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Multi-scale (“multiresolution”) community detection attempts to identify the most relevant divi-
sions (groups of related nodes) of an arbitrary network over a range of network scales. This task
is generally accomplished by analyzing community stability in an average sense across all commu-
nities in the network. In some systems, contending partitions of the global community structure
may be vague or imprecisely defined, but certain local communities may nevertheless be strongly
correlated at a given network resolution. We demonstrate a general local multiresolution method
where we draw inferences about local community “strength” based on correlations between clusters
in independently-solved systems. We propose measures analogous to variation of information and
normalized mutual information which quantitatively identify the best resolution(s) at the commu-
nity level. Our approach is independent of the applied community detection algorithm save for
the inherent requirement that the method be able to identify communities across different network
scales. It should, in principle, easily adapt to alternate community comparison measures.

PACS numbers: 89.75.Fb, 64.60.aq, 89.65.–s

I. INTRODUCTION

Applications of complex network analysis span a wide
range of seemingly unrelated fields. In these networks,
elements of the model system are abstracted as nodes
(i.e., people, atoms, etc.), and edges represent known
relationships between them (i.e., friendships, energies,
etc.). As depicted in Fig. 1, community detection (CD)
[1, 2] seeks to identify natural groups of related nodes
in a network. This structure can take the form of social
groups [3], clusters of atoms [4], proteins [5], and much
more. Several categories of common real-world networks
are characterized in Ref. [3].

This work extends current methods of “global” mul-
tiresolution CD [6] (see Appendix A) to enable quanti-
tative multiscale evaluation at the local community level
[7–9], effectively “zooming” inward or outward in the net-
work scale depending on the specific node, region, or lo-
cation (e.g., image segmentation applications [10]). Our
local multiresolution replica algorithm (LMRA) quanti-
tatively identifies the most natural resolution(s) for in-
dividual communities regardless of the weak or strong
correlations present in the full network. In essence, the
LMRA method is able to select optimal values of CD res-
olution parameter(s) for each cluster in a graph. Here,
we solve independent copies of the full system, but the
approach would adapt trivially to other CD algorithms
which can identify local communities within network sub-
graphs (i.e., without the need to partition the entire net-
work) or to other local cluster comparison measures.

One of the most popular methods of CD defines a cost
function that attempts to quantitatively encapsulate the
essential features for a “good” division of nodes, thus
evaluating the best community structure in an objective
fashion. Regardless of the specific form, the task is to
optimize the function for a particular graph to deter-
mine the optimal node division(s). Newman and Girvan

[11] introduced the most common approach by far with
“modularity.” CD methods based on Potts model cost
functions, or methods that may be cast as such [12, 13],
are also common.

Reichardt and Bornholdt (RB) wrote a Potts model
[14] which they specialized into two main cases utilizing
null models. Null models are auxiliary graphs which are
selected to evaluate the quality of a candidate partition,
thus implicitly or explicitly selecting the “correct” scale
for a graph. These methods were shown to suffer from
an inherent “resolution limit” [11, 14–17], which is not
resolved by varying the network scale [18, 19], making
it difficult for them to properly identify communities in
large graphs.

More Potts model and related approaches include [6–
8, 13, 20–23], and Refs. [8, 23] generalized the RB Potts
models in [14, 24], respectively. Our previous work [6, 7]
advanced a “local” Potts model, and local models were
studied in more detail in [8]. Other local methods include
[5, 7–9, 12, 25, 26], including variants of modularity [27,
28]. Potts systems in CD can experience disorder from
thermal effects [29, 30], extraneous edges (noise) [7, 29–
32], and system size [30, 33]. The selected model can also
exacerbate disorder effects [31, 34].

Some CD methods implicitly select a single “objec-
tive” scale for a candidate community division (e.g., Refs.
[11, 12]), but certain networks such as hierarchical sys-
tems inherently have multiple natural scales. Hierar-
chical clustering is an early multiscale method [35], but
it forces hierarchical structure on every system without
evaluating the relevance of the solved partitions. More
recent hierarchical approaches include [36–41], and Ref.
[42] relates the presence of hierarchical features to a scale-
free-network property.

A CD algorithm should be able to determine all rele-
vant scales of a network, ideally without ad hoc imposi-
tions on the network structure, and this problem is the
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FIG. 1. (Color online) The figure illustrates a network par-
tition where communities are represented by distinct node
shapes and colors. The graph includes ferromagnetic [solid,
black lines with wij > 0 in Eq. (1)] and antiferromagnetic
interactions (gray, dashed lines with uij > 0), and the line
thickness indicates the relative interaction strength. With
Eq. (1), “neutral” interactions (unconnected or undefined re-
lations) are repulsive in nature since they work like adversarial
relations that break up well-defined communities.

impetus for developing quantitative multiresolution net-
work analysis. Multiscale capable methods that utilize
cost functions include [6, 14, 24, 25, 43–45]. The RB
Potts model weighs the contribution of the null model
[14], allowing the cost function to span different network
scales. Other methods encompass varied forms of analy-
sis [46–49] to attack the problem.

Even with tunable CD cost function parameters, the
question of which resolutions are the most natural scales
for a network is not necessarily answered. Thus, mul-
tiresolution methods sought to identify the best scale(s)
[6, 43, 50] for a network without imposing, or arbi-
trarily selecting, a preferred network scale. The most
common method detects “stable” resolutions in terms
of network and model resolution parameters [6, 25, 43].
Our multiresolution replica algorithm (MRA) calculated
information-based correlations [6] among independent
copies of the same system to quantitatively compare the
partition strength across all relevant network scales.

To our knowledge, all current multiresolution ap-
proaches analyze the network robustness in an “average”
sense across all communities (see Appendices B and C)
in a network, but the best local communities will not
necessarily coincide at the same resolution in general.
For example, communities in large networks may experi-
ence a “lost-in-a-crowd” effect which can obscure locally
well-defined communities and limit the ability of global
multiresolution methods (see Appendix A) to accurately
isolate their structure. In some models, the effect can be
exacerbated by heterogeneously-sized community struc-
ture [34, 51] depending on the network scale. Conversely,
a global partition may be strong for most communities,
but a given cluster may still be weakly defined.

We combine the benefits of multiresolution analysis
with the local identification of community structure.

While each community exists in the context of the sur-
rounding network, we ideally prefer to identify strong
communities independent of the global system, allowing
each community to “stand on its own” in terms of the
evaluation of community structure. Somewhat related
efforts include detecting “unbalanced” communities in a
network partition [52] and an efficient “seed-expansion”
method by Havemann et al. [26] which could, in princi-
ple, be modified for other local cost functions.

