
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gscs20

Download by: [University of Bath] Date: 29 October 2016, At: 13:21

Journal of Statistical Computation and Simulation

ISSN: 0094-9655 (Print) 1563-5163 (Online) Journal homepage: http://www.tandfonline.com/loi/gscs20

A double Metropolis–Hastings sampler for spatial
models with intractable normalizing constants

Faming Liang

To cite this article: Faming Liang (2010) A double Metropolis–Hastings sampler for spatial
models with intractable normalizing constants, Journal of Statistical Computation and
Simulation, 80:9, 1007-1022, DOI: 10.1080/00949650902882162

To link to this article:  http://dx.doi.org/10.1080/00949650902882162

Published online: 23 Oct 2009.

Submit your article to this journal 

Article views: 210

View related articles 

Citing articles: 20 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gscs20
http://www.tandfonline.com/loi/gscs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00949650902882162
http://dx.doi.org/10.1080/00949650902882162
http://www.tandfonline.com/action/authorSubmission?journalCode=gscs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gscs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00949650902882162
http://www.tandfonline.com/doi/mlt/10.1080/00949650902882162
http://www.tandfonline.com/doi/citedby/10.1080/00949650902882162#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00949650902882162#tabModule


Journal of Statistical Computation and Simulation
Vol. 80, No. 9, September 2010, 1007–1022

A double Metropolis–Hastings sampler for spatial models with
intractable normalizing constants
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(Received 16 July 2008; final version received 10 March 2009 )

The problem of simulating from distributions with intractable normalizing constants has received much
attention in recent literature. In this article, we propose an asymptotic algorithm, the so-called double
Metropolis–Hastings (MH) sampler, for tackling this problem. Unlike other auxiliary variable algorithms,
the double MH sampler removes the need for exact sampling, the auxiliary variables being generated using
MH kernels, and thus can be applied to a wide range of problems for which exact sampling is not available.
For the problems for which exact sampling is available, it can typically produce the same accurate results
as the exchange algorithm, but using much less CPU time. The new method is illustrated by various spatial
models.

Keywords: autologistic model; autonormal model; auxiliary variable MCMC algorithm; exchange
algorithm; Metropolis–Hastings algorithm

1. Introduction

Spatial models, e.g. the autologistic model, Potts model, and autonormal model [1], have been
used in the modelling of many scientific problems. Examples include image analysis [2], disease
mapping [3], genetic analysis [4], among others. A major problem with the models is that the
normalizing constant is intractable. The problem can be described as follows. Suppose we have a
data set X generated from a statistical model with the likelihood function

f (x|θ) = 1

Z(θ)
exp{−U(x, θ)}, x ∈ X , θ ∈ �, (1)

where θ is a parameter, and Z(θ), the normalizing constant that depends on θ and is not available
in closed form. Let π(θ) denote the prior density of θ . The posterior distribution of θ given, x is
then given by

π(θ |x) ∝ 1

Z(θ)
exp{−U(x, θ)}π(θ). (2)
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Since the closed form of Z(θ) is not available, inference from the model poses a great challenge
on the current statistical methods.

The Metropolis–Hastings (MH) algorithm cannot be directly applied to simulate from π(θ |x),
because the acceptance probability would involve the unknown ratio Z(θ)/Z(θ ′), where θ ′ denotes
the proposed value. To circumvent this difficulty, various approximation methods to the likelihood
function or the normalizing constant function have been proposed for the models. The following
are some examples. Besag [1] proposed the approximation of the likelihood function by a pseudo-
likelihood function that is tractable. The method is easy to use, but it typically performs less well
for the models for which neighbouring dependence is strong. This method was further discussed
and generalized by Dryden et al. [5] and Huang and Ogata [6]. Geyer and Thompson [7] proposed
an importance sampling-based approach to approximate Z(θ). This approach was refined by Liang
et al. [8] by refining the choice of the trial density function using the stochastic approximation
Monte Carlo algorithm. Liang [9] proposed an alternative Monte Carlo approach to approximate
Z(θ), where Z(θ) is viewed as a marginal distribution of the unnormalized distribution g(x, θ) =
exp{−U(x, θ)}, and is estimated by an adaptive kernel density estimator using Monte Carlo draws.

Recently, Møller et al. [10] and Murray et al. [11] proposed auxiliary variable MCMC algo-
rithms for simulating from the distribution (2). These algorithms require exact sampling [12] of X.
Unfortunately, exact sampling is very expensive or impossible for many statistical models whose
normalizing constant is intractable.

In this article, we propose a new asymptotic algorithm, the so-called double MH sampler, for
simulating from the distributions with intractable normalizing constants. The double MH sampler
removes the need for exact sampling, the auxiliary variables being generated using MH kernels,
and thus can be applied to many statistical models for which exact sampling is not available.
While for the models for which exact sampling is available, e.g. the autologistic model, it can
produce almost the same accurate results as the exchange algorithm, but using much less CPU
time.

The remainder of this article is organized as follows: in Section 2, we give a brief review of
the auxiliary variable MCMC algorithms. In Section 3, we describe the double MH sampler. In
Section 4, we illustrate the double MH sampler with three spatial models, the autologistic model,
autonormal model, and very-soft-core model. In Section 5, we conclude the article with a brief
discussion.

