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We dedicate this book to the memories of Sue Freeman and Lin Freeman because of their
impacts on our lives in both professional and personal realms. Together, they formed a fine
couple living a rich and full life. Together, they provided a kind of role model worthy of
emulation.

Lin founded and was a longtime editor of Social networks. For decades it was the premier
journal of the field. While joined by other network venues, it remains the primary home for
scholars publishing papers about social networks. He had a clear vision for the role this journal
could play as a venue for publishing important work and how it could help to define our field.
Especially important was the breath of his commitment to encouraging interdisciplinary work
across multiple fields. He was very catholic in encouraging multiple approaches and different
ways of doing research. But he was clear that this work had to be rigorous and done within
sound research designs.

Both Lin and Sue were social active at the annual Sunbelt Social Network conferences both in
sessions and, more importantly, outside sessions when a lot of ideas are generated in free-flowing
discussions about our field and potential future directions.

Editors
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1
Introduction

Patrick Doreian3,4, Vladimir Batagelj1,2,5, and Anuška Ferligoj3,5

1IMFM Ljubljana
2IAM, University of Primorska, Koper
3FDV, University of Ljubljana
4University of Pittsburgh
5NRU HSE Moscow

This book focuses on network clustering regardless of the disciplines within which a network
was established. In the initial conception for the book, our attention was driven primarily by
concerns regarding blockmodeling and community detection as they applied to social networks.
But as we looked further into this general topic to invite potential contributors, we realized
that the domain was much broader. The wide variety of approaches contained in this volume
exemplifies this diversity. For us, as we assembled this volume, this was an exciting learning
experience, one we hope will be experienced by readers of this book.

There is no single best approach to network clustering. Put differently, there is no
cookie-cutter approach fitting all such data sets. Yes, there are adherents of one (their) approach
who think this is the case. As shown in the chapters that follow, none of the authors of the
contributed chapters share this very narrow view. This is a wide-open realm with multiple
exciting approaches. We reflect further on this in the concluding chapter. Here, we describe
briefly the contents of the following chapters merely as an introduction to them. In our view,
each chapter merits close attention.

1.1 On the Chapters

As the book is concerned with network clustering, Chapter 2 offers an extended examination of
the network clustering literature. Identifying the citation network for this literature turned out to
be a complex task. Methods for doing this are described in detail. The initial search used the Web

Advances in Network Clustering and Blockmodeling, First Edition.
Edited by Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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of Science (WoS) to identify documents using search terms. There were multiple searches, with
the first being for 2015 and the final network was obtained for February 2017. This literature
expanded dramatically and in a complex fashion.

While a citation network is composed of links between works treated as nodes, there is more
to consider when other types of units are included. These include authors, journals, and key-
words. As part of a more general strategy, one starting from the citation network but using
additional information, multiple two-mode networks were constructed. This included an author-
ship network with works× authors, a journal network featuring works× journals, and a keyword
network with works × keywords. They help give more insight into the one-mode citation net-
work having only scientific productions.

Chapter 2 lists the most cited works, the most citing works, the most used keywords, and a
discussion of the “boundary problem” as it relates to citation networks. One message from this
chapter is that the way the boundary of a citation network is established affects greatly the data
analytic results that follow. This implies using great care in constructing citation networks – not
all citation networks will suffice for meaningful analyses.

Chapter 2 presents a wide range of analyses of the citation network for the network clustering
literature. Components of the network were established. Both critical project main paths and
key-route paths were identified. In the analysis of this network, a clear transition between the
blockmodeling and the community detection literatures was revealed. Another technique used
in Chapter 2 is the identification of link islands which have higher levels of internal cohesion
as a way identifying some important subnetworks of this literature. The largest of these link
islands featured works from the blockmodeling and community detection literatures. Since the
transition from the former to the latter, it seems the two have developed independently. This
seems problematic given our belief in the utility of useful ideas flowing between fields and
sub-fields.

The other islands discussed in Chapter 2 come from the fields of engineering geology, geo-
physics, as well as electromagnetic fields and their impacts on humans. One of the searches used
in the searches of the WoS database included the terms “block model” and “block”. The latter
crops up in other literatures, a surprise for us. In considering these other link islands, another
surprise awaited the authors of this chapter. We are used to debates in the social network lit-
erature regarding the difference between static and temporal approaches to studying networks.
This divide is present also in the natural sciences.

Chapter 2 also contains an examination of authors and measures of productivity within
research groups, collaboration, and an examination of citations among authors contributing to
the network clustering literature. Again, the stark division between the community detection
and blockmodeling literatures was clear. Examined also are citations between journals publish-
ing articles in the broad area of the network clustering literature. The methodological details of
doing this, as outlined in this chapter, merit further attention.

Bibliographic coupling, which occurs when two works both cite a third work in their bib-
liographies, was also examined. This included a sustained assessment as to how this coupling
is measured. These tools were applied to the network clustering literature, especially for the
largest identified island. This included an examination of the most frequently used keywords
in the social networks literature and the physicist-driven approach to studying social networks.
While some keywords were the same, there were considerable differences, again illustrating the
different concerns in these two literatures.
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Chapter 3 provides an overview of “classical” clustering including both the clustering of
networks and clustering in networks. The clustering problem is considered as a discrete opti-
mization problem which turns to be, in most cases, NP hard. Therefore, local optimization or
greedy methods are usually used for solving it. These methods can be adapted also for clustering
in networks (or clustering with relational constraints). The hierarchical agglomerative clustering
method can be extended for efficiently clustering large sparse networks. This is illustrated with
an analysis of normalized author citation networks from the network clustering literature from
Chapter 2.

Chapter 4 describes different approaches to community detection. The authors ask very useful
questions which led them to provide helpful guidelines for researchers contemplating network
clustering within a community detection framework. It starts with a bold claim that there is
no precise definition of a community. We concur. Their focused review of community detection
methods makes it clear that researchers need to have a clear idea as to why any method is selected
prior to its use. The authors point to the problem that the same term can have different meanings
in different subfields, reflecting what was found in Chapter 2. They argue “community detection
should not be viewed as a well-defined problem but rather an umbrella term with many facets.”
This delightful image is equally applicable to blockmodeling within social network analysis!

Four different approaches to community detection are outlined. The first uses the cut-based
perspective. The second is a clustering approach maximizing the internal density of clusters
and the third is the stochastic equivalence perspective. Finally, there is a dynamical perspective
focusing on the impact of communities and dynamic processes to establish a dynamically rele-
vant coarse-grained partitions of network structure. Four sections follow which provide precise
descriptions of the fundamental properties of these approaches and the results stemming from
adopting them.

Their discussion makes it clear that there is no single “best” community detection algorithm
and that there can be multiple equally valid partitions of a network depending on which of the
four considered approaches is used. Again, this sentence holds fully when “blockmodeling” is
used instead of “community detection”. Of course, this applies to all the network clustering
approaches presented in this volume.

Chapter 5 provides an extensive discussion of label propagation as a heuristic method initially
proposed for community detection. There is natural segue between Chapters 4 and 5. Label
propagation is a partially supervised machine learning algorithm assigning labels to previously
unlabeled data points. At the start of the algorithm, subsets of nodes have labels, which amounts
to a clustering of them. These labels are propagated to the unlabeled points throughout the
course of the algorithm. Nodes carry a label denoting the community to which they belong.
Membership in a community changes based on the labels that the neighboring nodes possess as
the labels diffuse through the network.

The author is clear that while it is not the most accurate or the most robust clustering method,
a label propagation algorithm is simple to implement and is exceptionally fast. Networks with
hundreds of millions of nodes can be analyzed readily. The early work on this approach is
described with the basic ideas presented for simple undirected networks. However, the author
points out that it can be used for many more types of networks, including those with multiple
edges between nodes, two-mode networks, and signed networks. It can be used also to identify
and delineate overlapping clusters: it is not restricted to establishing only partitions of nodes, a
useful property. Nested hierarchies of groups of nodes can be identified also.
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Issues regarding the number of clusters are discussed along with updating labels, which can
be done with either synchronous propagation or asynchronous propagation. Depending on the
structure of the network, each can produce undesirable outcomes, which are discussed in detail.
Reaching an equilibrium with nodes having stable labels is critical and ways for achieving this
are discussed.

Advances in label propagation methods are described. They include adding constraints to
the objective function to prevent trivial solutions, using preferences to adjust the propagation
strength of nodes, and improving algorithmic performance by promoting its stability and reduc-
ing its complexity. Simple examples with planted communities are provided and used to show
the subtlety of the method and the choices made when using it. A connection is made with the
blockmodeling literature when using structural equivalence, consistent with the general con-
ception motivating the book to apply and connect different methods for establishing clusters of
network nodes.

Chapter 6 marks a transition from community detection issues to blockmodeling concerns.
There is now an abundant amount of valued network data being collected and made available.
As the initial work on blockmodeling dealt with binary networks, extending and adapting this
approach to handle valued networks is important. The authors show that creating this extension is
far from straightforward because subtle issues arise as to how valued network data can be treated
prior to blockmodeling them. The authors discuss the difference between the traditional indirect
approach and the direct approach to blockmodeling. In the former, networks are transformed
into arrays expressing the similarity, or dissimilarity, of the nodes. These measures are then
used to cluster the nodes. Their Figure 6.1 lays out the relevant decision points. In contrast, the
direct approach eschews such transformations. Within the rubric of generalized blockmodeling,
network data are analyzed directly. For valued networks, the authors cleave to the latter approach
by making strategic adaptations to handle valued data in useful ways. This includes homogeneity
blockmodeling championed by one of the authors and deviation generalized blockmodeling
promoted by the other contributing author.

Two well-known empirical data sets were selected for a detailed examination of the issues
involved in blockmodeling valued data. The simplest of the two is a friendship network. The
second involves trade flows between nations, one raising the issue of relational capacity. This
has major implications for the nature of discerning the relevant useful transformations. As with
the previous chapters in this volume, close attention is paid to the choices that must be made
regarding the appropriateness of methods given the data being analyzed and the criteria for
making these choices. Their Figure 6.2 is particularly important as a way of guiding researchers
to make appropriate decisions. It could be generalized more broadly and adapted for the other
network clustering approaches presented in this volume.

By presenting detailed analyses of the selected empirical networks using different approaches
and a variety of transformations, the authors show, and examine, the different outcomes resulting
from making different strategic choices. The results have interest value in their own right, and
lead to a set of useful recommendations about these choices. Some open problems are discussed
briefly.

Chapter 7 continues the consideration of blockmodeling but tackles a very different issue,
namely, measurement error. The premise for blockmodeling is that using these methods reveals
the structural features of networks at both the macro and micro levels. The presence of measure-
ment error complicates these analyses. In the worst case scenario it can render blockmodeling
results useless. Three types of measurement errors are discussed. One takes the form of having
errors in the recorded ties. The second is item non-response and the third is actor non-response.
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Actor non-response is the primary focus of this chapter. Typically, and regrettably, within
social network analysis, the standard response to this problem is to discard all information about
the non-respondents, including information about the ties directed to them by respondents. This
discarded information can be used to recover (most of) the network. The authors contend that
this must be done and provide strong evidence supporting this claim. The question that follows
is simple to state: how is this done?

The authors present seven ways for using such data as imputation methods for recovering the
network from the ravages of actor non-response: reconstruction, imputation using the mean of
the incoming ties, imputation with modal values of the incoming ties, reconstruction combined
with using the incoming modal values, imputation of the total mean, imputations using the
median of the three nearest neighbors based on incoming ties, and null tie imputation.

The authors examine the relative merits of these ways of recovering network data using four
known empirical networks. Five steps are involved. The first establishes a partition of the known
network within the indirect blockmodeling approach. The second step creates “observed” net-
works by randomly removing some actors (at various levels ranging from 1% to over 45%).
Step three involves using each of the imputation methods to generate recovered networks. The
fourth step is the clustering of each recovered network using the exact same clustering method
as in the first step. The final step compares the partitions for all pairs of known and recovered
networks. Two criteria were used in the comparisons. One is the Adjusted Rand Index for com-
paring two partitions. The other is the proportion of correctly identified blocks by position in the
blockmodel. These criteria are stringent and there are clear differences regarding the adequacy
of imputation methods. As with the foregoing chapters, recommendations are made regarding
the best ways for recovering network data given the presence of actor non-response.

Chapter 8 addresses the clustering of signed networks, a topic that has garnered considerable
attention within both the blockmodeling and community detection literatures. The authors adopt
a formal approach and start within the structural balance perspective, which is a substantively
driven approach to studying signed networks. The basics of this approach are reviewed. Some of
the early theorems are restated with some new proofs provided. One critical feature of structural
balance theory states that a signed network is balanced if all its cycles are balanced. But cycles
can vary in length, a feature that complicates algorithms used for determining the extent to which
graphs are imbalanced. The authors use the concept of chords, which allows cycles to have two
subcycles which simplifies computing the sign of a cycle.

One prominent feature of the balance theoretic approach centers on what has come to be
called the “structure theorems”. Initially, if a signed graph was balanced, its nodes could be
partitioned into two clusters such that all the positive ties were in one cluster and all the negative
ties went between the two clusters. Later, this was extended to any number of clusters having
this property. Here, the authors call the former strong structural balance and the latter weak
structural balance. One interesting theorem in this chapter states that signed graphs are weakly
structurally balanced if and only if all chordless cycles are weakly structurally balanced.

The authors then turn to consider the clustering of signed networks in a more general fashion.
For strong structural balance, they couple this approach to spectral theory. They rework an early
concept of switching (from a 1958 paper) to prove theorems relating to balance in signed net-
works using this concept. For weak structural balance, one allowing for more than two clusters,
additional ideas have emerged. The structure theorems point to a blockmodel where diagonal
blocks are positive (with primarily positive ties) and non-diagonal blocks are negative (with
primarily negative ties). Yet empirical networks can come in the form of having off-diagonal
positive blocks and, far more rarely, on-diagonal negative blocks. As the authors note, more
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research is required regarding the distribution of signed blocks in a blockmodel. They consider
also community detection issues for signed networks and note that one of the main concepts
of this approach, modularity, has problems when there are negative links in the network. They
provide ways of addressing this problem.

The authors address the critical problem of studying temporal networks in a dynamic con-
text and, as an empirical example, study the international system with signed relation between
nations. They display timeline graphs showing variations in the levels of imbalance in the inter-
national system using different methods. They confirm that signed networks move both towards
balance and away from balance depending on contexts. Their results add to the solid argument
against the early presumption of structural balance theorists that signed networks always move
towards balance. Also displayed are partitions of nations for various time points, which are
interpreted in interesting ways.

Chapter 9 presents a summary of work on multimode network clustering and illustrates the
results of using different methods on a single well-known early two-mode network. One of the
conceptions behind this volume is bringing together ideas from multiple disciplines. Actually,
the authors of this chapter engage in this process explicitly. While they focus on two-mode
networks in the form of actors × events as a bipartite network, the implications of the materials
in this chapter extend much further. Although such two-mode networks have been considered
in earlier chapters, especially Chapter 2, having an integrated discussion of the ways in which
they can be analyzed is particularly useful. They note that both binary and valued two-mode
networks can be analyzed within a common rubric. Multiple such methods are discussed in the
chapter.

The authors establish a conceptual link to community detection, make some definitions to help
link the two literatures, and note that community detection is a special case of blockmodeling.
The same point was made in Chapter 4. Some authors focused on community detection methods
might disagree! Here, the core community detection notion of modularity is provided and, more
importantly, the authors extend this to two-mode networks. Their first presented partition (of
actors) concerns group assignment maximizing modularity.

Given a two-mode network, denoted A, it is straightforward to create two projections for
actors, using AA′, and events, using A′A. They challenge the presumption that evidence is lost
in this dual projection. Without doubt, as the authors note, this holds when projections are
dichotomized or if only one projection is used. However, they challenge the claim that dual pro-
jection loses information even when both projections are used in their undichotomized forms.
Elsewhere, they have provided strong evidence that this is not the case and have promoted
what they call the dual-projection approach. They present further partitions of the actors of
the considered empirical network using dual-projection, using core-periphery notions and for
dual-projection community detection. The latter led to two more partitions, one with two clusters
and one with four clusters of actors.

In their spirit of integration, the authors include a consideration of signed two-mode networks
and a consideration of spectral methods. Two more partitions of the actors are presented. As with
previous chapters, it seems reasonable to have multiple valid partitions of a network. The authors
finish with suggestions regarding the analyses of more complex data structure involving more
modes and extend this to temporal evolution of two-mode networks.

Chapter 10 is devoted to blockmodeling linked networks and provides another segue in this
volume. This time it is from Chapter 9. The term “linked networks” features a set of one-mode
networks where the nodes from the one-mode networks are linked through two-mode networks.
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This can be done in a variety of ways, including the coupling of networks linked over multiple
time points. In dealing with these configurations, the author distinguishes analyses of separate
networks, using a conversion approach under which all the one-mode networks are converted
to a single level by joining them through the two-mode networks, and using a genuine mul-
tilevel approach. The results of examining both the conversion to a single level and using the
multilevel approach are presented. Comparisons of them demonstrate clearly how the linked
blockmodeling approach has greater potential value.

Two empirical examples are used. One concerns a coauthorship network at two time points
while the other features participants in a fair-trade exchange for TV programs. In both examples,
results of different partitions are presented with insightful comparisons of the results. As with all
methods, parameter settings require consideration. For these analyses, this concerns the weight-
ing of null and complete blocks for the scientific citation network. The final reported results
provide a very coherent result with strikingly clear differences in the partitions for two distinct
time points, which provide useful interpretations of the dynamics of scientific collaboration. The
empirical results resulting from using the genuine multilevel method for the trade fair are equally
compelling. As with other chapters, the author provides a provisional agenda for future work.

Chapter 11 provides a self-contained introduction to using Bayesian inference to extract
the large-scale modular structure from network data. In terms of the foregoing content of this
chapter, the modules are clusters (or groups) identified in the network. Rather than focus on
deterministic blockmodeling, Chapter 11 deals with Bayesian stochastic blockmodeling. A
major focus is on estimating probabilistic models to shed light on the network mechanisms
generating the observed network(s). An overarching feature is to distinguish genuine structure
from randomness.

In this context, Figure 11.1 is especially provocative, with three displays of a randomly gen-
erated network having three separate orderings of the nodes. Two of them appear to show
clear – but different – blockmodel structures, exactly the sort that those using deterministic
blockmodeling would take as evidence of structure. While these blockmodels could be accepted
as “real” and could be “interpreted”, this would reveal nothing about the generative process cre-
ating the network. This might rattle the cages of some social network blockmodelers. The author
invites readers to think probabilistically and couple two ideas. One is to think about mechanisms
that could generate networks. The other is to use the network data to discern which mechanism
was the most likely to have generated the network. This leads directly to notion of stochastic
blockmodels within which known (prescribed) modular structures are generated according to
probabilistic rules. Then, given network data, Bayesian inference is used to infer the modular
structure of observed networks.

The author provides formal discussions of a wide variety of prior distributions and how
data affect them to create posterior distributions. Many empirical applications are used to illus-
trate the outcomes stemming from using the methods described in formal detail. This includes
the subtleties of model selection and the establishment of efficient estimation procedures. The
ultimate outcome is the establishment of modular structures that are supported by statistical
evidence.

Chapter 12 also focuses on a dynamical perspective. Both this chapter and Chapter 11 are
concerned with modular structures having a coarse grain, along with the rich interplay between
network structures and network dynamics. However, the authors of Chapter 12 take a very dif-
ferent approach compared with the one contained in Chapter 11. Their concern is centered on
the dynamical processes occurring on a fixed network structure. They do not consider, at least
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initially, the question of how and why networks occur. Throughout their presentation, they focus
on consensus dynamics and diffusion processes both substantively and as guiding examples.
Later, they consider diffusion and consensus as dual processes, an important extension.

For modeling dynamics, they use ordinary differential equations in which the actors have
attributes that can be changed by the operation of social processes operating over a fixed net-
work. While discrete-time versions could be used, they use continuous-time models throughout
their chapter. Also, of great interest, they consider processes having different network time scales
under which some variables change slowly while others change more quickly. They illustrate
this with a modular network having k modules with strong within coupling and weak between
coupling. More complicated structures are examined also.

The authors extend this approach to consider signed networks and use the early work on struc-
tural balance theory while restricting their attention to strong balance as described in Chapter
8. The early structural balance literature was fixated on the notion that signed networks always
move towards balance. This claim is repeated here. A far more important issue is the exam-
ination of how (and why) signed networks move towards balance at some points in time and
move way from balance at other times. It would seem that the author’s use of using differential
equations, as is done in Chapter 12, for signed networks holds immense promise for examining
these dynamics, especially with the inclusion of different time scales.

Later in their chapter, the authors turn to using dynamical processes to reveal network struc-
ture within the community detection framework. They employ a genetic algorithm framework
to do this with a variety of extensions, all of which hold considerable promise. As with previ-
ous chapters, some open problems are stated with interesting methodological and substantive
implications if they are pursued in a dynamic framework using differential equations.

Chapter 13 is the final contributed chapter, one that examines scientific coauthorship net-
works. A blockmodeling approach is adopted to understand the structure of these networks with
a view to understanding the dynamics of scientific knowledge production. The data used feature
collaboration among Slovene scientists using a rich temporal database. While blockmodeling
can be used to discern the structure of these networks at multiple points in time, one particu-
larly interesting question is whether these blockmodels, especially the composition of positions
(clusters) and the relationships between positions (blocks) are stable over time. The authors of
this chapter present a methodology for measuring the stability of such blockmodels over time.
Of particular interest is the stability (or not) of cores. For this important task, a variety of indices
are proposed for assessing this stability.

Science is dynamic in many ways. Of particular interest in Chapter 13 is the changing rela-
tionships between researchers through time. Over the course of their careers, the collaborative
behavior of researchers changes as new problems engage their interests and collaborative part-
ners change. Also, some researchers depart while new researchers enter the scientific system.
The authors of this chapter consider first one discipline that has a core-periphery structure (with
cores, a semi-periphery, and a periphery) at the two time periods they consider. They developed
a visualization for transitions between these positions. This is then extended to consider 43 dis-
ciplines. For each identified discipline, they identify changes in the number of cores, the average
size of them, and the relative sizes of the semi-periphery and the periphery.

The authors use a variety of different indices for measuring the stability of cores for all the
studied scientific disciplines. They establish a partition of disciplines into three clusters. The
smallest cluster has eight disciplines for which the cores are stable. The next smallest is a cluster
of 13 disciplines whose cores are unstable. The largest cluster has 22 disciplines that are located
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between these extremes. One implication is that science in not monolithic. While is it obvious
that disciplines have different concerns in terms of content, these results reveal clearly how their
collaboration structures vary greatly. The authors present results showing why this is the case.

1.2 Looking Forward

Even though the single focus of network clustering defines the impulse behind this volume, the
topic has many facets within which many approaches have been adopted. In looking at the con-
tributed chapters, there is great diversity in the topics considered and the approaches taken by
the contributing authors. This was expected and was core to constructing this volume. There are
many points of consistency across the chapters along with apparent disagreements. The former
is great. The latter is not a problem for there will always be diverse views in this literature. We
compliment all the contributing authors for their willingness to contribute in an open-minded
and engaged fashion. While many academic disciplines have been riven by deep divides across
which no compromise is possible, our hope is that the consideration of the network clustering lit-
erature presented in this volume will allow us to rise above such foolish divides. The contributed
chapters suggest this is very possible.

So, to our readers of this volume, we hope you will enjoy the contributions in each of the
contributed chapters. Each has great merit. We will return to some of the general issues raised
within each of the chapters, as well joining issues from these chapters, in the concluding chapter.



�

� �

�

2
Bibliometric Analyses of the
Network Clustering Literature

Vladimir Batagelj1,2,5, Anuška Ferligoj3,5, and Patrick Doreian3,4

1IMFM Ljubljana
2IAM, University of Primorska, Koper
3FDV, University of Ljubljana
4University of Pittsburgh
5NRU HSE Moscow

2.1 Introduction

Partitioning networks is performed in many disciplines, as is evidenced by the chapters of this
book. The data we consider here are from the network clustering literature. Our focus here is
the large set of publications identified in the area of graph/network clustering and blockmod-
eling, and included in the Web of Science1 (WoS) through February 2017. The two dominant
approaches for clustering networks are found in the “social” social network literature and the
literature featuring physicists and other scientists examining networks. Blockmodeling is an
approach that partitions the nodes of a network into positions (clusters of nodes) with the
blocks being the sets of relationships within and between positions. The result is a simpli-
fied image of the whole network. Community detection, associated with the work of physicists
studying networks, aims to identify communities composed of nodes having a higher proba-
bility of being connected to each other than to members of other communities. In identifying
the literature featuring the clustering of networks we ensured the inclusion of both of these
approaches.

The rest of the chapter is structured as follows: Section 2.2 outlines steps in the collec-
tion of data and cleaning them together with constructing measures and identifying specific

1 The origins of, and the rationale for, collecting such data are found in the work of Garfield 16, [1].

Advances in Network Clustering and Blockmodeling, First Edition.
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productions. Section 2.3 presents several approaches to identifying network features including
components, critical main paths, and key-route paths for analyzing citation networks. Section
2.4 examines line islands as clusters in the network clustering literature. Section 2.5 focuses
on authors, productivity, collaboration, and bibliometric coupling. The chapter concludes with
suggestions for future work.

2.2 Data Collection and Cleaning

We view scientific productions as works and sought the citation links connecting them. Citations
from later works to prior works can be viewed as “votes” from researchers in their scientific
fields regarding the value of earlier scientific works. Given our focus on network clustering
literature, we obtained data from the WoS (now owned by Clarivate Analytics) by using the
following terms in a general query:

"block model*" or "network cluster*" or "graph cluster*" or
"community detect*" or "blockmodel*" or "block-model*" or
"structural equival*" or "regular equival*"

We limited the search to the WoS Core Collection because other data bases from WoS do not
permit exporting CR fields (which contain citation information). Some works appear only in
the WoS CR field as a reference and lack a description in the collected data set. We call such
works cited-only works. Additionally, we collected, using WoS and Google, some information
about cited-only nodes with large indegrees (highly cited works) to add such descriptions to the
collected data set. When a description of a node was unavailable in these sources, we manually
constructed a description for them.2

Our first WoS search was completed on May 16, 2015. It was updated on January 6, 2017
for 2014–2017. A further updating for 2015–2017 was completed on February 22, 2017. We
applied the new WoS2Pajek 1.5 [3] to convert WoS data into Pajek networks.3 Preliminary
results regarding the size of the data set are shown in Table 2.1. In slightly less than two years,
the number of works increased by 56%, the number of authors by 38%, the number of journals by
40%, and the number of records by 136%. Clearly, partitioning networks is a rapidly expanding
area of research in multiple areas given the increases in the number of works, authors, and
journals. Of some interest is that the increase in authors was less than the increase in the number
of works. The decrease in the final number of keywords is due to the replacement of keyword
phrases with the constituting words.

While a citation network is simply composed of links between works treated as nodes, there is
more to consider when other units are included. These include authors, journals, and keywords.

2 There are two approaches to dealing with the resulting data: (i) manually filtering the hits and preserving only those
matching the criteria or (ii) using all obtained hits while considering non-topic hits as noise. Given the enormous amount
of work required for the first option, we used the second one.
3 Most of the analyses featured in the chapter were done in Pajek (see [5]) and R [27]. For a highly accessible
introduction to Pajek, see [26].
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Table 2.1 Sizes of networks on clustering literature

2015/05/16 2017/01/06 2017/02/23

Number of works 75249 112114 117082
Number of authors 44787 60419 62143
Number of journals 8993 12271 12652
Number of keywords 10095 12715 10269
Number of records 2944 5472 6953

As part of a more general strategy, the following two-mode networks were constructed: (i) an
author network, WA as works × authors, (ii) a journal network WJ featuring works × journals,
(iii) a keyword network WK with works × keywords, and (iv) a one-mode citation network Ci
featuring only scientific productions. Additional information was obtained considering some
useful partitions: (i) year of works by publication year, (ii) a DC partition distinguishing works
having a complete description (DC = 1) and cited-only works (DC = 0), and (iii) a vector of the
number of pages, NP. The dimensions of the studied networks (shown in the right-most column
of Table 2.1) are the number of works, |W| = 117,082, the number of contributing authors,
|A| = 62,143, the number of journals where these works appear, |J| = 12,652, and the number
of keywords employed to characterize works, |K| = 10,269. All these networks share the set of
works (papers, reports, books, etc.), W.

Another problem complicating data collection is that different data sources use different con-
ventions for their data items. The usual ISI name of a work (field CR) has the form:

LEFKOVITCH LP, 1985, THEOR APPL GENET, V70, P585

All its elements are upper case. AU denotes author, PY is for publication year, SO denotes
journals (with an allowance for at most 20 characters), VL is for Volume, and BP denotes the
beginning page. The format is:

AU + ’, ’ + PY + ’, ’ + SO[:20] + ’, V’ + VL + ’, P’ + BP
In WoS, the same work can have different ISI names! To improve the precision of identifica-

tion of works (entity resolution, disambiguation), the program WoS2Pajek supports also short
names with the format:

LastNm[:8] + ’_’ + FirstNm[0] + ’(’ + PY + ’)’ + VL + ’:’ + BP
For example: LEFKOVIT_L(1985)70:585
For last names with prefixes, e.g. VAN, DE, … the space is deleted. Unusual names start with

* or $. A citation network, Ci, is based on the citing relation where w Ci z means work, w, cites
work, z.

For correcting equivalent data items, there are two options: (i) make corrections in the local
copy of original data (WoS file) or (ii) make the equivalence partition of nodes and shrink the set
of works accordingly in all networks. We used the second option. For works with large counts
(≥ 30), we prepared lists of possible equivalent items and manually determined equivalence
classes. Using a simple program in Python, we produced a Pajek partition file, worksEQ.clu,
and shrank sets of works using Pajek. Using the partition p = worksEQ, p ∶ V → C, we used
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Pajek to shrink the citation network cite to citeR. As a byproduct, we obtained a partition
q∶ VC → V , such that q(v) = u ⇒ p(u) = v. It was necessary to shrink also the partitions year,
DC and the vector NP. This can be done in Pajek as follows. Given a general mapping s ∶
V → B, we seek a mapping r ∶ VC → B such that if q(v) = u, then s(u) = r(v). Therefore, r(v) =
s(u) = s(q(v)) = q ∗ s(v) or equivalently r = q ∗ s.

In Pajek, given a mapping q ∶ VC → V , the mapping r is determined for a partition s by:

select partition q as First partition
select partition s as Second partition
Partitions/Functional Composition First*Second

or for a vector s by

select partition q as First partition
select vector s as First vector
Operations/Vector+Partition/
Functional Composition Partition*Vector

For the partition worksEQ, we computed the “reduced” networks CiR, WAr, WKr, WJr and
the partitions YearR and DCr as well as the vector NPr. Their sizes are shown in Table 2.2. For
example, the network WAr has 179,049 nodes: 116,906 works and 62,143 authors.

For cited only works we have only information about their first author and no information
about keywords. So, we have to limit our analysis about authors or keywords to works with
complete descriptions (DC > 0). The sizes of corresponding networks are shown in Table 2.3.

In principle, citation networks are acyclic: earlier works cannot cite later works. Yet works
appearing at the same time can cite each other. As the methods we use require a citation network
to be acyclic, such ties must be located. More generally, strong components need to be identified.
There were five in the network we studied, all in the form of reciprocal dyads. These are shown
in Figure 2.1. Methods for identifying strong components and ways of treating them prior to
analyzing citation networks are described in [7].

Table 2.2 Sizes of “reduced” networks

Network Nodes Arcs

WAr 179049 = 116906 + 62143 132776
WKr 127175 = 116906 + 10269 88965
WJr 129558 = 116906 + 12652 117044
CiR 116906 195784

Table 2.3 Sizes of networks with complete descriptions

Network Nodes Arcs

WAc 19071 = 5695 + 13376 21562
WKc 15964 = 5695 + 10269 88953
WJc 7451 = 5695 + 1756 5815
CiC 5695 38400
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Figure 2.1 Dyadic strong components.

2.2.1 Most Cited/Citing Works

It is straightforward to identify the works in a citation network receiving the most citations.4

Similarly, identifying works with the greatest outdegrees is straightforward.
Table 2.4 lists the 60 most cited works (indegree in CiR). Heading the list are seven works

produced in the physicist approach to networks featuring community detection. The top ranked
document is by Girvan and Newman5 as a research paper in the Proceedings of the National
Academy of Sciences (US) (PNAS) in 2002. The second ranked paper written by Fortunato is
a long survey paper on community detection in graphs, appearing in Physics Reports in 2010.
In third place is a 2004 paper on community detection for very large networks by Clauset,
Newman, and Moore in Physical Review E. The most cited paper from the social sciences, at rank
7, is by an anthropologist whose data attracted the attention of the aforementioned physicists.
The next highest document from the social sciences is the Wasserman and Faust book of 1994.
The other “social” social network productions in this list primarily feature works devoted to
blockmodeling, albeit the earlier productions in this area. This is suggestive of the domination,
in recent years, by the approach adopted by physicists when studying social networks to identify
communities as clusters.

In Table 2.5 the top ten citing works (outdegree in CiR) are listed. They consist of books,
theses, and survey papers. Only two of the items in this table come from the social sciences.
The role of survey papers was studied in [7] with an emphasis on their secondary role in the
production of scientific knowledge.

4 The results reported here follow in the tradition outlined in [11].
5 We have adopted the convention of citing only methodologically relevant items for the methods we consider in this
chapter. Such frequently cited papers can be identified easily in the relevant literature.
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Table 2.4 The most cited works in the network clustering literature

Rank Citations Work Rank Citations Work Rank Citations Work

1 1096 GIRVAN_M(2002)99:7821 21 292 NEWMAN_M(2003)45:167 41 145 BURRIDGE_R(1967)57:341
2 969 FORTUNAT_S(2010)486:75 22 292 LANCICHI_A(2009)80:056117 42 145 LANCICHI_A(2011)6:0018961
3 712 CLAUSET_A(2004)70:066111 23 286 NEWMAN_M(2004)69:1 43 139 GREGORY_S(2010)12:103018
4 638 BLONDEL_V(2008):P10008 24 259 GUIMERA_R(2005)433:895 44 139 LESKOVEC_J(2010):
5 621 NEWMAN_M(2004)69:026113 25 251 ALBERT_R(2002)74:47 45 138 BOCCALET_S(2006)424:175
6 578 NEWMAN_M(2006)103:8577 26 244 DUCH_J(2005)72:027104 46 137 GUIMERA_R(2004)70:025101
7 553 ZACHARY_W(1977)33:452 27 236 LUSSEAU_D(2003)54:396 47 129 NEWMAN_M(2004)70:056131
8 544 PALLA_G(2005)435:814 28 216 SHI_J(2000)22:888 48 127 BRANDES_U(2008)20:172
9 489 FORTUNAT_S(2007)104:36 29 216 LORRAIN_F(1971)1:49 49 126 BREIGER_R(1975)12:328

10 416 WATTS_D(1998)393:440 30 215 REICHARD_J(2006)74:016110 50 126 NOWICKI_K(2001)96:1077
11 412 DANON_L(2005): 31 211 HOLLAND_P(1983)5:109 51 125 ROSVALL_M(2007)104:7327
12 380 NEWMAN_M(2004)38:321 32 206 WHITE_H(1976)81:730 52 124 VONLUXBU_U(2007)17:395
13 369 LANCICHI_A(2008)78:046110 33 199 AHN_Y(2010)466:761 53 122 NEWMAN_M(2001)64:026118
14 351 WASSERMA_S(1994): 34 168 KERNIGHA_B(1970)49:291 54 119 REICHARD_J(2004)93:218701
15 329 NEWMAN_M(2006)74:036104 35 163 AIROLDI_E(2008)9:1981 55 118 ARENAS_A(2008)10:053039
16 326 ROSVALL_M(2008)105:1118 36 161 NEWMAN_M(2010): 56 118 ERDOS_P(1959)6:290
17 319 RAGHAVAN_U(2007)76:036106 37 157 SCHAEFFE_S(2007)1:27 57 116 FREEMAN_L(1979)1:215
18 307 LANCICHI_A(2009)11:033015 38 155 GOOD_B(2010)81:046106 58 116 FREEMAN_L(1977)40:35
19 306 RADICCHI_F(2004)101:2658 39 150 KARRER_B(2011)83:016107 59 113 NEWMAN_M(2001)98:404
20 304 BARABASI_A(1999)286:509 40 150 LANCICHI_A(2009)80:016118 60 112 SHEN_H(2009)388:1706
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Table 2.5 The most citing works of the network clustering literature

Rank Citations Document Rank Citations Document

1 1095 PRUESSNE_G(2012):1 6 417 NEWMAN_M(2003)45:167
2 863 BOCCALET_S(2006)424:175 7 398 FORTUNAT_S(2010)486:75
3 839 FOUSS_F(2016):1 8 327 HOLME_P(2015)88:e2015-60657-4
4 476 ARABIE_P(1992)43:169 9 321 SIBLEY_C(2012)12:505
5 456 TURCOTTE_D(1999)62:1377 10 310 FRANK_K(1998)23:171

2.2.2 The Boundary Problem for Citation Networks

For any network study, the boundary of the network must be determined with great care. In some
studies, the context determines the boundary in a straightforward fashion. However, for citation
networks the problem is far more ambiguous in that judgments must be made. It is reasonable
to exclude cited-only works with indegree 1 for this indicates minimal notice. More generally,
to get rid of the influence of sporadic citations, some threshold in terms of citations received for
inclusion is necessary. To examine this the following counts were established.

The network CiR has 116,906 nodes and 195,784 arcs. The counts for the lowest number of
received citations are 0 (4070), 1 (93,248), 2 (10,694), 3 (3352), and 4 (1610). Most nodes are
cited only once (indegree = 1). We “solved” the boundary problem by including in our networks
those nodes with DCr > 0 or indeg > 2. These criteria determined a subnetwork, denoted as
CiB, with 13540 nodes and 82238 arcs.

With the network boundary determined, obtaining a general description is straightforward
prior to completing any analyses. Table 2.6 lists journals whose articles were cited the most.
The left panel comes from the WJr network while the right panel comes from WJc (defined for
only those documents having complete descriptions). Unsurprisingly, the counts for the journals
differ substantially as the two networks differ greatly in size. More consequentially, the orders
of the journals differ. Journals from the social sciences are marked in boldface.

For the much larger network, WJr, the dominant journals are PNAS and Nature with over
1000 citations. Both Lecture Notes in Computing Sciences and Science contained more than 900
citations. Three physics journals follow. The top-ranked social science journal Social Networks
is in tenth place. The remaining journals cover many disciplines.

For the network with only complete descriptions for the works, WJc (works are the hits
dealing with the research topic), there are dramatic changes. PNAS drops to ninth place and
Nature drops to 19th place. Many other journals drop out of the list. In contrast, both Physica
A and Physics Review E retain their high rankings. Social Networks moves up to fourth place.
Other journals in the right panel replace those dropping out of the left panel.

These differences reinforce the importance of solving the boundary problem appropriately.
While strong cases can be made for using either WJr or WJc, it is clear that setting different
boundaries can lead to dramatically different outcomes. One obvious question is whether hav-
ing more information about productions is worth it. In terms of interpreting citation patterns
and, more generally, understanding science dynamics, we contend that having more informa-
tion is preferred. As a general point, when results are reported, the ways in which boundaries
for networks are established must be made clear.

Most journals demand the use of keywords which become part of the information about
works. When keywords are not parts of works, they can be constructed from titles. Composite
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Table 2.6 The most used journals in two works × journals networks

Rank Frequency Journal Frequency Journal
in WJr in WJc

1 1058 P NATL ACAD SCI USA 223 LECT NOTES COMPUT SC
2 1014 NATURE 175 PHYS REV E
3 941 LECT NOTES COMPUT SC 151 PHYSICA A
4 908 SCIENCE 122 SOC NETWORKS
5 667 PHYSICA A 88 PLOS ONE
6 639 PHYS REV E 56 LECT NOTES ARTIF INT
7 616 PHYS REV LETT 56 J GEOPHYS RES-SOL EA
8 549 BIOINFORMATICS 45 P NATL ACAD SCI USA
9 548 NUCLEIC ACIDS RES 40 SCI REP-UK

10 522 SOC NETWORKS 39 J STAT MECH-THEORY E
11 519 J GEOPHYS RES-SOL EA 33 NEUROCOMPUTING
12 428 B SEISMOL SOC AM 30 PHYS REV LETT
13 400 TECTONOPHYSICS 28 COMM COM INF SC
14 398 GEOPHYS J INT 27 APPL MECH MATER
15 348 NEUROIMAGE 27 BMC BIOINFORMATICS
16 342 J GEOPHYS RES 27 EUR PHYS J B
17 342 J BIOL CHEM 27 GEOPHYS J INT
18 336 J MOL BIOL 25 PROCEDIA COMPUT SCI
19 330 PHYS REV B 25 BIOINFORMATICS
20 321 IEEE T PATTERN ANAL 24 INFORM SCIENCES
21 285 AM J SOCIOL 23 IEEE DATA MINING
22 274 PATTERN RECOGN 23 KNOWL-BASED SYST
23 272 AM SOCIOL REV 23 J MATH SOCIOL
24 260 GEOPHYS RES LETT 21 SOC NETW ANAL MIN
25 249 GEOLOGY 21 ADV INTELL SYST
26 239 SCIENTOMETRICS 20 MATH PROBL ENG
27 229 LECT NOTES ARTIF INT 20 EXPERT SYST APPL
28 224 EARTH PLANET SC LETT 19 EPL-EUROPHYS LETT
29 220 BIOCHEMISTRY-US 19 INT J MOD PHYS B
30 214 APPL ENVIRON MICROB 19 TECTONOPHYSICS
31 212 J CHEM PHYS 19 ANN STAT
32 207 J NEUROSCI 19 NATURE
33 207 J AM STAT ASSOC 18 IEEE T KNOWL DATA EN
34 205 J GEOPHYS RES-SOLID 18 PATTERN RECOGN LETT
35 201 J AM CHEM SOC 18 AM J SOCIOL
36 187 J PHYS A-MATH GEN 17 ADV MATER RES-SWITZ
37 185 ADMIN SCI QUART 17 PURE APPL GEOPHYS
38 184 CELL 16 DATA MIN KNOWL DISC
39 184 PURE APPL GEOPHYS 16 GEOPHYS RES LETT
40 181 INFORM SCIENCES 16 IEEE T PATTERN ANAL
41 171 BIOPHYS J 16 SCIENTOMETRICS
42 170 PSYCHOMETRIKA 15 INT CONF ACOUST SPEE
43 167 IEEE T KNOWL DATA EN 14 NEW J PHYS
44 165 EUR PHYS J B 14 J CLASSIF
45 159 EXPERT SYST APPL 14 IEEE T MICROW THEORY
46 159 GEOL SOC AM BULL 14 PSYCHOMETRIKA
47 158 EUR J OPER RES 13 SCI WORLD J
48 154 IEEE T INFORM THEORY 13 J COMPUT SCI TECH-CH
49 144 PATTERN RECOGN LETT 13 PLOS COMPUT BIOL
50 142 J PERS SOC PSYCHOL 13 ADV COMPLEX SYST

The bolded journals come from the social sciences.
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Table 2.7 The most used keywords

Rank Freq. Keyword Rank Freq. Keyword Rank Freq. Keyword

1 1204 network 25 291 earthquake 48 186 similarity
2 1064 community 26 281 protein 49 184 multi
3 1533 detection 27 276 stochastic 50 181 evolution
4 1499 model 28 270 overlap 51 176 mining
5 1177 graph 29 268 fault 52 166 functional
6 1135 cluster 30 265 equivalence 53 165 behavior
7 1104 algorithm 31 241 prediction 54 164 simulation
8 1082 complex 32 240 organization 55 163 state
9 1080 social 33 237 interaction 56 163 gene

10 932 structure 34 236 scale 57 160 genetic
11 900 analysis 35 229 time 58 159 centrality
12 880 base 36 227 clustering 59 157 flow
13 727 block 37 220 theory 60 156 classification
14 494 use 38 213 large 61 155 partition
15 430 datum 39 209 self 62 155 hierarchical
16 407 modularity 40 205 matrix 63 150 application
17 398 method 41 204 dynamic 64 148 slip
18 373 dynamics 42 204 identification 65 146 small
19 357 structural 43 197 modeling 66 146 design
20 317 approach 44 197 pattern 67 146 link
21 300 blockmodel 45 195 detect 68 145 web
22 294 information 46 194 local 69 144 organize
23 293 optimization 47 190 world 70 143 spectral
24 293 random

keywords can be split into single words. Lemmatization was used in WoS2Pajek to deal with
the “word-equivalence problem”. Table 2.7 lists the frequency counts for keywords attached
to works in the network WKc. Having “network” as the most frequent keyword is trivial. The
next two items, “community” and “detection”, suggest a problem with keywords containing two
words. As a term relating to clustering, “cluster” is only in the sixth place.

Many of the other frequently used terms in Table 2.7 including model, graph, and structure
are generic with limited value. Other keywords – complex, social, base, use, datum, method,
approach, information, fault, scale, self, local, world, gene, genetic, flow, slip, small, and orga-
nize – convey less information. Either keywords are utterly useless for understanding of scien-
tific citation or they have to be examined with great care in clearly defined contexts. To this end,
we identify parts of the citation network by identifying islands (see [7]) of closely related works
in them. For this, keywords become very useful for discerning the major interests of the works
in an island as a focused substantive context. The same idea is clear also when we consider
bibliographic coupling.

2.3 Analyses of the Citation Networks

Given our focus on citation networks, we consider ways of identifying and interpreting important
parts of these networks. They include components for identifying important paths through these
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networks based in the ideas formulated in [18], used to examine the DNA development literature
in [19], applied to the network centrality literature in [20], and extended in [7].

2.3.1 Components

Our analyses of the primary “clustering citation network” (CiB) features components, the iden-
tification of main paths through this literature, identifying islands (as clusters of related works)
and bibliometric coupling. Our main use of components is for identifying networks useful for
obtaining important paths and islands. The network, CiB, has 690 (weak) components. The
largest have sizes 12702, 21, 20, 19, 17, 10, and 9. Here, we limit our analysis to the largest
component, labeled CiteMain.

The presence of the reciprocal dyads identified in Figure 2.1 remains. To obtain an acyclic
network, we applied the preprint transformation (see [7]) to CiteMain. The resulting network,
CiteMacy (Cite, Main, acyclic), has 12,712 nodes and 81,972 arcs. The increase in the number
of works is due to some of them appearing twice with one name starting with a = sign indicating
the “preprint” version of a paper. We computed the SPC weights on its arcs [2]. The total flow
is 1.625 × 1020.

2.3.2 The CPM Path of the Main Citation Network

We start by identifying main paths. Figure 2.2 shows the critical path method (CPM) main
path [2, 7] through the network clustering literature (in CiteMacy). At the bottom of this main
path there are seven publications, all cited by an influential paper by Cartwright and Harary
appearing in 1956. They are important foundational works for social network analysis. It con-
tinues with 22 publications from the blockmodeling literature encompassing both unsigned and
signed networks. This is followed by an important transition in this main path marking a tran-
sition between the social networks field and the work of natural scientists on social networks.
This 2000 publication is the last work from the area of social network analysis. It analyzed
the Erdős collaboration graph. The connecting link features this production and one by New-
man in 2001. Thereafter, the rest of the main path features work from the community detec-
tion literature through 2016. We expand further on this description when discussing key-route
paths.

The branching at the top of the figure reflects the end of the search period we used. The top
four papers cite a work by Fortunato and Hric appearing in 2016. Were a new search used to
expand this main path, undoubtedly these most recent works would be cited and the main path
would continue through some of them. We note that when the network centrality literature was
analyzed in [7] a similar transition between fields was identified: social networks to physics to
neuroscience.

2.3.3 Key-Route Paths

The CPM approach yields a single main path through the literature. A more nuanced image of
this feature is obtained by identifying key-routes through a network. This method, known as
the Taiwan approach, was developed in [22]. The algorithm has been generalized and included
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Figure 2.2 The CPM path through the network clustering literature.
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in Pajek. The Pajek instruction for obtaining key-routes through 150 arcs with the largest
weights is:

Network/Acyclic Network/Create (Sub)network/CPM/
Global Search/Key-Route [1-150]

Figure 2.3 shows the results for this network clustering network. The starting and ending
works are the same for both Figure 2.2 and Figure 2.3. However, between these ends, additional
works are included to provide a more complex view of the evolution of the clustering field(s).
The basic sequence between the social network and community detection literatures remains.
Indeed, the transition point between these two literatures is a cut.

We divide our expanded discussion into two temporal periods.

2.3.3.1 The Period 1956–2000

Two papers by Cartwright and Harary and Davis formed the foundations for signed block-
modeling. After these two papers, we would have expected to see the foundational paper for
blockmodeling of Lorrain and White (appearing in1971), but it is not on the CPM main path
nor on the key-routes. We account for this below in our discussion of Tables 2.8 and 2.9. Next
comes a paper of Alba discussing cliques, a conceptual dead end even though it is much studied
in the social networks area. This is followed by Breiger, who created the foundations for analyz-
ing two-mode networks, a critically important development. The five papers involving Breiger,
Boorman, Arabie, White, Levitt and Pattison, all important for creating the blockmodeling tra-
dition, follow. Included is the work outlining the first algorithm, CONCOR, for blockmodeling
and works with substantive interpretations of blockmodeling results involving White, Boorman,
Breiger, Arabie, Levitt, and Pattison in the mid-to-late 1970s. Also appearing on the main path
are papers on explanations of role structure theory in algebraic models involving Boorman and
White and Breiger and Pattison. Burt proposed a rival algorithm for blockmodeling in 1976
which is not on the main path. A later paper from him, published in 1980, is on the main path.

A special issue of Social Networks devoted to blockmodeling appeared in 1992. Four papers
from this issue are in the main path: two works by Batagelj, Doreian, Ferligoj introducing the
direct approach to blockmodeling for structural and regular equivalence, and two papers by
Faust and Wasserman (with one with Anderson) discussing the interpretation and evaluation
of blockmodels and stochastic blockmodels. In 1994, Doreian, Batagelj and Ferligoj proposed
generalized concepts of equivalence based on block types and corresponding criterion functions
which provides an appropriate measure of fit of blockmodels to the empirical data.

Also on this main path is a paper by Doreian and Mrvar appearing in 1996 that used the
generalized blockmodeling approach and applied it to signed networks and a paper by Batagelj
(appearing in 1997) which provided a mathematical formalization of the generalized blockmod-
eling. The last two papers in the class of the social network contributions involve Batagelj, Mrvar
and Zaveršnik, who proposed several clustering procedures for large networks and applied these
algorithms to the Erdős collaboration graph. As noted above, this work is the bridge to the con-
tributions of natural scientists, mostly working on community detection problems.

2.3.3.2 The Period 2001–2016

A paper by Newman, appearing in 2001, is the first production on the main path for works from
the natural sciences. He presented a variety of statistical properties of scientific collaboration
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Figure 2.3 Key-route paths through the network clustering literature.
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Table 2.8 List of works on CPM path (1), main paths (2), and island (3) – part 1

Label Code First author Title Journal

KOFFKA_K(1935): 12 Koffka, K Principles of Gestalt Psychology book
HEIDER_F(1946)21:107 12 Heider, F Attitudes and cognitive organization J PSYCHOL
BAVELAS_A(1948)7:16 12 Bavelas, A A mathematical model for group structure HUMAN ORG
FESTINGE_L(1949)2:153 12 Festinger, L The analysis of sociograms using matrix algebra HUMAN REL
FESTINGE_L(1950): 12 Festinger, L Informal social communication PSYCHO REV
LEWIN_K(1951): 12 Lewin, K Field theory in social science book
HARARY_F(1953)2:143 12 Harary, F On the notion of balance of a signed graph MICH MATH J
CARTWRIG_D(1956)63:277 123 Cartwright, D Structural balance – a generalization of heider theory PSYCHOL REV
HUBBELL_C(1965)28:377 3 Hubbell, CH An input-output approach to clique identification SOCIOMETRY
DAVIS_J(1967)20:181 123 Davis, JA Clustering and structural balance in graphs HUM RELAT
BOYD_J(1969)6:139 3 Boyd, JP Algebra of group kinship J MATH PSYCHOL
HARTIGAN_J(1972)67:123 3 Hartigan, JA Direct clustering of a data matrix J AM STAT ASSOC
ALBA_R(1973)3:113 123 Alba, RD Graph-theoretic definition of a sociometric clique J MATH SOCIOL
GRANOVET_M(1973)78:1360 23 Granovet.MS The strength of weak ties AM J SOCIOL
BREIGER_R(1974)53:181 123 Breiger, RL Duality of persons and groups SOC FORCES
BREIGER_R(1975)12:328 123 Breiger, RL Algorithm for clustering relational data with applications to social network

analysis and comparison with multidimensional-scaling
J MATH PSYCHOL

WHITE_H(1976)81:730 123 White, HC Social-structure from multiple networks .1. Blockmodels of roles and positions AM J SOCIOL
BOORMAN_S(1976)81:1384 123 Boorman, SA Social-structure from multiple networks .2. Role structures AM J SOCIOL
BURT_R(1976)55:93 3 Burt, RS Positions in networks SOC FORCES
BURT_R(1977)56:106 3 Burt, RS Positions in multiple network systems .1. General conception of stratification

and prestige in a system of actors cast as a social topology
SOC FORCES

BURT_R(1977)56:551 3 Burt, RS Positions in multiple network systems .2. Stratification and prestige among elite
decision-makers in community of Altneustadt

SOC FORCES

ARABIE_P(1978)17:21 123 Arabie, P Constructing blockmodels – how and why J MATH PSYCHOL
SAILER_L(1978)1:73 3 Sailer, LD Structural equivalence – meaning and definition, computation and application SOC NETWORKS
BURT_R(1978)7:189 23 Burt, RS Cohesion versus structural equivalence as a basis for network subgroups SOCIOL METHOD RES
BREIGER_R(1978)7:213 123 Breiger, RL Joint role structure of 2 communities elites SOCIOL METHOD RES
SNYDER_D(1979)84:1096 3 Snyder, D Structural position in the world system and economic-growth, 1955-1970 –

multiple-network analysis of transnational interactions
AM J SOCIOL

BREIGER_R(1979)13:21 3 Breiger, RL Toward an operational theory of community elite structures QUAL QUANT
BREIGER_R(1979)42:262 3 Breiger, RL Personae and social roles – network structure of personality-types in small-groups SOC PSYCHOL
BURT_R(1980)6:79 123 Burt, RS Models of network structure ANNU REV SOCIOL
MCCONAGH_M(1981)9:267 23 Mcconaghy, MJ The common role structure – improved block-modeling methods applied to 2

communities elites
SOCIOL METHOD RES

PATTISON_P(1981)9:286 23 Pattison, PE A reply to Mcconaghy – equating the joint reduction with block-model common
role structures

SOCIOL METHOD RES

BURT_R(1982)16:109 23 Burt, RS Testing a structural model of perception – conformity and deviance with respect
to journal norms in elite sociological methodology

QUAL QUANT
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Table 2.9 List of works on CPM path (1), main paths (2), and island (3) – part 2

Label Code First author Title Journal

PATTISON_P(1982)25:51 23 Pattison, PE A factorization procedure for finite-algebras J MATH PSYCHOL
PATTISON_P(1982)25:87 23 Pattison, PE The analysis of semigroups of multirelational systems J MATH PSYCHOL
MANDEL_M(1983)48:376 3 Mandel, MJ Local roles and social networks AM SOCIOL REV
WHITE_D(1983)5:193 23 White, DR Graph and semigroup homomorphisms on networks of relations SOC NETWORKS
FRIEDKIN_N(1984)12:235 23 Friedkin, NE Structural cohesion and equivalence explanations of social homogeneity SOCIOL METHOD RES
DOREIAN_P(1985)36:28 3 Doreian, P Structural equivalence in a journal network J AM SOC INFORM SCI
FAUST_K(1985)7:77 123 Faust, K Does structure find structure – a critique of Burt use of distance as a

measure of structural equivalence
SOC NETWORKS

FIENBERG_S(1985)80:51 3 Fienberg, SE Statistical-analysis of multiple sociometric relations J AM STAT ASSOC
BREIGER_R(1986)8:215 123 Breiger, RL Cumulated social roles – the duality of persons and their algebras SOC NETWORKS
BURT_R(1987)92:1287 23 Burt, RS Social contagion and innovation – cohesion versus structural equivalence AM J SOCIOL
FAUST_K(1988)10:313 123 Faust, K Comparison of methods for positional analysis – structural and general

equivalences
SOC NETWORKS

DOREIAN_P(1988)13:243 23 Doreian, P Equivalence in a social network J MATH SOCIOL
PATTISON_P(1988)10:383 23 Pattison, PE Network models – some comments on papers in this special issue SOC NETWORKS
WINSHIP_C(1988)10:209 3 Winship, C Thoughts about roles and relations – an old document revisited SOC NETWORKS
BORGATTI_S(1989)11:65 123 Borgatti, SP The class of all regular equivalences – algebraic structure

and computation
SOC NETWORKS

IACOBUCC_D(1990)55:707 3 Iacobucci, D Social networks with 2 sets of actors PSYCHOMETRIKA
BURT_R(1990)12:83 23 Burt, Rs Detecting role equivalence SOC NETWORKS
BATAGELJ_V(1992)14:63 123 Batagelj, V Direct and indirect methods for structural equivalence SOC NETWORKS
BATAGELJ_V(1992)14:121 23 Batagelj, V An optimizational approach to regular equivalence SOC NETWORKS
ANDERSON_C(1992)14:137 3 Anderson, CJ Building stochastic blockmodels SOC NETWORKS
FAUST_K(1992)14:5 123 Faust, K Blockmodels – interpretation and evaluation SOC NETWORKS
DOREIAN_P(1994)19:1 123 Doreian, P Partitioning networks based on generalized concepts of equivalence J MATH SOCIOL
DOREIAN_P(1996)18:149 123 Doreian, P A partitioning approach to structural balance SOC NETWORKS
BATAGELJ_V(1997)19:143 123 Batagelj, V Notes on blockmodeling SOC NETWORKS
BATAGELJ_V(1999)1731:90 123 Batagelj, V Partitioning approach to visualization of large graphs LECT NOTES COMPUT SC
BATAGELJ_V(2000)22:173 123 Batagelj, V Some analyses of Erdos collaboration graph SOC NETWORKS
NEWMAN_M(2001)64:016131 123 Newman, MEJ Scientific collaboration networks. I. Network construction

and fundamental results
PHYS REV E

NEWMAN_M(2001)64:16132 23 Newman, MEJ Scientific collaboration networks. II. Shortest paths, weighted networks,
and centrality

PHYS REV E

GIRVAN_M(2002)99:7821 123 Girvan, M Community structure in social and biological networks P NATL ACAD SCI USA
RAVASZ_E(2002)297:1551 123 Ravasz, E Hierarchical organization of modularity in metabolic networks SCIENCE
BARABASI_A(2002)311:590 23 Barabasi, AL Evolution of the social network of scientific collaborations PHYSICA A
RAVASZ_E(2003)67:026112 123 Ravasz, E Hierarchical organization in complex networks PHYS REV E
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networks. An important contribution for the development of the community detection approach
is the paper of Girvan and Newman, also on the CPM main path, and the key-routes through this
network. Here (and in some other papers not included in the main path but in the key-route paths
and islands) they introduced the clustering coefficient. They also introduced the term community
detection to avoid confusion with the clustering coefficient. We note that only recently, with the
further development of stochastic blockmodels, did the social networks terminology get used
again, albeit to a limited extent.

Next, two papers of Ravasz with her collaborators discuss the hierarchical organization in
complex networks. Later, productions by Sales-Pardo and Arenas et al. also deal with this topic.
Newman applied a variety of techniques and models to analyze complex networks and to exam-
ine the properties of highly clustered networks in 2003. In the same year, Newman and Park
argued that social networks differ from most other types of networks. Next, four papers propose
different algorithms for detecting network communities (Radicchi et al., Donetti and Muñoz,
Arenas, and Ball et al.). Guimera and Amaral in Nature analyzed complex metabolic networks.
The first paper on the main path dealing with the statistical aspects of community detection by
Reichardt and Bornholdt appeared in 2006. Fortunato and Barthelemy [14] found that modular-
ity optimization may fail to identify smaller modules. Kumpula et al. then proposed an approach
for dealing with this problem.

The following two papers (Lancichinetti et al. and Nicosia et al.) proposed an approach for
detecting overlapping structures in complex networks. Evans and Lambiotte proposed cluster-
ing links of a network. The next paper on the main path is by Fortunato, a highly cited overview
of community detection in networks. Good et al. studied the performance of modularity maxi-
mization. The first paper in the main path discussing stochastic blockmodels is by Decelle et al.
This idea was developed further by Peixoto in several papers appearing between 2012 and 2014.
Larremore et al. studied the community structure in bipartite networks. In 2015, Peixoto used a
statistical approach to large network models to discern overlapping clusters. Similarly, Hric et al.
developed a joint generative model for data and meta-data to attempt the prediction of missing
nodes. Peixoto’s terminology is becoming closer to the one used in social network analysis. The
last paper in the main path by Fortunato and Hric is a user guide for community detection in
networks.

2.3.3.3 Tables 2.8–2.12

These tables provide more details regarding the authors, works, and journals for the works
in the CPM path, key-routes, and islands. They are also relevant for our discussion of islands
in Section 2.7. The five tables form a single extended table that is separated only for pagination
reasons. In these tables the labels of the works are given in the first column, the second column
(code) describes in which analysis the work appeared (1 – CPM path, 2 – key-routes, and 3 – link
island). The following columns give the first author of the work, the work’s title, and the journal
in which the work was published.

