are introduced in the set Vh of the heads of the backward 
arcs in the given reducible flow graph G. With the help of these relations, for each 
vertex V E Vh sets of so-called dominated back arc vertices are introduced and 
denoted by VV • Then, for each V E Vh a subgraph G3 (v) of G induced by the set Vv 
of vertices is introduced and a related maximum flow network Gm (v) is constructed. 
There is a direct relationship between the cuts separating the source from the sink 
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in Gm(v) and feedback arc sets in Gs(v). In order to extend this relationship to 
the weights of the corresponding cuts and feedback arc sets, respectively, additional 
networks, the so-called minimum cost maximum flow networks Gmm(v), need to be 
introduced and constructed, for each v E Vh. The minimum cost flow networks are 
constructed recursively, starting from vertices in Vh which are minima with respect 
to the dominance relation, and going towards the root which is a maximum with 
respect to this relation. The computation of capacities of Gmm (v) involves solving 
a number of minimum cut problems in the networks Gmm (vi) for Vi which are 
immediately dominated by v. The nice thing about the networks Gmm(v) is that a 
minimum cut separating the source from the sink in Gmm (v) represents a minimum 
feedback arc set in Gs(v) and vice-versa. Since Gs(r) = G, where r is the root of 
the reducible flow graph, we just need to compute a minimum cut for Gmm (r). As 
mentioned above the construction of Gmm (v) involves the computation of minimum 
cuts in the networks Gmm (v) for v E Vh. 

Summarizing, an optimal feedback arc set is found by first, constructing recursively 
the minimum cost maximum flow network for the root of the reducible flow graph, 
and secondly, solving a minimum cut problem in this network. 0 

The next polynomiality result concerns, J{3,3-free digraphs, i.e. digraphs which do 
not contain any subgraph homeomorphic to the complete bipartite graph J{3,3 or 
any of its divisions. 

Theorem 6.10 (Penn and Nutov [175], 1994) 
If A is the weighted adjacency matrix of a J{3,3-free digraph on n vertices, then 
QAP(A, Ln) is solvable in O(n3) time. 

Sketch of the proof. First, the given J{3,3-free digraph is decomposed into three-
connected components. It can be shown that in such graphs the three-connected 
components are either planar graphs, or coincide with orientations of J{5, i.e. the 
complete graph on 5 vertices. Secondly, the minimum feedback arc set problem is 
solved in each of the connected components. As stated in Theorem 6.8, for those 
components which are planar graphs the FAS is polynomially solvable. Clearly, 
for the J{5 the FAS is solved in constant time. Finally, the optimal feedback arc 
sets computed separately for each component can be merged in polynomial time to 
obtain an optimal feedback arc set for the whole graph. The merging process is a 
recursive one. It involves the computation of minimum feedback arc sets of larger 
and larger graphs, starting with the "union" of two three-connected components, 
then the "union" of the latter with a third component and so on, until the whole 
graph is obtained. 0 
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Theorem 6.10 can also be derived as a corollary of a stronger result of Grotschel, 
Junger and Reinelt [105]. To formulate this stronger result we need one more notion 
from graph theory, namely the notion of a weakly acyclic digmph (see [105]). This 
definition makes use of the acyclic subgmph polytope which is defined below. Given 
a digraph G = (V, E), let A(G) be the set of all sets F ~ E which induce acyclic 
subgraphs in G. For some F ~ E let xF be the characteristic vector of F in E, 
i.e. an lEI-dimensional 0-1 vector, with x[ = 1 if i E F and x[ = 0, otherwise. 
The acyclic subgraph polytope PAC (G) is defined as the convex hull of all x F for 
F E A( G), i.e. PAc( G) = conv{ xF : F E A( Gn. Further let us denote 

Pc(G) := {x = (Xi) E JRIEI: 0 ~ Xi ~ 1, I>i ~ ICI- 1, 'v' dicycles C in G} 
iEC 

Definition 6.3 A digmph G = (V, A) is said to be weakly acyclic if P...ic(G) = 
Pc(G) , where PAC (G) and Pc(G) are defined as above. 

The study of weakly acyclic digraphs is still in its infancy. The planar digraphs and 
the Ka,a-free digraphs are weakly acyclic digraphs (see [105] and [14], respectively). 
There exist also other weakly acyclic digraphs (cf. [105]), however no other "nice" 
classes are known. For more details on this topic the reader is referred to [14,105]. 

TheQrem 6.11 (Grotschel, Junger and Reinelt [105], 1985) 
If A is the weighted adjacency matrix of a weakly acyclic digmph on n vertices, 
then QA.P(A, Ln) is solvable in polynomial time. 0 

Remarks. 1. Grotschel et al. [105] prove that the separation problem over Pc(G) 
is polyrlomially solvable. It is shown that this problem boils down to the shortest 
dicycle problem, and the latter can be solved by a modified algorithm for the 
shortest dipath problem. The polynomial solvability of the separation problem 
implies that the optimization problem over Pc (G) is also polynomially solvable!. 
But, in the case of weakly acyclic digraphs, optimizing over Pc(G) is equivalent 
to optimizing over PAC(G), and the latter means solving the acyclic subgraph 
problem. Grotschel et al. [105] solve this problem by means of an algorithm which 
makes use of the ellipsoid method. Notice that the algorithm derived by Penn and 
Nutov in [175] for Ka,a-free digraphs, a special case of weakly acyclic digraphs, ~s 
a combinatorial one. 

1 For the terminology used here the reader is referred to Grotschel, Lovasz and Schrijver [106] 
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2. What about the recognition of the well solvable cases of the QAP described 
above? Obviously, the polynomial recognition algorithms for planar graphs, K3 ,3-

free digraphs and reducible flow graphs (see, for example, Hopcroft and Tarjan [122, 
123], Tarjan [220]) can be used to recognize the corresponding properties of the 
coefficient matrix A for a given QAP(A, B). To our knowledge, there exists no 
polynomial time algorithm for the recognition of weakly acyclic digraphs and the 
computational complexity of this problem is an open question. 

Another polynomially solvable special version of the QAP(A, Ln) can be obtained 
as a straightforward corollary of Theorem 4.15. 

Corollary 6.12 For a left-lower graded matrix A the problem QAP(A, Ln) is poly-
nomially solvable. 

Proof. The claim follows from Theorem 4.15 by considering that Ln is a right-
higher graded matrix. 0 

The complexity of the FAS for digraphs with weighted adjacency matric,es which 
exhibit a special combinatorial structure remains an open question. Namely, poly-
nomial solvable cases of the problem QAP(A, Ln) may arise in the case that 
matrix A has some "nice" properties. For example, the problems MONGEXLn , 
A-MoNGExLn and their complexity might be next-to-investigate open questions. 

6.3 QAPS ARISING FROM PACKING 
PROBLEMS IN GRAPHS 

Another line of research on polynomially solvable cases of the QAP may be started 
from the theory of graph packing, cf. Bollobas [23]. Let us first introduce the 
graph packing problem. Consider two weighted (undirected) graphs GI = (VI, EI), 
G2 = (V2, E2) with vertex sets VI = {vP) 11::; i ::; n} and V2 = {v~2) 11::; i::; n} 
and edge sets EI and E2, respectively. Denote by A = (aij) and B = (bij ) the 
weighted adjacency matrices of GI and G2 , respectively. Throughout this section 
we assume that the weights on the edges of both graphs are positive. Moreover, 
we set aij := 0 or bij := 0 in the case that (vF), v?)) ¢ EI or (vi2), v;2)) ¢ E2, 
respectively. 
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Definition 6.4 A permutation 11" E Sn is called a packing of the graph G2 into the 

h G f ( (2) (2)) E 0 10 ((1) (1)) d. E flo. grap 1 I Vi , Vj E 2 Imp les v7r(i)' v7r(j) 'F 1, Jor ~ I, J ~ n. 

In other words, a packing of G2 into G1 is an embedding of the vertices of G2 into 
the vertices of G1 such that no pair of edges coincide. For two graphs G1 and G2 
as above the graph packing problem consists of finding a packing of G2 into G1 , if 
one exists, or proving that no packing exists. It is easy to see that the concept of 
a packing is symmetric, i.e, whenever a packing of G2 into G1 exists, there exists 
also a packing of G1 into G2. If this is the case, we may say that a packing of G1 
and G2 exists. 

The graph packing problem is strongly related to the QAP. Consider an arbitrary 
embedding 11" of G2 into G1 , that is a one to one mapping of the vertices of G1 
into the vertices of G2• Assume that there exists a pair of indices (i, j) such 
that (v;2), vy)) E E2 and (v~~h, v~~~)) EEl. We will refer to this fact saying 
as the occurrence of an edge coincidence. For an embedding 11", the number of 
pairwise different pairs (i, j) which yield an edge coincidence, is called number of 
edge coincidences. A packing is an embedding which causes no edge coincidences. 
Obviously, the objective function value of QAP(A, B) corresponding to a packing 
11" is equal to zero: 

n n 

Z(A, B, 1l') = L L a7r(i)7r(j)bij = 0 
i=l j=l 

Conversely, it is clear that a permutation 1l' E Sn such that Z(A, B, 1l') = 0 is a 
packing of G2 into G1. Thus, solving the graph packing problem for two given 
graphs Gl, G 2 with weighted adjacency matrices A, B, respectively, is equivalent 
to finding the optimal value of QAP(A, B) and an optimal solution of it in the case 
that this optimal value equals O. 

Example 6.2 Packing and edge coincidences. 
Consider a connected graph G = (V, E) and its complement G = (V, E), where V = 
{Vl, V2, ... , vn } is the vertex set of both G and G, and E = {(Vi, Vj): 1 ~ i, j ~ n, 
(Vi, Vj) ~ E}. Clearly, the identity permutation is a packing of G into G. In the 
case that G is complete or empty, i.e. the graph without edges, each embedding 
of the vertices of G into the vertices of G is a packing. Otherwise, let Vi be a 
vertex with degree smaller than n - 1 and larger than 0 in G. Denote by Vj and 
Vk two vertices such that (Vi, Vj) E E and (Vi, Vk) ~ E. A permutation 1l' such that 
1I"(j) = k, 1I"(k} = j and 1l'(t) = t for all t ~ {j, k} is not a packing of G to G. 
Indeed, (Vi, Vk) E E and (Vi, Vj) = (V7r(i), V7r(k)) E E. In this case we have an edge 
coincidence. 0 
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Throughout the rest of this section we review some results on graph packing and 
formulate them in the language of the QAP. Most of these results lead to polynomi-
ally solvable cases of the QAP. Let ~(G) denote the maximal degree of the vertices 
of a graph G throughout the rest of this section. The following theorem concerns 
"sparse" QAPs, i.e. QAPs whose coefficient matrices have together a "large num-
ber" of zero entries. It is intuitively clear that if the overall number of zero entries 
of matrices A and B is very large, then the optimal value of QAP(A, B) is O. Also 
by intuition, it should be "easy" to find an optimal solution to such a QAP(A, B). 
The following theorem confirms this feeling and mathematically prescribes what 
"large number" of zero entries means. 

Theorem 6.13 (Bollobas and Eldrige [24], 1978) 
Let A and B be two symmetric n x n matrices with nonnegative entries and zeros 
on the diagonals. In the case that condition (i) or condition (ii) holds, and n > 9, 
the optimal value ofQAP(A, B) is 0 and an optimal solution can be found in O(n2) 
time or O(nlogn) time, respectively: 

(i) The matrices A and B have (collectively) at most 4n - 6 non-zero entries and 
each of them has at most n - 2 non-zero entries per row. 

(ii) The matrices A and B have (collectively) at most 3n - 3 non-zero entries. 

Clearly, for n < 9 the corresponding QAPs can be solved in constant time. 

Sketch of the proof. 
Proof of (i). Consider two weighted graphs G1 = (V1' E1) and G2 = (V2, E2) 
with weighted adjacency matrices A and B, respectively. The zero entries in A 
(B) correspond to non-existing edges in G1 (G2 ). Obviously, 1V11 = 1V21 = n, 
~(G1) < n -1, ~(G2) < n -1 and IE11 + IE21 ~ 2n - 3. Bollobas and Eldrige [24] 
prove that under these conditions, G2 can be packed into G1 (with a finite number 
of exceptions). The proof given in [24] is done by induction on the number of 
vertices of G1 and G2 • This proof leads in a natural way to an O(n2) recursive 
algorithm for finding a packing. There are at most n recursive iterations and in 
each of them O(n) constant-time graph operations are performed. Before starting 
the algorithm a preprocessing is needed for sorting the vertices of G1 with respect 
to the degree, for computing the connected components of G2 , and for sorting these 
components according to their densities. The preprocessing takes O( n log n) time. 
Summarizing, a packing 11' of G2 into G1 exists and can be found in O(n2 ) time. 
Obviously, the permutation 11' is an optimal solution to QAP(A, B) as Z(A, B ,11') = 
o and the coefficient matrices A, B are nonnegative. Finally, each of the finitely 
many exceptions consists of a pair of graphs which have at most 9 vertices. Hence, 
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the corresponding QAPs can be solved in constant time. Clearly, in these cases the 
optimal value of QAP(A, B) is positive. 

Proof of (ii). Again, consider two weighted graphs Gl = (Vl,El) and G2 = 
(V2 , E2) with adjacency matrices A and B, respectively, where the zero entries 
in A (B) correspond to non-existing edges in G l (G2). Obviously, the inequality 
IEll + IE21 ::; 3(n2-l) holds. Bollobcis and Eldrige [24] have shown that in this case 
G2 can be packed into Gl . The proof is again inductive and leads naturally to 
a recursive algorithm. The recursive procedure is called at most n times and in 
each call a finite number of elementary (0(1)) graph operations are performed. 
Moreover, the same preprocessing as in (i) is needed. Summarizing, a packing, or 
equivalently, an optimal solution to QAP(A,B) can be found in O(nlogn) time. 
D 

At this point, an interesting question is the investigation of the "complexity thresh-
old" for the above type of problem. More precisely, let f( n) denote a non-decreasing 
function mapping lN to IN. Consider a restricted version of the QAP, where the 
input is restricted to pairs (A, B) of symmetric n x n matrices with nonnegative 
entries which have collectively at most 2f(n) non-zero entries and zeros on the 
diagonals. For what functions f(n) is this special case of the QAP polynomially 
solvable and for what functions f(n) is this problem NP-hard? What functions 
mark the complexity threshold? Theorem 6.13 gives a lower bound for this com-
plexity threshold, namely f(n) = 2n - 3, for n E IN. The following theorem, whose 
rather technical proof is omitted, gives an upper bound for this threshold. 

Theorem 6.14 (Burkard, Cela, Metelski, Demidenko and Woeginger [31], 1997) 
Consider the restricted version of QAP(A, B) with symmetric nonnegative coeffi-
cients matrices A, B which collectively have at most f(n) non-zero entries, where 
n is the size of the problem. We assume, moreover, that the matrices A and B 
have zeros on the diagonals. If f(n) = n(n1+£), for some fixed real c > 0, then 
this version of QAP is NP-hard. D 

We believe that the above mentioned complexity threshold is much closer to the 
lower bound given by Theorem 6.13 than to the upper bound given by Theo-
rem 6.14, say around f(n) = 4n. However, this is only a conjecture and closing 
the gap between the above lower and upper bounds remains an apparently difficult 
open problem. 

The next theorem, implicitly proved by Bollobcis and Eldrige, suggests that sepa-
rately bounding the number of non-zero entries of the coefficient matrices A and 
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B instead of bounding the sum of these numbers, leads to another scenario for the 
complexity threshold. 

Theorem 6.15 (Bollobas and Eldrige [24], 1978) 
Consider a QAP(A, B), where A and B are two symmetric n x n matrices with 
nonnegative entries and zeros on the diagonals. Assume that the matrices A and 
B have at most 2an and 2[(1- 2a)/5]n3 / 2 non-zero entries, respectively, for some 
o < a < 1/2. Then QAP(A, B) is solvable in O(n5/ 2 ) time and its optimal value 
equals zero. 

Sketch of the proof. The matrices A and B can be viewed as weighted adjacency 
matrices of two undirected graphs Gl = (Vl, Ed and G2 = (V2' E2), whose edge 
sets El, E2 fulfill the inequalities IEll ~ an and IE21 ~ [(1- 2a)/5]n3 / 2, for some 
o < a < 1/2. Bollobas and Eldrige have shown that under these conditions there 
exists a packing of G2 into G1. Their proof is constructive and yields immediately 
an algorithm for computing this packing as follows. Begin by assigning the isolated 
vertices of G1 to the vertices of G2 with largest degrees. Ties are broken arbitrarily. 
Then update both graphs by deleting the already assigned vertices and the edges 
incident to them. Consider the updated graphs, say G1 and G~, respectively. 
Assign the isolated vertices of G~ to vertices of G1 with largest degrees and again 
update GL G~, in the same way as done for the graphs Gl, G2 . Denote the updated 
graphs by G~ and G~, respectively. Consider an arbitrary embedding of G~ into 
Gf, that is a one to one mapping of the vertices of G~ into the vertices of Gf. Notice 
that this embedding is not necessarily a packing. Apply iteratively an improvement 
procedure until a packing results. This procedure gets an arbitrary embedding as 
input and outputs a new embedding which has a strictly smaller number of edge 
coincidences than the embedding given as input. This procedure, which can be 
naturally derived from the proof in [24], runs in O(n3/2) time. Considering that 
the improvement procedure is repeated at most O(n) times (this is the maximum 
possible number of common edges) completes the proof. This algorithm involves a 
preprocessing phase to distinguish the isolated vertices in each of the given graphs 
and to sort the vertices according to non-decreasing degrees. The time complexity 
is dominated by the time spent on improving the embeddings, which amounts to 
O(n5/ 2 ). 0 

The following theorems present a number of results on QAPs which arise as packing 
problems in certain special graphs. 