The remainder of the work is organized as follows: we
introduce our community detection Potts model in Sec.
II. Section III A elaborates on concepts of community
definitions, and Sec. III B describes the notion of a par-
tition resolution. We suggest a local, community-based
analogy to the variation of information (abbr., VI) and
normalized mutual information (NMI) measures in Sec.
IV which we apply in Sec. V for our local multiresolution
algorithm. Section VI illustrates the approach with two
examples, and we conclude in Sec. VII. Appendix A ex-
plains the context of local and global terminology used in
this paper. Appendices B and C elaborate on our com-
munity detection and global multiresolution algorithms
which form the basis of the local analysis presented in
the current work. Finally, Appendices D and E comment
the semi-metric property of our cluster measure and al-
ternative approaches to local cluster comparisons in an
information-theoretic analogy.

II. POTTS MODEL HAMILTONIAN

Regardless of the underlying solution method, the ulti-
mate goal of any community detection partitioning algo-
rithm is a Potts type assignment i → σi for each node i
into one of q different clusters where σi may be regarded
as a Potts-type variable. Toward this end, we focus di-
rectly on Potts variables. Some methods extend this no-
tion to include “overlapping” memberships (e.g., Refs.
[5, 25, 26, 53]) where nodes may be shared between, or
fractionally assigned to, different communities. In these
cases, the community assignment becomes a vector quan-
tity for each node as opposed to a single integer value.

We identify community partitions by minimizing (see
Appendix B) a general CD Potts model

H({σ}) = −1

2

∑
i 6=j

[
wijAij−γuij (1−Aij)

]
δ(σi, σj) (1)

which we refer as an “absolute” Potts model (APM) since
it is not defined relative to a null model. Assuming N
nodes, {Aij} is the adjacency matrix where Aij = 1 if
nodes i and j are connected and is 0 if they are not con-
nected. As mentioned above, the spin variable σi iden-
tifies the community membership of node i in the range
1 ≤ σi ≤ q where node i is a member of community k if
σi = k. The Kronecker delta δ(σi, σj) = 1 if σi = σj and
0 when σi 6= σj . By virtue of the Kronecker delta, inter-
actions are limited to spins in the same community, and
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they are ferromagnetic in nature if nodes i and j are con-
nected and antiferromagnetic if they are not connected.

In Eq. (1), {wij} and {uij} are the edge weights for
“cooperative” and “neutral” or “adversarial” relations,
respectively. In unweighted graphs, aij = bij = 1. Both
adversarial and neutral relations serve to break up com-
munity structure, so the APM [6, 7] penalizes neutral
relations much like one would expect for adversarial re-
lations (as opposed to zero energy contributions as in a
purely ferromagnetic Potts model [12, 20]). This prop-
erty avoids a trivial ground state solution (i.e., a com-
pletely collapsed system) present in the purely ferro-
magnetic Potts model, providing an alternative “penalty
function” to how modularity resolved the problem [11].
Ref. [23] generalized a common Potts model variant [14]
to include “negative” link weights. A network resolution
roughly corresponds to the typical community size, but
it is better characterized by a typical community edge
density (see Sec. III B). The global resolution parameter
γ in Eq. (1) scales the relative effects of the ferromag-
netic {wij} and antiferromagnetic {uij} interactions, ef-
fectively allowing the model to vary the network scale,

Despite the global energy sum, the model is a local
measure of community structure (see Appendix A) be-
cause all node assignments are made strictly by evaluat-
ing local network parameters [7, 8]. For simplicity, our
current analysis will focus on undirected, static networks;
but both Eq. (1) and the LMRA method in this work
are suitable for general weighted, directed, and dynamic
(time-dependent) networks.

III. COMMUNITY DETECTION CONCEPTS

A precise definition of community structure in net-
works is still not agreed upon in the literature. Gen-
erally speaking, communities consist of nodes which are
strongly connected internally, in terms of the number or
weight of edges, but those between communities are more
sparsely connected. There is a question as to whether
the “inner” versus “outer” degree comparison is summed
across all external communities [54, 55] or is evaluated
between individual pairs of communities [6, 7, 56].

A. Community definitions

Communities in social networks are the prototypical
CD model. People often have many more “external” re-
lationships of varying strengths than they do within their
local group where they are a “member.” For example, an
individual may associate with a chess club, but his net-
work of friendships may extend to dozens or even hun-
dreds of people beyond their local group. In many net-
work approximations (e.g., the ubiquitous Zachary karate
club network [57]), these “extra” edges are omitted as
extraneous in a reduced-size network, but the additional
“noise” induced by including these relations in a more

comprehensive network should not intuitively disturb the
natural communities provided they are strongly defined
relative to any structure in the expanded system.

Ref. [54] proposed definitions for “strong” and “weak”
communities: in a strong community, all nodes have
more internal than external edges, and a weak commu-
nity is one where the sum over all internal edge edges
exceeds the sum of the external edges. A large social
network, such as that mentioned above, may not have
“strong” or even “weak” communities in the sense of the
proposed definitions, but the communities are still well-
defined empirically. Thus, these community definitions
[54] neglect certain important (high noise) and intuitive
[17, 52] cases.

Further, several CD methods compared by Lanci-
chinetti and Fortunato [58] demonstrated that even weak
communities as defined are not restrictive or character-
istic of the capabilities of some CD algorithms. That is,
the best methods easily solved the benchmark graphs [59]
into regions where all nodes (on average) have more ex-
ternal than internal edges. With these examples in mind,
it seems appropriate, at least in social and related net-
works, to favor cost functions or analysis methods that
utilize pairwise community comparisons when evaluating
node membership robustness. This assumption inher-
ently affects the notion of well-defined partitions, com-
munities, and individual node memberships [7, 56]. With
this in mind, it may be fruitful to pursue a community
definition based on edge density as opposed to inner and
outer community edge counts, but a quantitative analysis
is beyond the scope of the current work.

B. Resolution

Intuitively, the resolution of a community partition is
the typical strength of intracommunity connections. This
concept can be quantified by the typical edge density p
of the communities in the partition. Communities with
significantly different edge densities are qualitatively dif-
ferent. For example, social networks naturally display
communities of “close friends” or “acquaintances.” Close
friends are generally very likely to know most or all mem-
bers of the same group (p is high) where acquaintances
are much less likely to know each other (p is lower).

As a specific example, a community where each per-
son has five friendships in a group of six is a “perfect
clique.” That is, every node is connected to all others in
the group. However, if we consider the same five friend-
ships in a group of 100, it may not even qualify as a
community of social acquaintances. These two clusters
have an identical edge count, but they represent drasti-
cally different types of communities (i.e., different net-
work scales). As mentioned above, the inner and outer
edge count is not sufficient to quantitatively describe a
cluster. This distinction highlights the importance of a
penalty term in various CD quality functions.

In practice, a partition will contain communities with
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a range of edge densities, but intuitively, the differences
should not be drastic at a given resolution since the par-
tition should manifest communities with similar “levels
of association.” Continuing with the social network ex-
ample, mixing communities of close friends and acquain-
tances in the same partition makes less sense than a par-
tition that indicates close friendships in most communi-
ties. Given this argument, it is reasonable that a given γ
in Eq. (1) could be applied to the whole graph and pro-
vide meaningful partition information in general, but this
manuscript illustrates a method to enhance the analysis
of complex networks by finding locally optimal resolu-
tions at the community level.