The items in Table 2.8 and all but the last six items in Table 2.9 come from the social net-
works literature. The earliest items set the foundations of, and inspiration for, the development
of social network analysis. The foundational paper for blockmodeling was published in 1971
by Lorrain and White [24]. Its absence from both the CPM main and key-routes is due to it
being mathematically “fierce” in its use of category theory. However, Breiger et al. (1975) [8],
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Table 2.10 List of works on CPM path (1), main paths (2), and island (3) – part 3

Label Code First author Title Journal

NEWMAN_M(2003)45:167 123 Newman, MEJ The structure and function of complex networks SIAM REV
NEWMAN_M(2003)68:026121 123 Newman, MEJ Properties of highly clustered networks PHYS REV E
RIVES_A(2003)100:1128 3 Rives, AW Modular organization of cellular networks P NATL ACAD SCI USA
GUIMERA_R(2003)68:065103 23 Guimera, R Self-similar community structure in a network of human interactions PHYS REV E
HOLME_P(2003)19:532 3 Holme, P Subnetwork hierarchies of biochemical pathways BIOINFORMATICS
NEWMAN_M(2003)68:036122 123 Newman, MEJ Why social networks are different from other types of networks PHYS REV E
GLEISER_P(2003)6:565 23 Gleiser, PM Community structure in jazz ADV COMPLEX SYST
NEWMAN_M(2004)69:026113 23 Newman, MEJ Finding and evaluating community structure in networks PHYS REV E
NEWMAN_M(2004)38:321 23 Newman, MEJ Detecting community structure in networks EUR PHYS J B
REICHARD_J(2004)93:218701 23 Reichardt, J Detecting fuzzy community structures in complex networks with a Potts model PHYS REV LETT
ARENAS_A(2004)38:373 3 Arenas, A Community analysis in social networks EUR PHYS J B
CLAUSET_A(2004)70:066111 23 Clauset, A Finding community structure in very large networks PHYS REV E
RADICCHI_F(2004)101:2658 123 Radicchi, F Defining and identifying communities in networks P NATL ACAD SCI USA
DONETTI_L(2004):P10012 123 Donetti, L Detecting network communities: a new systematic and efficient algorithm J STAT MECH
GUIMERA_R(2004)70:025101 23 Guimera, R Modularity from fluctuations in random graphs and complex networks PHYS REV E
GUIMERA_R(2005)433:895 123 Guimera, R Functional cartography of complex metabolic networks NATURE
DUCH_J(2005)72:027104 123 Duch, J Community detection in complex networks using extremal optimization PHYS REV E
DANON_L(2005): 123 Danon, L COSIN book –
PALLA_G(2005)435:814 3 Palla, G Uncovering the overlapping community structure of complex networks

in nature and society
NATURE

MUFF_S(2005)72:056107 23 Muff, S Local modularity measure for network clusterizations PHYS REV E
GFELLER_D(2005)72:056135 23 Gfeller, D Finding instabilities in the community structure of complex networks PHYS REV E
GUIMERA_R(2005)102:7794 3 Guimera, R The worldwide air transportation network: Anomalous centrality, community

structure, and cities’ global roles
P NATL ACAD SCI USA

NEWMAN_M(2006)103:8577 3 Newman, MEJ Modularity and community structure in networks P NATL ACAD SCI USA
REICHARD_J(2006)74:016110 123 Reichardt, J Statistical mechanics of community detection PHYS REV E
BOCCALET_S(2006)424:175 3 Boccaletti, S Complex networks: Structure and dynamics PHYS REP
NEWMAN_M(2006)74:036104 23 Newman, MEJ Finding community structure in networks using the eigenvectors of matrices PHYS REV E
FORTUNAT_S(2007)104:36 123 Fortunato, S Resolution limit in community detection P NATL ACAD SCI USA
KUMPULA_J(2007)56:41 123 Kumpula, JM Limited resolution in complex network community detection with Potts model

approach
EUR PHYS J B

KUMPULA_J(2007)7:L209 23 Kumpula, JM Limited resolution and multiresolution methods in complex network
community detection

FLUCT NOISE LETT

GUIMERA_R(2007)3:63 3 Guimera, R Classes of complex networks defined by role-to-role connectivity profiles NAT PHYS
ROSVALL_M(2007)104:7327 3 Rosvall, M An information-theoretic framework for resolving community structure

in complex networks
P NATL ACAD SCI USA

GUIMERA_R(2007)76:036102 23 Guimera, R Module identification in bipartite and directed networks PHYS REV E
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Table 2.11 List of works on CPM path (1), main paths (2), and island (3) – part 4

Label Code First author Title Journal

SALES-PA_M(2007)104:15224 123 Sales-Pardo, M Extracting the hierarchical organization of complex systems P NATL ACAD SCI USA
ARENAS_A(2008)10:053039 123 Arenas, A Analysis of the structure of complex networks at different resolution levels NEW J PHYS
CLAUSET_A(2008)453:98 3 Clauset, A Hierarchical structure and the prediction of missing links in networks NATURE
KUMPULA_J(2008)78:026109 3 Kumpula, JM Sequential algorithm for fast clique percolation PHYS REV E
KARRER_B(2008)77:046119 23 Karrer, B Robustness of community structure in networks PHYS REV E
BLONDEL_V(2008):P10008 23 Blondel, VD Fast unfolding of communities in large networks J STAT MECH-THEORY E
LEUNG_I(2009)79:066107 3 Leung, IXY Towards real-time community detection in large networks PHYS REV E
LANCICHI_A(2009)11:033015 123 Lancichinetti, A Detecting the overlapping and hierarchical community structure

of complex networks
NEW J PHYS

LANCICHI_A(2009)80:016118 23 Lancichinetti, A Benchmarks for testing community detection algorithms on directed
and weighted graphs with overlapping communities

PHYS REV E

RONHOVDE_P(2009)80:016109 23 Ronhovde, P Multiresolution community detection for megascale networks
by information-based replica correlations

PHYS REV E

GOMEZ_S(2009)80:016114 3 Gomez, S Analysis of community structure in networks of correlated data PHYS REV E
TRAAG_V(2009)80:036115 23 Traag, VA Community detection in networks with positive and negative links PHYS REV E
NICOSIA_V(2009):P03024 123 Nicosia, V Extending the definition of modularity to directed graphs

with overlapping communities
J STAT MECH

EVANS_T(2009)80:016105 123 Evans, TS Line graphs, link partitions, and overlapping communities PHYS REV E
LANCICHI_A(2009)80:056117 3 Lancichinetti, A Community detection algorithms: A comparative analysis PHYS REV E
BARBER_M(2009)80:026129 3 Barber, MJ Detecting network communities by propagating labels under constraints PHYS REV E
FORTUNAT_S(2010)486:75 123 Fortunato, S Community detection in graphs PHYS REP
GOOD_B(2010)81:046106 123 Good, BH Performance of modularity maximization in practical contexts PHYS REV E
LANCICHI_A(2010)81:046110 3 Lancichinetti, A Statistical significance of communities in networks PHYS REV E
RADICCHI_F(2010)82:026102 23 Radicchi, F Combinatorial approach to modularity PHYS REV E
LANCICHI_A(2010)5:0011976 3 Lancichinetti, A Characterizing the Community Structure of Complex Networks PLOS ONE
AHN_Y(2010)466:761 23 Ahn, YY Link communities reveal multiscale complexity in networks NATURE
EVANS_T(2010)77:265 3 Evans, TS Line graphs of weighted networks for overlapping communities EUR PHYS J B
MUCHA_P(2010)328:876 3 Mucha, PJ Community Structure in Time-Dependent, Multiscale, and Multiplex

Networks
SCIENCE

GREGORY_S(2010)12:103018 3 Gregory, S Finding overlapping communities in networks by label propagation NEW J PHYS
KARRER_B(2011)83:016107 23 Karrer, B Stochastic blockmodels and community structure in networks PHYS REV E
EXPERT_P(2011)108:7663 23 Expert, P Uncovering space-independent communities in spatial networks P NATL ACAD SCI USA
PSORAKIS_I(2011)83:066114 23 Psorakis, I Overlapping community detection using Bayesian non-negative matrix

factorization
PHYS REV E

TRAAG_V(2011)84:016114 23 Traag, VA Narrow scope for resolution-limit-free community detection PHYS REV E
DECELLE_A(2011)107:065701 3 Decelle, A Inference and Phase Transitions in the Detection of Modules in Sparse

Networks
PHYS REV LETT

BALL_B(2011)84:036103 123 Ball, B Efficient and principled method for detecting communities in networks PHYS REV E
DECELLE_A(2011)84:066106 123 Decelle, A Asymptotic analysis of the stochastic block model for modular networks

and its algorithmic applications
PHYS REV E
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Table 2.12 List of works on CPM path (1), main paths (2), and island (3) – part 5

Label Code First author Title Journal

LANCICHI_A(2011)6:0018961 23 Lancichinetti, A Finding Statistically Significant Communities in Networks PLOS ONE
LANCICHI_A(2011)84:066122 23 Lancichinetti, A Limits of modularity maximization in community detection PHYS REV E
NADAKUDI_R(2012)108:188701 3 Nadakuditi, RR Graph Spectra and the Detectability of Community Structure in Networks PHYS REV LETT
PEIXOTO_T(2012)85:056122 123 Peixoto, TP Entropy of stochastic blockmodel ensembles PHYS REV E
PEIXOTO_T(2013)110:148701 123 Peixoto, TP Parsimonious Module Inference in Large Networks PHYS REV LETT
GOPALAN_P(2013)110:14534 3 Gopalan, PK Efficient discovery of overlapping communities in massive networks P NATL ACAD SCI USA
PEIXOTO_T(2014)89:012804 123 Peixoto, TP Efficient Monte Carlo and greedy heuristic for the inference of stochastic

block models
PHYS REV E

PEIXOTO_T(2014)4:011047 123 Peixoto, TP Hierarchical Block Structures and High-Resolution Model Selection
in Large Networks

PHYS REV X

LARREMOR_D(2014)90:012805 123 Larremore, DB Efficiently inferring community structure in bipartite networks PHYS REV E
ZHANG_P(2014)111:18144 23 Zhang, P Scalable detection of statistically significant communities

and hierarchies, using message passing for modularity
P NATL ACAD SCI USA

KAWAMOTO_T(2015)91:012809 3 Kawamoto, T Estimating the resolution limit of the map equation in community
detection

PHYS REV E

ZHANG_X(2015)91:032803 3 Zhang, X Identification of core-periphery structure in networks PHYS REV E
PEIXOTO_T(2015)5:011033 123 Peixoto, TP Model Selection and Hypothesis Testing for Large-Scale Network

Models with Overlapping Groups
PHYS REV X

JIANG_J(2015)91:062805 3 Jiang, JQ Stochastic block model and exploratory analysis in signed networks PHYS REV E
PEIXOTO_T(2015)92:042807 23 Peixoto, TP Inferring the mesoscale structure of layered, edge-valued,

and time-varying networks
PHYS REV E

PEROTTI_J(2015)92:062825 23 Perotti, JI Hierarchical mutual information for the comparison of hierarchical
community structures in complex networks

PHYS REV E

ZHANG_P(2016)93:012303 3 Zhang, P Community detection in networks with unequal groups PHYS REV E
VALLES-C_T(2016)6:011036 3 Valles-Catala, T Multilayer Stochastic Block Models Reveal the Multilayer Structure

of Complex Networks
PHYS REV X

NEWMAN_M(2016)117:078301 23 Newman, MEJ Estimating the Number of Communities in a Network PHYS REV LETT
HRIC_D(2016)6:031038 123 Hric, D Network Structure, Metadata, and the Prediction of Missing Nodes

and Annotations
PHYS REV X

FORTUNAT_S(2016)659:1 123 Fortunato, S Community detection in networks: A user guide PHYS REP
NEWMAN_M(2016)94:052315 123 Newman, MEJ Equivalence between modularity optimization and maximum likelihood

methods for community detection
PHYS REV E

FISTER_I(2016)4:00049 123 Fister, I Toward the Discovery of Citation Cartels in Citation Networks FRONT PHYS
YANG_L(2016)9:3390/a9040073 123 Yang, LJ Community Structure Detection for Directed Networks through

Modularity Optimisation
ALGORITHMS

PEIXOTO_T(2017)95:012317 123 Peixoto, TP Nonparametric Bayesian inference of the microcanonical stochastic
block model

PHYS REV E
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White et al. (1976) and Boorman et al. (1976) (the 16th through 18th items) provided the first
algorithm for blockmodeling along with substantive interpretations of blockmodeling results.
The next three papers in the table, by Burt, introduced a rival algorithm for blockmodeling, espe-
cially [9]. Other papers presented blockmodeling results, critiques of methods, and discussions
of closely related topics, especially role structures.

The Heider (1946) paper (the second work in Table 2.8), along with the Harary (1953) (sixth),
the Cartwright and Harary (1956) (eighth) and Davis (1967) (tenth) papers formed the founda-
tions for the creation of signed blockmodeling by Doreian and Mrvar (1996) (the 23rd item
in Table 2.9). The basic idea is located in the structural theorems in the papers of Cartwright
and Harary, and in Davis, being coupled to the direct approach to blockmodeling [13].

Examining journals as venues for works is facilitated by considering the right-hand col-
umn of Tables 2.8–2.12. Many of the journals relating to blockmodeling in Table 2.8 are from
the mainstream sociological literature. They include two from The American Journal of Sociol-
ogy and four each from Social Forces and Sociological Research and Methods. The list of jour-
nals in Table 2.9 reveals a sharp transition, with Social Networks appearing 15 times. It appears
just once in Table 2.8. It appears that (i) blockmodeling became more of a method for partition-
ing social networks with migration to a newer journal and (ii) the interest of sociologists in this
research area diminished.

A similar pattern can be discerned for the subsequent community detection literature. The
shift from “social” social networks to community detection development is marked by the
appearance of works produced by Mark Newman and Michelle Girvan in Physics Review E
and PNAS (the sixth, fifth and fourth items from the bottom in Table 2.9). In terms of a fre-
quent venue, Physics Review E dominates with 44 works related to clustering appearing in its
pages. It seems that Physics Review E plays the same “venue role” as Social Networks regarding
clustering. However, it does so to a far larger research community having many more scientists
and more journals (which are also larger in size).

There is a contrast between the list of journals in Table 2.6 and those listed in Tables 2.8–2.12.
In the left panel of Table 2.6, the high ranking journals are PNAS, Nature, Lecture Notes in Com-
puter Science, Science, Physica A, Physics Review E, and Physics Review Letters. In the right
panel, the top four journals are Lecture Notes in Computer Science, Physics Review E, Physica
A and Social Networks. In the main, the journals heading the lists in Table 2.6 largely vanish
from the list in Tables 2.8–2.12. Lecture Notes in Computer Science does not appear, Physica
A appears only once, Science twice, Nature thrice, and Physics Review Letters four times. Only
PNAS and Physics Review E have works appearing with any regularity. It seems that community
detection has a relatively narrow focus within the wider natural sciences literature – just as block-
modeling did in the earlier sociological literature. For researchers interested in the substantive
meanings associated with partitioning with this literature, this raises interesting questions that
are answered, in part, by examining islands in this literature.

2.3.4 Positioning Sets of Selected Works in a Citation Network

The original main path analyses produced figures like the one shown in Figure 2.2 with a single
main path. A recent extension of this approach enables a researcher to determine main paths
through a selected set of nodes (works) in a citation network. This can be used to position a
given set of nodes in a citation network – they can either attach to the principal main path or
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form separate streams. This is illustrated with three examples involving valued networks, signed
networks, and a geophysics network.

The basic idea is to select a set of works on specific topic. For the valued networks example,
we focused on works authored by Žiberna and Nordlund extending blockmodeling for binary
networks to valued networks. For the signed networks we selected papers by Doreian and Mrvar,
who have written extensively on this topic. For the geophysics network we used works selected
from the network discussed in Subsection 2.4.3. The new option determines, for each work from
the set of given works, the corresponding main path passing through it. There are two possible
outcomes. One is that the intersection of the principal main path and the obtained main path
is non-empty. If so, then the selected work is related to those in the principal main path. This
allows “branches” having ties to or from works in the principal main path. The second option is
that the intersection is empty, implying that the selected work is focused on different issues.

The main path of Figure 2.2 is present in both Figures 2.4 and 2.5, which differ
only by considering separately valued and signed networks. We consider first works on
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Figure 2.4 Valued networks main path with branches.
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Figure 2.5 Signed network main path with branches.

valued networks, { ZIBERNA_A(2007)29:105, NORDLUND_C(2007)29:59, ZIBERNA_A
(2008)32:57, ZIBERNA_A(2009)6:99, ZIBERNA_A(2013):, ZIBERNA_A (2013)10:99,
ZIBERNA_A(2014)39:46, ZIBERNA_A(2016)12:137, NORDLUND_C(2016)44:160 }, as
shown in Figure 2.4.

All the foundational papers are cited by a paper by Cartwright and Harary published in
1956. The next 22 works are all well known in the social network analysis with many in the
blockmodeling tradition before a branch appears. It is a pair of branches with two ties to works
by Batagelj regarding valued networks. One comes from a work of his Ljubljana colleague,
Žiberna, and the other from a work involving Luczkovich. The former has a small main
path with works considering valued networks. The second branch includes productions that
appeared in a special issue of the Journal of Economic Geography focused on social networks
distributed in geographic space. Blockmodeling ideas were mobilized in this special issue. The
second branch, actually a double branch, involves the survey paper of Fortunato on community
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detection. There is a citation from that work to a work that cites one of works authored by
Žiberna in one of the branches mentioned above. The other takes the form of a citation to the
Fortunato work. The works on this branch involve works authored by social scientists regarding
valued networks and algorithmic methods for partitioning networks. There is also a citation from
a work involving Nordlund, a coauthor with Žiberna to another Žiberna production in the earlier
branch.

We turn to consider the works on the signed network, { DOREIAN_P(1996)18:149,
DOREIAN_P(1996)21:113, DOREIAN_P(2001)25:43, HUMMON_N(2003)25:17,
DOREIAN_P(2009)31:1, MRVAR_A(2009)33:196, BRUSCO_M(2011)40:57, DOR-
EIAN_P(2013)35:178 }, as shown in Figure 2.5. The first branch appears with a citation
to a 1986 paper authored by Breiger, firmly in the blockmodeling tradition, by Krackhardt.
It appears far earlier than the first branches of Figure 2.5. This paper was cited by another
production involving both Doreian and Krackhardt which in turn was cited by a paper involving
Moody, a rising scholar in the social networks field. While this paper has been cited frequently,
its content is not defined as being primarily within the domain defined by signed networks.
This has been captured in Figure 2.5.

The next branch off the main path involves a book edited by Doreian and Stokman on the
evolution of social networks. Ideas expressed there were picked up by Doreian and Krackhardt
in a 2001 work, which provided compelling evidence against the widely accepted idea of signed
networks tending towards balance. This was reinforced by a 2003 production by Hummon and
Doreian.

Another branch of the main path is due to a citation from Žiberna to Batagelj, colleagues
at the University of Ljubljana. This is connected through citations from productions involving
Doreian, Mrvar, and Brusco on fitting signed blockmodels. There are ties from this group citing
the 2001 and 2003 productions mentioned in the previous paragraph. There is also a tie from a
work on partitioning signed two-mode into a work involving Fortunato late in the main path. It
forms the last branch of Figure 2.5.

Note that in both examples a part of the principal main path is also a part of the main path
through each work from the selected set of works. These parts combine in both cases in the
complete principal main path.

The foregoing two examples of “attaching” branches to a main path were triggered
by considering variants of networks studied in the blockmodeling literature. Now, we
examine a completely different example. In Subsection 2.4.3, we examine link islands
in the network partitioning literature. We selected some of the productions in this link
island, { DIETERIC_J(1979)84:2161, CARLSON_J(1989)40:6470, CARLSON_J(1991)
44:6226, OLAMI_Z(1992)46:R1720, TURCOTTE_D(1999)62:1377 }, and repeated the
above analyses. The results are shown in Figure 2.6, a simpler figure than for the two previous
examples.

For this example, we start our discussion at the top of the main path. A 1999 work, one
involving Turcotte, a very prominent contributor to this literature, cites two works off the “main”
path. Each citation leads to a smaller and distinct main path. Both smaller main paths link back
to the “main” path, albeit at different places. The one on the right of is a 1992 production that
cites a production of the same year. The one on the left sent a tie to a production published
in 1990. At the bottom of Figure 2.6, there is a publication on the main path that cites earlier
foundational works for the geophysical literature. This is a common pattern for identified main
paths.
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Figure 2.6 Geophysics main path with branches.
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2.4 Link Islands in the Clustering Network Literature

A link island is a connected subnetwork having a higher internal cohesion than on the links
to its neighbors. Identifying islands is a general and efficient approach for identifying locally
“important” subnetworks in a given network. The details for doing this are described in [7]
(Section 2.9). The method amounts to filtering networks to identify some manageable parts. In
large networks, it is likely that many such islands will be identified. While islands are identified
through the ties linking them, it is crucial to examine the substantive content of the islands.
Just identifying topological features, while useful, is not enough. Islands are coherent with the
coherence coming from substance and the kind of information contained in Tables 2.8–2.12.

Link islands were used extensively in [7] to examine the structure of scientific citation net-
works (Section 4.7), US patent networks (Section 5.6) and the US Supreme Court citation
network (in Section 6.2). We use the same tools here to examine the clustering network as
defined above. General Pajek instructions for doing this are contained in [7].

Figure 2.7 shows the ten link islands having sizes in the range [20,150] identified in the net-
work clustering literature. Adopting George Orwell’s phrase (from Animal Farm) “All animals
are equal, but some animals are more equal than others” we change it to “All islands are inter-
esting, but some islands are more interesting than others”. It seems that the islands labeled 10,
7, 9 and 2 have the most interest value. The other islands have much smaller maximal weights,
smaller diameter, and represent less important stories.

Island 10 is the largest of these islands having 150 works and a maximal weight of 0.5785. It
has two clear parts separated by a cut. Island 7 is next in size with 74 works having a much lower
maximal weight of 4.9611 × 10−18. It also has two parts. The lower left part is centered on a
single production while the upper right part appears to be centered on a set of inter-linked works.
Both parts are highly centralized. Island 9 has 44 works with a maximal weight of 2.416 × 10−14.
Its structure suggests separate parts linked only through a cut. Island 2 has 33 nodes with a
maximal weight of 2.462 × 10−19. Apart from the presence of pendants linked to the main part
of the island, there are no obvious sub-parts.

The obvious question is simple: What holds these islands together in terms of substance and
content? We turn to examine this next.

2.4.1 Island 10: Community Detection and Blockmodeling

Figure 2.8 shows Island 10 in more detail with its works identified. The upper left part is exclu-
sively in the community detection domain while the lower right part contains works from the
social network literature. The clear cut is the last node of the latter literature as identified in
Figure 2.3. This link island provides a more expanded view compared to the one in Figure 2.3
which was more expanded than Figure 2.2. Given our earlier detailed consideration of the main
path and key-routes, little more needs to be written at this point. The additional works in Island
10 do provide a foundation for a more detailed examination of the transition between two fields
and what is featured in the two parts of the network clustering literature.

On the blockmodeling side, the first authors involved with the most works in Island 10 are
Burt (9), Batagelj (7), Breiger (6), Doreian (5), Faust (4), and Pattison (4). Many are co-authored
productions involving some of these researchers. For those involved in community detection
analyses, the first authors involved with the most works in the island are Newman (13), Peixoto
(8), Lancichinetti (7), Guimera (6), and Arenas (4). In terms of indegree, the three most cited
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Figure 2.7 Ten identified islands in the clustering network literature.

items for the blockmodeling part of this island involve Arabie, Boorman, and Breiger. As noted
above, all were involved in the foundational work for blockmodeling. Regarding community
detection, the most cited researchers are Fortunato, Peixoto, and Newman. Their works appear
to be either foundational or general surveys.

2.4.2 Island 7: Engineering Geology

The publication years for works in this island span 1965 through 2017. Studying this island
leads to a caution regarding the boundary problem. Its works are present in the citation network
through the term “sliding block analysis” used in this discipline. The earliest paper on the island
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Figure 2.8 Island 10 community detection and blockmodeling.

appeared in Geotechnique. It contained a method for calculating the permanent displacements of
soil slopes, embankments, and dams during seismic events. The model was recognized as having
great value in studying earthquakes. Two papers appeared in Geotechnique about a decade later
proposing another method. It also is valuable, especially for analyzing earth slopes and earthen
dams. Indeed, there are a variety of methods for studying seismic events related to earthquakes
and landslides. The works on this island are focused on methods for measuring seismic activity
and predicting their consequences.
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Some works in this link island stand out in terms of the number of citations they receive
and make. One paper by Jibson (of the US Geological Survey) appeared in 2007 in Engineer-
ing Geology. Its citations topped both the indegree and outdegree values. With colleagues, six
other papers involving this scientist are in this island. Also high on the outdegree listing are
papers involving Stamatopoulos. The more recent works have as the primary focus, as reflected
by keywords, predicting the dynamics of slip surfaces, saturated sands, slopes, and landslides.
The methodological focus is clear also, with both multi-block models and sliding-block models
playing a central role.

The final paper in this island used a large database of recorded ground motions to develop
a predictive model of earth displacements. The empirical contexts for the body of work in this
island are landslides and earthquakes linked through the impact of seismic events. The major
journals for this line of work include Geotechnique, Journal of Geotechnical and Geoenviron-
mental Engineering, Bulletin of Earthquake Engineering, Soils and Foundations, Engineering
Geology and Soil Dynamics and Earthquake Engineering. It is clearly part of a broader field
of engineering geology, the application of geological knowledge to improve the design of engi-
neering projects, their construction as well as their maintenance and operation, including the
impact of seismic events.

2.4.3 Island 9: Geophysics

Island 9 is shown in Figure 2.9. Its works are focused on earthquake modeling. This part of
the literature is in the clustering citation network because of the term “spring-block model”.
Again, this is another meaning of the term “block model”. The works in Island 9 are part of the
geophysics literature as evidenced by the journals where many of them appear. They include
Geophysical Research Letters, Physical Review Letters, Journal of Geophysics Research, and
Physical Review A.

One obvious question is simple to state: Why are Islands 7 and 9 not joined? Seismic events
and earthquakes are features in both of them. Surely, they must be linked? After a closer inspec-
tion of the works in these two islands, there is a very simple answer to our question. The works
in Island 9 are especially focused on temporal and dynamic issues in contrast to the works in
Island 7, which entirely relate to static issues. The difference between Island 9 and Island 7
reveals a profound similarity between two completely distinct scientific fields. It seems there
is a real difference between static and dynamic approaches to studying empirical phenomena.
Surprisingly, it is present in both the natural and social sciences. For far too long, social net-
work analyses ignored temporal issues. One set of approaches to dealing with the evolution of
social networks appeared in the edited collection [12]. Subsequent contributions appeared in
special issues of Journal of Mathematical Sociology. Since then, the focus on dynamic mod-
els of social networks has become far more extensive. It remains to be seen if the static and
dynamic approaches of the works studying the seismic events of Islands 7 and 9 will be joined
in geophysics and engineering geology.

2.4.4 Island 2: Electromagnetic Fields and their Impact on Humans

The papers appearing in this island deal with numerical methods for computations relating to
electromagnetic fields. Their appearance in this island is due to the term “block model”. In this
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Figure 2.9 Island 9 geophysics.

different literature, “block models of people” use a limited number of cubical cells to predict the
internal electromagnetic fields and specific absorption rate distributions inside human bodies.
The earliest paper on this island appeared in 1968. Other early papers involving Hagmann and
his colleagues are present also. A production by Massoudi appeared in 1985 with the words
“limitations of the cubical block model” in the title. It has the highest indegree and the sec-
ond highest outdegree. The main content concerns the meaning of a block model. One of the
productions involving Hagmann (1986) has the highest outdegree. The Massoudi paper cites it,
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discussing the block model concept. Both papers appeared in IEEE Transactions on Microwave
Theory and Techniques. Indeed, many of the works on this island appeared in this journal. They
are strictly methodological.

A paper involving Zwamborn was published in 1991 (three papers with him as a co-author
appear on this island). It has the second highest outdegree and appeared in the Journal of the
Optical Society of America A. It concerned the computation of electromagnetic fields inside
strongly inhomogeneous objects. The most recent paper on this island, appearing in 2002, was
published in Microwave and Optical Technical Letters. It concerned resonant frequency calcu-
lation for inhomogeneous dielectric resonators. These papers are also methodological. If human
bodies are inhomogeneous objects, there is continuity of this empirical focus.

In the analyses of bibliometric networks reported in [7] (Section 4.7.3), there was an “optical
network line island”. Many of the productions on this island involved journals published by the
IEEE (Institute of Electrical and Electronics Engineers) and the Optical Society of America.
The same appears to be the case for Island 2. The analysis in [7] examined the role of the
institutional dominance of large professional organizations, something that appears relevant here
also, especially when their interests are coupled.

2.4.5 Limitations and Extensions

Our brief examination of these four link islands implies some cautionary notes along with sug-
gestions for further work.

• WoS is quite limited in the information it provides for individual works. Only half of the works
on Island 2 had complete descriptions in WoS (DC = 1). This restriction is known already
[7]. The problem was far less acute for the other islands. Clearly, different subject areas will
have differing levels of this problem. These gaps in the information must be filled. One option
is to extend the original WoS data with additional manually constructed descriptions for these
works.

• The search terms used for extracting citation networks can be ambiguous. The search terms
used here included block model*, blockmodel*, and block-model*. For those in the social
networks sub-field, the term “blockmodel” is very well known. But, for the works in Island
2, “block model” means something quite different. The works in Islands 7 featured “sliding
block analysis” while in Island 9 the core term was “spring-block model”.

• Such differences in meaning for a search term can be discerned only through a careful exam-
ination of the identified literatures. Clearly, general terms have to be used to include as many
potentially relevant works as possible. However, the results need to be considered carefully.
We were surprised to learn of the other meanings for the term “block”. No doubt researchers
in geophysics and engineering geology would be surprised to find works from the social net-
works literature in their citation networks if searches were done using the term “block”. The
proposed approach enabled us to identify these other meanings and consider the maximal
weight of corresponding islands, along with their importance.

• Examining temporal shifts in the keywords used in literature and the journals where works are
published are important avenues of exploration for understanding the dynamics of scientific
fields. The changes were most dramatic for the network clustering literature examined in
Island 10.
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• The structures of the islands shown in Figure 2.7 are quite different. An open problem is
whether this has an impact on the production of knowledge and the social organization of
scientific disciplines.

2.5 Authors

We consider, in more detail, the authors creating the papers in the network clustering literature.
The network considered in this section is for works having complete information. We computed
the networks CiC, WAc, WKc, and WJc. Their sizes are in Table 2.3.

The publication counts for authors are shown in Table 2.13 with a focus on the authors pro-
ducing works in the core topic of this book. From CiC, it is straightforward to construct the
counts of works by these authors. Authors with the largest number of papers about clustering
networks are shown in Table 2.13. The large number of Chinese authors author names in the list
may be an example of the “three Zhang, four Li” effect [29]. Lacking the resources to examine
the relevant works to identify these authors, we proceed with a caution that some of the counts
for these Chinese authors are not final.

The top ten entries in Table 2.13 come from the community detection area. Only four of the
(first) authors listed in Table 2.13 work in the social networks literature. Their names are bolded.
As all four are involved in collaborative work, the counts by single author names are limited as a
summary of individual activity. The remaining works come from researchers in other disciplines,
most of whom study community detection. The same caveat regarding collaborative production
holds there also. Even so, these counts of works reflect accurately the far larger number of
researchers and productions from the natural sciences, consistent with our results about the
main path, key-routes, and Island 10.

We contend it may be more useful to examine productivity inside research groups and focus
explicitly on collaboration. To this end, the idea of identifying cores in networks has value. A
full description of k-cores and p-cores is provided in [7] (in Section 2.10.1). More importantly,
for our purposes here, are PS-cores also described in [7] (Section 4.10.1.3).

Table 2.13 Authors involved in the largest number of works

Rank Frequency Author Rank Frequency Author Rank Frequency Author

1 66 ZHANG_X 15 35 ZHANG_Z 28 26 ZHANG_H
2 57 WANG_Y 16 35 ZHANG_J 29 26 WANG_L
3 56 LIU_J 17 34 JIAO_L 30 26 TURCOTTE_D
4 51 WANG_X 18 33 ZHANG_S 31 26 BORGATTI_S
5 44 LI_J 19 32 WANG_S 32 26 EVERETT_M
6 42 WANG_H 20 31 BATAGELJ_V 33 26 WANG_C
7 41 LIU_Y 21 31 CHEN_H 34 24 LI_X
8 41 LI_Y 22 29 YANG_J 35 24 LI_L
9 40 NEWMAN_M 23 28 HANCOCK_E 36 24 LIU_X

10 39 WANG_J 24 28 WANG_W 37 23 LI_S
11 39 DOREIAN_P 25 27 CHEN_L 38 23 ZHOU_Y
12 38 CHEN_Y 26 26 LI_H 39 23 CHEN_X
13 36 ZHANG_Y 27 26 WU_J 40 23 LEE_J
14 35 WANG_Z
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2.5.1 Productivity Inside Research Groups

The network we use here is Ct, an undirected network obtained from NT ∗ N, where

N = diag( 1
max(1, outdeg(p))

)WA

with symmetrization [4].
A subset of nodes C is a PS-core at some threshold iff for each of its nodes the sum of weights

on links to other nodes from C is greater or equal to that threshold and C is the maximum such
subset. Authors with the largest PS-core values in Ct [6] are listed in Table 2.14. Again, bolding
is used for researchers in the social network field. The number of researcher names from the
social network side is now up to 14, still a minority. The values for authors equals the sum of all
their fractional contributions to works with authors inside the core, a better measure than counts
of publications bearing their names.

Figure 2.10 shows the links between author names with the size of nodes being propor-
tional to their PS-core value. For visual clarity, loops are removed. The names for researchers
in the social network community are marked in boldface. The large top left PS-core features
researchers from the physical sciences with a clear central part. While Newman is connected
to this PS-core through one link, the size of his node is the largest. Several paths link other
prominent researchers to this central part. They include one linking Peixoto to Fortunato to Lan-
cichietti to Wang_J. There is also a path from Barabasi to Newman to Zhang_X. One surprise,
at least for us, is the connection of Borgatti and Everett, having the strongest tie in Figure 2.11,
to the central part of the PS-core featuring natural scientists through their links with Boyd and
his many links within this core. All three met, and worked, at the University of California at
Irvine, an important center for social network analysis. This merits further attention.

Immediately to the right of this large PS-core is a much smaller one involving Wasserman,
Pattison and Breiger, who worked with each other on role systems and helped create the founda-
tions for exponential random graph modeling of networks. Below this PS-core is one centered

Table 2.14 Authors with the largest PS-core values in Ct

Rank PS-core Author Rank PS-core Author Rank PS-core Author
value value value

1 21.0347 NEWMAN_M 15 6.0292 WANG_J 28 5.2589 BRUSCO_M
2 15.9653 BORGATTI_S 16 5.7500 PIZZUTI_C 29 5.2500 DIETERIC_J
3 15.9653 EVERETT_M 17 5.7014 STAMATOP_C 30 5.2483 LANCICHI_A
4 12.5000 BURT_R 18 5.6736 SUN_P 31 5.2483 FORTUNAT_S
5 12.5000 DOREIAN_P 19 5.6669 ZHANG_S 32 5.1111 BOYD_J
6 10.4722 PEIXOTO_T 20 5.6307 WANG_H 33 5.0633 WANG_X
7 10.1126 TURCOTTE_D 21 5.6307 LIU_J 34 5.0278 QIAN_X
8 8.7900 FERLIGOJ_A 22 5.5417 YANG_J 35 5.0208 WASSERMA_S
9 8.7900 BATAGELJ_V 23 5.5417 LESKOVEC_J 36 5.0000 OKAMOTO_H

10 6.5115 WANG_Y 24 5.5417 ZHANG_J 37 5.0000 JESSOP_A
11 6.4097 PATTISON_P 25 5.4432 HANCOCK_E 38 4.9881 BARABASI_A
12 6.4097 BREIGER_R 26 5.4432 ZHANG_Z 39 4.9775 KRACKHAR_D
13 6.2083 MRVAR_A 27 5.2589 STEINLEY_D 40 4.9112 ZHANG_H
14 6.0292 ZHANG_X

The bolded authors published in journals in the social sciences.
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Figure 2.10 PS-cores at level 4 in Ct.

on Doreian, who collaborated with all of the other researchers in this PS-core. The links are
strongest with Batagelj, Ferligoj and Mrvar. The next strongest tie is between him and Brusco –
they worked on algorithms for blockmodeling along with Steinley. The strongest dyadic links
in this core are between Batagelj and Ferligoj and between Brusco and Steinley.

We note two items: (i) many of the author names in Table 2.14 involve researchers participat-
ing in collaborative work (see below for more on this) and (ii) many of the names in this table
have been mentioned in the above analyses, adding to the coherence of the results we report.

2.5.2 Collaboration

Collaboration is a critically important, and increasing, feature of modern scientific research. To
examine this we use Ct′, an undirected network without loops obtained from NT ∗ N′, where

N′ = diag( 1
max(1, outdeg(p) − 1)

)WA,

through symmetrization and setting the diagonal values to 0 [10]. In the network Ct each work
co-authored by an author contributes 1

k2 (k is the number of co-authors) to “self-collaboration”
(value on the loop) of that author. The network Ct′ describes the true collaboration with others.

Authors with the largest PS-core values in Ct′ are listed in Table 2.15 and presented
in Figure 2.11. Heading the list are Borgatti and Everett, who have published together on
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Figure 2.11 Links between authors in a PS-core at level 3.5 in Ct′.

Table 2.15 Authors with the largest PS-core values in Ct′s

Rank Value Author Rank Value Author

1 15.8333 BORGATTI_S 15 5.0000 AMELIO_A
1 15.8333 EVERETT_M 15 5.0000 BAJEC_M
2 7.6667 FERLIGOJ_A 15 5.0000 SUBELJ_L
2 7.6667 BATAGELJ_V 15 5.0000 CHEN_P
2 7.6667 MRVAR_A 15 5.0000 PIZZUTI_C
2 7.6667 DOREIAN_P 15 5.0000 REICHARD_J
7 6.4333 STEINLEY_D 15 5.0000 BORNHOLD_S
7 6.4333 BRUSCO_M 23 4.8333 SALES-PA_M
9 6.3333 YANG_J 23 4.8333 GUIMERA_R
9 6.3333 LESKOVEC_J 23 4.5833 NUSSINOV_Z

11 6.0000 LANCICHI_A 23 4.5833 RONHOVDE_P
11 6.0000 FORTUNAT_S 27 4.3333 ROSVALL_M
13 5.3333 QIAN_X 27 4.3333 BERGSTRO_C
13 5.3333 WANG_Y 27 4.3333 WILSON_R
15 5.0000 HERO_A 37 4.3333 HANCOCK_E

The bolded authors published in journals in the social sciences.
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blockmodeling for a long time. Next comes publications involving Ferligoj, Batagelj, Doreian,
and Mrvar, who also have worked together for an extensive period. Both Steinley and Brusco,
who have collaborated with Doreian, appear next, but they also worked together on clustering
problems before publishing papers with Doreian on blockmodeling. It is interesting that the
leading “nonsocial” authors from Table 2.14, Newman, Peixoto, and Turcotte, are missing in
Table 2.15. The reasons are a combination of publishing of single author papers and publishing
with many different co-authors.

Similar analyses have been performed for social networks as a whole in [7]. The citation
network studied there was far larger as a more extensive literature was studied. Many of the
above names appear also in the tables and figures of [7]. Comparing the two sets of analyses
makes it clear that the role of these authors in this literature largely, but not completely, involves
blockmodeling.

There is always a choice regarding which links are included for further examination of the
structure of any studied network. Figure 2.11 shows the network when the threshold was set
at 3.5. Necessarily, the results are more fragmented with 18 smaller link islands. In the middle
of Figure 2.11 is the heavy Borgatti–Everett dyad having the highest value. The top left link
island also features authors working on blockmodeling, consistent with our earlier results. The
remaining items belong to the community detection literature.

2.5.3 Citations Among Authors Contributing to the Network Partitioning
Literature

The network Acite = WAcT ∗ CiC ∗ WAc describes the citations among authors. The value of
element Acite[u, v] is equal to the number of citations from works coauthored by u to works
coauthored by v. While these numbers are inflated slightly when u and v collaborate, coauthor-
ship is part of the citation structure. Collaboration matters greatly.

Link islands can be extracted from this network. The methods described in [7] require setting
bounds for delineating islands. For this analysis they were [10, 50] with 16 islands identified for
this network. They have quite different structures. Each can be examined but we focus on two
of them as they pertain to community detection and (non-stochastic) blockmodeling.

The community detection island shown at the bottom of Figure 2.12 is large and massively
centered on Newman. By far, works involving him are cited the most. Unsurprisingly to those
in the field, a strong case can be made for him founding this research front both alone and
with key collaborators. Fortunato is another highly cited author, most likely for his extensive
and comprehensive summary of this research area. Note also that the terminal nodes (outdegree
is 0) are the founders of complex networks approach Barabasi, Albert and Girvan.

The island containing publications about blockmodeling is smaller and is less centralized.
The most central author is Doreian, but nowhere near to the extent of Newman. Moreover, there
is more nuance in the structure with citations going from him to authors involved in creating
the foundations of blockmodeling. Also, three distinct collaborative efforts are involved. One
consists of works featuring him with Batagelj and Ferligoj on blockmodeling. One is with Mrvar
on signed networks and the third involves his work with Brusco and Steinley on algorithms
for partitioning networks. Citations go also to Borgatti and Everett without any corresponding
reciprocating citations. Citations from Robins, Pattison, and Wasserman, all prominent in social
networks, are reminders that this island is about blockmodeling. Were the focus on probabilistic
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Figure 2.12 Citations among authors from two parts of the literature: community detection and
blockmodeling.
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approaches to studying social networks, especially exponential random graph models, that part
of the network would expand greatly with the blockmodeling part disappearing. An expanded
analysis of the whole social network literature, albeit for an earlier time period, is given in [7]
(their Figure 4.17) and reinforces this point while showing links between these two areas of the
literature.

No doubt researchers more familiar with the community detection literature, could paint a
more nuanced picture for their part of the network clustering literature. One feature of the islands
technique is the way it determines items more closely related among themselves compared to
the connections from them to elsewhere in the network. While useful, an open problem is the
examination of links between such islands. When coupled to the use of keywords and placed in
a temporal framework, this will facilitate an examination of the movements of ideas within and
between parts of citation and collaboration networks.

We could analyze also networks n(WAc)T ∗ CiC ∗ n(WAc) (every citation has value 1 that
is distributed among authors) and n(WAc)T ∗ n(CiC) ∗ n(WAc) (every work has value 1 that is
distributed among authors).

2.5.4 Citations Among Journals

There is a huge literature on citation relations between journals. It origins are found in the
work of Garfield starting in the 1950s. Among his many contributions were establishing the
Institute for Scientific Information (ISI) and the creation of the Science Citation Index (SCI)
making extensive use of the aggregated journal-to-journal citation data provided annually by
the Journal Citation Reports (JCR). See, for example, [15]. Also created was the Social Science
Citation Index (SSCI). Much work has followed on mapping to structure these networks. A
recent example is provided by Leydesdorf et al. examining structural shifts in journal-to-journal
networks [22].

Our focus here has been on a sustained look at the citation network of works considering
partitioning of networks. This can be extended to construct a journal-to-journal network for this
literature only. Most likely, some of the works studied above will be found in the SCI. Others
will be located in in the SSCI, with some overlap. Using only one of these data sources would
be limiting and combining them would be difficult. Our case is somewhat special because of our
interest in citations in the field of network clustering and not in general citations among journals.
The task is one of counting the citation links between journals featuring works in this area.

2.5.4.1 Counting

To get information about citations among journals we compute the derived network

JJ = WJT ∗ Ci ∗ WJ

Its weights have the following meaning: jj(i, j) = the number of citations from papers published
in journal i to papers published in journal j, with attention confined to the network partitioning
literature.

While this network can be searched for link islands, the results are limited due the different
sizes of the journals involved. To obtain more useful results we applied the fractional approach
described immediately below. Note that n(WJ) = WJ.
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2.5.4.2 The Fractional Approach

In the fractional approach, we use the normalized citation network n(Ci). The derived network
is determined as follows:

JJf = WJT ∗ n(Ci) ∗ WJ

Its weights have the following meaning: jjf (i, j) = fractional contribution of citations from
papers published in journal i to papers published in journal j, again with attention restricted
to the network partitioning literature.

There are 12 link islands in the [10, 50] range for the number of nodes (see Figure 2.13).
Examining this figure more closely, the largest link island (top left) involves the journals where
work on blockmodeling and community detection appeared. This island is considered in more
detail below. The subject matter of the remaining islands contains surprises. Continuing to
read across the top row of this figure, the primary subjects are dentistry and medical technolo-
gies, with and surgery, reconstructive surgery, and physical therapy as follow-up treatments
to surgery. Dropping to the next row, reading from the left, the subjects are earthquakes and
fluid mechanics, laser surgery in dentistry, petroleum engineering, and cardiovascular problems
and treatments. Across the bottom row, the topics are archeology and antiquity studies, marine
research and ship technology, linguistics (featuring only German language journals), and soil
science.

This diversity of subject matter suggests a variety of issues. One is that the network parti-
tioning literature is spread across far more disciplines than we anticipated. Of course, this could
imply that the initial search was too broad. But if multiple disciples are involved, examining
the journal-to-journal structures for these other disciplines has interest value. All of the islands
are highly centralized, having either star-like or hierarchical structures. This is suggestive of
another feature of the organization of scientific production at the journal level which merits
further attention.

We label the largest island as the main island. It is presented in Figure 2.14. By far, most
journals on this link island are from the physics-driven approach. Indeed, as shown at the bottom
left, only a small number come from the social science approach to social networks. In part this
reflects the institutional dominance of the natural sciences, especially physics. The only link
from the physics literature to the social science literature is from Physics Review E to Social
Networks. This is due to a link from a Newman paper in the former journal to a Batagelj paper
in the latter literature, exactly the transition point between the blockmodeling literature and the
community detection literature discussed in our analysis of main paths in Figure 2.2.

Figure 2.14 emphasizes its acyclic (hierarchical) structure with strong components. They are
few in number. Only one is in the social science part of the network (lower left of the figure). It
has Social Networks and Journal of Mathematical Sociology, both of which featured works on
blockmodeling. The largest strong component has (Physics Review E, Physics Review A, Physics
Review Letters, Physica A, European Physical Journal B, Nature, Science and PNAS). Note that
the subgroup Nature, Science, and PNAS is linked back to the second strong component only
with the arc between PNAS and Physics Review E.

Physics Review E, the primary journal for works on community detection and related topics,
forms by two reciprocated dyads a strong component with Physics Review Letters and Physica
A. The fractional tie from Physica A to Physics Review E is far stronger than the reverse tie. The
fractional tie from Physics Review E to Physics Review Letters is stronger than the reverse tie,
something meriting further attention. The third strong component also involves three journals
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Figure 2.13 JJf fractional islands.
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Figure 2.14 JJf main fractional island.

with two reciprocated dyads. Nature has reciprocated ties with both the PNAS and Science. All
three journals are highly institutionalized within the natural sciences. Both PNAS and Nature
are heavily cited, which reflects this institutional prominence. However, these ties are not recip-
rocated. It seems reasonable to assume that works in the other journals sent ties to these journals
as a form of validation of their ideas. Science is relatively peripheral in Figure 2.14. This sug-
gests that the works involving partitioning networks are not a central part of the overall scientific
literature involving the natural sciences.

2.5.5 Bibliographic Coupling

Bibliographic coupling occurs when two works each cite a third work in their bibliographies.
The idea was introduced by Kessler in 1963 [21] and has been used extensively since then. See
Figure 2.15 where two citing works, p and q, are shown. Work p cites five works and q cites

p q

v

Figure 2.15 Bibliographic coupling.
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seven works. The key idea is that there are three documents cited by both p and q. This suggests
some content communality between p and q. It is thought that having more works citing pairs
of prior works increases the likelihood of them sharing content. This is not unreasonable.

In WoS2Pajek the citation relation is p Ci q where work pcites work q. Therefore the bibli-
ographic coupling network biCo can be determined as

biCo = Ci ∗ CiT

where bicopq = the number of works cited by both works p and q = |Ci(p) ∩ Ci(q)|.
Bibliographic coupling weights are symmetric, bicopq = bicoqp:

biCoT = (Ci ∗ CiT )T = Ci ∗ CiT = biCo

The pairs with the largest values involve works featuring reviews (or overviews of a field) and
authors citing themselves. Review papers may require closer consideration when considering
bibliographic coupling as they make many citations across wide areas.

Figure 2.16 shows the bibliographic coupling of works for links above a threshold of 25.
There is one large set of such coupled works in a network along with three dyads and a triple of
works. They feature productions involving physicists and computer scientists.

2.5.5.1 Fractional Bibliographic Coupling

Given the problems with works making many citations, especially with review works citing
many works, we take a different approach. Necessarily, review papers cover a wide area (or
multiple areas). That two works are cited in a broad review paper need not imply that they have
common content. Ideally, it would be useful to separate specific contributions on research fronts
from works looking back at what was done in general, but the literature contains both types of
documents. We think a different strategy is required. Neutralizing the distorting impact of review
documents suggests using normalized measures designed to control for this is useful (see [17]).
We first consider:

biC = n(Ci) ∗ CiT

where n(Ci) = D ∗ Ci and D = diag( 1
max(1,outdeg(p)) ). DT = D .

biC = (D ∗ Ci) ∗ CiT = D ∗ biCo

biCT = (D ∗ biCo)T = biCoT ∗ DT = biCo ∗ D

For Ci(p) ≠ ∅ and Ci(q) ≠ ∅ it holds (proportions)

biCpq =
|Ci(p) ∩ Ci(q)|

|Ci(p)| and biCqp =
|Ci(p) ∩ Ci(q)|

|Ci(q)| = biCT
pq

and biCpq ∈ [0, 1]. biCpq is the proportion of its references that the work p shares with the
work q.

Combining biCpq and biCqp we can construct different normalized measures such as

biCoapq = 1
2
(biCpq + biCqp) Average

biCompq = min(biCpq,biCqp) Minimum
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Figure 2.16 Bibliographic coupling above a threshold set at 25.

Other possible measures include geometric mean, the harmonic mean, and the Jaccard index.
All these measures are symmetric. In the following we will use the Jaccard coefficient

biCojpq = (biC−1
pq + biC−1

qp − 1)−1 =
|Ci(p) ∩ Ci(q)|
|Ci(p) ∪ Ci(q)|

It is easy to verify that biCojpq ∈ [0, 1] and biCojpq = 1 iff the works p and q are referenc-
ing the same works, Ci(p) = Ci(q). To get a useful dissimilarity measure, use dis = 1 − sim or
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dis = 1
sim

− 1 or dis = − log sim. For example

biCojDpq = 1 − biCojpq =
|Ci(p)

⨁
Ci(q)|

|Ci(p) ∪ Ci(q)| Jaccard distance

which is the proportion of the number of distinct neighbors and all neighbors of works p and q
in the citation network.

2.5.5.2 Jaccard Islands

We computed Jaccard similarity measures for the network CiteB and determined corresponding
link islands having sizes in the range [5, 75]. The following table shows the distribution of the
sizes of 133 islands that were identified.

Size 5 6 7 8 9 10 11 12 13 14 15 17 18 24 27
Number 33 16 11 17 12 8 4 2 2 3 1 4 2 1 1

Size 28 31 33 34 40 43 48 51 52 55 58 70 71 75
Number 1 2 1 1 1 1 1 1 2 1 1 1 1 1

We examine more closely a social networks Jaccard island (shown in Figure 2.17 with 70
works), a Jaccard island featuring works of physicists (in Figure 2.18 with 58 works), and three
smaller Jaccard islands having 23, 22, and 18 works (see Figure 2.20).

The social networks Jaccard island is the largest such island. It has works spread over a variety
of topics linked to partitioning social networks. There are many cuts linking these areas. One
the top left of Figure 2.17, the works involve stochastic blockmodeling and exponential random
graph models. The work by Sailer appeared in 1974 and is a cut connecting three sub-areas
including the part just described. To the right of this cut are works involving the origins of
blockmodeling. Below this cut are more works on classical blockmodeling. On the lower right
of Figure 2.17 are works featuring discussions of the early algorithms for blockmodeling. At
the bottom of the figure are more contemporary works on blockmodeling, including generalized
blockmodeling. Many of these works were featured in Section 2.3.

The Jaccard island shown in Figure 2.18 features works by physicists regarding community
detection and related methods for partitioning networks. It also has many cuts. Indeed, we sug-
gest the presence of cuts is a feature of networks formed through bibliographic coupling links. In
addition, it seems that bibliographic coupling is very useful for identifying different sub-areas
of fields and how they are connected (see Figure 2.19).

It is straightforward to determine the citations received by works in these two Jaccard islands.
The top numbers of received citations are shown in Table 2.18 where the relevant items from
social network literature is on the left and those for the physicists are on the right.

Unsurprisingly, most of the works appearing in both columns have appeared earlier in our
narrative. There are some clear differences between the two distributions. When the box-plots
are drawn, the distribution for the social networks literature is far more skewed, with outliers
present, than for the physicist part of the literature. Also the mean and median for these limited
distributions are considerably higher in the physicist literature.
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Figure 2.17 Bibliographic coupling in the social networks literature.

When the years of the publications are examined, another clear difference emerges. The range
of years for the social networks part of the literature goes from 1950 to 1992. In contrast, the
physicist works have dates ranging from 2002 to 2010. (The one document on the right in
Table 2.18 that appeared in 1977 was written by an anthropologist. His data were latched upon
by the physicists as useful data allowing the demonstration of community detection methods.)
This reflects a clear difference between these two parts of the literature on clustering networks.
One was developed over a longer period of time as a “leisurely” generation of methods, their
application, and the generation of substantive results regarding the structure of social networks.
It was merely one part of this literature that focused on many other issues regarding social net-
works The community detection literature exploded over a much shorter period of time with a
focus on a clearly defined technical research issue.

It reflects also a difference in the social organization of science, something noted in [7]. Larger
disciplines having more journals and a much longer institutionalized organization regarding
professional organizations, as well as having more publication outlets, become far more visible.
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Figure 2.18 Bibliographic coupling in the physicist-driven literature.

We turn now to consider three smaller Jaccard islands. They are shown in Figure 2.20. The
methods for determining citations are exactly the same as for the two largest islands (Table 2.16).
These three smaller islands have works focused in three domains. The first deals with a part of the
physicist and mathematical literature, the second with a part of the broader clustering literature,
and the third with signed networks.

As indicated by the works in the left column of Table 2.17, the earliest work (by Erdős appear-
ing in 1960 and at rank 10 of the column) set the foundations for the development of random
graph theory. Another mathematical work appeared in 1985 (rank 6 in the column). There is
an early social science work at rank 15 that attracted the attention of some physicists. A social
networks text appears at rank 4 with sections on random graphs. The remaining works produced
by physicists building on these ideas are concentrated between 1995 and 2001.

The top-ranked item in the second column of Table 2.17 appeared in Psychometrika in 1982.
A companion paper by the same authors (Ferligoj and Batagelj) in the same journal appeared a
year later. These works created the foundations for a distinctive approach to clustering relational
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Figure 2.19 Bibliographic coupling – selected islands.
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Figure 2.20 Bibliographic coupling for three smaller islands.
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Table 2.16 Bibliographic coupling of the most cited works from the works of the two largest islands

Figure 2.17 (Social network literature) Figure 2.18 (Physicist literature)

Rank Count Work Rank Count Work

1 58 LORRAIN_F(1971)1:49 1 45 GIRVAN_M(2002)99:7821
2 50 WHITE_H(1976)81:730 2 43 #NEWMAN_M(2004)69:026113
3 48 BREIGER_R(1975)12:328 3 40 CLAUSET_A(2004)70:066111
4 33 ARABIE_P(1978)17:21 4 38 DUCH_J(2005)72:027104
5 26 BOORMAN_S(1976)81:1384 5 36 GUIMERA_R(2005)433:895
6 24 SAILER_L(1978)1:73 6 35 #NEWMAN_M(2004)38:321
7 22 BURT_R(1976)55:93 7 34 RADICCHI_F(2004)101:2658
8 22 WHITE_D(1983)5:193 8 31 #DANON_L(2005):
9 15 NADEL_S(1957): 9 31 #ZACHARY_W(1977)33:452

10 14 HEIL_G(1976)21:26 10 27 FORTUNAT_S(2007)104:36
11 12 SAMPSON_S(1969): 11 25 ALBERT_R(2002)74:47
12 12 HOLLAND_P(1981)76:33 12 25 NEWMAN_M(2003)45:167
13 11 BURT_R(1983): 13 20 REICHARD_J(2006)74:016110
14 11 JOHNSON_S(1967)32:241 14 20 REICHARD_J(2004)93:218701
15 10 BURT_R(1982): 15 19 GUIMERA_R(2003)68:065103
16 10 HOMANS_G(1950): 16 19 NEWMAN_M(2006)103:8577
17 10 FAUST_K(1988)10:313 17 19 PALLA_G(2005)435:814
18 10 FREEMAN_L(1979)1:215 18 19 WU_F(2004)38:331
19 10 FIENBERG_S(1985)80:51 19 17 FLAKE_G(2002)35:66
20 9 BORGATTI_S(1989)11:65 20 17 #BLONDEL_V(2008):P10008
21 8 WHITE_H(1963): 21 17 BOCCALET_S(2006)424:175
22 8 BURT_R(1980)6:79 22 17 GLEISER_P(2003)6:565
23 8 BREIGER_R(1979)13:21 23 16 FORTUNAT_S(2010)486:75
24 8 BATAGELJ_V(1992)14:121 24 16 RAVASZ_E(2002)297:1551
25 7 MANDEL_M(1983)48:376 25 16 MEDUS_A(2005)358:593
26 7 KNOKE_D(1982): 26 16 #DONETTI_L(2004):P10012
27 7 DOREIAN_P(1988)13:243 27 15 NEWMAN_M(2006)74:036104
28 7 BREIGER_R(1978)7:213 28 13 BRANDES_U(2008)20:172
29 7 SNYDER_D(1979)84:1096 29 13 GUIMERA_R(2004)70:025101
30 7 HUBERT_L(1978)43:31 30 12 HOLME_P(2003)19:532

and attribute data that was picked up by others working on general clustering problems. The
other works in this column came from researchers working on traditional clustering problems.

Most of the works appearing in the third column of Table 2.17 deal with signed networks.
The top four ranked items set the foundations for a formal approach to structural balance. The
conceptual approach came from Heider in 1946 and is ranked second. The top rank is for an
initial formal statement by Cartwright and Harary in 1956 and extended by Davis in 1967. There
are some items on blockmodeling that were picked up by Doreian and Mrvar in 1996 to create
an algorithm for partitioning signed networks.

Bibliographic coupling the Most Frequent Keywords in Works of a Given Subnetwork
For the social networks island and the physicist island identified in Figures 2.17 and 2.18, the
most frequent keywords in works of these islands were extracted. They are shown in Table 2.18.
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Table 2.17 Bibliographic coupling in the three smaller islands

Rank Physicist literature Clustering literature Signed networks

1 23 WATTS_D(1998)393:440 21 FERLIGOJ_A(1982)47:413 13 CARTWRIG_D(1956)63:277
2 18 BARABASI_A(1999)286:509 11 LEFKOVIT_L(1980)36:43 12 HEIDER_F(1946)21:107
3 17 ALBERT_R(1999)401:130 10 PERRUCHE_C(1983)16:213 11 DAVIS_J(1967)20:181
4 15 WASSERMA_S(1994): 9 MURTAGH_F(1985)28:82 10 NEWCOMB_T(1961):
5 15 AMARAL_L(2000)97:11149 8 FERLIGOJ_A(1983)48:541 9 WHITE_H(1976)81:730
6 13 BOLLOBAS_B(1985): 6 GORDON_A(1996)21:17 8 HARARY_F(1965):
7 13 FALOUTSO_M(1999)29:251 4 DUQUE_J(2007)30:195 8 DOREIAN_P(1996)18:149
8 13 NEWMAN_M(2001)98:404 4 KIRKPATR_S(1983)220:671 7 DOREIAN_P(2005):
9 10 STROGATZ_S(2001)410:268 4 MACQUEEN_J(1967):281 7 HEIDER_F(1958):

10 10 ERDOS_P(1960)5:17 3 DESARBO_W(1984)49:187 6 BREIGER_R(1975)12:328
11 10 REDNER_S(1998)4:131 3 MARGULES_C(1985)17:397 6 HOMANS_G(1950):
12 9 JEONG_H(2000)407:651 3 HANSEN_P(2003)20:143 6 BATAGELJ_V(1998)21:47
13 9 ALBERT_R(2000)406:378 3 DUQUE_J(2011)43:104 5 BORGATTI_S(2002):
14 9 MOLLOY_M(1995)6:161 3 MARAVALL_M(1997)24:217 5 LORRAIN_F(1971)1:49
15 9 MILGRAM_S(1967)1:61 3 GAREY_M(1979): 5 WHITE_D(1983)5:193

We consider first the left column featuring the social networks part of the clustering literature.
The top two keywords are social and network confirming the nature of the works in this island.
The next two are solidly about blockmodeling which is based on conceptions of equivalence.
Additional terms include role structural, relation, sociometric, position, regular (for a specific
equivalence type), direct (for one approach to blockmodeling) and block. All of these terms are
recognizable as relevant terms.

The word network also heads the list of keywords for the community detection literature. It is
followed immediately by community. Again, the essence of the content of the island is identified.
It is followed by complex, a term used far more by the physicists in the expression “complex net-
works”. The term modularity is foundational for community detection. The presence of overlap
as a keyword in this island reflects another difference between the two literatures with com-
munity detection authors being far more concerned with overlapping clusters. The presence of
the keywords metabolic and biological provide a hint that the physicists study a broader set of
networks than those working in social networks.

There are only seven keywords common to both lists: network, analysis, structure, graph,
model, algorithm, and organization. Both areas are concerned with delineating structure, study-
ing graphs, fitting models (albeit of different sorts), and mobilizing algorithms.

Co-citation is a concept with strong parallels with bibliographic coupling (see Small [25] and
Marshakova-Shaikevich [28]). The focus is on the extent to which works are co-cited by later
works. The basic intuition is that the more earlier works are cited, the higher the likelihood that
they have common content. The co-citation network coCi can be determined as coCi = CiT ∗
Ci. cocipq = the number of works citing both works p and q. cocipq = cociqp. The same kinds
of analyses can be performed for co-citation. An example of doing this is in [7] regarding the
Supreme Court. However, we do not pursue this here.

2.5.6 Linking Through a Jaccard Network

Bibliographic coupling networks are linking works to works. Let S be such a network. The
derived network WAT ∗ S ∗ WA links authors to authors through S. Again, the normalization
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Table 2.18 The most frequent keywords of the two largest islands in the Jaccard bibliographic coupling
network

Figure 2.17 (Social network literature) Figure 2.18 (Physicist-driven literature)

Rank Count Work Rank Count Work

1 42 network 1 54 network
2 34 social 2 52 community
3 27 blockmodel 3 48 complex
4 24 equivalence 4 30 structure
5 23 analysis 5 30 modularity
6 17 structure 6 28 detection
7 17 role 7 19 algorithm
8 15 structural 8 18 graph
9 12 relation 9 17 metabolic

10 11 multiple 10 12 resolution
11 10 graph 11 12 model
12 10 datum 12 12 optimization
13 8 statistical 13 9 organization
14 7 model 14 8 detect
15 7 algorithm 15 8 cluster
16 7 sociometric 16 7 identification
17 7 position 17 6 dynamics
18 7 regular 18 6 analysis
19 6 relational 19 6 method
20 6 computation 20 5 use
21 6 two 21 5 base
22 5 organization 22 5 hierarchical
23 5 stochastic 23 4 overlap
24 5 approach 24 4 pott
25 5 direct 25 4 multi
26 4 block 26 4 maximization
27 4 similarity 27 4 world
28 4 group 28 4 information
29 4 application 29 4 biological
30 3 measure 30 4 limit

question must be addressed. Given different options, we selected the derived networks
defined as:

C = n(WA)T ∗ S ∗ n(WA)

It is easy to verify that:

• if S is symmetric, ST = S, then C is also symmetric, CT = C
• the total of weights of S is redistributed in C:

∑
a∈L(C)

c(a) =
∑

a∈L(S)
s(a)
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Figure 2.21 Authors Jaccard coupling – cut at level 11.

We applied this construction to combine the Jaccard network with networks WA, WJ and
WK. We limited our analysis to networks with complete descriptions of works (WAc, WJc,
WKc, CiteC).

As an example, Figure 2.21 presents a link-cut at level 11 in the authors Jaccard coupling net-
work ACoj = n(WA)T ∗ biCoj ∗ n(WA). There are two disjoint parts to the figure. The smaller
one on the right features authors active in the blockmodeling literature. It is centered on Dor-
eian. The larger part on the left comes from the physics-driven literature and is centered on
Newman. The result is very similar to the one shown in Figure 2.12. The social networks part
is smaller in Figure 2.21 while the physics-driven part is larger with an additional part linked
through Turcotte.

In Figure 2.22 a link-cut at level 1300 in the journals Jaccard coupling network JCoj =
n(WJ)T ∗ biCoj ∗ n(WJ) is presented as another example. Because the links between journals
have greater weights, a much larger link-cut is required. Overwhelmingly, the journals come
from the physics-driven part of the literature. Three such journals are particularly prominent:
Physica A, Physics Review E and PLOS ONE. The fourth prominent journal is Lecture Notes
Comput Science from the computing science literature. Only two social science journals are
present. Journal of Mathematical Sociology is linked to Social Networks, which is linked to
only Physica A. Despite its name, Social Network Analysis and Mining is focused more on data
mining in large networks, reflecting a computer science orientation.

In Figure 2.23 the main link-island in [1, 30] in the keywords Jaccard coupling network
KCoj = n(WK)T ∗ biCoj ∗ n(WK) is presented. Table 2.18 presents separate lists of keywords
in the social network literature and the physics-driven literature. Figure 2.23 shows how some
of these keywords are linked. That the keywords network and community are the most promi-
nent is not surprising given these keywords head the physics-driven literature list in Table 2.18.
Having community and detection separated is problematic and reflects the problem of two-word



�

� �

�

Bibliometric Analyses of the Network Clustering Literature 61

J MATH SOCIOL

P NATL ACAD SCI USA
SOC NETWORKS

PHYS REV LETT

PHYSICA A

PHYS REV E

LECT NOTES COMPUT SC

INT J MOD PHYS B

MOD PHYS LETT B

NEUROCOMPUTING

EUR PHYS J B

IEEE T KNOWL DATA EN

CHAOS

DATA MIN KNOWL DISC

LECT NOTES ARTIF INT

INFORM SCIENCES

ADV COMPLEX SYST

J STAT MECH-THEORY E

EPL-EUROPHYS LETT

PLOS ONE

J COMPUT SCI TECH-CH

EXPERT SYST APPL

NEW J PHYS

IEEE C EVOL COMPUTAT

COMM COM INF SC

KNOWL-BASED SYST

SCI WORLD JIEEE DATA MINING

SCI REP-UK

PROCEDIA COMPUT SCI

ADV INTELL SYST

MATH PROBL ENG

SOC NETW ANAL MIN

Figure 2.22 Journals Jaccard coupling – cut at level 1300.
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keywords discussed earlier. Overall, 15 of the 30 keywords from the physics-driven literature
are in Figure 2.23 while ten of the keywords from the social network literature are present (with
seven common to both lists). Overall, the linkage of the keywords shown in Figure 2.23 seems
more useful than the separate list in Table 2.18.

2.6 Summary and Future Work

We obtained citation data for the network clustering literature for a large citation network includ-
ing both community detection and blockmodeling works through to February 22, 2017. The
primary data source was the WoS. Details about recording, processing, and the resulting data
sets were provided. In addition to having works as units, we included data on authors, journals,
and keywords to generate some two-mode networks featuring works × authors, works × jour-
nals, and works × keywords. The boundary problem was discussed as was a treatment ensuring
the studied citation network is acyclic.

Our results included descriptions of the most cited works and the most citing works as a
preliminary delineation of the content of this research area. Lists of the most prominent jour-
nals where works in the network clustering literature appeared were created. In doing this, the
importance of establishing network boundaries appropriately was discussed. The nature of key-
words was discussed with a proviso that many cannot be taken at face value and using them to
understand science must be done with great care.

Components of the studied network were identified with attention confined to the largest
one. The CPM path through this component was identified. It revealed a clear transition from
the social network part of the literature to the community detection part. The key-route paths
revealed the same transition but with more works and a more nuanced view of it. Link islands, as
clusters, were identified. There were ten of them. Detailed discussions were provided for four,
including one with a clear distinction between the community detection and social networks
literatures as being connected through a cut.