Theorem 6.16 Let A and B be the weighted symmetric n x n adjacency matrices 
of two graphs Gl = (Vl, Ed and G2 = (V2' E2) with nonnegative weights on the 
edges and zeros on the diagonals. Then, QAP(A, B) is solvable in linear time if 
one of the following conditions is fulfilled: 



QAPs Arising as Optimization Problems in Graphs 211 

(a) (Hedetniemi, Hedetniemi and Slater [117], 1982) 
G l and G 2 are trees. None of them is isomorphic to the complete bipartite 
graph Ki,n-l. (Kl,n-i is the star on n vertices.} 

(b) (Metelski [166], 1984) 
Gi is a regular graph of degree 2 (i. e. all of its vertices have degree 2) and 
G 2 is a tree. G 2 is neither isomorphic to the star Kl,n-i, nor isomorphic to 
a tree resulting from the star K l ,n-2 when adding one vertex x to it so as to 
subdivide one of its edges, say (u, v), into two other edges (u, x) and (x, v). 

(c) (Metelski [166), 1984) 
Both G l and G 2 are regular graphs of degree 2. 

(d) (Azarionok [8), 1987) 
Both G l and G 2 have bandwidth 2. 

Sketch of the proof. 
Proof of (a). In [117), Hedetniemi, Hedetniemi and Slater prove the existence of 
a packing of G2 into G l , in the case that G l and G2 are weighted graphs satisfying 
condition (a). First, a simple auxiliary result is shown: there exists a packing of 
an arbitrary tree on n vertices which is not a star, into a tree K~ n-i obtained 
by subdividing in 2 parts an edge of the stal"--Kl ,n_2 (with n - 1 v~rtices). Such 
a packing is given explicitly in [117]. Then, the authors consider trees which are 
neither stars, nor are obtained as subdivisions of stars as described above. The 
proof in this case is straightforward and is done by induction. It immediately leads 
to an O( n) time algorithm for finding a packing of G2 into G l , or equivalently, an 
optimal solution to QAP(A, B) with optimal value equal to O. Such a linear time 
algorithm is presented by the authors in [116]. 

Proof of (b), (c). If the graphs G l and G2 on n vertices, n> 6, fulfill condition 
(b) or (c), there exists a packing of G2 into G l , as shown by Metelski [166]. The 
proof is constructive and leads to an O(n) time algorithm for the construction of 
such a packing. Clearly, there is a finite number of pairs of graphs with at most 
6 vertices and for each of them the corresponding QAP can be solved in constant 
time. 

Proof of (d). Azarionok [8] proves the existence of a packing of G2 into GI , 

for graphs G l and G2 on n vertices, n > 16, fulfilling condition (d). He gives a 
concrete embedding of G l into G2 and proves that it is a packing. This embedding 
can be constructed by performing O(n) elementary operations. Obviously, QAPs 
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corresponding to packing problems on graphs with at most 16 vertices can be solved 
in constant time. 0 

As confirmed by the following NP-hardness result, the fact· that the weights on the 
edges are nonnegative is essential in Theorem 6.16 (a) . 

Theorem 6.17 (Korneenko [142], 1982) 
The special case of QAP(A, B), where A and -B 
two unweighted trees, is NP-hard. 

are the adjacency matrices of 
o 

Remark. Given the matrices A and B, minimizing Z(A, B, 1T) (over all permuta-
tions 1T) is equivalent to maximizing Z(A, -B, 1T). The last two theorems provide 
one more example where the computational complexity of maximizing the objective 
function of a certain QAP is different from the complexity of the analogous mini-
mization problem. We have already seen that another notorious QAP exhibits such 
a behavior. This is the turbine problem (see Section 5.2.1), where the maximization 
problem is "easy" and the minimization is "hard". 

Other polynomially solvable QAPs arise as packing problems on special graphs, 
where the product of the maximum degrees of the vertices or the product of the 
number of edges is "sufficiently small" . 

Theorem 6.18 (Sauer and Spencer [207], 1978) 
Let A and B be two symmetric n x n matrices with nonnegative entries and zeros 
on the diagonals. Denote by a and j3 the maximum number of non-zero entries per 
row for the matrices A and B, respective/yo In the case that 2aj3 < n, the problem 
QAP(A, B) is polynomially solvable and its optimal value equals O. 

Sketch of the proof. Consider two weighted graphs C l and Cz on n vertices 
with weighted adjacency matrices A and B, respectively. Clearly, 2aj3 < n implies 
2~(Cd~(C2) < n, where ~(Ci) is the maximum degree of the vertices ofCi, i = 
1,2. Sauer and Spencer [207] show that for Cl and Cz fulfilling 2~(Cd~(Cz) < n, 
there exists a packing 1T of Cz into C l . This is proven by considering an embedding 
of C 2 into C l with a minimum number of edge coincidences. Under the assumption 
that this embedding is not a packing, Sauer and Spencer derive a new embedding of 
Cz into Cl with a strictly smaller number of edge coincidences. This contradiction 
proves the existence of a packing of C 2 into C l . The construction of Sauer and 
Spencer can be used to derive an algorithm for finding a packing of C2 into Cl . 

Begin with an arbitrary embedding u of Cz to C l . If u is a packing, we are 
done. Otherwise, choose a common edge (u, v), i.e. (u, v) is an edge of Cl and 
(u-l(u), u-l(v)) is an edge of Cz, and find a vertex x which fulfills the following 
conditions: 



QAPs Arising as Optimization Problems in Graphs 213 

(1) x=/=u 

(2) (u, x) is not a common edge 

(3) For any vertex y of G2 either (u,O"(y)) is not an edge of G1, or (O"-l(x), y) is 
not an edge of G2 

(4) For any vertex y of G1 either (O"-l(u), O"-l(y)) is not an edge of G2, or (x, y) 
is not an edge of G1 

It can be show that such a vertex x exists in the case that the conditions of the 
theorem are fulfilled. A straightforward complexity analysis shows that a vertex x 
as above can be found in O(n2 ) time. Construct a new embedding 0"' with 

. {O"(i) ~f ~ rf. {O"-l(u), 0"-1 (x)} 
0"'(1) = x If 1 = O"-l(u) 

U ifi=O"-l(x) 

It is easy to show that 0"' has a strictly smaller number of edge coincidences than 0". 

Repeat this improving step until a packing is constructed. Clearly, the number of 
repetitions cannot exceed min{IE11, IE21} which is in O(n3 / 2 ), under the conditions 
of the theorem. Summarizing, we have an O(n3 ) algorithm for finding a packing 
of G2 into G 1 , or equivalently, an optimal solution to QAP(A, B). 0 

Theorem 6.19 (Sauer and Spencer [207], 1978) 
Let A and B be two symmetric n x n matrices with nonnegative entries and zeros 
on the dzagonals. Denote by 0: and j3 the. number of non-zero entries in A and B, 
respectively. If o:j3 < 2n(n - 1), the optimal value of QAP(A, B) equals zero. 

Sketch of the proof. Similarly as in the proof of the previous theorem, consider 
two weighted graphs G1 = (VI, E 1), G2 = (V2' E2 ) on n vertices such that A, B 
are their weighted adjacency matrices, respectively. (Zero entries correspond to 
non-existing edges.) Clearly, o:{3 < 2n(n - 1) implies 21E111E21 < n(n - 1). Sauer 
and Spencer [207] show that for graphs G1, G2 fulfilling this condition, there exists 
a packing 11" of G2 into G1 . Then, obviously, Z(A, B, 11") = 0, and this completes 
the proof. The existence of a packing is shown by the following simple probabilistic 
argument. Consider the uniform distribution on the set of all embeddings of V2 into 
VI. It can easily be shown that the probability that at least one edge coincidences 
occurs is smaller than one. This means that there exists at least one embedding 
which involves no edge coincidence i.e. there exists at least one packing. 0 
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Remark. To our knowledge, the computational complexity of the QAP version 
considered in Theorem 6.19 is still an open problem. We know that the optimal 
value of such a QAP equals zero, but we have no polynomial algorithm for finding an 
optimal solution, that is a permutation whose corresponding value of the objective 
function equals O. A straightforward use of the proof of Theorem 6.19 to derive 
such an algorithm seems to be impossible. 

6.4 SPECIAL CASES OF THE GQAP 
Most of the results in this section concern versions of the GQAP where the coeffi-
cient matrices A, B are (symmetric) weighted adjacency matrices of two isomorphic 
(undirected) graphs G l , G2 , and the minimization occurs over the set of isomor-
phisms between these graphs. Throughout this section, the set of isomorphisms 
between two isomorphic graphs G1 and G2, is denoted by I(G l , G2). Clearly, 
I(G l , G2) ~ Sn. This version of GQAP was initially tackled by Christofides and 
Gerrard [53] in 1976 and was termed as "a graph theoretical formulation of the 
QAP". Given two arbitrary graphs G1 and G2 , the set 9(Gl , G2 ) consists of the 
subgraphs of G2 which are isomorphic to Gl. For any G E 9(Gl ,G2) the set of 
isomorphisms between G1 and G is denoted by I(G1, G). Finally, the weighted 
adjacency matrices of G1 and G are denoted by A = (aij) and BG = (b~), respec-
tively. Christofides and Gerrard considered the following minimization problem, 
closely related to the GQAP: 

min { min ~~ a7r (i)7r(')b<?} 
GE9(G"G2 ) 7rEI(G"G) (;t f;:. J SJ ' 

(6.1) 

where n is the cardinality of the vertex set of Gl . Hence, among all subgraphs of G2 
isomorphic to G1 and the corresponding isomorphisms, we want to find a subgraph 
with a minimum weight isomorphism, where the weight of an isomorphism 11' is given 
by the double sum in (6.1). IfGl and G2 are isomorphic, we have 9(G1 , G2 ) = {G2 } 

and the problem formulated in (6.1) is the following GQAP: 

(6.2) 

where B = (bij) is the adjacency matrix of G2 and both Gl and G2 are graphs on 
n vertices. Christofides and Gerrard identified trivial cases of problem (6.2), where 
the cardinality of I( G1, G2 ) grows polynomially with the size n of the problem. As 
simple examples consider the cases when both graphs G1 and G2 are chains, cycles 
or wheels (see Figure 6.2 below). 
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o® 
a) b) c) 

Figure 6.2 a) A chain with 6 vertices. b) A cycle with 6 vertices. c) A wheel 
with 6 vertices. 

Observation 6.20 (Christofides and Gerrard [53], 1976) 
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Let G1, G2, be two isomorphic (a) chains, (b) cycles or (c) wheels on n vertices. 
In all cases the cardinality of I(G1, G2) grows polynomially with n: in case (a) 
II(G1, G2 )1 = 2, in case (b) II(G1, G2 )1 = 2n and in case (c) II(G1, G2)1 = 2(n-1), 
for n > 4. 

The strongest result of Christofides and Gerrard [53] concerning non-trivial cases 
of the GQAP, where II( G1 , G2) 1 grows exponentially with the size of the problem, 
is stated by the following theorem. 

Theorem 6.21 (Christofides and Gerrard [53t, 1976) 
Let Tl and T2 be two isomorphic trees on n vertices with arbitrary weights on the 
edges, and let A and B be the weighted (symmetric) adjacency matrices of Tl and 
T2, respectively. Then the following GQAP 

(6.3) 

is polynomially solvablo. 

Sketch of the proof. The proof relies on a polynomial time dynamic program-
ming scheme for (6.3). Actually, the authors construct a dynamic programming 
scheme for the special case when both trees are multistars. Then, they notice that 
this scheme can be modified in order to work also for general trees. Below we 
describe the dynamic programming approach for general trees T1 and T2. 

First, we define roots in T1 and T2 and assign levels to the vertices of T1 and T2 . 

This is done by applying a shelling procedure to Tl and T2, as follows. Assign 
level 0 to all leaves of the considered tree. Delete all vertices with level equal to 0 
together with their incident edges. Assign level 1 to all leaves of the tree resulting 
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from this deletion. Then, delete all vertices with level equal to 1 and the edges 
incident to them. Repeat this procedure while increasing the value of the level 
assigned to the leaves of the current tree by one in each it.eration. Continue until 
all vertices are labeled. In the last labeling step, one vertex or two vertices joined 
by an edge may be left. In the first case, the unique vertex which is left is the root 
of the tree. In the other case subdivide the remaining edge in two new edges. This 
is done by adding an additional vertex which is incident with the extremities of 
this edge and removing the edge itself. The vertex we add is considered as the root 
of the tree. The level of the root is called level of the tree. Once a root is defined 
in a tree, father and son relationships may also be defined as usually. The father 
of vertex i is denoted by p( i) and the set of sons of i is denoted by 8( i). From this 
construction follows that that each isomorphism between two isomorphic trees Tl 
and T2 preserves the level of the vertices, i.e. a vertex of Tl with level equal to k 
is mapped to a vertex of T2 with level equal to a k and vice-versa. Moreover, it is 
easily seen that each isomorphism between Tl , T2 maps their roots to each other. 
Therefore, isomorphic trees have equal levels, say .e. 

After the preprocessing step where levels are assigned to the vertices of Tl and T2, 
the dynamic programming scheme works as follows. For each pair of vertices i, j 
with level equal to 0 in T l , T 2 , respectively, compute the cost Cij = 2aip(i)bjp(j) 
of mapping vertex i to vertex j. Assume that we have recursively computed such 
costs for all pairs of vertices with level smaller than k, and want to compute them 
for vertices with level equal to k. An isomorphism between Tl and T2 may map 
a vertex i with level equal to k in Tl into a vertex j with level equal to k in T2 , 

only if 18(i)1 = 18(j)1. Let i and j be two such vertices in Tl and T2, respectively. 
Consider an 18( i) 1 x 18(j) 1 matrix C(i,j) whose entries c~;,j) are the costs of mapping 
t to I for any pair (t, I) with t E 8(i), I E 8(j). Solve the linear assignment problem 
with coefficient matrix C(i,j) and denote its optimal value by A(i,j). Now the cost 
Cij of mapping i to j is given by the following formula 

Apply this process until the cost Cr1r2 is calculated, where Tl, T2 are the roots ofTl , 

T2 , respectively. This is the optimal value of the considered GQAP. The optimal 
solution corresponding to this value can be found by back-tracking in the usual 
dynamic programming manner. 
The above algorithm runs in polynomial time. Its time complexity is dominated 
by the time required to solve the linear assignment problems. For computing the 
costs of the assignments of the level-k vertices of Tl to the level-k vertices of T2, 
1 :S k :S .e - 1, at most n~ linear assignment problems are solved, where nk is the 
number of vertices of level k in Tl (and also in T2)' The size of all these linear 
assignment problems is smaller than or equal to n - 1. Thus, a straightforward 
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upper bound for the time complexity of this step is n~ n3 . Summing up the time 
complexity for all steps of the dynamic programming scheme, we get the following 
inequality which completes the proof: 

o 

Rendl [192] investigated the possibility of generalizing the above result to vertex 
series-parallel digraphs (VSP). In the following we briefly introduce this class of 
graphs. The definition of this class is done in terms of its minimal members, the 
minimal vertex series-parallel digraphs, or shortly MVSP digraphs (see Valdes, 
Tarjan and Lawler [225]) which are defined recursively as follows: 

(i) The digraph containing a single vertex and no edges is a MVSP. 

(ii) If Gi = (Vi, Ei), i = 1,2, are two vertex disjoint MVSP digraphs, then the 
digraphs constructed by the following operations are also MVSP: 

a) Parallel composition: Gp := (Vl U V2, El U E2), 
b) Serial composition: G s := (Vl U V2, El U E2 U (Tl X 52)), where Tl is the 

set of sinks of G1 and 52 is the set of sources of G2 . 

A vertex series-parallel digraph is a digraph whose transitive closure equals the 
transitive closure of a MVSP digraph. It is usual to represent a MVSP by a 
rooted binary tree called the decomposition tree. The leaves of this tree are the 
vertices of the MVSP. The parallel (serial) decomposition of two MVSP digraphs 
G and G' is represented by a node labeled by "P" ("S") with the roots of the 
decomposition trees of G and G' being its sons (cf. [225]). Contracting the dipaths 
which consist only of "P" ("S") vertices into a single "P" ("S") vertex, yields the 
so-called canonical decomposition tree which is no longer binary. The canonical 
decomposition tree is unique up to the reordering of the successors of "P" vertices. 
In [225] it is proven that, given a digraph with n vertices and m arcs, it can be 
recognized in O(n + m) time whether it is a VSP (MVSP) or not. Moreover, 
in the case that the considered digraph is MVSP, its decomposition tree can be 
constructed within the same amount of time. For more information on (minimal) 
series-parallel digraphs the reader is referred to [225] and other literature pointers 
mentioned in that paper. 

Rendl investigated the GQAP on isomorphic MVSP digraphs and showed that 
this problem is NP-hard. His proof for the NP-hardness of the GQAP on MVSP 
digraphs is valid for an even more general class of graphs as stated by the following 
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theorem. A key element in the characterization of this class of digraphs is the so-
called complete bipartite digraph K~ n' K~ n is obtained by the complete bipartite 
graph Kn,n by orienting all edges fr~m on~ "part" of the vertex set to the other 
one. More concretely, K~ n has vertex set given as union U U V, where U = 
{U1, U2, .. ·, un}, V = {V1, ~2"'" vn}, and arc set E = {(Ui, Vj): 1 ::; i, j ::; n} (see 
also Figure 6.3-a,b). 