2. Auxiliary variable MCMC algorithms

In this section, we give a brief review of the auxiliary variable MCMC algorithms proposed by
Møller et al. [10] and Murray et al. [11].

2.1. Møller et al.’s algorithm

The key idea of Møller et al. [10] is to extend the distribution π(θ |x) to include an auxiliary
variable, y, which shares the same state space as x:

f (θ, y|x) = f (x|θ)π(θ)f (y|θ, x). (3)

To simulate from Equation (3) using the MH algorithm, the authors suggested the following
proposal distribution:

q(θ ′, y′|θ, y) = q(θ ′|θ, y)q(y′|θ ′), (4)
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which corresponds to the usual change in the parameter vector θ → θ ′, followed by exact
sampling of y′ from q(·|θ ′). If q(y′|θ ′) is set as f (y′|θ), then the MH ratio can be written as

r(θ, y, θ ′, y′|x) = f (x|θ ′)π(θ ′)f (y′|θ ′, x)q(θ |θ ′, x)f (y|θ)

f (x|θ)π(θ)f (y|θ, x)q(θ ′|θ, x)f (y′|θ ′)
, (5)

where the unknown normalizing constant Z(θ) can be cancelled. To ease computation, the authors
further suggested to set the auxiliary distributions

f (y|θ, x) = f (y|θ̂ ), f (y′|θ ′, x) = f (y′|θ̂ ), (6)

where θ̂ denotes an estimate of θ , for example, which can be obtained by maximizing a pseudo-
likelihood function.

2.2. The exchange algorithm

Murray et al.’s algorithm is motivated by the parallel tempering algorithm [13], [14], and can be
described as follows. Consider the augmented distribution

f (y1, . . . , ym, θ |x) = π(θ)f (x|θ)

m∏
j=1

f (yj |θj ), (7)

where θis are instantiated and fixed, and y1, . . . , ym are auxiliary variables with the same support
as x. Suppose that a change to θ is proposed with probability q(θi |θ). To ensure that yi = x, we
swap the settings of x and yi . The resulting MH ratio for the change is

r(θ, θi, yi |x) = π(θi)f (x|θi)f (yi |θ)
∏

j �=i f (yj |θj )q(θ |θi)

π(θ)f (x|θ)f (yi |θi)
∏

j �=i f (yj |θj )q(θi |θ)
= π(θi)f (x|θi)f (yi |θ)q(θ |θi)

π(θ)f (x|θ)f (yi |θi)q(θi |θ)
.

(8)
Based on the above arguments, the authors proposed the following algorithm:

The exchange algorithm

(a) Propose θ ′ ∼ q(θ ′|θ, x).
(b) Generate an auxiliary variable y ∼ f (y|θ ′) using an exact sampler.
(c) Accept θ ′ with probability min{1, r(θ, θ ′, y|x)}, where

r(θ, θ ′, y|x) = π(θ ′)f (x|θ ′)f (y|θ)q(θ |θ ′, x)

π(θ)f (x|θ)f (y|θ ′)q(θ ′|θ, x)
. (9)

Since a swapping change between (θ, x) and (θ ′, y) is involved, the algorithm is called the
exchange algorithm by the authors. This algorithm represents an improvement over Møller et al.’s
algorithm, as it removes the need to estimate the parameter before sampling begins. Murray
et al. [11] reported that the exchange algorithm tends to have a higher acceptance probability for
the exact samples than Møller et al.’s algorithm.

3. A double Metropolis–Hastings sampler

Suppose that we are interested in simulating a sample y from f (y|θ ′). If the sample is generated
through m MH updates starting with the current state x, the transition probability, P (m)

θ ′ (y|x), from
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x to y is then

P
(m)
θ ′ (y|x) = Kθ ′(x −→ x1) · · · Kθ ′(xm−1 −→ y), (10)

where K(· → ·) is the MH transition kernel. Thus, we have

P
(m)
θ ′ (x|y)

P
(m)
θ ′ (y|x)

= Kθ ′(y → xm−1) · · · Kθ ′(x1 → x)

Kθ ′(x → x1) · · · Kθ ′(xm−1 → y)

= f (x|θ ′)
f (y|θ ′)

f (y|θ ′)
f (x|θ ′)

Kθ ′(y → xm−1) · · · Kθ ′(x1 → x)

Kθ ′(x → x1) · · · Kθ ′(xm−1 → y)

= f (x|θ ′)
f (y|θ ′)

,

(11)

where the last equality follows from the detailed balance equality f (x|θ ′)Kθ ′(x →
x1) · · · Kθ ′(xm−1 → y) = f (y|θ ′)Kθ ′(y → xm−1) · · · Kθ ′(x1 → x).

Now we return to the problem of simulating from the posterior distribution (2). By Equation
(11), the MH ratio (9) can be re-expressed as

r(θ, θ ′, y|x) = π(θ ′)q(θ |θ ′, x)

π(θ)q(θ ′|θ, x)

f (y|θ)P
(m)
θ ′ (x|y)

f (x|θ)P
(m)
θ ′ (y|x)

. (12)

It is easy to see that if we choose q(θ ′|θ, x) as a MH transition kernel that satisfies the detailed
balance condition, then we have π(θ ′)q(θ |θ ′, x) = π(θ)q(θ ′|θ, x), and the exchange update is
reduced to a simple MH update for which f (x|θ) works as the target distribution and P

(m)
θ ′ (y|x)

works as the proposal distribution. In summary, we have the following sampling scheme as a
replacement for the exchange algorithm. Let t denote the index of iterations, and let θt denote the
current state of the Markov chain.