When attention was turned to considering authors, a listing of authors involved in the most
works was provided. This was a limited result. To move beyond this, we examined productiv-
ity within research groups by using PS-cores. A listing of authors having the largest PS-core
values was provided. To dig further into the contribution of authors, both co-authorship and col-
laboration were studied. This was extended to citations among the authors contributing to the
network clustering literature, with close attention paid to the community detection and block-
modeling parts. Attention was paid to journal-to-journal networks for only the items identified
in the network clustering literature.

Bibliographic coupling was considered and extended through fractional bibliographic cou-
pling to use a better measure of the extent to which works are coupled. A total of 15 link islands
were identified in the network of bibliometrically coupled documents. Again, attention was
focused on two featuring, separately, the social network and physics-driven parts of this litera-
ture. Three more smaller link islands were examined, each with a clear sub-part of the literature.
When keywords were examined in the context of link islands and bibliometric coupling, they
were much more useful. Also, sub-areas were more clearly identified.

Together, these different ways of examining the network clustering literature provided a
coherent and consistent understanding of its citation structure of works and the contributions
of authors and journals. Future work will consider the other link islands in the citation network
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and those identified in the bibliometric coupling of works. Given the usefulness of bibliomet-
ric coupling, it is highly likely that the co-citation network will add additional insight to the
coherence of this literature.
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3.1 Introduction

Clustering and classification are two related activities sometimes used as synonyms. In
clustering, the goal is to identify in a given set of units, groups (clusters, classes) of (usually)
similar units. In classification a given unit has to be assigned to the corresponding (predefined)
group. These two activities are embedded in our language and are therefore basic for most of
our daily tasks.

The earliest classification systems were taxonomies of animals and plants: Shen Nung, China,
∼3000 BCE and Ebers Papyrus, Egypt, ∼1500 BCE. A theoretical framework was proposed by
Aristotle (384–322 BCE). The taxonomic systems were improved by Linnaeus (1707–1778),
Darwin (1809–1882), DNA (1953), and PhyloCode (1998).

The first steps towards “numeric” clustering procedures were taken in the first half of 20th
century by defining different (dis)similarity measures such as Czekanowski coefficient (1909),
coefficient of racial likeness (Pearson, 1926), generalized distance (Mahalanobis, 1936), etc.
Early methods were proposed inside biometrics and psychometrics by Driver and Kroeber
(1932), Forbes (1933), Zubin (1938), Sturtevant (1939), etc. Kruskal’s minimum spanning tree
algorithm (1956) was predated by the unnoticed Borůvka (1926) and Jarnik (1930) algorithms.

The development of cluster analysis started in the 1950s and resulted in some fundamental
books: Sokal and Sneath, Principles of Numerical Taxonomy (1963) [59]; Jardine and Sibson,
Mathematical Taxonomy (1971) [41]; Benzécri, L’analyse des données (1973) [13]; Anderberg,
Cluster Analysis for Application (1973) [2]; Hartigan, Clustering algorithms (1975) [38]; and
later Jain and Dubes, Algorithms for clustering data (1988) [40]; Kaufman and Rousseeuw,
Finding Groups in Data: An Introduction to Cluster Analysis (1990) [46]; and Gan, Ma, and
Wu, Data Clustering – Theory, Algorithms, and Applications (2007) [32].

Advances in Network Clustering and Blockmodeling, First Edition.
Edited by Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Two streams of clustering research emerged – one inside pattern recognition and the other
within data analysis. The data analytic stream was initially attached to the psychometric com-
munity until 1985 when the International Federation of Classification Socities (IFCS) was estab-
lished with its own conference and journals, Journal of Classification (published by CSNA from
1984) and Advances in Data Analysis and Classification (from 2007). Conference proceedings
are published in a Springer series Studies in Classification, Data Analysis, and Knowledge Orga-
nization. In the 1990s, the interests of the clustering community extended to data analysis and
data science [39]. For details about the development of IFCS see [16]. At the turn of the mil-
lenium clustering was somehow absorbed also into data mining as one of its constituents. In
social network analysis, the clustering problem is known as blockmodeling [26].

In this chapter we first present an optimization framework for a general clustering problem.
In the second part we discuss the clustering of networks and clustering networks.

3.2 Clustering

In data analysis we usually follow the scheme

real or imaginary world objects of analysis data analysis
CONCEPTS UNITS DESCRIPTIONS

{X} ←→ X ←→ [X]
formalization operationalization

{produced cars of type T} car of type T [seats=4, max-speed= …]

A unit X ∈ U is represented by a vector/description X ≡ [X] = [x1, x2, ..., xm] from the set
[U ] of all possible descriptions of units from space U . xi = Vi(X) is the value of the ith of
selected properties or variables on X. Variables can be measured on different scales: nominal,
ordinal, interval, rational, absolute [58]. In concrete analysis, the set of units of our interset
U ⊂ U is (usually) finite, n = |U|.

There exist other kinds of descriptions of units: symbolic objects [14, 24], lists of keywords
from a text, chemical formulas, nodes in a given graph, and digital pictures, etc.

3.2.1 The Clustering Problem

We start with the formal setting of the clustering problem. We use the following notation: a
nonempty subset of units C, ∅ ⊂ C ⊆ U, is called a cluster. A set of clusters, C = {Ci}, forms
a clustering. Φ denotes the set of feasible clusterings. A criterion function, P ∶ Φ → ℝ+

0 , eval-
uates the quality of a clustering.

With these notions, we can express the clustering problem (Φ,P,min) as follows:
Determine the clustering, C★ ∈ Φ, for which

P(C★) = min
C∈Φ

P(C)

Since the set of units U is finite, the set of feasible clusterings is also finite. Therefore the set
Min(Φ,P) of all solutions of the problem (optimal clusterings) is not empty. (In theory) the set
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Min(Φ,P) can be determined by the complete search. We denote the value of criterion function
for an optimal clustering by min(Φ,P).

Generally, the clusters of clustering C = {C1,C2,… ,Ck} need not to be pairwise disjoint;
yet, clustering theory and practice mainly deal with clusterings which are the partitions of U

k⋃
i=1

Ci = U and i ≠ j ⇒ Ci ∩ Cj = ∅

Each partition determines an equivalence relation in U, and vice versa. We denote the set of all
partitions of U into k clusters (classes) by Pk(U).

3.2.2 Criterion Functions

The criterion function is usually constructed as follows. When joining the individual units into a
cluster C, we make a certain “error”, and so create a certain “tension” among them – we denote
this quantity by p(C). A simple criterion function P(C) combines these “partial/local errors”
into a “global error”. Usually, it takes one of two forms:

S. P(C) =
∑
C∈C

p(C), or

M. P(C) = max
C∈C

p(C)

Both can be unified and generalized in the following way: Let (ℝ, ⊕, e,≤) be an ordered abelian
monoid then:

⊕. P(C) =
⨁
C∈C

p(C)

The cluster error p(C) usually has the properties:

p(C) ≥ 0 and ∀X ∈ U∶ p({X}) = 0

Continuing, we assume that these properties of p(C) hold.
Often also,

p(C1 ∪ C2) ≥ p(C1)⊕ p(C2)

holds for disjoint clusters, C1 ∩ C2 = ∅. In such a case, we have, for simple criterion functions,
min(Pk+1U),P) ≤ min(Pk(U),P) – we fix the value of k and set Φ ⊆ Pk(U).

To express the cluster-error, p(C), we define on the space of units U a dissimilarity d∶ U ×
U → ℝ+

0 for which we require:

D1. ∀X ∈ U : d(X,X) = 0

D2. symmetric: ∀X,Y ∈ U ∶ d(X,Y) = d(Y,X)

Usually the dissimilarity d is defined using another dissimilarity 𝛿 ∶ [U ] × [U ] → ℝ+
0

defined on unit descriptions as
d(X,Y) = 𝛿([X], [Y])
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The dissimilarity d is:

D3. even: ∀X,Y ∈ U ∶ (d(X,Y) = 0 ⇒ ∀Z ∈ U ∶ d(X,Z) = d(Y,Z))
D4. definite: ∀X,Y ∈ U ∶ (d(X,Y) = 0 ⇒ X = Y)
D5. metric: ∀X,Y,Z ∈ U ∶ d(X,Y) ≤ d(X,Z) + d(Z,Y) – the triangle inequality
D6. ultrametric: ∀X,Y,Z ∈ U ∶ d(X,Y) ≤ max(d(X,Z), d(Z,Y))
D7. additive, iff the Buneman’s or four-point condition holds ∀X,Y,U,V ∈ U ∶

d(X,Y) + d(U,V) ≤ max(d(X,U) + d(Y,V), d(X,V) + d(Y,U))

A dissimilarity d is a distance iff D4 and D5 hold. Since the description [ ] ∶ U → [U] does
not need to be injective, d can be indefinite. Often, a weaker form of definiteness holds:

∀X,Y ∈ U ∶ (d(X,Y) = 0 ⇒ [X] = [Y])

A dissimilarity d is selected according to the nature of the set of units descriptions [U ] and
our analytic goals. Many examples of dissimilarities can be found in [22].

3.2.2.1 Dissimilarities on ℝm

In the standard case, X ∈ ℝm, many different dissimilarities have been proposed. Some of them
are presented in Table 3.1.

3.2.2.2 (Dis)similarities on 𝔹m

Let 𝔹 = {0, 1}. For binary vectors X,Y ∈ 𝔹m we define a = XY , b = XY , c = XY , d = XY .
It holds a + b + c + d = m. The counters a; b; c; and d are used to define several resem-
blances – (dis)similarity measures on binary vectors. See Table 3.2.

In some cases, the definition can yield an indefinite expression 0
0
. To deal with this, we can

restrict the use of the measure, or define the values also for indefinite cases. For example, we
extend the values of Jaccard coefficient such that s4(X,X) = 1. For Kulczynski coefficient, we
preserve the relation T = 1

s4
− 1 by

s4 =
⎧⎪⎨⎪⎩

1 d = m

a
a + b + c

otherwise
s−1

3 = T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 a = 0, d = m

∞ a = 0, d < m

b + c
a

otherwise

We can transform a similarity s from [1, 0] into dissimilarity d on [0, 1] by d = 1 − s. For details
see [8].



�

� �

�

Clustering Approaches to Networks 69

Table 3.1 Dissimilarities on ℝm

n Measure Definition Range Note

1 Euclidean

√√√√ m∑
i=1

(xi − yi)2 [0,∞) M(2)

2 Sq. Euclidean
m∑

i=1

(xi − yi)
2 [0,∞) M(2)2

3 Manhattan
m∑

i=1

|xi − yi| [0,∞) M(1)

4 rook
m

max
i=1

|xi − yi| [0,∞) M(∞)

5 Minkowski p

√√√√ m∑
i=1

|xi − yi|p [0,∞) M(p)

6 Canberra
m∑

i=1

|xi − yi|
|xi + yi| [0,∞)

7 Heincke

√√√√ m∑
i=1

(
|xi − yi|
|xi + yi| )

2 [0,∞)

8 Self-balanced
m∑

i=1

|xi − yi|
max(xi, yi)

[0,∞)

9 Lance-Williams

∑m
i=1 |xi − yi|∑m
i=1 xi + yi

[0,∞)

10 Correlation c.
cov(X,Y)√
var(X)var(Y)

[1,−1]

3.2.2.3 Dissimilarities between Sets

Let F be a finite family of subsets of the finite set U; A,B ∈ F and let A⊕ B = (A \ B) ∪ (B \ A)
denote the symmetric difference between A and B. The “standard” dissimilarity between sets is
the Hamming distance:

dH(A,B) ∶= card(A⊕ B)

Other dissimilarities, normalized to [0, 1], between sets are:

ds(A,B) =
card(A⊕ B)

card(A) + card(B)
du(A,B) =

card(A⊕ B)
card(A ∪ B)

= 1 − card(A ∩ B)
card(A ∪ B)

dm(A,B) =
max(card(A \ B), card(B \ A))

max(card(A), card(B))

For all these dissimilarities, d(A,B) = 0 if A = B = ∅.
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Table 3.2 (Dis)similarities on 𝔹m

n Measure Definition Range

1 Russel and Rao (1940)
a
m

[1, 0]

2 Kendall, Sokal-Michener (1958)
a + d

m
[1, 0]

3 Kulczynski (1927), T−1 a
b + c

[∞, 0]

4 Jaccard (1908)
a

a + b + c
[1, 0]

5 Kulczynski
1
2

( a
a + b

+ a
a + c

)
[1, 0]

6 Sokal & Sneath (1963), un4
1
4

( a
a + b

+ a
a + c

+ d
d + b

+ d
d + c

)
[1, 0]

7 Driver & Kroeber (1932)
a√

(a + b)(a + c)
[1, 0]

8 Sokal & Sneath (1963), un5
ad√

(a + b)(a + c)(d + b)(d + c)
[1, 0]

9 Q0
bc
ad

[0,∞]

10 Yule (1927), Q
ad − bc
ad + bc

[1,−1]

11 Pearson, 𝜙
ad − bc√

(a + b)(a + c)(d + b)(d + c)
[1,−1]

12 – bc –
4bc
m2

[0, 1]

13 Baroni-Urbani, Buser (1976), S∗∗ a +
√

ad

a + b + c +
√

ad
[1, 0]

14 Braun-Blanquet (1932)
a

max(a + b, a + c)
[1, 0]

15 Simpson (1943)
a

min(a + b, a + c)
[1, 0]

16 Michael (1920)
4(ad − bc)

(a + d)2 + (b + c)2
[1,−1]

3.2.2.4 Equivalent Resemblances

Resemblances r and s are (order) equivalent, r ≅ s, iff they induce the same or reverse ordering
in the set of unordered pairs of units, i.e., iff

∀X,Y,U,V ∈ U ∶ (r(X,Y) < r(U,V) ⇔ (s(X,Y) < s(U,V))

or
∀X,Y,U,V ∈ U ∶ (r(X,Y) < r(U,V) ⇔ (s(X,Y) > s(U,V)).
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3.2.2.5 Transformations

Dissimilarities usually take values in the interval [0, 1] or in the interval [0,∞]. They can be
transformed, one into the other, by mappings:

d
1 − d

∶ [0, 1] → [0,∞] and
d

1 + d
∶ [0,∞] → [0, 1],

or, in the case dmax <∞, by
d

dmax
∶ [0, dmax] → [0, 1].

To transform a distance d into another distance we often use the mappings:

log(1 + d), min(1, d) and dr
, 0 < r < 1.

Not all resemblances are dissimilarities. For example, the correlation coefficient has the
interval [1,−1] as its range. We can transform any of these mappings to the interval [0, 1] by
mappings:

1
2
(1 − d),

√
1 − d2

, 1 − |d|, etc.

When applying these transformations to a measure d, we want all of the nice properties of d to
be preserved. In this respect, the following theorems are useful.

Proposition 3.1 Let d be a dissimilarity on U and let a mapping f ∶ d(U × U ) → ℝ+
0 have

the property f (0)= 0, then d′(X,Y) = f (d(X,Y)) is also a dissimilarity.

Proposition 3.2 Let d be a distance on U and let the mapping f ∶ d(U × U ) → ℝ have the
properties:

(a) f (x) = 0 ⇔ x = 0,

(b) x < y ⇒ f (x) < f (y),
(c) f (x + y) ≤ f (x) + f (y),

then d′(X,Y) = f (d(X,Y)) is also a distance and d′ ≅ d.

All concave functions have also the sub-additivity property (c). The following concave func-
tions satisfy the last theorem:

(a) f (x) = 𝛼x, 𝛼 > 0, (b) f (x) = log(1 + x), x ≥ 0,

(c) f (x) = x
1 + x

, x ≥ 0, (d) f (x) = min(1, x),
(e) f (x) = x𝛼, 0 < 𝛼 ≤ 1, (f) f (x) = arcsin x, 0 ≤ x ≤ 1.

Proposition 3.3 Let d ∶ U × U → ℝ has the property Di, i = 1, ..., 7, then f (d), f ∈ (a)-(f)
also has this property.
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Proposition 3.4 [42] For each (nonnegative) dissimilarity measure d there is a unique
non-negative real number p, called a metric index, such that d𝛼 is a metric for all 𝛼 ≤ p, and
d𝛼 is not a metric for all 𝛼 > p.

Therefore, if a dissimilarity d is not metric, it can be transformed into one by using the power
transformation.

3.2.2.6 Problems with Dissimilarities

There is an issue when dealing with mixed units in which variables are measured on different
types of scales. Two approaches are usually used:

• Convert them to a common type of measurement scale (see [2]).
• Compute selected dissimilarities on homogeneous parts and combine them. See for example

Gower’s dissimilarity [35].

In both cases, we have to consider the fairness of a dissimilarity in which all variables must
contribute equally. A partial solution to this problem is to use the normalized variables. We can
also consider the dependencies among variables, such as in the Mahalanobis distance [63].

3.2.3 Cluster-Error Function/Examples

Now we can define several types of cluster-error functions:

S. p(C) =
∑

X,Y∈C,X<Y

w(X) ⋅ w(Y) ⋅ d(X,Y)

S. p(C) = 1
w(C)

∑
X,Y∈C,X<Y

w(X) ⋅ w(Y) ⋅ d(X,Y)

where w ∶ U → ℝ+ is a weight of units, which is extended to clusters by:

w({X}) = w(X), X ∈ U

w(C1 ∪ C2) = w(C1) + w(C2), C1 ∩ C2 = ∅

Often, w(X) = 1 holds for each X ∈ U . Then w(C) = card(C).

M. p(C) = max
X,Y∈C

d(X,Y) = diam(C) – diameter

T. p(C) = min
T is a spanning tree over C

∑
(X∶Y)∈T

d(X,Y)

We use the labels in front of the forms of (cluster-) criterion functions to denote types of
criterion functions. For example:

SM. P(C) =
∑
C∈C

max
X,Y∈C

d(X,Y)

It is easy to prove:
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Proposition 3.5 Let P ∈ {SS,SS,SM,MS,MS,MM}, then there exists an 𝛼P
k (U) > 0 such that

for each C ∈ Pk(U) the following holds:

P(C) ≥ 𝛼

P
k (U) ⋅max

C∈C
max

X,Y∈C
d(X,Y).

Note that this inequality can be written also as P(C) ≥ 𝛼

P
k (U) ⋅ MM(C).

The criterion function P(C), based on a dissimilarity d, is sensitive iff for each feasible clus-
tering C it holds

P(C) = 0 ⇐⇒ ∀C ∈ C ∀X,Y ∈ C ∶ d(X,Y) = 0

and it is 𝛼-sensitive iff there exists an 𝛼P
k (U) > 0 such that for each C ∈ Pk(U):

P(C) ≥ 𝛼

P
k (U) ⋅ MM(C)

Proposition 3.6 Every 𝛼-sensitive criterion function is also sensitive.

Proposition 3.5 can be re-expressed as:

Proposition 3.7 The criterion functions SS,SS,SM,MS,MS,MM are 𝛼-sensitive.

Another form of a cluster-error function, one frequently used in practice, is based on the
notion of a leader or representative of the cluster C:

R. p(C) = min
L∈F

∑
X∈C

w(X) ⋅ d(X,L)

where F ⊆ F is the set of representatives. The element C ∈ F, which minimizes the right side
expression, is called the representative of the cluster C. It is not always uniquely determined.

Proposition 3.8 Let p(C) be of type R then

a) p(C) + w(X) ⋅ d(X,C ∪ {X}) ≤ p(C ∪ {X}), X ∉ C

b) p(C \ {X}) + w(X) ⋅ d(X,C) ≤ p(C), X ∈ C

3.2.3.1 The Generalized Ward’s Criterion Function

To obtain the generalized Ward’s clustering problem we rely on the equality

p(C) =
∑
X∈C

d2
2(X,C) = 1

2card(C)
∑

X,Y∈C

d2
2(X,Y)

and replace the expression for p(C) with

p(C) = 1
2w(C)

∑
X,Y∈C

w(X) ⋅ w(Y) ⋅ d(X,Y) = S(C)

Note that d can be any dissimilarity on U .
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From this definition, we can easily derive the following equality: If Cu ∩ Cv = ∅ then

w(Cu ∪ Cv) ⋅ p(Cu ∪ Cv) = w(Cu) ⋅ p(Cu) + w(Cv) ⋅ p(Cv) +
∑

X∈Cu,Y∈Cv

w(X) ⋅ w(Y) ⋅ d(X,Y)

In [5] it is shown also how to replace C by a generalized, possibly imaginary (with descrip-
tions not neccessary in the same set as U ), central element in a way to preserve the properties
characteristic for Ward’s clustering problem.

Let U ∗ denote the space of units extended with generalized centers. The generalized center
of cluster C is called an (abstract) element C for which the dissimilarity between it and any
U ∈ U ∗ is determined by

d(U,C) = d(C,U) = 1
w(C)

(∑
X∈C

w(X) ⋅ d(X,U) − p(C)

)

When for all units w(X) = 1, the right side of the definition can be read as: the average dissimi-
larity between the unit/center U and cluster C diminished by the average radius of cluster C.

We have a suggestion: For each dissimilarity, find its metric index p and in the generalized
Huygens theorem use d if p ≥ 1, otherwise (if p < 1) use dp.

For the generalized Ward’s criterion function, the generalized Huygens theorem holds:

Proposition 3.9
IT = IW + IB

where
IT = p(U) = 1

2w(U)
∑

X,Y∈U

w(X) ⋅ w(Y) ⋅ d(X,Y)

IW =
∑
C∈C

p(C) and IB =
∑
C∈C

w(C) ⋅ d(C,U)

For a given set of units U, the value of their “total inertia” IT is fixed. Therefore when minimiz-
ing the “standard” criterion function (within inertia) IW , we are also maximazing the function
(between inertia) IB – the traditional definition of clustering problem.

3.2.3.2 Other Criterion Functions

Several other types of criterion functions have been proposed in the literature. A very important
class among them are the “statistical” criterion functions based on the assumption that the units
are sampled from a mixture of the multivariate normal distributions [51].

The modularity criterion function from the complex networks approach [15, 55] is also of
type S with cluster error

p(C) =
(

d(C)
2m

)2

− m(C)
m

where m is the number of links, m(C) = |{e ∈ L ∶ ext(e) ⊆ C}| and d(C) = |{e ∈ L ∶ ext(e) ∩
C ≠ ∅}|; ext is a function assigning to a link e(u, v) its end-nodes {u, v}.
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Not all clustering problems can be expressed by a simple criterion function. In some applica-
tions, a general criterion function of the form

P(C) = ⊕

(C1,C2)∈C×C
q(C1,C2), q(C1,C2) ≥ 0

is needed. We use this in the optimizational approach to blockmodeling [26].
In some problems, several criterion functions can be defined (Φ,P1,P2,… ,Ps) and the clus-

tering problem is formulated as multicriteria clustering problem [30].
Note that for a criterion function of type SS, we have a similar situation as in the generalized

Huygens theorem:

Proposition 3.10
PT = PW + PB

where, denoting p(C,D) =
∑

X∈C,Y∈Dd(X,Y),

PT = p(U,U), PW =
∑
C∈C

p(C,C) = SS(C), and PB =
∑

C,D∈C
C≠D

p(C,D)

3.2.3.3 Example: Partitioning a Generation of School Pupils into a Given Number
of Classes

This is an example of nontraditional clustering problem in which the clusters are not charac-
terized as “groups of similar units”. We consider the problem of partitioning a generation of
pupils into a given number of classes so that these classes will have (almost) the same num-
ber of pupils and, further, that they will have a structure as similar as possible. An appropriate
criterion function is

P(C) = max
{C1 ,C2}∈C×C

card(C1)≥card(C2)

min
f∶C1→C2

f is surjective

max
X∈C1

d(X, f (X))

where d(X,Y) is a measure of dissimilarity between pupils X and Y.

3.2.4 The Complexity of the Clustering Problem

Because the set of feasible clusterings Φ is finite, it is tempting to think the clustering problem,
(Φ,P), could be solved by a brute force approach inspecting all feasible clusterings. Unfortu-
nately, the number of feasible clusterings grows dramatically with n. For example

card(Pk) = S(n, k) = 1
k!

k−1∑
i=0

(−1)i
(k

i

)
(k − i)n, 0 < k ≤ n

where S(n, k) is a Stirling number of the second kind. For this reason, the brute force algorithm
is only of theoretical interest with little relevance for the clustering problem in all empirical
contexts when n is large.
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We assume that readers are familiar with the basic notions of the theory of complexity
of algorithms [33]. Although there are some types of clustering problems of polynomial
complexity, for example (P2,MM) and (Pk,ST), it seems that they are mainly NP-hard.
Brucker [18] showed that ( ∝ denotes the polynomial reducibility of problems [33]):

Theorem 3.11 Let the criterion function

P(C) =
⨁
C∈C

p(C)

be 𝛼-sensitive, then for each problem (Pk(U),P) there exists a problem (Pk+1(U′),P), such that
(Pk(U),P) ∝ (Pk+1(U′),P).

Theorem 3.12 Let the criterion function P be sensitive then 3-COLOR ∝ (P3,P).

Note that, by Theorem 3.11, the clustering problems (Pk,MM), k > 3, are also NP-hard.
The complexity results for some types of clustering criterion functions are summarized in

Table 3.3.
From these results, it follows (as it is believed) that no efficient (polynomial) exact algorithm

exists for solving the clustering problem. Therefore, the procedures should be used that give
“good” results, but not necessarily the best, in a reasonable time. In the following section we
present some standard approaches for solving the clustering problem.

3.3 Approaches to Clustering

3.3.1 Local Optimization

Often, for a given optimization problem (Φ,P,min), there exist rules relating to each element
of the set Φ some elements of Φ. They are local transformations. The elements which can
be obtained from a given element are called neighbors – local transformations determine the
neighborhood relation S ⊆ Φ × Φ in the setΦ. The neighborhood of element X ∈ Φ is called the

Table 3.3 The complexity of clustering problems

Polynomial NP-hard Note

(P2,MM) (P3,MM) Theorem 3.12

(P3,SM) Theorem 3.12

(P2,SS) MAX-CUT ∝ (P2,SS)
(P2,SS) (P2, SS) ∝ (P2,SS)
(P2,MS) PARTITION ∝ (P2,MS)

(ℝm
2 ,SS)

(ℝ1
k ,SS)

(ℝ1
k ,SM)

(ℝ1
k ,MM)
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set S(X) = {Y ∶ X S Y}. The element X ∈ Φ is a local minimum for the neighborhood structure
(Φ, S) iff

∀Y ∈ S(X) ∶ P(X) ≤ P(Y)

In the following, we assume that S is reflexive, ∀X ∈ Φ ∶ X S X.
The relation S is a basis of the local optimization procedure:

select X0; X ∶= X0;

while ∃Y ∈ S(X) ∶ P(Y) < P(X) do X ∶= Y;

which starting in an initial element X0 ∈ Φ repeats moving to an element, in its neighborhood
determined by local transformation, which creates a better value of the criterion function until
no such element exists. To get a good solution, we repeat the procedure many times with random
initial element X0 and keep the best solution found.

3.3.1.1 Clustering Neighborhoods

Usually the neighborhood relation in local optimization clustering procedures over Pk(U) is
determined by the following two transformations:

• transition: clustering C′ is obtained from C by moving a unit Xs ∈ Cu from one cluster, Cu,
to another, Cv,

C′ = (C \ {Cu,Cv}) ∪ {Cu \ {Xs},Cv ∪ {Xs}}

• transposition: clustering C′ is obtained from C by interchanging two units, Xp ∈ Cu and
Xq ∈ Cv, from different clusters

C′ = (C \ {Cu,Cv}) ∪ {(Cu \ {Xp}) ∪ {Xq}, (Cv \ {Xq}) ∪ {Xp}}

The transpositions preserve the number of units in clusters. The local optimization based on
transitions and/or transpositions is usually called the relocation method.

Using Proposition 3.8, we can prove the following important property of the minimal
solutions of the clustering problem (Pk,SR,min):

Proposition 3.13 In the locally, with respect to transitions, minimal clustering for the problem
(Pk, SR,min)

SR. P(C) =
∑
C∈C

∑
X∈C

w(X) ⋅ d(X,C)

each unit is assigned to the nearest representative: Let C• be locally with respect to transitions
minimal clustering then it holds:

∀Cu ∈ C• ∀X ∈ Cu ∀Cv ∈ C• \ {Cu} ∶ d(X,Cu) ≤ d(X,Cv)

Two basic implementation approaches are usually used: the stored data approach and the
stored dissimilarity matrix approach.
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If the constraints are not too stringent, the relocation method can be applied directly on Φ.
Otherwise, we can transform, using the penalty function method, the problem to an equiva-
lent non-constrained problem (Pk,Q,min) with Q(C) = P(C) + 𝛼K(C) where 𝛼 > 0 is a large
constant and K(C) = 0, for C ∈ Φ, and K(C) > 0 otherwise.

There exist several improvements of the basic relocation algorithm, including simulated
annealing and tabu search [1].

3.3.1.2 On Testing

The condition P(C′) < P(C) is equivalent to P(C) − P(C′) > 0. For the S criterion function,

ΔP(C,C′) = P(C) − P(C′) = p(Cu) + p(Cv) − p(C′
u) − p(C′

v)

Some additional simplifications can be achieved by considering the relations between Cu and
C′

u, and between Cv and C′
v.

We illustrate this using the generalized Ward’s method. For this purpose, it is useful to intro-
duce the quantity

a(Cu,Cv) =
∑

X∈Cu,Y∈Cv

w(X) ⋅ w(Y) ⋅ d(X,Y)

Using a(Cu,Cv), we can express p(C) in the form p(C) = a(C,C)
2w(C) and the equality mentioned in

the introduction of the generalized Ward clustering problem: if Cu ∩ Cv = ∅ then

w(Cu ∪ Cv) ⋅ p(Cu ∪ Cv) = w(Cu) ⋅ p(Cu) + w(Cv) ⋅ p(Cv) + a(Cu,Cv)

We analyze the transition of a unit Xs from cluster Cu to cluster Cv. We have C′
u = Cu \ {Xs},

C′
v = Cv ∪ {Xs},

w(Cu) ⋅ p(Cu) = w(C′
u) ⋅ p(C′

u) + a(Xs,C
′
u) = (w(Cu) − w(Xs)) ⋅ p(C′

u) + a(Xs,C
′
u)

as well as:
w(C′

v) ⋅ p(C′
v) = w(Cv) ⋅ p(Cv) + a(Xs,Cv)

From d(Xs,Xs) = 0, it follows a(Xs,Cu) = a(Xs,C
′
u). Therefore

p(C′
u) =

w(Cu) ⋅ p(Cu) − a(Xs,Cu)
w(Cu) − w(Xs)

p(C′
v) =

w(Cv) ⋅ p(Cv) + a(Xs,Cv)
w(Cv) + w(Xs)

and, finally,

ΔP(C,C′) = p(Cu) + p(Cv) − p(C′
u) − p(C′

v) =

=
w(Xs) ⋅ p(Cv) − a(Xs,Cv)

w(Cv) + w(Xs)
−

w(Xs) ⋅ p(Cu) − a(Xs,Cu)
w(Cu) − w(Xs)

In the case when d is the squared Euclidean distance, it is possible to derive also an expression
for the corrections of centers [60].
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3.3.2 Dynamic Programming

Suppose that Min(Φk,P) ≠ ∅, k = 1, 2, … . Denoting P∗(U, k) = P(C∗
k (U)) we can derive the

generalized Jensen equality [10]:

P∗(U, k) =
⎧⎪⎨⎪⎩

p(U) {U} ∈ Φ1

min
∅⊂C⊂U

∃C∈Φk−1(U \ C)∶C∪{C}∈Φk(U)

(P∗(U \ C, k − 1)⊕ p(C)) k > 1

This is a dynamic programming (Bellman) equation which, for some special constrained prob-
lems, keeps the size of Φk small, and allows us to solve the clustering problem by the adapted
Fisher’s algorithm [10].

3.3.3 Hierarchical Methods

The set of feasible clusterings Φ determines the feasibility predicate Φ(C) ≡ C ∈ Φ defined on
P(P(U) \ {∅}), and, conversely, Φ ≡ {C ∈ P(P(U) \ {∅}) ∶ Φ(C)}.

In the set Φ, the relation of clustering inclusion ⊑ can be introduced by

C1 ⊑ C2 ≡ ∀C1 ∈ C1,C2 ∈ C2 ∶ C1 ∩ C2 ∈ {∅,C1}.

The clustering C1 is a refinement of the clustering C2.
It is well known that (P(U), ⊑) is a partially ordered set (and also a semimodular lattice).

Because any subset of partially ordered set is also partially ordered, we have: Let Φ ⊆ P(U)
then (Φ, ⊑) is a partially ordered set.

The clustering inclusion determines two related relations (on Φ):

C1 ⊏ C2 ≡ C1 ⊑ C2 ∧ C1 ≠ C2 – a strict inclusion, and

C1 ⊏⋅ C2 ≡ C1 ⊏ C2 ∧ ¬∃C ∈ Φ ∶ (C1 ⊏ C ∧ C ⊏ C2) – a predecessor.

Part of the following text we presented already is in Section 9.3 of [11]. We include it here to
make the text self-contained. We assume that the set of feasible clusterings Φ ⊆ P(U) satisfies
the following conditions:

F1. O ≡ {{X} ∶ X ∈ U} ∈ Φ
F2. The feasibility predicate Φ is local – it has the form Φ(C) = ∧C∈C𝜑(C) where 𝜑(C) is a

predicate defined on P(U) \ {∅} (clusters). The intuitive meaning of 𝜑(C) is that: 𝜑(C) ≡
the cluster C is “good”. Therefore, the locality condition can be read as a “good” clustering
C ∈ Φ consists of “good” clusters.

F3. The predicate Φ has the property of binary heredity with respect to the fusibility predicate
𝜓(C1,C2), i.e.,

C1 ∩ C2 = ∅ ∧ 𝜑(C1) ∧ 𝜑(C2) ∧ 𝜓(C1,C2) ⇒ 𝜑(C1 ∪ C2)

This condition means: in a “good” clustering, a fusion of two “fusible” clusters produces
a “good” clustering.
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F4. The predicate 𝜓 is compatible with the clustering inclusion ⊑, i.e.,

∀C1,C2 ∈ Φ ∶ (C1 ⊏ C2 ∧ C1 \ C2 = {C1,C2} ⇒ 𝜓(C1,C2) ∨ 𝜓(C2,C1))

F5. The interpolation property holds in Φ, i.e., ∀C1,C2 ∈ Φ ∶

(C1 ⊏ C2 ∧ card(C1) > card(C2) + 1 ⇒ ∃C ∈ Φ ∶ (C1 ⊏ C ∧ C ⊏ C2))

These conditions provide a framework within which the hierarchical methods can be applied
also to constrained clustering problemsΦk(U) ⊂ Pk(U). In the ordinary problem, both predicates
𝜑(C) and 𝜓(Cp,Cq) are always true – all conditions F1–F5 are satisfied.

3.3.3.1 Greedy Approximation

We call a dissimilarity between clusters a function D ∶ (C1,C2) → ℝ+
0 which is symmetric, i.e.,

D(C1,C2) = D(C2,C1)
Let (ℝ+

0 , ⊕, e,≤) be an ordered abelian monoid. Then the criterion function P(C)=
⨁

C∈Cp(C),
∀X ∈ U ∶ p({X}) = 0 is compatible with a dissimilarity D over Φ iff for all C ⊆ U holds:

𝜑(C) ∧ card(C) > 1 ⇒ p(C) = min
(C1,C2)∶C2=C \ C1∧𝜓(C1,C2)

(p(C1)⊕ p(C2)⊕ D(C1,C2))

Proposition 3.14 An S criterion function is compatible with a dissimilarity D defined by

D(Cp,Cq) = p(Cp ∪ Cq) − p(Cp) − p(Cq)

In this case, let C′ = C \ {Cp,Cq} ∪ {Cp ∪ Cq} Cp,Cq ∈ C then

P(C′) = P(C) + D(Cp,Cq)

Proposition 3.15 Let P be compatible with D over Φ, with ⊕ distributes over min, and F1–F5
holding, then

P(C∗
k ) = min

C∈Φk

P(C) = min
C1 ,C2∈C∈Φk+1

𝜓(C1 ,C2)

(P(C)⊕ D(C1,C2))

The equality from Proposition 3.15 can be written also in the form

P(C∗
k ) = min

C∈Φk+1
(P(C)⊕ min

C1 ,C2∈C
𝜓(C1 ,C2)

D(C1,C2))

from which we get the following “greedy” approximation:

P(C∗
k ) ≈ P(C∗

k+1)⊕ min
C1 ,C2∈C∗

k+1
𝜓(C1 ,C2)

D(C1,C2)

It is the basis for the agglomerative (binary) procedure for solving the clustering problem.
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3.3.3.2 Agglomerative Methods

Here is the agglomerative procedure for solving the clustering problem:

1. k ∶= n; C(k) ∶= {{X} ∶ X ∈ U};
2. while ∃Ci,Cj ∈ C(k) ∶ (i ≠ j ∧ 𝜓(Ci,Cj)) repeat
2.1. (Cp,Cq) ∶= argmin{D(Ci,Cj) ∶ i ≠ j ∧ 𝜓(Ci,Cj)};
2.2. C ∶= Cp ∪ Cq; k ∶= k − 1;
2.3. C(k) ∶= C(k + 1) \ {Cp,Cq} ∪ {C};
2.4. determine D(C,Cs) for all Cs ∈ C(k)
3. m∶= k

Note that, because it is based on an approximation, this procedure is not an exact procedure for
solving the clustering problem.

For another, probabilistic, view on agglomerative methods, see [43].
Divisive methods work in the reverse direction. The problem here is how to efficiently find a

good split (Cp,Cq) of a cluster C.
In derivations of between the clusters dissimilarity D(Cu,Cv) for different “classical” agglom-

erative methods, we use the generalized Ward’s cluster error function, p(C), and the generalized
centers [5]. We consider:

Minimal: Dm(Cu,Cv) = min
X∈Cu,Y∈Cv

d(X,Y)

Maximal: DM(Cu,Cv) = max
X∈Cu,Y∈Cv

d(X,Y)

Average: Da(Cu,Cv) =
1

w(Cu)w(Cv)
∑

X∈Cu,Y∈Cv

w(X) ⋅ w(Y) ⋅ d(X,Y)

Gower-Bock: DG(Cu,Cv) = d(Cu,Cv) = Da(Cu,Cv) −
p(Cu)
w(Cu)

−
p(Cv)
w(Cv)

Ward: DW (Cu,Cv) =
w(Cu)w(Cv)
w(Cu ∪ Cv)

DG(Cu,Cv)

Inertia: DI(Cu,Cv) = p(Cu ∪ Cv)

Variance: DV (Cu,Cv) = var(Cu ∪ Cv) =
p(Cu ∪ Cv)
w(Cu ∪ Cv)

Weighted increase of variance:

Dv(Cu,Cv) = var(Cu ∪ Cv) −
w(Cu) ⋅ var(Cu) + w(Cv) ⋅ var(Cv)

w(Cu ∪ Cv)
=

DW (Cu,Cv)
w(Cu ∪ Cv)

For all of these measures, the Lance-Williams-Jambu formula holds:

D(Cp ∪ Cq,Cs) = 𝛼1D(Cp,Cs) + 𝛼2D(Cq,Cs) + 𝛽D(Cp,Cq) +

+ 𝛾|D(Cp,Cs) − D(Cq,Cs)| + 𝛿1v(Cp) + 𝛿2v(Cq) + 𝛿3v(Cs)

The coefficients 𝛼1, 𝛼2, 𝛽, 𝛾 and 𝛿 are given in Table 3.4.
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Table 3.4 Lance-Williams-Jambu coefficients

Method 𝛼1 𝛼2 𝛽 𝛾 𝛿t v(Ct)

Minimum
1
2

1
2

0 −1
2

0 −

Maximum
1
2

1
2

0
1
2

0 −

Average
wp

wpq

wq

wpq

0 0 0 −

Gower-Bock
wp

wpq

wq

wpq

−
wpwq

w2
pq

0 0 −

Ward
wps

wpqs

wqs

wpqs

−
ws

wpqs

0 0 −

Inertia
wps

wpqs

wqs

wpqs

wpq

wpqs

0 −
wt

wpqs

p(Ct)

Variance
w2

ps

w2
pqs

w2
qs

w2
pqs

w2
pq

w2
pqs

0 −
wt

w2
pqs

p(Ct)

Weighted increase of variance
w2

ps

w2
pqs

w2
qs

w2
pqs

−
wswpq

w2
pqs

0 0 −

wp = w(Cp), wpq = w(Cp ∪ Cq), wpqs = w(Cp ∪ Cq ∪ Cs)

3.3.3.3 Hierarchies

The agglomerative clustering procedure produces a series of feasible clusterings C(n), C(n − 1),
… , C(m) with C(m) ∈ MaxΦ (maximal elements for ⊑). Their union T =

⋃n
k=m C(k) is called

a hierarchy and has the property:

∀Cp,Cq ∈ T ∶ Cp ∩ Cq ∈ {∅,Cp,Cq}

The set inclusion ⊆ is a tree, or a hierarchical order, on T . The hierarchy T is complete iff
U ∈ T .

For W ⊆ U, we define the smallest cluster CT (W) from T containing W as:

c1. W ⊆ CT (W)
c2. ∀C ∈ T ∶ (W ⊆ C ⇒ CT (W) ⊆ C)

CT is a closure on T with a special property

Z ∉ CT ({X,Y}) ⇒ CT ({X,Y}) ⊂ CT ({X,Y,Z}) = CT ({X,Z}) = CT ({Y,Z})

A mapping h ∶ T → ℝ+
0 is a level function on T iff
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l1. ∀X ∈ U ∶ h({X}) = 0
l2. Cp ⊆ Cq ⇒ h(Cp) ≤ h(Cq)

A simple example of level function is h(C) = card(C) − 1.
Every hierarchy/level function determines an ultrametric dissimilarity on U

𝛿(X,Y) = h(CT ({X,Y}))

The converse is true also (see [25]): Let d be an ultrametric on U. Denote a closed ball in X with
radius r with B(X, r) = {Y ∈ U ∶ d(X,Y) ≤ r}. Then for any given set A ⊂ ℝ+ the set

C(A) = {B(X, r) ∶ X ∈ U, r ∈ A} ∪ {{U}} ∪ {{X} ∶ X ∈ U}

is a complete hierarchy, and h(C) = diam(C) is a level function.
The pair (T , h) is called a dendrogram or a clustering tree because it can be visualized as

a tree.
Unfortunately, the function hD(C) = D(Cp,Cq), C = Cp ∪ Cq is not always a level func-

tion – for some Ds the inversions, D(Cp,Cq) > D(Cp ∪ Cq,Cs), are possible. Batagelj
showed [4]:

Proposition 3.16 hD is a level function for the Lance-Williams procedure (𝛼1, 𝛼2, 𝛽, 𝛾) iff:

(i) 𝛾 + min(𝛼1, 𝛼2) ≥ 0
(ii) 𝛼1 + 𝛼2 ≥ 0

(iii) 𝛼1 + 𝛼2 + 𝛽 ≥ 1

The dissimilarity D has the reducibility property iff

D(Cp,Cq) ≤ t, D(Cp,Cs) ≥ t, D(Cq,Cs) ≥ t ⇒ D(Cp ∪ Cq,Cs) ≥ t

Proposition 3.17 [19] If a dissimilarity D has the reducibility property then hD is a level
function.

A very fast agglomerative clustering procedure exists for dissimilarities that have reducibility
property [54].

3.3.4 Adding Hierarchical Methods

Suppose we have already built a clustering tree T over the set of units U. To add a new unit
X into the tree T , we start in the root and branch while looking down. Assuming we have
reached the node corresponding to cluster C, one obtained by joining sub-clusters Cp and Cq,
C = Cp ∪ Cq. There are three possibilities: (i) add X to Cp or (ii) adding X to Cq or (iii) forming
a new cluster {X}. See Figure 3.1.

Consider again the “greedy approximation”

P(C•
k ) = P(C•

k+1) + D(Cp,Cq)
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Cp Cq

Cq

C

X

C ∪ X

C

X

C ∪ X

Cp ∪ X Cp
Cq ∪ X

Cp Cq

C ∪ X

Figure 3.1 Adding hierarchical method.

where D(Cp,Cq) = minCu,Cv∈C•
k+1

D(Cu,Cv) and C•
i are greedy solutions. Since we wish to min-

imize the value of criterion function P, it follows from the greedy relation we need to select
the case corresponding to the maximal among values D(Cp ∪ {X},Cq), D(Cq ∪ {X},Cp), and
D(Cp ∪ Cq, {X}).

This is a basis for the adding clustering method. We start with a tree on the first two units
and then, successively, add to it the remaining units. The unit X is included within all clusters
through which we branch it in a downward direction.

3.3.5 The Leaders Method

To support our intuition regarding further developments, we briefly describe a simple version
of the dynamic clusters method – the leaders or k-means method [23, 38] which forms the basis
of several recent “data-mining” and “big data” analytic methods. In the leaders method, the
criterion function has the form SR. The basic scheme of the leaders method is simple:

Select C0; C∶= C0;
repeat

determine for each C ∈ C its leader C;
the new clustering C is obtained by assigning each unit to its nearest leader

until leaders stabilize

To obtain a “good” solution and an impression of its quality, this procedure can be repeated
using different (random) C0 partitions.
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The dynamic clusters method is a generalization of the above scheme. We denote:

Λ – set of representatives

L ⊆ Λ – representation

Ψ – set of feasible representations

W ∶ Φ × Ψ → ℝ+
0 – extended criterion function

G ∶ Φ × Ψ → Ψ – representation function

F ∶ Φ × Ψ → Φ – clustering function

and the following conditions must be satisfied:

W0. P(C) = min
L∈Ψ

W(C,L)

and the functions G and F tend to improve (diminish) the value of the extended criterion func-
tion, W:

W1. W(C,G(C,L)) ≤ W(C,L)
W2. W(F(C,L),L) ≤ W(C,L)

then the dynamic clusters method (DCM) can be described by the scheme:

select C ∶= C0; L ∶= L0;
repeat

L ∶= G(C,L);
C ∶= F(C,L)

until the clustering C stabilizes

To this scheme correspond the sequence vn = (Cn,Ln), n ∈ ℕ determined by relations

Ln+1 = G(Cn,Ln) and Cn+1 = F(Cn,Ln+1)

and the sequence of values of the extended criterion function, un = W(Cn,Ln). We denote u∗ =
P(C∗). Then it holds:

Proposition 3.18 For every n ∈ ℕ, un+1 ≤ un, u∗ ≤ un, and if for k > m, vk = vm then ∀n ≥ m ∶
un = um.

Proposition 3.18 states that the sequence un is monotonically decreasing and bounded.
Therefore, it is convergent. Note that the limit of un is not necessarily u∗ – as the dynamic
clusters method is a local optimization method.
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Two types of sequencesvn are possible:

Type A: ¬∃k,m ∈ ℕ, k > m ∶ vk = vm

Type B: ∃k,m ∈ ℕ, k > m ∶ vk = vm

Type B0: Type B withk = m + 1

A B B0

For DCM to be a viable algorithm, the corresponding sequences, vn, should be of type B. The
DCM sequence (vn) is of type B if

• sets Φ and Ψ are both finite, for example when selecting a representative of C among its
members

• ∃𝛿 > 0 ∶ ∀n ∈ ℕ ∶ (vn+1 ≠ vn ⇒ un − un+1 > 𝛿)

Because the sets U, and consequently Φ, are finite we expect a good dynamic clustering
procedure to stabilize in a finite number of steps – it is of type of type B, as described above.

However, the conditions W0, W1 and W2 are not strong enough to ensure this. To compen-
sate for the possibility that the set of representations, Ψ, is infinite, we include the additional
requirement:

W3. W(C,G(C,L)) = W(C,L) ⇒ L = G(C,L)

With this requirement the “symmetry” between Φ and Ψ is destroyed. This can be reestablished
with the requirement:

W4. W(F(C,L,L)) = W(C,L) ⇒ C = F(C,L)

Alas, it turns out that W4 often fails. For this reason, we avoid it henceforth.

Proposition 3.19 If W3 holds and if there exists m ∈ ℕ such that um+1 = um, then also
Lm+1 = Lm.

Usually, in the applications of the DCM, the clustering function takes the form F∶ Ψ → Φ.
In this case, the condition W2 simplifies to W(F(L),L) ≤ W(C,L), which can be expressed also
as F(L) ∈ MinC∈ΦW(C,L). For such simple clustering functions, it holds:

Proposition 3.20 If the clustering function F is simple and if there exists m ∈ ℕ such that
Lm+1 = Lm, then for every n ≥ m∶ vn = vm.

When G is simple, it has the form G∶ Φ → Ψ.

Proposition 3.21 If W3 holds and the representation function G is simple then:

a. G(C) = arg minL∈ΨW(C,L)
b. ∃k,m ∈ ℕ, k > m∀i ∈ ℕ ∶ vk+i = vm+i
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c. ∃m ∈ ℕ∀n ≥ m ∶ un = um

d. if also F is simple then ∃m ∈ ℕ∀n ≥ m ∶ vn = vm

In the original dynamic clustering method [23], both of the functions F and G are simple – F ∶
Ψ → Φ and G ∶ Φ → Ψ.

If W3 also holds and the functions F and G are simple, then

G0. G(C) = argminL∈ΨW(C,L)

and

F0. F(L) ∈ MinC∈ΦW(C,L)

In other words, given an extended criterion function W, the relations G0 and F0 define an appro-
priate pair of functions, G and F, such that the DCM stabilizes in a finite number of steps.

3.4 Clustering Graphs and Networks

When the set of units U consists of graphs (e.g. chemical molecules) we write about clustering
of graphs (networks). For this purpose, we can use standard clustering approaches provided that
we have an appropriate definition of dissimilarity between graphs.

The first approach is to define a vector description [G] = [g1, g2,… , gm] of each
graph G, and then use some standard dissimilarity 𝛿 on ℝm to compare these vectors
d(G1,G2) = 𝛿([G1], [G2]). We can get [G], for example, by:

• Invariants: Compute the values of selected invariants (indices) on each graph [61].
• Fragment counts: Select a collection of subgraphs (fragments), for example triads, and count

the number of appearences of each – a fragments spectrum [6, 57].

Let Gph be the set of all graphs. An invariant of a graph is a mapping i ∶ Gph → ℝ which
is constant over isomorphic graphs

G ≈ H ⇒ i(G) = i(H)

The number of nodes, the number of arcs, the number of edges, maximum degree Δ, chromatic
number 𝜒 , etc. are all graph invariants. Invariants have an important role in examining the iso-
morphism of two graphs. To prove that G is not isomorphic to H it is enough to find an invariant
i such that i(G) ≠ i(H).

Invariants on families of graphs are called structural properties: Let F ⊆ Gph be a family
of graphs. A property i ∶ F → ℝ is structural on F iff

∀G,H ∈ F ∶ (G ≈ H ⇒ i(G) = i(H))

A collection I of invariants/structural properties is complete iff

(∀i ∈ I ∶ i(G) = i(H)) ⇒ G ≈ H

In most cases (families of graphs) there is no efficiently computable complete collection.
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Different dissimilarities between strings are based on transformations including insert, delete,
transpose [45, 50]. For binary trees, Robinson considered a dissimilarity based on the transfor-
mation of neighbors exchange over an edge (see Figure 3.2).

There is a natural generalization of this approach to graphs and other structured objects [6]:
Let T = {Tk} be a set of basic transformations of units Tk ∶ U → U and v ∶ T × U → ℝ+

a value or cost of transformation, which satisfies the conditions:

∀T ∈ T ∶ (T ∶ X → Y ⇒ ∃S ∈ T ∶ (S ∶ Y → X ∧ v(T ,X) = v(S,Y)))

and v(id,X) = 0.
Suppose that for each pair X,Y ∈ U , there exists a finite sequence 𝜏 = (T1,T2,… ,Tt) such

that 𝜏(X) = Tt∘Tt−1∘ … ∘T1(X) = Y. Then we can define:

d(X,Y) = min
𝜏

(v(𝜏(X))∶ 𝜏(X) = Y)

where

v(𝜏(X)) =
{

0 𝜏 = id
v(𝜂(T(X))) + v(T ,X) 𝜏 = 𝜂∘T

It is easy to verify that this dissimilarity, d(X,Y), is a distance.
For example, see Figure 3.3. Using the transformations G1 and G2 we can transform any pair

of connected simple graphs, one to the other. For triangulations of the plane on n nodes, S is
such a transformation.

Figure 3.2 Neighbors exchange over an edge.

G1.

G2.

S.

Figure 3.3 Examples of transformations.
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3.5 Clustering in Graphs and Networks

Since in a graph G = (V ,L) we have two kinds of objects, nodes and links, we can think about
clustering of nodes and clustering of links. Usually we deal with clustering of nodes.

3.5.1 An Indirect Approach

Again, we use the standard clustering methods, provided that we have an appropriate def-
inition of dissimilarity between nodes. The usual approach is to define a vector description
[v] = [t1, t2,… , tm] of each node v ∈ V , and then use some standard dissimilarity, 𝛿, on ℝm to
compare these vectors d(u, v) = 𝛿([u], [v]).

We can assign to each node v different neighborhoods, such as N(v) = {u ∈ V∶ (v, u) ∈ L},
and other sets. In these cases, the dissimilarities between sets are used on them.

For a given graph G = (V ,L), a property t∶ V → ℝ is structural iff for every automorphism
𝜑 of G it holds

∀v ∈ V∶ t(v) = t(𝜑(v))

Examples of such properties are:

t(v) = degree (the number of neighbors) of node v
t(v) = the number of nodes at distance d from node v
t(v) = the number of triads of type x at node v
t(v) = the number of graphlets of type x at node v [57]

For a given graph G = (V ,L), a property of pairs of nodes q ∶ V × V → ℝ is structural if for
every automorphism 𝜑 of G, it holds:

∀u, v ∈ V∶ q(u, v) = q(𝜑(u), 𝜑(v))

Some examples of structural properties of pairs of nodes are:

q(u, v) = if (u, v) ∈ L then 1 else 0;
q(u, v) = number of common neighbors of units u and v;
q(u, v) = length of the shortest path from u to v.

Using a selected property of pairs of nodes, q, we can describe each node u with a vector

[u] = [q(u, v1), q(u, v2),… , q(u, vn), q(v1, u),… , q(vn, u)]

and we define the dissimilarity between nodes u, v ∈ V as d(u, v) = 𝛿([u], [v]).
Corrected dissimilarities based on properties of pairs of nodes for measuring the similarity

between nodes vi and vj (p ≥ 0) must be used [26] such as: The corrected Manhattan distance:

dc(p)(vi, vj) =
n∑

s=1
s≠i,j

(|qis − qjs| + |qsi − qsj|) + p ⋅ (|qii − qjj| + |qij − qji|)
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The corrected Euclidean distance:

de(p)(vi, vj) =

√√√√√
n∑

s=1
s≠i,j

((qis − qjs)2 + (qsi − qsj)2) + p ⋅ ((qii − qjj)2 + (qij − qji)2)

The corrected dissimilarities with p = 1 are usually used.

3.5.2 A Direct Approach: Blockmodeling

A partition C = {Ci} splits the set of links (arcs) L ⊆ V × V into blocks Bij = L ∩ Ci × Cj – a
subgraph of arcs from cluster Ci to cluster Cj. In blockmodeling, analysts adopting this approach
attempt to find partitions producing blocks of selected types (complete, empty, regular, etc.),
while allowing for some “errors” in the form of links not consistent with the specified block
types [26]. Usually, the relocation method is used for solving the corresponding optimization
problems.

Regarding blockmodeling, the dissimilarity based criterion functions for the indirect approach
usually use the concept of structural equivalence. While this may be too limited, we do not
pursue this issue further.

3.5.3 Graph Theoretic Approaches

The basic decomposition of graphs is to (weakly) connected components (partition of nodes,
and links) and to (weakly) biconnected components (partition of links). For both, very efficient
algorithms exist [21]. For directed graphs, the fundamental decomposition results can be found
in [20].

From a network N = (V ,L,w) we can get, for a threshold, t, a link-cut – a subnetwork N(t) =
(V ,Lt,w) where Lt = {p ∈ L ∶ w(p) ≥ t}. From it, we can get a clustering C(t) with connected
components as clusters. For different thresholds, these clusterings form a hierarchy. An elabo-
rated version of cuts is provided with the islands approach [[11], Subsection 2.9.1]. Islands also
form a hierarchy for a selected node property of a given network.

In the 1970s and 1980s, Matula studied different types of connectivities in graphs and the
structures they induce [52]. In most cases the algorithms are too demanding to be used on larger
graphs. A nice overview of connectivity algorithms can be found in Esfahanian [27]. The graph
partitioning problem has also several technical applications supported by special algorithms
[36, 44, 47].

3.6 Agglomerative Method for Relational Constraints

Suppose that the units are described by attribute data a ∶ U → [U] and are related by a binary
relation R ⊆ U × U that determines the relational data or network (U,R, a) [9].

We want to cluster the units according to some (dis)similarity of their descriptions, but also
considering the relation R which imposes constraints on the set of feasible clusterings [9, 28,
29, 31], usually in the following form:

Φ(R) = {C ∈ P(U): each cluster C ∈ C induces a subgraph (C,R ∩ C × C) in the graph (U,R)
of the required type of connectedness}
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and criterion function of type SR:

P(C) =
∑
C∈C

p(C), p(C) =
∑
X∈C

d(X,TC)

We can define different types of sets of feasible clusterings for the same relation R. Some
examples of types of relational constraints, Φi(R), are [29]

Clusterings Type of connectedness

Φ1(R) Weakly connected units
Φ2(R) Weakly connected units that contain at most one center
Φ3(R) Strongly connected units
Φ4(R) Clique
Φ5(R) The existence of a trail containing all the units of the cluster

In a directed graph a trail is a walk in which all arcs are distinct.
The set R(X) = {Y ∶ X R Y} is a set of successors of unit X ∈ U and, for a cluster C ⊆ U,

R(C) =
⋃

X∈CR(X). A set of units, L ⊆ C, is a center of a cluster C in the clustering of type
Φ2(R) iff the subgraph induced by L is strongly connected and R(L) ∩ (C \ L) = ∅.

The sets of feasible clusteringsΦi(R) are linked as follows:Φ4(R) ⊆ Φ3(R) ⊆ Φ2(R) ⊆ Φ1(R)
and Φ4(R) ⊆ Φ5(R) ⊆ Φ2(R). If the relation R is symmetric, then Φ3(R) = Φ1(R). If the relation
R is an equivalence relation, then Φ4(R) = Φ1(R).

The corresponding fusibility predicates are:

𝜓

1(C1,C2) ≡ ∃X ∈ C1∃Y ∈ C2 ∶ (XRY ∨ YRX)
𝜓

2(C1,C2) ≡ (∃X ∈ L1∃Y ∈ C2 ∶ XRY) ∨ (∃X ∈ C1∃Y ∈ L2 ∶ YRX)
𝜓

3(C1,C2) ≡ (∃X ∈ C1∃Y ∈ C2 ∶ XRY) ∧ (∃X ∈ C1∃Y ∈ C2 ∶ YRX)
𝜓

4(C1,C2) ≡ ∀X ∈ C1∀Y ∈ C2 ∶ (XRY ∧ YRX)
𝜓

5(C1,C2) ≡ (∃X ∈ T1∃Y ∈ I2 ∶ XRY) ∨ (∃X ∈ I1∃Y ∈ T2 ∶ YRX)

where I denotes initial nodes in a cluster C and T denotes terminal nodes in a cluster C. For 𝜓3

the property F5 fails.
We can use both hierarchical and local optimization methods for solving some types

of problems with relational constraint [11, 28, 29]. Here, we present only the hierarchical
method:

1. k ∶= n; C(k) ∶= {{X} ∶ X ∈ U};
2. while ∃Ci,Cj ∈ C(k) ∶ (i ≠ j ∧ 𝜓(Ci,Cj)) repeat
2.1. (Cp,Cq) ∶= argmin{D(Ci,Cj) ∶ i ≠ j ∧ 𝜓(Ci,Cj)};
2.2. C ∶= Cp ∪ Cq; k ∶= k − 1;
2.3. C(k) ∶= C(k + 1) \ {Cp,Cq} ∪ {C};
2.4. determine D(C,Cs) for all Cs ∈ C(k);
2.5. adjust the relation R as required by the clustering type
3. m ∶= k
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To get clustering procedures, it is necessary to further elaborate the questions how to adjust
the relation after joining two clusters and how to update the dissimilarity D(C,Cs).

In Figures 3.4 and 3.6, four adjusting strategies are presented. They are compatible with the
corresponding types of constraints: Φ1 – tolerant, Φ2 – leader, Φ4 – strict, and Φ5 – two.way.
In Figure 3.5 an example of application of strategies is presented.

strict leader tolerant
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p q

s

(p,q)

s

(p,q)

s

(p,q)

2

s

p q

s

(p,q)
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(p,q)

s

(p,q)

3

s

p q

s

(p,q)

s

(p,q)

s

(p,q)

4

s

p q

s

(p,q)

s

(p,q)

s

(p,q)

Figure 3.4 Types of relational constraints.

strict leader tolerant
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p q
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Figure 3.5 A composite example.
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two-way

1

s

p q

s

(p,q)

2

s

p q

s

(p,q)

Figure 3.6 The two-way strategy.

The effects of these strategies can be described also as updates of the sets of successors R(C):

Tolerant

R(Cr) = {Cr} ∪ R(Cp) ∪ R(Cq) \ {Cp,Cq}

R(Cs) = {Cr} ∪ R(Cs) \ {Cp,Cq}, for s ≠ r ∧ {Cp,Cq} ∩ R(Cs) ≠ ∅

Strict

R(Cr) =

{
{Cr} ∪ R(Cp) ∪ R(Cq) \ {Cp,Cq}, for Cq R Cp

{Cr} ∪ R(Cs) \ {Cp,Cq}), otherwise

R(Cs) =
⎧⎪⎨⎪⎩

{Cs} ∪ R(Cs) \ {Cp,Cq}), for
s ≠ r ∧ (Cp ∈ R(Cs)∨

Cq ∈ R(Cs) ∧ CqRCp)

R(Cs) \ {Cp,Cq}), otherwise for s ≠ r

Leader

R(Cr) =

{
{Cr} ∪ R(Cp) ∪ R(Cq) \ {Cp,Cq}, for Cq R Cp

{Cr} ∪ R(Cs) \ {Cp,Cq}, otherwise

R(Cs) =

{
{Cs} ∪ R(Cs) \ {Cp,Cq}, for s ≠ r ∧ {Cp.Cq} ∩ R(Cs) ≠ ∅

R(Cs) \ {Cp,Cq}, otherwise for s ≠ r

Two-way

R(Cr) = {Cr} ∪ (R(Cp) ∩ R(Cq)) \ {Cp,Cq}

R(Cs) =

{
{Cs} ∪ R(Cs) \ {Cp,Cq}, for s ≠ r ∧ {Cp.Cq} ⊆ R(Cs)

R(Cs) \ {Cp,Cq}, otherwise for s ≠ r
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In the original approach [28, 29], a complete dissimilarity matrix is needed. To obtain fast
algorithms that can be applied to large data sets we propose considering only the dissimilarities
between linked units. For large data sets, we assume that the relation R is sparse.

For step 2.4, “determine D(C,Cs) for all Cs ∈ C(k)” in the agglomerative procedure requires
the adjustment of dissimilarities – computing the dissimilarities between a new cluster C and
other remaining clusters. In the case of the relational constraints, we can limit the computation
only to clusters that are related/linked to C.

This can be done efficiently in the following two ways:

• A first approach: we define a dissimilarity D(S,T) between clusters S and T that allows quick
updates (as in the Lance-Williams formula).

• A second approach: to each cluster we assign a representative and can efficiently compute a
representative of merged clusters along with a dissimilarity between clusters in terms of their
representatives.

The first approach was described already in [11]. Let (U,R), R ⊆ U × U be a graph and ∅ ⊂
S,T ⊂ U and S ∩ T = ∅. We call a block of relation R for S and T its part R(S,T) = R ∩ S × T .
The symmetric closure of relation R we denote with ̂R = R ∪ R−1. It holds: ̂R(S,T) = ̂R(T , S).

For all dissimilarities between clusters D(S,T) we set:

D({s}, {t}) =

{
d(s, t) s ̂R t

∞ otherwise

where d is a selected dissimilarity between units.

Minimum
Dmin(S,T) = min

(s,t)∈ ̂R(S,T)
d(s, t)

Dmin(S,T1 ∪ T2) = min(Dmin(S,T1),Dmin(S,T2))

Maximum
Dmax(S,T) = max

(s,t)∈ ̂R(S,T)
d(s, t)

Dmax(S,T1 ∪ T2) = max(Dmax(S,T1),Dmax(S,T2))

Average

w ∶ V → ℝ – is a weight on units; for example w(v) = 1, for all v ∈ U.

Da(S,T) =
1

w( ̂R(S,T))

∑
(s,t)∈ ̂R(S,T)

d(s, t)

w( ̂R(S,T1 ∪ T2)) = w( ̂R(S,T1)) + w( ̂R(S,T2))

Da(S,T1 ∪ T2) =
w( ̂R(S,T1))

w( ̂R(S,T1 ∪ T2))
Da(S,T1) +

w( ̂R(S,T2))
w( ̂R(S,T1 ∪ T2))

Da(S,T2)

All three dissimilarities have the reducibility property. In this case, also the nearest neighbor
network for a given network is preserved after joining the nearest clusters. This allows us to
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develop a very fast agglomerative hierarchical clustering procedure [54] and [11] (Subsection
9.3.5). It is available in the program Pajek. The same approach can be extended also to clus-
tering of links of network [17] by transforming a given network into its line-graph in which the
original links become new nodes.