"~" "I" Uz V z Uz V z 

U3 V3 U3 V3 
UI U2 U3 VI V2 V3 

a) b) c) 

Figure 6.3 a) The complete bipartite graph K g,3' b) The complete bipartite 
digraph K~ 3' c) The canonical decomposition tree of K~ 3 as a minimum vertex 
series-paraliel (MVSP) digraph. ' 

Theorem 6.22 (Rendl [192]' 1986) 
Consider a class K of digraphs such that for all n E IN, n > 2, there exists a graph 
G with 2n vertices from K which contains the complete bipartite digraph K~ n as a 
(vertex) induced subgraph. Let A and B be the weighted adjacency matrices' of two 
isomorphic graphs G1 and G2 from K. (Both graphs are part of the input.) Then, 
the problem GQAP(A, B,I(G1, G2 )) is NP-hard. 0 

In [192] it is shown that a QAP of size n can be polynomially reduced to a 
GQAP(A, B,I(G1 , G2 )), where both G1 and G2 are weighted complete bipartite 
digraphs isomorphic to K~ n and A, B are their weighted adjacency matrices, re-
spectively. Notice that the 'K~,n is a MVSP digraph (see also Figure 6.3)-c, where 
the canonical decomposition tree of this MVSP digraph is represented). Besides 
MVSP digraphs, another class of digraphs which fulfill the conditions of Theo-
rem 6.22 is the class of cographs. (The complete bipartite digraphs Kn,n, n E IN, 
are cographs.) Other examples of classes of digraphs for which analogous NP-
hardness results can be derived are, for example, the interval graphs, the chordal 
graphs and the split graphs. (For definitions and properties of this graph classes 
see for example Golumbic [100].) 

Although problem (6.2) is NP-hard for general MVSP digraphs, it becomes poly-
nomially solvable when restricted on specific subclasses of MVSP digraphs. 
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Theorem 6.23 (Rendl [192]' 1986) 
Let G1 and G2 be two isomorphic minimal vertex series-parallel (MVSP) digraphs 
with arbitrary weights on the edges, and let A and B be their weighted adjacency 
matrices. If none of G1 and G2 contains the complete bipartite digraph K~ 2 as 
(vertex) induced subgraph, then GQAP(A, B,I(G1, G2)) can be solved in poiyno-
mial time. 

Sketch of the proof. The proof of this result makes use of the canonical decom-
position trees of G1 and G2. Rendlobserves that an isomorphism between G 1 and 
G2 leads to an isomorphism between their canonical decomposition trees, say Tl 
and T2, respectively. Moreover, this isomorphism between Tl and T2 preserves the 
labels "P", "S" on the nodes of these trees. Thus, the canonical decomposition 
trees of two isomorphic MVSP digraphs are isomorphic. Under these conditions, 
it takes some additional technicalities to transform (in a certain sense) the GQAP 
on the given graphs into a GQAP on the corresponding canonical decomposition 
trees. The main idea relies on the fact that if an isomorphism 7r E I(G1, G2) maps 
a vertex v of tree Tl to a vertex Vi of tree T2 , then it maps the subtree of Tl rooted 
at v to the subtree of T2 rooted at Vi. If for each vertex v, the assignment problems 
related to subtrees rooted at sons of v are somehow independent, then a polynomi-
al time dynamic programming approach similar to that described in the proof of 
Theorem 6.21 can be applied. Otherwise this approach does not work. Such "nice 
independencies" occur if and only if tree Tl ('II.lld T2 , as well) contains no father 
labeled by S having two sons labeled by P. Finally, it is not difficult to show that 
the canonical decomposition tree of a MVSP digraph has this property if and only 
if the digraph itself does not contain K~,2 as (vertex) induced subgraph. [] 

The result of Theorem 6.23 can be generalized for edge series-parallel (ESP) graphs 
or digraphs. The edge series-parallel digraphs are defined recursively as described 
below, and the edge series-parallel graphs are obtained from the edge series-parallel 
digraphs by removing the orientations of the arcs (cf. [225]). 

Definition 6.5 An ESP digraph is defined recursively by the following rules: 

(i) A digraph consisting of two vertices joined by a single arc is ESP. 

(ii) If G1 and G2 are ESP digraphs, so are the digraphs constructed by each of the 
following operations: 
a) Two-terminal parallel composition: Identify the source of G1 with the source 
of G 2 , and the sink of G1 with the sink of G2 • 

b)Two-terminal series composition: Identify the sink of G1 with the source of 
G2 • 
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An ESP graph is obtained by an ESP digraph by ignoring edge directions. 

Analogously as for MVSPs, the canonical decomposition tree of an ESP (di)graph 
can be introduced. Again, such a tree is unique up to the reordering of the succes-
sors of "P" vertices. Canonical decomposition trees of isomorphic ESP (di)graphs 
are isomorphic and vice-versa. Consequently, we can again apply the dynamic pro-
gramming scheme of Theorem 6.21 in order to find the "cheapest" isomorphism 
between the canonical decomposition trees of the given graphs. Here, the assign-
ments corresponding to the subtrees rooted at different sons of the same father are 
always independent and therefore, no additional conditions need to be put on the 
given graphs to guarantee the polynomial solvability of the problem. 

It remains to be investigated whether similar methods can be applied for solving 
the GQAP concerning other classes of "well-behaving" graphs. In this context, the 
next classes of graphs to be considered might be planar graphs or partial k-trees. 

The following result due to Christofides and Gerrard shows that relaxing the iso-
morphism condition in Theorem 6.21 leads to NP-hard problems. Namely, prob-
lem (6.1) is NP-hard in the case that Gl is a tree and G2 is a complete graph. 

Theorem 6.24 (Christofides and Gerrard [53], 1976) 
Let A be' the weighted adjacency matrix 0/ a tree Gl and B be the weighted adjacency 
matrix 0/ a complete graph G 2 . Then, the problem 

(6.4) 

is NP-hard. o 

However, for some special trees we get polynomially solvable GQAPs. 

Theorem 6.25 (Christofides and Gerrard [53], 1976) 
Let A = (aij) be the weighted adjacency matrix of a star Gl on n vertices and 
B = (bij) be the weighted adjacency matrix of a complete graph G2 on n vertices. 
Then the generalized GQAP (6.4) is solvable in O(n2 Iogn) time. 

Proof. Let the vertex sets OfGl and G2 be given as {Ul,U2, ... ,Un } and {Vl,V2, 
, ... , vn }, respectively. The weights on the edges of both graphs are denoted by w 
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for simplicity, e.g. w( Vi, Vj), w( Ui, Uj). W.l.o.g. denote the central vertex of the star 
G1 by U1. First, consider all permutations 11" which map k to 1, for some prespecified 
1 ~ k ~ n. (That is, fix the vertex Vk of G2 to which U1 is embedded.) Find 1I"k 
which minimizes the double sum 2:7=1 2:'l=1 a1f (i)1f(j)bij over all 11" as above. It 
is easily seen that this minimization problem is equivalent to the minimization of 
the scalar product of the vectors (w(Ul,Uj)r, 2 ~ j ~ n, and (W(Vk,Vj)), j =1= k, 
over all permutations 11" of {I, 2, ... , n - I}. The latter problem can be solved in 
n log n time as stated by Proposition 2.1. This procedure is repeated n times for 
1 ~ k ~ n, considering all possible embeddings of the central vertex Ul. Then a 
permutation is chosen which yields the minimum value of the objective function 
among 1I"k, 1 ~ k ~ n, derived as above. Clearly, this is an optimal solution of the 
considered problem and it takes O( n2 log n) elementary operations to compute it. 
o 

We conclude this section with an NP-hardness result concerning GQAPs which are 
not related to isomorphic graphs. Namely, we show that minimizing the objective 
function of the quadratic assignment problem over pyramidal permutations, i.e. 
solving the pyramidal QAP, is NP-hard2 . First, let us define a pyramidal permu-
tation. 

Definition 6.6 A permutation 11" E Sn is called pyramidal if there exists an io E 
{I, 2, ... , n} such that either 1I"(i) < 1I"(i + 1) for i < io and 1I"(i) < 1I"(i - 1) for 
i > io• or 1I"(i) > 1I"(i + 1) for i < io and 1I"(i) > 1I"(i - 1) for i > io. 
The subset of Sn consisting of the pyramidal permutations of{l, 2, ... , n} is denoted 
by Yn. 

Theorem 6.26 Let A and B be two arbitrary 2n x 2n matrices. The following 
GQAP is NP-hard: 

(6.5) 

Proof. The proof basically consists of showing the existence of an NP-hard version 
of the QAP which possesses a pyramidal optimal solution. Such a problem is 
QAP(A, B) with A E PROO(SYM, EVEN) and B = (bij ) a 2n x 2n matrix defined 
by 

b .. -{ 1 if i,jE{I,2, ... ,n}ori,jE{n+l, ... ,2n} (6.6) 
I) - -1 otherwise 

2 At this point, the QAP again seems to be "more difficult" than the TSP. It is well known 
that an optimal pyramidal tour on n cities can be found in O(n2 ) time, see e.g. [153]. 
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The NP-hardness of this problem follows from Theorem 4.24. Indeed, BCtr CHESS 
and therefore QAP(A, B) is equivalent to PROO(SYM,EvEN)XCHESS. In the proof 
of Theorem 4.24 it has been shown that the EQUIPARTITION problem can be re-
duced to CHESS x PROO(SYM,EvEN). Thus, QAP(A, B), with A and B as de-
scribed above, is NP-hard. Further, we show that QAP(A, B) possesses a pyrami-
dal optimal solution. Let (ai) be the generating vector of matrix A. Then, for all 
'Tr E S2n, the objective function of QAP(A, B) can be written as 

n n 2n 2n n 2n 
Z(A, B, 'Tr) = ~ ~ atr(i)atr(j) + ~ ~ a7r(i)a7r(j) - 2 ~ ~ a7r(i)a7r(j). 

i=l j=l i=n+l j=n+l i=l j=n+l 

The last equality implies that two permutations 'Trl and 'Tr2 which fulfill the condition 
"for all 1 ~ i ~ n, there exists a 1 ~ j ~ n with 'Trl(i) = 'Tr2(j)", yield the 
same objective function value, i.e. Z(A, B, 'TrI) = Z(A, B, 'Tr2). Consider now an 
optimal solution 'Tro to QAP(A,B). Let {i1 ,i2, ... ,in} = {1,2, ... ,n} such that 
'Tro(it} < 'Tro(i2) < ... < 'Tro(in) and {in+1' in+2, ... , i2n} = {n+l, n+2, ... , 2n} such 
that 'Tro(in+t} > 'TrO(in+2) > ... > 'TrO(i2n). Consider a new permutation 'Tr' E S2n 
defined by 'Tr' = ('Tro(it) , 'TrO(i2), ... , 'TrO(i2n)), i.e. 'Tr'(j) = 'Tro(ij), for 1 ~ j ~ n. 
Obviously, permutation 'Tr' is pyramidal and moreover, {'Tro(l), 'Tro(2) , ... , 'Tro(n)} = 
{'Tr'(l), 'Tr'(2) , ... , 'Tr'(n)}. Therefore, according to the above remark, Z(A, B, 'Tro) = 
Z(A, B, 'Tr'). Hence 'Tr' is an optimal pyramidal solution to QAP(A, B). Thus, 
we have proven that GQAP(A, B, Y2n) is equivalent to QAP(A, B), where A E 
PROO(SYM, EVEN) and B is given by (6.6). The NP-hardness ofQAP(A,B) implies 
the NP-hardness of GQAP(A, B, Y2n) and this completes the proof. 0 



7 
ON THE BIQUADRATIC 

ASSIGNMENT PROBLEM (BIQAP) 

In this chapter we discuss a natural generalization of the QAP, namely the bi-
quadratic assignment problem, shortly denoted by BiQAP. In the BiQAP a weight-
ed sum of products of four variables Xij is to be minimized subject to assignment 
constraints on the variables Xij. Given two arrays A = (aijkt) and B = (bmpsd of 
n4 elements each and the variables Xij, i, j = 1, ... , n, te BiQAP can be formulated 
as follows: 

n n n n 
mm I:: I:: I:: I:: aijklbmpstXimXjpXksX/t 

i,j=l k,l=l m,p=l s,t=l 

subject to 
n 
I:: Xij = 1 
i=l 

n 
I:: Xij = 1 
j=l 

j=1,2, ... ,n 

i= 1,2, ... ,n 

Xij E {a, I}. 

(7.1) 

Notice that the constraints on Xij are the usual assignment constraints. Thus, there 
exists a one to one correspondence between the feasible solutions Xij for 1 ::; i, j ::; n 
and the permutations of {I, 2, ... , n}, as described in Section 1.3 and the BiQAP 
can be formulated as follows: 

n n n n 

min L L L L atr(i)tr(j)tr(k)tr(l)bijkl , 
trESn 

i=l j=l k=l 1=1 

(7.2) 

where Sn depotes, as before, the set of all permutations of {I, 2, ... , n}. The for-
mulation in (7.2) clearly shows that the BiQAP is a generalization of the quadratic 
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assignment problem (QAP) to which it owes its name. The BiQAP was introduced 
by Burkard, Qela and Klinz in [32]. The investigation of this problem was motivated 
by an application in the field of VLSI (very large scale integrated) synthesis where 
an optimization problem arising along with the design of synchronous sequential 
VLSI circuits can be mathematically formulated as a BiQAP. This application will 
be discussed in detail in the next section. The terminology we use for the BiQAP is 
very similar to that used for the QAP. The notations BiQAP(A,B), Z(A, B, 11') and 
the terms optimal solution, optimal value, size o/the BiQAP, equivalent BiQAPs, 
have a completely analogous meaning to that of the corresponding terms used for 
QAPs. A QAP and a BiQAP are said to be equivalent in the case that once we know 
an optimal solution to one of the problems, we may construct in polynomial time 
an optimal solution to the other one. Based on the similarity of the BiQAP with 
the QAP, it can be easily shown that the BiQAP is NP-complete in the strong 
sense (see Section 7.2). Hence, similarly as for the QAP, aspects of the BiQAP 
concerning MILP formulations, lower bounds, asymptotic behavior, generation of 
instances with known optimal solution, and heuristic approaches, are of particular 
relevance. 

This chapter is organized as follows. In the first section we describe an optimiza-
tion problem which arises in the VLSI design and can be mathematically modeled 
as a BiQAP. Further, in the next section, two MILP formulations for the BiQAP 
are given. In the third section, a Gilmore-Lawler-type bound for the BiQAP is 
introduced. Similarly as in the case of QAPs, this bound can be strengthened by 
using reduction methods. We briefly introduce two of these methods and present 
the outlet of a lower bounding algorithm for BiQAPs. Further, in Section 7.4, a 
procedure for generating BiQAP instances with known optimal solution is present-
ed. This procedure is very much in the flavor of analogous procedures for QAPs 
proposed by Palubeckis [180] and Li and Pardalos [154]. In particular, it general-
izes and uses one of the methods presented in [154]. In Section 7.5, the asymptotic 
behavior of the BiQAP is investigated. Further, several heuristics for the BiQAP 
are briefly introduced and discussed in Section 7.6. Finally, in a concluding section 
we summarize the results obtained on BiQAPs and outline some open questions 
for further research. 

7.1 AN APPLICATION OF THE BIQAP 
ARISING IN THE VLSI SYNTHESIS 

Almost all VLSI circuits are so-called sequential circuits. A sequential circuit is 
an interconnection of storage elements, so-called flip-flops, and logic gates. There 
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are two types of sequential circuits, synchronous and asynchronous circuits. In the 
following we deal only with synchronous sequential circuits that employ storage 
elements which are allowed to change their value only at discrete instants of time. 

Sequential circuits are most often modeled by using finite state machines (FSMs). 
An FSM is a mathematical model of a system with discrete inputs, discrete outputs 
and a finite number of internal configurations or states. FSMs are commonly 
represented by state transition tables which describe outputs and next states as a 
function of inputs and present states. (Note that there is no dependence on previous 
states.) If the state of an FSM changes from s to s', we say that a transition from 
s to s' takes place and write s --+ s' for short. The state of a sequential circuit is 
represented by the states of its flip-flops. A flip-flop is a storage device capable of 
storing one bit of information. It maintains its binary state (equal to 0 or 1) until 
directed by a clock pulse to switch states. The difference among various types of 
flip-flops is in the number of inputs they possess and in the manner in which the 
inputs affect the binary state. Two simple types of flip-flops with a single input are 
the D (data) flip-flop and the T (toggle) flip-flop. The differences between these 
two types are as follows: For the D flip-flop the next state is always equal to the 
input and does not depend on the present state. This does not hold any longer 
for the T flip-flop where the next state is obtained by evaluating the exclusive-OR 
(XOR) function with the input and the present state as arguments. (For more 
details about flip-flops and sequential circuits in general the reader is referred to 
Mano [162].) The T flip-flop turns out to be more useful in practice than the 
D flip-flop, but, as we will see below, it is also more difficult to deal with them. 