The double MH Sampler

(a) Simulate a new sample θ ′ from π(θ) using the MH algorithm starting with θt .
(b) Generate an auxiliary variable y ∼ P

(m)
θ ′ (y|x), and accept it with probability min{1, r(θt , θ

′,
y|x)}, where, by Equation (11),

r(θt , θ
′, y|x) = f (y|θt )P

(m)
θ ′ (x|y)

f (x|θt )P
(m)
θ ′ (y|x)

= f (y|θt )f (x|θ ′)
f (x|θt )f (y|θ ′)

. (13)

(c) Set θt+1 = θ ′ if the auxiliary variable is accepted in step (b), and set θt+1 = θt otherwise.

Since two types of MH updates are performed in step (b), one for drawing the auxiliary variable
y and one for acceptance of θ ′, we call the algorithm the double MH sampler. Note that the MH
update performed in step (a) is not essential, which can be incorporated into step (b) by changing
Equation (13) to Equation (12). We also note that Equation (13) holds regardless of the value of
m. A remarkable feature of the algorithm is that it removes the need of exact sampling with a
delicate use of the detailed balance condition. Therefore, the algorithm can be applied to a wide
range of problems for which exact sampling is impossible or very expensive.

It is obvious that the samples will converge to the correct posterior distribution for a large value
of m. In practice, to get good samples from the posterior distribution, m is not necessarily large.
This can be justified as follows: suppose that the current state θt is a sample from π(θ |x). If θ ′ is a
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good proposal, i.e. θ ′ ∼ π(θ |x), then we have x ∼ f (x|θ ′). This further implies that y ∼ f (y|θ ′)
for any value of m, because y is generated through a sequence of MH updates, which starts with
x and admits f (·|θ ′) as the invariant distribution. Hence, in this case, the transition θt → θt+1

leaves the posterior distribution π(θ |x) invariant regardless the value of m. If θ ′ is a bad proposal,
i.e. θ ′ is unlikely a sample from π(θ |x), then the ratio f (x|θ ′)/f (y|θ ′) should be small, as y has
moved some steps towards the equilibrium of f (·|θ ′) than x; and the ratio f (y|θt )/f (x|θt ) should
also be small, as y has moved away from the equilibrium of f (·|θt ) than x. This results in a very
small MH ratio r(θt , θ

′, y|x). As a very likely consequence, the proposal is rejected, and we set
θt+1 = θt . In all examples of this article, the auxiliary variable y is generated through a single
cycle of Gibbs iterations, and this translates to a value of m being equal to the dimension of y.
Note that the value of m used here is rather small, only one Gibbs update per component of y. The
key to the efficiency of the MH kernel P

(m)
θ ′ (y|x) is of starting with x, which also directly leads to

the validity of Equation (13) by the detailed balance condition.
Suppose that a sequence of samples θ1, . . . , θn has been collected from a run of the double

MH sampler. An approximate Bayesian estimator of θ can then be obtained by averaging over the
samples,

θ̄ = 1

n

n∑
i=1

θi .

This estimator can also be named as an ensemble averaging estimator, as θ1 . . . , θn are only
approximately distributed as π(θ |x). As discussed by Haykin [15, p. 355], the ensemble averag-
ing estimator has the same bias as, but a much smaller variance than the single sample estimator.
This estimator can potentially be robustified by downweighting the samples for which the corre-
sponding MH ratio r(θt , θ

′, y|x) was small or the corresponding proposal was rejected, with the
reasons as explained above. Please refer to Haykin [15] again for discussions on weight setting
for ensemble averages. In this article, we simply assign an equal weight to each sample, and call
the resulting estimator θ̄ the approximate Bayesian estimator.

For an effective implementation of the double MH sampler, we need to consider two more
issues. The first issue is on the choice of proposal distributions, namely, the proposal distribution
used in step (a) for generating a new sample of θ ′, and the proposal distribution used in step
(b) for generating an auxiliary variable of y. As for conventional MCMC algorithms, these pro-
posals should be adjusted such that they have a reasonable acceptance rate, e.g. a rate between
0.2 and 0.4 as suggested by Gelman et al. [16]. Since the double MH sampler undergoes two
acceptance/rejection steps, a sample θ ′ is counted as acceptance only when acceptance is made
in both steps (a) and (b). In the article, we call the acceptance rate of θ ′ the acceptance rate of
double MH moves. Note that when a Gibbs sampler is used for generating the auxiliary variables,
the choice of the proposal is automatic.

The second issue is on diagnostic for the convergence of simulations. Since the double MH
sampler belongs to the class of MCMC algorithms, its convergence can be monitored using the
tools existing in the literature. In this article, we adopted the the multiple run-based diagnostic
method developed by Gelman and Rubin [17].