For the second approach, we need the representatives of clusters and a dissimilarity between
clusters that can be expressed in terms of representatives. For symbolic objects described by
discrete distributions (histograms, barcharts) there exist some possibilities [12, 49].

3.6.1 Software Support

The first approach is implemented for weighted networks (weight is a dissimilarity) in Pajek
– a program for analysis and visualization of large networks [56]. We also implemented it in R
package cluRC [7]. An implementation in R of the second approach is still a work in progress.

3.7 Some Examples

To illustrate the hierarchical clustering with relational constraints, we use two examples:

• Clustering the US states according to the selected variables into geographically contiguous
clusters.

• Clustering the authors from the network clustering literature (see Chapter 2) according to
their citations into clusters with a single leaders group.

3.7.1 The US Geographical Data, 2016

From the site https://datausa.io/profile/geo/united-states/ we obtained the data about US states
in 2016 for the following variables: crime – homicide deaths, violent – violent crimes, smok-
ing – adult smoking prevalence, drinking – excessive drinking prevalence, diabetes – diabetes
prevalence, opioid – opioid overdose death rate, and income – median household income.

In his book The Stanford GraphBase [48] Knuth provided a description of neighboring
relation for the contiguous part of USA contiguous-usa.dat (without Alaska and Hawai).
Because of missing data we removed also Washington DC.

We first applied the Ward’s hierarchical clustering method using the squared Euclidean dis-
similarity between units with standardized variables. On the basis of the corresponding dendro-
gram (see the left top part of Figure 3.7, we considered a clustering into five clusters:

C1 = {AL,AR,LA,MS,NM,TN, SC},
C2 = {AZ,CA,DE,FL,GA, IL, IN,KS,MI,MO,NC,NV ,NY ,OH,OK,PA,TX},
C3 = {CO, IA, ID,ME,MN,MT ,ND,NE,OR, SD,WY ,RI,WI,WA,VT},
C4 = {CT ,MA,MD,NH,NJ,UT ,VA},
C5 = {KY ,WV}.

The middle left part of Figure 3.7 shows the dissimilarity matrix reordered according to the
obtained clustering.
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Figure 3.7 Ward clustering (left) and Maximum/Tolerant clustering (right).

To interpret the obtained clusters we produced Table 3.5 with averages of each variable over
each cluster for raw and standardized units. The interpretation is left to the reader.

In the bottom left part of Figure 3.7, the obtained clustering/partition is represented with
node colors on the network of neighboring US states. It is clear that the subnetworks induced
by clusters are not all connected (forming contiguous regions). For example, the subnetwork
induced by C4 has four components {CT ,MA,NH}, {NJ}, {MD,VA} and {UT}.

Using hierarchical clustering with relational constraints with the Maximum/Tolerant strategy,
we get a clustering that considers a given dissimilarity among units and produces clusters that
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Table 3.5 Averages for Ward’s clustering

Crime Violent Smoking Drinking Diabetes Opioid Income

C1 8.7857 496.45 0.2251 0.1447 0.1173 10.857 44631
C2 5.9118 427.96 0.1826 0.1714 0.1048 13.853 53535
C3 2.6333 239.99 0.1755 0.2023 0.0847 10.767 55908
C4 3.8000 300.99 0.1521 0.1699 0.0903 23.657 69947
C5 4.9000 273.02 0.2645 0.1195 0.1210 33.500 43727

All 4.9563 354.23 0.1856 0.1748 0.0989 14.700 54963

C1 1.5723 1.0924 1.1363 −0.9927 1.2826 −0.4229 −1.1990
C2 0.3923 0.5663 −0.0843 −0.1123 0.4134 −0.0932 −0.1657
C3 −0.9537 −0.8776 −0.2887 0.9094 −0.9924 −0.4328 0.1097
C4 −0.4747 −0.4090 −0.9605 −0.1617 −0.6005 0.9856 1.7389
C5 −0.0231 −0.6239 2.2668 −1.8260 1.5416 2.0687 −1.3039

form contiguous regions. On the basis of the dendrogram in the right top part of Figure 3.7, we
considered a clustering into six clusters:

C1 = {AL,AR,FL,GA,LA,MS,NC,TN, SC},
C2 = {AZ,CA,DE, IL, IN,MD,MI,MO,NJ,NM,NV ,NY ,OH,OK,PA,VA,TX},
C3 = {CO, IA, ID,KS,MN,MT ,ND,NE,OR, SD,WY ,WI,WA},
C4 = {CT ,MA,ME,NH,RI,VT},
C5 = {KY ,WV},
C6 = {UT}.

The clusters of the obtained clustering/partition induce connected subnetworks, as expected.
See the right bottom part of Figure 3.7 and Figure 3.8.

Figure 3.8 Maximum/Tolerant partition on the map.
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Table 3.6 Averages for Maximum/Tolerant clustering

Crime Violent Smoking Drinking Diabetes Opioid Income

C1 8.1667 462.00 0.2140 0.1488 0.1160 10.788 46104
C2 5.9701 425.91 0.1804 0.1719 0.1032 15.794 57054
C3 2.8385 265.25 0.1765 0.2005 0.0852 7.408 55913
C4 2.3833 234.31 0.1660 0.1932 0.0880 26.717 62751
C5 4.9000 273.02 0.2645 0.1195 0.1210 33.500 43727
C6 1.9000 204.72 0.0970 0.1210 0.0710 16.400 62518

All 4.9563 354.23 0.1856 0.1748 0.0989 14.700 54963

C1 1.3181 0.8278 0.8162 −0.8584 1.1929 −0.4304 −1.0281
C2 0.4165 0.5506 −0.1502 −0.0928 0.3026 0.1204 0.2427
C3 −0.8695 −0.6836 −0.2620 0.8523 −0.9584 −0.8024 0.1103
C4 −1.0564 −0.9212 −0.5625 0.6087 −0.7599 1.3223 0.9039
C5 −0.0231 −0.6239 2.2668 −1.8260 1.5416 2.0687 −1.3039
C6 −1.2548 −1.1485 −2.5445 −1.7764 −1.9456 0.1871 0.8767

The averages of each variable over these clusters for raw and standardized units are given in
Table 3.6. The states of the first cluster C1 have the highest rates of homicide deaths and violent
crimes, high adult smoking levels and diabetes prevalence, and a low median household income.
The states of the second cluster C2 all have variables around the average; above average levels
of homicide deaths and violent crimes. Typical for the cluster C3 is the lowest opioid overdose
death rate, the highest levels of excessive drinking and low crime rates. The states of the cluster
C4 have the highest income levels and a high level of excessive drinking and opioid death rate,
but low levels of crime, smoking and diabetes. The two states in cluster C5 have the lowest
incomes and levels of excessive drinking, the highest values of smoking, diabetes and opioid
death rates, and a lower crime rate. Utah, cluster C6, has the lowest values of crime, smoking
and diabetes, with very low levels of drinking, and a high income level.

3.7.2 Citations Among Authors from the Network Clustering Literature

We consider again the bibliometric data on the network clustering literature analyzed in Chapter
2. In Section 2.5.3, we analyzed the network Acite of citations among authors. Here, we analyze
the normalized network of citations among authors nAcite = n(WAc)T ∗ n(CiteC) ∗ n(WAc).
Every work has one point. They are distributed on arcs of the derived network. The weight
nAcite[u, v] of the arc (u, v) is equal to the fractional share of works co-authored by u that are
citing a work co-authored by v.

We removed loops (self-citations) and compute weighted indegrees. We look first at the largest
weighted input degrees – the most cited authors, as presented in Table 3.7. The most cited ones
are Mark Newman and Santo Fortunato by a wide margin. Quite high also are the most important
researchers from the field of social network analysis, beginning with Ronald Burt.

In this example, we identified clusters such that the corresponding induced subnetworks are
connected and contain a single center – type Φ2. The nAcite weights are similarities, s ∈ [∞, 0].
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Table 3.7 The most cited authors/fractional approach

i wi Author i wi Author

1 329.8886 NEWMAN_M 26 19.7797 MALIK_J
2 155.4974 FORTUNAT_S 27 19.7317 ROSVALL_M
3 80.8228 GIRVAN_M 28 19.2631 VONLUXBU_U
4 51.6716 BARABASI_A 29 19.1634 BERGSTRO_C
5 45.1972 BURT_R 30 19.1422 BARTHELE_M
6 42.5944 ALBERT_R 31 18.6968 LEFEBVRE_E
7 39.6466 ZACHARY_W 32 18.6552 GUILLAUM_J
8 38.8163 LANCICHI_A 33 18.6261 DOREIAN_P
9 38.1660 CLAUSET_A 34 18.3258 KLEINBER_J

10 31.8938 SCHAEFFE_S 35 18.1618 BREIGER_R
11 31.7021 STROGATZ_S 36 17.4888 VICSEK_T
12 30.9933 FREEMAN_L 37 17.4204 BORGATTI_S
13 29.1247 WASSERMA_S 38 16.9268 PALLA_G
14 29.0661 MOORE_C 39 16.8126 OKADA_Y
15 26.1896 FAUST_K 40 16.7620 BOORMAN_S
16 24.8884 WATTS_D 41 15.8376 CHUNG_F
17 24.7421 WHITE_H 42 15.8216 GUIMERA_R
18 24.5679 NEWMARK_N 43 15.7187 RADICCHI_F
19 23.8077 BLONDEL_V 44 14.9995 CARLSON_J
20 23.0214 BATAGELJ_V 45 14.9914 EVERETT_M
21 22.6844 LAMBIOTT_R 46 14.6212 DUCH_J
22 22.5521 VANDONGE_S 47 14.5231 AMARAL_L
23 20.9136 ARENAS_A 48 14.4554 GRANOVET_M
24 19.8478 LESKOVEC_J 49 13.7216 DERENYI_I
25 19.8113 SHI_J 50 13.7216 FARKAS_I

To convert them to distances d, different transformations can be used, including d = smax

s
− 1 ∈

[0,∞] or d = 1 − s
smax

∈ [0, 1]. We selected the second option with smax = 2.52. On the obtained
network, we applied, in Pajek, the hierarchical clustering with relational constraints procedure
with the Maximum/Leader strategy and determined the partition of units into clusters of size
at most 50. There are 257 such clusters. To reduce their number, we decided to consider only
clusters with at least 20 units. There are 57 such clusters.

We extracted the corresponding subnetworks of citations among authors for visual inspection.
Most of them are (double) star-like formed around the most prominent scientists in the field:
Albert R + Barabási A, Bergstrom C + Rosvall M, Bezdek J, Blei D, Blondel V, Bonacich P +
Kleinberg J, Breiger R, Burt R + Doreian P, Chung F + von Luxburg U, Clauset A, Dietrich J +
Maede B, Fortunato S, Freeman L, Ghosh J, Girvan M, Goldberg D, Jaccard P, Jain A, Johnson
D, Jordan M, Kaufman L, Knuth D, Leskovec J, Mac Queen J, Newman M, Newmark N, Okada
Y, Palla G + Viscek T, Prescott W, Schaeffer S, Scott J, Sporus O, Stein C, Strehl A, Strogatz
S, Van Dongen S, and some “cliques” of co-authors with attachments. We visually selected 12
clusters (Adamic L, Batagelj V + Ferligoj A, Bollobas B, Burt R + Doreian P, Faust K + Watts
D, Fiedler M + Harary F, Granovetter M, Mizruchi M, Murtagh F, Nowicki K + Wasserman S,
Robins G, Ward J, White H + Zachary W) with more interesting network structure for detailed
inspection.



�

� �

�

100 Advances in Network Clustering and Blockmodeling

WALD_A

HOLLAND_P

WASSERMA_S

MORENO_J

IACOBUCC_D

FELD_S

WALSH_J

SCHMIDT_M

NOWICKI_K

TANG_L

DUBOIS_C

HENNING_C

CHEN_D

PENTLAND_A

SHANG_Y

BUNTINE_W

JAKULIN_A

SIPPER_M

AIROLDI_E

HOPPE_H

KUBO_T

PRIEBE_C

GAO_S

WEAVER_S

GUAN_J

TANG_M

ROBIN_S

WIND_D

GURNEY_T

HORLINGS_E

AGHAGOLZ_M

RADHA_H

GIORDANO_G

VITALE_M

MASSOULI_L

LUO_H

RAI_P

ALBERS_K

NAVAROLI_N

SMYTH_P

STADTFEL_C

MOGHADAM_S

WILDEMAN_C

WAN_S

AGGARWAL_J

CAPELLAR_S

BORDENAV_C

GHAZANFA_M
KONISHI_T

GLUCKSTA_F

BAKER_F

HARTIGAN_J

HUBERT_L

JOHNSON_S

WARD_J

GORDON_A

ROHLF_F

DESARBO_W

MARTINEZ_J

WATANABE_K

RAND_W

SMITH_J

SATOH_T

TORSELLO_A

WU_H
TAKAHASH_S

GINTANT_G

XIAO_B

MA_Y

CARRASCO_J

OKABE_A

STUETZLE_W

SHEN_Y

DUQUE_J

NUGENT_R

SUGIHARA_K

FUJIWARA_I

KOIBUCHI_M

CASANOVA_H

DEMME_J

SETHUMAD_S

SUN_M

CRUZ_J

WYSE_J

FLORES-G_M

NISHIDA_H

THONNARD_O

SCHULTZ_J

TROFIMEN_T

VISHERAT_A

MELNIK_M

MUKHINA_K

BUTAKOV_N

GU_S
SOHN_K

FUJISHIR_I

RAMAKRIS_N

DSOUZA_A

KIRSCHBA_C

NORTH_C

Figure 3.9 Subnetworks Wasserman and Ward.



�

� �

�

Clustering Approaches to Networks 101

ALBA_R

HARARY_F

SIMON_H

BOYD_J

FRANK_O

CARTWRIG_D

SEIDMAN_S

HEIDER_F

VERMA_A

MOKKEN_R

FRUCHTER_T

CHEN_L

POTHEN_A

FIEDLER_M

ABELLO_J

TAKACS_K

JANKY_B

BAUMBACH_J

HORAGUCH_H

REINGOLD_E

TURNEY_P

BOGINSKI_V

MONTRESO_A

GANGOPAD_A

FASINO_D

DEPELLEG_F

ALIC_A

TOMAS_ASALAVERT_J

MEDINA_I

BLANQUER_I

ATZMUELL_M

PASTUKHO_G

PASILIAO_E

VANLEEUW_M

SHAHRIAR_MPETERKA_TJACOB_R

IL’EV_V

IL’EVA_S

KONONOV_A

DOERFEL_S

MESNAGE_C

CARDOSO_D

ROJO_O

LIOU_K

MIORANDI_D

CARROLL_J

DESOETE_G

BATAGELJ_V

FERLIGOJ_A

KIM_T

WU_S

LIN_J

SONG_H

KIM_D

BRANDT_A

RUSSELL_J

BADER_G

BETEL_D

HOGUE_C

LI_T

DALE_P

BRUSCO_M

STEINLEY_D

HONG_S

BADER_J

BROHEE_S

MAGEE_C

ALLISON_L

DUTKOWSK_J

TOMINSKI_C

SCHUMANN_H

WOZNIAK_M

SHEN_X

LANGER_S

LUO_T

STANKOVI_I KARMONIK_C

FUNG_S

GROSSMAN_R

FRAZIER_J

MACLEOD_L

KOMUSIEW_C

DALE_M

STAHL_K

SORGE_M

LEFKOVIT_L

KORENJAK_S

MCBRATNE_A

SIMBAHAN_G

DOBERMAN_A

KLAVZAR_S

DANACI_B

KHOMNOTA_L
ANIL_M

BREZNIK_K

Figure 3.10 Subnetworks Harary and Batagelj + Ferligoj.
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Most of the subnetworks of clusters for the Leader strategy have almost acyclic structure.
This has to be considered also in their visualization. Because of space limitations, we present
here only subnetworks induced by four among the selected clusters.

The central author in the first selected subnetwork, Figure 3.9 top, is Wasserman. He forms
a strong component with Iacobucci and Weaver. The leader of this subnetwork is one of the
founders of SNA (with sociometrics) Moreno [53]. Other important authors are Holland (with
Leinhardt), the “father” of statistical approaches to SNA, Nowicki and Airoldi. The subnetwork
features the statistical modeling of networks.

One of the most often used clustering methods is Ward’s method [62]. Ward is the leader of
the second subnetwork, Figure 3.9 bottom. It contains also other founders of clustering meth-
ods, Johnson and Rohlf, authors of fundamental books, Hartigan [38] and Gordon [34], and a
theoretician, Hubert. The subnetwork is about cluster analysis.

The central author in the third subnetwork, Figure 3.10 top, is Harary, the author of the fun-
damental book on graph theory [37]. He is accompanied by other founders of graph-theoretic
approaches to network analysis: Heider (signed networks), Alba (cliques), Cartwright (structure
of directed networks), Seidman (cores), and Fiedler (eigen values/vectors).

Central to the fourth subnetwork, Figure 3.10 bottom, is a strong component with Batagelj
and Ferligoj. They are citing the leader Lefkovitz. It contains also a strong component of authors
Brusco and Steinley, working on efficient implementations of clustering algorithms, and sev-
eral authors citing the paper [3] of Bader and Hogue describing the MCODE algorithm. The
subnetwork is primarily about clustering with relational constraints.

3.8 Conclusion

In this chapter the “classical” approaches and results on clustering problem were presented
and ways of adapting them for clustering of/in networks were shown. Most of the chapters in
this monograph essentially propose different clustering criterion functions and some of them
also describe new methods for obtaining the solutions. As already mentioned, most criterion
functions are based on structural equivalence. One of the challenges for future research is to
develop efficient algorithms for other types of equivalences for large networks.
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12. V. Batagelj, N. Kejžar, and S. Korenjak-Černe. Clustering of modal valued symbolic data. arXiv preprint
arXiv:1507.06683, 2015.

13. J. Benzécri and L. Bellier. L’analyse des données: La Taxinomie, volume 1 of L’analyse des données. Dunod, 1973.
14. L. Billard and E. Diday. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley Series in Compu-

tational Statistics. Wiley, 2012.
15. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
16. H.-H. Bock. A history of the international federation of classification societies. 2006. URL https://ifcs.boku.ac.at/

site/lib/exe/fetch.php?media=pdfs:ifcs_history.pdf. This is a slightly modified, translated and updated version of
Chapter 9 of H.-H. Bock, P. Ihm (eds.): 25 Jahre Gesellschaft für Klassifikation: Klassifikation und Datenanalyse
im Wandel der Zeit. Shaker Verlag, Aachen 2001, 184 pp.

17. J. Bodlaj and V. Batagelj. Hierarchical link clustering algorithm in networks. Physical Review E, 91(6):062814,
2015.

18. P. Brucker. On the complexity of clustering problems. In R. Henn, B. Korte, and W. Oettli, editors, Optimization
and Operations Research, volume 157 of Lecture Notes in Economics and Mathematical Systems, pages 45–54.
Springer, Berlin, Heidelberg, 1978.

19. M. Bruynooghe. Méthodes nouvelles en classification automatique des données taxinomiques nombreuses. Statis-
tique et Analyse des Données, (3):24–42, 1977.

20. D. Cartwright and F. Harary. Structural balance: A generalization of Heider’s theory. Psychological Review,
63:277–293, 1956.

21. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction To Algorithms. MIT Press, Cambridge, 2nd edition,
2001.

22. M. M. Deza and E. Deza. Encyclopedia of distances. Springer, 2009.
23. E. Diday. Optimisation en classification automatique, Tome 1, 2. INRIA, Rocquencourt, 1979. (in French).
24. E. Diday and H. H. Bock. Analysis of symbolic data: Exploratory methods for extracting statistical information

from complex data. Springer-Verlag, New York, 2000.
25. J. Dieudonné. Foundations of modern analysis. Academic Press, New York, 1960.
26. P. Doreian, V. Batagelj, and A. Ferligoj. Generalized Blockmodeling. Cambridge University Press, Cambridge,

2005.
27. A.-H. Esfahanian. On the evolution of connectivity algorithms. In L. W. Beineke and R. J. Wilson, editors, Topics in

structural graph theory, volume 147 of Encyclopedia of mathematics and its applications. Cambridge University
Press, New York, 2013.

28. A. Ferligoj and V. Batagelj. Clustering with relational constraint. Psychometrika, 47(4):413–426, 1982.
29. A. Ferligoj and V. Batagelj. Some types of clustering with relational constraints. Psychometrika, 48(4):541–552,

1983.
30. A. Ferligoj and V. Batagelj. Direct multicriteria clustering algorithms. Journal of Classification, 9:43–61, 1992.
31. A. Ferligoj and L. Kronegger. Clustering of attribute and/or relational data. Metodolos̆ki vezki, 6(2):135–153, 2009.
32. G. Gan, C. Ma, and J. Wu. Data Clustering – Theory, Algorithms, and Applications. SIAM, Philadelphia, 2007.



�

� �

�

104 Advances in Network Clustering and Blockmodeling

33. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., New York, 1979.

34. A. D. Gordon. Classification, 2nd Edition, volume 82 of Monographs on Statistics and Applied Probability. Chap-
man and Hall/CRC, Boca Raton, 1999.

35. J. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27:857–874, 1971.
36. O. Grygorash, Y. Zhou, and Z. Jorgensen. Minimum spanning tree based clustering algorithms. In 18th IEEE Inter-

national Conference on Tools with Artificial Intelligence,I CTAI’06, pages 73–81. IEEE, 2006.
37. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
38. J. A. Hartigan. Clustering algorithms. Wiley-Interscience, New York, 1975.
39. C. Hayashi. Chikio Hayashi and Data Science – What is data science? Student, 2(1):44–51, 1997.
40. A. Jain and R. Dubes. Algorithms for clustering data. Prentice Hall, 1988.
41. N. Jardine, P. Jardine, and R. Sibson. Mathematical Taxonomy. Wiley Series in Probability and Mathematical Statis-

tics. Wiley, 1971.
42. S. Joly and G. L. Calve. tude des puissances d’une distance. Statistique et analyse des données, 11(3):30–50, 1986.
43. S. D. Kamvar, D. Klein, and C. D. Manning. Interpreting and extending classical agglomerative clustering algo-

rithms using a model-based approach. In Proceedings of the Nineteenth International Conference on Machine
Learning, ICML ’02, pages 283–290, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

44. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal
on Scientific Computing, 20(1):359–392, 1998.

45. R. Kashyap and B. Oommen. A common basis for similarity measures involving two strings. International Journal
of Computer Mathematics, 13(1):17–40, 1983.

46. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. A
Wiley-Interscience Publication. Wiley, 1990.

47. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical
Journal, 49(2):291–307, 1970.

48. D. Knuth. The Stanford GraphBase, A Platform for Combinatorial Computing. ACM Press, New York, 1993.
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This chapter is an extended version of The many facets of community detection in complex
networks, Appl. Netw. Sci. 2: 4 (2017) by the same authors.

4.1 Introduction

A precise definition of what constitutes a community in networks has remained elusive.
Consequently, network scientists have compared community detection algorithms on bench-
mark networks with a particular form of community structure and classified them based on the
mathematical techniques they employ. However, this comparison can be misleading because
apparent similarities in their mathematical machinery can disguise different reasons for why
we would want to employ community detection in the first place. Here we provide a focused
review of these different motivations that underpin community detection. This problem-driven
classification is useful in applied network science, where it is important to select an appropriate
algorithm for the given purpose. Moreover, highlighting the different approaches to community
detection also delineates the many lines of research and points out open directions and avenues
for future research.

While research related to community detection dates back to the 1970s in mathematical soci-
ology and circuit design [21, 46], Newman’s and Girvan’s work on modularity in complex
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systems just over ten years ago revitalized the field of community detection, making it one
of the main pillars of network science research [53, 54]. The promise of community detection,
that we can gain a deeper understanding of a system by discerning important structural patterns
within a network, has spurred a huge number of studies in network science. However, it has
become abundantly clear by now that this problem has no canonical solution. In fact, even a
general definition of what constitutes a community is still lacking. The reasons for this are not
only grounded in the computational difficulties of tackling community detection. Rather, vari-
ous research areas view community detection from different perspectives, illustrated by the lack
of a consistent terminology: “network clustering”, “graph partitioning”, “community”, “block”
or “module detection” all carry slightly different connotations. This jargon barrier creates con-
fusion, as readers and authors have different preconceptions and intuitive notions are not made
explicit.

We argue that community detection should not be considered as a well-defined problem, but
rather as an umbrella term with many facets. These facets emerge from different goals and
motivations for what it is about the network that we want to understand or achieve, and lead
to different perspectives on how to formulate the problem of community detection. It is crit-
ically important to be aware of these underlying motivations when selecting and comparing
community detection methods. Thus, rather than an in-depth discussion of the technical details
of different algorithmic implementations [16, 26, 28, 47, 52, 58, 72, 82], here we focus on the
conceptual differences between different perspectives on community detection.

By providing a problem-driven classification, however, we do not argue that the different
perspectives are unrelated. In fact, in some situations, different mathematical problem formu-
lations can lead to similar algorithms and methods, and the different perspectives can offer
valuable insights. For example, for undirected networks, optimizing the objective function mod-
ularity [54], initially proposed from a clustering perspective, can be interpreted as optimizing
both a particular stochastic block model [50] and an auto-correlation measure of a particular
diffusion process on the networks [20]. In other situations, however, such relationships disap-
pear.

While some perspectives arguably are more principled than others, we do not assert that there
is a particular perspective that is a priori better suited for any given network. In fact, as in data
clustering [31], no one method can consistently perform the best on all kinds of networks [59].
Community detection is an unsupervised learning task that is blind to a researcher’s intent with
the analysis. Accordingly, to understand a particular method’s usefulness, we must take the
researcher’s interest in the communities into context [80].

In the following, we unfold different aims underpinning community detection – in a relaxed
form that includes assortative as well as disassortative group structures with dense and sparse
internal connections, respectively – and discuss how the resulting problem perspectives relate
to various applications. We focus on four broad perspectives that have served as motivation for
community detection in the literature: (i) the cut-based perspective minimizes a constraint such
as the number of links between groups of nodes, (ii) the clustering perspective maximizes inter-
nal density in groups of nodes, (iii) the stochastic block model perspective identifies groups of
nodes in which nodes are stochastically equivalent, and (iv) the dynamical perspective identifies
groups of nodes in which flows stay for a relatively long time such that they form building blocks
of dynamics on networks (see Figure 4.1). While this categorization is not unique, we believe
that it can help clarify concepts about community detection and serve as a guide to determining
the appropriate method for a particular purpose.
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(i) Cut-based perspective (ii) Clustering perspective (iii) Stochastically equivalent 

nodes

(iv) Dynamical perspective

Aijpij

Ωij

x = f(x) ≈ y = g(y)· ·

Figure 4.1 Schematic of four different approaches to community detection. (i) The cut-based perspective
aims at minimizing the number of links between groups of nodes, independently of their intrinsic structure.
(ii) The clustering perspective produces groups of densely connected nodes. (iii) The stochastic equivalence
perspective looks for groups in which nodes are stochastically equivalent, typically inferred through a
generative statistical network model. (iv) The dynamical perspective focuses on the impact of communities
on dynamical processes and searches for dynamically relevant coarse-grained descriptions.

4.2 Minimizing Constraint Violations: the Cut-based Perspective

An early network partitioning application was circuit layout and design [3, 26]. This application
spurred development of the now classical Kernighan–Lin algorithm [39] and the work by Donath
and Hoffmann [21, 22], who were among the first to suggest the use of eigenvectors for network
partitioning. For example, we might be confronted with a network that describes the signal flows
between different components of a circuit. To design the circuit in an efficient way, our goal is
now to partition the network into a fixed number of approximately equally sized groups for
balanced load with a small number of edges between those groups for minimal communication
overhead. The edges that run between the groups are commonly denoted as the cut. To design
the most efficient circuit, our aim is thus to minimize this cut with more or less balanced groups.

To make this more precise, let us consider one specific variant of this scheme, known as
ratio cut [32]. Let us denote the adjacency matrix of an undirected network N with n nodes
by A, where Auv = 1 if there is a connection from node u to node v, and Auv = 0 if there is no
connection. We can now write the problem of optimizing the ratio cut for a bipartition of all
nodes V into two communities V1 and V2 = V ∖V1 as follows [32, 79]:

min
V1

RatioCut(V1,V2) ∶= min
Vu

∑
u

cut(Vu,V ∖Vu)
|Vu| , (4.1)

where cut(V1,V2) ∶=
∑

u∈V1,v∈V2
(Auv + Avu)∕2 is the sum of the possibly weighted edges

between the two vertex sets V1,V2. Related problem formulations also occur in the context
of parallel computations and load scheduling [64, 77], where approximately equally sized
portions of work are to be sent to different processors, while keeping the dependencies
between those tasks minimal. Further applications include scientific computing [64, 77], where
partitioning algorithms divide the coordinate meshes when discretizing and solving partial
differential equations. Image segmentation problems may also be phrased in terms of cut-based
measures [76, 79].

Investigating these types of problems has led to many important contributions to partitioning
networks, in particular in relation to spectral methods. The connection between spectral algo-
rithms and cut-based problem formulations arises naturally by considering relaxations of the
original, combinatorially hard discrete optimization problems, such as Equation (4.2), or other
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related objective functions such as the average or normalized cuts. This can be best seen when
rewriting the above optimization problem as follows:

min
f

f TLf (4.2)

subject to f ⟂ 𝟏 ∥ f ∥=
√

n (4.3)

where fu ∶=

{
−
√|V2|∕|V1| if u ∈ V1√|V1|∕|V2| if u ∈ V2

(4.4)

Here the Laplacian matrix of the network has been defined as L = D − A, where D is the diagonal
degree matrix with Duu =

∑
vAuv. Fiedler realized already in the 1970s that the second smallest

eigenvalue of the Laplacian matrix is associated with the connectivity of the network, and that
the associated eigenvector thus can be used to compute spectral bi-partitions [24, 25]. Such spec-
tral ideas led to many influential algorithms and methods; see, for example, von Luxburg [79]
for a tutorial on spectral algorithms.

In this cut-based problem formulation, there is no specification as to how the identified groups
in the partition should be connected internally. While the implicit constraint is that the groups
must not split into groups with an even smaller cut, there is no specification that the groups of
nodes should be densely connected internally. Indeed, the type of networks considered in the
context of cut-based partitions are often of a mesh- or grid-like form, for which several guaran-
tees can be given in terms of the quality of the partitions obtained by spectral algorithms [77].
While such non-dense groupings emerging from the analysis of non-clique structures [73] can
also be dynamically relevant (see section 4.5), they are likely missed when employing a com-
munity notion that focuses on finding dense groupings, as discussed next.

4.3 Maximizing Internal Density: the Clustering Perspective

A different motivation for community detection arises in the context of data clustering. We use
the term clustering, which can have many definitions, in the following sense: for a set of given
data points in a possibly high-dimensional space, the goal is to partition the points into a number
of groups such that points within a group are close to or similar to each other in some sense,
and points in different groups are more distant from each other. To achieve this goal, one often
constructs a proximity or similarity network between the points and tries to group together nodes
that are closer to each other than they are to the rest of the network. This approach results in a
form of community detection problem where the closeness between nodes is described by the
presence and weight of the edges between them.

Although minimizing the cut size and maximizing the internal number of links are closely
related, there are differences pertaining to the typical constraints and search space associated
with these objective functions. First, when employing a clustering perspective, there is normally
no a priori information about the number of groups we are looking for. Second, we do not
necessarily require the groups to be balanced in any way; rather we would like to find an optimal
split into densely knit groups irrespective of their relative sizes.

Unsurprisingly, finding an optimal clustering is a computationally difficult problem. Further,
as Kleinberg has shown [40], there are no clustering algorithms that satisfy a certain set of
intuitive properties we might require from a clustering algorithm in continuous spaces. Similar
problems also arise in the discrete setting for clustering of networks [13].
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Nevertheless, there exists a large number of methods that follow a clustering-like paradigm
and separate the nodes of a network into cohesive groups of nodes, often by optimizing a quality
function. An important clustering metric in this context is the so-called conductance [4, 37, 41,
78]. Optimizing the global conductance was introduced as a way to produce a global bi-partition
similarly to the two-way ratio-cut. However, this quantity has been successfully employed more
recently as a local quality function to find localized clusters around one or more seed nodes. The
local conductance of a set of nodes Vq ⊂ V can be written

𝜙(Vq) ∶=

∑
u∈Vq,v∉Vq

Auv

min{vol(Vq), vol(V − Vq)}
, (4.5)

where vol(Vq) ∶=
∑

u∈Vq

∑
vAuv is the total degree of the nodes in set Vq, commonly called

its volume in analogy with geometric objects. Interestingly, it has been shown that, in specific
contexts, the conductance can be a good predictor of some latent group structures in real-world
applications [84].

Moreover, a local perspective on community detection has two appealing properties. First, the
definition of a cluster does not depend on the global network structure but only on the relative
local density. Second, only a portion of a network needs to be accessed, which is advantageous
if there are computational constraints in using large networks, or we are only interested in a
particular subsystem. In such cases, we would like to avoid having to apply a method to the
whole network in order to find, for example, the cluster containing a particular node in the
network.

The Newman–Girvan modularity [53, 54] is arguably one of the most common clustering
measures used in the literature and was originally proposed from the clustering perspective dis-
cussed here. It is a global quality function and aims to find the community structure of the
network as a whole. Given a partition C = {V1, … ,Vk} of a network into k groups, the modu-
larity of C can be written as:

Q(C) ∶= 1
2m

k∑
q=1

∑
u,v∈Vq

[
Auv −

dudv

2m

]
, (4.6)

where du =
∑

vAuv is the degree of node u and 2m =
∑

udu is the total weight of all edges in
the network. By optimizing the modularity measure over the space of all partitions, one aims to
identify groups of nodes that are more densely connected to each other than one would expect
from a statistical null model of the network. This statistical null model is commonly chosen to
be the configuration model with preserved degree sequence.

However, a by-product of this choice of a global null-model is the tendency of modularity
to balance the size of the groups in terms of their total connectivity. While different variants
of modularity aim to account for this effect [26], it means modularity can be interpreted as a
trade-off between a cut-based measure and an entropy [20]. Modularity is typically optimized
with spectral or greedy algorithms [11, 26, 51]. While there are problems with modularity, such
as its resolution limit [27] and other spurious effects [27, 29, 30, 44], the general idea has trig-
gered researchers to develop a plethora of algorithms that follow a similar strategy [26]. Several
works have addressed some of the shortcomings, by incorporating a resolution parameter, for
example, or by explicitly accounting for the density inside each group [14, 15]. In practice,
however, less seems to beat more and the original formulation of modularity remains the most
widely used.
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4.4 Identifying Structural Equivalence: the Stochastic Block Model
Perspective

By grouping similar nodes that link to similar nodes within communities, we constrain our-
selves to finding assortative group structure [28]. While we may also have hierarchical clusters
with clusters of clusters, etc., such an assortative structural organization is too restrictive if we
want to define groups based on more general connectivity patterns that include disassortative
communities with weaker interactions within rather than between communities.

In social network analysis, a common goal is to identify nodes within a network that serve
a similar structural role in terms of their connectivity profile. Accordingly, nodes are similar if
they share the same kind of connection patterns to other nodes [46]. This idea is captured in
concepts such as regular equivalence, which states that nodes are regularly equivalent if they
are equally related to equivalent others [23, 33]. The first algorithms for identifying groups of
“approximately equivalent” nodes were deterministic and permuted adjacency matrices to reveal
block structures in so-called block models [6, 81].

A relaxation of regular equivalence is stochastic equivalence [34], where nodes are equivalent
if they connect to equivalent nodes with equal probability. The stochastic formulation general-
izes observations and forms generative models, which can be used for prediction. Because of
this advantage over non-stochastic formulations, we focus on stochastic equivalence.

One of the most popular techniques to model and detect stochastically equivalent relation-
ships in network data is to use stochastic block models (SBMs) [34, 56] and associated inference
techniques. These models have their roots in the social networks literature [5, 34], and provide
a flexible framework for modeling block structures within a network. When considering block
models, we are interested in identifying node groups such that nodes within a community con-
nect to nodes in other communities in an “equivalent way” [28].

Consider a network composed of n nodes divided into k classes. The standard SBM is defined
by a set of node class labels and the affinity matrix Ω. More precisely, the link probability
between two nodes u, v belonging to class cu and cv is given by:

puv ∶= ℙ(Auv) = Ωcucv
.

Under an SBM, nodes within the same class share the same probability of connecting to nodes
of another class. This is the mathematical formulation of having stochastically equivalent nodes
within each class. Finding the latent groups of nodes in a network now amounts to inferring the
model parameters that provide the best fit for the observed network. That is, find the SBM with
the highest likelihood of generating the data.

The standard SBM assumes that the expected degree of each node is a Poisson binomial
random variable, a binomial random variable with possibly non-identical success probabilities
in each trial. Because inferring the most likely SBM typically results in grouping nodes based
on their degree in empirical networks with broad degree distributions, it can be advantageous to
include a degree-correction into the model. In the degree corrected SBM [38], the probability
puv that a link will appear between two nodes u, v depends both on their class labels cu, cv and
their respective degree parameters di, dj (each entry Aij might be a Bernoulli or a Poisson random
variable such as in [38]):

puv ∼ dudvΩcucv
.

Thus, while edges in real-world networks tend to be correlated with effects such as triadic clo-
sure [26], by construction edges are conditionally independent random variables in SBMs.
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Moreover, most common SBMs are defined for unweighted networks or networks with integer
weights by modeling the network as a multi-graph. Though generalizations are available [2, 61],
this is still a less studied area.

In contrast to the notions of community considered above, with stochastic equivalence we are
no longer interested in maximizing some internal density or minimizing a cut. To see this, con-
sider a bipartite network that from a cut- or density-based perspective contains no communities.
From the stochastic equivalence perspective, however, we would say that this network contains
two groups because nodes in each set only connect to nodes in the other set. When adopting an
SBM to detect such structural organization of the links, we explicitly adopt a statistical model
for the networks. The network is essentially an instance of an ensemble of possible networks
generated from such a model.1

This model-based approach comes with several advantages. First, by defining the model, we
effectively declare what is signal and what is noise in the data under the SBM. We can thus pro-
vide a statistical assessment of the observed data with, for example, p-values under the SBM.
In other words, we can identify patterns that cannot be reasonably explained from density fluc-
tuations of edges inherent to any realization of the model. Second, we are able, for example, to
generate new networks from our model with a similar group structure, or predict missing edges
and impute data. Third, we can make strong statements about the detectability of groups within
a network. For example, precise criteria specify when any algorithm can recover the planted
group structure for a network created by an SBM [18, 49]. By fitting an SBM to an observed
adjacency matrix, it is possible to recover such a planted group structure down to its theoretical
limit [48, 49]. These criteria apply to networks generated with SBMs and not real networks in
general, in which case we do not know what kind of process created the network [59]. It is never-
theless a remarkable result since it highlights the fact that there are networks with undetectable
block patterns.

Moreover, this model-based approach also offers ways to estimate the number of communi-
ties from the data by some form of model selection, including hypothesis testing [10], spectral
techniques [42, 70], the minimum description length principle [60], or Bayesian inference [83]
(see Chapter 11).

Finally, the generative nature of SBMs also makes them well suited for constructing bench-
mark networks. As a consequence, many benchmark networks proposed in the literature, such
as the commonly used Lancichinetti–Fortunato-Radicchi (LFR) benchmarks [45], are specific
types of SBMs. Results on these benchmark networks should therefore be taken for what they
are: the ability to recover the underlying group structure of specific types of SBM-generated net-
works. For example, sparse networks without any underlying group structure still can contain
meaningful dynamical building blocks.

4.5 Identifying Coarse-grained Descriptions: the Dynamical Perspective

Let us now consider a fourth alternative motivation for community detection, focusing on
the processes that take place on the network. All notions of community outlined above are
effectively structural in the sense that they are mainly concerned with the composition of

1 This ensemble assumption is also reflected in the modularity formalism, where the observed network is compared to
a null model.
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the network itself or its representation as an adjacency matrix. However, in many cases one
of the main reasons to apply tools from network science is to understand the behavior of a
system. While the topology of a system puts constraints on the dynamics that can take place
on the network, the network topology alone cannot explain the system behavior. For example,
instead of finding a coarse-grained description of the adjacency matrix, we might be interested
in finding a coarse-grained description of the dynamics acting on top of the network with
multi-step paths beyond the nearest neighbors.

Take air traffic as an example. An airline network, with weighted links connecting cities
according to the number of flights between them, can offer some interesting insights about air
traffic. For instance, in the US air traffic network based on the number of flying passengers, Las
Vegas and Atlanta form two major hubs. However, if we focus instead on the passenger flows
based on actual multi-leg itineraries, the two cities show very different behaviors: Las Vegas is
a tourist destination and typically the final destination of itineraries, whereas Atlanta is often
a transfer hub to other final destinations [62, 69]. Thus, these airports play dynamically quite
different roles in the network. Focusing on interconnection patterns alone can give an incom-
plete picture if we are interested in the dynamical behavior of a system, for which additional
dynamical information should be taken into account. Conversely, a concentration of edges with
high impact on the dynamics may arise just from a statistical fluctuation, if the network is seen
as a realization of a particular random network model. In this way, structural and dynamical
approaches can offer complementing information.

In general, however, they are blocks of nodes with different identities that trap the flow or
channel it in specific directions. That is, they form reduced models of the dynamics where blocks
of nodes are aggregated to single meta nodes with similar dynamical function with respect
to the rest of the network. In this view, the goal of community detection is to find effective
coarse-grained system descriptions of how the dynamics take place on the network structure.

To induce multi-step paths and couple also non-neighboring nodes, the dynamical approach
to community detection has primarily focused on modeling the dynamics with Markovian dif-
fusion processes [19, 43, 65], though the work of topological scales and synchronization share
the same common ground [7]. Interestingly, for simple diffusion dynamics such as a random
walk on an undirected network, which is essentially determined by the spectral properties of the
network’s Laplacian matrix, this perspective is tightly connected to the clustering perspective
discussed in section 4.3. This is because the presence of densely knit groups within the network
can introduce a time-scale separation in the diffusion dynamics: a random walker traversing the
network will initially be trapped for a significant time inside a community corresponding to the
fast time-scale, before it can escape and explore the larger network corresponding to a slower
time-scale. However, this connection between link density and dynamical behavior breaks down
for directed networks, even for a simple diffusion process [43, 65, 70]. This apparent relation-
ship breaks down completely when focusing on longer pathways, possibly with memory effects
in the dynamics [69, 71].

A dynamical perspective is useful especially in applications in which the network itself is well
defined, but the emergent dynamics are hard to grasp. For instance, consider the nervous sys-
tem of the roundworm C. elegans, for which there exists a distinct network. A basic generative
network model, such as a Barabasi–Albert network or an SBM, might be too simple to capture
the complex architecture of the network, and sampling alternative networks from such a model
will not create valid alternative roundworm connectomes. Indeed, some more complicated net-
work generative models have been proposed to model the structure of the network [55], and
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may be used to assess the significance of individual patterns compared to the background of the
assumed model. However, if we are interested instead in assessing the dynamical implications
of the evolutionary conserved network structure, it may be fruitful to engineer differences in the
actual network and investigate how they affect the dynamical flows in the system. For instance,
one can replicate experimental node ablations in silico and assess their dynamical impact [8].

In the dynamical perspective, we are typically interested in how short-term dynamics integrate
into long-term behavior of the system and seek a coarse-grained description of the dynamics
occurring on a given network. That is, the network itself represents the true structure, save for
empirical imperfections. Therefore, in the dynamical perspective, model selection is in general
not about comparing competing models [60, 83] but about comparing coarse-grained descrip-
tions of the dynamics on resampled realizations of the observed network with, for example, the
bootstrap [66] or cross-validation [63]. Nevertheless, it is possible to formulate generative statis-
tical models for empirically observed pathways [62]. However, whereas the generative approach
in, for example, [62] explicitly models the underlying state space of trajectories, we may simply
be interested in effectively compressing the long-term behavior of the system [63].

Two methods that exploit the long-term dynamics of the system by identifying communities
with long flow persistence are the Markov stability [20] and the map equation [65]. Whereas
the Markov stability detailed in Chapter 12 takes a statistical approach and favors communi-
ties inside which a random walker is more likely to remain after a given time t than expected
at infinite time, the map equation reveals modular regularities by compressing the dynamics.
It is an information-theoretic approach that uses the duality between compressing data and
finding regularities in the data [65, 75]. It measures the quality of communities by how much
they can compress a modular description of the dynamics. The shorter description, the more
detected regularities, such that the shortest description captures the most regularities. Given
module assignments C of all nodes in the network, the map equation measures the description
length L(C) of a random walker that moves within and between modules from node to node by
following the links between the nodes [68]:

L(C) = q↶H(Q) +
k∑

q=1

pq
↻

H(Pq) (4.7)

Here the entropy H(Q) measures the average per-step description length of movements between
modules derived from module-enter rates Q of all k modules and H(Pq) measures the aver-
age per-step description length of movements within module q derived from node-visit and
module-exit rates Pq. The description lengths are weighted by their rate of use, q↶ and pq

↻
,

respectively. The visit rates can be obtained by first calculating the PageRank of links and nodes
or directly from the data if they represent flow themselves. In any case, finding the optimal par-
tition of the network by assigning each node to one or more modules corresponds to testing
different node assignments and picking the one that minimizes the map equation. This sim-
ple formulation allows for straightforward generalizations to coarse-grained hierarchical [67]
descriptions of dynamics in memory [69] and multilayer [17] networks.

As the air traffic example above illustrates, it can be crucial to go beyond standard network
abstractions and consider memory and higher-order effects in multi-step pathways to better
understand system behavior. For example, higher-order abstractions, such as memory and mul-
tilayer networks, provide principled means to reveal highly overlapping modular organization
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in complex systems: link clustering [1] and clique percolation [57] methods can be interpreted
as trying to account for second-order Markov dynamics (see Supplementary Note 3 in [69]).

Compared to some of the other perspectives, the dynamical viewpoint has received somewhat
less attention and has been confined mainly to diffusion dynamics (see Chapter 12). A key
challenge is to extend this perspective to other types of dynamics and link it more formally
to approaches of model order reduction considered in control theory. In light of the recently
growing interest in the control of complex systems, this could help us better understanding
complex systems.

4.6 Discussion

Community detection can be viewed through a range of different lenses. Rather than looking at
community detection as a generic tool that is supposed to work in a generic context, considering
the application in mind is important when choosing between or comparing different methods.
Each of the perspectives outlined above has its own particularities, which may or may not be
suitable for the problem of interest.

We emphasize the different perspectives in the following example. Given a real-world net-
work generated by a possibly complex random assignment of edges, we assume that we are
interested in some particular dynamics taking place on this network, such as epidemic spread-
ing. We also assume that the network is structured such that the dynamics exhibit a time-scale
separation. If, for instance, we want to coarse-grain an epidemic and identify critical links that
should be controlled to confine the epidemic, then it does not matter whether or not random fluc-
tuations generated the modules that induce the time-scale separation. In any case, these modules
will be relevant for the dynamics.

Assume now that the same network encodes interdependency of tasks in a load-scheduling
problem. In such a circumstance, a cut-based approach will find a relevant community structure,
in that it will allow an optimally balanced assignment of tasks to processors that minimizes com-
munication between processors. These communities may be different from the ones attached to
the epidemic-spreading example.

If we instead assume that the links represent friendships, we may want to identify densely
knit groups irrespective of their relative sizes. Accordingly, taking the clustering perspective
and maximizing the internal density can give yet another set of communities.

In these three cases, we considered a single realization of the network with the goal of extract-
ing useful information about its structure, independently of the possible mechanisms that gen-
erated it.

Let us finally consider the same network from a stochastic equivalence perspective, and
assume for simplicity that the network is a particular realization of an Erdős–Rényi network. In
this case, an approach based on the SBM is expected to declare that there is no significant pat-
tern to be found here at all, as the encountered structural variations can already be explained by
random fluctuations rather than by hidden class labels. Thus, communities in the SBM picture
are defined via the latent variables within the statistical model of the network structure, and not
via their impact on the behavior of the system. In this way, different motivations for community
detection can find different answers even for the very same network.

To illustrate that different motivations can give different answers for the same network, we
use an example from [65]. The directed, weighted network is formed as a ring of rings such that
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each internal ring captures flows for a relatively long time despite the stronger links between
the rings (see Figure 4.2). For example, a random walker takes on average three steps within a
ring highlighted as a cluster in Figure 4.2a before exiting. In contrast, a random walker takes
on average only 2.4 steps within a cluster in Figure 4.2b. A method that seeks to coarse-grain
the dynamics will therefore identify the flow modules in Figure 4.2a rather than the clusters
with high internal density in Figure 4.2b. For example, the modular description quantified by
the map equation is almost twice as efficient with the flow modules as it is with the clusters with
high internal density. The opposite is true for a method that highlights structural regularity and
high internal density: the modularity score is twice as large for the clustering in Figure 4.2b.
While this example only illustrates the fundamental difference between two methods applied to
a schematic network, methods from different perspectives will give different answers for real
networks as well [36].

In addition to the differences between these perspectives, there are also variations within each
perspective. For instance, distinct plausible generative models such as the standard SBM or the
degree-corrected SBM will, for a given network, lead to different inferred community structure.
Similar variations exist in the dynamical paradigm as well: distinct natural assumptions for
the dynamics, such as dynamics with or without memory, uniform across nodes or edges, etc.,
applied to a given network will lead to different partitions. Also different balancing criteria
(see section 4.2) or different concepts of high internal density (see section 4.3) will be valid in
different contexts.

In fact, some of the internal variations make the perspectives overlap in particular scenar-
ios. For instance, one can compare all the algorithms on simple, undirected LFR benchmark
networks [45]. However, the LFR benchmark clearly imposes a density-based notion of com-
munities. Similarly, for simple undirected networks, optimizing modularity corresponds to the
inference of a particular SBM [50] or may be reinterpreted as a diffusion process on a net-
work [20]. Nevertheless, this overlap of concepts, typically present in unweighted, undirected
networks, is only partial, and breaks down, for example, in directed networks or for more com-
plex dynamics.

(b)(a)

Modularity

Map equation L = 4.13 bits/step

Q = 0.50Modularity

Map equation L = 2.67 bits/step

Q = 0.25

Figure 4.2 Communities that highlight different aspects of networks. Identifying coarse-graining flows
in groups, here illustrated by the map equation, and densely connected groups, here illustrated by modular-
ity, highlights different aspects of structure in directed and weighted networks. Each shaded area represents
a cluster in two alternative clusterings of a schematic network. (a) The clustering as optimized by the map
equation (minimum L). (b) The clustering as optimized by modularity (maximum Q). The thicker links
have double the weight of the thinner links. Example from [65].
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4.7 Conclusions

In summary, no general purpose algorithm will ever serve all applications or data types [59]
because each perspective emphasizes a particular core aspect: a cut-based method provides good
separation of balanced groups, a clustering method provides strong cohesiveness of groups with
high internal density, stochastic block models provide strong similarity of nodes inside a group
in terms of their connectivity profiles, and methods that view communities as dynamical build-
ing blocks aim to provide node groups that influence or are influenced by some dynamics in
the same way. As more and more diverse types of data are collected, leading to ever more com-
plex network structures, including directed [47], temporal [35, 74], multi-layer or multiplex
networks [12], the differences between the perspectives presented here will become even more
striking – the same network might have multiple valid partitions depending on the question
about the network we are interested in. We might moreover not only be interested in partition-
ing the nodes, but also in partitioning edges [1], or even motifs [9]. Rather than striving to
find a “best” community-detection algorithm for a better understanding of complex networks,
we argue for a more careful treatment of what network aspects we seek to understand when
applying community detection.
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Label propagation is a heuristic method initially proposed for community detection in
networks [26, 50], while the method can be adopted also for other types of network clustering
and partitioning [5, 28, 39, 62]. Among all the approaches and techniques described in this
book, label propagation is neither the most accurate nor the most robust method. It is, however,
without doubt one of the simplest and fastest clustering methods. Label propagation can be
implemented with a few lines of programming code and applied to networks with hundreds of
millions of nodes and edges on a standard computer, which is true only for a handful of other
methods in the literature.

In this chapter, we present the basic framework of label propagation, review different
advances and extensions of the original method, and highlight its equivalences with other
approaches. We show how label propagation can be used effectively for large-scale community
detection, graph partitioning, and identification of structurally equivalent nodes and other
network structures. We conclude the chapter with a summary of label propagation methods and
suggestions for future research.

5.1 Label Propagation Method

The label propagation method was introduced by Raghavan et al. [50] for detecting
non-overlapping communities in large networks. There exist multiple interpretations of
network communities [23, 54], as described in Chapter 4. For instance, a community can be
seen as a densely connected group, or cluster, of nodes that is only loosely connected to the rest
of the network, which is also the perspective that we adopt here.

For the sake of simplicity, we describe the basic label propagation framework for the case of
detecting communities in simple undirected networks. Consider a network with n nodes and let
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Figure 5.1 Label propagation in a small network with three communities. The labels and shades of the
nodes represent community assignments at different iterations of the label propagation method.

Neighborsi denote the set of neighbors of node i ∈ {1, … , n}. Furthermore, let gi be the group
assignment or community label of node i which we would like to infer. The label propagation
method then proceeds as follows. Initially, the nodes are put into separate groups by assigning
a unique label to each node as gi = i. Then, the labels are propagated between the nodes until
an equilibrium is reached. At every iteration of label propagation, each node i adopts the label
shared by most of its neighbors, Neighborsi. Hence,

gi = argmax
g

|{j ∈ Neighborsi |gj = g}|. (5.1)

Due to having numerous edges within communities, relative to the number of edges towards
the rest of the network, the nodes of a community form a consensus on some label after only
a couple of iterations of label propagation. More precisely, in the first few iterations, the labels
form small groups in dense regions of the network, which then expand until they reach the
borders of communities. Thus, when the propagation converges, meaning that Equation (5.1)
holds for all of the nodes and the labels no longer change, connected groups of nodes sharing the
same label are classified as communities. Figure 5.1 demonstrates the label propagation method
on a small network, where it correctly identifies the three communities in just three iterations.
In fact, due to the extremely fast structural inference of label propagation, the estimated number
of iterations in a network with a billion edges is about 100 [59].

Label propagation is not limited to simple networks having, at most, one edge between each
pair of nodes. Let A be the adjacency matrix of a network, where Aij is the number of edges
between nodes i and j, and Aii is the number of self-edges or loops on node i. The label propa-
gation rule in Equation (5.1) can be written as

gi = argmax
g

∑
j

Aij𝛿(gj, g), (5.2)

where 𝛿 is the Kronecker delta operator that equals one when its arguments are the same and zero
otherwise. Furthermore, in weighted or valued networks, the label propagation rule becomes

gi = argmax
g

∑
j

Wij𝛿(gj, g), (5.3)

where Wij is the sum of weights on the edges between nodes i and j, and Wii is the sum of weights
on the loops on node i. Label propagation can also be adopted for multipartite and other types of
networks, which is presented in Section 5.4. However, there seems to be no obvious extension
of label propagation to networks with directed arcs, since propagating the labels exclusively in
the direction of arcs enables the exchange of labels only between mutually reachable nodes.
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Figure 5.2 Resolution of ties between the maximal labels of the central nodes of the networks. The labels
and shades of the nodes represent their current community assignments.

5.1.1 Resolution of Label Ties

At each step of label propagation, a node adopts the label shared by most of its neighbors denoted
by the maximal label. There can be multiple maximal labels as shown on the left-hand side
of Figure 5.2. In that case, the node chooses one maximal label uniformly at random [50]. Note,
however, that the propagation might never converge, especially when there are many nodes with
multiple maximal labels in their neighborhoods. This is because their labels could constantly
change and label convergence would never be reached. The problem is particularly apparent in
networks of collaborations between the authors of scientific papers, where a single author often
collaborates with others in different research communities.

The simplest solution is always to select the smallest or the largest maximal label according
to some predefined ordering [18], which has obvious drawbacks. Leung et al. [35] proposed a
seemingly elegant solution to include also the concerned node’s label itself into the maximal
label consideration in Equation (5.2). This is equivalent to adding a loop on each node in a
network. Nevertheless, the label inclusion strategy might actually create ties when there is only
one maximal label in a node’s neighborhood, which happens in the case of the central node of
the network in the middle of Figure 5.2.

Most label propagation algorithms implement the label retention strategy introduced by
Barber and Clark [5]. When there are multiple maximal labels in a node’s neighborhood, and
one of these labels is the current label of the node, the node retains its label. Otherwise, a
random maximal label is selected to be the new node label. The main difference to the label
inclusion strategy is that the current label of a node is considered only when there actually exist
multiple maximal labels in its neighborhood. For example, the network on the right-hand side
of Figure 5.2 is at equilibrium under the label retention strategy.

Random resolution of label ties represents the first of two sources of randomness in the label
propagation method, hindering its robustness and consequently also the stability of the identified
communities. The second is the random order of label propagation.

5.1.2 Order of Label Propagation

The discussion above assumed that, at every iteration of label propagation, all nodes update their
labels simultaneously. This is called synchronous propagation [50]. The authors of the original
method noticed that synchronous propagation can lead to oscillations of some labels in certain
networks. Consider a bipartite or two-mode network with two types of nodes and edges only
between the nodes of different type. Assume that, at some iteration of label propagation, the
nodes of each type share the same label as in the example on the left-hand side of Figure 5.3.
Then, at the next iteration, the labels of the nodes would merely switch and start to oscillate
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Figure 5.3 Label oscillations in bipartite and non-bipartite networks. The labels and shades of the nodes
represent community assignments at two consecutive iterations of the label propagation method.

between two equivalent label configurations. For instance, such behavior occurs in networks
with star-like communities consisting of one or few central hub nodes that are connected to
many peripheral nodes, while the peripheral nodes themselves are not directly connected. Note
that label oscillations are not limited to bipartite or nearly bipartite networks [18], as seen in the
example on the right-hand side of Figure 5.3.

For this reason, most label propagation algorithms implement asynchronous propagation [50].
At every iteration of label propagation, the labels of the nodes are no longer updated all together,
but sequentially in some random order, which is different for each iteration. This is in contrast
to synchronous propagation, which always considers the labels from the previous iteration. Due
to the random order of label updates, asynchronous propagation successfully breaks the cyclic
oscillations of labels in Figure 5.3.

It must be stressed that asynchronous propagation with random tie resolution makes the label
propagation method very unstable. In the case of the famous Zachary karate club network [76],
the method identifies more than 500 different community structures [65], although the network
consists of only 34 nodes. Asynchronous propagation applied to large online social networks
and web graphs can wrongly also produce a giant community occupying the majority of the
nodes in a network [35].

5.1.3 Label Equilibrium Criterium

Raghavan et al. [50] defined the convergence of label propagation as the state of label equilib-
rium when Equation (5.1) is satisfied for every node in a network. Let ki denote the number of
neighbors of node i and let kg

i be the number of neighbors that share label g. The label propaga-
tion rule in Equation (5.1) can be rewritten as

gi = argmax
g

kg
i . (5.4)

The label equilibrium criterium thus requires that, for every node i, the following must hold

∀g ∶ kgi
i ≥ kg

i . (5.5)

In other words, all nodes must be labeled with the maximal labels in their neighborhoods.
This criterion is similar, but not equivalent, to the definition of a strong community [49].

Strong communities require that every node has strictly more neighbors in its own community
than in all other communities together, whereas at the label equilibrium every node has at least
as many neighbors in its own community than in any other community.



�

� �

�

Label Propagation for Clustering 125

An alternative approach is to define the convergence of label propagation as the state when
the labels no longer change [5]. Equation (5.5) obviously holds for every node in a network and
the label equilibrium is reached. Note, however, that this criterion must necessarily be combined
with an appropriate label tie resolution strategy in order to ensure convergence when there are
multiple maximal labels in the neighborhoods of nodes.

5.1.4 Algorithm and Complexity

As mentioned in the introduction, the label propagation method can be implemented with a few
lines of programming code. Algorithm 5.1 shows the pseudocode of the basic asynchronous
propagation framework defining the convergence of label propagation as the state of no label
change and implements the retention strategy for label tie resolution.

Algorithm 5.1

label propagation {
for each node i ∈ {1,… , n} {
initialize node label gi with i;

}
until node labels change repeat {
for each node i ∈ {1,… , n} in random order {
compute labels {g} that maximize kg

i =
∑

j Aij𝛿(gj, g);
if gi ∉ {g} update gi with random label from {g};

}
}
report connected components induced by node labels;

}

When the state of label equilibrium is reached, groups of nodes sharing the same label are
classified as communities. These can, in general, be disconnected, which happens when a node
propagates its label to two or more disconnected nodes, but is itself relabeled in the later itera-
tions of label propagation. Since connectedness is a fundamental property of network communi-
ties [23], groups of nodes with the same label are split into connected groups of nodes at the end
of label propagation. Reported communities are thus connected components of the subnetworks
induced by different node labels.

The label propagation method exhibits near-linear time complexity in the number of edges
of a network denoted with m [35, 50]. At every iteration of label propagation, the label of node
i can be updated with a sweep through its neighborhood which has complexity O(ki), where ki
is the degree of node i. Since

∑
iki = 2m, the complexity of an entire iteration of label propa-

gation is O(m). A random order or permutation of nodes before each iteration of asynchronous
propagation can be computed in O(n) time, while the division into connected groups of nodes
at the end of label propagation can be implemented with a simple network traversal, which has
complexity O(n + m).

The overall time complexity of label propagation is therefore O(cn + cm), where c is the
number of iterations before convergence. In the case of networks with a clear community
structure, label propagation commonly converges in no more than ten iterations. Still, the
number of iterations increases with the size of a network, as can be seen in Figure 5.4.
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Figure 5.4 The number of iterations of label propagation, the number of relabeled nodes at the first eight
iterations, and the running time in seconds. The markers are averages over 25 runs of the label propagation
method, while the error bars show standard deviation.

Šubelj and Bajec [59] estimated the number of iterations of asynchronous label propagation
from a large number of empirical networks, obtaining c ≈ 1.03m0.23. The time complexity
of label propagation is thus approximately O(m1.2), which makes the method applicable to
networks with up to hundreds of millions of nodes and edges on a standard desktop computer
as long as the network fits into its main memory.

The left-hand side of Figure 5.4 shows the number of iterations of the label propagation
framework in Algorithm 5.1 in artificial networks with planted community structure [33],
Erdős–Rényi random graphs [22], and a part of the Google web graph [34] available at
KONECT.1 The web graph consists of 875, 713 nodes and 5, 105, 039 edges, while the sizes
of random graphs and artificial networks can be seen in Figure 5.4. In random graphs having
no structure, label propagation correctly classifies all nodes into a single group in about five
iterations, regardless of the size of a graph. Yet, the number of iterations increases with the size

1 http://konect.uni-koblenz.de
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in artificial networks with community structure, while the estimated number of iterations in a
network with a billion edges is 113 [59].

Most nodes acquire their final label after the first few iterations of label propagation. The
middle of Figure 5.4 shows the number of nodes that update their label at a particular iteration
for the Google web graph, artificial networks having a planted community structure and random
graphs with 105 nodes. The number of relabeled nodes drops exponentially with the number of
iterations (logarithmic scales are used). For example, the percentages of relabeled nodes of the
web graph after the first five iterations are 90.7%, 14.9%, 3.2%, 1.1%, and 0.4%, respectively.
Furthermore, the algorithm running time is only 19.5 seconds, as shown on the right-hand side
of Figure 5.4.

5.2 Label Propagation as Optimization

Here, we discuss the objective function of the label propagation method to shed light on label
propagation as an optimization method.

At every iteration of label propagation each node adopts the most common label in its neigh-
borhood. Therefore, label propagation can be seen as a local optimization method seeking to
maximize the number of neighbors with the same label or, equivalently, minimize the number
of neighbors with different labels. From the perspective of node i, the label propagation rule
in Equation (5.2) assigns its group label gi to maximize

∑
jAij𝛿(gi, gj), where A is the adjacency

matrix of the network. Hence, the objective function maximized by the basic label propagation
method is

F ({g}) =
∑

ij

Aij𝛿(gi, gj), (5.6)

where {g} is the group labeling of network nodes [5, 65]. Notice that F is non-negative and
has the optimum of 2m, where m is the number of edges in a network.

Equation (5.6) has a trivial optimal solution of labeling all nodes in a network with the same
label, corresponding to putting all nodes into one group. Equation (5.2) then holds for every node
and F = 2m. However, starting with each node in its own group by assigning them unique labels
when F = 0, the label propagation process usually is trapped in a local optimum. For networks
having a clear community structure, this corresponds to nodes of each community being labeled
with the same label when F = 2m − 2m′, where m′ is the number of edges between communi-
ties. For example, the value of F for the community structure revealed on the right-hand side
of Figure 5.1 is 46 − 8 = 38.

Network community structure is only a local optimum of the label propagation process,
whereas the global optimal solution corresponds to a trivial, undesirable, labeling. Thus, directly
optimizing the objective function of label propagation with some other optimization method try-
ing to escape a local optimum might not yield a favorable outcome. Furthermore, a network can
have also many local optima that imply considerably different community structures. As already
mentioned in Section 5.1.2, label propagation identifies more than 500 different structures in the
Zachary karate club network [76] with 34 nodes and more than 105 in the Saccharomyces cere-
visiae protein interaction network [31] with 2111 nodes [65]. Raghavan et al. [50] suggested
aggregating labelings from multiple runs of label propagation. However, this can fragment a
network into very small communities [65]. A more suitable method for combining different



�

� �

�

128 Advances in Network Clustering and Blockmodeling

labelings of label propagation is consensus clustering [24, 32, 78], but this comes with increased
time complexity.