The first step of the procedure for designing a sequential circuit consists of trans-
latimg the circuit specifications obtained from the practical application into a state 
transition table. In the next step one tries to find an encoding of the internal sym-
bolic states of the FSMas binary strings such that the eventual implementation 
after encoding and applying logic minimization is of minimum size. For instance, 
if the sequential circuit is to be implemented in programmable logic array (PLA) 
form, then one wishes to minimize the number of product terms (or the area) of the 
resulting PLA. The state encoding problem is an extremely challenging problem. 
Most algorithms from the literature focus on area minimization (see e.g. Ashar, 
Devadas and Newton [5] and Eschermann [73]), but the encoding has also a pro-
found effect on the testability and performance of the resulting implementation 
(for some work on testability aspects see Eschermann and Wunderlich [74]). Even 
if the set of binary codes used to encode the n internal states is fixed in advance, 
a brute force enumerative approach to the state encoding problem would require 
O(n!) calls of a logic minimization program. This method is obviously infeasible 
for practical sizes of n. Almost all newer state encoding algorithms for two-level 
(binary) logic follow a two phase strategy first proposed by De Micheli, Brayton 
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and Sangiovanni-Vincentelli [169]. In the first phase the states of the FSM are 
encoded symbolically in the following way: The i-th state, i = 1,2, ... , n, is en-
coded by a 0-1 string which has a 1 at position i and O's elsewhere. Then a logic 
minimization program is applied to this symbolic representation. The aim of this 
phase is to generate conditions on the relationships between the codes for different 
states. The actual form of these constraints depends on the technology and the 
types of elements which are used to implement the sequential circuit. This issue 
will be discussed below. Given the coding constraints obtained in the first phase, 
it is the task of the second phase to find an encoding of the states which satisfies as 
many of the coding constraints obtained in the first phase as possible, while using 
a much smaller encoding length than in the symbolic encoding. (The symbolic 
encoding uses n bits and hence requires a large number of flip-flops to represent 
the state of the system.) 

What remains to be discussed is the manner how the coding constraints are gen-
erated in the first step. Let us start with a simple case before proceeding to the 
description of the case which leads to a biquadratic assignment problem. Suppose 
that all employed flip-flops are D flip-flops. We divide the transitions into groups 
where two transitions, say t1 : 81 -t 83 and t2 : 82 -t 84 belong to the same 
group if they are induced by the same input and produce the same output. In the 
case of D flip-flops two such transitions can be merged, i.e. implemented by a single 
product term of PLA, if 81 '# 82, 83 = 84 and if the states 81 and 82 are assigned ad-
jacent codes, i.e. codes with Hamming distance 1. The problem of determining an 
encoding which satisfies as many of these coding constraints as possible leads to a 
quadratic assignment problem. (For details see Eschermann and Wunderlich [74].) 

Now let us turn to the case where all flip-flops are T flip-flops. Let f(8) denote the 
code of state 8 and d( c, c') the Hamming distance of the codes c and c'. Due to 
the specific properties of T flip-flops, two transitions t1 : 81 -t 83 and t2 : 82 -t 84 

which belong to the same group can be merged if the following three constraints 
are satisfied: 

1. 8i '# 8j for all i '# j, i,j = 1,2,3,4, i.e. the four involved states are pairwise 
disjoint, 

2. d(J(8t} , f(82)) = 1, i.e. 81 and 82 are assigned adjacent codes, and 

3. f(8t}$f(83) = f(82)$f(84), where $ denotes the bitwise exclusive-OR (XOR) 
operation. 

Note that condition (ii) already occurred for D flip-flops, while condition (iii) en-
sures that the input to the T flip-flops is the same for both transitions. (Recall 
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that for a T flip-flop the input is equal to the XOR of the value representing its 
present state and the value representing its next state.) A mathematical model 
of this problem can be obtained as follows: Let S be the set of states and C be 
the set of codes which we would like to use for the state encoding. For simplicity 
we assume lSI = ICI = n and number the states and the codes from 1 to n, i.e. 
S = {Sl,S2,,,,,Sn} and C = {C1,C2, ... ,Cn }. (Usually C is chosen as subset of 
the set of all 0-1 strings of length flog2 n 1.) Furthermore the following notational 
conventions turn out to be useful. We define a set T ~ {I, 2, ... , n} x {I, 2, ... , n}, 
where (i, j) E T if and only if the transition table contains a transition Sj -+ Sj from 
state Sj to state S j. Two pairs (i, j) E T and (k, I) E T are said to be mergeable, if 
i, j, k, I are pairwise disjoint and if the transitions Si -+ Sj and Sk -+ SI belong to 
the same group (i.e. are induced by the same input and produce the same output). 
For two merge able pairs (i,j) and (k,l) we write (i,j) '" (k,l) for short. Now, two 
four dimensional arrays of n4 elements each are defined. The first array A = (aijkl), 
i, j, k, 1= 1,2, ... , n, is related to the states and the transitions. The entries of A 
are given by 

a" _{ 1 if(i,j)ET,(k,I)ETand(i,j)"'(k,l) 
IJkl - 0 otherwise. 

The second array B = (bmpst ), m, p, s, t = 1,2, ... , n, is related to the codes. Its 
entries are given by 

b {O if Cm EEl cp = Cs EEl Ct and d(cm , cs ) = 1 
mpst = 1 otherwise 

where EEl again denotes the XOR operation. We note that aijkl = 1 exactly when 
the two transitions Sj -+ Sj, Sk -+ SI can potentially be merged, i.e. can be merged 
if the involved states are encoded appropriately. Furthermore, we have bmpst = 0 
exactly when the codes Cm, Cp , Cs and Ct satisfy the coding constraints (ii) and (iii). 
It is straightforward to see that the state encoding problem can be formulated as 
BiQAP(A,B) where the coefficient arrays A and B are as defined above. In this 
case we want to find a permutation 11'0 E Sn which minimizes the following objective 
function 

n n n n 

L L L L a 1C (i)1C(j)1C(k)1C(I)bijkl (7.3) 
i=l j=l k=l 1=1 

over all permutations 11' E Sn. For the VLSI synthesis problem, 11'( i) denotes the 
index of the state to which code Ci is assigned, i.e. code Ci is assigned to state S1C(i)' 
Hence, the term 

a1C(i)1C(j)1C(k )1C(I) bijkl 

is equal to 1 exactly when the two transitions S1C(i) -+ S1C(j) and S1C(k) -+ S1C(I) could 
be potentially merged, but this merging step cannot be performed because of the 
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codes of the states S1r(i) , S1r(j) , S1r(k) and S1r(I). Therefore, the minimization of the 
sum (7.3) is equivalent to the minimization the number of pairs of transitions which 
cannot be merged because of the encoding chosen for the .states, and the latter is 
exactly the objective of state encoding algorithms mentioned above. 

7.2 DIFFERENT FORMULATIONS FOR 
THE BIQAP 

The BiQAP is a combinatorial optimization problem which can be put in different 
forms. Most generally we can state it in the form 

n n n n 

m1n L L L L d 1r(i)i1r(j)j1r(k)h(I)1 
1rE n i =lj=lk=ll=l 

(7.4) 

where Sn denotes, as before, the set of all permutations of {I, 2, ... , n}, and 
(dijklmpst) is an 8-dimensional array of coefficients. Notice that the objective func-
tion in (7.2) is a special case of the objective function of problem (7.4). In (7.2) 
the coefficients d 1r (i)i1r(j)j1r(k)h(I)1 are split as product of two factors: 

d 1r(i)i1r(j)j1r(k)h(I)1 = a1r(i)1r(j)1r(k)1r(libijkl, i, j, k, 1= 1,2, ... , n. (7.5) 

In analogy to QAPs, we refer to BiQAPs which have property (7.5) as Koopmans-
Beckmann BiQAPs. Without loss of generality, we assume that the coefficients 
d 1r(i)i1r(j)j1r(k)h(I)1 in (7.4) as well as the coefficients a 1r(i)1r(j)1r(k)1r(I) and bijkl in (7.5) 
are nonnegative l . We mainly deal with BiQAPs in Koopmans-Beckmann form, but 
all results in this section hold also for the more general problem (7.4). 

Next we derive two (mixed) integer linear programming (MILP) formulations for 
BiQAPs. We start with problem (7.1) and linearize its objective function by intro-
ducing O(n8) new variablesYijkl, Zijklmpst, i, j, k, I, m,p, s, t = 1,2, ... , n. 

Theorem 7.1 The BiQAP (7.1) is equivalent to the following 0-1 linear program: 

mIll 

subject to 

n n n n 

L L L L aijl~l' bmpBt . ZijklmpBt 
i,j=l k,l=l m,p=l B,t=l (7.6) 

1 Otherwise we can add a constant to all coefficients of the Bi QAP such that all of them become 
nonnegative. This would result into adding a constant to the objective function, but would not 
change the optimal solution. 
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n n n n 
I: I: I: I: Yijmp 
i=l j=l m=l p=l 

n n n n 
I: I: I: I: Zijklmpst 

i,j=l k,l=l m,p=l s ,t=l 

Yijmp + Yklst - 2Zijklmpst ;::: 0 

Xim + Xjp - 2Yijmp ;::: 0 
n 
I: Xij = 1 
;=1 
n 
I: Xij = 1 
j=l 

Xij E {O, I} 

Yijmp E {O, I} 

Zijklmpst E {O, I} 

i,j,k,l,m,p,s,t= 1,2, ... ,n 

i,j,m,p= 1,2, ... ,n 

j=I,2, ... ,n 

i=I,2, ... ,n 

i,j=I,2, ... ,n 

i,j,m,p= 1,2, ... ,n 

i,j, k, l, m,p, s, t = 1,2, ... , n 

Proof. Let {xijh,j=1,2, ... ,n be a feasible solution of (7.1). We define 

Yijmp = Xim . Xjp and Zijklmpst = Yijmp . Yklst 

for i, j, k, l, m, p, s, t = 1,2 ... , n. Then, it is straightforward to see that 

{{ Xij };,j=1,2, ... ,n , {Yijmp h,j,m,p=1,2, ... ,n , {Zijklmpsth,j,k ,1,m,p,s,t=1,2, ... ,n} 
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(7.7) 

is a feasible solution of (7.6). Moreover these feasible solutions of (7.1) and (7.6) 
yield the same value for the corresponding objective functions. 

Conversely let 

{{ Xij h,j=1,2, ... ,n , {Yijmp h,j,m,p=1,2, ... ,n , {Zijklmpsth,j,k,l,m,p,s ,t=1,2, ... ,n} 

be a feasible solution of (7.6). Since the values of Xij which appear in a feasible 
solution of (7.6) fulfill the assignment constraints, those {Xij} constitute a feasible 
solution of (7.1). Let us show that these feasible solutions of (7.1) and (7.6) yield 
equal values of the corresponding objective functions. From Xim + Xjp - 2Yijmp ;::: 0 
and Xim E {O, I}, Xjp E {O, I}, Yijmp E {O, I} it follows that Xim = Xjp = 1, 
whenever Yijmp = 1. Now let i, j, m, p such that Xim = Xjp = 1. The variables 
{Xij h,j=1,2, ... ,n fulfill the assignment constraints and therefore, there are at most 
n2 quadruples of indices (i,m,j,p) for which (Xim,Xjp) = (1,1). As argued above, 
we might have Yijmp = 1 only for such quadruples. But according to (*), there 
are exactly n2 quadruples (i, m,j,p) for which Yijmp = 1. Summarizing, we must 



230 CHAPTER 7 

have Yimjp = 1 for all quadruples (i,j,m,p) for which Xim = Xjp = 1. Therefore, 
Yijmp = 0 implies Xim = 0 or Xjp = 0 and hence, Yijmp = XimXjp. 

By using (**) instead of (*) in arguments analogous to those given above, one can 
quite similarly show that Zijklmpst = YijmpYkl3t. Then, by putting things together 
we get Zijklmpst = XimXjpXksX/t, for all i,j,k,l,m,p,s,t. Finally, we obtain the 
objective function of (7.1) by replacing Zijklmpst by XimXjpXksXlt in the objective 
function of (7.6), and this completes the proof. 0 

The BiQAP formulation introduced by Theorem 7.1 is a 0-1 linear program with 
n8 + n4 + n 2 variables and n8 + n4 + 2n + 2 constraints. A smaller linearization, i.e. 
a linearization with less variables and constraints, can be obtained by combining 
the technique used above with a linearization idea of Kaufman and Broeckx [138] 
(see Section 1.4.1). This leads to a MILP with 2n4 + n2 variables and 2n4 + 
2n + 2 constraints. Some more notations are needed in order to introduce this 
linearization. For each fixed 4-tuple of indices (i, m, j, p) consider an array of n4 

elements 
D(i,m,j,p) _ (d(i,m,j,p)) 

- kslt , 

defined by 
d (i,m,j,p) -.. b r kit - 1 2 kslt - a':Jkl' mpst lor , S, , - , ••• , n . 

For two arrays D = (dijkl) and Y = (Yijk,) of n4 entries each define the product 
DYas: n n n n 

DY := E E E E dijklYijkl 
;=1 j=l k=l 1=1 

Now, we can prove the following theorem. 

Theorem 7.2 The BiQAP (7.1) is equivalent to the following MILP: 

n n n n 
mm L: L: L: L: Wimjp 

;=1 m=l j=l p=l 
subject to 

n n n n 

n 
L: Xij 
;=1 
n 
L: Xij 
j=l 

1 j = 1,2, .. . ,n 

1 ,i=1,2, ... ,n 

L: L: L: L: Yimjp n2 
i=l m=l j=l p=l 

(7.8) 
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Xim + Xjp - 2Yimjp > ° , i,m,j,p= 1,2, ... ,n 

CimjpYimjp + D(i,m,j,p)y - Wimjp < Cimjp , i, m,j,p = 1,2, ... , n (*) 

Wimjp > ° , i,m,j,p= 1,2, ... ,n 

Yimjp E {0,1} , i,m,j,p= 1,2, ... ,n 

Xim E {0,1} , i,m= 1,2, ... ,n 

where 
n n n n 

Cimjp = L L L L aijkl bmp8t i,m,j,p= 1,2, ... ,n. 
k=ll=l 8=1 t=l 

Proof. If {Xij};,j=1,2, .. ,n is a feasible solution of (7.1), then we obtain a feasible 
solution of (7.8) by defining 

Yimjp = XimXjp i,m,j,p= 1,2, ... ,n, y = (Yijmp) 

W . . - y' . (D(i,m,j,p)y) • mJp - .mJp i,m,j,p= 1,2, ... ,n . 

It is easily seen that 

{{ Xij };,j=1,2, ... ,n, {Yimjp h,j,m,p=1,2, .. ,n, {Wimjp }i,j,m,p=1,2, ... ,n} 

is a feasible solution of (7.8), and that these solutions yield the same value for the 
corresponding objective functions. 

Conversely let us assume that 

{{ Xij h,j=1,2, ... :n, {Yimj p h,m,j,p=1,2, .. ,n, {Wimjp};,m,j,p=1,2, ... ,n} 

is a feasible solution of(,7.8). The variables {xijh,j=1,2, ... ,n fulfill the assignment 
" constraints and therefore form a feasible solution of (7.1). We show moreover that 

these solutions of (7.8) and (7.1) yield the same value of the corresponding objective 
functions and this completes the proof. To this end, it suffices to prove that 

Yimjp = XimXjp i,m,j,p= 1,2, ... ,n, (7.9) 

W . . - y' . (D(i,m,j,p)y) • mJp - .mJp i,m,j,p= 1,2, ... ,n . (7.10) 

Then, simple calculations show the equality of the above mentioned objective func-
tion values. The proof of equality (7.9) is done in the same way as in the preceding 
theorem. In order to prove the correctness of equality (7.10), notice that under 
the basic assumption that the coefficients of a BiQAP are nonnegative, i.e. the 
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entries of the arrays A, B are nonnegative (see the beginning of this section), the 
inequality n(i,m,j,p)y S Cimjp always holds. Therefore, whenever Yimjp = 0, the 
nonnegativity constraints are the only constraints on the variables Wimjp. Since 
we are minimizing the sum of the Wimjp, it follows that Wimjp = 0, whenever 
Yimjp = O. In the case that Yimjp = 1 holds, constraint (*) reads 

Wimjp 2: n(i,m,j,p)y 

and this is the only constraint which has to be fulfilled by variables Wimjp. Again, 
the fact that we are minimizing the sum of the variables Wimjp yields 

W . . - n(i,m,j,p)y - y' . (n(i,m,j,p)y) smJp - - ImJp 

as required. o 

Next, let us say a few words about the computational complexity of the BiQAP 
which is almost evident. An arbitrary QAP(A,B) of size n, with A = (aij), B = 
(bij ), is equivalent to a BiQAP(A',B') of size n with A' = (a~jkl), B' = (b~jkl), 
where: 

a~jkl = aij and b~jkl = bij , for all i, j, k, 1= 1,2, ... , n 
The following equality holds for each rr E Sn and shows that QAP(A,B) and 
BiQAP(A', B') have a common set of optimal solutions: 

Z(A', E', rr) 
n n n n 

L L L L a~(i)1r(j)1r(k)1r(I)b~jkl 
i=l j=l k=l 1=1 

n n 

n 2 L L a 1r (i)1r(j)bij = n 2 Z(A, B, rr). 
i=l j=l 

This relationship between the QAP and the BiQAP shows that the computational 
complexity results derived for the QAP hold also for the BiQAP. 