4. Approximate Bayesian analysis for various spatial models

4.1. Spatial autologistic models

The autologistic model [1] has been widely used for spatial data analysis, [18–20]. Let x = {xi :
i ∈ D} denote the observed binary data, where xi is called a spin and D is the set of indices of
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the spins. Let |D| denote the total number of spins in D, and let n(i) denote the set of neighbours
of spin i. The likelihood function of the model is

f (x|α, β) = 1

Z(α, β)
exp

⎧⎨⎩α
∑
i∈D

xi + β

2

∑
i∈D

xi

⎛⎝ ∑
j∈n(i)

xj

⎞⎠⎫⎬⎭ , (α, β) ∈ �, (14)

where the parameter α determines the overall proportion of xi = +1, the parameter β deter-
mines the intensity of interaction between xi and its neighbours, and Z(α, β) is the intractable
normalizing constant defined by

Z(α, β) =
∑

for all possible x

exp

⎧⎨⎩α
∑
j∈D

xj + β

2

∑
i∈D

xi

⎛⎝ ∑
j∈n(i)

xj

⎞⎠⎫⎬⎭ .

An exact evaluation of Z(α, β) is impossible even for a moderate system.
To conduct a Bayesian analysis for the model, we assume a uniform prior on

(α, β) ∈ � = [−1, 1] × [0, 1]

for all examples studied in Section 4.1. Then the double MH sampler can be applied to simulate
from the posterior distribution π(α, β|x). In step (a), (αt , βt ), the current state of the Markov
chain, is updated by a single MH step with a random walk proposal N2((αt , βt )

′, s2I2), where s is
the step size, and I2 is the 2 × 2 identity matrix. In step (b), the auxiliary variable y is generated by
a single cycle of Gibbs updates, and this translates to a value of m = 2293. Two or more cycles,
which means a larger value of m, have also been tried for the examples, the results are similar. The
acceptance rate of the double MH moves can be controlled by the choice of s. In this subsection,
we set s = 0.03 for all examples.

4.1.1. US cancer mortality data

United States cancer mortality maps have been compiled by Riggan et al. [21] for investigating
possible association of cancer with unusual demographic, environmental, industrial character-
istics, or employment patterns. Figure 1(a) shows the mortality map of liver and gallbladder
(including bile ducts) cancers for white males during the decade 1950–1959, which indicates
some apparent geographic clustering. Refer to Sherman et al. [20] for more descriptions of the
data. Following Sherman et al. [20], we modelled the data by a spatial autologistic model. The
total number of spins is |D| = 2293. A free boundary condition is assumed for the model, under
which the boundary points have less neighbouring points than the interior points. The assumption
is natural to this example, as the lattice has an irregular shape.

The double MH sampler was first applied to this example. The sampler started with the ini-
tial value (α0, β0) = (0, 0) and was run five times independently. Each run consisted of 10,500
iterations. The CPU time cost by each run was 4.2 s on a 2.8 GHz computer (all computations
reported in this article were done in the same computer). The overall acceptance rate of the double
MH moves was about 0.23. Figure 2 provides two diagnostic plots for the convergence of the
runs, where the statistic Gelman–Rubin R̂ [17] was plotted against iterations. The simulations
are usually considered as converged, when the statistic Gelman–Rubin R̂ falls below the hor-
izontal line 1.1. Figure 2 indicates that for this example, the simulations converged very fast,
usually within two hundreds of iterations. Based on this diagnostic, we discarded the first 500
iterations of each run for the burn-in process, and collected 2000 samples from the remaining
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Figure 1. US cancer mortality data. (a) The mortality map of liver and gallbladder cancers (including bile ducts) for
white males during the decade 1950–1959. Black squares denote counties of high cancer mortality rate, and white squares
denote counties of low cancer mortality rate. (b) Fitted cancer mortality rates by the autologistic model with the parameters
being replaced by its approximate Bayesian estimates. The cancer mortality rate of each county is represented by the gray
level of the corresponding square.

Figure 2. Convergence diagnostic of the double MH sampler for the US cancer mortality example: (a) Gelman–Rubin
diagnostic based on the samples of α generated in five runs; (b) Gelman–Rubin diagnostic based on the samples of β

generated in five runs.

iterations at equally spaced time points. Averaging over the estimates obtained from respec-
tive runs, we got the following estimate: (α̂, β̂) = (−0.3028, 0.1228) with the standard error
(8.2 × 10−4, 2.7 × 10−4).

For comparison, the exchange algorithm was also applied to this example. It was run as the
double MH sampler except that the auxiliary variable y was generated using an exact sam-
pler. Following Murray et al. [11], we adopted the summary state algorithm [22] as our exact
sampler, which is suitable for high-dimensional binary spaces. The algorithm was also run five
times, and each run consisted of 10,500 iterations. The CPU time cost by each run was 111.5 s,
about 27 times longer than that cost by the double MH sampler. The overall acceptance rate
of the exact auxiliary variables was 0.2. Averaging over the estimates obtained from respec-
tive runs, we got the estimate (α̂, β̂) = (−0.3030, 0.1219) with the standard error (1.1 × 10−3,

6.0 × 10−4).
It is easy to see that the double MH sampler and the exchange algorithm produced almost

identical estimates for this example. These estimates are also very close to the estimate
(−0.3008, 0.1231) obtained by Liang [9] using contour Monte Carlo, and the estimate (−0.2999,
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Figure 3. Panel (a) shows the histograms of the samples generated by the exchange algorithm. Panel (b) shows the
histograms of the samples generated by the double MH sampler. Panel (c) shows the Q–Q plots for the samples generated
by these two algorithms, the left plot is for the α samples, and the right plot is for the β samples.