We specialize the edge density analysis below to
unweighted graphs for clarity, but Ref. [7] discusses
weighted graphs in the same context. The edge density
of community a is pa = `a/`

max
a where `a is the number

of edges in the community. `max
a = na(na − 1)/2 is the

maximum number of possible edges in community a with
na nodes. The global resolution parameter γ in Eq. (1)
requires a minimum edge density for each community in
the partition,

pmin ≥
γ

γ + 1
, (2)

which we calculate by determining the minimum den-
sity configuration that yields an energy of zero or less.
Without γ, the model can only solve a particular implicit
resolution for all systems, pγ=1

min ≥ 1/2. Other models im-
plement similar weight parameters [8, 13, 14, 23–25, 43]
which allow the models to solve distinct network scales.

While Eq. (2) provides a convenient lower bound on
the minimum community edge density, optimizing Eq.
(1) implements the constraint by enforcing a stronger
requirement. That is, it merges network elements (a node
to a community or two communities) if the edge density
between them exceeds pmin. Thus, one is assured that all
sub-elements of a community are connected by at least
pmin. This avoids situations where a minimal number
of connecting edges merge internally dense sub-graphs
in order to arbitrarily satisfy the cost function. It also
avoids resolution-limit-type effects by acting locally [7].

IV. INFORMATION MEASURES

Information measures have received broad acceptance
for comparing candidate CD partitions. Commonly used
measures include the variation of information [60] and
normalized mutual information [61]. We leveraged the
measures in Sec. IV A to identify the best global network
scales via a multiresolution replica method [6] (see Ap-
pendices A and C).

A. Partition correlations

To define VI and NMI, we select a random node from
partition A and note that it has a probability P (k) =
nk/N of being in community k where nk is the number
of nodes in the community. The Shannon entropy is

H(A) = −
qA∑
k=1

nk
N

log
nk
N

(3)

where qA is the number of communities in partition A.
The mutual information I(A,B) between two partitions
A and B evaluates how much we learn about A if we know
B. In practice for our application, contending partitions
(A, B, . . ., X) are defined as independent copies of the
system.

We define a “confusion matrix” for partitions A and
B which specifies how many nodes nab in community a
of partition A are also in community b of partition B.
Mutual information is

I(A,B) =

qA∑
i=1

qB∑
j=1

nab
N

log

(
nabN

nanb

)
(4)

where na (nb) is the number of nodes in community a (b)
of partition A (B). The variation of information V (A,B)
metric is then

V (A,B) = H(A) +H(B)− 2I(A,B) (5)

which measures the information “distance” between par-
titions A and B with a range of 0 ≤ V (A,B) ≤ logN .
We use base 2 logarithms.

Some analysts prefer a normalized information mea-
sure [61] for partition similarity

U(A,B) =
2I(A,B)

H(A) +H(B)
. (6)

NMI and VI are closely related, U(A,B) = 1 −
V (A,B)/ [H(A) +H(B)]. While NMI is a valuable mea-
sure of partition similarity, it is not a formal metric (see
Appendix D) on partitions A and B in part because
U(A,A) = 1 not 0.

B. Local information analogies

In defining a cluster comparison measure, we wish
to maintain consistency with the trend in CD towards
information-theoretic partition evaluations. If we were to
compare larger (multi-cluster) sub-graphs, a natural ap-
proach is to cut the subgraph from the whole network and
compare the reduced-size partition. This breaks down at
the cluster level because there is no partition-of-unity as-
sociated with an individual cluster as is used to define
NMI or VI for CD.
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FIG. 2. (Color online) The figure schematically depicts r inde-
pendent solvers (“replicas”) as spheres navigating the energy
landscape of Eq. (1). Stronger agreement among the replicas,
as measured by information correlations in Sec. IV A, indi-
cates a more accurate global solution. In this manuscript, we
demonstrate that local communities may be strongly defined
even if all the communities in the global system are weakly
correlated (see Fig. 3).

Nevertheless, we can envision comparing any pair of
clusters independent of the global system, but imple-
menting an arbitrary measure is difficult in this context.
Therefore, we consider the cluster embedded in the full
system of N nodes, giving it a context for the resulting
cluster-level entropy or information content based on the
associated partition-of-unity probabilities. As will be ev-
ident below, strictly speaking we need not actually use
the true size of the network for our cluster comparisons.
That is, we could use some other N ′ 6= N , but it is con-
ceptually appealing to evaluate a cluster in the context
of the full network.

From Eq. (3), the entropy contribution of community
a in partition A is

Ha(A) ≡ −na
N

log
(na
N

)
(7)

where na (nb) is the number of nodes in community a.
Similarly, Eq. (4) indicates the mutual information con-
tribution when comparing cluster a in partition A (a,A)
to cluster b in partition B (b, B)

Iab(A,B) ≡ nab
N

log

(
nabN

nanb

)
. (8)

In analogy with Eq. (5), we introduce the cluster varia-
tion of information (CVI) v(a, b)

v(a, b) ≡ Ha(A) +Hb(B)− 2Iab. (9)

CVI exhibits appealing “distance-like” properties of a
semi-metric for comparing clusters (a,A) and (b, B) (see
Appendix D for a trivial proof). Summing over all pairs
of clusters a and b, VI is related to CVI by

V (A,B) =

qA∑
a

qB∑
b

v(a, b)−(qB−1)H(A)−(qA−1)H(B).

(10)

Appendix E provides additional remarks.
From Eq. (6), we introduce the natural cluster normal-

ized mutual information (CNMI) analogy

u(a, b) ≡
2nab log

(
nabN
nanb

)
na log

(
N
na

)
+ nb log

(
N
nb

) . (11)

While CNMI is not a metric [in part because u(a, a) = 1
not 0], it has the same intuitive property of cluster sim-
ilarity that makes NMI attractive for partition compar-
isons. Equation (11) is essentially a normalized variant
of CVI, u(a, b) = 1 − v(a, b)/ [Ha +Hb]. On smaller
networks, CVI provides a clearer picture of transitions
with its distance-like semi-metric properties, but CNMI
is more easily evaluated for larger networks because vari-
ations in CVI become small as N becomes large.

V. LOCAL MULTIRESOLUTION ALGORITHM

Our local multiresolution algorithm isolates relevant
local multiresolution order (well-defined local communi-
ties). We invoke v(a, b) in Eq. (9) and u(a, b) in Eq. (11)
to compare local clusters a and b across r “replicas” (in-
dependent solutions). Figure 2 depicts the basic MRA
[6] algorithm given in Appendix C. The LMRA method
depicted in Fig. 3 extends the MRA method by incorpo-
rating comparisons between specific clusters.

A. LMRA replica method

In general, clusters naturally change as the resolution is
varied, so how do we identify the appropriate target clus-
ters for comparison? Two natural approaches include:
compare clusters for “nearby” resolutions as specified by
a particular γi in Eq. (1) or compare targeted (“parent”)
clusters for specific node(s) of interest across the repli-
cas. In the latter case, the node may be selected a priori
based on a particular identity, or it may be randomly se-
lected. One may also first analyze the global system and
“work backwards” to identify relevant nodes as members
of communities with interesting features.