The above perspective on label propagation as an optimization method results from
the following equivalence. Tibély and Kertész [65] have shown that the label propagation
in Equation (5.2) is equivalent to a ferromagnetic Potts model [48, 70]. The q-state Potts model
is a generalization of the Ising model as a system of interacting spins on a lattice, with each
spin pointing to one of q equally spaced directions. Consider the so-called standard q-state
Potts model on a network placing a spin on each node [51]. Let 𝜎i denote the spin on node
i which can be in one of q possible states, where q is set equal to the number of nodes in a
network n. The zero-temperature kinetics of the model are defined as follows. One starts with
each spin in its own state as 𝜎i = i and then iteratively aligns the spins to the states of their
neighbors as in the label propagation process. The ground state is ferromagnetic with all spins
in the same state, while the dynamics can also get trapped at a metastable state with more than
one spin state. The Hamiltonian of the model can be written as

H ({𝜎}) = −
∑

ij

Aij𝛿(𝜎i, 𝜎j), (5.7)

where {𝜎} are the states of spins on network nodes. By setting 𝜎i = gi, minimizing the described
Potts model Hamiltonian H in Equation (5.7) is equivalent to maximizing the objective function
of the label propagation method F in Equation (5.6).

As is almost any other clustering method, the label propagation method is nondeterministic
and can produce different outcomes on different runs. Therefore, throughout the chapter, we
report the results obtained over multiple runs of the method.

5.3 Advances of Label Propagation

Section 5.1 presented the basic label propagation method and discussed details of its imple-
mentation. Section 5.2 clarified the objective function of label propagation. In this section, we
review different advances of the original method, addressing some of the weaknesses identified
in the previous sections. Section 5.3.1 shows how to redefine the method’s objective function by
imposing constraints to use label propagation as a general optimization framework. Section 5.3.2
demonstrates different heuristic approaches changing the method’s objective function implic-
itly by adjusting the propagation strength of individual nodes. This promotes the propagation
of labels from certain desirable nodes or, equivalently, suppresses the propagation from the
remaining nodes. Finally, Section 5.3.3 discusses different empirically motivated techniques to
improve the overall performance of the method.

Unless explicitly stated otherwise, the above advances are presented for the case of
non-overlapping community detection in simple undirected networks. Nevertheless, Section 5.4
presents extensions of label propagation to other types of networks such as multipartite, multi-
layer, and signed networks. Furthermore, in Section 5.5, we show how label propagation can be
adopted to detect alternative types of groups such as overlapping or hierarchical communities
and groups of nodes that are similarly connected to the rest of the network by structurally
equivalent nodes as in Chapter 6. Note that different approaches and techniques described
in Sections 5.3–5.5 can be combined. The advances of the basic label propagation method
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described in this section can be used directly with the extensions to other types of groups and
networks described in the next sections.

5.3.1 Label Propagation Under Constraints

As shown in Section 5.2, the objective function of label propagation has a trivial optimal solution
of assigning all nodes to a single group. A standard approach for eliminating such undesirable
solutions is to add constraints to the objective function of the method. Let H be the objective
function of label propagation expressed in the form of the ferromagnetic Potts model Hamil-
tonian as in Equation (5.7). The modified objective function minimized by label propagation
under constraints is H + 𝜆G , where G represents a penalty term with imposed constraints with
𝜆 being a regularization parameter weighing the penalty term G against the original objective
function H .

Barber and Clark [5] proposed a penalty term G1 borrowed from the graph partitioning liter-
ature requiring that nodes are divided into smaller groups of the same size:

G1({g}) =
∑

g

n2
g, (5.8)

where ng =
∑

i𝛿(gi, g) is the number of nodes in group g, gi is the group label of node i, and
n =

∑
gng is the number of nodes in a network. The penalty term G1 has the minimum of n

when all nodes are in their own groups and the maximum of n2 when all nodes are in a single
group, which effectively guards against the undesirable trivial solution. The modified objective
function H1 = H + 𝜆1G1 can be written as

H1({g}) = −
∑

ij

(Aij − 𝜆1)𝛿(gi, gj), (5.9)

where A is the adjacency matrix of a network. Equation (5.9) is known as the constant Potts
model [67] and is equivalent to a specific version of the stochastic block model [77], while the
regularization parameter 𝜆1 can be interpreted as the threshold between the density of edges
within and between different groups. The label propagation rule in Equations (5.2) and (5.4) for
the modified objective function H1 is

gi = argmax
g

∑
j
(Aij − 𝜆1)𝛿(gj, g)

= argmax
g

kg
i − 𝜆1ng, (5.10)

where kg
i =

∑
jAij𝛿(gj, g) is the number of neighbors of node i in group g. Equation (5.10) can

be efficiently implemented with Algorithm 5.1 by updating ng.
An alternative penalty term G2, which has been popular in the community detection literature,

requires nodes being divided into groups having the same total degree [5]:

G2({g}) =
∑

g

k2
g, (5.11)

where kg =
∑

iki𝛿(gi, g) is the sum of degrees of nodes in group g and ki is the degree of node i.
The penalty term G2 is again minimized when all nodes are in their own groups and maximized
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when all nodes are in a single group, avoiding the trivial solution. The modified objective func-
tion H2 = H + 𝜆2G2 can be written as

H2({g}) = −
∑

ij

(Aij − 𝜆2kikj)𝛿(gi, gj), (5.12)

while the corresponding label propagation rule is

gi = argmax
g

∑
j
(Aij − 𝜆2kikj)𝛿(gj, g)

= argmax
g

kg
i − 𝜆2kikg + 𝜆2k2

i 𝛿(gi, g). (5.13)

Equation (5.13) can be efficiently implemented with Algorithm 5.1 by updating kg.
Equation (5.12) is a special case of the Potts model investigated by Reichardt and

Bornholdt [51] and is a generalization of a popular quality function in community detection
named modularity [45]. The modularity Q measures the number of edges within network
communities against the expected number of edges in a random graph with the same degree
sequence [46]. Formally,

Q({g}) = 1
2m

∑
ij

(
Aij −

kikj

2m

)
𝛿(gi, gj). (5.14)

Notice that setting 𝜆2 = 1∕2m in Equation (5.12) yields H2 = −2mQ [5].
Label propagation under the constraints of Equation (5.13) can be employed for maximizing

the modularity Q. Note, however, that the method might easily get trapped at a local optimum,
not corresponding to very high Q. For example, the average Q over 25 runs for the Google
web graph from Figure 5.4 is 0.763. In contrast, the unconstrained label propagation gives a
value of 0.801. For this reason, label propagation under constraints is usually combined with
a multistep greedy agglomerative algorithm [55], one driving the method away from a local
optimum. Using such an optimization framework, Liu and Murata [38] revealed community
structures with the highest values of Q ever reported for some commonly analyzed empirical
networks. Han et al. [28] recently adapted the same framework also for another popular quality
function called map equation [53].

The third variant of label propagation under constraints [13] is based on the absolute Potts
model [52] with the modified objective function H3 = H + 𝜆3G3 written as

H3({g}) = −
∑

ij

(Aij(𝜆3 + 1) − 𝜆3)𝛿(gi, gj). (5.15)

By setting 𝜆1 = 𝜆3∕(𝜆3 + 1) in Equation (5.9), one derives H1 = H3∕(𝜆3 + 1), implying the
method is in fact equivalent to the constant Potts model [67].

5.3.2 Label Propagation with Preferences

Leung et al. [35] have shown that adjusting the propagation strength of individual nodes can
improve the performance of the label propagation method in certain networks. Let pi be the



�

� �

�

Label Propagation for Clustering 131

propagation strength associated with node i called the node preference. Incorporating the node
preferences pi into the basic label propagation rule in Equation (5.2) gives

gi = argmax
g

∑
j

pjAij𝛿(gj, g), (5.16)

while the method objective function in Equation (5.7) becomes

Hp({g}) = −
∑

ij

pipjAij𝛿(gi, gj). (5.17)

In contrast to Section 5.3.1, these node preferences impose constraints on the objective func-
tion only implicitly by either promoting or suppressing the propagation of labels from certain
desirable nodes, as shown in the examples below.

An obvious choice is to set the node preferences equal to the degrees of the nodes as
pi = ki [35]. For instance, this improves the performance of community detection in networks
with high degree nodes in the center of each community. Šubelj and Bajec [57, 59] proposed
estimating the most central nodes of each community or group during the label propagation
process using a random walk diffusion. Consider a random walker utilized on a network
limited to the nodes of group gi and let pi be the probability that the walker visits node i. The
probabilities pi are high for the most central nodes of group gi and low for the nodes on the
border. It holds that

pi =
∑

j

pj

k
gj

j

Aij𝛿(gi, gj), (5.18)

where kgi
i =

∑
jAij𝛿(gi, gj) is the number of neighbors of node i in its group gi. Clearly pi = kgi

i
is the solution of Equation (5.18), but initializing the probabilities as pi = 1 and updating their
values according to Equation (5.18) only when the nodes change their groups gi gives a different
result. This mimics the actual propagation of labels occurring in a random order and keeps the
node probabilities pi synchronized with the node groups gi. Equation (5.18) can be efficiently
implemented in Algorithm 5.1 by updating kgi

i .
Label propagation with node preferences defined in Equation (5.18) is called defensive prop-

agation [59] as it restrains the propagation of labels to preserve a larger number of groups by
increasing the propagation strength of their central nodes or, equivalently, decreasing the prop-
agation strength of their border nodes. Another strategy is to increase the propagation strength
of the border nodes, which results in a more rapid expansion of groups and a smaller number of
larger groups. This is called offensive propagation [59] with the label propagation rule written
as

gi = argmax
g

∑
j

(1 − pj)Aij𝛿(gj, g). (5.19)

The left-hand side of Figure 5.5 demonstrates the defensive and offensive label propagation
methods in an artificial network with two planted communities that are only loosely sepa-
rated. While defensive propagation correctly identifies the communities planted in the network,
offensive propagation spreads the labels beyond the borders of the communities and reveals
no structure in this network. The right-hand side of Figure 5.5 compares the methods also on
a graph partitioning problem. The methods are applied to a triangular grid with four edges
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Figure 5.5 Comparison of defensive and offensive label propagation in artificial networks with a planted
community structure and a triangular grid with four missing edges. The labels and shades of the nodes
represent communities or groups identified by the two methods.

Table 5.1 Degeneracy diagrams of the label propagation methods displaying the non-degenerate ranges
of the revealed groups (thick lines), while the percentages show the fraction of nodes in the tiny groups
(left) and in the largest group (right). The values are averages over 25 runs of the methods

sresuaidepikiWsdaornaeporuEdohteM
Standard propagation 61.5% 0.9% 5.8% 67.6%
Defensive propagation 53.6% 0.9% 6.6% 16.8%
Offensive propagation 7.1% 8.5% 4.3% 79.7%

removed, which makes a division into two groups the only sensible partition. In contrast, offen-
sive propagation correctly partitions the grid into two groups, whereas defensive propagation
overly restrains the spread of labels and recovers four groups.

Table 5.1 further compares the defensive and offensive label propagation methods on
the European road network [58] with 1174 nodes and a network of user interactions on
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Wikipedia [43] with 126, 514 nodes. Both networks are available at KONECT. Degeneracy
diagrams in Table 5.1 show the non-degenerate or effective ranges of the revealed groups that
span the fraction of nodes not covered by the tiny groups with three nodes or less, or the largest
group [64] (left and right percentages, respectively). Ideally, the thick lines in Table 5.1 would
span from left to right. Due to the sparse grid-like structure of the road network, defensive
propagation partitions 53.6% of the nodes into tiny groups, which is not a useful result. This
can be avoided by using offensive propagation, where this percentage equals 7.1%. However,
in the case of much denser Wikipedia network, offensive propagation returns one giant group
occupying 79.7% of the nodes, thus defensive propagation with 16.8% is preferred. Note that
the crucial difference between these two networks requiring the use of different methods is
their density. A generally applicable approach is first to use defensive propagation and then
iteratively refine the revealed groups with offensive propagation [57, 59], in this order. For
example, such an approach reveals a partition of the road network with 7.9% of the nodes in
the tiny groups and 6.4% of the nodes in the largest group on average.

An alternative definition of defensive and offensive label propagation is to replace the random
walk diffusion in Equation (5.18) with the eigenvector centrality [14] defined as

pi = 𝜅

−1
gi

∑
j

pjAij𝛿(gi, gj), (5.20)

where 𝜅gi
is a normalizing constant equal to the leading eigenvalue of the adjacency matrix A

reduced to the nodes in group gi. Zhang et al. [77] have shown that defensive label propagation
with the eigenvector centrality for the node preferences is equivalent to the maximum likelihood
estimation of a stochastic block model with Gaussian weights on the edges. This relates the label
propagation method with yet another popular approach in the literature that is more thoroughly
described in Chapter 11.

5.3.3 Method Stability and Complexity

Here, we discuss different techniques to improve the performance of the label propagation
method by either increasing its stability or reducing its complexity.

One of the main sources of instability of the method is the random order of label updates
in asynchronous propagation [35, 50]. Recall that the primary reason for this is to break cyclic
oscillations of labels in synchronous propagation as it occurs in Figure 5.3. Li et al. [36] also
proposed to use synchronous propagation even though this can lead to oscillations of labels, but
to break the oscillations by making the label propagation rule in Equation (5.2) probabilistic.
The probability that the node i with group label gi updates its label to g is defined as

Pi(g) ∝ 𝛿(gi, g) +
∑

j

Aij𝛿(gj, g). (5.21)

Although this successfully eliminates the oscillations of labels in Figure 5.3, probabilistic label
propagation can make the method even more unstable. It must be stressed that this instability
represents a major issue, especially in very large networks.

Cordasco and Gargano [17, 18] proposed a more elegant solution called semi-synchronous
label propagation based on node coloring. A coloring of network nodes is an assignment of
colors to nodes such that no two connected nodes share the same color [44]. Notice that if two
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nodes are not connected their labels do not directly depend on one another in Equation (5.2)
and can therefore be updated simultaneously using synchronous propagation. Given a coloring
of the network, semi-synchronous propagation traverses different colors in a random order as in
asynchronous propagation. In contrast, the labels of the nodes with the same color are updated
simultaneously as in synchronous propagation. For instance, coloring each node with a different
color is equivalent to asynchronous propagation, while a simple greedy algorithm can find a
coloring with at most Δ + 1 colors, where Δ is the maximum degree in a network. In contrast to
synchronous and asynchronous propagation, the convergence of semi-synchronous propagation
can be formally proven.

Šubelj and Bajec [58, 61] observed empirically that updating the labels of the nodes in some
fixed order drives the label propagation process towards similar solutions as setting the node
preferences in Equation (5.16) higher (lower) for the nodes that appear earlier (later) in the
order and then updating their labels in a random order as in asynchronous propagation. The
node preferences can thus be used as node balancers to counteract the randomness introduced
by asynchronous propagation. Let ti be a normalized position of the node i in some random
order, which is set to 1∕n for the first node, 2∕n for the second node and so on, where n is the
number of nodes in a network. The value ti represents the time at which the label of node i is
updated. Balanced label propagation sets the node preferences using a logistic function as

gi = argmax
g

∑
j

1

1 + e−𝛾(2tj−1) Aij𝛿(gj, g), (5.22)

where 𝛾 is a parameter of the method. For 𝛾 = 0, Equation (5.22) is equivalent to the standard
label propagation rule in Equation (5.2), while 𝛾 > 0 makes the method more stable, but this
increases its time complexity. In practice, one must therefore decide on a compromise between
the method stability and its time complexity.

The method stability is tightly knit with its performance. Figure 5.6 compares community
detection of the label propagation methods in artificial networks with four planted communi-
ties [25]. Community structure is controlled by a mixing parameter 𝜇 that represents the fraction
of nodes’ neighbors in their own community. For example, the left-hand side of Figure 5.6 shows
realizations of networks for 𝜇 = 0.1 and 0.4. Performance of the methods is measured with the
normalized mutual information [23], where higher is better (see [23] for the exact definition).
As seen in the right-hand side of Figure 5.6, balanced label propagation combined with the
defensive node preferences in Equation (5.18) performs best in these networks, when 𝛾 = 1.

Another prominent approach for improving community detection of the label propagation
methods is consensus clustering [24, 32, 78]. One first applies the method to a given network
multiple times and constructs a weighted consensus graph, where weights represent the number
of times two nodes are classified into the same community. Note that only edges with weights
above a given threshold are kept. The entire process is then repeated on the consensus graph until
the revealed communities no longer change. For example, the left-hand side of Figure 5.7 shows
two realizations of groups obtained with the standard label propagation method in Equation (5.2)
in artificial networks for 𝜇 = 0.33. Although these do not exactly coincide with the planted
communities, label propagation in the corresponding consensus graph recovers the correct com-
munity structure as demonstrated on the right-hand side of Figure 5.7. For another example,
Figure 5.8 shows the largest connected component of the European road network from Table 5.1
and the largest groups revealed by the offensive label propagation method in Equation (5.19)
with 25 runs of consensus clustering.
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Figure 5.6 Performance of the label propagation methods in artificial networks with planted community
structure represented by the labels and shades of the nodes. The markers are averages over 25 runs of the
methods, while the error bars show standard errors.

Note, however, that consensus clustering can substantially increase the method’s computa-
tional time. Other work has thus considered different hybrid approaches to improve the stability
of community detection of the label propagation methods, where community structure revealed
by one method is refined by another [57, 59], possibly proceeding iteratively or incremen-
tally [19, 35]. For instance, label propagation under constraints [28, 38] has traditionally been
combined with a multistep greedy agglomeration [55].

In the remaining sections, we also briefly discuss different approaches to reduce the com-
plexity of the label propagation method. Although the time complexity is already nearly linear
O(m1.2), where m is the number of edges in a network [59], one can still further improve the
computational time. As shown in Figure 5.4, the number of nodes that update their label at a par-
ticular iteration of label propagation drops exponentially with the number of iterations. Thus,
after a couple of iterations, most nodes have already acquired their final label and no longer
need to be updated. For instance, one can selectively update only the labels of those nodes for
which the fraction of neighbors sharing the same label is below a certain threshold [35], which
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Figure 5.7 Label propagation in artificial networks with planted community structure and the corre-
sponding consensus graph. The labels and shades of the nodes represent communities identified by the
label propagation method.
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Figure 5.8 Offensive label propagation with consensus clustering in the European road network. The
labels and shades of the nodes represent the largest eight groups identified by the method.
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can make the method truly linear O(m). Xie and Szymanski [72] further formalized this idea
using the concept of active and passive nodes. A node is said to be passive if updating would not
change its label. Otherwise, the node is active. The labels are therefore propagated only between
the active nodes until all nodes become passive.

Due to its algorithmic simplicity, the label propagation method is easily parallelizable, espe-
cially with synchronous or semi-synchronous propagation mentioned above. The method is thus
suitable for application in distributed computing environments such as Spark2 [16] or Hadoop3

[47] and on parallel architectures [56]. In this way, label propagation has been successfully used
on billion-node networks [16, 69].

5.4 Extensions to Other Networks

Throughout the chapter, we have assumed that the label propagation method is applied to simple
undirected networks. Nevertheless, the method can easily be extended to networks with multi-
ple edges between the nodes as in Equation (5.2) and networks with weights on the edges as
in Equation (5.3). This holds also for the different advances of the propagation methods pre-
sented in Section 5.3. In contrast, there seems to be no straightforward extension to networks
with directed arcs. The reason for this is that propagating the labels exclusively in the direction
of arcs enables exchange of labels only between mutually reachable nodes forming a strongly
connected component. Since any directed network is a directed acyclic graph on its strongly
connected components, the labels can propagate between the nodes of different strongly con-
nected components merely in one direction. Therefore, one usually disregards the directions of
arcs when applying the label propagation method to directed networks except in the case when
most arcs are reciprocal.

The method can be extended to signed networks with positive and negative edges between
the nodes, as in the approach of Doreian and Mrvar [20]. In order to partition the network in
such a way that positive edges mostly appear within the groups and negative edges between
the groups, one assigns some fixed positive (negative) weight to positive (negative) edges and
then applies the standard label propagation method for weighted networks in Equation (5.3).
According to the objective function in Equation (5.7), the method thus simultaneously tries to
maximize the number of positive edges within the groups and the number of negative edges
between the groups. Still, this does not ensure that the nodes connected by a negative edge are
necessarily assigned to different groups, but merely restricts the propagation of labels along the
negative edges [1].

Table 5.2 shows the standard and signed label propagation methods applied to the Wikipedia
web of trust network [43] available at KONECT. The network consists of 138, 587 nodes con-
nected by 629, 689 positive edges and 110, 417 negative edges. Standard label propagation
ignoring the signs of edges reveals one giant group occupying 89.0% of the nodes on average.
Most positive edges are thus obviously within the groups, but the same also holds for negative
edges. Signed label propagation with positive and negative weights on the edges reduces the
size of the largest group to 60.6% of the nodes on average. Most positive edges remain within
the groups, while more than half of negative edges are between the groups. Note that the method

2 http://spark.apache.org
3 http://hadoop.apache.org
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Table 5.2 Comparison of the label propagation methods on the signed Wikipedia web of trust network.
The values are averages over 25 runs of the methods, while H is defined in Equation (5.7)

Method + Edges within − Edges between Hamiltonian H

Standard propagation 96.6% 6.7% −528185.8
Signed propagation 90.9% 56.7% −535065.2
With equal weights 75.6% 81.8% −460413.1

assigns weights 1 and −1 to positive and negative edges. Since only 12.0% of the edges in the
network are negative, this actually puts more emphasis on the positive edges. To circumvent the
latter, one can assign equal total weight to positive and negative edges by using weights 1∕mp
and −1∕mn, where mp and mn are the numbers of positive and negative edges. Signed label prop-
agation with equal total weights returns a larger number of groups with 43.2% of the nodes in
the largest group, and about the same fraction of positive edges within the groups and negative
edges between the groups. For further discussion on partitioning signed networks see Chapter 8.

Any label propagation method can also be used on bipartite networks with two types of nodes
and edges only between the nodes of different type as on the left-hand side of Figure 5.9.
For instance, Barber and Clark [5] adopted the label propagation methods under constraints
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Figure 5.9 Non-overlapping and overlapping label propagation in artificial networks with planted com-
munity structure. The labels and shades of the nodes represent communities identified by different methods,
while the types of nodes of the bipartite network are shown with distinct symbols.
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to optimize bipartite modularity [4]. Liu and Murata [39, 40] proposed a proper extension of the
label propagation framework to bipartite networks. This is a special case of semi-synchronous
propagation with node coloring discussed in Section 5.3.3. Recall that semi-synchronous propa-
gation updates the labels of the nodes with the same color synchronously, while different colors
are traversed asynchronously. In bipartite networks, the types of the nodes can be taken for their
colors, thus the method alternates between the nodes of each type, while the propagation of
labels always occurs synchronously. The same principle can be extended also to multipartite
networks, where again the nodes of the same type are assigned the same color. However, in
multirelational or multilayer networks [11], one can separately consider the nodes of different
layers, but the propagation of labels within each layer requires asynchronicity for the method to
converge.

5.5 Alternative Types of Network Structures

The label propagation method was originally designed to detect non-overlapping communities
in networks [35, 50]. In the following, we show how the method can be extended to more diverse
network structures. We consider extensions to overlapping groups of nodes, groups of nodes at
multiple resolutions that form a nested hierarchy, and groups of structurally equivalent nodes.
Note that, in contrast to the extensions to other types of networks in Section 5.4, this increases
the time complexity of the method derived in Section 5.1.4. As shown in the following, the time
complexity increases by a factor depending on the type of groups considered.

5.5.1 Overlapping Groups of Nodes

Extension of the label propagation method to overlapping groups of nodes is relatively straight-
forward [26, 71]. Instead of assigning a single group label gi to node i as the standard label
propagation method in Equation (5.2), multiple labels are assigned to each node. Let 𝜌i be the
group function of node i where 𝜌i(g) represents how strongly the node is affiliated to group g.
In particular, the node belongs to groups g for which 𝜌i(g) > 0, while its group affiliations are
normalized to one as

∑
g𝜌i(g) = 1. At the beginning of label propagation, each node is put into

its own group by setting 𝜌i(i) = 1. Then, at every iteration, each node adopts the group labels of
its neighbors. The affiliation 𝜌i(g) of node i to group g is computed as the average affiliation of
its neighbors. Hence,

𝜌i(g) =
∑

j

𝜌j(g)
ki

Aij, (5.23)

where A is the network adjacency matrix and ki is the degree of node i. Equation (5.23) can
be combined also with an inflation operator raising 𝜌i(g) to some exponent [74]. Obviously, the
groups can now overlap as the nodes can belong to multiple groups. For example, the right-hand
side of Figure 5.9 demonstrates the non-overlapping and overlapping label propagation methods
in an artificial network with two planted overlapping communities.

Notice, however, that the label propagation rule in Equation (5.23) inevitably leads to every
node in a network belonging to all groups. It is therefore necessary to limit the number of groups
a single node can belong to. Gregory [26] proposed that, after each iteration of label propa-
gation, the group affiliations 𝜌i(g) below 1∕𝜈 are set to zero and renormalized, where 𝜈 is a
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method parameter. Since
∑

g𝜌i(g) = 1 for every node, the nodes can thus belong to at most 𝜈
groups. The parameter 𝜈 can be difficult to determine if a network consists of overlapping and
non-overlapping groups. Wu et al. [71] suggested replacing the parameter 𝜈 by a node-dependent
threshold 𝜌 to keep node i affiliated to group g as long as

𝜌i(g)
maxg𝜌i(g)

≥ 𝜌. (5.24)

The time complexity of the described overlapping label propagation method is O(cm𝜈), where
c is the number of iterations of label propagation, m is the number of edges in a network, and 𝜈
is the maximum number of groups a single node belongs to. The method is implemented by a
popular community detection algorithm COPRA4 [26].

It is also possible to detect overlapping groups of nodes by using the standard non-overlapping
label propagation method. Xie and Szymanski [73, 75] proposed associating a memory with
each node to store group labels from previous iterations. Running the label propagation for c
iterations assigns c labels to each node’s memory. The probability of observing label g in the
memory of node i or, equivalently, the number of occurrences of g in the memory of i can then
be interpreted as the group affiliation 𝜌i(g) as defined above. Note that label propagation with
node memory splits the label propagation rule in Equation (5.2) into two steps. Each neighbor j
of the considered node i first propagates a random label from its memory, with the label g being
selected with probability 𝜌j(g), while node i then adds the most frequently propagated label to
its memory. The time complexity of the method is O(cm), where c is a small constant set to
say 25. The method is implemented by another popular community detection algorithm SLPA5

[75] and its successor SpeakEasy6 [24].
DEMON7 [19] is a well-known community detection algorithm that also uses non-

overlapping label propagation to detect overlapping groups. Instead of assigning a memory to
each node as above, this label propagation method is separately applied to the subnetworks
reduced to the neighborhoods of the nodes. All of the resulting groups that are, in general,
overlapping are then merged together.

5.5.2 Hierarchy of Groups of Nodes

Label propagation can be applied in a hierarchical manner in order to reveal a nested hierarchy
of groups of nodes [35, 37, 59, 62]. The bottom level of such a hierarchy represents groups of
nodes. The next level represents groups of groups of nodes and so on. Cutting the hierarchy
at different levels results in groups of nodes at multiple resolutions. For example, Figure 5.10
demonstrates the hierarchical label propagation method in artificial networks with two levels
of planted community structure. Let G1,G2, … denote the groups revealed by the basic label
propagation method in Equation (5.2), which represent the bottom level of the group hierarchy.
One then constructs a meta-network, where nodes correspond to different groups Gi and an edge

4 http://gregory.org/research/networks/software/copra.html
5 http://sites.google.com/site/communitydetectionslpa
6 http://www.cs.rpi.edu/~szymansk/SpeakEasy
7 http://www.michelecoscia.com/?page_id=42
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Figure 5.10 Artificial networks with two levels of planted community structure and the correspond-
ing group hierarchy. The labels and shades of the nodes represent communities identified by the label
propagation method.

is put between the groups Gi and Gj if their nodes are connected in the original network. The
weight of the edge is set to the number of edges between the groups Gi and Gj in the original
network. Similarly, a loop is added to each group Gi with a weight equal to the number of edges
within the group Gi in the original network. Finally, one applies the weighted label propagation
method in Equation (5.3) to the constructed meta-network to reveal groups of groups Gi. These
constitute the next level of the group hierarchy. The entire process of such bottom-up group
agglomeration is repeated iteratively until a single group is recovered, which is the root of the
hierarchy. Note that label propagation with group agglomeration is algorithmically equivalent
to the famous Louvain modularity optimization method [10, 66].

Figure 5.11 shows the meta-networks of the largest connected components of the Google
web graph from Figure 5.4 with 875, 713 nodes and the Pennsylvania road network [34] with
1, 087, 562 nodes. Both networks are available at KONECT. The meta-networks were revealed
by the hierarchical label propagation method with two and three steps of group agglomeration,
and consist of 564 and 235 nodes, respectively. Notice that, although the networks are reduced to
less than a thousandth of their original size, the group agglomeration process preserves a dense
central core of the web graph and a sparse homogeneous topology of the road network [9].

Bottom-up group agglomeration can be effectively combined with top-down group refine-
ment [62, 63]. Let G1,G2, … be the groups revealed at some step of the group agglomeration.
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Figure 5.11 The meta-networks of the Google web graph and the Pennsylvania road network identified
by the hierarchical label propagation method. The shades of the nodes are proportional to their corrected
clustering coefficient [6], where darker (lighter) means higher (lower).

Prior to the construction of the meta-network, one separately applies the label propagation
method to the subnetworks of the original network limited to the nodes of groups Gi. As
this process repeats recursively until a single group is recovered, a sub-hierarchy of groups
is revealed for each group Gi. Bottom-up agglomeration with top-down refinement enables
the identification of a very detailed hierarchy of groups present in a network [24, 62]. One
can also further control the resolution of groups by adjusting the weights on the loops in
the meta-network [27]. The time complexity of the described hierarchical label propagation
method is O(cmh), where c is the number of iterations and m the number of edges as before,
while h is the number of levels of the group hierarchy.

5.5.3 Structural Equivalence Groups

The Different label propagation methods presented so far can be used to reveal connected and
cohesive groups of nodes in a network. This includes detection of densely connected commu-
nities and graph partitioning as demonstrated in Figure 5.5. However, the methods cannot be
adopted for detection of any kind of disconnected groups of nodes. Therefore, possibly the most
interesting extension of the label propagation method is to find groups of structurally equiv-
alent nodes [42, 60–62]. Informally, two nodes are said to be structurally equivalent if they
are connected to the same other nodes in the network and thus have the same common neigh-
bors [21, 41], whereas the nodes themselves may be connected or not. We here consider a relaxed
definition of structural equivalence in which nodes can have only the majority of their neighbors
in common. For example, the left-hand side of Figure 5.12 shows an artificial network with two
planted communities of nodes labeled with 2 and 4, and two groups of structurally equivalent
nodes labeled with 1 and 3 that form a bipartite structure. The former are also called assortative
groups, while the latter are referred to as disassortative groups [23].

Let ki denote the degree of node i and kij the number of common neighbors of nodes
i and j. Hence, ki =

∑
jAij and kij =

∑
kAikAkj, where A is the network adjacency matrix.
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Figure 5.12 Performance of the label propagation methods in artificial networks with planted commu-
nities and structural equivalence groups represented by the labels and shades of the nodes. The markers
are averages over 25 runs of the methods, while the error bars show standard errors.

Xie and Szymanski [72] modified the label propagation rule in Equation (5.2) as

gi = argmax
g

∑
j

(1 + kij)Aij𝛿(gj, g), (5.25)

which increases the strength of propagation between structurally equivalent nodes. Notice that
Equation (5.25) is in fact equivalent to simultaneously propagating the labels between the neigh-
boring nodes as standard and also through their common neighbors represented by the term kij.
Yet, the labels are propagated merely between connected nodes, thus the method can still reveal
only connected groups of nodes.

Šubelj and Bajec [61, 62] proposed a proper extension of the label propagation method for
structural equivalence that separately propagates the labels between the neighboring nodes and
through nodes’ common neighbors. Let 𝜏g be a parameter of group g that is set close to one
for connected groups and close to zero for structural equivalence groups. The label propagation
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rule for general groups of nodes is then written as

gi = argmax
g

(
𝜏g

∑
j

Aij𝛿(gj, g) + (1 − 𝜏g)
∑
kj≠i

1
kk − 1

AikAkj𝛿(gj, g)

)
. (5.26)

The left-hand sum propagates the labels between the neighboring nodes i and j, while the
right-hand sum propagates the labels between the nodes i and j through their common neighbors
k. The degree kk in the denominator ensures that the number of terms in both sums is proportional
to ki. By setting all group parameters in Equation (5.26) as 𝜏g = 1, one retrieves the standard
label propagation method in Equation (5.2) that can detect connected groups of nodes like com-
munities, while setting 𝜏g ≈ 0, the method can detect structural equivalence groups. In the case
when a community consists of structurally equivalent nodes as in a clique of nodes, any of the
two methods can be used. In practice, the group parameters 𝜏g can be inferred from the network
structure or estimated during the label propagation process [61, 62]. However, this can make the
method very unstable. For this reason, we propose a much simpler approach.

Applying the standard label propagation method to the network on the left-hand side
of Figure 5.12 reveals three groups of nodes, since both structural equivalence groups are
detected as a single group of nodes. In general, configurations of connected structural equiva-
lence groups are merged together by the method. One can, however, employ this behavior to
detect structural equivalence groups using a two-step approach with top-down group refinement
introduced before [62, 63]. The first step reveals connected groups of nodes using the standard
label propagation method by setting 𝜏g = 1 in Equation (5.26). This includes communities and
configurations of connected structural equivalence groups. In the second step, one separately
tries to refine each group from the first step using the structural equivalence label propagation
method by setting 𝜏g = 0 in Equation (5.26). While communities are still detected as a single
group of nodes, configurations of structural equivalence groups are now further partitioned into
separate structural equivalence groups.

The right-hand side of Figure 5.12 compares group detection of the label propagation meth-
ods in artificial networks with four groups discussed above [61]. Network structure is controlled
by a mixing parameter 𝜇 that represents the fraction of edges that comply with the group struc-
ture, while the examples on the left-hand side of Figure 5.12 show realizations of networks for
𝜇 = 0.1 and 0.4. Performance of the methods is measured with the normalized mutual informa-
tion [23], where higher is better. As already mentioned, standard label propagation combines
the two structural equivalence groups into a single group. Yet, label propagation for structural
equivalence can reveal all four groups, but only when these are clearly defined in the network
structure. Finally, the two-step approach performs best in these networks, and can accurately
detect communities and structural equivalence groups as long as the latter can first be identified
as a single connected group of nodes.

In Section 5.4 we argued that standard label propagation cannot be easily extended to directed
networks. In contrast, label propagation for structural equivalence can in fact be adopted for
detection of specific groups of nodes in directed networks. For instance, consider a network of
citations between scientific papers. Let A be the network adjacency matrix where Aij represents
an arc from node i to node j meaning that paper i cites paper j. One might be interested in
revealing groups of papers that cite the same other papers, which is known as cocitation [8, 15].
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The label propagation rule for cocitation is

gi = argmax
g

∑
kj≠i

AikAjk𝛿(gj, g), (5.27)

which propagates the labels between papers i and j through their common citations k. An alter-
native concept is bibliographic coupling [30], which refers to groups of papers that are cited by
the same other papers. The label propagation rule for bibliographic coupling is

gi = argmax
g

∑
kj≠i

AkiAkj𝛿(gj, g). (5.28)

As an example, we constructed a citation network of 26, 038 papers published in Physical
Review E8 between the years 2001 and 2015. This also includes 13 references of this chapter
namely references [4, 5, 33, 35, 45, 46, 50–52, 55, 59, 66, 67]. Twelve of these focus on topics
in network community detection and graph partitioning, whereas [46] discusses random graph
models. We first ignore the directions of citations and apply the standard label propagation
method in Equation (5.2) with 25 runs of consensus clustering introduced in Section 5.3.3. The
method reveals 3033 groups of papers. The largest group consists of 1276 papers on network
structure and dynamics including [46] with the most frequent terms in the titles of the papers
being “network”, “scale-free”, “complex”, “epidemic”, “percolation”, “random”, “small-world”
and “social”. The remaining references mentioned above are all included in the fourth largest
group with 189 other papers on network community detection. The left-hand side of Figure 5.13
shows a word cloud generated from the titles of these papers displaying the most frequently
appearing terms in an aesthetically pleasing way.9 These are “community”, “network”, “detec-
tion”, “modularity”, “structure”, “complex”, “finding” and “clustering”.

We next consider the directions of citations by employing the cocitation label propagation
method in Equation (5.27) that is again combined with 25 runs of consensus clustering. The
method reveals 1016 cocitation groups with 2427 papers in the largest group. The latter consists

Figure 5.13 Word clouds demonstrating two of the largest groups of nodes revealed by different label
propagation methods in the Physical Review E paper citation network. These show the most frequently
appearing terms in the titles of the corresponding papers.

8 http://journals.aps.org/pre
9 https://www.jasondavies.com/wordcloud
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of papers on various topics in network science including all the thirteen references from above.
The right-hand side of Figure 5.13 shows a word cloud generated from the titles of these papers,
where the most frequent terms are “network”, “scale-free”, “complex”, “synchronization”,
“community”, “random”, “small-world” and “oscillators”.

As shown in Section 5.1.4, the time complexity of a single iteration of the standard label
propagation method is O(m) = O(⟨k⟩n), where n and m are the number of nodes and edges
in a network, and ⟨k⟩ = ∑

iki∕n is the average node degree. Since the structural equivalence
methods presented above propagate the labels also between the nodes two steps apart, the time
complexity of a single iteration becomes O(⟨k2⟩n), where ⟨k2⟩ = ∑

ik
2
i ∕n is the average node

degree squared. The total time complexity of the methods is therefore O(c⟨k2⟩n), where c is the
number of iterations of label propagation.

5.6 Applications of Label Propagation

The label propagation methods are most commonly used for clustering and partitioning large
networks with the main goal being network abstraction. In this section, we briefly review
selected other applications of label propagation.

People You May Know is an important feature of the Facebook social service providing rec-
ommendations for future friendship ties between its users. Most friendship recommendations
are of type “friend-of-friend”, meaning that the users are suggested other users two hops away
in the Facebook social graph [2]. Due to the immense size of the graph, it is distributed among
multiple physical machines thus each machine stores some local part of the graph consisting
only of a subset of users. When a friendship recommendation has to be made for a given user, it
is desired that the users two steps away in the graph reside at the same machine as the concerned
user, in order to minimize the communication between the machines. As reported in 2013 [68],
the users are effectively partitioned among machines using a variant of label propagation under
constraints presented in Section 5.3.1.

A related application is a compression of very large web graphs and online social networks
to enable their analysis on a single machine [12]. Most compression algorithms rely on a given
ordering of network nodes such that the edges are mainly between the nodes that are close in the
ordering. In the case of web graphs, one can order the nodes representing web pages lexicograph-
ically by their URL, whereas no equivalent approach exists for social networks. Boldi et al. [13]
adopted the label propagation method in Equation (5.15) to compute the ordering of network
nodes iteratively starting from a random one. Using such a setting, the authors reported a major
improvement in compression with respect to other known techniques. Most social networks and
web graphs can be compressed to just a couple of bits per edge, while still allowing for an effi-
cient network traversal. For instance, this compression approach was in fact used to reveal the
four degrees of separation between the active users of Facebook in 2011 [3].

5.7 Summary and Outlook

In this chapter we have presented the basic label propagation method for network clustering and
partitioning, together with its numerous variants and advances, extensions to different types of
networks and clusterings, and selected large-scale applications. Due to the high popularity of
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label propagation in the literature, our review here is by no means complete. In particular, we
have focused primarily on the results reported in the physics and computer science literature.
However, the very same approach is also commonly used in the social networks literature [7, 21],
where it is known under the name relocation algorithm or simply as a local greedy optimiza-
tion. The label propagation method and the relocation algorithm thus provide a sort of common
ground between two diverging factions of network science in the natural and social science
literature [29].

As stated already in the introduction, label propagation is neither the most accurate nor the
most robust clustering method. Yet it is a very fast and versatile method that can readily be
applied to the largest networks and easily adopted for a particular application. It should be used
as the first choice for gaining a preliminary insight into the structure of a network before trying
out more sophisticated and expensive methods. In the case of very large online social networks
and web graphs, the label propagation method is in fact often the only choice. Future research
should therefore focus more on specific applications of label propagation in large networks,
where the use of simple and efficient methods is unavoidable, and less on new ad hoc modifi-
cations of the original method, since there are already many of these.
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6.1 Introduction

In the wide variety of networks that connect and make up our worlds, relations not only either
exist or not, but often carry a weight. Friendships can be ranked, interactions can be timed,
and economic exchanges can be valued, details that provide us with a deeper, nuanced, and
higher-resolution understanding of such networks than is provided by the mere existence of ties.

As with most methods and heuristics in network analysis, approaches for clustering1 or
blockmodeling are primarily geared to binary data [23, p. 25; 25]. For the set of indirect
methods that do work with valued networks when determining clusters of equivalent actors,
valued data still pose a dilemma when interpreting possible blockmodels derived from such
approaches. Since the ideal blocks2 of generalized blockmodeling (as well as density-based
structural blockmodeling) are specified in terms of binary ties, these are not readily comparable
with the intra- and inter-block patterns of valued relations. Valued networks are therefore
often dichotomized, either prior to identifying equivalent sets of actors or when determining
patterns within and between clusters using a statistically, theoretically or arbitrarily determined
network-wide threshold.

1 Following the terminology in this book, the terms “cluster” and “clustering” as used in this chapter refer to subsets
of, and the procedure of identifying, actors that fulfill some meaningful definition of equivalence (also referred to as a
“position” in some literature).
2 In this chapter, “block” refers to the non-overlapping submatrices in a blockmodel as delineated by one or two clusters
(i.e. subsets of actors; see the previous footnote).
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Whereas dichotomization can be theoretically motivated in some cases, particularly when
it comes to ranked/ordinal data, dichotomization constitutes an inevitable reduction of the
resolution and detailed level of valued data. In addition, the setting of a global cut-off to
distinguish prominent and non-prominent valued ties is inherently problematic when actors in
a valued network have different relational capacities [4, 41]. Good examples of networks in
which actors have different relational capacities are trade networks. For instance, whereas the
USD 59.4 billion worth of commodities that went from Germany to Austria in 2010 represents
half of Austria’s total imports, this very same flow only corresponds to 8% of Germany’s total
exports.3 With unequal relational capacities such as between Austria and Germany, where
the local perception of what constitutes a prominent tie differs widely, the use of absolute
(network-wide) dichotomization thresholds show us, at best, just one possible way of looking
at the data. In contrast to the trade flow example, an assumption of equal relational capacities
would be more reasonable when, for instance, tracking the interaction times of school children
during a common 45-minute break.

Besides dichotomization, other types of transformation can be useful for analyzing valued
networks, both for identifying clusters and discerning how the block patterns of valued ties
relate to the set of ideal binary blocks used in blockmodeling. A growing number of direct and
indirect blockmodeling heuristics is also designed explicitly for valued networks, approaches
that often are combined with, or based on, various transformations.

This chapter provides an overview of approaches, classical as well as recent innovations, to the
clustering/blockmodeling of valued networks. This chapter focuses exclusively on one-mode,
single-relational, non-signed,4 possibly directional and possibly with self-ties, valued networks
and the particularities that apply to the clustering/blockmodeling of such networks. We thus do
not delve deeper into the properties of networks and methods that are equally relevant to binary
networks.5 We also do not cover stochastic blockmodeling, although versions of it for valued
networks exist [e.g. 1].

In addition to the various direct and indirect methods applicable to valued networks, we
describe various transformations found useful when clustering valued networks. The techni-
calities of each method and transformation are described, and we also discuss the particular
variety of equivalence a respective method is geared to capture. We exemplify how different
heuristics yield different results using two datasets, embodying different properties of valued
networks: the EIES friendship data6 at time point 2 [28] and intra-European commodity
trade [41].

The next section describes the different types of valued network data that exist. This is fol-
lowed by a description of various transformations that can be applied to such data prior to
clustering methods being used. An overview of clustering methods and heuristics for valued
networks follows, divided into indirect and direct approaches. An example section comes next

3 Taken from the EU/EFTA trade example in the second part of this chapter, we occasionally use this data in our theo-
retical section to exemplify the effects of transformations.
4 Some methods described in this chapter are also appropriate for signed networks (e.g. homogeneity blockmodeling
[25]).
5 Such as hierarchical clustering methods and their different varieties: although useful for grouping actors based on
indirect measures of equivalence, such tools are equally useful for binary networks as well. That said, we do demonstrate
that different hierarchical clustering methods yield different partitions in our first EIES data example.
6 EIES data obtained from https://sites.google.com/site/ucinetsoftware/datasets/freemanseiesdata



�

� �

�

Blockmodeling of Valued Networks 153

in which we demonstrate various clustering/blockmodeling techniques on our two example
networks. A concluding section rounds off the chapter.

6.2 Valued Data Types

As with statistical variables generally, tie values7 can be measured on different scales. In this
chapter, only networks where ties can be treated as measured on at least an interval scale are
considered. We remain relatively liberal in terms of what can be treated as interval scales, as is
often the practice in the social sciences. Therefore, tie values on 1–5 rating scales (Likert-type
items) and similar are deemed acceptable.

Below, we list some of the more commonly used types of valued networks based on the
meaning and/or origin of ties:

• A subjective judgment of relationships using different rating scales (e.g. a 5-point scale with
descriptions at the extremes only, a 5-point scale with a description of each category, line
measurement… ). The quality of measurement using different scales has been discussed
elsewhere [e.g. 27, 30]. These rating scales share certain features:
– The measurement is subjective (based on the perception of the responding actor).
– At least the scale extremes are defined and are the same for all actors. In principle at least,

all actors can also select the extreme option. This also means the definition of a “strong” tie
is given from the outside (but interpreted by the respondent). Examples of such networks
include, among others, all kinds of perceived social support networks, advice networks
[e.g. 48] and friendship networks [28].

• Direct measurements of different flows or the frequency of some kind of interactions.
Examples of such networks are email exchanges between people [47, 54], citations among
journals [3], and trade among countries [41]. While these measurements may lack a
pre-specified maximum, natural limits may exist such as when mapping minutes of school
kids, interaction during a lunch break of limited duration. Typically, however, the perception
of what constitutes a strong tie in such measurements varies among actors.

One distinction we concentrate on in this chapter is whether actors have equal or unequal
relational capacities [41]. That is, whether all actors, at least in theory or principle, have similar
capabilities for creating/maintaining ties of a certain strength and/or having a similar upper
ceiling with respect to the sum of such tie strengths. This is very closely related to the question of
how to determine which ties can be deemed important, strong, prominent etc. Can we determine
this uniformly for the whole network, for parts of the network, or should this be done per actor
or even at the dyadic level?

In more practical terms, when doing blockmodeling on networks where at least empirically
different relational capabilities exist (e.g. a notable variance in valued in- and out-degrees), two
interrelated questions must be addressed prior to the analysis:

• Does the perception of what constitutes a strong tie differ significantly among actors? Put
differently: do relational capacities differ among actors?

7 Also known as tie weights, particularly in the network science literature.
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• If so, do we want such differences in relational capacities to influence our results? Are such
would-be differences part of what we are looking for, or do we want to somehow discount
such differences in our analysis?

Depending on the response to such questions, a variety of transformations and metrics exist
that, with different variations in the specific conceptualization of equivalence, can be used in
the context of valued blockmodeling.

6.3 Transformations

Prior to blockmodeling valued networks, relational data are often transformed in various ways
to either adapt them to methods and heuristics that are primarily used for binary data or to assist
a method in assessing a specific kind of tie prominence. The most trivial transformation is that
of dichotomization: using a network-wide absolute threshold, the valued network is binarized to
which conventional heuristics and methods apply. Treating dichotomization separately in what
follows, other types of transformations have been used to cluster/blockmodel valued data. These
can be separated into element-wise transformations where the individual ties are transformed
independently of each other, or what we may call structural transformations where the transfor-
mation of a valued tie in some way depends on the properties of other valued relations in the
network.

Transformations of valued networks can be combined and applied at different stages of a
clustering/blockmodeling analysis of valued networks. Describing the various steps and pro-
cedural pathways for going from the raw valued network to clusters of actors, we propose the
schematic in Figure 6.1, mainly to show how the different steps described later in the chapter

Raw valued (interval-scale) data

Transformation(s)
Scalar, normalization, iterative 

normalization, deviations

Dichotomization

Binary clustering method
Standard direct and 

indirect approaches

Indirect (Euclidean, Pearson 

correlations, REGE, etc), direct 

(valued, homogeneity, deviational)

Valued clustering method

Figure 6.1 Procedures for clustering valued data.
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come together. In Section 6.6 we provide some guidelines (also in the form of a flow chart in
Figure 6.2) for selecting suitable approaches (including transformation).

We thus identify four main procedures for identifying clusters in valued networks:

• Raw valued data → dichotomization → binary clustering method → clusters
• Raw valued data → (non-dichotomous) transformation → dichotomization → binary cluster-

ing method → clusters
• Raw valued data → (non-dichotomous) transformation → valued clustering method → clus-

ters
• Raw valued data → valued clustering method → clusters

Once the clusters are defined and a blockmodel is created, the common final step (not included
above) is to interpret the blockmodel and the inter- and intra-block patterns of ties. Such block
and blockmodel interpretations can be based on the original valued data, the would-be trans-
formed data prior to clustering, or an additional post-clustering transformation.

The choice of transformations to apply to valued data before and possibly after clustering
might at times seem like a somewhat arbitrary decision, often based on what yields the most
intuitive, plausible, and interpretable results. Yet each transformation can be seen as the oper-
ationalization of a particular interpretation of prominence in the context of the valued network
being studied. An example of this interplay between different transformations and final inter-
pretations is found in Breiger’s study [15] of intra-OECD trade. When applying the CONCOR
algorithm (see below) to the same valued network of trade flows, but testing two different
pre-CONCOR transformations – a dichotomization that keeps the quintile of the largest ties,
and an iterative row-column normalization procedure – Breiger demonstrates how final inter-
pretations of a dataset are intrinsically tied to the transformation methods that are chosen. We
show a similar effect in our EFTA trade example.

In what follows, we look at various transformations that have been applied in the valued
blockmodeling context. Starting off with the element-wise scaling transformations and
dichotomization, we then consider normalization-based transformations and other structural
transformations.

6.3.1 Scaling Transformations

Apart from absolute-value dichotomization, various element-wise scaling transformations can
be applied prior to an analysis, transformations that thus retain the rank order of the valued ties.
An example is the world-system-inspired study of Mahutga [34] in which he analyzes inter-
national trade flows of various commodity bundles for five points in time between 1965 and
2000, i.e. valued networks whose unequal relational capacities among countries (e.g. as given
by the skewness of the tie value distributions) is a characteristic feature of the network. Deter-
mining regular equivalence using the REGE algorithm (see below), Mahutga applied a log-10
transformation of the commodity flow matrix prior to the algorithm that “maintains the relative
differences between countries while aiding the algorithm” [34, p. 1884]. Such transformations
are appropriate when the skewness or some other property of the tie value distribution is prob-
lematic in terms of the blockmodeling method later used, similar to, for example, using a log
transform prior to regression analysis.
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Figure 6.2 A “control chart” for choosing a suitable approach.
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6.3.2 Dichotomization

The most common transformation of valued data is to dichotomize them. Irrespective of when
the dichotomization is performed (see Figure 6.1), its feasibility hinges on the substantive
research question and the properties of the valued ties, particularly their distribution. For
ranked/ordinal data, where each value represents a particular strength, e.g. the quality or
intensity of a social tie [e.g. 28, 51], dichotomization is used to filter out that particular
strength of a tie. This is, we argue, the only case where dichotomization may be preferable
to using valued data. If the range of continuous values is constrained, e.g. when mapping
playtime among school kids during a 45-minute lunch break, it could be feasible to distinguish
prominent (1) and not-so-prominent (0) pair-wise interaction on the basis of a system-wide
absolute threshold. When theory offers no guidance on the suitability of such thresholds,
distributions/histograms of tie values and valued degrees can be useful for determining possible
thresholds. One can also try different dichotomization thresholds on the same valued network
and compare the findings: as was done, for example in [22].

Rather than choosing a given absolute threshold for dichotomizing valued data, this can also
be decided on the basis of total flow values. For instance, having sorted the valued ties in a
network, one option is to retain a certain share of the largest values [15, p. 361], i.e. pruning
away the corresponding share of the smallest values.

Dichotomization is not only directly applicable to raw valued data but can be, and often is,
used as a secondary transformation prior to clustering. For instance, whereas normalization can
be used to transform a valued network (see below), the normalized version of the network may
have to be subsequently dichotomized prior to finding clusters using binary-oriented methods
[see, e.g., 40]. As normalization and similar structural transformations are typically applied to
counter skewness in valued degree distributions, i.e. as an attempt to counter unequal relational
capacities among actors, choosing a dichotomization cut-off for the normalized version of the
network should be easier than with the raw valued network.

6.3.3 Normalization Procedures

Normalization is a structural transformation that rescales the individual dyads relative to the
values of other ties. It can be applied either prior to identifying clusters to assist a particular
clustering heuristic [e.g. 3, 15] or in the interpretation of blocks [e.g. 40]. Normalization can
either be done on the basis of individual actors and their immediate ego-networks or for the
entire network as a whole. The former type of normalization can be done with respect to either
inbound (column-wise normalization) or outbound ties (row-wise normalization). Normaliza-
tion is applicable to all types of valued networks, whether directional or symmetric, and can
include self-ties.

The most common type is marginal (or sum) normalization where each value is rescaled such
that the sum of all values equals a given constant (typically unity). A full-matrix marginal nor-
malization thus implies a rescaling of all relational values so that they sum up to unity. Although
this does not change the relative differences between values and thus retains would-be unequal
relational capacities, full-matrix marginal normalization is a useful transformation for compar-
ing two or more networks as it rescales the values of each network into a common standardized
value range. For instance, when comparing pupil interactions during a 45-minute break with
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those of a 1-hour break, full-matrix normalizations of both could allow for an easier comparison
of the two.

Row- and column-wise marginal normalization are transformations where, respectively, the
out- and in-degrees for each actor sum up to unity.8 In the above example on Germany’s exports
to Austria, a row-wise marginal normalization would thus transform this dyad to 0.078 whereas
a column-wise marginal normalization would transform it to 0.504. In these directional normal-
izations, the prominence of a tie is thus determined on a directional per-actor basis, indicating the
share of a tie value with respect to the total (in- or outbound) tie values. A marginal normalization
on rows (columns) is calculated by dividing each valued relation with the total valued outdegree
(indegree). If an actor has a zero out- or in-degree, its corresponding row- or column-normalized
values are in principle undefined, but often coded as 0.

For directional valued networks, assuming a lack of theoretically compelling reasons to only
look at outbound or inbound ties, another possibility is to combine the two marginal-normalized
matrices for rows and columns. In [40], given particular clusterings, both the row- and the
column-wise normalized matrices were analyzed simultaneously to determine occurrences of
regular blocks. Using a standardized threshold value, the row-regularity of blocks was identified
by looking at the row-wise normalized matrix while the corresponding column-regularity
was identified using the column-wise ditto. An alternative is to combine the row- and
column-normalized matrices into a common matrix. Adding the elements of the row- and
column-wise marginal-normalized matrices produces a matrix in which the cell values, ranging
from 0 to 2, indicate the total relative significance of a valued flow for both actors. In the
context of international trade, this composite metric has been used as a measure of the economic
importance of individual flows [21, p. 182]. In the case of the directional trade flow from
Germany to Austria (see above), this flow would then be transformed to 0.582.

Common alternatives to the marginal type of normalization are normalizations with respect
to the mean, maximum, Z score, and standard deviation, each applicable to the whole network
as well as the ego-centric normalizations with respect to in- and outbound ties, with or with-
out self-ties. Of these, the mean variety has an advantage in that it works in row or column
normalizations where actors might lack out- or inbound ties, whereas the marginal-, standard
deviation- and Z-score-based normalizations yield invalid results when an actors corresponding
in- or outdegree is zero.

6.3.4 Iterative Row-column Normalization

An extension of the above normalizations is to use the iterative row-column normalization
approach [see, e.g., 46, p. 267; 37, 42, 43]. Repeatedly normalizing the valued data by rows,
columns, rows, columns etc. will for most non-trivial data lead to a convergence where the sums
of both the row and column vectors, respectively, sum up to unity (for marginal-normalization)
or zero (for mean-normalization). The latter approach was used as a pre-clustering transfor-
mation by Breiger [15] and Baker [3]: whereas Breiger prepared his intra-OECD trade data
prior to applying the CONCOR algorithm, Baker used this iterative approach prior to the
Euclidean-based indirect measure of structural equivalence (see the next section).

8 For symmetric (non-directional) valued networks, the row-wise marginal-normalized matrix is the transpose of the
column-wise one.
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The choice between the marginal- and mean-type iterative normalization is not arbitrary;
instead, they are distinctly different transformations. The choice should primarily be made on
substantive grounds. While the results of marginal row-column normalization can be thought of
as values equivalent to raw ones in a hypothetical case where all units have exactly the same rela-
tional capacity, the meaning of “equivalent” for mean-based normalization is harder to assess. In
addition to the mean and marginal iterative normalizations, similar iterative convergences occur
when conducting row and column normalizations based on standard deviations (dividing each
element in the row/column by the standard deviation of that row/column) or Z-scores (subtract-
ing the mean from each element, subsequently dividing by the standard deviation). However,
contrary to what is the case for the mean and marginal varieties where it is irrelevant whether
the iteration starts with the rows or a column, that is not the case for the standard deviation and
Z-scores iterative approaches.9

6.3.5 Transaction-flow and Deviational Transformations

The dilemma of unequal relational capacities precedes contemporary network analysis and so
did the suggested solutions for distinguishing the prominent ties of a valued network from those
that could be deemed less prominent. Much of this work was in the context of international trade
and the much-debated transaction flow model and Relative Acceptance index of Savage and
Deutsch [45; also see 2, 29, 31]. Savage and Deutsch aimed to create a null (quasi-independence)
model of flow value probabilities that accounts for the individual distributions and magnitudes
of both imports and exports of each country.10 Contrasting these probabilities with actually
occurring flows, the dyadic Relative Acceptance metric could be used, they argued, to identify
interesting relations and segments of a trade flow network.

The Relative Acceptance metric was used as an indicator of dyadic prominence in several
studies [e.g. 14, 21, 31; cf. 38]. A modification of the index was proposed by Goodman [29]
where the null model of expected flows was based on the empirical topology: rather than assum-
ing a null model distribution among all possible alters, Goodman’s alternative restricted null
distributions to the existing topology. In the context of international relations, Brams found
that, although the default Savage–Deutsch null model might be feasible in the context of inter-
national trade, the Goodman variation and its assumption of a fixed topology was more useful
when looking at the size and distribution of inter-country diplomatic missions [e.g. 14, p. 883,
note 14].

While the Savage–Deutsch transformation has (to our knowledge) not been applied in block-
modeling, the deviational approach to valued blockmodeling suggested by Nordlund [41] shares
the same principal objective of transforming valued ties with respect to the relative share of in-
and outflows of each actor. Similar to the Relative Acceptance transformation, the deviational
approach is based on a model of expected flows on the assumption of no interactions. However,

9 The mathematical properties of Z-score-based iterative normalization is analyzed in [42], describing and exemplifying
the procedure by beginning with Z-score-normalization on rows. Their example transformation is done by starting with
columns: if starting with rows instead, following their own description, the transformed values differ quite substantially
from those obtained when starting the iterated normalizations with respect to columns.
10 This model could also be used to compute the expected values of cell values, which could then be used for normal-
ization (e.g. dividing the actual value with the expected).
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instead of transforming (through iteration) each valued dyad into a singular value, the devia-
tional approach analytically arrives at, for each valued network, two separate matrices capturing
deviations from expected values for, respectively, outbound (RD) and inbound (CD) flows. The
formulas are given and described in [41, p. 163].

As the deviational transformation produces two matrices rather than one, it is not immediately
useful for conventional direct and indirect clustering methods. Instead, Nordlund [41] proposes
both indirect and direct clustering approaches where both RD and CD are simultaneously used.
Apart from measuring the degree of equivalence and identifying subsets of equivalent actors,
heuristics for interpreting the resulting blocks based on both of these deviational matrices are
also suggested. These will be addressed in subsequent sections.

The deviations for corresponding cells in RD and CD are in many cases quite similar. In
the previous Germany-to-Austria trade example, this flow deviates positively for both, albeit
somewhat differently: from Germany’s perspective, this flow is 83% higher than expected
(rdDEU,AUT = 0.825), whereas this import flow to Austria is 120% higher than expected
(cdDEU,AUT = 1.199). In this example on intra-EU/EFTA trade (see below), there are also
examples of differences in the signs of the deviations. Whereas the trade flow from France
to Germany is 13% higher than expected from France’s point of view, it is 1.4% lower than
expected from Germany’s point of view.

6.4 Indirect Clustering Approaches

Capturing different specific notions of equivalence, indirect approaches and algorithms esti-
mate the degree of such equivalences for each possible pair of actors in the network. Having
established such measures of equivalence, suitable partitions of equivalent actors can then be
identified using cluster analysis, such as hierarchical clustering, where the number of equiva-
lent classes is either determined theoretically or guided by a suitable procedure for choosing an
optimal number of clusters (see [36] for an overview of such procedures). Whereas this general
procedure of indirect clustering methods is the same for binary and valued networks, below
we focus on common indirect dis(similarities) applicable to valued networks – two for struc-
tural equivalence and the REGE algorithms for regular equivalence. We also discuss specific
issues concerning valued networks when interpreting the resulting blockmodels derived from
such indirect methods.

6.4.1 Structural Equivalence: Indirect Metrics

For structural equivalence, defined as when two actors have the same relations (and lack thereof)
with their alters [33], the operationalizations of indirect measures are quite intuitive. In a sym-
metric network represented as a sociomatrix, the row or column vectors for each pair of actors
are compared with each other, whereas both the row and column vectors are compared for direc-
tional networks.11

11 For such comparisons of actors, profiles, there are different ways to cater for would-be self-ties [see, e.g., [53], p. 367].
Regardless of which metrics is used, it is important to pay special attention to self-ties (if present) and ties between the
two units being evaluated for equivalence by using corrected measures [8]. For example, in a directed network with
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Although there are many measures of (dis)similarity that are useful for valued networks (e.g.
Tanimoto, cosine, Manhattan etc. [see 25, p. 181ff]), the most widely used indirect metrics of
structural equivalence seem to be Pearson correlations and Euclidean distances. These indirect
approaches thus transform the original sociomatrix into, respectively, either a correlation matrix
(i.e. where a value approaching unity implies equivalence) or a distance matrix (i.e. where a
value approaching zero implies equivalence).

Whereas both Pearson correlations and Euclidean distances are used to capture notions of
the structural equivalence of actor-pairs in valued networks, they represent two slightly differ-
ent takes on what structural equivalence means. Comparing the two metrics [e.g. 52, p. 374],
the Euclidean distance (also called the “social distance” [see 19, p. 95]) metric is sensitive to
differences in means and variances of the tie values of two actors [26], while the correlation
metric caters for such differences. From this, the correlation-based indirect measure is oriented
to identifying similar profiles of alter ties [e.g. 52, p. 375], with the Euclidean metric of struc-
tural equivalence instead capturing similarities with respect to tie strengths. This is exemplified
in [41] where blockmodels stemming from, respectively, the correlation- and Euclidean-based
indirect metrics are compared for Baker’s citation data [3]. Whereas the Euclidean-based metric
of structural equivalence produces clusters of actors with similar gross (in- plus out-) degrees, the
clusters arising from the correlation-based indirect metric contained actors with wider variations
in (unequal) relational capacities.

6.4.2 The CONCOR Algorithm

Building on the above indirect measure of structural equivalence, the CONCOR algorithm is an
iterative algorithm that builds on the phenomenon of the convergence of iterated correlations. As
an independent co-discovery of Breiger and Schwartz [16, 46], the phenomenon of convergence
of iterated correlations had previously been observed by McQuitty [35].

Starting with the correlation-based indirect measure of structural equivalence (see above), the
CONCOR algorithm repeats correlating the correlation matrix. With few exceptions, this pro-
cedure converges to a matrix that contains only positive and negative unity, these corresponding
to partitioning the network into two, arguably structurally equivalent, clusters. The CONCOR
algorithm can then be applied to each of these subsets, further partitioning the network in a
hierarchical fashion.

As the CONCOR algorithm is based on correlations, it works for both binary and valued
networks. This implies it is sensitive to differences in the means and variances of the valued rela-
tions of actors, i.e. there is an emphasis on similarities in the patterns rather than the strengths
of ties. However, although the CONCOR algorithm has seen extensive use [see 16, 39, 50, see
32, for an extensive example], it has some well-known problems. First, CONCOR always pro-
duces a dual partition. For networks containing three very accentuated and similar clusters, the
CONCOR algorithm always yields a split into two parts. Second, the choice of clusters for sub-
sequent CONCOR splits can be arbitrary. In [50], the choice of which clusters to split was based
on the size of the remaining clusters, implicitly assuming that the sets of structurally equivalent
clusters would be similar in size. Third, the CONCOR algorithm can be quite sensitive to small

self-ties, if units i and j are to be structurally equivalent, tie i → j should be equivalent to tie j → i and self-tie of i to
self-tie of j.
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variations in the input data. This was demonstrated in Breiger’s study [15] of OECD trade data:
applying the CONCOR algorithm to both raw trade data and means-based iterative row-column
normalized data (see the previous section), he found significant results in the partitions suggested
by and derived from the CONCOR algorithm.