0.1234) obtained by Liang et al. [8] using stochastic approximation Monte Carlo. We note that
both the contour Monte Carlo and stochastic approximation Monte Carlo algorithms try to first
approximate the unknown normalizing constant function, and then estimate the parameters based
on the approximated normalizing constant function. As reported by the authors, both the algo-
rithms take hours of CPU time to approximate the normalizing constant function. This data has also
been analysed by Sherman et al. [20] using the Monte Carlo maximum likelihood algorithm [7],
resulting in a similar estimate of (−0.304, 0.117).

Later, both the double MH sampler and the exchange algorithm were re-run with the same
parameter setting as specified above except for the number of iterations being lengthened to
100,500. In each run, 10,000 samples were collected from the last 100,000 iterations at equally
spaced time points. The empirical distributions of the samples were studied in Figure 3. The plots
indicate that the samples generated by the double MH sampler are almost identically distributed
as those generated by the exchange algorithm.

In summary, for this example the double MH sampler produced almost identical results with
the exchange algorithm while using much less CPU time. This advantage can be seen clearly in
Section 4.1.2, where for some cases the exact sampler is impossible while the double MH sampler
still works well.

4.1.2. Simulation studies

To assess the general accuracy of the estimates produced by the double MH sampler, we sim-
ulated 50 independent samples for the US cancer mortality data under each setting of (α, β)
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Table 1. Computational results for the simulated US cancer mortality data.

Double MH sampler Exchange algorithm MPLE

(α, β) α̂ β̂ CPUa(s) α̂ β̂ CPUb(s) α̂ β̂

(0,0.1)c −.0038 .1010 4.2 −.0038 .1002 103 −.0035 .1016
(.0024) (.0018) (.0024) (.0018) (.0024) (.0019)

(0,0.2)c −.0026 .2018 4.2 −.0025 .2007 251 −.0024 .2025
(.0021) (.0019) (.0020) (.0019) (.0022) (.0022)

(0,0.3)c −.0018 .2994 4.2 −.0014 .2971 821 −.0019 .2981
(.0014) (.0018) (.0014) (.0018) (.0016) (.0022)

(0,0.4)c .0013 .4023 4.2 −.0007 .3980 7938 .0020 .4013
(.0009) (.0015) (.0004) (.0012) (.0012) (.0020)

(0.1,0.1)c .1025 .0993 4.2 .1030 .0986 110 .1023 .0999
(.0025) (.0022) (.0025) (.0022) (.0025) (.0023)

(0.3,0.3)c .2944 .3032 4.2 .3012 .3008 321 .2904 .3041
(.0098) (.0043) (.0098) (.0043) (.0102) (.0046)

(0.5,0.5)d .5040 .5060 4.2 — — — .5610 .4847
(.0227) (.0085) — — (.0393) (.0123)

Notes: The numbers in the parentheses denote the standard error of the estimates. —, not available.
aThe CPU time cost by a single run of the double MH sampler.
bThe CPU time cost by a single run of the exchange algorithm.
cThe data were simulated using the exact sampler.
dThe data were simulated using the Gibbs sampler, starting with a random configuration and then iterating for 100,000 Gibbs cycles.

given in Table 1. Since the lattice is irregular, the free boundary condition was again assumed
in the simulations. We then re-estimated the parameters using the double MH sampler and the
exchange algorithm. Both algorithms were run as in Section 4.1.1. The computational results were
summarized in Table 1. For a thorough comparison, we also included in Table 1 the maximum
pseudo-likelihood estimators (MPLE) of the parameters [1] , which were obtained by maximizing
the pseudo-likelihood function

L̃(α, β|x) =
∏
i∈D

[
eαxi+β

∑
j∈n(i) xixj

eα+β
∑

j∈n(i) xj + e−α−β
∑

j∈n(i)

∑
xj

]

using the downhill simplex method [23]. The advantage of this method is that it does not require
the gradient information of the objective function, and can thus be easily applied to the constraint
optimization problems.

Table 1 indicates that the double MH sampler can produce almost the same accurate results as
does the exchange algorithm, and more accurate results than does the MPLE especially when α

and β are large. It is remarkable that the CPU time cost by the double MH sampler is independent
of the values of (α, β). While as β increases, the CPU time cost by the exchange algorithm
increases exponentially. Childs et al. [22] studied the behaviour of the exact sampler for the
Ising model, a simplified autologistic model. For the Ising model, they fitted an exponential
law for the convergence time, and reported that the exact sampler may diverge at a value of
β lower than the critical value (≈0.44). Childs et al.’s finding is consistent with our results. It
takes an extremely long CPU time for the exact sampler to generate a sample under the settings
(0, 0.4) and (0.5, 0.5). We note that due to the effect of α, it usually takes a longer CPU time
for the exact sampler to generate a sampler under the setting (0, β) than under the setting (α, β);
and that when α and β are large, the accuracy of the estimates tends to be reduced by their
correlation.
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4.2. Autonormal models