In the first case, if one deviates too far from γi, the
cluster will change substantially and the evaluation will
be less useful. That is, at some point, the cluster changes
enough that it is no longer the “same” community. We
could quantitatively define this comparison based on the
relevant CVI values.

The latter option is used in the current work where
we select a node of interest (e.g., a specific terrorist as
in Sec. VI B), and trace the parent clusters among the
replicas across a range of network scales [i.e., different
γi’s in Eq. (1)]. This option has two advantages: it is
simpler to implement, but more importantly, the studied
clusters are always well-defined, enabling comparisons
of community robustness across all relevant resolutions.
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FIG. 3. (Color online) The figure illustrates our local multiresolution algorithm discussed in detail in Sec. V. The graphs
include ferromagnetic [“cooperative” with wij > 0 in Eq. (1)] relations depicted by solid, black lines and antiferromagnetic
(“neutral” or “adversarial” with uij > 0) interactions depicted by gray, dashed lines. The line thickness indicates the relative
interaction strength, and we omit intercommunity adversarial and neutral relations for clarity. In step (1), we independently
solve a series of r “replicas” of the community detection problem (although we could, in general, improve the efficiency by
solving only the local communities embedded in the network). Step (2) identifies the target node(s) of interest (solid red circles)
and their corresponding “parent” clusters (blue dashed circles). Depending on the application, we could alternately calculate
the correlations among all pairs of communities and determine whether the individual clusters are strongly or weakly defined.
Step (3) uses Eqs. (9) and (11) to calculate correlations among all pairs of parent clusters in order to determine the community
robustness at the current resolution specified by γ in Eq. (1).

That is, at a given γi, we only need to know what cluster
to which node i belongs, regardless of any structural
changes in its network neighborhood as γ is varied.
Cluster correlations are quantitatively evaluated at a
given γi, but the average v(a, b) or u(a, b) measures over
the replica pairs can be compared across different γi’s to
evaluate the relative strength of the parent communities.

As depicted in Fig. 3, the LMRA algorithm is:

(0) Initialize the algorithm. Select the number of repli-
cas r and the number of independent optimization trials
t per replica. Select a set of nodes {a} to track based on
problem parameters (e.g., a person of interest in a terror
network in Sec. VI B). Identify the set of resolutions {γi}
to analyze (often selected to sample all relevant network
scales, see step 4 in Appendix C) by minimizing Eq. (1)
Select a starting γ0.

(1) Solve r independent replicas. For the current γi in
Eq. (1), apply steps (1)–(3) of the global MRA algorithm
in Appendix C.

(2) Identify parent clusters. Identify the parent cluster
aij corresponding to each target node a in each replica j
at the current γi.

(3) Compare clusters. For each parent cluster aij , cal-
culate CVI v(a, b) in Eq. (9) and CNMI u(a, b) in Eq.
(11) with the corresponding parent cluster aik in replica

k. Calculate the average of measure Si [v(a, b), u(a, b),
etc.] over all replica pairs at γi by

Si(a, b) =
2

r(r − 1)

∑
k>j

Sijk(a, b) (12)

where i refers to a particular resolution parameter index
for γi in Eq. (1), and j and k refer to replica summations.

(4) Identify the best resolutions. For each parent
cluster aij , find the lowest CVI values v(a, b) or the
highest CNMI values u(a, b) and their corresponding
resolution(s) {γBest

i } ⊂ {γi}. These are the best resolu-
tions for each cluster aij .

As with the global MRA approach in Appendix C, we
are interested in extrema or plateaus in the pertinent
measures in Sec. IV. Empirically, r ≈ O(10) or less ap-
pears to be sufficient for most problems. We estimate the
cost to be O(Lr2) which is comparable to the base MRA
algorithm cost in Appendix C.

B. Alternative implementations

In the current work, we contrast local, community-level
analysis with global multiresolution correlations. Thus,
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Level 4

Level 3

Level 1

Level 2R

Level 2L

FIG. 4. (Color online) The figure depicts a constructed
N = 1024 node four-level hierarchy. Level 1 is the complete
network with two “sides” of supercommunities that are ran-
domly connected at a low edge density between them. Level
2 consists of two roughly equal sized branches (NL = 502
and NR = 522) which we denote by “left” (L, blue or darker
tone) and “right” (R, silver or medium tone) as the picture
indicates. Level 3 is the set of supercommunities, and level
4 is the set of smallest communities strictly contained within
the supercommunities. At levels 3 and 4, elements of the left
branch are connected at higher internal and intercommunity
edge densities than the corresponding right branch elements.
See the text for a more detailed description of the network.
This construction results in a more “blurred” global multires-
olution signature in Fig. 5(a) where level 4L is lost in the
global MRA plot at feature (iv). The corresponding LMRA
plot for node 951 in Fig. 6(c) is nevertheless able to clearly
identify level 4L as a strongly defined resolution.

in this algorithm, we solve the full system and select the
appropriate parent clusters for the community-level anal-
ysis. Since the only global parameter that we need to
evaluate CVI or CNMI is the system size N , a more ef-
ficient approach could take advantage of our local cost
function in Eq. (1) (see also Ref. [26] for a more efficient
method applied a different fitness function [25]). Specif-
ically, we would solve for the target communities around
a particular node of interest ai by examining community
membership opportunities strictly for the neighbors of
nodes in or connected to ai’s local neighborhood. The
remainder of the graph partition need not be specified in
detail to apply Eqs. (9) and (11).

A more comprehensive alternative in step (3∗) is use-
ful if there are no a priori nodes of interest to study.
We could compare all pairs of clusters and identify the
best matching cluster bik for aij based on the minimum

v(jk)(a, b) at the current γi. Then we would average CVI
over all cluster matches for each best cluster pair. In
this scenario, we could further pursue the relative cluster
comparisons among the replicas by evaluating whether
the best clusters match among themselves. That is, we
would determine if bik of partition A also matches the
parent cluster dil in partition B, repeating the process to

the desired depth.
With this alternate step (3∗), individual community

matches among the r replicas (see Fig. 3) are not nec-
essarily symmetric. That is, while Eq. (9) is symmetric
in (a,A) and (b, B), this does not require that the best
matching clusters in the respective partitions necessar-
ily agree. Consequently, it would provide an additional
measure of community robustness based on the level of
mutual agreement (number of agreed matches compared
to the total possible matches among all replicas).

VI. EXAMPLES

As discussed in Appendix C, we calculate the global
MRA algorithm for the network and concurrently ap-
ply the LMRA algorithm in Sec. V to targeted nodes by
tracking the respective parent clusters across a full range
of relevant network scales. Comparing explicit values of
VI and CVI is difficult, so we evaluate relative values
of VI or CVI for a given network. We demonstrate the
LMRA method with a constructed network example and
a small, real terror network.