6.4.3 Deviational Structural Equivalence: Indirect Approach

Whereas the indirect approaches described above are applied to individual12 matrices, these
matrices can, as shown in the previous section, be subject to various types of transformations
prior to clustering. However, as the deviational transformation yields two transformed ver-
sions of the original valued network, the standard indirect methods do not apply. Adapting the
standard correlation-based formula to cater for both the RD and CD deviational matrices (see
Section 3.5), Nordlund [41] proposed an indirect measure of deviational structural equivalence,
where row and column vectors were analyzed by looking at, respectively, the row-based (RD)
and column-based (CD) deviations [41, p. 165].

Once calculated for each pair of actors, this indirect measure of deviational structural equiva-
lence is then subject to hierarchical clustering or a similar method for finding equivalent actors.
Both RD and CD are used in the subsequent interpretation (i.e. the identification of complete
and null blocks) of the resulting blockmodel (see below).

6.4.4 Regular Equivalence: The REGE Algorithms

While structural equivalence implies having the same patterns of ties to individual alter actors,
regular equivalence implies having the same patterns of ties to actors that are themselves equiv-
alent actors (White and Reitz 1983). Unlike how structural blockmodeling examines a block-
model for complete (filled with ties) and null (void of ties) ideal blocks, regular blockmodeling
replaces the former with ideal regular blocks, meaning blocks where each row and column,
respectively, contain at least one tie. Formulated by Sailer [44], regular equivalence was further
developed by White and Reitz [53]. White and Reitz [53] also proposed the REGE algorithm
as an indirect method for measuring regular equivalence between pairs of actors. Through an
iterative point-scoring procedure, the algorithm measures how well the relations of each pair of
actors match each other in terms of both the strength and equivalence of the actors on the other
end [53; 52, p. 479ff; 11, 13, 57]. A limitation of the REGE algorithms is that they only search
for maximal regular equivalence.13

The notion of regular equivalence and the definition of a regular block is specified for binary
networks. For formal definitions for valued networks, see [57]. Although the REGE algorithm

12 With the caveat of multiplex networks: the classical indirect measures of equivalence presented here also have imple-
mentations for networks with multiple layers of relations. For such situations, the resulting measures of equivalence
thus represent a composite measure of equivalence for each layer. Examples of such applications are the classical series
of world-system studies [34, 39, 49, 50], where multiple types of international relations and commodity classes were
simultaneously analyzed when identifying structurally and regularly equivalent countries.
13 Maximal regular equivalence is the regular equivalence where the classes are the largest possible. For binary networks,
this also means that REGE algorithms are appropriate for undirected connected networks (no isolates), as then all units
represent one regular equivalence class.
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applies to both binary and valued data, it has been shown to have some shortcomings, particularly
when it comes to valued networks. Due to the workings of the matching function in REGE, a few
similar ties of large magnitudes could very well dwarf several similar ties of lower magnitudes
[see 11, 13]. The REGE algorithm thus tends to emphasize the strengths, rather than the patterns,
of ties when estimating the degree of regular equivalence between pairs of actors. As noted by
Žiberna [57], more than one variant of the REGE algorithm exists.

6.4.5 Indirect Approaches: Finding Clusters, Interpreting Blocks

As the above-mentioned indirect methods result in dyadic measures of equivalence, the
definition and interpretation of equivalence depend on the chosen metric and would-be
pre-cluster transformations. The partition of the correlation and distance matrices derived
from, respectively, correlation- and Euclidean-based indirect measures also depends on the
chosen clustering method. Although agglomerative hierarchical clustering is often used to
delineate clusters of equivalent actors, the choice of the agglomeration method, i.e. single-link,
complete-link, weighted/unweighted average, Ward etc., also affects the resulting partition. In
addition, the choice of selecting a suitable number of clusters remains, a choice that can be
informed by theoretical considerations, a review of different partitions, or procedures or indices
for determining the number of clusters, or a combination of these. These issues concerning
indirect-based partitioning apply equally to binary as well as valued networks and are thus not
discussed here further.

Once a clustering and a corresponding blockmodel have been established, the subsequent
step is typically to interpret the resulting blocks. For binary networks (including pre-cluster
dichotomized valued networks), such interpretations are fairly straightforward, i.e. by compar-
ing how the patterns of binary ties compare to the set of ideal blocks for structural, regular, or
generalized equivalence. The comparison between valued empirical blocks and such ideal block
types is more complicated where valued networks are involved. Žiberna [55, p. 108] specified
ideal blocks for valued networks, which are only applicable in cases where raw values are com-
pared (e.g. in terms of indirect approaches, if Euclidian distance-based matrices are used and
not correlation or deviational based ones). When using homogeneity blockmodeling and struc-
tural equivalence, this means the blocks are represented and interpreted based on block means
(or some other central values) of original and/or transformed data (if a transformation was used
prior to blockmodeling). Using block means is also common and very suitable for Euclidean
distance-based approaches (for valued or binary networks).

To match empirical valued blocks with the set of ideal binary blocks, post-cluster
dichotomization can be employed. This can work well if the notion of equivalence includes
magnitudinal differences of tie strengths, e.g. how the indirect Euclidean measure of structural
equivalence (and perhaps also the REGE algorithm) works. If the chosen indirect method
does take unequal relational capacities into account, e.g. such as the correlation-based metric,
post-cluster dichotomization using a system-wide threshold of the raw valued data will
emphasize the strength of ties when identifying various ideal block types. However, if a
pre-cluster transformation for countering unequal relational capacities is applied, a post-cluster
dichotomization of these transformed values could be used to identify prominent tie patterns
for comparison with the ideal binary blocks.
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To identify regular blocks in valued networks, Nordlund [40] proposes a post-cluster heuristic.
Given a determined partition into regularly equivalent subsets, the raw valued data is normalized
into, respectively, both a row- and column-normalized matrix (i.e. RN and CN above). Regular
blocks are then identified by checking for row regularity in the RN matrix and column regularity
in CN. Although determining tie prominence on the basis of both actors in a dyad, the heuristic
involves dichotomization in this step as a standardized threshold is used to distinguish prominent
and non-prominent ties.

Finally, for indirect deviational blockmodeling, Nordlund [41, p. 166] proposes that promi-
nent ties be identified by looking at the signs and magnitude of deviations in both RD and CD.
As the deviation for a valued tie may differ between RD and CD, i.e. depending on the actor
in the dyad, the approach could result in valued ties being categorized as neither prominent nor
non-prominent, but non-determined. Density block images based on this approach could thus
result in blocks where the densities are expressed as ranges rather than precise values.

6.5 Direct Approaches

Direct approaches search for a partition based on criterion function that directly analyze network
data, as opposed to indirect approaches that work on some (dis)similarity metrics computed
from such raw data. Here we focus on generalized blockmodeling, especially the approaches
for valued networks, including the deviational direct approach.

6.5.1 Generalized Blockmodeling

Generalized blockmodeling (for binary networks) has already been broadly discussed in the
book Generalized Blockmodeling [25] and numerous other papers [e.g. 5, 7–10]. Generalized
blockmodeling is a direct approach, meaning that a criterion function measures inconsistencies
between an empirical partitioned network and one (or more) possible ideal blockmodel(s). In
generalized blockmodeling, equivalence is defined by a set of allowed block types, which can
either be set globally for the whole network or individually for each block. A block forms part
of the network/matrix that represents ties from one cluster to another (these two can also be the
same, i.e. blocks can also represent ties within a cluster). For each block, out of a set of allowed
block types (which might also be only one), the block type with the minimum inconsistency
vis-à-vis the empirical block in the same position is selected. The value of the criterion function
for the whole network and a partition is then the sum of these block inconsistencies for all
blocks.

The partition is optimized (by testing a large number of different partitions) so that the value
of the criterion function is as low as possible. In the original as well as most other versions of
generalized blockmodeling, relocation algorithms are used to optimize the criterion function
[10, 25, 55, 60], although other attempts also exist [17, 18, 20]. For such relocation algorithms,
the number of clusters must be set in advance.

There are several approaches to generalized blockmodeling. Each approach to generalized
blockmodeling has its own logic concerning how the inconsistencies between empirical and
ideal blocks are computed. Furthermore, each also defines a set of possible allowed block
types. For binary, valued, and homogeneity blockmodeling (see below), these and their respec-
tive methods for calculating inconsistencies are presented in [55, Tables 2 and 3]. Implicit
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blockmodeling [6, 56, 58] is not discussed here as we find that other approaches are usually
more appropriate, while approaches for signed networks [24] are discussed in Chapter 8. The
deviational direct approach [41] is discussed in a later section. In this chapter, we only present
the main ideas entailed in the selected blockmodeling approaches.

Binary blockmodeling only treats ties as either prominent (present) or non-prominent (not
present). The inconsistencies are essentially computed as the number of times a tie is present
where it should not be (based on ideal blocks) or vice versa. However, as ideal blocks are
specified in terms of binary ties, the approach of computing the inconsistencies between the
observed and ideal ties cannot directly apply to valued networks unless the valued ties have
first been dichotomized appropriately. The question of whether it is appropriate to apply binary
(generalized) blockmodeling to a valued network is thus often a question of whether some
dichotomization transformation is appropriate (see Section 6.3).

6.5.2 Generalized Blockmodeling of Valued Networks

While valued blockmodeling is in essence similar to its binary counterpart in terms of
“classifying” ties as either prominent or not, it also takes the value of the tie into account in
such classifications. Therefore, the inconsistencies are computed as the sum of deviations from
either 0 (when according to an ideal block a tie should not be present) or from a threshold we
call m that determines, when a tie is considered prominent, if the tie should be present. Of
course, when a tie should be present, values exceeding m do not cause inconsistencies. In the
classical setting, a tie lower than m∕2 is considered closer to being non-prominent and one
higher than m∕2 is considered closer to being prominent. Obviously, m is a parameter that must
be selected by the researcher based on what can be considered a prominent tie. While some
suggestions for how to select the value of the m parameter based on empirical data were given
by Žiberna [55, 56], it is noted that valued blockmodeling is probably not appropriate when m
cannot be selected based on what constitutes a prominent tie. Examples of how m was selected
based on which ties we want to be treated as relevant can be found in the example section in
the EIES friendship data and (after normalization) in the EFTA trade data.

Homogeneity blockmodeling is quite different because it does not “separate” ties into promi-
nent or non-prominent, but simply strives to have selected values be as homogenous as possible.
These selected values could be all tie values in a block (as in the case of complete blocks), values
of some function over rows or columns (as in the case of f -(row/column) regular blocks) or some
other set of values. Therefore, the inconsistencies are measured by some measure of variability.
Sum of squared deviations from the mean and sum of absolute deviations from the median were
suggested by Žiberna [55] and are used within this approach. The sum of squares approach is in
the case of structural equivalence very similar to using average within-block variance suggested
by Borgatti and Everett [12] as measure of blockmodel fit. The main advantage of using a mea-
sure not normalized by the size of a block (sum of squares) compared to using the normalized
one (variance) is that the “errors” in small and large blocks have equal weight. The advantage of
the sum of squares approach over the absolute deviations one is that mean is taken as a represen-
tative value (which is usually desired), while the advantage of the absolute deviations approach
is that it is less sensitive to extreme values. For that reason, the sum of squares approach is usu-
ally the “default” option, leaving the absolute deviations approach to be used when we wish to
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reduce the effect of more extreme values like in one case seen in the EFTA trade example. Yet
they often produce similar results.

One of the primary advantages of homogeneity blockmodeling is that there is no need to
specify any parameters in advance (like the m parameter or the dichotomization threshold),
while a disadvantage is that the compatibility of some block types is questionable. Originally,
the approach also suffered from the so-called null block problem, caused by the fact that
the null block in homogeneity blockmodeling is technically speaking a special case of the
complete block (i.e. where all tie values are “homogenous” to 0) and thus only “identified” in
real networks if the null block was without error. Yet this problem was solved later [59] by
so-called restricted blocks where the value from which the deviations are computed is restricted
to be no less than some pre-specified value. These restricted blocks (complete, f -regular,
etc.) can be used instead of the classical blocks where we would like to identify null blocks
(including imperfect ones). The characterization of ideal blocks and formulas for computing
block inconsistencies for binary, valued and homogeneity blockmodeling are presented in [59,
Tables 1, 2, and 3].

6.5.3 Deviational Generalized Blockmodeling

Just like in generalized blockmodeling described above, deviational generalized blockmodeling
[41] searches for an optimal blockmodel with ideal blocks reducing a penalty function contain-
ing the total number of inconsistencies between ideal and empirical blocks. Allowing for the
same set of ideal binary blocks as in (binary) generalized blockmodeling, the differences lie in
how the various penalty scores are calculated and how the ideal blocks are identified. Begin-
ning with the deviational transformation resulting in the row- and column-based deviational
matrices (RD and CD, see Section 3.5), these two matrices are then dichotomized into binary
versions (RB and CB). The default (recommended) dichotomization here is simply based on
the sign of the deviations in RD and CD, but one can also apply either a one-sided (positive)
or two-sided (positive and negative) threshold to find prominent and non-prominent ties. In the
case of a two-sided threshold, non-determined ties can also appear [see 41, p. 164]. The penal-
ties for different ideal blocks are calculated by looking simultaneously at both of these binary
matrices (RB and CB) [see 41, p. 165]. Apart from the standard set of ideal blocks as found in
generalized blockmodeling [e.g. 25, p. 187], complete and null blocks exist in both a strong and
weak variety, depending on whether the criteria for the respective block is fulfilled in either, or
both, deviational matrices.

Since deviational blockmodeling allows for ties to be neither prominent nor prominent, but
also non-determined/contradictory, the approach also provides measures of interpretational
uncertainty for each ideal block type [see 41, p. 165]. Given that such ties could mean
that the sign of the deviation in RD and CD differs, these uncertainties are thus kept out
from the actual penalty function. For generalized deviational blockmodeling, it is suggested
that the sign of deviations is used when converting from RD/CD to RB/CB, finding the
optimal blockmodel(s), and then increasing a two-sided deviational threshold until the total
uncertainty score for the blockmodel increases. We can then state that a particular blockmodel
is certain up to a specific two-sided deviational threshold, thus turning the inbound cutoff
parameter into an outbound indicator of overall interpretational certainty for the blockmodel
[41, p. 164].
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6.6 On the Selection of Suitable Approaches

No study is the same-research questions, notions of equivalence, relevant aspects, and, of course,
datasets vary between studies, making it difficult to provide the analyst with analytical schemat-
ics and rules of universal relevance. With the particular dilemmas pertaining to valued networks
and the plethora of transformations and metrics available, this is even more the case with block-
modeling and clustering of valued networks. That said, we offer some guidelines we believe are
generally applicable.

Whereas indirect approaches aim to capture notions of equivalence independently of how
the resulting blockmodels appear, direct approaches identify suitable partitions and clusters on
the patterns of ties of the final product, i.e. the blockmodel. Although effective search algo-
rithms exist for finding partitions with low penalty scores, direct approaches are typically very
time-consuming [25, p. 134], especially for large networks. Although such direct search algo-
rithms should be run multiple times using different random starting partitions, they could end
up with less-than-optimal solutions, i.e. where the criteria/penalty function reaches a local mini-
mum. This problem is confounded the bigger the network is. Accordingly, direct approaches are
mostly useful for relatively small networks while the indirect methods are better suited to deal-
ing with large networks. What constitutes a small network and what a large network of course
depends on computing power. We thus suggest using direct approaches when they can be esti-
mated within a reasonable time. However, if we want the result to match a certain pre-specified
blockmodel (e.g. hierarchical model, cohesive groups, core-periphery), generalized blockmod-
eling must be used (unless specialized approaches exist).

For blockmodeling valued networks, the choice between clustering methods and possible
transformations must be based on the interpretation of the tie strengths and actors. If tie values
have an equal interpretation across actors, such as when measuring playtime among pupils dur-
ing a 45-minute lunch break, our general recommendation is to use the direct approaches for
valued networks or distance-based measures (e.g. Euclidean) together with indirect approaches.

However, when actors seem to have unequal relational capacities, for instance as revealed
by examining the distributions of tie values and/or valued degrees, another question must be
addressed: should such relational capacities influence the result or not? If we perceive such
differences as part of what defines equivalence, we once again recommend classical direct
approaches and distance-based indirect measures applied directly to the raw valued data. If we
wish to discount for such unequal relational capacities, we recommend the deviational direct
approach and the correlation-based indirect measure or the application of a suitable transfor-
mation as described above prior to applying a more classical direct or indirect approach. For
instance, in our EFTA trade example, we used iterative row-column marginal normalization
and on this normalized network used “classical” direct approaches, more specifically valued
and homogeneity blockmodeling.

To provide general guidance regarding the choice of suitable clustering approaches for valued
networks, we propose the control chart shown in Figure 6.2, which comes with two caveats. First,
the chart and its recommendations are only approximate and each decision should be taken after
also considering other factors, at least the aim of blockmodeling in the specific case and the exact
meaning of the data. Second, the figure in most cases does not provide an exact decision, e.g.
the exact transformations are not specified and the choice between direct and indirect methods
remains open. We have given guidelines on these and other aspects above or in particular sections
of this chapter.
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In the examples that follow, we test different approaches on two different valued networks. As
is evident in these examples, two or more approaches can be equally “good”, all depending on
whether their respective clustering methods and pre- and post-cluster transformations capture
what we intend to capture in our analysis.

6.7 Examples

In this section, we analyze two example networks: data on EIES friendship in time period 2 [28]
and intra-EU/EFTA commodity trade in 2010 [41]. Whereas the trade data contain actors with
unequal relational capacities, the Likert scale of the EIES friendship data depicts a network in
which the actors, at least in theory, have equal capacities for specifying their outbound tie values
and where each value on the scale corresponds to a specified degree of acquaintance.

We also exploit the simplicity of the first example (in the sense that no normalizations are
used) to allow us to present its matrix partitioned into a larger number of clusters, on one hand
using them to justify our selection of the number of clusters and, on the other, using them to
allow readers to decide whether they agree with both our suggestions and the number of clusters
based on scree plots.

6.7.1 EIES Friendship Data at Time 2

The first dataset on which we demonstrate the use of valued blockmodeling techniques is
Freeman’s EIES14 acquaintance network at time point 2 [28]. The data were gathered in 1978
among researchers working on social network analysis. They were first introduced to a system
for computer conferencing. Three networks were collected, two of which are acquaintance
networks, one gathered at the time of introducing the system and one (which we are using here)
after using the system for 7 months. In addition, the number of messages sent using the system
was recorded (which we do not use). As mentioned, here we only use the data at the second
time point for acquaintance data for 32 researchers. The acquaintance data were gathered using
a survey where the participants answered using a 5-point scale coded as:

• 0 – a person who is unknown to me (or no reply)
• 1 – a person I’ve heard of, but not met
• 2 – a person I’ve met
• 3 – a friend
• 4 – a close personal friend

The Freemans [28, p. 367] warn that “[s]ince most of the participants were American speak-
ers of English, it is difficult to determine whether their use of the term ‘friend’ refers to an
affect-based tie. Americans tend to use that term to describe anyone from the most superfi-
cial acquaintance to a trusted lifelong intimate”. The coding is, of course, important for inter-
preting the results, but also for selecting various parameter values such as the threshold for
dichotomizing networks (for use with approaches for binary networks) or the m parameter of
valued generalized blockmodeling.

14 EIES data obtained from https://sites.google.com/site/ucinetsoftware/datasets/freemanseiesdata.
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This may be considered a classical set of social science network data where the ties represent
social relations that are usually measured with a questionnaire. It is also an example of a dataset
where at least theoretically the relational capacities are equal for all respondents. Of course, one
could argue that these do at least partly differ by respondents. However, these differences are
typically not huge and, secondly, are not deterministically pre-determined (like in, for example,
trade flow data, where a small country simply cannot trade as much as a big country). Therefore,
in such cases the use of a normalizing technique (or methods directly suitable for networks with
different relational capacities) is neither needed nor desired.

Such data can therefore be directly analyzed using methods for blockmodeling valued net-
works, i.e. without initial value transformations, and depending on the analyst’s interest, the use
of a network-wide dichotomization threshold could indeed be appropriate. One should note that,
strictly speaking, the measurement scale used here is ordinal. However, as methods for block-
modeling valued networks assume at least an interval measurement scale, we treat these data
here as interval scale data when applying generalized valued blockmodeling. Treating ordinal
scales as an interval is often better than alternative solutions [61].

The classical approach to dealing with such data is to dichotomize the data. If we are explicitly
interested in values above a specific threshold, for instance “friend” and above in the EIES data,
dichotomization is indeed reasonable. Here the use of ties with a value equal to or greater than
“friend” (3) seems natural, although other values might also be reasonable for certain purposes.
Another reason for using this threshold here is that using a higher threshold (e.g. treating only the
“close personal” friend values as ties) would be too stringent and result in just 51 ties, yielding
a network density of 0.051 and an average in-out degree of 1.6.

For small (relatively dense) friendship networks, the structural equivalence model is appropri-
ate.15 Moreover, since the network is small, direct approaches are the most suitable.16 Therefore,
binary generalized blockmodeling according to structural equivalence was used on these data.

One question in need of answer is how to choose the number of clusters. We chose the
number of clusters after reviewing the results for partitions into different numbers of clus-
ters and after checking the scree diagram of criteria values at different numbers of clusters,
all shown in Figure 6.3. Based on the scree diagram, four clusters seem appropriate (the curve
“breaks” at 4, where subsequent additional clusters do not decrease the criterion function as
much) and looking at the partitioned matrices confirms this result, as a five-cluster solution does
not seem to increase the clarity of the block much. The four clusters that are obtained may be
described as:

• Cluster 1: The most “popular” singleton cluster (i.e. containing a singular actor), with recip-
rocal ties to all actors in cluster 3.

• Cluster 2: A large cohesive group that also has relatively numerous ties (especially outgoing)
to units from other groups.

• Cluster 3: A smaller cohesive group with reciprocal ties to the most popular unit.
• Cluster 4: A peripheral cluster – the least internally connected cluster, mainly connected to

the singleton cluster 1.

15 In addition, in this chapter we focus on issues connected to using valued data and therefore, as a rule, are sticking to
the simplest equivalence that makes sense usually structural equivalence.
16 In general, direct approaches are suggested unless the size of network is too large to be analyzed in a reasonable time
with these approaches.
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Figure 6.3 Binary generalized blockmodeling.

The number above the matrix plot indicates the number of clusters. In matrices, the valued
network is plotted. The ties that were converted to 0s in the dichotomization are represented by
shaded cells, while the ones converted to 1s are represented by shaded completely filled cells.

Binary blockmodeling applies if we are strictly interested in ties above a certain level, e.g.
“friends or more” above. Yet if we are more interested in acquaintanceship in general, we could
use valued blockmodeling on the assumption that the data are at least on an interval scale (i.e.
each step between Likert-scale responses corresponds to the same degree or depth of acquain-
tanceship, for this purpose, the m parameter must be set. On one hand, m should be set to a
value that means the two units are strongly connected, or at the maximal range of the scale.
Both of these rules would suggest 4 is a suitable value. However, a more precise (and perhaps
complicated) rule is that m should be set so that tie values closer to m than to 0 can be considered
prominent, which compared to binary blockmodeling suggests using double the threshold that is
used for dichotomization. This rule leads to the selection of m = 5, which is a more appropriate
value although it means no tie can achieve this criterion17 [55]. However, the advantage is that
ties 3 and 4 (i.e. “a friend” and “a close personal friend”) will be considered prominent and ties
0, 1, and 2 (i.e. a person they have only met or even less) will be considered non-prominent.

The results are presented in a similar fashion as for the binary blockmodeling in Figure 6.4. In
this case, the scree diagram suggests three clusters (or at least eight) and, based on the review of
the matrices partitioned into several clusters, this seems reasonable. However, after also inspect-
ing the image matrices (Figure 6.5) we would opt for four or five clusters. We usually omit the

17 It also follows from this that complete blocks will have an inconsistency of at least the number of ties in the block.
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Figure 6.4 Valued generalized blockmodeling with m = 5. The number above the matrix plot indicates
the number of clusters.

1

2

3

1 2 3

3

1

2

3

4

1 2 3 4

4

1

2

3

4

5

1 2 3 4 5

5

Figure 6.5 Image matrices for valued generalized blockmodeling with m = 5. The black squares indicate
complete blocks and the white squares indicate null blocks. The number above the matrix plot indicates
the number of clusters.

presentation of the image matrices to save space, yet here they were the reason that four or five
clusters are suggested. While in the three-cluster solution it seems that no clusters are connected,
the image matrices for the four- and five-cluster partitions show the first cluster (the single-most
connected individual) has ties to cluster 3 and from all clusters but cluster 2 (and itself). Here we
focus on four clusters for comparability with the results of the binary blockmodeling, although
the five-cluster solution does find a new small cohesive group from the units from the peripheral
cluster. In the case of four clusters, the interpretation of the clusters remains the same as for the
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binary blockmodeling. The membership of clusters is also very similar, only two units from a
smaller cohesive group and a peripheral cluster change places (units 14 and 21). Unit 14 has
all its prominent ties to or from the small cohesive cluster valued at 4 and most of its binary
non-ties valued at 2 (almost relevant), which causes it to move into this cluster. On the other
hand, unit 21 has all its binary ties to or from this cluster valued at 3, which was not strong
enough evidence in the valued case.

Other approaches were also tested on this dataset. These included the indirect approach using
corrected Euclidian distance [8] with p = 2 with Ward and complete hierarchical clustering and
sum of squares homogeneity blockmodeling according to structural equivalence [55]. As the
correlation measure and various transformations (including deviation based) are theoretically
unsuitable, we do not present their results here. The four-cluster results for these selected meth-
ods together with the selected partitions that were previously presented are shown together in
Figure 6.6.

The first partition was obtained using binary blockmodeling and is the same as in Figure 6.3,
but here it is drawn on the valued network without any modifications, showing that the possible
impression of clarity (based on Figure 6.3) might be false. Comparing this partition to the valued
blockmodeling one with m = 5 (the next figure), we see they are indeed very similar. This is
expected because in both approaches values 0, 1, and 2 fit better in the null block and values 3
and 4 in the complete block. The only difference between these partitions is seen in the binary
partition, where unit 14 is in the fourth cluster, while unit 21 is in the third, while these units
are exchanged in the valued m = 5 partition. The reason for the difference should be searched
for in the diagonal block of the third cluster, which in both solutions is classified as complete.
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Figure 6.6 Four-cluster partitions by selected approaches.
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Unit 21 has five 3s and four 2s as ties to or from other units of the third cluster. This makes
it indifferent to these ties being in the null (fourth cluster) or complete (third cluster) block in
both approaches. On the other hand, unit 14 has four 4s, five 2s, and one unity tie as ties to
and from units from the second cluster. Given that there are more ties below 2.5 than above,
this fits better than the null block in the binary approach. However, the sum of distances to 5 is
23, which is less than the sum of distances to 0, which is 27. This makes these ties better fitted
for the complete blocks in the valued m = 5 approach. The third figure also captures a valued
blockmodeling partition, although here the value of m = 4 is used. This means that now value
2 (“a person I’ve met”) is as close to complete as it is to the null block. Consequently, complete
blocks become larger.

In the bottom row, approaches based on sum of squares or (corrected) Euclidian distance
are presented. All these tend to cluster units together with exactly the same tie values and thus
the blocks in these partitions are much more homogenous. This is especially evident in the
blocks from the first to the second and third cluster, which contain almost only 2s in these
solutions (especially homogeneity sum of squares and Ward’s solution). In particular, the results
of sum of squares blockmodeling and Ward’s hierarchical clustering are very similar, which is
expected because both try to minimize sum of squared deviations from the mean, for which the
homogeneity generalized blockmodeling approach is more successful. For example, based on
this we can see that units of cluster 1 are friends (or more) with each other and some of them
with selected units from cluster 4, who have met practically everyone. On the other hand, units
from cluster 3 have very mixed relationships with each other, although they all have met or are
even friends with people from clusters 1 and 2 and have often not even heard of (and have at
most met) people from cluster 4. The results of the complete linkage hierarchical clustering are
included here mainly to demonstrate that the choice of the hierarchical clustering approach has
a big effect on the final result.

To conclude, in this example we find valued blockmodeling (with m = 5) the most appropriate
method, although binary blockmodeling (with threshold 2.5) comes close behind. Both methods
try to find groups that have either a friendly or non-existent relationship with each other, which
we find more important than the homogeneity of the ties in this example. The advantage of val-
ued blockmodeling is that it considers how far ties are from these “ideal” (friends, non-existent)
states.

Sum of squares blockmodeling can, on the other hand, provide additional insight by trying
to find as homogenous blocks as possible, which would be relevant if we were also interested
in other levels of the continuum and not only in whether they are closer to being friends or not
having a relationship.

6.7.2 Commodity Trade Within EU/EFTA 2010

This example consists of the total bilateral commodity trade between the 30 countries within EU
and EFTA for the year 2010 [41]. This network is almost a complete graph, having a topological
density of 99.8%. Stated in millions of US dollars, tie values range from 1 to 103,434, with a
mean of 3954, a median of 483, and a standard deviation of 10,749.

If binary blockmodeling were to be used on this almost-complete graph, some kind of
dichotomization would be necessary. On such a rich valued dataset, we think this should really
be avoided.
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As is almost a characteristic feature of international trade data, the actors (countries) in
this network have vastly different relational capacities. Even if we assume that countries are
equally integrated into the global economy, their economies are hugely different in magnitude,
resulting in widely different perceptions of what constitutes an important trade flow for each
country.

As seen in the previous section on transformations, there are several ways to take the values
into account. One way is to simply use the raw data: as argued by Smith and White [49], the
normalization of trade data could introduce artifacts for small flows, and the magnitudinal dif-
ferences between countries constitute an important aspect of the trading system at large. While
we agree with this, suitably transformed data (before or within the clustering procedure) can
reveal different aspects of the data. In this example, we demonstrate which kinds of results
and insights can be obtained by following both paths and explore several options along both
paths. However, in all cases we focus only on structural equivalence. As our emphasis here is
on transformations, not many clustering techniques will be applied. We begin by analyzing the
raw data.

6.7.2.1 Analyzing Raw and Scaled Data

Since there are no theoretically given threshold for values to be considered as relevant,
homogeneity generalized blockmodeling or equivalent direct approaches are the most appro-
priate. Due to the, in principle, superiority of direct approaches, we concentrate more on them.
Therefore, we first use both homogeneity approaches, that is, sum of squares blockmodeling
and absolute deviations blockmodeling, on the raw data.

Figure 6.7 shows the results of the sum of squares approach. Based on the scree diagram and
a review of several solutions, we deem the four-cluster solution the most appropriate. However,
regardless of the number of clusters a core-periphery structure is revealed whereby the core
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Figure 6.7 Results of sum of squares blockmodeling.
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countries are those with larger trade. In the four-cluster solution, the clusters are as follows,
named using the traditional trimodality used in world-system analysis:

• Dominant: Germany, having the strongest ties to practically all countries, especially to those
in the other core cluster.

• Core: France, Netherlands, Great Britain, Italy, Belgium. These are strongly linked to
Germany and with each other. The Semi-periphery also trades with them.

• Semi-periphery: Spain, Switzerland, Austria, Poland, Sweden, Czech Republic. These have
very weak ties with each other, somewhat stronger ties to the Core and the strongest ties to
Germany.

• Periphery: All remaining countries. Very weak ties to most countries, with some exceptions
(especially with Germany).

As these results and especially Figure 6.8 show, the cluster membership is practically deter-
mined by the combined trade volume (the valued degree is computed as the sum of all incoming
and outgoing ties).

One could rightly argue the clustering obtained above is heavily influenced by the different
relational capacities of the countries. This could indeed constitute the main aspect of the struc-
tural equivalence we wish to capture, and the above methods seem adequate for capturing such
differences. However, the relative influence of such differences when determining structurally
equivalent actors can be reduced by applying a suitable scaling transformation. This is what
Mahutga [34] did with his trade flow data when he applied a log-transformation prior to clus-
tering. For our EU/EFTA trade flow example, Figure 6.9 shows that log-transformations indeed
bring the distribution of the tie values much closer to a normal distribution. The requirement
for this transformation is that all values are positive. In our example, we have two exceptions
to this because both trade flows between Iceland and Cyprus are 0. To avoid the problem of an
undefined logarithm, we added 1 to all tie values. If these values were to be lower than 1, the
logarithm would be negative, although this does not pose a problem for homogeneity and simi-
lar approaches that can handle negative tie values. The smaller this value compared to what the
smallest non-zero value in the network will be (in our case, we made it the same as the smallest
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Figure 6.8 Valued gross degree (in- plus outdegree) of countries ordered by a four-cluster sum of squares
solution. Dotted lines indicate cluster borders. The results are very similar if we use absolute devia-
tions blockmodeling, although the size of some clusters changes (mainly a few countries move up in the
hierarchy).
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Figure 6.9 The distribution of the original and log-transformed tie values.
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Figure 6.10 Results of sum of squares blockmodeling on the log-transformed network.

non-zero value), the bigger the distinction between the zero ties and the other (non-zero) tie
values. The results of this analysis are presented in Figure 6.10. We can see that the general
core-periphery structure remains, only Germany loses its special cluster and the core groups
generally become larger. Consequently, judging by the scree plot, a three-cluster partition now
seems the most appropriate (i.e. without a singleton Germany cluster).

6.7.2.2 Analyzing Iteratively Row-column Normalized Data

To counter the unequal relational capacities within this network, we first used iterated
row-column marginal normalization. Here the results show strong evidence of trade gravity
effects, i.e. where the magnitude of trade between countries is inversely related to the spatial
distance between them. As this normalization is prone to producing relatively extreme
values for countries trading small volumes, we use absolute deviations blockmodeling on the
transformed network. The results are presented in Figures 6.11 and 6.12. Whereas the scree
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Figure 6.11 Scree diagram for the absolute deviations approach on an iterated row-column marginal
normalized network.
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Figure 6.12 Six-cluster partition obtained using absolute deviations on an iterated row-column
marginal-normalized network depicted on a normalized and original network.

diagram (Figure 6.11) does not suggest a suitable number of clusters, we found the six-cluster
partition to be both substantially interesting and representing a suitable balance between details
and aggregation.

In this solution, we have two clusters consisting of two neighboring countries, which are listed
below the first. The remaining clusters represent specific sub-regions in Europe. These are:

• Greece and Cyprus: Greece is not exactly a neighbor of Cyprus, but it is its nearest neighbor
in the dataset and, more importantly, the majority ethnic group on Cyprus is Greek.

• Romania and Bulgaria: The reason for them comprising a separate cluster is not only
the strong ties between each other, but also that they are strongly connected to both the
Greece/Cyprus cluster and Central-Eastern Europe.

• Central-Eastern Europe: Austria, Poland, Czech Republic, Hungary, Slovakia, and Slovenia.
• Central-Western Europe18 (countries not listed elsewhere).

18 This cluster is split into more seafaring and more inland-oriented countries in the eight-cluster solution.
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• Northern Europe (Scandinavia): Sweden, Norway, Denmark, Finland, and Iceland.
• Baltic countries: Lithuania, Estonia, and Latvia.

On such an iteratively-normalized network, we could also specify which ties represent a rele-
vant tie. Assuming a uniform distribution of tie values, the expected tie value here is 1/(number
of units −1), which in our case is 1/29. With this, the use of valued blockmodeling is appropriate
where m is set to twice that value, which is 2/29. The results are quite different; however, the
regional trade-gravity effects are still obvious. The difference occurs as in the valued blockmod-
eling approach, values over m only cause inconsistencies in the null blocks and do not increase
the fit in the complete blocks. The similarity of ties (apart from being close to 0 or m) is also
not important. Fewer clusters are optimal in this case (three or four, with the former being more
pronounced). The results for the three- and four-cluster solutions (on normalized and original
networks) are presented in Figure 6.13. We selected the four-cluster solution due to its eas-
ier interpretability as the partition represents South-Eastern Europe, Central-Eastern Europe,
Western Europe, and Northern Europe + Baltic.

6.7.2.3 Indirect Approaches

In this example, where possible we are focusing on the direct approaches. However, using indi-
rect approaches brings the advantage that some distance measures can be used which do not
have their equivalents in direct approaches. Two of these distance measures are:

• Corrected (Squared) Euclidian distance based on separate row and column (sum) normaliza-
tion, where the distance is computed among rows for row profiles and among columns for
column profiles.

• Using correlation (or actually (1–correlation)/2) as a distance measure.

The dendrogram for the first measure (Euclidian distance on separate row and column nor-
malized networks) using Ward’s hierarchical clustering together with the four-cluster solu-
tion19 on both the original and separate row and separate column marginal-normalized networks
is presented in Figure 6.14. The clusters in this partition represent Central-Eastern Europe,
Western Europe, Northern Europe (including the Baltics), and South-Eastern Europe (including
Slovakia).

The results for the second measure (correlations), again using Ward’s hierarchical clustering,
are shown in Figure 6.15. This procedure also captures trade gravity effects and regional trade
concentrations. The five-cluster solution produces the following clusters:

• Western Europe
• Central-Eastern Europe
• Northern Europe and Ireland
• Greece, Cyprus, and Malta
• Baltic.

19 Based on the dendrogram, the appropriate number of clusters is not very clear. The four-cluster solution is the last
before singleton clusters emerge and is one of the more suitable ones based on the dendrogram.
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Figure 6.13 Valued blockmodeling results with m = 2∕29 using an iterated row-column marginal normalized network depicted on normalized and
original data (network).
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Figure 6.14 Dendrogram plus four-cluster solution for hierarchical clustering (using Ward’s criteria) on
Euclidian distance on separate row and column normalized networks depicted on original, row-normalized,
and column-normalized data.

Using these indirect approaches admittedly has a certain appeal over using either generalized
blockmodeling on iteratively row-column marginal-normalized networks or using a deviational
approach: the transformations here are much simpler or not required at all (e.g. when using
the correlation-based indirect metric), thus making it easier to motivate their use. Of course,
generalized blockmodeling’s main advantage is its versatility, particularly its ability to use other
equivalences/block types and to use pre-specified blockmodels.

The final approach we try here is the indirect measure of deviational structural equivalence.
This dataset was initially analyzed to demonstrate deviational blockmodeling [41], including its
indirect approach. We use the same measures of deviational structural equivalence (correlations
on RD and CD matrices) as suggested in [41] but apply Ward-type hierarchical clustering instead
of the weighted-average version used in [41, p. 174]. In addition, rather than using an incremen-
tal two-sided deviational threshold (post-clustering), we identify prominent and non-prominent
ties based on sign similarity in RD and CD. Here, non-determined ties are thus those where the
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Figure 6.15 Dendrogram and the five-cluster solution for hierarchical clustering (using Ward’s crite-
ria) on correlations on the original network (depicted on original and iteratively row-column normalized
networks).

corresponding values in RD and CD have different signs. The four-cluster partition is given in
Figure 6.16 below.

Despite using the same deviational coefficients as those in [41, p. 174], the partition we obtain
in Figure 6.16 differs somewhat from that of the original study. The differences are due to the
particular linkage method used in each study: whereas Nordlund used weighted-average clus-
tering, Figure 6.16 is obtained using Ward’s hierarchical clustering. Thus, like for the case of
binary networks (as well as any application of hierarchical clustering), the resulting partitions
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Figure 6.16 Dendrogram and four-cluster solution for Ward’s hierarchical clustering on deviational cor-
relations on the original network. Top blockmodel: original values; bottom blockmodel: prominent (black),
non-prominent (white), and contradictory ties (gray).

are not only due to the choice of picking a specific indirect measure of equivalence and possible
preceding transformations, but the results also depend on the particular clustering methods used.

6.7.2.4 Summary

This section demonstrates how trade flow data, in which units have vastly different relational
capacities, can be viewed from at least two different angles. The first uses raw (non-normalized)
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or scaled networks whereby a core-periphery structure emerges, with partitions that are almost
solely defined by the valued degree of the units, i.e. a strength-oriented focus. The other view is
that based on somehow transformed data, where we try to cluster units not on the similarity of
their raw ties but the ties where we somehow try to compensate for their differential relational
capacity. When following this route, which we could call a pattern-oriented focus, a clear struc-
ture of cohesive groups emerges, indicating a preference for regional trade. While both views
may be relevant, given that the second one is not solely influenced by degrees, we could say that
this one in some way better harnesses the richness of the relational data. Of course, much of this
had already been pointed out by Nordlund [41]. Yet here we have shown that other approaches
(especially when using appropriate transformations) can also be used to produce similar results
as those emerging from the deviational approach.

Whereas this example primarily applied direct methods, we also approached the data
using various indirect correlation-based measures of structural equivalence, testing different
pre-clustering transformations. When discounting for unequal relational capacities, the indirect
approaches also seem capable of capturing patterns of regional trade. However, while the
indirect deviational measure seems adequate for capturing such effects, we demonstrate how
the choice of the clustering heuristic can, at least in part, affect the obtained partitions. Thus,
even though a transformation might assist in capturing structural equivalence that discounts
for unequal relational capacities among actors, the indirect blockmodeling of valued networks
is – similar to their binary – siblings equally influenced by the particular clustering heuristic
we use.

6.8 Conclusion

As suggested in the multitude of available approaches, the clustering and blockmodeling of net-
work data is anything but a trivial exercise. Not only do many different definitions of equivalence
abound, but there are also multiple heuristics and approaches for identifying and measuring
equivalences and the classification of actors according to shared notions of equivalence. Of the
two broad approaches for doing this, i.e. direct and indirect, the former has evolved into a general
analytical framework – generalized blockmodeling – that allows different types of equivalences
to be captured. The indirect approaches, constituting various approaches and algorithms for cap-
turing pair-wise measures of different types of equivalences, typically imply additional choices
and dilemmas when it comes to the actual clustering of such pair-wise indirect measures.

Whereas the above applies to the clustering and blockmodeling of networks generally, the
existence of valued ties implies additional dilemmas for the analyst. Indeed, providing richer,
higher-resolution insights than their binary counterparts, the comparison of ties in a valued net-
work is not necessarily as straightforward as is the case with binary networks. To this end,
several possible clustering methods for valued data and a range of transformations can be applied
when clustering valued networks. However, prior to this, the analyst has to understand how
the different transformations and clustering heuristics, direct and indirect, carry different ideas
of equivalence that stretch beyond their binary counterparts. The core question that must be
addressed when clustering valued networks is what the tie values actually mean in the context
of equivalence. Are the tie values directly comparable across the network or do actors have dif-
ferent capacities when it comes to tie values? Is the sought-after notion of equivalence related
to such differences or should such unequal relational capacities be discounted for?
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This chapter has addressed various clustering approaches that apply to valued networks.
Transformations play an important role here in both preparing valued networks for use with
existing direct and indirect approaches as well as interpreting the resulting blockmodels. The
most rudimentary of these is the dichotomization of valued data into binary data, an approach
we find inherently problematic for multiple reasons. Even if we assume equal relational capac-
ities among actors and are able to set a system-wide threshold to distinguish prominent and
non-prominent ties, it will inevitable reduce the resolution of the data.

Scaling transformations can be used to adjust the overall distribution of the tie values; how-
ever, they do not account for unequal relational capacities. Iterative row column normalization
can be used to in a sense adjust for unequal relational capacities as it makes the in, out, and over-
all (valued) degrees of all actors equal. If classification into prominent and non-prominent ties is
needed and, importantly, it makes sense in the data and research context, system-wide threshold
dichotomization can be employed. Other transformations explicitly aim to identify prominent
ties in valued networks where actors have unequal relational capacities. We examine transaction
flow models and a novel deviational transformation, two transformations where the prominence
of ties is determined based on the different relational capacities and degrees of actors in a dyad.

We also examine indirect measures of equivalence that are applicable to valued networks,
exemplifying this by testing various approaches, transformations, and measures on two
datasets – the EIES friendship network and commodity trade among countries in the EU/EFTA
region. For structural equivalence, we note (as has previously been noted) that the two most
common indirect measures – Euclidean distances and correlation-based – operationalize dif-
ferent takes on structural equivalence. Whereas the Euclidean distance-based indirect measure
takes tie values into account in its measure of structural equivalence, the correlation-based
metric is more inclined to capture the profiles, rather than the strengths, of the ties.

Something similar can be said for generalized blockmodeling approaches to valued
networks [55] and the deviational blockmodeling of Nordlund [41]. While the former focuses
on actual tie values, the latter concentrates on whether these values are lower or higher than
expected (based on a no interactions model) and therefore patterns of ties. As such, these
approaches offer different views on the network and thus complement each other.

For both direct and indirect approaches, the approaches that focus more on tie strengths can
often offer similar analysis as those focusing on profiles/deviations, the data are suitably trans-
formed prior to analysis. However, such transformation is not always trivial or even possible.

Our general recommendations are:

• One should avoid the dichotomization of valued networks (and application of binary
approaches) whenever possible, unless the tie values cannot be considered to be measured
on at least an approximately interval scale.

• The approach used should be selected while considering what the ties or tie values mean and
the properties of the blockmodeling solution we are looking for:
– If all units in the network have equal relational capacities (like friendship data), approaches

focusing on tie strengths should be selected.
– If all units do not have equal capacities, we must decide whether we want such differences

in relational capacities to influence the results or not.
* If we do, once again approaches focusing on tie strengths should be selected.
* If we do not want different relational capacities to affect the results, then correlation or

deviational based approaches should be selected. In some cases, using strength-focused
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approaches after suitable transformations is also appropriate, while in others finding
suitable transformations is too problematic.

• If equivalent direct and indirect approaches exist, direct approaches are preferred as long as
the network is not too large to be analyzed by these approaches in a reasonable time. However,
some indirect approaches (e.g. correlation-based ones) do not have an exact equivalent in
direct approaches.

• When generalized equivalence or pre-specified blockmodels are needed, generalized block-
modeling approaches must be used.

While this chapter has aimed to shed some light on contemporary approaches for blockmod-
eling valued networks, several pertinent unsettled questions should be noted. One question is
how the deviations of actual ties from the expected ones based on a model of no interactions
should be measured. Second, whereas our focus in this chapter was on structural equivalence, we
find it important to also explore how different transformations can be used in conjunction with
other types of equivalences. Third, related to both of these, we argue the overarching question
for blockmodeling of valued networks concerns the triadic interdependence between, respec-
tively, pre-clustering transformations, notions of equivalence, and substantive interpretations.
As each step in blockmodeling a valued network offers so many distinct choices – whether the
valued data should be transformed, which transformation to use, different notions of equiva-
lence, various methods to identify such, methods and choices related to the clustering of actors,
etc. – these choices must be informed, guided, and motivated by the specific theoretical and
substantive underpinnings at hand. Thus, although we propose a general guideline for choosing
methods depending on the dataset and the research questions, the context is, as always, crucial.
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7.1 Introduction

The patterns of ties of a network are critical for revealing both macro and micro network struc-
tural features. This is especially true regarding the delineation of the macro structure of networks
through network partitioning. Yet network data are prone to recording errors and/or missing
data regardless of the substantive nature of the relationships measured. If specific real ties are
not recorded and non-existent ties are recorded as if they are real, this creates major problems
for analyzing network data. Also, correctly included ties can have incorrect values. Actors may
refuse to respond regarding specific ties and can provide no information about ties to all other
network members. The latter is known as actor non-response. It is crucial that the data used for
clustering procedures are either error-free (a very rare event) or are treated appropriately when
data were missing. Here, we continue an examination of the impact of actor non-response and
treatments for it on the stability of partitions of actors obtained from different blockmodeling
procedures. We use a set of real well-measured networks as the foundation for our analyses.

Missing network data take several forms (see Section 7.2 for more details). Previous stud-
ies tackled the problem of actor non-response and the consequences for network partitioning
used to delineate the macro structure of networks. Žnidars̆ič et al. [33] examined binary net-
works and employed structural equivalence using direct blockmodeling [11]. Their study was
extended through simulation of three widely-known macro-network structures (cohesive sub-
groups, core-periphery systems, and hierarchical networks) [34]. Indirect blockmodeling of
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valued networks was employed. The set of possible treatments for binary networks was adjusted
to deal with valued networks and extended by new ones (including imputations of the mean
value of incoming ties and medians of the three nearest neighbors based on incoming ties). In
binary networks, some attention has been given also to the impact of item non-response and its
treatments on the stability of blockmodeling based on structural equivalence [32].

The chapter is organized as follows: Section 7.2 discusses types of missing network data,
Section 7.3 focuses on treatments of missing data due to actor non-response, and Section 7.4
presents the simulation study design with key characteristics of blockmodeling and a set of real
networks. Results are presented in Section 7.5, with Section 7.6 summarizing the results and
presenting conclusions with an emphasis on recommendations for network researchers.

7.2 Types of Missing Network Data

Errors in social network research design can be divided into three broad categories: bound-
ary specification problems, questionnaire design, and errors due to respondents [33]. The first
two categories belong in the domain of researchers responsible for designing the best possi-
ble data collection instruments and being careful in the selection of respondents. Boundary
specification problems concern rules of inclusion or exclusion of actors into studied networks
(see, for example, [10, 21, 22] regarding the problems of getting network boundaries wrong).
Sources of errors in measurement instruments include fixing the number of possible nomina-
tions [15, 21, 32]. There is also the choice between using free recall or rosters of actors, e.g.
[6, 8, 13, 14], which affects the collected data. Finally, there is the choice of seeking directed or
symmetric ties for relations [12, 30]. Care is needed in making these choices. Once made, mis-
takes made in these choices cannot be rectified: poorly constructed data collection instruments
lead to poor quality data.

The third category consists of errors due solely to actors regardless of instrument design.
There are three subcategories: complete actor non-response, item non-response (regard-
ing specific ties), and reporting errors in the recorded ties. Here, we focus primarily on actor
non-response in Sections 7.2.3 and 7.3. We consider briefly the other problems in Sections 7.2.1
and 7.2.2. Throughout these sections, we consider possible remedies.

7.2.1 Measurement Errors in Recorded (Or Reported) Ties

Measurement errors for binary networks, as defined by Holland and Leinhardt [15], occur when
there are missing or extra ties. This can be extended to valued networks when the strength of
the tie differs from the true value (including valued ties not being recorded). Figure 7.1 shows
a small valued network with ten actors as a demonstration of this problem. Figure 7.1a has the
matrix array on the left with a graphical representation of this network on the right. Tie values in
the graph are represented by different arc widths and grey levels. All three types of actor-induced
errors are illustrated using this network as described below.

Figure 7.2 presents the demonstration network but with ten item-response errors. In the matrix
array, they are represented by using two triangles in the relevant squares. The upper trian-
gle of each divided square has the true value. The lower triangle has the reported tie value.
For example, the true value of the tie from A1 to A2 is 2 while the reported value is 5. The
problem of incorrectly included ties involves A7 and A9. There is no tie from A7 to A9 but it was
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Figure 7.2 The matrix representation of the demonstration network with erroneously reported tie values.

reported as having the value 3. In contrast, there is a tie from A10 to A6 but it is absent from the
reported ties.

These types of measurement errors are hard to detect, especially the incorrectly reported
values of real ties. One option for doing this is to compare the responses to an original and
a reversed question. Marouf and Doreian [23] asked employees in a company about who they
went to for advice and also who came to them for advice. Ideally, the reported tie value by one
respondent would be confirmed by other respondent. Confirming the presence of a tie is easier
than confirming its value.

An and Schramski [1] emphasized that a significant number of reported exchange ties (e.g.
information, goods, or services) tend to be disputed in the reports of senders and receivers.
In such disagreements, these authors argue that neither eliminating contested reports nor sym-
metrizing them is appropriate. Instead, they propose measuring actors credibility based on their
asymmetric connections and using deterministic or stochastic methods to estimate relations
between pairs of actors.
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Figure 7.3 The matrix representation of the demonstration network with item non-response.

7.2.2 Item Non-Response

Item non-response occurs when one or more actors participate in a study, but provide no infor-
mation on a subset of their outgoing ties. Figure 7.3 presents the demonstration network with
six missing ties.

Studies of item non-response are limited. Borgatti et al. [7] stressed how absent ties “can lead
to a radically different understanding of the network and misleading measurements of network
indices such as centrality”. Similarly, Huisman [17] emphasized the risks of severely biased
results of network analyses if missing ties are ignored.

Huisman [17] studied the impact of three imputation methods (reconstruction, hot deck,1

and preferential attachment) to estimate the mean degree, reciprocity, values of the clustering
coefficient, assortativity, and inverse geodesic distances. He emphasized that, for directed net-
works, reconstruction was the best among the imputation methods he studied. In contrast, both
preferential attachment and hot deck imputations created greater bias.2

The impacts of four treatments (reconstruction, imputations based on modal values, combi-
nation of the reconstruction and imputations based on modal values, and null tie imputations)
for absent ties or item non-response on the results of blockmodeling based on structural equiva-
lence were studied with four real networks by Žnidars̆ič et al. [32]. Their main conclusions were
(i) the combination of reconstruction and imputations based on modal values is the best overall
treatment method for absent ties, especially in networks with high reciprocity with symmetrical
blockmodel structures, and (ii) for networks with low reciprocity, imputation based on modal
values performed well. Null tie imputation was the worst treatment for absent ties.

7.2.3 Actor Non-Response

Actor non-response occurs where actors provide no information on any of the ties to all other
members of the network. In a network with n actors where m actors provide no information

1 Both categorical attributes and structural properties are used to find a completely observed “donor” actor by minimizing
the absolute differences between an actor with incomplete data and the donor actor. The donor actor is used to replace
the missing ties (or missing actors in case of actor non-response).
2 Also, for item non-response, the hot deck method was unable to find donor actors to replace the missing ties if the
proportion of missing ties was large.
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Figure 7.4 The matrix representation of the demonstration network with three non-respondents.

on their outgoing tie values, the actor response rate, the “relational response rate” [19], is
1 − m∕n. With three non-respondents in the demonstration network, the relational response rate
is equal to 70%. Žnidars̆ič et al. [33, 34] stress that observed information from respondents to
non-respondents, their incoming ties, are still available and can be very useful.

Figure 7.4 presents the demonstration network with three non-respondents (A5, A7, and A9)
creating three rows of missing ties (marked by NA).

The effects of actor non-response on direct blockmodeling based on structural equivalence
have been examined in case of binary networks [33] but only for a subset of the treatments
presented in Section 7.3. For valued networks, the impact of missing actors on indirect block-
modeling together with employed treatments was assessed based on simulated networks [34].
Here, we focus on actor non-response to investigate the impact of seven actor non-response
treatments (presented in Section 7.3) on the results of clustering both real binary and valued
networks.

7.3 Treatments of Missing Data (Due to Actor Non-Response)

Stork and Richards [30] suggested that actor non-response in network data can be treated in
three different ways: (i) using a complete-case analysis, (ii) using an available-case analysis,
and (iii) imputing data values. In the complete-case analysis (known also as “listwise” deletion)
all non-respondents are removed from the network. The result is a smaller network with com-
promised network boundaries as noted by Stork and Richards. Here, we omit the complete-case
approach from our simulations.3 This strategy is worthless for examining both the macro struc-
ture via blockmodeling and assessing the micro positions of all network members including
non-respondents.

Seven actor non-response treatments (reconstruction, imputations of the mean values of
incoming ties, imputations of the modal values of incoming ties, reconstruction and imputations
based on modal values of incoming ties, imputations of the total mean, imputations of the
median of the three nearest neighbors based on incoming ties, and null tie imputations) are
presented in the following subsections for the small demonstration network of ten actors as

3 Some results on how deletion of actors severely changes the network characteristics are provided in [7, 18, 26, 27].
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presented in Figure 7.1.4 In addition to comparisons of imputed or estimated tie values, the
impact of treatments on more general network characteristics is discussed.

If A5, A7, and A9 refused to respond three rows of missing data will result. Table 7.1, first
information line, presents some summary information about this demonstration network. First,
the average outgoing tie values of these non-respondents (A5, A7, and A9) are 1.89, 1.11, and
0.44. Second, this network has 49 arcs of which 16 would be lost if the non-response was
ignored. Third, the mean tie value is 2.245. Finally, its weighted density5 and weighted reci-
procity6 are 1.222 and 0.691, respectively. All of these values provide a foundation for assessing
the treatments of actor non-response discussed below.

Throughout this chapter we use the following terms: (i) a “whole network” is the known net-
work, (ii) a “measured network” is obtained from the whole network by removing all outgoing
ties for those actors providing no data about their ties, and (iii) a “treated network” is obtained by
employing the actor non-response treatments applied to a measured network. The issue is how
close the treated network is to the whole network. We turn now to consider the non-response
treatments as applied to the demonstration network of Figure 7.1.

7.3.1 Reconstruction

Replacing the missing outgoing ties by their observed incoming ties could be used [17, 30].
Unavailable rows of data for non-respondents are replaced by the corresponding columns
for those actors. Of course, the resulting ties involving non-respondents and respondents are
symmetric. For undirected networks, this is an available-case approach where the relationship
between two individuals is measured by using the one report of the tie that exists in the data
(see [30]). For directed networks, this imputation procedure estimates the missing tie from the
incoming ties (17).

However, for two non-respondents, the reconstruction of ties between them cannot be done,
therefore some additional imputations are required to estimate such tie values. In the simplest
case, zeros are imputed. This treatment is called reconstruction in the following sections.

4 There exist other approaches to missing network data in the context of exponential random graph (p∗) models (e.g.
[20, 24, 35]) which are not considered here.
5 Density describes the general level of linkage among the actors [37] in a network. For a directed binary network with n
actors, it is defined as the number of arcs (m) divided by the number of all possible arcs in a network (n ⋅ (n − 1)). Scott
[25] noted a lack of agreement on how density should be measured in valued graphs. Here, we use a simple extension
of binary density and use the average of tie values:

densW =
∑

i≠jvij

n(n − 1)
, (7.1)

where vij is the value of the arc from actor i to actor j and n is the number of actors in the network. This weighted density
measures the average tie strength.
6 For valued networks, computing reciprocity for dyads is complicated. Of course, the difference between tie values
in a dyad must be considered. However, the distribution of strengths has to be taken into account as well. Weighted
reciprocity (recW) is defined as [28]:

recW =
∑

i
∑

j≠imin(vij, vji)∑
i
∑

j≠ivij

, (7.2)

where vij is the value of the tie from actor i to j. The upper bound of recW is 1 when all tie values are symmetrical
in their values. In the case of binary networks the above definition corresponds to the definition provided in [17]:
2|E |∕(2|E | + |A |), where |E | is number of edges and |A | the number of arcs.
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Table 7.1 Characteristics of the whole demonstration network and the seven treated networks

Magnitude of
changed ties in
treated network

according to
the whole one

without diagonal

Average
(imputed) tie

values of
outgoing

ties of non-
respondents

Network
characteristics

Network −4 −3 −2 −1 0 1 2 3 A5 A7 A9 Arcs recW densW Mean tie
value

QAP
corr.

Demonstration network 1.89 1.11 0.44 49 0.691 1.222 2.245

T
re

at
ed

ne
tw

or
ks

RE 1 11 73 5 1.78 0.56 0.22 42 0.843 1.133 2.429 0.953
MEAN 4 4 69 9 4 1.22 1.33 1.44 54 0.591 1.278 2.130 0.882
MO 2 2 1 10 71 1 2 1 0.33 0.56 0.56 37 0.522 1.150 2.486 0.811
REMO 1 10 73 6 1.78 0.67 0.33 44 0.827 1.156 2.364 0.952
TM 3 2 1 74 10 1 1 1 59 0.623 1.178 1.797 0.878
kNNMedian 11 74 3 2 1.56 0.67 0.78 45 0.660 1.178 2.356 0.949
NTI 3 2 1 11 73 0 0 0 32 0.506 0.878 2.469 0.817

RE, reconstruction; MEAN, imputations of the mean values of incoming ties; MO, imputations of the
modal values of incoming ties; REMO, reconstruction and imputations based on modal values of incoming
ties; TM, imputations of the total mean; kNNMedian, imputations of median of three nearest neighbors
based on incoming ties; NTI, null tie imputations; recW, weighted reciprocity; densW, weighted density;
mean tie value, mean of tie values (without zeros).
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A5NTI 59 A7 18 A9 4

Figure 7.5 Results of seven actor non-response treatments for the demonstration network with three
non-respondents. RE, reconstruction; MEAN, imputations of mean values of incoming ties; MO, impu-
tations of modal values of incoming ties; REMO, reconstruction and modal values; TM, imputations of
total mean; MEDIAN 3-NN, median of three nearest neighbors of incoming ties; NTI, null tie imputations;
SED, squared Euclidean distances between the vectors of tie values of individual non-respondents and the
corresponding vector of treated values.

The imputed tie values for A5, A7, and A9 in the demonstration network with the recon-
struction procedure are presented in the second row in Figure 7.5. Comparison of tie values
with those of the whole network (first row in the body of Figure 7.5) reveals that 17 tie values
were changed. The majority (12) of missing tie values were decreased and five tie values were
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increased (first row in Table 7.1). The weighted reciprocity of this treated network is the highest
(0.843) among all treatments because it decreased the number of ties by 22%. This is not surpris-
ing. As noted above, for the ties between non-respondents (v5,7, v5,9, v7,5, v7,9, v9,5, v9,7) zeros
are imputed. For A5, the average tie value of imputed outgoing ties is 1.78, for A7 it is 0.56, and
for A9 it is 0.22. The mean tie value (without zeros) is equal to 2.429, 8% higher compared to
the whole network.

The right-most column of Table 7.1 shows the quadratic assignment procedure (QAP) cor-
relation values of the treated networks with the whole network. While there is considerable
variation in these values, all are significant, with p values less than 0.000. However, the three
highest values are noteworthy, as is discussed below.

7.3.2 Imputations of the Mean Values of Incoming Ties

This treatment imputes the average value of incoming ties of an actor, known as the “item mean”
(imputation) [17]. For each missing outgoing tie vij of the non-respondent i, the (rounded) mean
value of all available incoming ties of actor j is imputed.

As emphasized by Žnidars̆ič et al. [33] for binary networks, this implies (due to rounding)
imputing modal values of incoming ties which led them to introduce the term “imputations based
on modal value of incoming ties” for binary networks. Although, the imputations of the mean
values of incoming ties and the modal values of incoming ties are the same for binary networks,
the differences between them in the case of valued networks can be substantial.

The imputed tie values based on imputations of the mean value of incoming ties for three
non-respondents (A5, A7, and A9) are presented in the third row in Figure 7.5. For the three
non-respondents, a total of 22 tie values (equal to 1 or higher) were imputed and two 1s were
set to zero. Of these, 21 tie values differed from the known true values. This is the highest
number of “changed” ties compared to the whole demonstration network, suggesting serious
flaws with this imputation method. The weighted reciprocity for the treated network is 0.591
and the weighted density is 1.278 (see the second row in Table 7.1), the highest among all the
treated networks. The average tie values of the imputed outgoing ties are 1.22, 1.33, and 1.44
for the non-respondents A5, A7, and A9, respectively. The values for A5 and A9 are poor.

7.3.3 Imputations of the Modal Values of Incoming Ties

Imputations based on the modal values of incoming ties take into account the available incom-
ing ties of the non-respondent. For each missing outgoing tie value vij(i ≠ j) of actor j, the
modal value of values on all available incoming ties to actor j is imputed.7

The imputed tie values using imputations of the modal values of incoming ties for three
non-respondents (A5, A7, and A9) are presented in the fourth row in Figure 7.5. Multiple modal
values for incoming ties to actor A3 exist: 1 and 3. The mean value of available incoming ties is
2, meaning that the difference of mean value to both modes is equal to 1. Therefore, one of the
two modes is selected randomly. In our example in Figure 7.5 and Table 7.5, 3 was randomly
selected for imputed ties from non-respondents to A3.

Only five tie values were imputed. Comparisons of the treated network and the demonstration
network reveal that 18 ties were changed with the majority of tie values (15) being lowered, often

7 If multiple modal values exist, the one closest to the average value of incoming ties is imputed.
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considerably so. The weighted reciprocity of the treated network is the second lowest (0.522)
among all treatments, decreasing by 24% compared to the corresponding value for the whole
network. The average tie values of the imputed outgoing ties are 0.33, 0.56, and 0.56 (see the
third row in Table 7.1) for the non-respondents A5, A7, and A9, respectively. All these values
suggest major problems with this imputation method. Indeed, for A5 and A7, the average of
imputed tie values is the lowest among all treatments except for null tie imputations.

7.3.4 Reconstruction and Imputations Based on Modal Values of Incoming
Ties

As noted in Section 7.3.1, reconstructing ties between non-respondents cannot be done without
making additional assumptions regarding ties between the non-respondents. We combined the
reconstruction procedure with imputations based on the modal values of incoming ties, although
any other imputation procedure (e.g. imputations of the total mean, imputations of the mean
values of incoming ties) could be used.