Consider a second-order zero-mean Gaussian Markov random field X = (Xij ) defined on an
M × N lattice, whose conditional density function is given by

f (xij |β, σ 2, xuv; (u, v) �= (i, j)) = 1√
2πσ

exp

⎧⎨⎩− 1

2σ 2
(xij − βh

∑
(u,v)∈nh(i,j)

xuv

− βv

∑
(u,v)∈nv(i,j)

xuv − βd

∑
(u,v)∈nd (i,j)

xuv)
2

⎫⎬⎭ , (15)

where β = (βh, βv, βd) and σ 2 are parameters, nh(i, j) = {(i, j − 1), (i, j + 1)}, nv(i, j) =
{(i − 1, j), (i + 1, j)} and nd(i, j) = {(i − 1, j − 1), (i − 1, j + 1), (i + 1, j − 1), (i + 1,

j + 1)} are neighbours of (i, j). This model is stationary when |βh| + |βv| + 2|βd | < 0.5 [24].
The joint likelihood function of this model can be written as

f (x|β, σ 2) = (2πσ 2)−MN/2|B|1/2 exp

{
− 1

2σ 2
x′Bx

}
,

where B is an (MN × MN)-dimensional matrix, e.g. a 2500 × 2500 matrix corresponding to a
small lattice of size 50 × 50, and |B| is intractable except for some special cases [25].

To conduct a Bayesian analysis for the model, we assume the following priors:

π(β) ∝ I (|βh| + |βv| + 2|βd | < 0.5), π(σ 2) ∝ 1

σ 2
, (16)

which I (·) is the indicator function. Under the free boundary condition for which the boundary
pixels have fewer neighbours, we have the following posterior distribution

π(β, σ 2|x) ∝ (σ 2)−(MN/2)−1|B|1/2 exp

{
−MN

2σ 2
(Sx − 2βhXh − 2βvXv − 2βdXd)

}
× I (|βh| + |βv| + 2|βd | < 0.5), (17)

where

Sx = 1

MN

M∑
i=1

N∑
j=1

x2
ij , Xh = 1

MN

M∑
i=1

N−1∑
j=1

xij xi,j+1,

Xv = 1

MN

M−1∑
i=1

N∑
j=1

xij xi+1,j , Xd = 1

MN

⎛⎝M−1∑
i=1

N−1∑
j=1

xij xi+1,j+1 +
M−1∑
i=1

N∑
j=2

xij xi+1,j−1

⎞⎠ .

Although σ 2 can be integrated out from the posterior, we do not suggest to do so. Working on the
joint posterior will ease the generation of auxiliary variables for the double MH sampler. To ease
implementation of sampling from the prior distribution, we reparametrize σ 2 by τ = log(σ 2),
and then we have

π(β, τ) ∝ I (|βh| + |βv| + 2|βd | < 0.5).

The double MH sampler can be applied to simulate from the posterior distribution of β and τ .
In step (a), (βt , τt ) is updated by a single MH step with a random walk proposal N((βt , τt )

′, s2I4).
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In this subsection, we set s = 0.02 unless otherwise stated. In step (b), the auxiliary variable y is
generated by a single cycle of Gibbs updates:

yij |y(u,v)∈n(i,j) ∼ N

⎛⎝βh

∑
(u,v)∈nh(i,j)

yuv + βv

∑
(u,v)∈nv(i,j)

yuv + βd

∑
(u,v)∈nd (i,j)

yuv, eτt

⎞⎠ ,

for i = 1, . . . , M and j = 1, . . . , N , starting with y = x.
The exchange algorithm is not applicable to the autonormal model, as exact sampling is not

available for it. However, under the free boundary condition, the log-likelihood function of the
model admits the following analytic form [24]:

l(X|β, σ 2) = Constant − MN

2
log(σ 2) − MN

2σ 2
(Sx − 2βhXh − 2βvXv − 2βdXd) + 1

2

M∑
i=1

N∑
j=1

× log

(
1 − 2βv cos

iπ

M + 1
− 2βh cos

jπ

N + 1
− 4βd cos

iπ

M + 1
cos

jπ

N + 1

)
,

(18)

where Sx , Xh, Xv , and Xd are as defined in Equation (17). The Bayesian inference for the model
is then standard, with the priors as specified in Equation (16). In this article, we call the Bayesian
analysis based on this analytic likelihood function, the true Bayesian analysis, and call the resulting
estimator, the true Bayesian estimator.

For a thorough comparison, we also considered MPLEs for this model, which are to find the
parameter values that maximize the pseudo-likelihood function:

L̃(β, σ 2|x) =
M∏
i=1

N∏
j=1

f (xij |β, σ 2, xuv; (u, v) �= (i, j)).

The maximization can be accomplished using the downhill simplex method [23].

4.2.1. Wheat yield data

We first work on the wheat yield data collected on a 20 × 25 rectangular lattice [26, Table 6.1].
The data was shown in Figure 4(a), which indicates positive correlation between neighbouring
observations. This data has been analysed by a number of authors, [1], Huang and Ogata [27] and
Gu and Zhu [28]. Following the previous authors, we subtracted the mean from the data and then
fitted them by the autonormal model. In our analysis, the free boundary condition is assumed.
This is natural, as for the real data the lattice is often irregular.