A. Branched hierarchy

We construct a branched, strict hierarchy as depicted
in Fig. 4 which we use to test the LMRA method of Sec.
V. Level 1 is the full system of N = 1024 nodes; level 2 is
the two-part branch split (groups of superclusters) with
NL = 502 and NR = 522 nodes for the left (L) and right
(R) sides, respectively; level 3 is the set of superclusters;
level 4 is the set of innermost clusters.

Level 1 was defined by connecting nodes in the left
and right branches (levels 2L and 2R) with an in-
tercommunity density p1 = 0.015. The approximate in-
tracommunity edge densities at level 4 were p4L = 0.9
and p4R = 0.6 assigned randomly with a normal distri-
bution of σp = 0.02. We connected nodes between the
respective communities in the intermediate levels 2 and
3 with probabilities: p3L = 0.37, p3R = 0.10, p2L = 0.16,
and p2R = 0.03. These values were selected in order to
demonstrate a somewhat “blurred” multiresolution sig-
nature in a controlled example where the underlying local
structure is nevertheless strongly defined.

In Fig. 5(a), we show the global MRA algorithm from
Ref. [6] (summarized in Appendix C) applied to the full
N = 1024 node network using r = 20 replicas and
t = 10 optimization trials per replica. A more thor-
ough discussion follows, but briefly, feature (iv) illus-
trates how poorly-correlated communities almost com-
pletely obscure the well-defined level 4L structure. Nev-
ertheless, the local MRA algorithm in Sec. V can fully
extract this hidden section of the hierarchy.

In Fig. 5, the left axes plot NMI, U , and VI, V , from
Sec. IV A in the top and bottom sub-panels, respectively,
averaged over all replica pairs. On the right axes, we
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Side
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Side

FIG. 5. (Color online) In panels (a), we apply our global multiresolution algorithm (MRA, see Appendices A and C) to
the N = 1024 node, four-level, “branched” hierarchy depicted in Fig. 4. Panels (b) and (c) show the MRA method applied
separately to the left and right level 2 hierarchy branches, respectively. In the top sub-panels (a–c), we compare replica
partitions using normalized mutual information U (left axes, see Sec. IV A) and mutual information I (right axes). In the
corresponding bottom sub-panels, we plot variation of information V (left axes) and the Shannon entropy H (right axes). We
also plot the average number of communities q (offset right axes) in top and bottom sub-panels. Features (i)–(iii) demonstrate
that the global MRA algorithm can detect network-wide stable partitions [6]. Feature (iv) in panel (a) shows that the level 4
community structure on the left side, known to be present at feature (4L) in panel (b), is almost completely obscured because
the right branch is significantly more random at the same network scale [i.e., value of γ in Eq. (1), see also Sec. III B]. In Fig.
6, we compare parent communities using the local multiresolution algorithm in Sec. V where we demonstrate that the method
can accurately extract level 4L for the targeted nodes.
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(a) Local MRA: Node 116 – Member of right

side
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(b) Local MRA: Node 661 – Member of right

side
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(c) Local MRA: Node 951 – Member of left

side

FIG. 6. (Color online) In panels (a–c), we apply our local multiresolution algorithm (LMRA) in Sec. V to targeted nodes of the
the N = 1024 node, four-level, “branched” hierarchy depicted in Fig. 4. The top sub-panels compare targeted communities in
the solved replicas (independent solutions) using the “cluster normalized mutual information” u(a, b) (left axes, see Sec. IV B)
and the mutual information contribution Iab. The corresponding bottom sub-panels plot the “cluster variation of information”
v(a, b) (left axes) and the Shannon entropy contribution Ha (right axes). Both top and bottom sub-panels also plot the average
number of nodes n in the respective parent communities on the offset right axes. The LRMA method is easily able to extract
the relevant levels 3 and 4 for the target nodes as evidenced by regions of low CVI (or high CNMI) even though level 4L of the
hierarchy is almost completely obscured at feature (iv) in the combined global MRA plot in Fig. 5(a).
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(a) Terrorist network – γ = 0.1 (b) Expanding network around Mohamed Atta

FIG. 7. (Color online) The figure depicts a small terrorist network collected from publicly available data [62]. Panel (a)
shows the overall network at γ = 0.1 in Eq. (1) where distinct node shapes indicate separate communities. Panel (b) shows
an “expanding” community around Mohamed Atta where his “local” cluster grows roughly outward in the diagram. Here,
new node categories (shapes and colors) indicate nodes added to the parent cluster (as opposed to new communities) as γ is
lowered to particular well-defined resolutions (see text). In this network, our local multiresolution algorithm indicates that
these communities are strongly defined on an individual basis with CVI v(a, b) = 0 in Fig. 9(b) even at resolutions where
the overall system structure is more vaguely defined in Fig. 8. This illustrates the main benefit of our local multiresolution
approach.

plot the average mutual information I and the Shannon
entropy H for top and bottom sub-panels, respectively.
The right offset axes in both sub-panels plot the aver-
age number of communities q. Panels (b) and (c) show
the MRA results applied to the separate left and right
branches of the hierarchy, respectively, using the same r
and t as in panel (a).

Features (i)–(iii) in panel (a) illustrate how the global
MRA signature can identify preferred or stable resolu-
tions by low VI or high NMI correlations (or plateaus
in H, I, and q in this example) averaged between the
independently-solved replica partitions. Specifically, fea-
ture (i) corresponds to level the 2 partition with qi = 2,
and feature (ii) identifies levels 2L and 3R with qii = 11
concurrently because of the respective community edge
densities (see Sec. III B). Similarly, feature (iii) solves
levels 3L and 4R with qiii = 52. These particular parti-
tions consist of combinations of well-resolved sub-graphs
at different levels of the branched hierarchy, but it is the
loss of level 4L in the global MRA plot that is the main
topic of this example.

At feature (iv) in panel (a), the poor correlations show
that the global analysis of the full system misses level
4L. This occurs because the well-defined local clusters
conflict with more random partitions for the right-side
subgraph in Fig. 4. In contrast, panels (b) and (c) show
that the MRA method applied to the separate left and
right branches are perfectly defined with V = 0 and U =
1 [marked by (2L), (3L), . . ., (4R), respectively]. That is,
the structure clearly exists locally, but the global MRA

method in panel (a) cannot resolve level 4L.
In Fig. 6(a–c), we plot the results of the new LMRA

method from Sec. IV B for the parent clusters of nodes
116, 661, and 951, respectively, as identified within the
full N = 1024 node system. On the left axes, we plot
CNMI u(a, b) in Eq. (11) and CVI v(a, b) in Eq. (9),
respectively, averaged over all community pairs in the re-
spective replicas. On the right axes, we plot the mutual
information contribution Iab in Eq. (8) and the Shannon
entropy contribution Ha in Eq. (7) averaged over all pairs
of target communities in the replicas or all target commu-
nities, respectively. The offset right axes plot the average
number of nodes n over all targeted communities.