Comparing the treated network (fifth row in Figure 7.5) to the whole network (first row in
Figure 7.5) reveals that 17 tie values were changed to values differing from the known ties.
Ten tie values were decreased by 1, one tie value was decreased by 2, and six tie values were
increased by 1 (fourth row in Table 7.1). The average tie values of the imputed outgoing ties
are 1.78, 0.67, and 0.33 for the non-respondent A5, A7, and A9, respectively. The weighted
reciprocity is 0.827, the second highest among treatments considered here being 19.7% higher
than for the whole network. The weighted density of the treated network compared to the whole
network decreased by 5.4%, while the mean tie value (without zeros) increased by 5.3%.

7.3.5 Imputations of the Total Mean

For binary networks, the average number of ties in the network is used to impute values for the
missing ties. If the threshold is set to 0.5, as suggested by Huisman [17], this implies imputing
zeros for the missing ties in sparse networks and ones in denser networks.

The generalization for valued networks uses the (rounded) mean of all available tie values for
imputing the missing ties. When there are k non-respondents in the network with n actors, the
total mean is calculated using

⌊∑
i,jvij∕((n − 1) ⋅ ̇(n − k))

⌉
. For the whole network in 7.1a the

average available tie value 79∕63 = 1.25. So, the value of 1 was imputed instead of missing ties
in the treated network in the sixth row in Figure 7.5.

As shown in Table 7.1, 16 tie values were changed by this imputation. The weighted density
(1.178) and weighted reciprocity (0.623) both decreased compared to the whole network. The
mean tie value (disregarding zeros) is 1.797 (see the fifth row in Table 7.1), the lowest among
all treatments, being 20% lower than the corresponding value for the whole network.

7.3.6 Imputations of Median of the Three Nearest Neighbors based
on Incoming Ties

The nearest-neighbor algorithm has been used widely in social surveys for estimating missing
data. It was adjusted for use on network data by Žnidars̆ič et al. [34], who observed “the rationale
for this imputation is that the non-respondents are treated individually and not as a group”.
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This treatment can be summarized in four steps. First, the Euclidean distances between actors
are computed based on their incoming ties.8 Second, for each non-respondent the three nearest
neighbors (denoted by a, b, and c) are selected using the smallest calculated Euclidean distance.
Third, for each missing outgoing tie vij of non-respondent i, the median of corresponding out-
going tie values of three nearest actors (labeled vaj, vbj, vcj) is calculated. Finally, this value is
imputed for the missing tie.

The imputed tie values for non-respondents A5, A7, and A9 for the demonstration network are
shown in the seventh row in Figure 7.5. Compared to the tie values of the whole network, 16 tie
values differed from the true values. Eleven tie values were decreased by 1, three were increased
by 1, and two were increased by 2 (sixth row in Table 7.1). Compared to other treatments, this is
the smallest number of tie values differing from the known values, a good feature. Furthermore,
the network characteristics of this treated network are closest to those of the whole network,
another indication of the utility of this imputation method. For A5, the average tie value on
imputed outgoing ties is 1.56. For both A7 and A9, it is equal to 0.67 and 0.78, respectively
(sixth row in Table 7.1). The weighted reciprocity and weighted density decreased by 4.5% and
3.6%, respectively, compared to the whole network. The mean tie value (without zeros) is equal
to 2.356, also the closest to the mean tie value of the whole network.

7.3.7 Null Tie Imputations

This treatment simply imputes zeros for all missing tie values of each non-respondent. It is
known as the worst treatment for obtaining blockmodel structures of both binary [33] and valued
networks [34]. Although it is unlikely to be a good treatment, it is included for comparison with
other treatments.

The imputed ties using null tie imputations are presented in the eighth row of Figure 7.5. A
total of 17 tie values in this treated network differed for those in the whole network (seventh
row of Table 7.1). Much worse, the treated network has only 32 arcs. The weighted reciprocity
decreased by 26.8% with the weighted density decreasing by 28.2% compared to the whole
network. Both these measures are the lowest among all the treated networks.

These simple descriptive results regarding the nature of the imputed values under the seven
treatments suggest that blockmodels of the different treated networks will vary greatly. This is
pursued in Section 7.3.8.

7.3.8 Blockmodel Results for the Whole and Treated Networks

The basic idea in evaluating the impact of actor non-response treatments on clustering is to
compare the clustering results obtained for the whole and treated networks.

There are two distinct approaches, direct and indirect (described in Section 7.4.1), to block-
modeling network data. Both aim to partition actors into clusters based on a selected equiva-
lence. The results reported below were obtained using the indirect approach for the whole and
all seven treated demonstration networks.

8 In our simulations, we assumed that loops are not allowed in the networks, therefore diagonal values were not taken
into account when calculating distances. In addition, the standard Euclidean distance measure is “corrected” in a way
that the sum is scaled up proportionally to the number of columns used (according to function dist in R).
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Table 7.2 Cluster membership of the actors the whole demonstration network and the seven treated
networks

Actor’s membership in clusters based on indirect
blocmodeling

Network Cluster 1 Cluster 2 Cluster 3 ARI

Demonstration network A1, A2, A3, A4, A5 A6, A7, A8 A9, A10

T
re

at
ed

ne
tw

or
ks

RE A1, A2, A3, A4, A5 A6, A7, A8 A9, A10 1
MEAN A2, A3, A4 A1, A5 A6, A7, A8, A9, A10 0.378
MO A1, A2, A4, A5 A3 A6, A7, A8, A9, A10 0.501
REMO A1, A2, A3, A4, A5 A6, A7, A8 A9, A10 1
TM A2, A3, A4 A1, A5 A6, A7, A8, A9, A10 0.378
kNNMedian A1, A2, A3, A4, A5 A6, A7, A8 A9, A10 1
NTI A1, A2, A3, A4 A5 A6, A7, A8, A9, A10 0.501

RE, reconstruction; MEAN, imputations of the mean values of incoming ties; MO, imputations of the
modal values of incoming ties; REMO, reconstruction and imputations based on modal values of incoming
ties; TM, imputations of the total mean; kNNMedian, imputations of median of three nearest neighbors
based on incoming ties; NTI, null tie imputations; ARI, Adjusted Rand Index between the whole partition
and the corresponding treated partition.

From the macro-structural perspective, the two partitions must be compared. The Adjusted
Rand Index (ARI) is very useful for assessing the extent to which partitions coincide (or not).
Its definition, based on the Rand Index [16], measures the concordance between two partitions
and is corrected for chance [29], enabling comparisons of its values across different networks
regarding their size and number of clusters in the underlying partition. The expected value of
ARI is 0 and its maximal value is 1. General guidelines for interpreting the ARI values [29] are
(i) ARI ≥ 0.9 indicates excellent agreement, (ii) 0.9 > ARI ≥ 0.8 suggests good agreement, (iii)
0.8 > ARI ≥ 0.65 indicates moderate agreement, and iv) ARI ≤ 0.65 indicates poor agreement.
Based on these criteria, we claim agreement between two partitions is acceptable if ARI values
are above 0.8.

Table 7.2 shows the known blockmodel partition of the whole network and the partitions
obtained, using the same blockmodeling method, for the seven treated networks. Three
imputation methods lead to blockmodels identical to the known partition: reconstruction, the
combination of the reconstruction and imputations based on modal values of incoming ties, and
imputations using the median of the three nearest neighbors based on incoming ties. The
right-hand column of Table 7.2 reports the ARI values comparing the resulting blockmodels.
It takes the maximum value of 1 for these treatments. These are the three treatments whose
QAP correlations are close to 1 in Table 7.1. This suggests strongly that having a significant
QAP correlation for a whole and treated network is not a strong enough criterion for an
acceptable imputation method. The ARI values shown for the other four imputation treatments
are totally unacceptable despite the high QAP correlations between these four treated networks
and the whole network. In short, blockmodels from these four treated networks are worthless.

Figure 7.5 presents, in addition to the treated tie values, the squared Euclidean distances
(SED) between the vectors of tie values of individual non-respondents and the corresponding
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vector of treated values. For non-respondents A5 and A7, their outgoing ties are the closest
to the vector of outgoing ties treated by the median of the three nearest neighbors based on
incoming ties, since the SED values are 6 and 3, respectively. For the non-respondent A9, the
original tie values, according to these SED values, are closest to the vector of tie values treated
by reconstruction and null tie imputations (SED = 4). This indicates that the median of three
nearest neighbors based on incoming ties, most likely, is among the most successful treatments
for estimation of missing values.

However, these results are for a network constructed solely for demonstrating some imputa-
tion treatments. We next examine some larger and real networks. We address which treatments
are the more useful ones for these real networks and, perhaps more importantly, seek insights
into why some treatments work better than others. Clearly, it is necessary to consider the combi-
nation of (i) the underlying structure of the networks partitioned, (ii) the nature and extent of the
non-response, and (iii) the nature of the treatments for such missing data. This effort continues
the research represented by the work of Žnidars̆ič et al. [32–34].

7.4 A Study Design Examining the Impact of Non-Response Treatments
on Clustering Results

The impacts of the non-response treatments are based on clustering three distinct real networks
after each has been subjected to actor non-response. We review briefly the basic distinction
between indirect and direct blockmodeling in Section 7.4.1. Section 7.4.2 presents the basic
design of our simulations, while in Section 7.4.3 the nature of the real networks used for our
simulation study are presented.

7.4.1 Some Features of Indirect and Direct Blockmodeling

Two conceptually distinct approaches to blockmodeling are direct and indirect, as described by
Batagelj et al. [4] and expanded by Doreian et al. [11]. The direct approach considers only the
network data and searches for best-fitting partitions given a selected type of equivalence defined
by using a set of permitted block types. A criterion function is used to evaluate the agreement
between the “ideal” blocks, given a defined equivalence, and the empirically obtained blocks.
For small networks, the direct approach is superior for identifying blockmodels. However, given
that partitioning networks is an NP-hard problem, the direct approach is computationally bur-
densome, especially when networks are large.

The indirect approach (suitable for both valued and binary networks) involves two steps [11].
First, some measure of (dis)similarity between each pair of units is computed according to a
selected equivalence. Second, a clustering algorithm is used to identify clusters of units. There
are choices involving both the clustering algorithm used and the measures of (dis)similarity.
Here, we considered only structural equivalence and used the compatible corrected Euclidean
distance [4]. For clustering, we used Ward’s agglomerative clustering algorithm [36] applied to
these dissimilarities.

In Section 7.3.8, we described the ARI as one way of assessing the correspondence of two
partitions of a network. This will be used for comparing the partitions of whole and treated real
networks. We use also a second measure for binary networks: the proportion of incorrect block
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types in the blockmodel of a treated network compared to the blockmodel of corresponding
whole network where all block types and their locations are specified. Consistent with Žnidars̆ič
et al. [33], blockmodels of the treated networks are acceptable only if the measure, denoted by
mErrB, is below 0.2.

7.4.2 Design of the Simulation Study

The simulations were conducted by using a combination of R along with the blockmodeling
package [31] and the Pajek program [2, 3].

We start with a schematic outline of the simulation procedure for directed valued networks.

1. For each real network, do the following:

1.1 Establish the partition of the whole network using indirect blockmodeling employing
corrected Euclidean distance and Ward’s clustering method.

1.2 Construct the “observed” data for a wide range for the number of non-respondents to
create the measured networks. This was done by randomly selecting actors to become
non-respondents and deleting all of their outgoing ties.

1.3 Employ each of the seven non-response data treatments (presented in Section 7.3) sep-
arately to impute values replacing missing data to create the treated networks.

1.4 Establish a partition of each treated network using indirect blockmodeling with the cor-
rected Euclidean distance and Ward’s clustering method.

1.5 Compare the partitions of the whole original and treated networks by the ARI.

Currently, the direct approach to partitioning networks is confined to binary networks. In
an effort to examine the impact of actor non-response for the real networks, we modified the
foregoing simulation study by establishing partitions by direct blockmodeling under structural
equivalence (with the restriction of having each cluster include at least two vertices). The com-
parison of the partitions of the whole binary network and the treated networks was done by the
ARI and the proportion of incorrect block types, mErrB.

7.4.3 The Real Networks Used in the Simulation Studies

We begin our analyses by using two real valued networks gathered by Marouf and Doreian
[23]. These data on information and knowledge flows were collected in a Middle Eastern oil
and gas company through a web survey in which all respondents were given a roster of the
names of the other relevant organizational members. The questions were asked in terms of (i)
the frequency with which an individual typically sought work-related information from others
in the company, (ii) the frequency with which each individual gave work-related information
to others, (iii) to whom did each individual typically turn for help in thinking through a new or
challenging problem at work, and (iv) the frequency with which others turned to individuals for
help in thinking through such new or challenging problems. The first and third relations were
used to construct the reported networks. Most often, these would be the networks analyzed
despite being unconfirmed. The second and fourth questions were used for constructing two
confirmed networks.
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In an ideal world, the relation of seeking advice and the transpose of being given advice on the
same topic would correspond. In the Marouf and Doreian study [23], these relations were used
to create “confirmed” networks for each of the two relations. There are two aspects to this. One
concerns confirming the existence of a tie (regardless of the tie value). The second is obtaining
confirmed values of the ties. The former leads to a binary network while the latter leads to a
valued network. The confirmed tie regarding seeking work-related information is labeled as
SWRIc. PHPSc is the label for the confirmed relation for providing help in problem solving.

Figure 7.6a shows the confirmed network of seeking work-related information (SWRIc) with
a partition according to the departments (the central administrative group, a commercial affairs
group, and three drilling teams labeled A, B, and C). The confirmed network of providing
help in problem solving (PHPSc) partitioned according to these five departments is presented
Figure 7.6b. The shading of the squares indicates the strengths of the ties: the darker the shading,
the stronger the tie. The white squares denote null ties.

The third network used in our simulations for actor non-response is a student note-borrowing
network (netBorrowing). Data were gathered among 15 undergraduate students attending lec-
tures [5]. Males are represented by squares and females by circles. A fitted blockmodel using
structural equivalence and indirect blockmodeling produced a partition with three clusters as
presented in Figure 7.7.

Conti and Doreian [9] studied the evolution of social networks in a police academy located
in a metropolitan American city. They collected network data regarding a variety of social rela-
tions at three stages of police training. One of their networks is the fourth network used in our
simulations. Figure 7.8 presents a matrix representation of the “social knowledge of” relation at
the second time point. The data are valued with the network labeled as acad2vm. Using indirect
blockmodeling yielded a partition into four clusters, which is shown in Figure 7.8.

Table 7.3 lists some summary details for the two valued and three binary networks (two bina-
rized and one originally binary network). The distribution of tie values is provided along with
network sizes, reciprocity (recW), density (densW), and the average tie value.

7.5 Results

The impact of the seven non-response treatments for the real networks is presented for three
types of analyses: (i) indirect blockmodeling of valued networks (in Section 7.5.1), (ii) indirect
blockmodeling of binary networks (in Section 7.5.2), and (iii) direct blockmodeling of binary
networks (in Section 7.5.3). In each subsection, the partition of actors in the whole networks is
justified before the impacts of the actor non-response treatments are examined.

7.5.1 Indirect Blockmodeling of Real Valued Networks

According to the dendrograms presented in Figure 7.9, five clusters are appropriate when par-
titioning both the SWRIc and PHPSc networks using structural equivalence. Horizontal dashed
lines represent cutting of the dendrogram branches. The cluster memberships of the actors are
represented by grey rectangles.

Figure 7.10 presents matrices of SWRIc and PHPSc networks with reordered vertices accord-
ing to partitions into five clusters.
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(b) Confirmed network PH PSc
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Figure 7.6 The confirmed networks for seeking work-related information and providing help in problem
solving partitioned by work units.



�

� �

�

204 Advances in Network Clustering and Blockmodeling

(a) Matrix (b) Network

f1 f5 f7 f8 f2 f4 f9 m
1

m
2

f3 f6 m
3

m
4

m
5

m
6

f1

f5

f7

f8

f2

f4

f9

m1

m2

f3

f6

m3

m4

m5

m6

m5

m3

f5

f9

f4

f2

f6

f3
m2

m4
m6

f8

f7

f1

m1

Figure 7.7 Matrix and graphical representations of the note-borrowing network with three clusters.

Figure 7.8 A valued network from a police academy with a partition obtained from indirect
blockmodeling.
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Table 7.3 Characteristics of three real networks and binarized version of valued ones

Number of ties with
values

Network characteristics

Network 0 1 2 3 4 5 N recW densW Average tie value

Valued networks
SWRIc 312 88 146 98 112 28 0.822 1.484 2.527
PHPSc 433 96 103 56 68 28 0.709 0.981 2.297
acad2vm 2834 230 408 532 362 258 68 0.580 1.18 3.006

Binarized or binary networks
SWRIc_bin 312 444 28 0.973 0.587 1.000
PHPSc_bin 433 323 28 0.786 0.427 1.000
netBorrowing 169 56 15 0.464 0.267 1.000

N, number of actors; recW, weighted reciprocity; densW, weighted density; mean tie value, mean of tie
values (without zeros).

We now consider imposing various levels of actor non-response, treating them in seven ways
and examining the consequences for the resulting blockmodels. The results of these simulations
and treatments for the SWRIc relation are presented in Figure 11a. The generation of missing
data was repeated 28 times for networks with one missing actor (each actor was assigned to be
a non-respondent) and 100 times for each combination of two or more (3, 4, 5, 6, 8, 10, 12, and
14) missing actors. Together 928 measured networks were generated and, after employment of
seven treatments, we obtained 6496 treated networks. Throughout, the figures show the plots of
the percentage of missing actors (ranging from 0 to 50%) on the horizontal axis with the mean
values of the ARI (mARI) on the vertical axis.

As expected, the trajectories for mARI decline as the non-response gets more severe. However,
the performance of the treatments differ greatly. Overall, using the median of the three nearest
neighbors based on incoming ties is the superior imputation treatment. The values of mARI are
above 0.8 for 36% non-respondents or less, indicating good agreement between the original and
treated partitions. Both reconstruction treatments perform well for non-response rates of 25% or
less. They are practically interchangeable for 21% non-respondents or less. This is not surprising
given the relatively high value (0.822) of weighted reciprocity (recW) reported in Table 7.3. For
higher percentages of non-respondents, the combination of the reconstruction and imputations
based on modal values performs slightly better. However, the performance of these treatments
diminishes rapidly when actor non-response gets higher.

By far the worst treatment is null tie imputation. It is unacceptable for even three
non-respondents (11%) with mARI values below 0.8. These values diminish quickly as the
non-response problem gets worse. The next two worst treatments are imputations based on the
modal values of incoming ties and imputations of the total mean, since their mARI values are
below 0.8 for four (14%) and five (18%) non-respondents, respectively. For networks having
this structure, these three imputation treatments are of no real value.

The corresponding results for the indirect blockmodeling of the valued network PHPSc are
presented in Figure 7.11b. Again, the median of the three nearest neighbors based on incoming
ties is the best treatment, since the values of mARI are above 0.8 for 36% of non-respondents.
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Figure 7.9 Dendrograms for the indirect blockmodeling of the confirmed (valued) networks of seeking
work-related information and of providing help in problem solving.
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Figure 7.10 The two valued networks with partitions obtained from indirect blockmodeling.
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(a) Seeking work-related information
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Figure 7.11 Results of the simulation study for the indirect blockmodeling of confirmed (valued) net-
works of seeking work-related information and of providing help in problem solving.
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Indeed, for 20% of non-respondents or less, the values of mARI are above 0.9, indicating excel-
lent agreement between the two partitions. The reconstruction, the reconstruction in combina-
tion with imputations based on modal values, and imputations of the mean values of incoming
ties are the next best treatments, performing satisfactorily for 36% of non-respondents or less.
For higher percentages of non-respondents the combination of reconstruction and imputations
based on modal values performs better than the other two treatments.

Again, the three worst treatments are the null tie imputations, imputations based on the modal
values of incoming ties, and imputations of the total mean, since their mARI values are below
0.8 for five non-respondents and more, and the trajectories of their values decrease in the most
extreme fashion.

The results for the two valued networks in Figure 7.6 have some intriguing similarities and
differences for the analysis of the SWRIc and PHPSc networks. The performance trajectories
for the ARI measures are more sharply differentiated for the lower panel of Figure 7.11 into two
groups, a reminder that the actual structure of the network matters. Yet, only one imputation
method, the median of the three nearest neighbors based on incoming ties, is clearly superior.
This is fully consistent with the results reported by Žnidars̆ič et al. [34].

According to the dendrogram presented in Figure 7.12, four clusters (represented by grey
rectangles according to cutting denoted by the dashed line) are appropriate when partitioning
the police academy network using indirect blockmodeling.

Figure 7.8 showes a blockmodel partition with four clusters. The academy formed four squads
used for para-military training, going to shooting ranges and driving training. Members of the
squads identified strongly with their squads. Of some interest is that the ARI value comparing the
partition in the squads and blockmodeling partition is 0.88. Conti and Doreian [9] determined,
using QAP methods, that squad membership had a strong impact on relation formation at the
time point for these data.
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Figure 7.12 Dendrogram of the acad2vm network.
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Figure 7.13 Results of the simulation study for the indirect blockmodeling of valued network from a
police academy. The trajectories for reconstruction and for reconstruction and modal values are indistin-
guishable. The same holds for null tie imputation and imputing the mode of incoming ties.

Figure 7.13 shows the ARI trajectories for the police academy data. Yet again, the median
of the three nearest neighbors outperforms all of the other imputation treatments. Indeed, for
up to 30% of actor non-response, the ARI values are above 0.9 and, for higher levels of actor
non-response, they are well above 0.8. The ARI trajectories for the two reconstruction imputa-
tion methods are virtually identical and cannot be distinguished in Figure 7.13. Up to slightly
less than 30% of actor non-response, these two methods are the next best. Imputation of the
total mean also performs well. Next comes imputations of the mean of incoming ties. After
about 37% actor non-response, the only acceptable treatment is the median of the three nearest
neighbors. Imputing the mode of incoming ties and null tie imputation are virtually identical
and are unacceptable when the level of actor non-response exceeds slightly less than 10% actor
non-response. They are also outperformed by all other imputation methods even for low levels
of non-response.

7.5.2 Indirect Blockmodeling on Real Binary Networks

We next consider the impact of actor non-response treatment on indirect blockmodeling for three
networks. The first is the student note-borrowing network (Figure 7.7). The other two networks
are the binarized versions of networks SWRIc and PHPSc.

The dendrogram presented in Figure 7.14a reveals that actors belong to three clusters as pre-
sented in Figure 7.7, consistent with the original analysis [5]. Figure 7.14b presents the results of
the actor non-response simulations with indirect blockmodeling into three clusters. The genera-
tion of missing data was repeated 15 times for networks with one missing actor (each actor was
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(b) Results of the simulation study
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Figure 7.14 Dendrogram and results of the simulation study for the indirect blockmodeling of the
note-borrowing network.
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assigned to be a non-respondent), 50 times for a combinations of two non-respondents, and 100
times for combinations of three to seven missing actors. Together, 928 measured networks were
generated. After employing the seven treatments, we obtained 6496 treated networks. Again, the
trajectories of the mean ARI values are plotted against the percentage of missing respondents.

In general, the results here are less encouraging regarding the efficacy of treatments for actor
non-response. Three best treatments, with interchanging rank of best performance over the
whole range of non-respondents, are imputations of the mean values of incoming ties, impu-
tations of modal values of incoming ties, and the imputation of the median of the three nearest
neighbors based on incoming ties. Yet agreement between the partitions, for all treatments,
is unacceptable for three (20%) non-respondents or more: in this range, all mARI values are
below 0.8.

The values of mARI for the reconstruction procedures are below those for all other treat-
ments. We suspect the reason for reconstruction performing so badly is due to the low reciprocity
(0.464) of the network. Given its low density (0.267), imputations using the total mean amounts
to using null tie imputations known to be poor in general. One message is clear for networks
with this structure: avoid actor non-response, a claim relevant for all networks.

As noted above, the oil company networks SWRIc and PHPSc were binarized so that each tie
value of 1 or more regardless of its magnitude was set to 1. The density of the binarized SWRIc
network is 0.587, while its reciprocity is equal to 0.973. The corresponding numbers for the
binarized PHPSc network are 0.427 and 0.786.

The dendrogram shown in Figure 7.15a suggests five clusters are reasonable for SWRIc. In
contrast, a partition into four clusters is the most appropriate for PHPSc. This implies binarizat-
ing valued networks may be problematic, something depending on the underlying structures
of networks subjected to this treatment. It seems that binarization destroys the blockmodeling
structure by reducing the high variability of the original tie values. The weighted reciprocity
values are higher in the binarized networks compared to the corresponding valued versions,
especially for SWRIc (see Table 7.3). Even so, we explore the binarized networks further with
regard to actor non-response.

Figure 7.16a presents the binarized SWRIc network with the five clusters from indirect block-
modeling. Comparing the partitions based on indirect blockmodeling of the valued network
(Figure 7.9a) and the binarized version of the SWRIc network (Figure 7.15a) shows they are quite
different. The value of ARI confirms this since its value is 0.601. In short, the two partitions do
not correspond. The four-cluster partition of the binarized PHPSc is presented in Figure 7.16b.
The ARI for partitions based on indirect blockmodeling of the valued (Figure 7.9b) and binarized
(Figure 7.15b) SWRIc is 0.763, below the 0.8 threshold for being viewed as consistent partitions.
Clearly, binarization of valued networks can severely change the blockmodel structure and the
partition of the actors, especially if the variation in the valued tie values is large.

Figure 7.17a presents the simulation results concerning indirect blockmodeling of the SWRIc
network into five clusters. The imputation treatments do not fare as well as for the valued version
of this network. Using the median of the three nearest neighbors performs the best for 21% of
non-respondents or more, although the ARI values are below the desired threshold of 0.8. This
treatment is acceptable up to 11% of non-respondents. Acceptable treatments for up to 11%
and 14% of non-respondents are reconstruction plus modal values and simple reconstruction.
All other treatment methods perform even worse, with some being unacceptable even for only
two non-respondents. There is little point in comparing how badly they perform relative to each
other. One reason for their wretched performance is that the binarized version of this network
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Figure 7.15 Dendrograms for the indirect blockmodeling of the binarized confirmed networks of seeking
work-related information and of providing help in problem solving.
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Figure 7.16 Binarized networks with partitions from indirect blockmodeling.
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Figure 7.17 Results of the simulation study for the indirect blockmodeling of binarized confirmed net-
works of seeking work related information and of providing help in problem solving.
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is almost completely symmetrical, with reciprocity equal to 0.972. If so, this suggests that only
three imputation treatments have any value for highly symmetric networks.

The impacts of actor non-response treatments using indirect blockmodeling of the PHPSc
network into four clusters are presented in Figure 7.17b. Again, the median of the three nearest
neighbors performs the best for larger percentages of non-respondents (30% or more). Up to
30% of non-respondents, its mARI values are above the threshold of 0.8, indicating acceptable
fit between partitions. Both reconstruction procedures perform in an acceptable fashion for up
to slightly more than a 20% level of non-response. Of the two, combinations of reconstruction
and imputations of the modal values perform slightly better. All other treatments perform badly
for more than 10% of non-respondents, with mARI trajectories declining more sharply.

For both of the work-related networks, the median of the three nearest neighbors performs
well. In these binarized networks, it performed better for the PHPSc network, as it was less
affected by the binarization of the two networks. Both of the treatments involving reconstruction
perform well, but for lower levels of non-response compared to the superior treatment. Over-
all, the results reported in this section suggest there are, at most, three acceptable imputation
treatments.

We turn to consider direct blockmodeling of these three binary networks, again using struc-
tural equivalence.

7.5.3 Direct Blockmodeling of Binary Real Networks

Under direct blockmodeling, a set of permitted block types is specified for the selected type of
equivalence. For structural equivalence, only null blocks and complete blocks can be fitted to
data. The value of the criterion function is the number of inconsistencies in empirical blocks
compared to the ideal blocks.

The first binary network we consider is the note-borrowing network. A narrower set of treat-
ments has already been examined for that network [33]. There, it was established that a block-
model with three clusters delineates the macro-structure of the network (with a criterion function
having 28 inconsistencies).

Continuing our general strategy, Figure 7.18a plots the value of mARI against the percent-
age of actor non-response. Again, the median of the three nearest neighbors performs the best,
although mARI values are below 0.8 for a quarter of non-respondents and more. The second-best
treatment couples reconstruction with imputations of modal values of incoming ties, but only
for up to about 12% of non-response levels. While all of the treatment methods perform in an
adequate fashion at low levels of non-response, their trajectories drop rapidly thereafter. Null
tie imputation performs the worst due to the low network density (0.266), making this treatment
equivalent to using the total mean. For this binarized network, reconstruction is the second worst
performer, a departure from earlier results. But this is not surprising for such a non-symmetrical
network (reciprocity is only 0.464).

The second criterion for assessing the adequacy of identified blockmodels is the proportion of
incorrect block types, mEErB. On this measure (Figure 7.18b), the differences among treatments
are much smaller. Yet, the median of the three nearest neighbors remains the best treatment over
a wider range of actor non-response. Up to 47% of non-response, only 10% of block types in the
blockmodel are incorrectly identified. For lower levels of non-response the median of the three
nearest neighbors does much better. The worst treatments are imputations of the total mean and
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Figure 7.18 Results of the simulation study for the direct blockmodeling of the student note-borrowing
network.
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null tie imputations, where for 40% of non-respondents, on average, 20% of the block types are
identified incorrectly.

Direct blockmodeling based on structural equivalence of the binarized SWRIc network estab-
lished a partition with five clusters. The value of the criterion function is 98.9 The binarized
network of SWRIc with five clusters is presented in Figure 7.19a.

Figure 7.20a presents the simulation results for this network. Their most distinctive fea-
ture is the sharp separation of the trajectories of mARI plotted against the percentage of actor
non-response. Four imputation treatments are spectacularly bad for revealing position member-
ships of actors. Imputations of the mean value of incoming ties, imputations of the modal value
of incoming ties, imputations of the total mean, and null tie imputation are unacceptable for this
network. A surprise comes with the acceptable treatments. The best treatment is reconstruction
with modal values. It performs well for up to about 28% of non-respondents, although the trajec-
tory drops sharply thereafter. The second-best treatment, up to about 18% non-response levels,
is the median of the three nearest neighbors based on incoming ties. Reconstruction does well
up to slightly less than 20% non-response and is better than using the median of the three nearest
neighbors up to that level. This is due to the network being very symmetric.

Regarding the identification of the correct block types, Figure 7.20b shows the best treatments
are the median of the three nearest neighbors based on incoming ties and the combination of
reconstruction procedure and imputations based on modal value of incoming ties. They perform
very well over the entire range of non-response. Not quite as good, but still acceptable for the
whole range of non-respondents, are reconstruction and imputations based on modal and median
values of incoming ties.

The binarized network of PHPSc with partition into four clusters is presented in Figure 7.19b.
Based on this, direct blockmodeling, using structural equivalence, of the binarized PHPSc net-
work was performed with four clusters as the dendrogram in Figure 7.15b suggests four clusters.
The value of the criterion function for this partition is 143.

Figure 7.21b reveals, as for the binarized version of the SWRIc, that four treatments, imputa-
tions of the mean and modal values of incoming ties, imputations of the total mean, and null tie
imputations, perform poorly in revealing position memberships. For 21% of non-respondents or
less both reconstruction procedures perform well. Again, using the median of the three nearest
neighbors based on incoming ties is better than both reconstruction procedures being acceptable
up to 35% non-respondents.

In terms of mErrB values in Figure 7.21b, the best treatment is reconstruction combined with
using modal values of incoming ties. Even for 50% of non-respondents values of mErrB are
around 0.1. Using the median of the three nearest neighbors based on incoming ties is acceptable
also across the whole range of non-respondents. Null tie imputations and imputations of the total
mean were unable to identify the macro structure of the network for 18% of non-respondents
or more.

9 For the partition into four clusters, the criterion function had a value of 114. Worse, there were two equally well-fitting
partitions. Using six clusters, the value of the criterion function dropped to 92 but, again, there were two equally
well-fitting partitions. It is well known that the value of the criterion function for structural equivalence decreases mono-
tonically with the number of clusters. Given the other partitions of this network, using more clusters seems unadvisable.
Hence our choice to work with five clusters.
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Figure 7.19 Networks with partitions from direct blockmodeling based on structural equivalence.
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(a) The Adjusted Rand Index

(b) Proportion of incorrect block types
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Figure 7.20 Results of the simulation study for the direct blockmodeling of the binarized confirmed
network of seeking work-related information.
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(a) The Adjusted Rand Index
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Figure 7.21 Results for the direct blockmodeling of the binarized confirmed network of providing help
in problem solving.
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Table 7.4 Summary of impact of actor non-response treatments on clustering

skrowtenyraniBskrowtendeulaV

Indirect blockmodeling Indirect blockmodeling Direct blockmodeling

mARI mARI mARI mErrB

Treatment SWRIc PHPSc acad2vm SWRIc PHPSc Borrowing SWRIc PHPSc Borrowing SWRIc PHPSc Borrowing

RE
MEAN
MO
REMO
TM
MEDIAN 3-NN
NTI

Network characteristics:
recW 0.822 0.709 0.580 0.973 0.786 0.464 0.973 0.786 0.464 0.973 0.786 0.464

RE, reconstruction; MEAN, imputations of mean values of incoming ties; MO, imputations of modal val-
ues of incoming ties; REMO, reconstruction and modal values; TM, imputations of total mean; MEDIAN
3-NN, median of three nearest neighbors based on incoming ties; NTI, null tie imputations.

7.6 Conclusions

The results from the simulations are complex. Table 7.4 provides a summary for all the studied
networks and clustering procedures. For each network used in clustering, the performance of
actor non-response treatments based on both the ARI (mARI) and the proportion of incorrect
block types (mErrB) is presented by different shades. Bad performances are denoted by
white, moderate performances by grey, and good performances by black. We note the row
for the median of the three nearest neighbors, which performed well for all but one of the
12 networks examined. Below the table, weighted reciprocity is provided since the selection
of the best treatment depends of the level of the symmetry and/or correspondence of tie
values.

Based on the results and the summary given in Table 7.4, together with the results of extensive
simulation studies on three network models (cohesive subgroups, core periphery, and hierarchi-
cal model) presented by Žnidars̆ič et al. [34], the following recommendations can be given:

• Never disregard the non-respondents of the network. Ignoring incoming ties is an absurd
strategy despite it being a frequent response to the presence of actor non-response. Doing so
borders on irresponsibilty.

• Use the best possible imputation method for missing data.
• Regardless of the hypothesized blockmodel structure, the clustering procedure employed, and

the level of reciprocity the most preferable actor non-response treatment is using the median
of the k nearest neighbors based on incoming ties.

• We recommend strongly the inclusion of this imputation method for treating actor
non-response and plead for its inclusion in all social network analytic packages.

• The reconstruction procedure combined with imputations based on modal values performs
well, especially if a network is highly symmetrical.
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• For direct blockmodeling of binarized networks, the macro structure is more stable than
micro-level memberships for non-respondents in clusters.

• However, the binarization of the valued network can severely change the underlying block-
model structure, especially when the variability of tie values is high. We claim this data
analytic strategy must be avoided when partitioning networks.

The main limitation of this study is the small set of relatively small real-world networks
we examined, despite the police academy data being the largest network we considered. Even
so, if these results are combined with similar conclusions drawn by Žnidars̆ič et al. [34], the
above conclusions must be emphasized. Clearly, the structure of the empirical network has
great relevance for assessing the consequences of having measurement errors [34]. Using both
real and completely simulated networks is, and will continue to be, useful in this effort. Actor
non-response is eminently treatable but other missing data problems remain. The impact of item
non-response on the results of network partitioning may be more consequential, as it is harder
to detect and treat. Even more crucial is an effort to determine the influence of measurement
errors in the form of misreported tie strengths of valued networks for partitioning outcomes.
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We are concerned with signed networks, where each link is associated with either a positive
(+) or negative sign (−). More generally, weights wij could be used. Although weights are often
assumed to be positive, we explicitly allow them also to be negative. For simplicity, we deal
primarily with non-weighted networks, but most concepts used here can be adapted easily to
the weighted case.

8.1 Notation

While we try to be as consistent as possible with the general notation used throughout this book,
we require some additional notation because signed networks have signs for arcs and edges. We
denote a directed signed network by G = (V ,A −

,A +) where A −
⊆ V × V are the negative

links and A +
⊆ V × V the positive links. We assume that A − ∩ A + = ∅, so that no link is both

positive and negative. We exclude loops on nodes. Many studied signed networks are directed.
Some are not, including the network we study here. Similarly, an undirected signed network is
denoted by G = (V ,E −

,E +), where E −
⊆ V × V are the negative links and E +

⊆ V × V the
positive links. As for the directed case, E − ∩ E + = ∅.

We present our initial discussion in terms of directed signed networks. However, if we restrict
ourselves to undirected graphs, then (i ∶ j) ∈ E ± is identical to (j ∶ i) ∈ E ±. Also, we assume
that there are no self-loops, i.e. no (i ∶ i) exists. For edges, the signs on them are symmetrical
by definition.

We define the adjacency matrices A+ and A−. We set A+
ij = 1 whenever (i ∶ j) ∈ A + and

A+
ij = 0 otherwise. Similarly, A−

ij = 1 whenever (i ∶ j) ∈ A − and A−
ij = 0 otherwise. We denote
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the signed adjacency matrix A = A+ − A−. This can be summarized as follows

Aij =
⎧⎪⎨⎪⎩

−1 if (i, j) ∈ A −
,

1 if (i, j) ∈ A +
,

0 otherwise.

(8.1)

Note that we exclusively work with the signed adjacency matrix in this chapter, and A should
not be confused with the ordinary adjacency matrix. The signed adjacency matrix for undirected
networks is defined in a similar fashion. For undirected networks the signed adjacency matrix
is symmetric, and A = A⊤.

The neighbors of a node are those nodes to which it is connected. The positive neighbors
are N +

v = {u ∣ (v ∶ u) ∈ E +} and the negative neighbors similarly N −
v = {u ∣ (v ∶ u) ∈ E −},

and all the neighbors are simply the union of both N (v) = N +(v) ∩ N −(v). The number of
edges connected to a node is its degree. We distinguish between the positive degree d+

v = |N +
v |,

negative degree d−
v = |N −

v |, and total degree dv = |Nv| = d+
v + d−

v . Similar formulations are
possible for directed signed networks.

Blockmodeling, as a way of partitioning social networks, started with a clear substantive
rationale expressed in terms of social roles [27]. However, the availability of algorithms for par-
titioning (unsigned) networks [4, 6], based on ideas of structural equivalence, led to a rather
mechanical application to simply partition social networks with a subsequent ad hoc inter-
pretation of what was identified. Such algorithms are indirect in the sense of having network
transformed to (dis)similarity measures for which partitioning methods are used. In contrast, a
direct approach was proposed [14] in which the network data are clustered directly. This allows
the inclusion of substantive ideas within the rubric of pre-specification.

Consistent with this, the approach known as structural balance theory has a clear substantive
foundation. We briefly review the basics of balance theory as it connects directly to partitioning
signed social networks. We then review some methods for partitioning networks in practice, and
examine how they connect to balance theory. Finally, we briefly explore how structural balance
evolves through time in an empirical example of international alliances and conflict.

8.2 Structural Balance Theory

The basis of structural balance theory is founded on considerations of cognitive dissonance.
Heider [20] focused on so-called p-o-x triplets, considering the relations between an actor (p),
another actor (o), and some object(x), and claimed such triplets tend to be consistent in atti-
tudes. For example, in this perspective, if someone (p) has a friend (o) who dislikes conservative
philosophies (x), then p also tends to dislike conservative philosophies. This extends naturally
to p-o-q triples for three actors denoted by p, o, and q. In the formulation involving three actors,
well-known claims such as “a friend of a friend is a friend”, “an enemy of a friend is an ene-
my”, “a friend of an enemy is an enemy”, and “an enemy of an enemy is a friend” are thought
to hold. The notion of balance from Heider [20] was further formalized and extended to an
arbitrary number of persons or objects by Cartwright and Harary [7]. They modeled relations
between persons as a graph where nodes are persons and the relations between them links in the
graph. The four possible triads for the undirected case are shown in Figure 8.1.
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Two factions
Balanced

Unbalanced

Figure 8.1 Structural balance. There are four possible configurations for having positive or negative links
between three nodes (a triad). These are demonstrated on the left, where a solid line represents a positive
link and a dashed line represents a negative link. The upper two triads are structurally balanced because
the product of their signs is positive. Similarly, the lower two triads are not structurally balanced because
the product of their signs is negative. If all triads (in a complete network) are structurally balanced, the
network can be partitioned in two factions such that they are internally positively linked, with negative
links between the two factions, as illustrated on the right.

For the remainder of the chapter, we restrict ourselves to undirected graphs. We first focus on
complete graphs, where all links are present (excluding self-loops). Following [7], we provide
the following definition.

Definition 8.1 A triad i, j, k is called balanced whenever the product

AijAjkAki = 1. (8.2)

A complete signed graph G is structurally balanced whenever all triads are balanced.

Of the four possible triads, two are balanced (+ + + and + − −) and two are unbalanced
(+ + − and − − −) according to this definition (see also Figure 8.1).

Harary [18] proved that if the graph G is structurally balanced, then it can be partitioned in
two clusters such that there are only positive links within each cluster and negative links between
them. Cartwright and Harary [7] called this observation the structure theorem, and Doreian and
Mrvar [11] called it the first structure theorem.

Theorem 8.1 (Structure theorem, [18]) Let G = (V ,E +
,E −) be a complete signed graph.

If and only if G is balanced can V be partitioned into two disjoint subsets V1 and V2 such
that a positive edge e ∈ E + either in V1 × V1 or V2 × V2 while a negative edge e ∈ E − falls in
V1 × V2.

Proof: Assume G is balanced. Consider some node v ∈ V and set V1 = v ∪ N +(v) as well as
the set V2 = V \ V1. Consider an edge (u ∶ w) ∈ V2 × V2. Then (u ∶ v) ∈ E − and (w ∶ v) ∈ E −

by definition of V2 so that (u ∶ w) ∈ E + by structural balance. Hence all edges in V2 are positive.
Similarly, any edge (u ∶ w) ∈ V1 × V1 is positive. Hence, we can partition V into the stated
disjoint sets V1 and V2. In reverse, any triad is easily seen to be balanced if V is partitioned as
stated in the theorem. ◾
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While the above is limited to complete graphs, it can be generalized to incomplete graphs.
For this we first need to introduce another definition for structural balance.

Definition 8.2 (Structural Balance) Let G = (V ,E +
,E −) be a signed graph and A the

signed adjacency matrix. Let C = v1v2 … vkv1 be a cycle consisting of nodes vi with vk+1 = v1.
Then the cycle C is called balanced whenever

sgn(C) ∶=
k∏

i=1

Avivi+1
= 1. (8.3)

A signed graph G is called balanced if all its cycles C are balanced.

Stated differently, sgn(C) is the sign of the cycle which is balanced if its sign is positive. If a
cycle contains m− negative edges, then sgn(C) = (−1)m−

. In other words, a cycle is balanced if
it contains an even number of negative links. Note that for a cycle of length three, this coincides
exactly with the definition of a balanced triad.

The sign of a cycle can be decomposed in the sign of subcycles if the cycle has a chord: an
edge between two nodes of the cycle (see Figure 8.2).

Theorem 8.2 Let C = v1v2 … vkv1 be a cycle with a chord between nodes v1 and vr in C.
Then let C1 = v1v2 … vrv1 and C2 = v1vk … vrv1 be the induced subcycles. Then sgn(C) =
sgn(C1)sgn(C2).

Proof: We denote by m−
1 the number of negative links of C1 and similarly m−

2 for C2 and m−

for C. Suppose that the link (v1 ∶ vr) is not a negative link. Then the number of negative links
in C is m− = m−

1 + m−
2 so that sgn(C) = (−1)m− = (−1)m

−
1 (−1)m

−
2 = sgn(C1)sgn(C2). Suppose

that (v1 ∶ vr) is a negative link. Then m− = (m−
1 − 1) + (m−

2 − 1) so that sgn(C) = (−1)m− =
(−1)m

−
1 (−1)m

−
2 (−1)−2 = sgn(C1)sgn(C2). ◾

In other words, it is not necessary to determine the structural balance of all cycles, and we
can restrict ourselves to the balance of chordless cycles. In fact, this statement can be made
stronger, and holds for any combination of cycles. With a combination of cycles, we mean the

v1v2

vr − 1 vr
vr + 1

vk

Figure 8.2 Chords and cycles. This illustrates a cycle v1 … vk with a chord between nodes v1 and vr.
There are two subcycles: one following the left path and the other following the right path in the illustration.
These two subcycles have a single common edge: v1vr. The sign of the large cycle is then the product of
the sign of the two subcycles.
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symmetric difference of the edges of the two cycles. To define this properly it is more convenient
to denote a cycle by the set of its edges (in no particular order). That is, we define a cycle
C = {e1, e2, … , ek} where the edges form a cycle, i.e. the subgraph of C is a cycle.

Definition 8.3 Let C1 = {e1, e2, … , ek} and C2 = {f1, f2, … , fk} be two cycles. Then we define
the symmetric difference as

C1 △ C2 = (C1 ∪ C2) \ (C1 ∩ C2). (8.4)

We also refer to this as the combination of two cycles.

Note that the combination of two cycles may actually be a set of multiple edge-disjoint cycles.
Now we can prove the stronger statement on the combination of cycles.

Theorem 8.3 Let C1 = {e1, e2, … , ek} and C2 = {f1, f2, … , fk} be two cycles. If C = C1 △
C2 then sgn(C) = sgn(C1)sgn(C2).

Proof: Let us denote the number of negative links in a set C by m−(C) = |C ∩ E−|.
Let S = C1 ∪ C2 be the union of the two cycles, and T = C1 ∩ C2 be the overlap of the
two cycles. Then m−(S) + m−(T) = m−(C1) + m−(C2), and m−(C) = m−(S) − m−(T) =
m−(C1) + m−(C2) − 2m−(T). Hence

sgn(C) = (−1)m−(C) (8.5)

= (−1)m−(C1)+m−(C2)−2m−(T) (8.6)

= (−1)m−(C1)(−1)m−(C2)(−1)2m−(T) (8.7)

= (−1)m−(C1)(−1)m−(C2) (8.8)

= sgn(C1)sgn(C2) (8.9)

since (−1)2m = 1 for any integer m. ◾

In other words, if we know the balance of some limited number of cycles, we can determine
the balance of all cycles. These “limited number of cycles” are called the fundamental cycles.
Any cycle can be obtained as a combination of two (or more) fundamental cycles. This implies
that if all fundamental cycles are balanced, then the graph as a whole is balanced. We do not
consider fundamental cycles in more detail, but this notion underlies the technique by Altafini [2]
which we consider in Section 8.3.1.2.

Similar to the sign of cycles, we can define the sign of a path.

Definition 8.4 Let P = v1v2 … vk be a path in a signed graph G with signed adjacency matrix
A. The sign of the path P is then defined as

sgn(P) ∶=
k−1∏
i=1

Avivi+1
. (8.10)
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Paths in signed networks are either positive or negative. A cycle can be decomposed in two
paths so the sign of a cycle is the product of the sign of the two paths. Hence, a cycle is balanced
if the two paths have the same sign.

As before, the graph G can be partitioned in two clusters with positive links within clusters
and negative links between clusters.

Theorem 8.4 (Structure theorem, [18]) Let G = (V ,E +
,E −) be a connected signed graph

and A the signed adjacency matrix. Then G is balanced if and only if G can be partitioned
into two disjoint subsets V1 and V2 such that a positive edge e ∈ E + falls either in V1 × V1 or
V2 × V2 while a negative edge e ∈ E − falls in V1 × V2.

Proof: First, assume G is balanced. Then select any v ∈ V and set V1 = {u|sgn(u − v path) =
1}, that is, all the nodes that can be reached through a positive path. Define V2 = V \ V1. Let e =
(u ∶ w) ∈ E −. Suppose e ∈ V1 × V1. By construction of V1, then both u and w have a positive
path to v, so that the path u − w through v is also positive. But if (u ∶ w) is negative, it would
be contained in a negative cycle, contradicting balance. Hence e ∉ V1 × V1. Similarly, suppose
that e ∈ V2 × V2. Then both the u − v path and the w − v path are negative (otherwise u and w
would be in V1). The u − w path through v is then positive since the product of the two negative
paths is positive. Again, since (u ∶ w) ∈ E − this contradicts balance. Hence, all negative edges
lie between V1 and V2. Finally, let e = (u ∶ w) ∈ E + with u ∈ V1 and w ∈ V2. Then there is a
positive u − v path and a negative w − v path, so that the u − w path through v is negative, which
combined with the positive edge (u ∶ w) leads to a negative cycle, contradicting balance. Hence,
positive edges lie within V1 and V2. We conclude that if G is balanced, it can be partitioned as
stated. Vice versa, suppose G can be partitioned into the two states subsets V1 and V2. Let C be
a cycle. If C is contained within V1 or V2 it is completely positive, so that sgn(C) = 1. Suppose
C has some node u ∈ V1 and v ∈ V2. Then any u − v path contains an odd number of negative
links, and is hence negative, so that the cycle C is positive. Hence, all cycles are balanced, and
so G is balanced. ◾

8.2.1 Weak Structural Balance

Classical structural balance theory predicts that a balanced network can be partitioned into
two clusters. However, as suggested by Davis [9] and Cartwright and Harary [8], we can
generalize this notion of structural balance by redefining the notion of an unbalanced triad
or cycle. Consider, for example, the (unbalanced) triad with three negative links. The three
nodes can be partitioned into three clusters: trivially, all links between clusters are negative
and all positive links are within clusters. There is a simple characterization of networks that
can be partitioned in such a way: no cycle can contain exactly one negative link. Davis [9]
established this only for complete graphs, and Cartwright and Harary [8] extended it to sparse
graphs. We call signed networks with this property weakly structurally balanced (or weakly
balanced).

Definition 8.5 A cycle C = v1v2 … vkv1 is termed weakly balanced if it does not contain exactly
a single negative link. A signed graph G is called weakly balanced if all its cycles C are weakly
balanced.
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Following this, we can call the previous definition strong structural balance. Any graph that is
strongly structurally balanced is also weakly structurally balanced: a cycle with a positive sign
must contain an even number of negative links. It cannot have exactly one. The reverse does not
hold: a weakly structurally balanced cycle can have three negative links, which is not allowed
in strong structural balance.

Lemma 8.5 Let C = v1v2 … vkv1 be a cycle with a chord between nodes v1 and vr in C. Then
let C1 = v1v2 … vrv1 and C2 = v1vk … vrv1 be the induced subcycles. Then C is weakly bal-
anced if C1 and C2 are weakly balanced.

Proof: We denote by m−
1 ≠ 1 the number of negative links of C1 and, similarly, m−

2 ≠ 1 for C2
and m− for C. Suppose that the link (v1 ∶ vr) is not a negative link, then the number of negative
links in C is m− = m−

1 + m−
2 ≠ 1, implying C is weakly balanced. Suppose that (v1 ∶ vr) is a

negative link. Then both m−
1 ≥ 2 and m−

2 ≥ 2, and m− = (m−
1 − 1) + (m−

2 − 1) ≥ 2 so that C is
weakly balanced. ◾

The inverse does not hold. This can readily be seen by considering an all-positive cycle with
a single negative chord. The all-positive cycle, clearly, is weakly balanced, but the induced
sub-cycles contain exactly one single negative link, and are therefore not weakly balanced. The
theorem on chordless cycles for weak balance is hence a weaker statement than the correspond-
ing theorem for strong structural balance. Nonetheless, we can still limit ourselves to considering
chordless cycles for determining whether a graph is weakly structurally balanced.

Theorem 8.6 Let G be a signed network. Then G is weakly structurally balanced if and only if
all chordless cycles are weakly structurally balanced.

Proof: If G is weakly balanced, all cycles are balanced, so that trivially all chordless cycles
are balanced. Vice versa, assume all chordless cycles are weakly balanced. We use induction on
|C|. All chordless cycles C are balanced by assumption, providing our inductive base for |C| = 3
(because triads are chordless by definition). Assume all cycles with |C| < r are balanced, then
consider cycle C of length r. If C contains a chord, we can separate C in cycles C1 and C2, which
are balanced by our inductive assumption. Then, by Lemma 8.5 cycle C is balanced. Hence, all
cycles are weakly balanced. ◾

To determine whether a graph is weakly structurally balanced, we need only consider the
chordless cycles rather than all cycles. Computationally, this is important.

Similar to strong structural balance, we can partition a weakly structurally balanced graph, but
now in possibly more than two clusters. This is called the second structure theorem by Doreian
and Mrvar [11].

Theorem 8.7 (Clusterability theorem, [8]) Let G = (V ,E +
,E −) be a connected signed

graph. Then G is weakly structurally balanced if and only if G can be partitioned into disjoint
subsets V1,V2, … ,Vr such that a positive edge e ∈ E + falls in Vc × Vc while a negative edge
e ∈ E − falls in Vc × Vd for c ≠ d.

Proof: Suppose G is weakly balanced. Let G + = (V ,E +) be the positive part of the signed
graph, and let the clusters be defined by the connected components of G +. Any positive edge
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then clearly cannot fall between clusters because different connected components cannot be
connected through a positive link. Consider then some negative link (u ∶ v) ∈ E −. Suppose that
u and v are both in some Vc. Then there exists a positive u − v path because they are in the same
component, thus yielding a cycle with exactly a single negative link, contradicting weak balance.
Hence, any negative link falls between clusters. Vice versa, suppose G is split into clusters as
stated in the theorem. Any cycle completely contained within a cluster has only positive links.
Consider a cycle through u and v where u ∈ Vc and v ∈ Vd, d ≠ c. Then any path between u and
v must contain at least a single negative link, so that any cycle must contain at least two negative
links. ◾

It is easy to see when a complete signed graph is weakly structurally balanced: it must not
contain the + + − triad.

In summary, signed networks which are strongly structurally balanced can be partitioned
in two clusters. Signed networks which are weakly structurally balanced can be partitioned in
multiple clusters. Clearly, all signed networks which are strongly structurally balanced are also
weakly structurally balanced, but not vice versa. One obvious question is whether strong or
weak structural balance is more realistic. This led to partitioning signed networks, which we
examine in the next section.

8.3 Partitioning

The previous section introduced the general idea and structure theorems for structural balance.
However, these conditions are rather strict: no cycle can exist with an odd number of nega-
tive links (strong balance) or a single negative link (weak balance). Empirically, this is rather
unrealistic to achieve exactly, but we might come close. This was suggested by Cartwright and
Harary [7], when introducing the notion of structural balance, who suggested counting the num-
ber of cycles that are balanced and measuring the proportion of balanced cycles, termed the
degree of balance:

b(G ) = c+(G )
c(G )

(8.11)

where c+(G ) is the number of balanced cycles and c(G ) is the total number of cycles. This
measure is used infrequently because it is computationally intensive to list all cycles [23]. The
number of cycles in a graph increases exponentially with its size. Depending on the so-called
cyclomatic number, 𝜇 = m − n + 1, there are between 𝜇 and 2𝜇 cycles [36], which Harary [19]
also uses to define bounds on the degree of balance. However, this number provides little insight
into the structure of the network.

A more useful measure was suggested by Harary [19]: the smallest number of ties to be
deleted in order to make the network (weakly) balanced. This is the same as the number of
ties whose reversal of signs leads to a balanced network. This is known as the line index of
imbalance. Computing the line index of imbalance is computationally intensive as it is an
NP-hard problem. Initially the definition was restricted to strong structural balance. Doreian
and Mrvar [11] were the first to introduce this in the context of clustering for weak structural
balance.
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8.3.1 Strong Structural Balance

Given a partition into two subsets, V1 and V2, we can measure the number of edges that are in
conflict with structural balance. The number of negative edges within V1 are

C−(V1) =
1
2

∑
i∈V1,j∈V1

A−
ij (8.12)

and similarly so for V2, while the positive edges between V1 and V2 are

C+(V1,V2) =
∑

i∈V1,j∈V2

A+
ij (8.13)

so that the total number of edges inconsistent with structural balance for a partition into V1 and
V2 is

C(V1,V2) = C−(V1) + C−(V2) + C+(V1,V2). (8.14)

This is the line index of imbalance mentioned earlier. A graph G is then structurally balanced if
and only if the minimum line index of imbalance is zero.

8.3.1.1 Spectral Theory

Given a partition into V1 and V2, let xi = 1 if i ∈ V1 and xi = −1 if i ∈ V2. Then for an edge
(i ∶ j), if xi = xj then xiAijxj = Aij, while for xi ≠ xj we have xiAijxj = −Aij. Hence

x⊤Ax =
∑
xi=xj

(A+
ij − A−

ij ) +
∑
xi≠xj

(A−
ij − A+

ij ) (8.15)

= 2m −
∑
xi=xj

(A+
ij + A−

ij ) −
∑
xi≠xj

(A+
ij + A−

ij )

+
∑
xi=xj

(A+
ij − A−

ij ) +
∑
xi≠xj

(A−
ij − A+

ij )
(8.16)

= 2m − 2
∑
xi=xj

A−
ij − 2

∑
xj≠xj

A+
ij (8.17)

So that x⊤Ax = 2(m − C(V1,V2)) gives (twice) the number of edges that are consistent with
balance, the inverse of the line index of imbalance. Note that this also implies that if xi is the
partition corresponding to structural balance, then xiAijxj > 0 for all i, j.

Theorem 8.8 Let G be a connected signed graph and let u be the dominant eigenvector of
the signed adjacency matrix A. Then G is balanced if and only if V1 = {i ∈ V |ui ≥ 0} and
V2 = V \ V1 defines the split into two clusters as in Theorem 8.4.

Proof: If the split defines a correct partition, then obviously G is balanced (Theorem 8.4). In
reverse, suppose G is balanced. Let u be the dominant eigenvector. Suppose that uiAijuj < 0 for
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some i, j. Then let x be another vector with |xi| = |ui| for all i and xiAijxj ≥ 0 for all i, j, which
is possible by structural balance of G . Then ∥ x ∥=∥ u ∥ and

u⊤Au =
∑

ij

uiAijuj (8.18)

<

∑
ij

|uiAijuj| (8.19)

=
∑

ij

|xiAijxj| (8.20)

=
∑

ij

xiAijxj = x⊤Ax, (8.21)

which contradicts the fact that u is the dominant eigenvector. Hence, uiAijuj ≥ 0 for all i, j and
it defines a correct partition. ◾

The vector space constrained to |xi| = 1 is rather difficult to optimize. Taking general vectors
with ∥ x ∥= 1, the dominant eigenvector x maximizes this and the largest eigenvalue of the
adjacency matrix 𝜆n(A) gives a lower bound of the line index of imbalance.

Kunegis et al. [26] suggest using the signed Laplacian [21] for measuring structural balance.
It is defined as

L = D − A (8.22)

where A is the signed adjacency matrix as defined earlier and D = diag(d1, … , dn) the diag-
onal matrix of total degrees. The rows of L sum to twice the negative degrees 2(d−

1 , … , d−
n )

because
∑

jAij = d+
i − d−

i , so that (d+
i + d−

i ) − (d+
i − d−

i ) = 2d−
i . Furthermore, the Laplacian is

positive-semidefinite, i.e. x⊤L x ≥ 0 for all x. We can show this as follows. Writing this out, we
obtain

x⊤L x =
∑

ij

xiLijxj (8.23)

=
∑

ij

xi𝛿ijdixj −
∑

ij

xiAijxj. (8.24)

Since di =
∑

ij|Aij|, we can write
∑

ijxi𝛿ijdixj =
∑

ij|Aij|x2
i and obtain

=
∑

ij

|Aij|x2
i −

∑
ij

xiAijxj. (8.25)

Clearly
∑

ij|Aij|x2
i =

∑
ij|Aij|x2

j so that we get

= 1
2

(∑
ij

|Aij|x2
i +

∑
ij

|Aij|x2
j − 2

∑
ij

xiAijxj

)
, (8.26)

which can be nicely expressed as a square (because A2
ij = |Aij| and |Aij|2 = |Aij|)

= 1
2

∑
ij

|Aij|(xi − Aijxj)2 ≥ 0. (8.27)
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Now suppose G is strongly balanced so that we can partition the nodes into V1 and V2 without
violating balance. Let xi = 1 if i ∈ V1 and xi = −1 if i ∈ V2. Then for any edge (i ∶ j), if xi = xj
then by strong balance Aij = 1, while if xi = −xj we have Aij = −1. Hence |Aij|(xi − Aijxj)2 = 0
and the smallest eigenvalue of the Laplacian is 0. Vice versa, if the Laplacian is 0, G is balanced:
the term |Aij|(xi − Aijxj)2 = 0 can only be 0 for all ij if A is balanced.

More generally, given a partition into V1 and V2, let xi = 1 if i ∈ V1 and xi = −1 if
i ∈ V2. Then for an edge (i ∶ j), if xi = xj then |Aij|(xi − Aijxj)2 = 4A−

ij while if xi = −xj then
|Aij|(xi − Aijxj)2 = 4A+

ij . Hence,

x⊤L x = 1
2

∑
ij

|Aij|(xi − Aijxj)2 (8.28)

= 1
2

⎛⎜⎜⎝
∑
xi=xj

4A−
ij +

∑
xi≠xj

4A+
ij

⎞⎟⎟⎠
(8.29)

= 2C(V1,V2) (8.30)

and the vector x gives (twice) the line index of imbalance.
The vector space constrained to |xi| = 1 is rather difficult to optimize. Taking general vectors

with ∥ x ∥= 1, the minimal eigenvector x = u minimizes x⊤L x. Consequentially, the small-
est eigenvalue of the Laplacian 𝜆1(L ) gives a lower bound of the line index of imbalance, as
x⊤L x ≥ u⊤L u where u is the smallest eigenvector. The partition induced by u, however, tak-
ing x = sgn(u), i.e. xi = sgn(ui), gives an upper bound, as the minimum index of imbalance is
at most the index of an actual partition. Hence, we obtain

𝜆1(L ) ≤ 2C(V1,V2) ≤ ̃

𝜆1(L ) (8.31)

where ̃𝜆1(L ) = sgn(u)⊤L sgn(u).
We thus obtain the identity that x⊤Ax = 2m − x⊤L x and that maximizing x⊤Ax is equivalent

to minimizing x⊤L x. However, the eigenvectors of the adjacency matrix and the Laplacian are,
in general, not identical. In the case of balanced graphs though, the largest eigenvector of the
adjacency matrix and the smallest eigenvector of the Laplacian provide identical information:
the partition into V1 and V2.

8.3.1.2 Switching

One interesting observation in signed graph theory is that we can change the sign of some
links without affecting balance. More precisely, we can switch the signs of edges across a
cut without changing structural balance. Switching signs was introduced originally by Abel-
son and Rosenberg [1], who used it to calculate the line index of imbalance (although they
called it the “complexity” of a signed graph). This was later used by Zaslavsky [37] in a formal
graph-theoretical setting. More recently, Iacono et al. [24] use sign switches in an algorithm for
calculating the line index of imbalance.

Definition 8.6 (Switching) Let G = (V ,E +
,E −) be a signed graph with signed adjacency

matrix A and let V1 and V2 be a partition of V . Then let si = 1 if i ∈ V1 and si = −1 if i ∈ V2,
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V1 V2 V1 V2

Switch

Figure 8.3 Switching. On the left, there are three edges crossing the partition into V1 and V2: two negative
(the dashed lines) and one positive (the solid line). When we switch according to the partition V1 and V2, this
implies that we switch the signs of the edges crossing the partition, but leave all the other signs unchanged.
This is illustrated on the right. All cycles keep the same sign after the switching. In this case this reduces the
number of negative links and simplifies finding the balanced partition. The balanced partition is indicated
by black and white nodes in both cases. On the right, the black and white are reversed for V2, corresponding
to the switching of the balanced partition by V1 and V2 as explained in Theorem 8.10.

with S = diag(s) and define ̂A = SAS so that ̂Aij = siAijsj. Then the graph ̂G defined by ̂A is called
a switching of G defined by the partition V1 and V2.

Hence, for a link (i ∶ j) with i ∈ V1 and j ∈ V2, then ̂Aij = −Aij, while if both i, j ∈ V1 (or
i, j ∈ V2), ̂Aij = Aij. In other words, switching means we invert the signs of links across the cut
by the partition V1 and V2, as illustrated in Figure 8.3. Most importantly, any switching preserves
the balance of any cycle.

Theorem 8.9 Let G = (V ,E +
,E −) be a signed graph and let ̂G be a switched signed graph.

Denote by sgnG (C) the sign of some cycle C with respect to G . Then for any cycle C, sgnG (C) =
sgn

̂G (C).

Proof: Let C be a cycle and let V1 and V2 be a partition of G . Let m±
cut be the number of

positive/negative links across the cut between V1 and V2 in G and m±
within the number of posi-

tive/negative links within V1 or V2. Then sgnG (C) = (−1)m
−
cut+m−

within . Hence there are m̂−
cut = m+

cut
and m̂+

cut = m−
cut across the cut in ̂G , while m̂±

within = m±
within. By definition m+

cut + m−
cut is even

since any cycle must cross V1 and V2 an even number of times. In other words, (−1)m
+
cut+m−

cut = 1
and hence (−1)m

+
cut = (−1)m−

cut . We thus obtain

sgn
̂G (C) = (−1)m̂

−
cut+m̂−

within (8.32)

= (−1)m
+
cut(−1)m

−
within (8.33)

= (−1)m−
cut(−1)m

−
within (8.34)

= sgnG (C) (8.35)

◾
Recall that the line index of imbalance is the minimum number of signs that would need to

be changed to make the graph structurally balanced. So, if the balance of the cycles does not
change, then neither would the minimum number of sign changes required, and hence the line
index of imbalance remains the same.
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Theorem 8.10 Let 𝜎i = {−1,1} be a partition of G and let S be a switching of G . Then the
switched partition �̂� = 𝜎S has the same imbalance for the switched graph ̂G .