7.3 BOUNDS FOR THE BIQAP 
In this section we derive a Gilmore-Lawler-type lower bound for BiQAPs and briefly 
describe two reduction methods which can be used in order to improve the quality 
of this bound, similarly as in the case of QAPs. The reduction methods for the 
BiQAP are obtained by generalizing well known reduction ideas for QAPs (see e.g. 
Burkard [28], Roucairol [200]). For more information on these topics and a layout 
of the related algorithms the reader is referred to [32]. 
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Consider a BiQAP(A,B) of size n with A = (aijkz) and B = (bijkl), i, j, k, I = 
1,2 ... , n. For fixed indices i, j, m, p, let !ijmp be a lower bound for the following 
QAP: 

n n 

m!!I L L aij7r(k)7r(l)bmpkl , 
cpESn k=1 1=1 

(7.11 ) 

where Sn = {11' E Sn: 1I'(m) = i, 1I'(p) = j}. (Notice that what we actually have here 
isa GQAP, but this GQAP can be easily rewritten as a generalized Koopmans-
Beckmann QAP with an additional linear term in the objective function as in 
(1.3). If the size of the original BiQAP is n, the size of this generalized Koopmans-
Beckman QAP will be n - 2.) Then, for any permutation 11' of {1, 2, ... , n}, the 
following inequality holds: 

n n 

!7r(i)7r(j)ij ::; L L a7r(i)7r(j)7r(k)7r(l)bijkl 
k=11=1 

Let ~ be a lower bound for the QAP 

(7.12) 

(7.13) 

By summing up over i and j in both sides of (7.12), and by taking then the minimum 
of each side over 11' E Sn, we get 

Thus, ~ is a lower bound for BiQAP(A,B) which will be termed Gilmore-Lawler-
like bound for the BiQAP. In order to compute the bound ~ for the QAP in (7.13) 
we have to compute n 4 lower bounds !ijmp for n 4 Koopmans-Beckmann QAPs and 
then, a lower bound for the QAP in (7.13). Whereas for Koopmans-Beckmann 
QAPs a variety of bounding techniques can be applied, basically only Gilmore-
Lawler-like approaches can be applied to the general QAP in (7.13). Since a large 
number (n4 ) oflower bound computations for Koopmans-Beckmann QAPs have to 
be performed, it is reasonable to apply some cheap bounding procedure, e.g. the 
Gilmore-Lawler bound. If the Gilmore-Lawler bound is applied, the bound ~ can 
be computed in O( n 7) time. 

Similarly as for the QAP, the above proposed bound can be improved by applying 
reduction methods. The basic idea of reduction methods for the BiQAP consists of 
splitting the objective function of the given BiQAP instance as a sum of different 
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summands: the objective function of a new BiQAP instance with smaller coeffi-
cients than the original BiQAp instance, and the objective functions of lower-degree 
assignment problems (QAPs and LAPs), respectively. This idea is justified by the 
hope that tighter bounds can be computed for lower degree assignment problems. 
In a reduction method for BiQAPs introduced in [32] new coefficients aijld and bmp8t 

are derived, in terms of the coefficients aijkl, bmp8t , i, j, k, I, m,p, s, t = 1,2, ... , n, 
of the given BiQAP(A,B): 

_ (1) (2) (3) (4) (5) (6) 
aijkl + aij + aik + ail + ajk + a jl + akl , 

b + b(l) + b(2) + b(3) + b(4) + b(5) + b(6) mp8t mp ma mt pI pt 8t' (7.15) 
(7.16) 

Th d·· ffi' t (1) (2) b(l) b(2) 1 < .. < . I h e a Justmg coe C1en s aij ,aij , ij , ij' _ Z, J _ n, are approprIate y c osen 
so as to produce as many zeros as possible in the 4-dimensional arrays A = (ilijk,) 
and fJ = (bijkt). Moreover, the entries of both arrays A, fJ should remain nonneg-
ative. For example, the adjusting coefficients can be chosen as minima over the 
coefficients of the corresponding array having two of their indices equal to prespec-
ified values, e.g. aU) would be the minimum of aijkl over all 1 ::; k, I ::; n, where 
n is the size of the problem. Such a choice produces at least n2 zeros in each of 
the arrays A and fJ, whereas the time-complexity of the corresponding procedure 
is O(n410g(n)). After plugging the new coefficients il, b in the objective function 
of the given BiQAP(A,B), the latter can be written as a sum of the objective func-
tions of a new problem BiQAP(A, 13), 8 QAPs, and 24 linear assignment problems 
with a constant. By summing up the coefficients of the resulting QAPs (LAPs), a 
new QAP (LAP) is obtained. Thus, the objective function of BiQAP(A,B) is then 
presented as a sum of four summands: the objective function of BiQAP(A, '8), the 
objective function of a QAP, the objective function of an LAP, and a constant. A 
lower bound for this decomposed problem can be obtained as a sum oflower bounds 
for the corresponding summands. (For the LAP, the optimal solution can be com-
puted, instead of a lower bound.) As the coefficients of BiQAP(A, fJ) are smaller 
then those of BiQAP(A,B), and moreover, at least n2 of them are equal to zero, 
one hopes that a lower bound for BiQAP(A, B) computed as described previously 
in this section, will be tighter than the corresponding bound for BiQAP(A,B). 

In the second reduction method, the largest entry of each of the coefficients arrays 
A and B is iteratively decreased. This reduction process is applied a fixed number 
of times, say M, to both arrays A and B. Computational experiments show that 
for BiQAP instances of size up to 30 the control parameter M does not need to 
be larger than 5, since further reductions do not lead to any improvement of the 
bound. (A similar idea for QAPs has been suggested by Roucairol "[200].) After 
applying this reduction method, the given problem BiQAP(A,B) splits into a new 
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problem BiQAP(A, B) and a QAP (not necessarily of Koopmans-Beckmann form), 
where the largest entries of arrays A, B are smaller than those of A, B, respectively. 
The time cost of this reduction amounts to O( n4 ) per iteration. 

The Gilmore-Lawler-like bound ~ together with reduction methods have been tested 
on instances of the BiQAP with known optimal solution (generated as described 
in the next section). Both reduction methods described above were involved in 
the experiments. It turned out that none of them is more advantageous than the 
other concerning the quality of the produced bounds. The quality of the bounds is 
not good and becomes poor when the size of the problem increases, a phenomenon 
already known for the QAP. This is not surprising, since linearizing a power-four 
function yields already in simpler models a large error. As one would expect, the 
bounding procedure produces better bounds when applied to instances with small 
coefficients. For more information on the numerical tests the reader is referred to 
[32]. 

7.4 BIQAPS WITH KNOWN OPTIMAL 
SOLUTION 

A possible way to test the quality of a bounding procedure (for a certain problem) 
is to apply it to test instances with known optimal value. Based on the analogous 
ideas for QAPs, a generator of BiQAP instances with known optimal solution has 
been derived in [32]. The authors use as a starting point QAP instances generated 
by the generator of Li and Pardalos (see Section 3.7). The coefficients aijkl, bijkl of 
the generated BiQAP are obtained from the coefficients ag), aU), bg), b~Jl, of two 
problems QAP(A(1), B(l») and QAP(A(2), B(2») with a common optimal solution 
1ro, generated by the generator of Li and Pardalos: 

(1) (2) b - b(1)b(2) .. k I 1 2 aijkl = aij akl , mpst - mp st, 2,), , ,m,p,s,t= , , ... ,n, (7.17) 

where A(t) = (a~y) and B(t) = (b~y), t = 1,2, are n x n matrices. Clearly, the 
objective function of BiQAP(A,B) can then be written as 

n n n n 

Z(A, B, 1r) ~ ~ ~ ~ (1) (2) b'\J~)bk(2l) L...J L...J L...J L...J arr(i)rr(j)arr(k)rr(l) 
i=l j=l k=l 1=1 

(7.18) 

for each 1r E Sn Thus, the objective function ofBiQAP(A,B) is given as a product of 
the objective functions of the problems QAP(A(1),B(l») and QAP(A(2),B(2»). As 
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argued many times by now, without loss of generality we may consider only QAPs 
and BiQAPs with nonnegative coefficients, and therefore, nonnegative values of 
the objective function. Under this assumption, if Z(A(l), B(l), 11"), Z(A(2) , B(2), 11") 
attain their minima at 11" = 11"0, so does Z(A,B, 11"), and hence, 11"0 is an optimalsolu-
tion for BiQAP(A,B). This simple idea is summarized by the following algorithm. 
The input of the algorithm consists of the size n of the BiQAP instance to be 
generated and a permutation 11"0 of {I, 2, ... , n} which will be the optimal solution 
of the generated BiQAP instance. The variables involved in this algorithm are the 
following: the coefficients aijkl, bijkl of the BiQAP instance to be generated, the 
optimal value Zopt of this BiQAP, the coefficients ag>, a~J) , bg>, b~J) of the auxiliary 
problems QAP(A(l), B(l»), QAP(A(2) , B(2») together with their respective optimal 
values Zl, Z2, and the auxiliary variables i, j, k, I. The algorithm makes use of 
the routine Random which generates some positive integer at random. Moreover, 
the algorithm calls Li&Pardalos' Generator (see Section 3.7) twice to generate the 
coefficient matrices A(i), B(i) of QAP(A(i), B(i») with optimal solution 11"0 and op-
timal value Zi, i = 1,2, respectively. The output consists of the coefficient arrays 
A = (aijkl), B = (bijkl) and the optimal value Zopt of BiQAP(A, B). 

Generator~IQAP(n, 11"0) 

A1 := RandomO; A2 := RandomO; 
A3:= RandomO; A4 = RandomO; 1* generate A1, A2, A3, A4 */ 
(A(l), B(1), ZI) := Li&Pardalos' Generator(n, A!, A3, 11"0); 

1* Generate QAP(A (1), B(l») with opt. value Zl * / 
(A(2), B(2), Z2) := Li&Pardalos' Generator(n, A2, A4, 11"0); 

1* Generate QAP(A(2),B(2») with opt. value Z2 */ 
Zopt := Zl Z2; 
for i = 1 to n do 

for j = 1 to n do 
for k = 1 to n do 

for 1 = 1 to n do 
aijkl := ag> ai~); 1* generate array A * / 
bijkl := bg)bi~); 1* generate array B * / 

end for 
end for 

endfor 
endfor 
return A = (aijkt), B = (bijkl), Zopt; 
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The correctness of this algorithm follows from the correctness of the generator of Li 
and Pardalos for QAPs with known optimal solution (see Theorem 3.3). According 
to Theorem 3.3 the generation of matrices A(1), B(1) and A(2), B(2) by Li&Pardalos' 
Generator takes O(n2 Iogn) time. The generation of the 4-dimensional arrays A, 
B takes O(n4) elementary operations. Hence, the overall time-complexity of this 
algorithm amounts to O(n4 ). Notice that this is the best possible time-complexity 
for a generator of BiQAPs as the output itself consists of O(n4) integers. Next, let 
us generate a BiQAP instance of size 3 with known optimal solution by applying 
Generator J3iQAP. 

Example 7.1 Generating a BiQAP instance of size 3 with an optimal solution 
11"0 =: (3,1,2). 

Let Ll1 = 3, Ll2 = 2, Ll3 = 3, Ll4 = 3. After the initialization steps (lines 2-13 
in Li&Pardalos' Generator, Section 3.7) the matrices A(1), A(2), B(1), B(2) look as 
follows 

(l 3 n 0 2 D A(l) = 0 A(2) = 0 
3 2 

BIl) = (! 1 n 0 3 n 0 B(2) = 0 
3 2 

Suppose that the vectors X, Y, generated at random and sorted non-decreasingly 
(lines 15-18 of Li&Pardalos' Generator) are given by xt = (0,0,2,2,2,2) and 
y t := (0,0,0,1,1,1). Then, the transformation of matrices A(1), A(2), as described 
in lines 19-25 of Li&Pardalos' Generator yields: 

( 0 3 3) 
A(l) = 1 0 1 

1 1 0 

,,3 ,,3 (1) (1) ,,3 ,,3 (2) (2) We have Zl = L...i=l L...j=l aij bij = 15 and Z2 = L...i=l L...j=l aij bij = 18 Next, 
the rows and the columns of both matrices B(l) and B(2) are permuted by permu-
tation 11"0. We get 

Finally, by applying (7.17) with matrices A (1), A (2) and B(1), B(2) as above, we get 
a BiQAP instance of size 3, for which 11"0 is an optimal solution. The corresponding 
optimal value is Zap, = ZlZ2 = 270. 
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7.5 THE ASYMPTOTIC BEHAVIOR OF THE 
BIQAP 

In Section 1.5 it is shown that the approximation problem for the QAP is NP-hard. 
Since the QAP is a special case of the BiQAP, as shown in Section 7.2, even the 
approximation problem for the latter is NP-hard. Nevertheless, similarly as for the 
QAP, the approximation problem for the BiQAP becomes in a certain sense sim-
ple, when the size of the problem increases. Namely, it can be shown that, under 
natural probabilistic constraints on the problem data, the ratio of the best and the 
worst value of the objective function gets arbitrarily close to one with probability 
tending to one, as the size of the problem tends to infinity. Similarly as for QAPs, 
Theorems 3.5 and 3.6 can be applied to BiQAPs, with coefficients fulfilling appro-
priate probabilistic constraints. One would get for BiQAPs a corollary analogous 
to Corollary 3.7 for QAPs. Here, we apply Theorem 3.5 to get a slightly more 
general result. First, let us introduce some notational conventions. For a BiQAP 
instance of size n, BiQAP(A(n),B(n)), where A(n) = (a~j2,) and B(n) = (b~j2,), 
let us denote by 1l"!~2 and 1l"S~J an optimal and a worst solution, respectively, i.e. 

With these notations, the above mentioned result on the asymptotic behavior of 
the BiQAP is formulated below. 

Corollary 7.3 Consider a sequence of problems BiQAP(A(n) , B(n)), n E IN, with 
coefficient arrays A(n) = (a~j21)' B(n) = (b~j2,) ofn4 elements each. Consid-
er moreover the sets In, n E IN, such that In ~ {I, 2, ... , n} 4 • Assume that for 
all n E IN the random variables a~j2" (i,j,k,l) E In, are identically, indepen-
dently distributed on [0, M], where M is some positive constant. Moreover, these 
variables have finite expected value and variance. The other coefficients a~j2, with 
(i, j, k, I) t/. In, are equal to zero. Furthermore, assume that for all n E IN the ran-
dom variables b~j21' i, j, k, 1= 1,2, ... , n, are identicall~, independently distributed 
on [0, M] with finite expected value and variance. Finally, assume that for each 

IN h . bl (n) d b(n) .. k I 1 2 d did nEt e vana es aijkl an ijkl' t,), , = , , ... , n, are in epen ent y is-
tributed. If, additionally, the following holds 

lim J!d.. = 00, 
n-too nln n (7.19) 
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then 

V( > 0, { 
Z(A(n) B(n) 1l"(n)) } 

lim P " wor < 1 + ( = 1 . 
n-too Z(A(n)' B(n) 1l"(n)) , ,opt 

(7.20) 

Proof. The proof is a straightforward application of Theorem 3.5. First, notice that 
Theorem 3.5 remains true when considering problems with coefficients on [0, M] 
instead of [0, 1]. Next, notice that the above claim holds trivially in the case that 
the expected value of the coefficients a~jk/> denoted by E(a), equals zero, or the 
variance ofthe coefficients b~jL, denoted by (j2(b), is equal to zero. In the first case, 
all coefficients aijkl would be equal to zero, for all i, j, k, l = 1,2, ... , n. This would 
imply Z(A(n),B(n),1l") = 0, for all1l" E Sn and for all n E IN. In the second case, 
all coefficjents bijkl would have the same value and therefore the objective function 
Z(A(n), B(n), 1l") would be constant over 1l" E Sn for all n E IN. Consequently, we 
may assume that E(a) > 0 and (j2(b) > 0 throughout the rest of the proof. 

We show that the conditions (BF1), (BF2) and (BF3) of Theorem 3.5 are fulfilled. 
Consider the formulation of the BiQAP as a general combinatorial optimization 
problem (see Section 1.5.2 for a generic formulation of combinatorial optimization 
problems and Section 3.8.1 for a formulation of the QAP in that generic formalism). 
For each n E IN, the ground sets En, the feasible solution XA7I") corresponding to 
1l" E Sn, and the set of feasible solutions Fn, are given as follows: 

En {(i,j, k,l, m,p, s, t) E {I, 2, ... , n}8: (i,j, k,l) E In} 

XA7I") {(1l"(i), 1l"(j), 1l"(k), 1l"(l), i,j, k, l): (1l"(i), 1l"(j), 1l"(k), 1l"(l)) E In} 

Fn {XA7I"):1l" ESn}. 

Notice that the feasible solution XA7I") consists only of those 8-tuples (1l"( i), 1l"(j), 
1l"(k), 1l"(l), i, j, k, I) for which the corresponding coefficient a7l"(i)7I"(j)7I"(k)7I"(1) is not 
fixed to zero. Hence, we clearly have IXA7I") I = IInl, for each 1l" E Sn and any n E IN. 
Thus, condition (BFl) is fulfilled. Since some of the sets XA7I"), 1l" E Sn, might be 
identical, we have 1 ~ IFni ~ n!. Thus, under the conditions of the theorem, the 
following holds for each AO > 0: 

AoIXA7I")1-ln(IFn l) ~ AoIInl-ln(n!) -700 as n -7 00. 

Thus, condition (BF3) of Theorem 3.5 is also fulfilled. 
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Next, we consider the random variables cn(x), x E En, where Cn is the cost function 
related to BiQAP(A(n), B(n)), and show that condition (BF2) of Theorem 3.5 is 
fulfilled. The cost function cn(x) maps the elements x = (i,j,k,l,m,p,s,t) of the 
ground set E to the reals . 

() (n) ben) 
Cn x = aijkl mpst • 

Under the assumptions of the theorem cn(x), n E IN, x E E are identically dis-
tributed random variables on [0, M2]. Moreover for each n E IN the variables 
cn(x), x E E are independently distributed. Further, it can be easily shown that 
the common distribution of cn(x) has finite expected value and a positive finite 
variance. Indeed, for independently distributed random variables a and b we have: 

u2(ab) = E((ab - E(ab))2) = E(a2)u2(b) + E2(b)u2(a) 

Now, the claim follows by plugging in the above equality a~(~)7r(j)7r(k)7r(I) and b~j2, 
instead of a and b, respectively, and taking into account that E(a2) > 0 and 
u2 (b) > O. 