Despite being buried within the full N = 1024 node
system, the parent cluster of node 951 corresponding to
level 4L is clearly present in the LMRA analysis in Fig.
6(b,c). This illustrates how our LMRA algorithm can
resolve relevant local structure even when the global sig-
nature is obscured. In principle, we could further apply
the LMRA algorithm to all clusters in the partitions and
unambiguously identify the entire set of well-defined level
4L communities.

B. Small terrorist network

Even small networks can experience strongly-defined
local clusters among indistinct global resolutions. We
apply the LMRA method to a small terrorist network
constructed from publicly available data [62]. Given that
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(a) Global MRA: 9/11 Terrorists

FIG. 8. (Color online) We apply our multiresolution algo-
rithm (see Appendices A and C) to a small terrorist network
[62]. Although the plot shows a “best” resolution at γ ' 0.1
(depicted in Fig. 7) as indicated by V ' 0, the remainder
of the plot has a largely “blurred” multiresolution signature
(high VI or low NMI). The V = 0 region on the far left is
an essentially trivial partition into nearly disjoint clusters. In
Fig. 9, we show results from the “local” multiresolution al-
gorithm in Sec. V to three selected terrorists where we track
the respective parent clusters over a range of resolutions [i.e.,
values of γ in Eq. (1)] and calculate the cluster correlations
using the CVI and CNMI in Sec. IV B.

the highest quality intelligence would be classified, our
purpose here is to demonstrate the practical application
of the LMRA on real data as opposed to setting forth a
rigorous study of the terror network.

Figure 7(a) depicts the network at γ = 0.1 in Eq. (1)
corresponding to the minimum VI at feature (i) in Fig.
8 with V ' 0 (see below). Here, distinct node shapes in-
dicate separate communities. The community partitions
with V = 0 at the lowest γ settings are unimportant dis-
joint collapsed clusters. The left axes plot U and V (see
Sec. IV A) for top and bottom sub-panels, respectively,
averaged over all replica pairs. On the right axes, we plot
I and H for top and bottom sub-panels, respectively, and
the offset axes in both sub-panels plot the average num-
ber of communities q.

Figure 7(b) shows the expanding network core centered
on Mohamed Atta at several strongly-defined resolutions
in Fig. 9(b) with v(a, b) = 0. In this panel, distinct node
shapes and colors indicate added nodes [as opposed to
new communities in panel (a)], roughly spreading out-
ward, as γ is lowered. Specifically, the fixed resolutions

correspond to γ = 10 (smallest, innermost cyan cir-
cles), γ = 3 (yellow square), γ = 0.6 (green diamonds),
γ = 0.3 (red triangles), γ = 0.125 (dark blue circles), and
γ = 0.05 (largest, pink squares) with a few other small
fluctuations not depicted.

On the left axes in Fig. 9(a–c), we plot CNMI u(a, b)
in Eq. (11) and CVI v(a, b) in Eq. (9), respectively, aver-
aged over all pairs of parent communities in the respec-
tive replicas. Similarly, the right axes plot the mutual
information contribution Iab in Eq. (8) and the Shannon
entropy contribution Ha in Eq. (7) averaged over all pairs
of parent communities or all parent communities, respec-
tively. The right offset axes display the average number
of nodes n over the parent communities.

Each panel shows distinct, but different, regions of γ
where the parent clusters are strongly defined, but the
cluster correlations in the full network in Fig. 8 are more
poorly defined at most resolutions. Hani Hanjour has a
LMRA signature distinct from Mohamed Atta for γ &
1, but they match at lower γ because they are mutual
members of the same communities.

VII. CONCLUSION

Multiresolution network analysis extends the basic no-
tions of community detection to select the best reso-
lution(s) for a given network over a range of network
scales. Certain networks may present situations where
local clusters experience a lost-in-a-crowd effect. Despite
being strongly defined, the local structure may be “lost”
among a collection of more poorly defined communities
at a given resolution. This may occur due to the sheer
size of a network or because most clusters do not coalesce
in their strongest state(s) at the same scale(s).

We presented an extension of an existing global mul-
tiresolution method [6] to detect and quantitatively as-
sess local multiresolution order. We proposed cluster-
level analogies to variation of information and normalized
mutual information which evaluate the strength of local
communities in the context of a pair of network parti-
tions. We applied these measures to evaluate correlations
among individual parent communities in multiple inde-
pendent solutions (replicas), and we demonstrated that
the proposed local multiresolution algorithm is able to ex-
tract local structure despite a blurred global multiresolu-
tion signature. Our approach is independent of the search
algorithm or community detection model making it suit-
able for use with any community detection method that
can identify partitions across different network scales.
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FIG. 9. (Color online) In each panel, we apply our local multiresolution algorithm (LRMA, see Sec. V) to a small terrorist
network [62]. We analyze three selected terrorists by tracking the respective parent clusters over a range of resolutions [i.e.,
values of γ in Eq. (1)]. We then calculate the cluster correlations using the community comparison measures in Sec. IV B. Note
that the individual nodes possess certain strongly preferred resolutions with v(a, b) = 0 for their parent clusters whereas the
global system in Fig. 8 is less well-defined for most values of γ.
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Appendix A: Local and global terminology

The meaning of the terms “local” and “global” depends
on the context. For our purposes, global cost functions
are those that require network wide (global) parameters
(e.g., number of edges L, number of communities q, over-
all graph density p, etc.) in the quantitative evaluation
of community structure [11, 14]. Global multiresolution
methods are those for which the best partition is simul-
taneously determined for the entire system, effectively
“averaging” the partition robustness over all communi-
ties. This is true regardless of whether the cost function
is itself local or global in nature.

Local cost functions [6–8] or algorithms [12] utilize pa-
rameters only in the neighborhood of a community or
node (e.g., size of community a, edges of node i, etc.)
to evaluate the best community structure. These can be
subdivided into “weak” and “strong” local cost functions
[7] where weakly-local cost functions may depend on the
details of the community structure. Local multiresolu-
tion methods, such as the current work, seek to identify
the best communities based on their strength at a given
resolution. That is, the evaluation of the best resolution
is not effectively “averaged” over all the communities in
the graph, and each community may be strongly resolved
at different network scales (often described in terms of
distinct model weighting parameters).

Appendix B: Community detection algorithm

Our greedy CD algorithm dynamically “moves” nodes
into the community that best lowers the local energy
according to Eq. (1) given the current state of the system
{σi}. The process iterates through the nodes until no
further nodes are available. Typically, O(10) iteration
cycles through all N nodes are required except in rare
instances that lie in or near the “hard” (or “glassy”)
phase [7, 29, 30].

The CD steps are:
(0) Initialize the system. Initialize the connection ma-

trix Aij and edge weights wij and uij . Determine the
number of optimization trials t.

(1) Initialize the clusters. The initial partition is usu-
ally a “symmetric” state wherein each node is the lone
member of its own community (i.e., q0 = N).