The double MH sampler is applied to this example. The sampler was run five times indepen-
dently. Each run started with the point (0,0,0,0) and consisted of 50,500 iterations, for which
the first 500 iterations were discarded for the burn-in process and 10,000 samples were collected
from the remaining iterations at equally spaced time points. The CPU time cost by each run was
5.8 s. The overall acceptance rate of the double MH moves was about 0.23. The results were
summarized in Table 2. To assess the quality of the estimators, we also included in the table the
mean squared error of the fitted values (FMSE), which is defined as

FMSE = 1

MN

M∑
i=1

N∑
j=1

(xij − x̂ij ),
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Figure 4. (a) Image of the wheat yield data: black squares denote high yield ares, and white squares denote low yield
areas. (b) Locations of 69 Spanish town in an area of 40 × 40 square miles.

Table 2. Computational results for the wheat yield data.

Algorithm βh βv βd σ 2 FMSE

True Bayes 0.102(4e−4) 0.355(3e−4) 0.006(2e−4) 0.123(2e−4) 0.123(0.0)
DMH 0.099(6e−4) 0.351(5e−4) 0.006(3e−4) 0.126(3e−4) 0.123(0.0)
MPLE 0.140 0.340 −0.010 0.122 0.122

Note: The numbers in the parentheses denote the standard error of the estimates.

and x̂ij denotes the fitted value of xij . FMSE provides a square measure for the difference between
the fitted and true observations. For the Bayesian method, x̂ij can be calculated by

x̂ij = 1

n

n∑
t=1

⎛⎝β
(t)
h

∑
(u,v)∈nh(i,j)

xuv + β(t)
v

∑
(u,v)∈nv(i,j)

xuv + β
(t)
d

∑
(u,v)∈nd (i,j)

xuv

⎞⎠ ,

given the MCMC samples (β(t), τ (t)), t = 1, . . . , n.
For comparison, the true Bayesian and MPLE methods were also applied to this example. In

the true Bayesian analysis, the posterior was simulated using the MH algorithm five times. Each
run also consisted of 50,500 iterations, with the first 500 iterations being discarded for the burn-
in process and 10,000 samples being collected from the remaining iterations at equally spaced
time points. The proposal adopted here was a random walk proposal with the variance–covariance
matrix 0.022I4. The overall acceptance rate of the proposals was about 0.22. The numerical results
were also summarized in Table 2. The comparison indicates that the estimates produced by DMH
are much closer to the true Bayesian estimates than are MPLEs, while the three methods all
produced about the same FMSEs.

4.2.2. Simulation studies

To assess the general accuracy of the double MH estimator for the autonormal models, we sim-
ulated 50 independent samples of size 100 × 100 under each setting of (β, σ 2) given in Table 3.
Without loss of generality, we set σ 2 = 1.0. The simulations were done using the Gibbs sampler,
starting with a random configuration with each entry being drawn independently from N(0, 1),
and then iterating for 50,000 Gibbs cycles. The free boundary condition was again assumed in
the simulations. The parameters were re-estimated using the double MH sampler, true Bayesian
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Table 3. Computational results for the simulated autonormal data. All entries of the table have been scaled by a factor
of 1000. The true parameter values (βh, βv, βd , σ 2) are (0.1,0.1,0.0,1), (0.15,0.1,0.1,1.0), and (0.2,0.15,0.05,1.0) for the
settings I, II, and III, respectively. Let θ be the true value of a parameter, and let θ̂ (i) denote its estimate obtained from data

set i, then ‘bias’= ∑50
i=1(θ̂

(i) − θ)/50, ‘se’ is the standard error of
∑50

i=1 θ̂ (i)/50, and ‘rmse’=
√∑50

i=1(θ̂
(i) − θ)2/50.

Algorithm True Bayesian method DMH MPLE

Setting I II III I II III I II III

βh bias 0.34 −0.75 3.04 −0.29 −1.42 1.60 0.22 −1.96 2.68
se 1.55 1.22 1.12 1.52 1.22 1.14 1.63 1.46 1.25
rmse 10.83 8.56 8.44 10.66 8.67 8.14 11.39 10.40 9.18

βv bias −1.73 0.92 0.35 −2.28 0.73 −0.32 −2.65 1.77 −1.39
se 1.25 1.26 1.41 1.24 1.25 1.41 1.31 1.85 1.67
rmse 8.95 8.90 9.91 8.98 8.80 9.89 9.52 13.06 11.75

βd bias −0.44 0.24 −1.15 −0.23 0.57 0.16 −0.39 0.36 −0.63
se 1.08 0.88 1.04 1.08 0.84 2.30 1.11 0.92 1.17
rmse 7.60 6.15 7.36 7.57 5.94 7.57 7.79 6.48 8.23

σ 2 bias −4.08 −13.02 −14.01 0.36 −0.48 0.16 0.05 −1.68 2.18
se 2.02 2.46 2.27 2.05 2.43 2.30 2.05 2.93 2.90
rmse 14.69 21.57 21.21 14.36 17.02 16.07 14.36 20.55 20.43

Score mean 1418.7 1418.7 1419.1 1418.7 1418.7 1419.1 1418.8 1418.9 1419.2
se 0.96 0.99 1.08 0.96 0.97 1.07 0.96 0.96 1.07

method, and MPLE method. These methods were run as in Section 4.2.1 except for the choice
of s. Here we set s = 0.005 and this resulted in an acceptance rate of 0.35 for the double MH
sampler and an acceptance rate of 0.37 for the true Bayesian method. The numerical results were
summarized in Table 3. Instead of FMSEs, we considered for this example the predictive log-score
[29], which is defined as

− 1

MN

M∑
i=1

N∑
j=1

log

{
1

n

n∑
t=1

P(zij |β(t), τ (t), zuv; (u, v) �= (i, j))

}
,

given the MCMC samples (β(t), τ (t)), t = 1, . . . , n. Here z denotes a sample simulated indepen-
dently of x but under the same parameter setting. As argued by Hoeting et al. [29], the predictive
score is a combined measure of the predictive bias and the lack of calibration. The smaller the
score, the better the predictive performance.