Summarizing, we have shown that all conditions of Theorem 3.5 are fulfilled. Hence, 
this theorem applies and (7.20) follows. 0 

Under probabilistic conditions which are a bit more restrictive than those of Corol-
lary 7.3 a similar asymptotic result is obtained as a straightforward corollary of 
Theorem 3.6. 

Theorem 7.4 Consider a sequence of problems BiQAP(A(n), B(n)), n E IN, with 
coefficient arrays A(n) = (a~j2,), B(n) = (b~j2,) of n4 elements each. Assume that 
the coefficients a~jL, n E IN, 1 ~ i,j,k,l ~ 71., are random variables, identically 
distributed on [0, M], where M is some positive real number. The expected value 
E(a), the variance and the third moment of the common distribution are finite. 
Analogously, the coefficients b~j2" n E IN, 1 ~ i, j, k, 1 ~ n are also random vari-
ables, identically distributed on [0, M]. The expected value E(b), the variance, and 
the third moment of the corresponding distribution are finite. Moreover, assume 
that for each n E IN, the random variables a~j2" b~jL, 1 ~ i,j,k,l ~ n, are in-
dependently distributed. Finally, assume that the worst values Z(A(n), B(n), 1r~~~) 
of the objective functions form a non-decreasing sequence for increasing n. Under 
these conditions, the following equalities hold almost surely: 

Z(A(n), B(n), 1r~~2) n4 E(a)E(b) - 0(n4) 

Z(A(n),B(n),1rS~J) = n4E(a)E(b) +0(n4) 
o 
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7.6 HEURISTICS FOR BIQAPS 
The relationship between QAPs and BiQAPs described in Section 7.2 suggests that 
the BiQAP is at least as hard as the QAP, from both a theoretical and a practical 
point of view. Moreover, the quality of Gilmore-Lawler-type bounds for BiQAPs, 
introduced in Section 7.3, is unsatisfactory, especially when the size of the prob-
lem increases. Under these conditions, heuristics are a reasonable, and perhaps, 
currently the only realistic approach to cope with BiQAPs. The goal is to design 
heuristics with a good trade-off between the quality of the produced solutions and 
the requirements on computational resources (e.g. memory and time requirements). 
Some local search algorithms and some metaheuristics (simulated annealing, tabu 
search) for the BiQAP have been proposed by Burkard and ~ela [30]. A GRASP 
heuristic for the BiQAP has been proposed by Mavridou, Pardalos, Pitsoulis and 
Resende [163]. In this section we give a brief description ofthese heuristics and dis-
cuss upon the comparison of their performance. For more information and details 
the reader is referred to the above mentioned papers. 

7.6.1 Deterministic improvement methods 

In Section 3.2, we gave a general description of deterministic improvement meth-
ods for QAPs. Analogously as for the QAP, three deterministic improvement ap-
proaches have been tested on BiQAPs [30]: the first improvement method, the best 
improvement method, and Heider's improvement method, abbreviated by FIRST, 
BEST and HElD, respectively. These approaches and all heuristic algorithms de-
scribed il1 this section make use of the pair-exchange neighborhood (introduced in 
Section 3.2). For an arbitrary permutation 'Ira E Sn, its neighborhood Af2('lra) C Sn 
is given by 

(7.21) 

where I is the set of transpositions on {I, 2, ... , n} (and the operation 0 is defined 
by: ¢ 0 'IjJ(i) = ¢('IjJ(i)), for all i). The stop criterion involved in BEST, FIRST and 
HElD, is the standard one: If Z(A, B, 'Ir) ~ Z(A, B, 'Ira) for each 'Ir E Af2 ('Ira) , where 
'Ira is the current permutation, then stop. In the case of BEST we must compute 
the value of the objective function Z(A, B, 'Ir) for all n(n - 1)/2 neighbors 'Ir of the 
current permutation 'Ira, in each iteration. As for FIRST and HElD, O(n2 ) is just 
an upper bound on the number of computations of Z(A, B, 7r) per iteration. Given 
a neighbor 7r = (ka, La) 0 7ra of 7ra, where (ka, La) E I, the corresponding ~Z = 
Z(A, B, 7ra) - Z(A, B, 7r) can be in O(n3 ) time, as shown in [30]. Consequently, in 
the worst case, O(n5 ) elementary operations have to be performed in each iteration 
of BEST, (FIRST, HElD). However, in practice the number of ~Z-computations 
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per iteration of FIRST and HElD is much smaller than n(n - 1)/2. As for BEST, 
analogously as in the case of the QAP, it can be shown that except for the first 
iteration, the computation can be speeded up. Namely, in any iteration but the 
first one the evaluation of the neighborhood, i.e. the computation of all differences 
b.Z, can be performed in O(n4) time, where n is the size of the problem. Clearly, 
this is the lowest possible time cost, because the computation of value the objective 
function itself amounts to O(n4) elementary operations. The proof of this result is 
elementary and can be found in [30]. 

Theorem 7.5 (Burkard and Qela [30], 1995) 
The best improvement method (BEST) for BiQAPs can be implemented such that 
each iteration except for the first one performs O(n4) elementary operations, where 
n is the size of the BiQAP instance. The first iteration performs O(n5 ) elementary 
operations. 0 

As for the number of iterations these improvement methods (FIRST, BEST, HElD) 
run through, n! is a trivial upper bound and no better bound is known, to the best 
of our knowledge. In numerical experiments the number of iterations of FIRST, 
BEST and HElD amounts to O(n), as reported in [30], 

7.6.2 Simulated annealing algorithms 

Different variants of simulated annealing have been applied to the BiQAP. The 
main differences between these variants concern the temperature schedule and the 
so-called "equilibrium criterion", i.e. the criterion which decides when to stop the 
search at a given value of the temperature and drop to the next temperature in the 
schedule. 

In the algorithm ANNEAL in [30] the cooling process drops from the current tem-
perature value to the next one in the schedule either if the equilibrium is reached, 
i.e. the quality of the solutions found during the "last" steps of the search at the 
current temperature value does not vary a lot, or a "large" number of permutations 
is already considered at the current temperature value. In this case the maximum 
number of the considered neighboring permutations at a fixed value of the tempera-
ture is a control parameter. The meaning of "last" above is determined by another 
control parameter. The temperature schedule involved in this version of simulated 
annealing is defined by tk = qktO, where tk is the k-th value of the temperature in 
the schedule. The number r of the cooling steps, i.e. the number of the values of 
the temperature in the schedule, and q E (0,1) are two other control parameters. 
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In another version of simulated annealing for BiQAPs, denoted by SIMANN2, the 
equilibrium criterion has been eliminated. The amount of attempted transpositions 
at a given temperature value does not ex«eed Kn(n - 1), where 0 < K ::; 1/2 is a 
control parameter. The temperature drops from the current state to the next one 
in the schedule if, either a solution is found which yields a decrease in the value 
of the objective function and hence is accepted, or K n( n - 1) transpositions have 
already been attempted. The temperature schedule is generated by the following 
formula 

t ._ tk 
k + 1 . - -l-+-{3-.-t-k ' (7.22) 

where {3 is a control parameter, 0 < {3 «to· The parameter {3 is chosen much 
smaller than to in order to ensure a slow cooling process. 

Another simulated annealing approach for the BiQAP, introduced and tested in [30] 
and denoted by SIMANN3, involves a so-called "optimal" value of the temperature. 
The "optimal" value of the temperature was originally used by Connolly [59] in a 
simulated annealing approach for QAPs. The idea of the "optimal" temperature 
is based on the following arguments. Experiments with simulated annealing algo-
rithms applied to different combinatorial optimization problems have shown that 
the range of the temperature schedule has a strong impact on the performance of 
these algorithms. If the system is kept too "hot", neighboring permutations which 
yield a large increase in the value of the objective function are accepted. There-
fore, the search may become chaotic and it may be impossible to get to a local 
minimum. If the system is kept too "cold", only neighboring permutations which 
yield very small increases or decreases in the value of the objective function are 
accepted. In this case, the search may easily get stuck to a bad local minimum. 
This leads to the idea that somewhere between these two extremes there must be 
an "'optimal" value of the temperature. Several efforts have been made to elaborate 
an appropriate concept of the "optimal" value of the temperature in simulated an-
nealing algorithms for different problems (see Kirkpatrick, Gelatt and Vecchi [140], 
Vanderbilt and Louie [226]). In the case of BiQAPs Burkard and Qela [30] derive 
an "optimal" value of the temperature out of a given temperature schedule. This 
is done by considering a fixed amount of transpositions in each step of the cool-
ing process and by computing the percentage of accepted transpositions in each 
cooling step. Then, the arithmetical mean of these percentages, the so-called ac-
ceptance average, is computed and the deviations of all percentages from this mean 
are evaluated. As "optimal" value of the temperature is chosen that value in the 
schedule which yields the minimum deviation from the acceptance average. After 
the cooling process an appropriate number of search iterations are performed with 
value of the temperature fixed at the optimal one. 
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For a detailed description and an outline of ANNEAL, SIMANN2, and SIMANN3, 
the reader is referred to [30]. 

7.6.3 Tabu search approaches 

A description of tabu search techniques in general, and tabu search schemes for 
QAPs in particular, is given in Section 3.2. Some versions of tabu search for 
BiQAPs have been introduced, discussed and tested in [30]. In all these algorithms 
the movement in the neighborhood of the current permutation is done by means of 
transpositions. The tabu list is a FIFO list with fixed maximum length and con-
sists of transpositions that correspond to forbidden moves. One of the algorithms 
(denoted by TAB in [30]) accepts a forbidden move, i.e. applies this move to the 
current permutation, only if this moves yields an improvement of the best value 
of the objective function known so far. Thus, the improvement of the currently 
best value of the objective function is an aspimtion criterion. The algorithm starts 
with an empty tabu list. In each iteration, all non-tabu transpositions (moves) and 
those tabu transpositions which fulfill the aspiration criterion are considered. One 
transposition among the considered transpositions is em accepted, i.e. is applied 
apply to the current permutation. As transposition to be accepted is chosen the 
one which yields the smallest objective function value. Then, the tabu list is up-
dated by adding the last accepted transposition to the end of the list, if this is a 
non-tabu transposition, or by moving this transposition to the end of the list, if 
it is a tabu transposition. If a transposition is to be added to the tabu list and 
the length of the list has already reached the prespecified maximum, the first tabu 
transposition in the list becomes a non-tabu one and the transposition to become 
"tabu" is added at the end of the list. This procedure is applied a fixed number of 
times. 

The performance of TAB strongly depends on the initial permutation and on the 
length of the tabu list. In order to improve the robustness of the algorithm Burkard 
et al. perform more than one run of the algorithm with different values for the length 
of the tabu list and/or different initial permutations. Moreover, as different sets of 
accepted transpositions at the beginning of a run of TAB may lead to suboptimal 
solution of different quality at the end of the algorithm, all runs of TAB but the 
first one are started with a number of forbidden (tabu) transpositions. In the i-th 
consecutive run of TAB the tabu transpositions are selected among the permuta-
tions accepted at the beginning of the previous runs. This is done by starting 
the i-th run with a full tabu list obtained as a concatenation of the first full tabu 
lists generated during the previous runs of TAB. The algorithm which results by 
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repeating TAB a certain number of times as described above, is called long term 
tabu search and is denoted by LTMTAB. 

The reader is referred to [30] for more information on TAB, LTMTAB, other tabu 
search approaches to the BiQAP, and computational experiments. 

7.6.4 Greedy randomized adaptive search for 
the BiQAP 

In Section 3.6 we introduced the greedy randomized adaptive search procedure, 
so-called GRASP, which is a heuristic approach to solve hard combinatorial opti-
mization problems. Mavridou, Pardalos, Pitsoulis and Resende [163] have applied 
GRASP to the BiQAP obtaining very good experimental results on BiQAP in-
stances with known optimal solution generated as described in Section 7.4. The 
construction phase of GRASP for the BiQAP starts by selecting a partial permuta-
tion which consists of the assignment of four indices i, j, k, I from {I, 2, ... , n}, 
where n is the size of the BiQAP to be solved. This partial permutation is not 
selected among all partial permutations of four indices (the number of such partial 
permutations amounts to O(n4)) but among A randomly chosen partial permu-
tations of four indices, where A is a control parameter. Mavridou et al. report 
that. A = 1000 is a good choice for this control parameter. After having generated 
these A partial permutations the selection of one of them is made by combining 
greedy criteria with random elements as described in Section 3.6 with a = 0.25 
and f3 = 0.3. Then the construction phase completes the partial permutation into 
a permutation of {I, 2, ... , n} by assigning one index at a time in the usual GRASP 
manner. In the local improvement phase the pair-exchange neighborhood in the set 
Sn of permutations is used. The stop criterion is a maximum number of iterations 
which in the experiments of Mavridou et al. is chosen to be 150. 

7.7 ON COMPUTATIONAL RESULTS 

In t.his section we briefly report on computational experience with the heuristic 
approaches described in the previous section. For a more complete discussion 
the reader is referred to [30, 163]. The heuristics have been tested on BiQAP 
instances with known optimal solution generated by the Generatod3iQAP. The 
sizes of the test instances are even integers between 10 and 40 and the coefficients 
aijkl, bijkl are integers between 1 and 9. The initialization of the improvement 
methods, simulated annealing, and tabu search algorithms involves the generation 
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of some initial permutation. For each even n between 10 and 40, 40 permutations 
of {I, 2, ... , n} are generated at random and serve as initial permutations for the 
above mentioned heuristics. 

Deterministic improvement methods. According to Burkard et al. [30], among 
the three improvement methods FIRST, BEST and HElD, HElD offers the best trade-
off between of computation time requirements and solution quality. Each heuristic 
was applied 40 times to test instances from the benchmark starting with 40 different 
initial permutations. For each instance-heuristic pair the average relative error, the 
average CPU time, the average iteration number, and the frequency of finding an 
optimal solution over the corresponding 40 runs were computed. The computation 
time tends to become very large as the size of the test instances increases. Testing 
with instances of size larger than 36 was considered as fruitless, as already for sizes 
larger than 30 the CPU time required by each improvement method exceeded 1 
hour! 

Simulated annealing approaches. Computational experiments confirm the high 
sensitivity of simulated annealing algorithms to the number of cooling steps and the 
annealing scheme. The choices for these control parameters were made based on 
numerous numerical tests. Among simulated annealing approaches tested in [30], 
the third approach, i.e. the one involving the so-called "optimal value" of the tem-
perature, produces solutions of a better quality whereas it exhibits computational 
time requirements which are accordingly high. However, based on their numerical 
results, the authors conclude that this approach yields the best trade-off between 
computation time and solution quality. 

Tabu search approaches. The experiments made in [30] show that the tested 
heuristics produce good solutions after a number of iterations which is large enough. 
The problem is that the application of such a large number of iterations requires 
too much computation time and makes the algorithms infeasible. As reported by 
Burkard et al., among the tested tabu search algorithms, the one-phase-tabu search 
TAB produces the best trade-off between computation time and solution quality. 
After 'numerous experiments, 40 iterations and a tabu list of length equal to 25 
were found to be relatively good settings for the corresponding control parameters. 
With these settings, the quality of the suboptimal solutions yielded by TAB is 
better than the quality of the solutions yielded by HElD when applied to BiQAP 
instances of size n ~ 20, whereas the corresponding CPU costs are about 5 times 
higher. For larger problems the quality of the produced solution is not satisfactory. 
It seems that the large relative errors are due to the fact that 40 iterations are 
to few and cannot lead to solutions of good quality, especially for the larger test 
instances. 
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GRASP and comparison. GRASP seems to produce very good results when applied 
to BiQAP instances with known optimal solution from the benchmark described 
above. As reported in [163] 10 runs of the algorithm (with different seeds for the 
generation of the pseudo-random stream' of numbers) were performed for each of 
the test instances. GRASP has found the optimal solution in each run and for 
each test instance. Mavridou et al. report on the average number of iterations 
(in the local improvement phase) and the average CPU times of GRASP in these 
experiments. It seems that the very good performance of GRASP in terms of so-
lution quality requires computation times which are higher than those required by 
HElD and SIMANN3. We say "it seems" because the experiments with the above 
mentioned algorithms are made in different machines: HElD, SIMANN3 and TAB 
were implemented in a 40 MHz DIGITAL DECstation 2000/240 and those with 
GRASP in a 150MHz Silicon Graphics Challenge computer. Some results on the 
comparison of these algorithms are given in Table 7.1 below. The table presents 
average ~sults obtained on test instances from our benchmark. For each instance 
and for each algorithm the average relative error, the average running time, and 
the amount of the instances solved to optimality are given in the third, fourth 
and fifth column, respectively. The average values are obtained over all runs of 
the given algorithm on the given test instance. (As described above these runs 
differ on the starting permutation or on the seed for the generator of the stream of 
pseudo-random numbers.) 

Finally, we would like to notice that it is not clear whether the specific structure of 
these test instances is representative for the BiQAP and whether GRASP and the 
other algorithms can be applied with the same success to other instances of the 
BiQAP, e.g. to instances generated at random. To author's knowledge there exist 
no investigations concerning this question. 

7.8 CONCLUSIONS AND OPEN QUESTIONS 
In this chapter a generalization of the quadratic assignment problem, the BiQAP, 
was considered. The BiQAP is a problem of practical relevance which arises in 
VLSI design. There exists a strong relationship between the QAP and the BiQAP, 
in the sense that each QAP can be equivalently formulated as a BiQAP. This fact 
implies that the· BiQAP is at least as hard as the QAP, from a theoretical and from 
a practical point of view. 