(2) Optimize the node memberships. Sequentially se-
lect each node, traverse its neighbor list, and calculate
the energy change that would result if it were moved into
each connected cluster (or an empty cluster). Immedi-
ately move it to the community which best lowers the
energy (optionally allowing zero energy changes).

(3) Iterate until convergence. Repeat step (2) until
a (perhaps local) energy minimum is reached where no
nodes can move.

(4) Test for a local energy minimum. Merge any
connected communities if the combination lowers the
summed community energies. If any merges occur, re-
turn to step (2) and attempt additional node-level re-
finements.
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(5) Repeat for several trials. Repeat steps (1)–(4)
for t independent “trials” and select the lowest energy
result as the best solution. By a trial, we refer to a
copy of the network in which the initial system is ran-
domized in a symmetric state with a different node order.

The optimal q is usually dynamically determined by
the lowest energy state although the algorithm can also
fix q during the dynamics. Empirically, the computa-
tional effort scales as O(tL1.3 log k) where k is the aver-
age node degree and log k is from a binary search im-
plemented on large sparse matrix systems. This greedy
variant can accurately scale to at least O(109) edges [7].
We can extend it with a stochastic heat bath [29] solver
or a simulated annealing algorithm [14] at the cost of
significantly increased computational effort.

Appendix C: Global multiresolution algorithm

As depicted in Fig. 2, our multiresolution algorithm
iteratively applies the CD algorithm in Appendix B to
quantitatively evaluate the best community partitions
over a range of network scales. In its basic form, we in-
dependently solve the CD problem for a given graph over
a range of γ in Eq. (1) and evaluate the average strength
of the partition correlations. This process quantitatively
estimates the robustness of the best solution(s) by sam-
pling the complexity of the energy landscape.

Generally speaking, poorer correlations occur when
there are contending partitions of comparable strength
[i.e., the energy difference of the applied cost function is
near zero], the resolution is inside a “glassy” phase (ex-
traneous intercommunity edges obscure the dynamic pro-
cess of locating the best solution), or the graph is more
random in nature. In the case of contending partitions,
local multiresolution methods, such as the one presented
in the current work, may be able to reliably extract the
well-defined communities.

We quantify the partition correlations using informa-
tion theoretic (or other appropriate) measures (see Sec.
IV A). If most or all solvers (replicas) agree on the best
solution, then we rate the partition as “strongly” corre-
lated, but if the partitions have large variations, we say
the solution is “weak.” In either case, we select the lowest
energy replica solution to represent the best answer at a
given resolution γi, but one could also construct a “con-
sensus” partition [12, 63, 64], particularly in the latter
case of weak solutions [65].

As a function of the resolution parameter γ in Eq.
(1) (or any relevant CD scale parameter for another
model [14, 43]), the best resolutions may be identified by
peaks or plateaus in NMI [6], minima or plateuas in VI
[6, 44], and/or plateaus in the number of clusters q [43]
or other measures [6, 44]. Plateaus in these measures
(i.e.(), NMI, VI, H, q, etc.) as a function of γ imply
more “stable” features of the network, although caution
must be exercised when interpreting some measures

[6]. Sharper peaks in NMI or narrow troughs in VI
indicate strongly defined but more transient features.
Significant peaks in VI or troughs in NMI generally
indicate transitions between dominant structures. More
generally, we can further extract pertinent details of
the network from other extrema in NMI and VI (e.g.,
Ref. [10] also analyzed peaks in VI to perform image
segmentation using CD concepts).

The MRA algorithm is:
(0) Initialize the algorithm. Select the number of inde-

pendent replicas r. Identify the set of resolutions {γi} to
analyze using Eq. (1) along with a starting γ0. It is often
convenient to begin at high gamma and step downward,
stopping if the system completely collapses.

(1) Initialize the system. For the current γi, initialize
each replica with a unique set of N spin indices (i.e.,

q
(j)
0 = N for each replica j).
(2) Solve each replica. Independently solve each replica

according to the CD algorithm in Appendix B.
(3) Compare all replicas. Calculate the Shannon en-

tropy for every replica and compare all pairs of replicas
using the mutual information I(A,B), normalized mu-
tual information U(A,B), and variation of information
V (A,B) measures in Sec. IV A.

(4) Iterate to the next resolution. Increment to the
next resolution γi+1. A geometric step size ∆γ = 101/s

is often convenient where s ≈ O(10) is an integer number
of γi’s per decade of γ. Repeat steps (1)–(3) until the
system is fully collapsed (if stepping down in γi) or no
γi’s remain.

The information correlations in steps (3) and (4) al-
low the determination of the best global network scale(s)
[6] (see Appendix A) based upon regions of γ with high
NMI or low VI. Plateaus in I and q may also provide sup-
plemental information regarding partition stability. The
solution cost scales linearly in r with the CD algorithm
in Appendix B, O(rtL1.3 log k). We have solved systems
with O(107) edges on a single processor [6] in a few hours.

The algorithm may detect, but does not impose, a
strictly hierarchical community structure. That is, as
shown in Sec. VI A, the MRA algorithm will show
strongly correlated regions at the well-defined hierarchi-
cal levels, but it is also able to analyze non-hierarchical
multiresolution structure. This approach is somewhat
preferable over forcing a hierarchical structure on every
analyzed network [35] since some networks may not natu-
rally possess this type of organization. Once the preferred
resolutions are identified, the specific hierarchical nature
can be analyzed and evaluated by other means [66, 67].

Appendix D: Semi-metric property of CVI

A semi-metric possesses intuitive “distance-like” prop-
erties for comparing cluster similarity. The proof that
CVI is a semi-metric is trivial. A measure S(a, b) on a
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set X with two variables a and b in X is a semi-metric if
and only if it satisfies the following conditions:

• Non-negativity – S(a, b) ≥ 0 for all a and b.

• Zero only for equality – S(a, b) = 0 only if a = b.

• Symmetry – S(a, b) = S(b, a) for all a and b.

S(a, b) is a metric if it additionally satisfies the triangle
inequality S(a, c) ≤ S(a, b)+S(b, c) for three variables a,
b, and c in X.

Theorem 1. CVI in Eq. (9) is a semi-metric between
two clusters a and b in partitions A and B of size |A| =
|B| = N in the space of possible partitions of the N nodes:
(1) It is non-negative and equal to zero only if a = b. (2)
It is symmetric with respect to clusters (a,A) and (b, B),
v(a, b) = v(b, a).

Proof.
(1) It is non-negative and strictly equal to zero only if
a = b. From Eq. (9)

v(a, b) = −na
N

log
(na
N

)
− nb
N

log
(nb
N

)
−2

nab
N

log

(
nabN

nanb

)
=
na − nab

N
log

(
N

na

)
+
nb − nab

N
log

(
N

nb

)
+
nab
N

log

(
na
nab

)
+
nab
N

log

(
nb
nab

)
v(a, b) ≥ 0 (D1)

since na > 0, nb > 0, nab ≥ 0, na ≥ nab, and nb ≥ nab.
Furthermore, it is zero only when, na = nb = nab. That
is, it is zero when a = b.