Table 3 indicates that the double MH sampler outperforms the MPLE method for this example;
the double MH estimates consistently have smaller biases, standard errors, RMSEs, and predictive
log-scores than the MPLEs. It is remarkable that for the parameters βh, βv , and βd , the DMH
estimates are quite comparable with the true Bayesian estimates; and for σ 2, the DMH estimate
is even better than the true Bayesian estimate.

4.3. Pairwise interacted spatial point process

The spatial point process is described by the coordinates of points x = {xi ∈ A : i = 1, . . . , n} in
a planar region A. If the points are pairwise interacted, the joint density can be written as

f (x|θ) = 1

Z(θ)
exp

⎧⎨⎩−
n∑

i=1

∑
j>i

φ(‖xi − xj‖, θ)

⎫⎬⎭ , θ > 0, (19)

where φ(·) is called the pairwise potential function. If we define

φ(t, θ) = − log{1 − exp(−ρt2/θ)},
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then the model (19) is called the very-soft-core model, where ρ = n/|A| and |A| is the area of
region A. The normalizing constant of the model is

Z(θ) =
∫

A

· · ·
∫

A

exp

⎧⎨⎩−
n∑

i=1

∑
j>i

φ(‖xi − xj‖, θ)

⎫⎬⎭ dx1 · · · dxn,

which is intractable. To estimate the parameter θ , various approximations to the function Z(θ)

have been proposed in the literature, see Huang and Ogata [27] for an overview.
To conduct a Bayesian analysis for the model, we let θ be subject to the following prior:

π(θ) ∝ 1

θ
,

and then re-parametrize it by τ = log(θ). The double MH sampler can then be applied to simulate
from the posterior density of τ . In step (a), τt , the current state of the Markov chain, is updated
by a MH step with a random walk proposal N(τt , s

2), where we set s = 1.5 for the Spanish town
example studied below. In step (b), the auxiliary variable y is simulated through a single cycle of
Metropolis-within-Gibbs moves [30] :

yi ∼ f (yi |y[−i]) ∝ exp

⎧⎨⎩−
∑
j �=i

φ(‖yj − yi‖, eτ )

⎫⎬⎭ , i = 1, . . . , n, (20)

where y is initialized at x, and y[−i] denotes a subset of y with yi being deleted.
We fitted the very-soft-core model to the Spanish town data shown in Figure 4(b). The data

consists of n = 69 points in an area of 40 × 40 square miles. This data set has been analysed by
Ripley [31], Ogata and Tanemura [32] and Gu and Zhu [28] using the same model. The double
MH sampler was applied to this example. In the Metropolis-within-Gibbs cycle, each yi is updated
through 10 consecutive MH steps with a random walk proposal N(yi, 52I2). The sampler was run
five times independently. Each run consisted of 20,500 iterations, where the first 500 iterations
were discarded for the burn-in process, and 4000 samples were collected from the remaining
iterations at equally spaced time points. The overall acceptance rate of the double MH moves was
0.27, and the CPU time cost by each run was about 266 s. Averaging over the estimates obtained
from the five runs, we got an estimate θ̂ = 0.176 with the standard error 0.001. This estimate is
consistent with the Monte Carlo MLE 0.167 obtained by Gu and Zhu [28], but the latter has a
large standard error of 0.078.

5. Discussion

We have proposed the double MH sampler for conducting an approximate Bayesian analysis for
the models with intractable normalizing constants. The double MH sampler removes the need
for exact sampling, the auxiliary variables being generated using MH kernels, and thus can be
applied to a wide range of problems for which exact sampling is not available or very expensive.
Besides the spatial models studied in the article, the double MH sampler can be directly applied
to many other scientific models or problems, such as image segmentation [2], social network
modelling [33], and genetic analysis [4].

As a practical hint, we would like to point out that the MCMC sampler used for generating
auxiliary variables is the key to the efficiency of the double MH sampler. In this article, we used the
Gibbs sampler for the first and second examples, and used the Metropolis-within-Gibbs sampler
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for the third example. Theoretically, any MCMC samplers can be used here, and some may be
even more efficient than the ones we used. For example, the Swendsen–Wang algorithm [34] or
the Wolff algorithm [35] can be used for the autologistic models, and they are expected to be more
efficient than the plain Gibbs sampler we used. Similarly, the block Gibbs sampler [36] can be
used for the spatial point process with the points being grouped appropriately.

When the dimension of the problem is high, the curse of dimensionality may be a serious
difficulty for the MH sampler. To maintain a given level of quality of auxiliary variables, its
number of iterations need to increase exponentially with dimension. In this case, the sequential
parallel tempering algorithm [37] may be used. As demonstrated in Liang [37], the sequential
parallel tempering algorithm can significantly reduce the curse of dimensionality suffered by the
MH sampler.
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