From a theoretical point of view, two aspects of the BiQAP have been investigated. 
First, as a generalization of analogous results for the QAP, a 0-1 and a mixed integer 



248 CHAPTER 7 

Table 7.1 Performance of HEID, SIMANN3, TAB and GRASP 

Size Algorithm ReI. Error CPU Time Opt. solved 
(in %) (in seconds) (in %) 

HEID 6.08 4.1 73.7 

10 SIMANN3 0.09 14.0 72.1 
TAB 0.00 69.5 100.0 

GRASP 0.00 2.3 100.0 
HEID 9.49 23.6 7.8 

14 SIMANN3 0.43 86.3 98.4 
TAB 0.81 384.9 88.9 

GRASP 0.00 23.9 100.0 
HEID 5.25 65.2 55.9 

16 SIMANN3 0.67 177.2 95.6 
TAB 4.71 487.2 82.4 

GRASP 0.00 289.6 100.0 
HEID 11.53 212.4 48.2 

20 SIMANN3 1.05 579.1 93.2 
TAB 11.15 1360.5 42.3 

GRASP 0.00 184.2 100.0 
HEID 6.98 520.9 2.9 

24 SIMANN3 5.37 1489.5 23.5 
TAB 3.81 3028.0 21.5 

GRASP 0.00 8092.2 100.0 
HEID 4.49 1325.2 76.8 

28 SIMANN3 8.65 3289.2 8.9 
TAB 7.86 6087.5 13.7 

GRASP 0.00 4130.4 100.0 
HEID 18.52 4459.0 6.7 

32 SIMANN3 4.61 6978.6 78.9 
TAB 17.32 11482.4 4.8 

GRASP 0.00 12585.1 100.0 

linear programming (MILP) formulation for the BiQAP have been derived. It is 
not surprising that the size of these linearizations explodes as the size of the BiQAP 
increases. Secondly, the asymptotic behavior of the BiQAP has been analyzed. It 
turns out that, under natural probabilistic constraints, the problem becomes "easy" 
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as its size tends to infinity, i.e. the best and worst values of the objective function 
get in some sense closer as the size of the problem increases. From a practical point 
of view this means that for problems of large size - where the meaning of "large" 
is not clear yet - each feasible solution is close enough to an optimal solution. 
It remains an interesting and apparently difficult open problem to derive a lower 
bound for the size of instances which show such an asymptotic behavior. 

From a practical point of view, the results presented in this chapter concern three 
aspects of the problem. First, as a generalization of the Gilmore-Lawler bound for 
the QAP, Gilmore-Lawler-like bounds for the BiQAP have been derived. Secondly, 
a generator of BiQAP instances with known optimal solution has been presented. 
The BiQAP instances produced by this generator are combinatorially related to 
QAPs with known optimal solution generated as proposed by Li and Pardalos [154] 
(see also Section 3.7). These BiQAP instances can be used for the evaluation of 
heuristics and bounding procedures. At this point an interesting open question 
arises: How difficult are the generated test instances from a theoretical point of 
view, i.e. in terms of computational complexity, and from a more practical point 
of view, i.e. in terms of the so-called average complexity? Obviously, the answer to 
this question has an immediate impact on the relevance of the above mentioned test 
instances in evaluation of heuristics and bounding procedures. If the generated test 
instances are in a certain sense "easy", they are not representative for the BiQAP. 

Finally, we mentioned and briefly described some heuristics for BiQAPs like de-
terministic improvement methods, simulated annealing algorithms, tabu search 
approaches, and GRASP. Numerical results concerning the evaluation of these 
heuristics have been obtained by testing them on the above mentioned BiQAP 
instances with known optimal solution. However a lot remains to be done on 
this matter. Another probably interesting research direction is the investigation of 
BiQAPs whose coefficient arrays have some special structure and the exploitation 
of this structure in deSIgning specific efficient algorithms for these special problems. 
(Recall that the coefficient arrays of BiQAP instances occurring in VLSI design as 
described in Section 7.1 are very sparse.) 
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NOTATION INDEX 

The following is a list of commonly used notations. For each symbol its meaning 
(or name) is given together with the page number where the symbol occurs for 
the first time in the text. Most of the symbols are listed in the order of their first 
occurrence. There are also some standard symbols which are defined nowhere in 
the text. For these symbols which are listed at first we give an * instead of a page 
number. There is also some overloaded notation, e.g. (i,j), which has more than 
one meaning. 

C proper subset * 
C subset * 
\ set difference * 

=> implies * 
n matrix intersection * 
U matrix union * 

f:A -t B function which maps set A to set B * 
IR the set of the real numbers * 

IR+ the set of the nonnegative real numbers * 
IRn the set of the n-dimensional real vectors * 
IN the set of the natural numbers * 

lxJ lower integer part of x * 
rxl upper integer part of x * 
At transpose of matrix A * 

11'-1 inverse of permutation 11' * 
P class of problems solvable in polynomial time * 

NP class of problems solvable in nondeterministic 
* polynomial time 
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p.cs 
o(f(x)) 

O(f(x)) 
O(f(x)) 

G = (V, E) 

Kn,m 

QAP 

MILP 

QAP(A,B) 

Z(A,B,</» 

A = (aij) 

V = (Vi) 

v". 

D = (dijkt) 

X = (Xij) 

7I"x 

fA,B 

tr(A) 
conv(S) 

QAPn 

SQAPn 

He 

NOTATION INDEX 

class of local search problems solvable in poly-
nomial time 
the little-oh notation 

the big-oh notation 

the big-omega notation 

graph with vertex set V and edge set E 
complete bipartite graph with n vertices on 
one part and m on the other one 
complete graph on n vertices 

the quadratic assignment problem 

mixed integer linear programming 
the Koopmans-Beckmann quadratic assign-
ment problem with coefficient matrices A and 
B 
the set of permutations of the numbers 
1,2, ... , n 
the value of the objective function of 
QAP(A,B) yielded by permutation </> 

matrix with entries aij 

vector with components Vi 

vector permuted by permutation 71", V'" = 
(V".(i)) 

four-dimensional array with coefficients dijkl 

permutation matrix 

the set of n x n permutation matrices 
permutation corresponding to the permuta-
tion matrix X 
the objective function of QAP(A,B) in the 
trace formulation 
trace of matrix A 

convex hull of set S 
the n-dimensional QAP polytope 

the n-dimensional symmetric QAP polytope 

the Hamiltonian cycle problem 

* 
* 
* 
* 
* 
* 
* 
1 

1 

2 

2 

2 

2 

2 

2 

3 

5 

5 

5 

6 

7 

11 

11 
14 

17 
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optimal solution of a QAP (or a BiQAP) 18 
1I"opt (240) 
TSP the traveling salesman problem , 20 

Hr(A,B) 
performane ratio of algorithm Y applied to the 

20 instance QAP(A,B) 

Hr performance ratio of algorithm Y 20 

R'f asymoptotic performance ratio of algorithm Y 20 

£ ground set of a combinatorial optimization 
22 problem 

:F set of the feasible solutions of a combinatorial 
22 optimization problem 

N(S) neighborhood of solution S 22 

(P,N) local search problem with neighborhood struc- 23 
ture N 

(i, j) ordered pair of indices 24 

(i, j) transposition which maps i to j and j to i 24 

0 composition of permutations 24 

NK-L Kernighan-Lin- type neighborhood 24 

N2 pair-exchange neighborhood 25 

A(i,) (A(.,i)) i-th row (column) of matrix A considered as a 
vector 

28 

(U,V) scalar product of vectors U and V 29 
maximum value of the scalar product (U, V7r), 

(U, V)+ where the maximum is taken over all permu- 29 
tations 11" 

minimum value of the scalar product (U, V7r), 
(U, V)_ where the minimum is taken over all permu- 29 

tations 11" 

GL Gilmore-Lawler bound 29 

FYI first bound of Frieze and Yadegar 31 

FY2 second bound of Frieze and Yadegar 31 

CG bound of Christofides and Gerrard 32 

,(M) average of matrix M 34 

V(M) variance of matrix M 34 

T(M,A) total variance of matrix M with parameter A 34 



274 NOTATION INDEX 

DP the bound of Hahn and Grant 35 

® Kronecker product 35 

X 7r 
permutation matrix corresponding to permu- 35 tation 11" 

matrix whose diagonal elements are the com-
Diag(V) ponents of vector V and whose off-diagonal 38 

elements are equal to 0 

EV basical eigenvalue related bound 38 

sd(A) spread of matrix A 39 

EVI first eigenvalue related bound 39 

EV2 second eigenvalue related bound 40 

ELI elimination bound 42 

AX bound of Assad and Xu 45 

CMl first bound of Carraresi and Malucelli 45 

CM2 second bound of Carraresi and Malucelli 45 

LP linear programming 46 

AJ MILP formulation of Adams and Johnson 47 

CAJ continuous relaxation of AJ 47 

AJ(u) Lagrangean relaxation of AJ with Lagrangean 
48 multipliers u 

IPLP bound of Resende, Ramakrishnan and Drezner 49 

SDP semidefinite programming 50 

Zn the set of 0-1 n x n matrices 51 

lln 
the set of n x n matrices with row and column 

51 sums equal to 1 

On the set of n x n orthogonal matrices 51 

I the n x n identity matrix 51 

E the n-dimensional vector of all ones 51 

QAP1i equivalent formulation of the QAP 51 

n2-dimensional vector obtained by the co-
vec(X) lumn-wise ordering of the entries of an n x n 51 

matrix X 
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n-dimensional vector whose components are 
diag(A) the diagonal entries of the n x n matrix A, 52 

the operator adjoint to Diag 
arrow the arrow operator 52 
Arrow the operator adjoint to arrow 52 
bOdiag the block-O-diagonal operator 54 

BODiag the operator adjoint to the bO diag 54 
oOdiag the off-O-diagonal operator 54 

0° Diag the operator adjoint to the 0° diag 54 
the (n2 + I)-dimensional unit vector with the 

Eo first component equal to 1 and the other com- 54 
ponents equal to 0 

~ the n x n matrix of all ones 54 ~ 

~ Lowner partial order 54 

QAPRO a semidefinite relaxation of the QAP 54 

QAPRl another semidefinite relaxation of the QAP 55 

9 the gangster operator 55 

QAPR2 another semidefinite relaxation of the QAP 56 

QAPR3 another semidefinite relaxation of the QAP 56 

n the set of shortest path triples in a grid 58 
T the set of shortest- triangles in a grid 58 
id the identity permutation 58 

LB(QAP(A, B)) an arbitrary lower bound for QAP(A, B) 59 

A(x) matrix whose entries are functions of the vari- 59 able x 
TDB the triangle decomposition bound 59 

Zbe.t 
best currently found value of an objective 80 function Z 

D.(S, S') difference of the values of the objective func-
80 tion yielded by Sand S', respectively 

kB the Boltzmann constant 83 

Q(t) the partition function with argument the tem-
83 perature t 
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:r a population (in the context of genetic algo-
88 rithms) 

Sbeot 
best currently found solution of an optimiza-

88 tion problem 
Zopt optimal value of an objective function Z 92 
Pn generic optimization problem of size n 101 

fn 
ground set of a generic optimization problem 101 of size n 

:Fn 
the set of the feasible solutions of a generic 101 optimization problem of size n 

Swor worst solution of an optimization problem 101 
E(X) expected value of a random variable X 101 

(12 (X) variance of a random variable X 101 
P{Y} probability of an event Y 101 

(n) 
7r opt 

optimal solution (permutation) of a QAP of 105 slze n 

7rS~J worst solution (permutation) of a QAP of size 
n 

105 

IIAlloo row sum norm of matrix A = (aij), IIAlioo = 
106 maXi 2::j laij I 

MONGE the class of Monge matrices 109 
A-MONGE the class of Anti-Monge matrices 109 

KALMANSON the class of Kalmanson matrices 109 
SUM the class of sum matrices 109 

PROD the class of product matrices 109 
SMALL the class of small matrices 110 
LARGE the class of large matrices 110 
CHESS the class of chess-board matrices 110 

LHG the class of left-higher graded matrices 111 
RLG the class of right-lower graded matrices 111 
LLG the class of left-lower graded matrices 111 
RHG the class of right-higher graded matrices 111 

TOEPLITZ the class of Toeplitz matrices 111 
CIRe the class of circulant matrices 111 

BAND-d the class of bandwidth-d matrices 111 
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PERMCLASS 

NCLASS 

(71"(1), ... ,7I"(n» 

I-QAP 

I-QAP(A,B) 

Z(A,B,¢,7I") 

dimL 

rank A .. 

c(p,q) 

E(p,q) 

W(i), W(i,i) 

A'll" 

S-k-CP 

TP 

the class of the permuted matrices A'll", where 
A ECLASS 

the class of matric;es -A, where A ECLASS 

the sequential representation of permutation 
71" 
the independent QAP 
the independent QAP with coefficient matri-
ces A and B 
the value of the objective function of 1-
QAP(A,B) yielded by the pair of permutations 
(¢,71") 
the dimension of a linear space L 

the rank of a matrix A 
matrices which generate extremal rays of the 
cone of nonnegative Monge matrices 
matrices which generate extremal rays of the 
cone of nonnegative Monge matrices 
matrices which generate extremal rays of the 
cone of nonnegative symmetric Monge matri-
ces 
matrices which generate extremal rays of the 
cone of nonnegative left-higher graded Anti-
Monge matrices 
matrices which generate extremal rays of the 
cone of nonnegative right-lower graded Monge 
matrices 
matrices which generate extremal rays of the 
cone of Kalmanson matrices 
matrix permuted by permutation 71", A'll" = 
(a'll"(i)'II"(j» 

the spanning set of k-cycles problem 
an optimal solution of the Anti-Monge-
Toeplitz QAP with a benevolent matrix 
the taxonomy problem 
functions which generate extremal rays of the 
cone of benevolent functions with zeroes on 
the diagonal 
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112 

112 

112 

112 

112 

112 

115 
115 

117 

117 

118 

120 

121 

123 

138 

142 

144 

150 

162 
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7r(k) optimal solution of the Anti-Monge-Toeplitz 
173 QAP with a k-benevolent matrix 

7rz 
optimal solution of the Anti-Monge-Toeplitz 

177 QAP with a bandwidth-l Toeplitz matrix 
BENEVOLENT the class of benevolent matrices 182 

k-BENEVOLENT the class of k-benevolent matrices 182 

GQAP the generalized quadratic assignment problem 195 

GQAP(A, B, 1ln) the GQAP of size n with coefficient matrices 
195 A and B, and set of feasible solutions 1ln 

G* dual of graph G 202 

G=(V,E,r) flow graph with vertex set V, edge set E and 
203 distinguished vertex r 

~(G) maximum degree of the vertices of a graph G 208 

I(G 1 , G2 ) 
the set of isomorphisms between two isomor-

214 phic graphs G1 and G2 

g(G1 , G2 ) 
the set of the subgraphs of G2 which are iso-

214 morphic to G1 

VSP (di)graph vertex series-parallel (di)graph 217 

MVSP (di)graph minimal vertex series-parallel (di) graph 217 

K~,n 
complete bipartite digraph with n vertices on 

218 each part 

ESP (di)graph edge series-parallel (di) graph 219 

Yn 
the set of the pyramidal permutations of 
{1,2, ... ,n} 221 

BiQAP the biquadratic assignment problem 223 

BiQAP(A,B) the biquadratic assignment problem with co-
224 efficient arrays A and B 

EEl excl usi ve-or 226 

(dijklmpst) 8-dimensional array of coefficients 228 



Algorithm 
branch and bound algorithm, 27, 

37, 61, 75 
branch and bound algorithm 

k-partite branching rule, 63 
branch and bound tree, 37, 50, 

60, 63, 75 
branching rule, 62 
level of the branch and bound 

tree, 43 
pair assignment branching rule, 

63 
polytomic branching rule, 63 
relative positioning branching 

rule, 63 
selection rule, 62-63 
single assignment branching rule, 

62 
branch and cut algorithm, 65,69 

cut, 70 
search tree, 70 
violated inequalities, 70 

cutting plane algorithm, 28, 75 
Gomory cut, 70 
polyhedral cutting plane 

algorithm, 69 
traditional cutting plane 

algorithm, 65 
dual projective algorithm, 49 
exact algorithm, 27 
heuristic, 28, 65-66, 69-70, 241 
separation algorithm, 27, 70 
steepest ascent algorithm, 42 
symmetric QR algorithm, 38 

Applications, 3 

SUBJECT INDEX 

archeology, 4 
balancing of turbine runners, 4 
chemistry, 4 
computer manufacturing, 4 
design of typewriter keyboards, 4 
facility location, 3-4 

facility location context, 4, 62 
parallel and distributed 

computing, 3 
scheduling, 3 
sports, 4 
statistical data analysis, 3 
transportation, 4 
wiring problems (in electronics), 

3-4 
Approach 

cutting plane approach, 56 
dual ascent approach, 48, 61 
dynamic programming approach, 

50, 137, 215, 219 
interior point approach, 49, 56 
iterative approach, 36-37, 69, 76 
linearization approach, 69 
preconditioned conjugate gradient 

approach, 49 
primal approach, 49 
semidefinite programming 

approach, 51 
subgradient approach, 31 
supergradient approach, 59 

Asymptotic behavior, 74, 100, 238 
Average running time, 247 
Benders' decomposition, 65, 76 

master problem, 65, 76 
slave problem, 65, 76 
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BiQAP 
BiQAPs with known optimal 

solution, 235 
coefficient arrays, 227 
equivalent BiQAPs, 224 
Koopmans-Beckmann BiQAP, 228 
linearization, 230 
mixed integer linear programming 

formulation, 228 
optimal value, 224 
size of the BiQAP, 224, 236 
VLSI synthesis, 224 

asynchronous sequential circuit, 
225 

D flip-flop, 225 
finite state machines, 225 
state transition, 225 
synchronous sequential circuit, 