(2) It is symmetric with clusters (a,A) and (b, B),
v(a, b) = v(b, a).

Since nab is necessarily equal to nba, Iab(A,B) is sym-
metric in clusters (a,A) and (b, B). Symmetry of v(a, b)
is then immediately obvious.

Thus, CVI is a semi-metric.

We have not proved the triangle inequality for CVI, mak-
ing it a metric, but the triangle inequality appears to be
violated rarely, if at all.

Appendix E: Alternate cluster measures

A tempting alternate measure for CVI might be de-
fined based on the individual terms of

V (A,B) = H(A|B) +H(B|A)

=
∑
a,b

[
nab
N

log
nb
nab

+
nab
N

log
na
nab

]
. (E1)

From this equivalent variant of VI, the natural CVI def-
inition would be

v′ab(A,B) =
nab
N

log
na
nab

+
nab
N

log
nb
nab

. (E2)

Unlike CVI in Eq. (9), Eq. (E2) has the nice prop-
erty that the individual cluster contributions sum to VI,
V (A,B) =

∑qA
a

∑qB
b v(a, b)′.

Unfortunately, this particular launching point does not
work for cluster comparisons. While v′aa(A,A) = 0 as
desired, it is also the case that v′ab = 0 if nab = 0. That
is, it is zero if no overlap exists between a and b which
violates the notion of a “distance” as well as one of the
requirements for being a (semi)metric. VI is a metric on
partitions A and B because it sums over all a and b in A
and B, respectively.

We could also consider an alternate ad hoc definition
by redefining the CVI entropy terms in Eq. (10) accord-
ing to v(a, b)′′ = Ha(A)/qB + Hb(B)/qA − 2Iab(A,B).
This variant would again yield the desirable property
V (A,B) =

∑qA
a

∑qB
b v(a, b)′′, but the measure loses the

semi-metric requirements v(a, b)′′ ≥ 0 and v(a, a)′′ = 0.
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[60] M. Meilă, J. Multivariate Anal. 98, 873 (2007).
[61] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, J.

Stat. Mech. 09, P09008 (2005).
[62] V. E. Krebs, Connections 24, 43 (2002).
[63] A. L. N. Fred and A. K. Jain, in Proceedings of the IEEE

Computer Society Conference on Computer Vision Pat-
tern Recognition, Vol. 2 (IEEE Computer Society, 2003)
pp. 128–133.

[64] A. P. Topchy, M. H. C. Law, A. K. Jain, and A. L. Fred,
in Data Mining, 2004. ICDM ’04. Fourth IEEE Inter-
national Conference (IEEE Computer Society, 2004) pp.
225–232.

[65] A. P. Topchy, A. K. Jain, and W. Punch, in Data Mining,
2003. ICDM 2003. Third IEEE International Conference
(IEEE Computer Society, 2003) pp. 331–338.

[66] A. Trusina, S. Maslov, P. Minnhagen, and K. Sneppen,
Phys. Rev. Lett. 92, 178702 (2004).

[67] E. Mones, L. Vicsek, and T. Vicsek, e-print
arXiv:1202.0191 (2012).

http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1140/epjb/e2007-00088-4
http://dx.doi.org/10.1209/0295-5075/87/38002
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1103/PhysRevE.84.066122
http://dx.doi.org/10.1016/j.physa.2012.05.006
http://dx.doi.org/10.1103/PhysRevLett.76.3251
http://dx.doi.org/10.1103/PhysRevLett.76.3251
http://dx.doi.org/10.1088/1742-5468/2006/09/P09014
http://dx.doi.org/10.1088/1742-5468/2006/09/P09014
http://dx.doi.org/10.1103/PhysRevE.74.035102
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1103/PhysRevLett.93.218701
http://dx.doi.org/10.1103/PhysRevLett.93.218701
http://dx.doi.org/doi:10.1088/1367-2630/11/3/033015
http://dx.doi.org/doi:10.1088/1367-2630/11/3/033015
http://dx.doi.org/ 10.1088/1742-5468/2011/01/P01023
http://dx.doi.org/ 10.1088/1742-5468/2011/01/P01023
http://dx.doi.org/10.1103/PhysRevE.72.026132
http://dx.doi.org/10.1103/PhysRevE.72.056107
http://dx.doi.org/10.1103/PhysRevE.72.056107
http://dx.doi.org/10.1080/14786435.2011.616547
http://dx.doi.org/10.1080/14786435.2011.616547
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1209/0295-5075/99/38006
http://dx.doi.org/10.1209/0295-5075/99/38006
http://dx.doi.org/ 10.1088/1742-5468/2006/11/P11010
http://dx.doi.org/ 10.1088/1742-5468/2006/11/P11010
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1073/pnas.0703740104
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/ 10.1016/j.physa.2008.12.021
http://dx.doi.org/ 10.1016/j.physa.2008.12.021
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1088/1367-2630/10/5/053039
http://dx.doi.org/10.1088/1367-2630/10/5/053039
http://dx.doi.org/ 10.1063/1.3184538
http://dx.doi.org/ 10.1126/science.1184819
http://dx.doi.org/ 10.1088/1367-2630/11/11/113003
http://dx.doi.org/10.1088/1742-5468/2010/04/P04024
http://dx.doi.org/10.1088/1742-5468/2010/04/P04024
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1103/PhysRevE.82.016114
http://dx.doi.org/10.1103/PhysRevE.82.016114
http://dx.doi.org/10.1142/S0219477507003854
http://dx.doi.org/10.1103/PhysRevE.82.016114
http://dx.doi.org/10.1103/PhysRevE.82.016114
http://dx.doi.org/10.1103/PhysRevE.85.066114
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/ 10.1073/pnas.0400054101
http://dx.doi.org/ 10.1103/PhysRevE.85.046113
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1109/CVPR.2003.1211462
http://dx.doi.org/10.1109/CVPR.2003.1211462
http://dx.doi.org/10.1109/CVPR.2003.1211462
http://dx.doi.org/10.1109/ICDM.2004.10100
http://dx.doi.org/10.1109/ICDM.2004.10100
http://dx.doi.org/10.1109/ICDM.2003.1250937
http://dx.doi.org/10.1109/ICDM.2003.1250937
http://dx.doi.org/10.1103/PhysRevLett.92.178702

	Local multiresolution order in community detection
	Abstract
	I Introduction
	II Potts Model Hamiltonian
	III Community detection concepts
	A Community definitions
	B Resolution

	IV Information Measures
	A Partition correlations
	B Local information analogies

	V Local multiresolution algorithm
	A LMRA replica method
	B Alternative implementations

	VI Examples
	A Branched hierarchy
	B Small terrorist network

	VII Conclusion
	 ACKNOWLEDGMENTS
	A Local and global terminology
	B Community detection algorithm
	C Global multiresolution algorithm
	D Semi-metric property of CVI
	E Alternate cluster measures
	 References