224 
VLSI 

T flip-flop, 225 
Boltzmann 

Boltzmann constant, 83 
Boltzmann distribution, 83 

Clique, 13 
maximal clique, 13 

Collinear, 97 
Computational complexity, 17, 97, 

214, 232 
(-approximate solution, 18 
(-approximation algorithm, 18, 21 
complexity of local search, 22 
reduction, 136, 218 

Condensed matter physics, 83 
ground state, 83 
thermal equilibrium, 83 

Cone, 114, 188 
extremal rays, 114, 117, 121, 144, 

151, 162, 174, 188 
minimal face, 55 
polyhedral cone, 114 

minimal face, 115 

SUBJECT INDEX 

proper face, 114 
semidefinite cone, 55 

Control parameter, 34 
Convergence 

convergence almost surely, 100, 
104, 240 

convergence with probability, 104, 
238 

Cyclic order, 78 
Degeneracy, 49 
Digraph 

K 3 •3-free digraph, 204 
acyclic digraph, 196, 203 
backward arcs, 203 
circulant digraph, 141 
complete bipartite digraph, 218 
dicut, 200 

transversal of dicuts, 200 
dicycle, 199 
dual digraph, 202 
edge series-parallel digraph, 219 
flow graph, 203 

reducible flow graph, 203 
planar digraph, 202 
topological labeling, 196 
transitive closure, 217 
two-terminal parallel composition, 

219 
two-terminal serial composition, 

219 
vertex series-parallel digraph, 217 

canonical decomposition tree, 
217 

decomposition tree, 217 
minimal vertex series-parallel 

digraph, 217 
weakly acyclic digraph, 205 
weighted digraph, 199,201 

Dominance relations, 203 
Euclidean 

Euclidean norm, 184 
Euclidean plane, 184 
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First-in first-out rule, 79 
Formulation 

Koopmans-Beckmann formulation, 
6 

MILP formulation of Adams and 
Johnson, 47 

mixed integer linear programming 
(MILP) formulation, 16, 46, 
50, 65, 76 

trace formulation, 7,38,42, 51 
Function 

k-benevolent function, 171 
benevolent function, 160, 184 

cone of nonnegative benevolent 
functions, 161 

concave function, 59 
convex function, 167 
objective function, 2, 22, 230 

optimal value, 2 
quadratic objective function, 8 
sum objective function, 101 

periodic function, 171 
Graph 

acyclic subgraph, 199 
bandwidth, 211 
chain, 215 
chordal graph, 218 
circulant graph, 188 
cograph, 218 
complete bipartite graph, 188, 204, 

211 
complete graph, 31,204 
cycle, 215 
degree of a vertex, 208 
double star, 32 
edge series-parallel graph, 219 
graph packing, 206 

edge coincidence, 207 
interval graph, 218 
isolated vertex, 210 
isomorphic graphs, 214 
isomorphic subgraphs, 31 

281 

isomorphism, 31, 214 
weight of an isomorphism, 214 

multistar, 215 
parallel composition, 217 
partial k-tree, 220 
planar graph, 220 
regular graph, 211 
serial composition, 217 
sign subgraph, 99 
spanning set of k-cycles, 142 
split graph, 218 
star, 32, 211,220 
subgraph, 31 
three-connected components, 204 
tree, 50, 197, 211 

binary tree, 63 
Gomory-Hu tree, 198 
isomorphic trees, 215 
leaf, 215 
levels, 215 
root, 215 
rooted tree, 197 
shelling procedure, 215 
spanning tree, 99 

triangle, 99 
wheel, 215 

Greedy, 90 
Grid,92 

dimensions of the grid, 92 
Hamming distance, 226 
Heuristic 

construction methods, 74 
control parameter, 79, 84, 90, 242 

tuning, 81, 86 
genetic algorithm, 87 

child,87 
cross-over rule, 87 
greedy genetic algorithm, 90 
immigration, 87 
individual, 87 
initial population, 87 
mutation, 87 
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parents, 87 
tournaments, 87 

greedy randomized adaptive 
search, 90, 245, 247 

construction phase, 245 
constructive phase, 90 
local improvement phase, 90, 245 

improvement method 
best improvement, 241 
Heider's improvement, 241 

improvement methods, 77, 246 
best improvement, 78 
first improvement, 78, 241 
Heider's method, 78 

limited enumeration methods, 75 
limited number of cuts, 76 
statist.ical evaluation, 75 
time limits, 75 

Metropolis algorithm, 82 
Miiller-Merbach algorithm, 74 
simulated annealing, 82 

acceptance average, 243 
approaches, 246, 
convergence, 85 
optimal value of the 

temperature, 86 
simulated annealing approaches, 

242 
slow cooling, 85 
temperature schedule, 84, 242 
temperature, 84 
"optimal" value of the 

temperature, 243 
stop criterion, 76, 79, 87, 241 
tabu search, 79, 244, 246 

aspiration criterion, 79, 244 
diversification, 82 
forbidden move, 79, 244 
long term tabu search, 245 
move, 79 
reactive tabu search, 81 
robust tabu search, 81 

SUBJECT INDEX 

tabu list, 79, 244 
tabu move, 79 

Hoffman-Wielandt inequality, 42 
Hull 

affine hull, 1, 13, 16 
convex hull, 11, 14, 205 

Implementation 
parallel implementation, 27, 62-63, 

82 
parallel implementation 

speed-up, 37, 64 
sequential implementation, 62 

Injective mapping, 74 
Kronecker product, 35-36,52 
Lagrangean 

Lagrangean dual, 47, 61 
Lagrangean multipliers, 31, 47-48 
Lagrangean relaxation, 10, 31, 50 

Linear assignment problem, 234 
Linear space, 115, 162 

basis, 115 
subspace, 114 

Linearization, 7 
complete linearization, 8 
Frieze and Yadegar linearization, 9 
Kaufman and Broeckx 

linearization, 8 
locally ideal linearization, 8, 15 
minimal linearization, 8 
Padberg and Rijallinearization, 10 

Local search 
improving routine, 23 
local search algorithm, 23, 77, 91 
local search problem, 23 
neighborhood scanning, 77 
neighborhood search, 23 
neighborhood structure, 22-23 

cyclic triple-exchange 
neighborhood, 77 

K-L type neighborhood, 24 
pair-exchange neighborhood, 25, 

77, 79, 91, 241, 245 
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quadruple exchanges, 77 
size of the neighborhood, 77 

Lower bound, 28 
bounds based on LP relaxations, 

46 
bound FYI, 31,45-46 
bound FY2, 31,45-46 
bound IPLP, 49, 57, 60 

bounds based on reformulations, 
43, 48 

bound AX, 45 
bound CMl, 45 
bound CM2, 45, 60 

bounds based on SDP relaxations, 
50, 60 

decomposition, 57 
bound TELl, 60 
bound TG L, 60 
triangle decomposition bound, 

49, 59-60 
eigenvalue related bound, 38, 41 

bound EV, 38 
bound EV1, 39 
bound EV2, 40 
elimination bound, 42, 59-60 
measure of linearity, 40 
reduction method, 39 

Gilmore-Lawler bound, 28, 31 
reduction method, 30, 35 

Gilmore-Lawler-like. bound, 31, 33, 
35 

allowed entries, 35 
Christofides and Gerrard bound, 

31 
disallowed entries, 35 
Hahn and Grant bound, 35, 48, 

61 
leader, 35-36 
superleader, 36 
variance reduction based bound, 

33 
Gilmore-Lawler-type bound 
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reduction method, 234 
Gilmore-Lawler-type lower bound, 

232 
reduction method, 232 

reformulation, 43 
Lowner partial order, 54 
Manhattan distance, 92 
Markov chain, 85 

ergodic Markov chain, 85 
inhomogeneous Markov chain, 85 

Matrix 
2-bandwidth symmetric Toeplitz 

matrix 
permuted 2-bandwidth 

symmetric Toeplitz matrix, 191 
k-benevolent matrix, 171 
0-1 matrix, 21, 51 
Anti-Monge matrix, 107, 109 

cone of nonnegative graded 
Anti-Monge matrices, 118, 174 

left-higher graded, 163, 173, 187 
permuted Anti-Monge matrix, 

110, 190 
average of a matrix, 34 
bandwidth-d matrix, 111 
benevolent matrix, 160 

nonnegative benevolent matrix, 
167 

permuted benevolent matrix, 191 
chess-board matrix, 110 

permuted chess-board matrix, 
191 

circulant matrix, 107, 111, 127, 
186, 188 

combinatorial structure, 114 
communication matrix, 150 
constant matrix, 92, 110 
cut matrix, 122 
diagonal matrix, 38 
doubly stochastic matrix, 42 
eigenvalues, 38 

multiplicity of eigenvalues, 42 



284 

simple eigenvalues, 59 
eigenvectors, 38 
Euclidean matrix, 2, 97 
Euclidean space of matrices, 50 
even matrix, 111 
graded matrix, 107, 110 

graded on the rows (columns), 
110 

left-higher graded, 111, 151 
left-lower graded, 111 
permuted graded matrix, 192 
right-higher graded, 111 
right-lower graded, 111, 151 

Hermitian matrix, 42 
identity matrix, 51 
k-benevolent matrix 

permuted k-benevolent matrix, 
191 

Kalmanson matrix, 109, 159 
cone of Kalmanson matrices, 

121, 188 
permuted Kalmanson matrix, 

190 
lower triangular matrix, 200 
matrix which fulfills the triangle 

inequality, 2 
Monge matrix, 107, 109 

cone of Monge matrices, 116 
cone of nonnegative Monge 

matrices, 117 
cone of nonnegative symmetric 

Monge matrices, 117, 144 
permuted Monge matrix, 190 
symmetric Monge matrix, 144 

nonnegative matrix, 111, 163 
odd matrix, 111 
off-diagonal entries, 52 
orthogonal matrix, 38, 42, 51 
permutation matrix, 5, 35-36, 51, 

55 
positive matrix, 111 
product matrix, 107, 109, 136, 184 

SUBJECT INDEX 

permuted product matrix, 190 
row (column) generating vector, 

109 
row sum norm, 106 
singular matrix, 54 
skew symmetric matrix, 111, 126 
small (large) matrix, 110 

row (column) generating vector, 
110 

permuted small (large) matrix, 
190 

spread,39 
upper bound for the spread, 39 

submatrix, 35-36 
sum matrix, 107, 109, 115, 126, 

186 
permuted sum matrix, 190 
row (column) generating vector, 

109 
symmetric matrix, 20-21, 38, 126 
taxonomy matrix, 151 

permuted taxonomy matrix, 191 
Toeplitz matrix, 107, 111 

bandwidth-2 Toeplitz matrix, 
176 

total variance of a matrix, 34 
upper triangular matrix, 196 
variance of a matrix, 34 
weighted adjacency matrix, 31, 50, 

206 
Meta-heuristic, 84 
Monte Carlo techniques, 83 
Network 

edge weighted network, 198 
Operator 

adjoint operator Arrow, 52 
adjoint operator EO Diag, 54 
adjoint operator Diag, 52 
adjoint operator 0 0 Diag, 54 
gangster operator, 55 
operator arrow, 52 
operator diag, 52 
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operator vec, 52 
operator block-O-diagonal, 53 
operator off-O-diagonal, 53 
trace operator, 50 

Permutation 
composition of permutations, 189 
constant permutation, 108, 157, 

173 
identity permutation, 58, 92, 125, 

128, 132, 152, 187 
inverse permutation, 133 
packing, 207 

number of edge coincidences, 207 
partial permutation, 62-63, 74, 245 
partial permutations, 148 
partial sets, 148 
pyramidal permutation, 221 
sequential representation, 112, 143 
set of permutations, 2 
swap, 24 

greedy swap, 24 
monotone sequence of greedy 

swaps, 24 
transposition, 24, 77, 79, 241, 244 
zig-zag permutation, 177 

Polynomial time approximation 
scheme (PTAS), 21 

Polytope 
acyclic subgraph polytope, 205 
facet defining inequalities, 1, 14, 

56-57 
curtain inequalities, 16 

facial structure, 5, 8 
ideal linear description, 11 
local polytope, 11 
QAP polytope, 1,56, 60, 69 

dimension of the QAP polytope, 
1, 13 

symmetric local polytope, 15 
symmetric QAP polytope, 1 

dimension of the symmetric 
QAP polytope, 16 

valid inequalities, 1, 57, 70 
clique inequalities, 13 
cut inequalities, 13 

Problem 
0-1 quadratic programming 

problem, 69 
3-Partition Problem, 21 

285 

acyclic sub digraph problem, 199 
balanced k-cut problem, 156 
biquadratic assignment problem 

(BiQAP), 86, 223 
capacitated transportation 

problem, 41 
convex optimization problem, 59 
data arrangement problem, 183 

linear storage medium, 186 
decision problem, 97 
EquiPartition problem, 136 
feedback arc set problem, 195, 199 
graph partitioning problem, 24 
Hamiltonian cycle problem, 17 
Hamiltonian path problem, 140 
linear arrangement problem, 21, 

196 
dense linear arrangement 

problem, 21 
linear assignment problem, 6, 30, 

33, 62-63, 76, 103, 126, 216 
Hungarian method, 36 

linear program, 65, 71, 76, 96 
maximum balanced bisection 

problem, 132 
minimum perfect matching 

problem, 103 
nonlinear 0-1 programming 

problem, 68 
packing problem, 195, 206 
placement problem, 195-196 
quadratic assignment problem, 2, 

103 
recognition problem, 189, 217 
selection problem, 160, 165 



286 

separation problem, 16, 205 
set partitioning problem, 150 
shortest dicycle problem, 205 
shortest dipath problem, 205 
shortest Hamiltonian path 

problem, 50 
size of the problem, 100 
spanning set of k-cycles problem, 

142 
state encoding problem, 225 
taxonomy problem, 108, 140, 150 
transportation problem, 76 
traveling salesman problem, 20, 27, 

82, 103, 140, 144, 183, 185 
optimal tour, 144 
pyramidal TSP, 196 
with a symmetric Monge 

distance matrix, 185 
trust region problem, 42 
turbine problem, 140, 183 

maximization version of the 
turbine problem, 185 

QAP 
Anti-Monge-Toeplitz QAP, 159 
asymmetric QAP, 2, 42, 99 
constant permutation QAP, 108, 

126, 132, 135, 141, 157, 159, 
163,171,176 

constant QAP, 107, 126-127, 144, 
188, 202 

equivalent QAPs, 112, 189 
Euclidean QAP, 2 
generalized QAP, 195, 214, 233 
grid QAP, 58 
independent-QAP, 112, 160, 164, 

174,177 
Kalmansbn-Toeplitz QAP, 187 
Koopmans-Beckmann QAP, 3, 38 

generalized 
Koopmans-Beckmann QAP, 3 

Lawler QAP, 3, 35, 43 
generalized Lawler QAP, 3, 43 

SUBJECT INDEX 

partial matrices, 148 
partial problems, 148 
pyramidal QAP, 196, 221 
QAP which fulfills the triangle 

inequality, 2 
QAPLIB, 27, 37, 48-49, 57, 60, 69, 

71,91 
QAPs with known optimal 

solution, 92 
Li&Pardalos' generator, 97 
Palubeckis' generator, 92 
weak generator, 96 

QAPs with Monge-like matrices, 
130 

rectilinear QAP, 57, 99 
restricted version, 107 
size of a QAP,·2 
sparse QAP, 63, 71, 208 
special cases, 107 

NP-hard, 107 
permuted polynomially solvable, 

159, 189 
polynomially solvable, 107 

symmetric QAP, 2, 14,99 
tree-QAP, 50 

Quadratic assignment problem, 234 
Quadratic form, 128 
Random, 84, 93 

random variable, 101 
expected value, 101, 105 
identically distributed random 

variables, 101, 105 
independent random variables, 

101, 105 
third moment, 104-105 
variance, 101, 105 

random variables, 238 
identically distributed random 

variables, 238 
independent random variables, 

238 
third moment, 240 



variance, 238 
Rank 

rank of a matrix, 115 
rank of a system of linear 

equations, 13 
rank of a system of matrices, 116 

Ratio 
absolute performance ratio, 20 
approximation ratio, 20 
asymptotic performance ratio, 20 
performance ratio with respect to 

an instance, 20 
Rectilinear distance, 92 
Reduction to extremal rays, 124, 

130, 141, 160, 177, 188 
Relative error, 246 

average relative error, 247 
Relaxation 

continuous relaxation, 22, 47 
LP relaxation, 16, 46, 69 
MILP relaxation, 69 
semidefinite programming 

relaxation, 50, 54 
basic semidefinite programming 

relaxation, 55 
Requirements 

computation time requirements, 
28, 38, 49-50, 76, 100, 247 

computational time requirements, 
246 

memory requirements, 37,49,76 
Set 

cardinality, 101 
convex set, 55, 59 
ground set, 22, 101, 105 
polyhedral set, 55 

Shortest 
shortest path triple, 58 
shortest path, 58 
shortest triangle, 58 

Solution 

287 

feasible solution, 9, 105, 224, 229, 
231 

feasible solution 
set offeasible solutions, 10, 101, 

105, 195 
initial solution, 76, 84 
locally optimal solution, 22 
optimal solution, 2, 224, 236 
suboptimal solution, 76 
worst solution, 101, 105, 238 

Statistical mechanics, 82 
many particle system, 82 
partition function, 83 

Trade-off, 59-61 
Transversal, 200 
Triangle inequality, 20, 100 
Triangulation of input-output tables, 

200 
Tridiagonalization, 38 