Proof: The imbalance the partition 𝜎 on G is 𝜎A𝜎⊤, and for the switched partition and graph
we have

�̂�

̂A�̂�⊤ = 𝜎SSASS𝜎⊤ = 𝜎A𝜎⊤ (8.36)

because SS = I. ◾

Even if the partition itself is not balanced, switching is defined for any partition. If G is
balanced, we can take the balanced partition V1 and V2, in which case all the negative links
become positive (because they fall between V1 and V2), so that we end up with a completely
positive graph. In reverse, the same thing holds: if we can find a switching S such that SAS
is completely positive, G is balanced, and the switching S defines the optimal partition (see
also Hou et al. [21]). The same principle does not hold for weak structural balance. For example,
a triad with three negative links contains a single one after switching so that the original was
weakly balanced but the switched one is not.

When Abelson and Rosenberg [1] introduced the idea of switching, they considered a node
with the maximal difference of the positive and negative degree: d+

i − d−
i . Switching the signs

of all its links would then decrease the total number of negative links, while the balance would
remain unchanged. The final number of negative links then gives an upper bound on the number
of negative links that would need to be removed (or switched) in order to yield structural balance.
In other words, it provides an upper bound on the line index of imbalance.

More recently, a rather similar approach was used by Iacono et al. [24]. They follow the same
procedure as Abelson and Rosenberg [1] for reducing the number of negative links to arrive at
an upper bound for the line index of imbalance. The optimal solution may contain even fewer
negative links. Iacono et al. [24] also provide a way to arrive at a lower bound. The key idea is
to associate each negative link to an edge-independent unbalanced cycle, which is easier if the
graph contains few negative links. This procedure relies on the fundamental cycles we briefly
encountered earlier. Clearly at least one link must change for each edge-independent unbalanced
cycle. Even though some cut set may reduce the number of negative links, no cut set can reduce
it more than the number of unbalanced edge-independent cycles. Hence, this provides a lower
bound on the line index of imbalance.

8.3.2 Weak Structural Balance

The previous subsection dealt only with a split in two factions. We can provide similar defini-
tions for a split in multiple factions. In particular, the number of inconsistencies with structural
balance for a given partition into V1,V2, … ,Vq is

C = 1
2

∑
Vi≠Vj

C+(Vi,Vj) +
∑
Vi

C−(Vi). (8.37)

Note that if a network contains only positive or only negative links, the minimum line index of
imbalance is, by definition, 0. For a network of only positive links, the trivial partition consisting
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of a single cluster provides such a solution. Similarly, for a network of only negative links,
the trivial partition consisting of each node in its own cluster, commonly called the singleton
partition, achieves zero imbalance.

However, if all links are negative there is an interesting problem: finding the minimum
number of factions required for obtaining an imbalance of 0. Having n factions (clusters),
with each node in its own faction with an imbalance measure of 0, most often, has little
value. It is reasonable to think that this measure could be achieved with fewer factions. For
example, for a bipartite graph with all negative links, we have to use only two factions. This
minimum number of factions necessary to obtain an imbalance of 0 is known also as the
chromatic number: the minimum number of colors necessary to color each node such that
two nodes that are connected have different colors. This is a much studied area of research in
graph theory. It is an NP-complete problem. This connection was recognized by Cartwright
and Harary [8]. The similar problem for positive links is oddly enough trivial: the maximum
number of communities for which the imbalance is still 0 simply corresponds to the connected
components.

8.3.3 Blockmodeling

The original blockmodel function proposed by Doreian and Mrvar [11] is exactly equivalent
to the line index of imbalance. They also propose a more general form, however, weighting
differently positive or negative violations of balance:

C = 𝛼C+ + (1 − 𝛼)C− (8.38)

where 𝛼 = 0.5 returns (half) the original line index. However, this generality comes with costs.
Without surprise, different values for 𝛼 return different values of C. More consequentially, differ-
ent partitions of the nodes can be returned. This implies there is no principled way for selecting
a value of 𝛼 and hence a partition. This issue was noted by Doreian and Mrvar [13]. It can be
called “the alpha problem” which amounts to understanding the interplay of the number of pos-
itive and negative links in a signed network, the shape of the criterion function, and the role of
𝛼 in determining partitions.

The blockmodeling approach partitions the nodes into positions and the links into blocks,
which are the sets of links between nodes in the positions. There is only one type of blockmodel
in accordance with structural balance: positive blocks on the main diagonal and negative blocks
off the diagonal. Of course, for most empirical situations, the links contributing to the line index
for imbalance are distributed across blocks. To address this, Doreian and Mrvar [12] examined
other possible blockmodels. They considered two mutually antagonistic camps being mediated
by a third group (either internally negative or not). So, rather than seeking a blockmodel con-
sisting of diagonal positive blocks and off-diagonal negative blocks, they proposed blockmodels
with positive and negative blocks appearing anywhere. For the empirical networks they studied,
the results were better fits to the data, according to the line index, and more useful partitions.
Unfortunately this comes at a price: if the number of clusters is left unspecified a priori, the
best partition is the singleton partition (i.e. each node in its own cluster). This line of research
is further studied in [5, 15].

Stochastic block models can also deal with negative links [25], but we do not discuss them
further here.
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8.3.4 Community Detection

Assuming structural balance holds for a network, the resulting partition is a set of clusters with
primarily positive ties within them. Structural balance models would not be informative for
networks without negative ties. Even so, the positively connected clusters may contain some
further substructure. Most networks that contain only positive links can show a clear group
structure, commonly called the community structure or modular structure, covered in Chapter 4.
One of the most popular methods for community detection in networks with only positive links
is known as modularity. It is defined as

Q =
∑

ij

(
Aij −

didj

2m

)
𝛿(𝜎i, 𝜎j) (8.39)

where it is assumed that Aij only contains positive entries and 𝜎i denotes the community of
node i (i.e. if 𝜎i = c it means that node i is in community c) and where 𝛿(𝜎i, 𝜎j) = 1 if 𝜎i = 𝜎j
and otherwise 𝛿(𝜎i, 𝜎j) = 0. Although this method suffers from a number of problems, most
prominently the resolution limit [16], it seems to return sensible partitions for graphs with only
positive links.

However, modularity suffers from a problem when some of the links are negative [17, 32].
In particular, imagine there are two fully connected subgraphs, the first with n1 = 5 nodes and
the second with only n2 = 2 nodes while there are n1n2 = 10 negative links between these two
subgraphs. Using the ordinary definitions, the weighted degree for the first subgraph would be
di = 4 − 2 = 2 because each node has four links to the other in the subgraph, and two negative
links to the other subgraph. Similarly, the weighted degree for the second subgraph is di =
1 − 5 = −4 and the total weight is m =

(
5
2

)
+
(

2
2

)
− 5 ⋅ 2 = 1. Hence, for any link within the

first subgraph,

Aij −
didj

2m
= 1 − 2 ⋅ 2

2
= −1 (8.40)

and for the second subgraph

Aij −
didj

2m
= 1 − (−4)(−4)

2
= −7 (8.41)

and for any link in between

Aij −
didj

2m
= 1 − (2)(−4)

2
= 3. (8.42)

This is rather surprising, as it says that two nodes that are positively connected should be split
apart (their contribution is negative), while two negatively connected nodes should be kept
together (their contribution is positive). Of course the correct partition here should be a partition
into two communities: all nodes of the first subgraph form one community and all nodes of the
second subgraph form the other. However, summing up the contributions in Equations (8.40)
and (8.41) the quality of such a partition would be

5 ⋅ 4
2

⋅ (−1) + 2 ⋅ 1
2

⋅ (−7) = −17 (8.43)
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while if there is only one single large partition, adding the contribution from Equation (8.42),
we obtain

−17 + 5 ⋅ 2 ⋅ 3 = 13. (8.44)

In short, modularity cannot be simply applied to signed networks, as the results are incon-
sistent with the correct partition (cf. [13]). Hence, modularity needs to be corrected in
some way to account for the presence of negative links for it to be useful for signed
networks.

Consistent with structural balance, we would expect negative links to be between communi-
ties, while positive links are within communities. Hence, if we define the quality of the partition
on the positive part as

Q+ =
∑

ij

(
A+

ij −
d+

i d+
j

2m

)
𝛿(𝜎i, 𝜎j) (8.45)

and on the negative part as

Q− =
∑

ij

(
A−

ij −
d−

i d−
j

2m

)
𝛿(𝜎i, 𝜎j) (8.46)

then we should like to maximize Q+ and minimize Q−. We can do this by combining Q =
Q+ − Q−, which then becomes

Q =
∑

ij

[
Aij −

(
d+

i d+
j

2m+ −
d−

i d−
j

2m−

)]
𝛿(𝜎i, 𝜎j) (8.47)

where Aij = A+
ij − A−

ij as throughout this chapter. In essence, this comes down to using a null
model that is adapted to signed networks. More details can be found in Traag [31, Chapter 5].

More generally speaking, one could always define Q+ for a partition on the positive
subnetwork and Q− on the negative subnetwork and then define a new quality function
as Q = Q+ − Q−. For some methods this turns out to give quite nice results, for example
for the Constant Potts Model (CPM) [33]. This method was introduced to circumvent any
particular form of the resolution limit. The formulation (again assuming Aij is only positive)
is simple:

Q =
∑

ij

[Aij − 𝛾]𝛿(𝜎i, 𝜎j). (8.48)

Here 𝛾 plays the role of a resolution parameter, which needs to be chosen in some way. This
parameter has a nice interpretation though, which could motivate a particular parameter set-
ting, and functions as a sort of threshold. In any optimal partition, the density between any two
communities is no higher than 𝛾 . Put differently, ecd ≤ 𝛾ncnd, where ecd is the number of edges
between c and d, and nc and nd are the number of nodes in that community. Similarly, any

community has a density of at least 𝛾 , i.e. ecc ≥ 𝛾

(
nc
2

)
. Even stronger, in fact, any subset of a

community is connected to the rest of its community with a density of at least 𝛾 in an optimal
partition.
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If we extend our previous suggestion of combining the positive and negative parts we arrive
at the following:

Q = Q+ − Q− (8.49)

=
∑

ij

[A+
ij − 𝛾

+]𝛿(𝜎i, 𝜎j) −
∑

ij

[A−
ij − 𝛾

−]𝛿(𝜎i, 𝜎j) (8.50)

=
∑

ij

[(A+
ij − A−

ij ) − (𝛾+ − 𝛾−)]𝛿(𝜎i, 𝜎j) (8.51)

which, by setting 𝛾 = 𝛾

+ − 𝛾−, leads to

Q =
∑

ij

[Aij − 𝛾]𝛿(𝜎i, 𝜎j). (8.52)

In other words, for CPM, there is no need to treat negative links separately and we can imme-
diately apply the same method.

Finally, for 𝛾 = 0, CPM is equivalent to optimizing the line index of imbalance. Indeed, note
that we can write the line index of imbalance as

C = 1
2

∑
ij

[A−
ij 𝛿(𝜎i, 𝜎j) + A+

ij (1 − 𝛿(𝜎i, 𝜎j))] (8.53)

We can rewrite this as

C = 1
2

∑
ij

[A−
ij 𝛿(𝜎i, 𝜎j) + A+

ij (1 − 𝛿(𝜎i, 𝜎j))] (8.54)

= 1
2

∑
ij

[(A−
ij − A+

ij )𝛿(𝜎i, 𝜎j) + A+
ij ] (8.55)

= m+ − 1
2

∑
ij

Aij𝛿(𝜎i, 𝜎j). (8.56)

so that C = m+ − − 1
2
Q for the CPM definition of Q.

Given any particular quality function, the problem is always how to find a particular partition
that maximizes this quality function. In general, this problem cannot be solved efficiently (it
is NP-hard) and so we have to employ heuristics. One of the best performing algorithms for
optimizing modularity is the so-called Louvain algorithm [3]. It can be adapted for taking into
account negative links. In addition, it can also be adapted for CPM (and other quality functions).
See https://pypi.python.org/pypi/louvain/ for a Python implementation designed for handling
negative links and working with these various methods.

We do not discuss in detail how the algorithm works, but do discuss one particular element
that needs to be changed for dealing with negative links. The basic ingredient of the algorithm
is that it moves nodes to the best possible community. Ordinarily, in community detection,
all communities are connected, and hence the algorithm only needs to consider moving nodes
to neighboring communities. However, this property no longer holds when negative links are
present. A trivial example is a fully connected bipartite graph with all negative links. In that case,
none of the nodes in any community are connected at all. When only considering neighboring
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communities, the algorithm never considers moving a node to a community to which it is not
connected. In the end, if the algorithm starts from a singleton partition (i.e. each node in its own
community), it will remain there. So, we need to calculate the change in Q for all communities,
even if it is not connected to that community. Unfortunately this increases the computational
time required for running the algorithm. Nonetheless, the algorithm is quite fast. Of course, it
only provides a lower bound on the optimal quality value. Hence, for minimizing the line index
of imbalance it only provides an upper bound.

8.3.4.1 Temporal Community Detection

One concern when studying the evolution of balance is that we also would like to track the parti-
tion over time. For example, if we have two network snapshots and we try to detect the partition
minimizing the imbalance, there is an arbitrary assignment to the clusters −1 and 1 (or 0 and 1)
in the sense that simply relabeling the partition by exchanging the −1 and 1 yields exactly the
same imbalance. For two communities this is still reasonably limited, but for more commu-
nities the problem may become more difficult, especially when dealing with many snapshots
throughout time.

We rely on a method introduced by Mucha et al. [29] to do temporal community detection,
while still accounting for negative links. Because this is not the core issue in this chapter, we
discuss it only briefly. The idea is to create one large network, which contains all the snapshots
of the same network. Then, each node represents a temporal node: a combination of a time
snapshot and the original node. Without any links between the different snapshots, the large
network would thus consist of as many connected components as there are snapshots (assuming
each snapshot is connected). Each snapshot is commonly called a slice, and each link within
a slice is called an intraslice link. We introduce additional interslice links, which connects two
identical nodes in two consecutive time slices (i.e. they represent the same underlying node, but
at a different time) with a certain strength, called the interslice coupling strength. This requires
also some additional changes on the Louvain algorithm.

8.4 Empirical Analysis

Empirical research has shown that while few empirical networks are close to balance, at least
they are much closer than can be expected at random. Hence, there is considerable evidence
that structural balance holds to some extent, at least for weak balance. The evidence for strong
structural balance is far more modest, with many exceptions present in the literature. In particu-
lar, the all negative triad was found relatively frequently by Szell et al. [30] contradicting strong
structural balance. They found triads having a single negative link (which is the only triad that
is weakly unbalanced) much more rarely. Overall, their evidence favors weak structural balance
over strong structural balance. Contrary to dynamical models of sign change, they find that links
almost never change sign. However, there is relatively little research into the dynamics of struc-
tural balance. Examples where this has been done include Hummon and Doreian [22], Doreian
and Krackhardt [10], Marvel et al. [28], and Traag et al. [34].

We here briefly investigate the dynamics of the network of international relations, where
structural balance is argued to play a role by Doreian and Mrvar [13]. We gathered data from
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the Correlates of War1 (CoW) dataset, which collects a variety of information about international
relations. We create a signed network based on their latest data on alliances (v4.1), representing
the positive links, and the militarized interstate disputes (MID, v4.1), representing the negative
links. To arrive at a single weight for each link, we sum the different weights on alliances and
MIDs for each dyad (a dyad can be involved in multiple alliances and multiple MIDs at the
same time). Each MID generates an undirected (negative) link for all states that are involved on
different sides. For example, if the USA and the UK were in conflict with Egypt and the USSR,
then this would generate four negative links: US–Egypt, UK–Egypt, US–USSR and UK–USSR.
The MID weight is set to HighestAct

21
so that the weight is in [0, 1] (see CoW documentation for

more details). Each alliance generates a link for all dyads involved in the alliance. The weighting
is more complicated, since no a priori weights are assigned. We chose to weigh a defense pact
with a weight of 10

14
, non-aggression by a weight of 2

14
, and both neutrality and an entente by

a weight of 1
14

. The single weight is then the sum of the alliance weight minus the sum of the
MID weight. Note that a dyad may be involved in multiple MIDs and/or multiple alliances at
the same time, so that the individual weight of a link is not necessarily restricted to [−1, 1].

We find that structural balance does not follow any singular trend, and certainly does not con-
verge to structural balance, and remains stable. The same was found by Doreian and Mrvar [13]
and Vinogradova and Galam [35], where an earlier version of the CoW data was used. We detect
communities using CPM with 𝛾 = 0 and use the approach by Iacono et al. [24], which we abbre-
viate as IRSA (after the authors). We ran the Louvain algorithm for CPM both with an unlimited
number of communities (corresponding to weak structural balance) and also with the number
of communities restricted to two (corresponding to strong structural balance).

IRSA provides less stable results compared to the CPM estimates (see Figure 8.4). Perhaps
with more computation time, more accurate results could be achieved. Even so, regardless of the
method, no clear stability emerges. There are some large peaks of imbalance around World War
II (WWII), which we discuss. But during the Cold War, and even after the Cold War, no particular
convergence towards 0 imbalance is observed. This is not unreasonable, as the international
system is subject to new shocks when new conflicts, some of which are major conflicts, emerge.
Rather than settling at some level of balance, some unbalance remains in the system which never
completely dissipates. Most often, the difference between strong and weak structural balance
usually is not so large. This implies that a partition of nations into just two factions already
explains much of the structure in international relations. At face value, this suggests that strong
balance is at least a reasonable first approximation, and provides some evidence that strong
balance is operating in the international system. It is likely that weak balance operates also,
perhaps at different timescales. Nonetheless, there are some clear deviations in the patterns of
imbalance.

In particular, both IRSA and CPM find that 1944 shows a large peak with an imbalance of
43.9 (CPM) or 47.4 (IRSA), whereas weak structural balance only has an imbalance of 3.14. For
this time point, using weak balance may be more useful. This result is due to the large number
of conflicts among various parties, which weak balance can accommodate, but which presents
problems for strong balance (see Figure 8.5). Indeed, of the 1785 triads in this network, there
are 411 strongly unbalanced triads, of which 406 are all-negative triads. The all-negative triad
is considered unbalanced under strong balance, but balanced under weak balance. This leaves

1 http://www.correlatesofwar.org/
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Figure 8.4 Balance timeline. The line index of imbalance using two different methods. The approach by
Iacono et al. [24] only works for strong balance. The CPM approach can be applied to both the strong and
weak balance. CPM seems to provide more stable results than the approach by Iacono et al. [24].

only five unbalanced triads under weak balance (although this does not preclude the existence
of longer unbalanced cycles).

Many of the all-negative triads are attributable to conflict among nine different countries
who were all in conflict with each other: France, Germany, Italy, Hungary, Bulgaria, Romania,
Russia, Finland, and New Zealand. Many other countries were opposed to at least two others
of this large conflict: Japan, for example, was in conflict with both Russia and New Zealand.
These conflicts may be unrelated, but they serve to create an additional unbalanced triad (in the
strong sense). The weakly unbalanced triads involve the UK and Turkey. The UK was allied
with Portugal and Turkey, but Portugal was also allied with Spain (through the alliance between
the dictators controlling both countries), which was in conflict with the UK. Turkey was allied
with Germany, Hungary, and Iraq in addition to the UK while the UK was in conflict with both
Germany and Hungary. At the same time, Germany was also in conflict with Hungary and Iraq,
complicating things further. Clearly, WWII featured many dyadic conflicts, each with their own
dynamics.

There is another interesting observation: weak structural balance is higher than strong struc-
tural balance for 1939. This should not be the case ordinarily, as the minimal imbalance in weak
structural balance should always be lower than strong structural balance. This then seems due
to the shift of alliances during WWII. Since the clustering also favors a certain continuity over
time, it may be better to cluster countries in a more stable way, without accounting for short-term
deviations. This is what seems to happen in 1939 (see Figure 8.6). In particular, Russia is still
allied with Germany and Italy, while Russia is in conflict with the UK, France, and Belgium at
that time. Similarly, Hungary is allied with Turkey, and Spain with Portugal. Surprisingly, the
UK also had some conflict with the USA at that time according to the CoW data.
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Figure 8.5 International relations 1944. The solid lines represent positive links and the dashed lines
represent negative links. The countries that are clustered together are encircled.

At the height of the Cold War, we see the familiar division (see Figure 8.7). We also see the
non-aligned states clustered outside of the familiar division. Yet some countries are clustered
differently than what one would expect. For example, much of the Arab world is clustered with
the West because of the alliance of Morocco and Libya with France, but note that Algeria is
not as it was fighting a war of independence with France. Also, Yugoslavia is commonly seen
as non-aligned in the Cold War, but here it is clustered with the West through its alliances with
Greece and Turkey.

Finally, in more recent times the weak balance clustering seems increasingly unrealistic.
This is due to the fact that even if some countries are only weakly positively connected, they
are immediately considered as a single cluster. In 2010, for example, most of the world is
grouped together in a single cluster, except Africa and some exceptions. Nonetheless, some
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Figure 8.6 International relations 1939. The solid lines represent positive links and the dashed lines
represent negative links. The countries that are clustered together are encircled.

clearly separate clusters exist. We therefore also detected clusters using CPM with 𝛾 = 0.1 for
2010. The results are shown in Figure 8.8. There are clearly different clusters in Africa, some-
thing missed completely when partitioning with weak structural balance. Africa is divided into a
Central African bloc, a Western African bloc, and a Northern African bloc clustered with Arab
nations in the Middle East, with the remainder of Africa scattered across other communities.
The former USSR remains a separate community. The so-called West breaks into two commu-
nities: North and South America constitute a community whereas Europe becomes a separate
community.

This is also interesting from another perspective. Structural balance emphasizes both that
negative links ought not exist within clusters and positive links ought not exist between clus-
ters. This seems too restrictive by ignoring the presence of some conflict within clusters along
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Figure 8.7 A map of the weak balance partition in 1962.

Figure 8.8 Map of CPM partition with 𝛾 = 0.1 in 2010.

with positive ties between clusters. Arguably, it makes more sense to allow for a few positive
links between clusters without requiring them to be considered immediately a single cluster.
Indeed, when using CPM with 𝛾 = 0.1 relatively less conflict happens within clusters, and most
conflict takes place between clusters. Nonetheless, strong balance remains a reasonable first
approximation.

8.5 Summary and Future Work

Partitioning signed networks raises methodological issues that differ from those involved in
partitioning unsigned networks. Various approaches have been developed. We started our
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discussion with a consideration of structural balance as it provides a substantively driven
framework for considering signed networks. Formulated in terms of exact balance, the initial
results in the literature take the form of existence theorems, which we discussed in some
detail. We distinguished strong structural balance and weak structural balance. Empirically,
most signed networks are not exactly balanced. One of the underlying assumptions of classical
structural balance theory is that signed networks tends towards balance. To assess such a claim,
it is necessary to have a measure of the extent to which a network is balanced or imbalanced.
We discussed some of the measures in the literature but focused primarily on the line index of
imbalance. Obtaining this measure is an NP-hard problem. We provided theorems regarding
obtaining this measure and its upper and lower bounds.

In discussing strong structural balance, we considered spectral theory and presented some
results showing how this is another useful approach for obtaining measures of imbalance. In
doing so, we revisited the concept of switching. For partitioning signed networks, we considered
signed blockmodeling as a method, pointing out its value and serious limitations. We considered
community detection and outlined ways in which is can be adapted usefully to partition signed
networks. In discussing this we considered also the Constant Potts Model and how it can be used
to partition signed networks. We discussed briefly the notion of temporal community detection.

With the formal results in place, we turned to an empirical example using data from the
Correlates of War (CoW) data. We applied two methods to obtain partitions for different points
in time. We made no attempt to assess which is the “best” partitioning method, for they all have
strengths and weaknesses. However, we did initiate a discussion regarding the conditions under
which one method may perform better than others, without being universally the “best” under
all conditions. This included a discussion of the utility of weak balance and strong balance, the
number of clusters, and the temporal dynamics of the empirical network we studied.

Our results, consistent with other results for the CoW networks produced by others, is that,
temporally, signed networks can move towards balance at some time points and away from
balance at others. The assumption that signed networks tend towards balance had unfortunate
consequences. The more important question, substantively, is simple to state: What are the con-
ditions under which these changes take place? To some extent, this mirrors the issue of when
some methods work better than others. The two are related. Together, these issues will form a
focus for our future work both analytically and substantively.
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9.1 Introduction

Most networks examined so far involve connections between nodes all of the same type, known
as one-mode networks. There are circumstances in which the nodes are of different types and
the connections are only between different types of nodes, and not between nodes of the same
type. We refer to these as multimode networks, some authors call these multiway networks.
A simple example consists of nodes made up of authors and journals. An author is connected
to a journal if they have published a paper in that journal. Since we have two types of nodes,
authors and journals, this results in a two-mode network. There are many examples of two-mode
networks, such as people attending events [16], legislators being members of committees [38],
directors serving on boards [13], companies collaborating on projects [39] etc. In principle there
is no reason to limit the node types to two, we could have three or more. An example of a three
mode dataset would be criminal by crime by victim. Such datasets are less common and we
shall concentrate at first on two mode datasets and discuss general multimode approaches later
in the chapter.

For clarity of exposition, when considering two-mode data we shall refer to one mode as
actors and the other mode as events. The resultant network will form a bipartite network, that is
a network in which the nodes can be divided into two groups with edges only occurring between
the groups and not within the groups (note that a one-mode network can also be bipartite).
If we have n actors and m events we can represent the data as an n × m affiliation matrix A,
where a(i, j) = 1 if actor i attended event j, and 0 otherwise. If the data are valued, reflecting, for
example, the time actor i was at event j, then we can replace the binary entry with the value. It is
normal to ignore direction in two-mode data since in most cases the direction is from one mode
to the other, for example actors choose events and not the other way round. One can envisage
examples in which this is not the case, for example heterosexual actors selecting members of
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the opposite sex indicating whom they would be interested in dating. However, there are few
techniques or datasets of this type and so we will not discuss the issue further, but just mention
it is probably worthy of additional research work.

There have been two distinct approaches to dealing with two-mode data. The oldest method is
to convert the data to one-mode and this is often referred to as projection. There are two possible
projections for a two-mode affiliation matrix, one resulting in an actor by actor matrix the other
in an event by event matrix. In these cases the relations are attended an event together and had an
actor in common, respectively. We can capture more information in our projections if we record
the number of events each pair of actors attended and the number of actors each pair of events had
in common. These are given by AAT and ATA, respectively, where AT represents the transpose
of A. As Breiger [11] pointed out in his 1974 paper these should not be seen as two independent
data matrices but as dual representations of the data. However, it became common practice
to always dichotomize the data and in many applications only one projection was considered.
Clearly reducing valued data to binary in any situation results in loss of information and this
is compounded here by ignoring one of the projections. A consequence of this approach is that
there is significant data loss, resulting in an inferior analysis.

An alternative approach is to develop methods for analyzing the bipartite graph directly. The
first systematic example of this approach was due to Borgatti [7] in 1989 and it was further
developed by Borgatti and Everett [8]. They showed how to extend structural and regular equiv-
alence to multimode data directly, and this was later extended to generalized blockmodelling by
Doreian et al. [19]. In essence this was a simple matter of extending the known block structures
for one mode data to block structures for multimode data. In practice these structures require
very little modification and progress in the area of blockmodeling has until recently been entirely
computational. In this chapter we shall apply both approaches to the same data set in order to
gain some insight into how the techniques perform.

9.2 Two-Mode Partitioning

At the heart of the blockmodeling approach described in the previous section is a need to opti-
mize a cost function which captures the extent to which a given partition of the rows and
columns of the data matrix corresponds to a blockmodel. The resulting combinatorial opti-
mization problem is unlikely to have a polynomial time solution and hence more heuristic
methods are required. There is no consensus on what methods will perform best but van Ros-
malen et al. [42] examined five different techniques on simulated data in which they optimize
using a Euclidean metric. Their test datasets were relatively small with a maximum value of
n and m set at 120 and up to seven clusters in the rows and columns. Their simulations indi-
cated a two-mode version of the k-means method (see the paper for details) had the best overall
performance and they then validated this finding on some empirical data.

The study by van Rosmalen et al. did not capitalize on the binary nature of any affilia-
tion matrix (provided we have non-valued data). Brusco and Steinley have proposed an exten-
sion of variable neighbourhood search which did [12]. Variable neighbourhood searches are
meta-heuristic methods in which increasingly large neighbourhoods of the current best solu-
tion are explored. Overall the performance of their algorithm was very similar to the two-mode
k-means except in the situation that the block positions were known. In this case their algorithm
was an improvement.
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These are quite sophisticated and the articles contain pseudo-code which provides more
details. Many of the applications apply fairly simple greedy algorithms that prioritize efficiency
over the ability to avoid local minimum, but they can often find acceptable solutions by using
many different starting positions. The techniques we have discussed so far are very general and
can be applied to many different types of data. We now look at methods specifically designed
for social network type data.

9.3 Community Detection

In a vain effort to bring some consistency to terminology we suggest that the term community
detection is used for the partitioning of a network into groups such that actors within a group are
more closely connected to each other than those in other groups. We shall refer to these groups
as communities. If we allow actors to be in more than one group, so that groups overlap and do
not insist that all actors are assigned to any group but still have highly connected groups, we
shall call these groups cohesive subgroups. A consequence of these definitions is that community
detection is a special case of blockmodeling. Blockmodeling does partition the actors but allows
for more general forms of blocks which do not have to reflect closely connected sets of actors.

In considering two-mode networks we shall consider the problem of partitioning both modes
so that we find sets of actors and events. We will require the density of the submatrix containing
these actors and events to be denser than the other submatrices containing either the actors or
the events. It should be noted that some authors consider the event communities and the actor
communities separately (see [24], for example). For single-mode networks the most commonly
used and accepted technique (although it has some well-known short-comings [22]) is New-
man’s community detection, which optimizes modularity [36]. Barber [2] extended modularity
to two-mode data and developed an algorithm specifically for this type of data. We outline these
ideas below.

First we give the formula for modularity for a single-mode network in matrix form. Suppose
a network with n nodes and m edges has adjacency matrix A. Let P be a matrix of probabilities
in which the i, j entry is the probability that actor i has an edge to actor j given that the edges
are distributed at random (but with the expected degrees made to match those in A). Given a
partition of the nodes into c groups let S be the n × c indicator matrix in which the i, j entry is
a 1 if actor i is a member of group j and 0 otherwise. Let B = A − P then the modularity Q is
given by

Q = 1
2m

Tr(STBS) (9.1)

where Tr(X) is the trace of matrix X. In the two-mode version the adjacency matrix is replaced
by an affiliation matrix ̌A and the P matrix adapted to take account of the bipartite structure to
form ̌P, so that B is replaced by ̌B. In addition, instead of a single S indicator matrix we need
to have one matrix for each mode, which we call R and T.

The resultant formula has the form

Q = 1
m

Tr(RT
̌BT) (9.2)

If we have c communities and our bipartite network has p actors and q events then R is p × c, ̌B
is p × q, and T is q × c. Barber also proposes an algorithm, BRIM (Bipartite, Recursive Induced
Modules), which uses the singular vectors of B to recursively partition both actors and events
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1 1 1 1 1
1 2 3 4 5 6 7 8 9 1 0 2 3 4

-----------------------------------
1 EVELYN | 1 1 1 1 1 1 | 1 | 1 | |
2 LAURA | 1 1 1 1 1 | 1 1 | | |
3 THERESA | 1 1 1 1 1 | 1 1 | 1 | |
4 BRENDA | 1 1 1 1 1 | 1 1 | | |
5 CHARLOTTE | 1 1 1 | 1 | | |
6 FRANCES | 1 1 1 | 1 | | |

-------------------------------------
7 ELEANOR | 1 1 | 1 1 | | |

10 VERNE | | 1 1 | 1 | 1 |
9 RUTH | 1 | 1 1 | 1 | |

-------------------------------------
8 PEARL | 1 | 1 | 1 | |

17 OLIVIA | | | 1 1 | |
16 DOROTHY | | 1 | 1 | |
18 FLORA | | | 1 1 | |

-------------------------------------
11 MYRNA | | 1 | 1 | 1 1 |
15 HELEN | | 1 1 | 1 | 1 1 |
12 KATHERINE | | 1 | 1 | 1 1 1 1 |
13 SYLVIA | | 1 1 | 1 | 1 1 1 1 |
14 NORA | 1 | 1 | 1 1 | 1 1 1 1 |

------------------------------------

Figure 9.1 Group assignment maximizing modularity.

into groups. The algorithm does not, however, provide a method to find the maximum value for
c, the number of groups. To overcome this he suggests starting with c = 1, calculating Q, and
then keep doubling c until Q decreases. At this stage use bisection to find the value of c which
maximizes Q.

As an example we apply the technique to the Southern Women Data [16] and obtain four
groups as given in the blocked affiliation matrix in Figure 9.1. In this data the rows correspond
to 18 women and the columns to 14 social events attended by the women.

From the blocked affiliation matrix we can see that the top group of women were the main
attendees of the first six events and the bottom group of women attended events 10, 12, 13, and
14. We see that most women attended the middle pair of events with Eleanor, Verne, and Ruth
all attending events 7 and 8 whereas Pearl, Olivia, Dorothy, and Flora all attended event 9, with
two of them attending event 11. These groupings are similar (but not exactly the same) to others
found in this data [23].

Other authors have suggested alternative extensions for modularity (see Guimera et al. [24]
and Murata [35] as examples) as well as other measures [43].

9.4 Dual Projection

A common criticism of projection methods are that information is lost in the process. This is
definitely true if the projection is dichotomized or if only one projection is used. However, some
authors have claimed (without proof) that there is always data loss even if both projections are
used in their undichotomized form [31]. Everett and Borgatti [21] challenged this assumption
and provided evidence that it is not true. They argued that in the vast majority of cases given two
projections it is possible to recover the original matrix and hence no information is lost. This
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issue has been further explored by Kirkland [26] where he shows as the size of the matrices
increases then cases of data loss decrease. He also gives examples of when data loss does occur
but these matrices are highly structured and are unlikely to occur in real data. Everett and Bor-
gatti therefore suggested constructing both projections then using methods which are applicable
to proximity matrices on both projections and finally combining these, preferably using the orig-
inal data. They call this approach the dual projection approach and show how it can be used for
blockmodeling, in particular core-periphery models and briefly centrality. In a later paper [32]
Melamed explored the method as applied to community detection.

The dual projection works best when there are robust methods for analyzing the projected
matrices, that is, techniques that work well on proximity-type data. We shall provide two
examples. Our first is a core-periphery partition, this is a blockmodel but as we shall see the
periphery is not well connected and so it is not community detection. Borgatti and Everett
[10] suggested a method for dividing a proximity matrix P into a core and periphery. This is
a two-stage process. The first process is to find a vector C such that ||P − CCT ||2, that is, the
Euclidean 2-norm, is minimized. This C then gives a core-periphery score for each object and
we sort C to form C′ so that its elements are in descending order. Let Ik be a vector in which
the first k elements are 1 and the rest are 0. We next find the value of k for which the correlation
of Ik and C′ is the highest. We now assign the first k objects in C′ to the core and the remainder
to the periphery. In our dual projection method we use this on both projections and then map
these back onto the affiliation matrix A. Again using the Southern Women data we obtain the
two-mode core periphery structure shown in Figure 9.2.

Looking at the partition in Figure 9.2 we see that the core events were the most popular, all
with eight or more attendees, whereas the peripheral events all had six attendees or fewer. We
see that peripheral actors attend core events and core actors attend peripheral events but not as
much as core actors attending core events. The least dense area is peripheral actors attending
peripheral events, which all gives some validation to the core-periphery structure.

1 1 1 1 1
8 9 6 7 5 3 4 1 2 0 1 2 3 4

-------------------------------
1 EVELYN | 1 1 1 1 | 1 1 1 1 |
2 LAURA | 1 1 1 1 | 1 1 1 |
3 THERESA | 1 1 1 1 1 | 1 1 1 |
4 BRENDA | 1 1 1 1 | 1 1 1 |

14 NORA | 1 1 1 | 1 1 1 1 1 |
||1111|RONAELE7
||1111|HTUR9

13 SYLVIA | 1 1 1 | 1 1 1 1 |
---------------------------------

|1|111|SECNARF6
||111|LRAEP8

10 VERNE | 1 1 1 | 1 |
12 KATHERINE | 1 1 | 1 1 1 1 |
11 MYRNA | 1 1 | 1 1 |
5 CHARLOTTE | 1 1 | 1 1 |

15 HELEN | 1 1 | 1 1 1 |
||11|YHTOROD61

17 OLIVIA | 1 | 1 |
18 FLORA | 1 | 1 |

--------------------------------

Figure 9.2 Dual projection core-periphery of Southern Women.
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1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4

-------------------------------
1 EVELYN | 1 1 1 1 1 1 1 1 | |
2 LAURA | 1 1 1 1 1 1 1 | |
3 THERESA | 1 1 1 1 1 1 1 1 | |
4 BRENDA | 1 1 1 1 1 1 1 | |
5 CHARLOTTE | 1 1 1 1 | |
6 FRANCES | 1 1 1 1 | |
7 ELEANOR | 1 1 1 1 | |
8 PEARL | 1 1 1 | |
9 RUTH | 1 1 1 1 | |

---------------------------------
10 VERNE | 1 1 1 | 1 |
11 MYRNA | 1 1 | 1 1 |
12 KATHERINE | 1 1 | 1 1 1 1 |
13 SYLVIA | 1 1 1 | 1 1 1 1 |
14 NORA | 1 1 1 | 1 1 1 1 1 |
15 HELEN | 1 1 | 1 1 1 |
16 DOROTHY | 1 1 | |

|1|1|AIVILO71
|1|1|AROLF81

--------------------------------

Figure 9.3 Dual projection community detection for the Davis data.

We can also use dual projection to do community detection. In order to not lose any structural
information we need to partition the proximity matrices (note this is not the approach taken by
Melamed [32] as he uses a dichotomized projection). Guimera et al. [24] do take this approach
and use a simple extension to modularity to deal with the valued data. However, they only
find clusters of women and attach the relevant events to the clustered women data. They also
use the Davis data and report a straight split of the women into two groups, namely {Evelyn,
Laura, Theresa, Brenda, Charlotte, Frances, Eleanor, Ruth}, and attach events 1 through 8 to this
group using the weighted method. Clearly all the other women and events belong to the second
group.

We partitioned both projections into two groups in order to obtain a comparison. Rather than
use the modularity we used a fit function which used correlation between an ideal structure
matrix of 1 for within group interaction and 0 for between group interaction with a Tabu search.
The results are given in Figure 9.3.

The results in Figure 9.3 are in close agreement with the results obtained by Guimera et al., the
only difference is we have placed Pearl in the first group together with event 9. We also applied
the Louvain method [6] to both projections; while the method is local it does have the advantage
of finding the optimum number of clusters. For these Women data, this method reproduced the
partition found by Guimera et al. into two groups. It partitioned the events into four groups with
events 1 to 6 in the first group, 9 to 14 in a second group, and events 7 and 8 both in singleton
clusters.

It should be noted that we cannot directly compare these methods with the two-mode mod-
ularity of Barber. First, we can decide to have a different number of partitions in each mode.
Second, even if these are the same we do not necessarily have the groups defined by the diagonal
blocks, i.e. we do not have communities made up of both women and events but we partition
these separately. To see this we repeat the analysis above but with four groups in each partition
to obtain the results shown in Figure 9.4.
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1 1 1 1 1
8 9 3 4 5 6 7 4 2 0 3 1 2 1

-----------------------------------
1 EVELYN | 1 1 1 1 1 1 | | 1 1 | |
2 LAURA | 1 1 1 1 1 | | 1 1 | |
3 THERESA | 1 1 1 1 1 1 1 | | 1 | |
4 BRENDA | 1 1 1 1 1 1 | | 1 | |
5 CHARLOTTE | 1 1 1 1 | | | |
6 FRANCES | 1 1 1 1 | | | |
7 ELEANOR | 1 1 1 1 | | | |
9 RUTH | 1 1 1 1 | | | |

-------------------------------------
17 OLIVIA | 1 | | | 1 |
18 FLORA | 1 | | | 1 |

-------------------------------------
8 PEARL | 1 1 1 | | | |

16 DOROTHY | 1 1 | | | |
-------------------------------------

11 MYRNA | 1 1 | 1 1 | | |
10 VERNE | 1 1 1 | 1 | | |
15 HELEN | 1 1 | 1 1 | | 1 |
12 KATHERINE | 1 1 | 1 1 1 1 | | |
13 SYLVIA | 1 1 1 | 1 1 1 1 | | |
14 NORA | 1 1 1 | 1 1 1 1 | | 1 |

------------------------------------

Figure 9.4 Dual projection community detection for four groups.

Examining Figure 9.4 we see that two of the diagonal blocks are zero and so these do not
correspond to mixed mode communities. We need to examine the partitions and not the blocks,
although having both to examine helps us understand the data. For example, we can see that
Olivia and Flora have been put together as they attended events 9 and 11 together and no other
events.

9.5 Signed Two-Mode Networks

Heider’s balance theory [25] has a long tradition in social networks and was formulated in
network terms by Cartwright and Harary [14]. In the one-mode formulation the edges of the
network are assigned either a positive or a negative sign reflecting positive or negative senti-
ment. In Heider’s original formulation the actors showed positive or negative preferences to
objects and so it is more analogous to two-mode data. In our formulation the actors attending
events would see them as either positive or negative. A good example is a set of politicians or
other actors voting on propositions or resolutions that they can vote for, against, or abstain. Data
of this type was considered by Mrvar and Doreian [34], where the actors were supreme court
judges, and Doreian et al. [20], where the actors were nation states voting in the UN. It follows
that a two-mode signed network is a two-mode network of actors and objects (we use objects
rather than events as this is more suggestive of the type of data that has been used) in which
each edge has a positive or negative sign. In classic balance theory a balanced (one-mode) net-
work can be partitioned into two sets with negative ties between the sets and positive ties within.
Extended balance (Davis balance or clusterability) allows more than two clusters but still pos-
itive ties within clusters and negative ties between. Relaxed balance [18] again allows for any
number of clusters but we now just require all the connections within a cluster to be of the same
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sign (positive or negative) and all the edges between pairs of clusters must also be of the same
sign. In the two-mode case Mrvar and Doreian retain the idea of relaxed balance, but of course
given the structure of the data no longer have within-cluster links. We now formalize these ideas
but more details can be found in [20] and [18].

Let A be a signed affiliation matrix and suppose the rows are partitioned into k1 clusters and
the columns into k2 clusters so that A is partitioned into k1k2 blocks. Then we say the clustering
is ideal if none of the blocks contain both positive and negative ties. Given a partition of A we
can measure how close it is to the ideal by simply counting the number of positive and negative
violations there are in the blocks, call these P and N. These are used to produce a measure of
inconsistency given by 𝛼N + (1 − 𝛼)P. The 𝛼 parameter allows us to weight either positive or
negative violations more highly, with a value of 0.5 weighting them equally. Unfortunately this
function can always be made zero by placing each node in its own unique cluster. In fact Mrvar
and Doreian proved a stronger result showing that this function is monotonically decreasing
with k1 and k2. It is therefore necessary to find strategies in which the blocks remain sufficiently
large. For fixed values of k1 and k2 Mrvar and Doreian proposed a relocation algorithm which
helps finding the minimum, but unfortunately it can easily get caught in local minima and needs
many starts to reliably find a global minimum. As a consequence it becomes quite a challenge
to partition such data, particularly given the fact we have two parameters k1 and k2 to contend
with and the computational complexity of the task. It is possible that other factors can help
determine in more detail the structure of the various blocks. This is explored in [20] but is really
only feasible because of the small size of one of the modes in the datasets, consisting of nine
supreme court judges. Some further guidance on this issue and some ideas are further examined
in [18], which has far larger mode sizes, but no definitive approach is suggested. We conclude
that while some early promising work has been done in this area there are many open issues
worthy of further consideration.

9.6 Spectral Methods

One technique that has been developed for networks but has been largely ignored in the social
network community is bipartite spectral co-partitioning [17]. This technique has the added
advantage that it can handle valued two-mode networks. In this case we have an incidence
matrix A in which A(i, j) = w indicates that i attended event j with weight w, where higher val-
ues represent a stronger association. An example would be that the actors are words, the events
documents, and the entries in A(i, j) give the number of occasions word i was in document j. It
was in this context that Dhillon proposed this method. We briefly outline the process but full
details are given in his paper.

Given a weighted n × m affiliation matrix A then form D1, an n × n diagonal matrix with the
row sums of A on the diagonal, and D2, an m × m diagonal matrix with the column sums on the
diagonal. The algorithm proceeds as follows.

1. Form An = D
− 1

2
1 AD

− 1
2

2 .

2. Compute the second singular vectors of An, u2, and v2. That is the eigenvectors of AnAT
n and

AT
n An corresponding to the second largest eigenvalue.
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3. Form z2 =
⎡⎢⎢⎢⎣

D
− 1

2
1 u2

D
− 1

2
2 v2

⎤⎥⎥⎥⎦
.

4. Run k-means on z2 to bipartition the data.

This clearly partitions the rows and columns into two and we can recursively apply the pro-
cedure to obtain a finer partition. Alternatively, Dhillon gives an extended version that allows
us to find k groups by using additional singular vectors. Let p = ⌈log2k⌉ and instead of a vector
z2 in step 3 create a matrix Z, i.e.

form Z =
⎡⎢⎢⎢⎣

D
− 1

2
1 U

D
− 1

2
2 V

⎤⎥⎥⎥⎦
where U = [u2 ∶ u3 ∶ … ∶ up+1] and V is defined similarly. Again use k-means to cluster the
rows of Z with the first n rows giving the partition of the rows and the last m rows giving the
partition of the columns.

We note that this method produces groups made up of nodes from both modes, as in the
Barber community detection discussed in Section 10.3. As an example we do a two-cluster split
on the Davis data and the result is shown in Figure 9.5. As can be seen, this is very similar to the
dual projection community detection shown in Figure 9.3 with only event 9 moved to a different
group and thus this partition agrees with that found by Guimera et al. [24] and by the Louvain
method in the dual projection as discussed above.

1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4

-------------------------------
1 EVELYN | 1 1 1 1 1 1 1 | 1 |
2 LAURA | 1 1 1 1 1 1 1 | |
3 THERESA | 1 1 1 1 1 1 1 | 1 |
4 BRENDA | 1 1 1 1 1 1 1 | |
5 CHARLOTTE | 1 1 1 1 | |
6 FRANCES | 1 1 1 1 | |
7 ELEANOR | 1 1 1 1 | |
8 PEARL | 1 1 | 1 |
9 RUTH | 1 1 1 | 1 |

---------------------------------
10 VERNE | 1 1 | 1 1 |
11 MYRNA | 1 | 1 1 1 |
12 KATHERINE | 1 | 1 1 1 1 1 |
13 SYLVIA | 1 1 | 1 1 1 1 1 |
14 NORA | 1 1 | 1 1 1 1 1 1 |
15 HELEN | 1 1 | 1 1 1 |
16 DOROTHY | 1 | 1 |

|11||AIVILO71
|11||AROLF81

--------------------------------

Figure 9.5 Spectral bisection of the Davis data into two groups.
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1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 4 2 3 1

-----------------------------------
1 EVELYN | 1 1 1 1 1 1 | 1 1 | | |
2 LAURA | 1 1 1 1 1 | 1 1 | | |
3 THERESA | 1 1 1 1 1 | 1 1 1 | | |
4 BRENDA | 1 1 1 1 1 | 1 1 | | |
5 CHARLOTTE | 1 1 1 | 1 | | |
6 FRANCES | 1 1 1 | 1 | | |
7 ELEANOR | 1 1 | 1 1 | | |

-------------------------------------
8 PEARL | 1 | 1 1 | | |
9 RUTH | 1 | 1 1 1 | | |

10 VERNE | | 1 1 1 | 1 | |
15 HELEN | | 1 1 | 1 1 | 1 |
16 DOROTHY | | 1 1 | | |
14 NORA | 1 | 1 1 | 1 1 1 1 | 1 |

-------------------------------------
13 SYLVIA | | 1 1 1 | 1 1 1 1 | |
11 MYRNA | | 1 1 | 1 1 | |
12 KATHERINE | | 1 1 | 1 1 1 1 | |

-------------------------------------
17 OLIVIA | | 1 | | 1 |
18 FLORA | | 1 | | 1 |

------------------------------------

Figure 9.6 Spectral bisection of the Davis data into four groups.

We also obtained a split into four groups which involves using two of the singular vectors to
obtain the partition shown in Figure 9.6.

As we found groups of women and events we need to compare this result with the modularity
result shown in Figure 9.1. In this case the event split is nearly the same with just event 9 moved
from being with event 11 to the community containing events 7 and 8. This leaves event 11 in a
single cluster as found by the four split in the dual projection method. The first group of women
is also similar but the effect of moving event 11 to a singleton cluster separates out Olivia and
Flora into a community pair. This has a knock-on effect on the way the rest of the women are
partitioned, and although there are some similarities there are also differences and it is difficult
without additional information to decide which partition is the best.

It should be noted that the method can be extended to obtain different partitions of the rows
and columns, see Kluger et al. [28]. This requires different normalization and three normal-
ization schemes are proposed as well as a more sophisticated technique for partitioning the
rows and the columns separately. The first suggested normalization is to make all the rows have
the same mean and all the columns have the same mean (but not necessarily the same as the
row mean). The second method suggests making all the row means the same as all the column
means. The third method involves taking the log of the matrix L and then for each entry of
L, L(i, j) = log A(i, j), subtract off its row mean, its column mean, and the overall mean of L.
Finally in step 3 do not form Z but run k-means on AV and ATU separately where U and V are
constructed from the singular vectors by selecting subsets that are the best projections. We do
not give the details here and so the interested reader should consult their paper for details.

One further approach needs to be mentioned and that is the two-mode stochastic block models
proposed by Larremore et al. [29]. In brief they assume a Poisson distribution and then search
the likelihood space using a modified Kernigan–Lin algorithm. In its simple form this tends to
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sort out actors purely by degree but they use a degree correction procedure to counteract this.
The degree correction explicitly takes into account the degree distribution of the data which
allows for a wide variety of empirical degree distributions. When they use this technique on the
Southern Women data they get exactly the same partition as the dual projection split shown in
Figure 9.3.

9.7 Clustering

So far we have examined partitioning, i.e. we have insisted that every node is placed uniquely in
one group. We now relax this condition and allow nodes to be placed in more than one group and
do not insist that actors are assigned to any group. We shall only consider clustering in which
we are trying to find subsets of nodes which are well connected to each other. As mentioned
before we shall refer to these as cohesive subgroups. The standard one-mode definition of a
clique as a maximal complete subgraph clearly can be generalized to a biclique as a maximally
complete bipartite subgraph. Such structures have been considered in mathematics for over 400
years, although not usually as subgraphs. The use of bicliques as cohesive subgraphs in social
networks was probably due to Borgatti and Everett [9] in 1997. It is a very simple matter to
extend standard clique algorithms to find bicliques and the same techniques used to deal with
overlap can be applied. It is also a simple matter to extend concepts such as k-plexes, n-cliques,
n-clubs, n-clans etc. to the two-mode case. We also note that since the projections result in prox-
imity data then the vast number of clustering algorithms that have been developed for this type
of data can be used. We should also comment that a common measure in one-mode networks is
the clustering coefficient (or transitivity index) that attempts to capture the extent to which a net-
work is clustered. In this chapter we are concerned with uncovering structural patterns in terms
of finding sets of nodes rather than providing graph invariants that try and capture the extent to
which a network has a particular property. There have been a number of suggestions for extend-
ing the clustering coefficient (and other invariants) to two-mode data and the interested reader
should consult [30] and [37].

One area in which there have been some developments is that of k-cores and their extension
to two-mode. A k-core is an induced subgraph in which every node has degree k or more and
was first proposed by Seidman [40] and extended to two-mode in [1]. A k-core is not a cohesive
subgroup but any cohesive subgroups must be wholly contained in a k-core. The concept was
extended to generalized k-cores in [3] and then to two-mode generalized cores by Cerinšek and
Batagelj [15]. The idea of a generalized core is to extend the concept of degree to a property
function defined on the nodes. For a network N = (V ,L,w) with node set V , edge set L, and
a weight function w ∶ L → ℝ+ a property function f (v,C) ∈ ℝ+

0 is defined for all v ∈ V and
C ⊆ V . A subset C induces the subnetwork to which the evaluation of the property function is
restricted. We can now give a formal definition of a generalized two-mode (p, q) core. Let N =
((V1,V2),L, (f , g),w), V = V1 ∪ V2 be a finite two-mode network – the sets V and L are finite. Let
P(V) be the power set of the set V . Let functions f and g be defined on the network N: f , g ∶ V ×
P(V) → ℝ+

0 . A subset of nodes C ⊆ V in a two-mode network N is a generalized two-mode core
C = Core(p, q; f , g), p, q ∈ ℝ+

0 if and only if in the subnetwork K = ((C1,C2),L|C,w), C1 =
C ∩ V1, C2 = C ∩ V2 induced by C it holds that for all v ∈ C1 ∶ f (v,C) ≥ p and for all v ∈
C2 ∶ g(v,C) ≥ q, and C is the maximal such subset in V . Algorithms for finding generalized
two-mode cores are relatively straightforward and efficient, and are based on the simple idea of



�

� �

�

262 Advances in Network Clustering and Blockmodeling

deleting nodes that do not satisfy the criteria. This cited paper provides some examples drawn
from web of science data.

9.8 More Complex Data

So far we have considered two-mode static data. If there are more than two modes then in some
circumstances it is a straightforward matter to extend the two-mode case to more modes. As
already mentioned, Borgatti and Everett [8] showed how to extend regular and structural equiv-
alence to multimode data but they did not address the computational issues. Batagelj et al. [4]
suggested a dissimilarity measure for three-mode structural equivalence and applied Wards algo-
rithm to partition the data. They demonstrated the effectiveness of their approach on a three-way
cognitive social structure.

If we have k-modes then we examine the k(k − 1)∕2 collection of two-mode networks between
every pair of modes. Let A(r,s) denote the two-mode affiliation matrix between mode r and mode
s where r < s and s runs from 1 to k. If we wanted to extend community detection then it is a
simple matter to construct ̌B(r,s) and then define Q as

Q = 1
m

∑
i<j

Tr(ST
i
̌B(i,j) Sj) (9.3)

where Si is the ith mode indicator matrix. One issue is that it is now not possible to use the
spectral methods suggested described in Section 6.3 in order to find a maximum for Q. Clearly
we can use other optimization methods but these will probably not be as efficient. One solution
to this problem is to simply construct an adjacency matrix Z from ̌B(i,j). We form Z (given in
blocked form) as follows:

Z(i, j) =
⎧⎪⎨⎪⎩

̌B(i,j) if i < j

̌BT
(i,j) if j < i

𝟎 if i = j

So that Z is a square adjacency matrix in which all the modes have been included. The fact there
are not connections within the modes is captured by the zero blocks on the diagonal. In this case
we have

Q = 1
2m

Tr(STZS) (9.4)

where m is the number of edges and S is an indicator matrix over all the modes. We can now use
spectral partitioning to maximize Q. An example of this approach for a three-mode network is
given in [33].

Looking at the other methods discussed above there does not seem any reason why spectral
bipartitioning cannot be extended in the same way but this approach does not seem to have been
explored. In this case the constructed adajacency matrix would not have ̌B(i,j) as the blocks but
would use A(i,j). The one exception for extending to more than two modes in this way is dual
projection. In this instance we would not construct a large adjacency matrix but would project
all pairs of A(i,j). In this case when we have more than two modes then the same mode appears
in a number of different projection matrices. As a consequence each mode would have a number
of different partitions and this would not generally be of use unless the goal is to find different
partitions for different pairs of modes.
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We mention one further complication that is multimode data that involves a time element.
Both data and techniques for dealing with such data are not common. However, Tang et al.
[41] examined how communities evolve over time in a dynamic multimode framework. They
considered time-stamped data and they tried to make a smooth transition in terms of community
detection from one time stamp to the next. They present an algorithm and an example that uses
the Enron email corpus [27].

9.9 Conclusion

In this chapter we have examined partitioning and clustering in multimode network data. We
briefly mentioned that a number of techniques have been developed for dealing with non-binary
data or more precisely non-network type data. We did not explore these methods in much detail
as they are generally well described elsewhere. We did not discussed software but most of the
articles referenced that develop methods discuss implementations and point to available tools. In
addition, we mainly discussed methodological issues and did not discussed applications. There
are an increasing number of application areas that are using these methods, ranging from biology
and information science through to sociology and political science. A good flavor of how to
interpret some of these techniques can be gleaned from the examples in the book by Batagelj
et al. [5]. It should be noted that this is a very active area for research and new methods and
ideas are constantly being explored, particularly as new types of data emerge. The complexities
of this type of data in terms of collecting, analyzing, and interpreting remain both challenging
and deeply fascinating.
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Blockmodeling Linked Networks

Aleš Žiberna
Faculty of Social Sciences, University of Ljubljana

10.1 Introduction

This chapter introduces the blockmodeling of linked networks. Essentially, it is shown that the
multilevel blockmodeling approach [36, 38] can also be used for other types of linked networks.
The term “linked networks” describes a collection of one-mode networks, where the nodes from
different one-mode networks are connected through two-mode networks. While, in principle,
all one-mode and two-mode networks can be multi-relational, only single-relational networks
are considered in examples. We could also say that linked networks are collections of networks
defined on different sets of nodes, where all sets of nodes must somehow be connected. Some
examples of linked networks are:

Multilevel networks Multilevel networks [28] are composed of one-mode networks represent-
ing ties among nodes at a given level and two-mode networks that tie nodes from different
levels. In a multilevel context, the typical situation has persons as first-level nodes, orga-
nizations as second-level nodes, and the two-mode network represents the membership of
persons in organizations. Lazega et al. [24] analyzed a multilevel network where the first-level
one-mode network had collaboration relations among cancer researchers, the second-level
one-mode network had collaboration ties among their research labs, and the two-mode net-
work featured membership of researchers in the labs. The multilevel blockmodeling analysis
of this network is presented in [36, 38]. Other examples of two-level networks can be found
in [3–5].

Networks measured at several time points In this case, one-mode networks represent networks
at specific points in time and two-mode networks join the same units at different points in time.
Such networks are analyzed in [10, 20, 21].

Multilevel networks measured at several time points These networks are a combination of
the first two network types. We could say these networks are essentially networks measured

Advances in Network Clustering and Blockmodeling, First Edition.
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at several time points, where the networks at each time point constitute a multilevel network.
Such a network is analyzed in [23].

Meta-networks based on the Precedence, Commitment, Assignment, Network, and Skill
(PCANS) model Meta-matrices or meta-networks are collections of networks on several sets
of nodes, e.g., in [19] these sets are individuals, tasks, and resources, but in some cases are
extended by locations, events, etc. It is not necessary for all possible one-mode and two-mode
networks to be present. Some more examples can be found in [8, 9].

The main goal of blockmodeling linked networks is to cluster nodes from all sets while
taking all available information into account. By blockmodeling linked networks, we wish to
blockmodel all one-mode and two-mode networks simultaneously so that we only obtain one
clustering for nodes from each set (although they occur in one one-mode network and at least
one two-mode network). We might also say that we wish to cluster nodes from all sets in such
a way that each cluster contains only nodes from one set and that links among clusters from
different sets (through two-mode networks) can be modeled.

Approaches to blockmodeling some types of linked networks have been developed. For net-
works measured at several time points, approaches within stochastic blockmodeling have been
developed [1, 26, 32, 33]. However, these are not general enough to apply to other types of
linked networks.

Žiberna [36] presented the multilevel blockmodeling approach, which is much more general
and can be used with any linked network. While the approach is currently only implemented
within the generalized blockmodeling framework [12, 34], in the blockmodeling R package [37],
the approach itself is general and can apply to other blockmodeling approaches (e.g. stochastic
blockmodeling [2, 11, 17, 18, 29, 30]), provided the issues discussed in the next section are
addressed.

The structure of this chapter is as follows. In the next section, the approach to blockmod-
eling linked networks is developed based on the multilevel blockmodeling approach [36, 38].
Then examples of blockmodeling for two types of linked networks (a multilevel network and a
network measured at several time points) are presented. The chapter finishes with conclusions.

10.2 Blockmodeling Linked Networks

The approach to blockmodeling linked networks is based on multilevel blockmodeling. Žiberna
[36] presented three ways of blockmodeling multilevel networks:

Separate analysis This is not a true multilevel approach as it simply means blockmodeling each
level separately. It should be followed by checking blockmodel(s) that the partitions obtained
at different levels induce on the two-mode network(s) and checking the agreement of these
partitions (for details, see [36, pp. 48–49]).

Conversion approach The idea of this approach is to convert all one-mode networks to the
same level by using the two-mode networks joining them. In a simple case, the transfor-
mation is a simple task of pre- and post-multiplying the one-mode network with a suitable
two-mode network (transposed as required), while sometimes some “averaging” rules must
also be employed. See [36, pp. 49–50]) for more details.
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A true multilevel approach Using this approach all one-mode and two-mode networks are
blockmodeled simultaneously so that we only obtain one clustering for nodes from each level
(even though they occur in one one-mode network and at least one two-mode network).

Not all of the above approaches generally apply to all linked networks. Substantial and techni-
cal reasons may make the conversion approach problematic for linked networks. Substantially,
one should always think about the meaning of any derived networks. Technically, problems
might occur if there are isolates in the two-mode networks which seem more likely in certain
types of linked networks.1

10.2.1 Separate Analysis

Separate analysis is not in fact a special approach designed for a special kind of network(s), and
is therefore directly applicable. As in the multilevel case, it is also practically a necessary first
step in the analysis of linked networks. While, in the multilevel context, the two-mode networks
were only used as a tie between the two levels and not directly blockmodeled [36, 38], this
might be relevant for some linked networks, especially those from the metamatrix approach or
generally where one-mode networks for some sets of nodes are missing [27].

10.2.2 A True Linked Blockmodeling Approach

In this chapter, most attention is given to the true linked blockmodeling approach, which is the
same as the true multilevel approach suggested by Žiberna [36]. For this approach all one-mode
networks of within node-set ties and two-mode networks of between node-sets must first be com-
bined to form a single linked network. This linked network therefore contains all ties between
the nodes from all sets. These ties most often represent several relations. The main idea is to
use blockmodeling approaches on this linked (and possibly multirelational) network under the
restriction that nodes from different sets cannot be placed in the same cluster.

As may be seen from this description, the approach is quite general and not specific to any
particular blockmodeling approach. Nevertheless, it is currently only implemented within gen-
eralized blockmodeling [37]. While the idea is quite simple, several issues have to be addressed
before the approach can be used. The most important ones are:

Multirelational blockmodeling From a substantial point of view, in most cases we cannot
assume that all one-mode and two-mode networks contain only ties from one relation. In addi-
tion, in some cases even the one-mode networks themselves can be seen as multi-relational.
From a computational point of view, the use of multiple relations at least for the current
implementation, within generalized blockmodeling [37], allows and simplifies the use of dif-
ferent generalized blockmodeling approaches (e.g. binary, valued, homogeneity (see [34] and
Chapter 6 on blockmodeling valued networks for details) and the weighting of different parts
of the linked network.

1 Isolates might also occur in multilevel networks.



�

� �

�

270 Advances in Network Clustering and Blockmodeling

Different sets of nodes To prevent nodes from different levels being clustered together, they
must be treated as different sets of nodes. Then each set can be partitioned into its own clusters
to ensure that clusters contain only nodes from one set/level.

Multicriteria optimization The problem is how to combine different criteria for blockmodel-
ing. For generalized blockmodeling, different criteria represent different criteria functions for
various parts of the linked network (one-mode and two-mode networks). A naive approach
would be to blockmodel the whole linked network as a single network (with the same block-
modeling approach and with the constraint from the previous paragraph). Such an approach
would usually cause the partition of node-sets to be predominately determined by parts of
the network with relatively large criterion functions. These are usually larger parts with more
ties. A true multiobjective blockmodeling method, as suggested by Brusco et al. [6], seems the
most appropriate. However, a simpler approach is used here (as in [36, 38]). The multi-criteria
clustering problem is transformed into a single-criteria one by a weighted sum approach
[13, 14]. Yet, the problem of how to choose suitable weights remains.

10.2.3 Weighting of Different Parts of a Linked Network

Of these three approached listed above, only the third one is problematic, especially within
generalized blockmodeling (within generalized blockmodeling the first two were addressed in
[36]). In generalized blockmodeling, the value of the criterion function depends greatly at least
on the size of the network (number of possible ties), the specific generalized blockmodeling
approach [34] used (e.g. binary, valued, homogeneity) and the allowed block types. In the case
of blockmodeling valued networks, the values of the ties (especially their range and variabil-
ity) also strongly determine the value of the criterion function. The current implementation of
blockmodeling R package allows the weights to be set per relation or per block. Therefore, the
easiest way is to specify each (one-mode or two-mode) network or its relation as a separate
relation and then specify weights by relations.

The current recommendation (see [38]) is to select weights so that they are inversely propor-
tional to the average inconsistency of random partitions for a selected part of the linked network
using the same blockmodeling approach, allowed block types (per block if desired), and number
of clusters as are to be used in the linked blockmodeling.

10.3 Examples

Two examples are given in this section. The first one applies the linked blockmodeling approach
to a co-authorship network measured in two time points, while the second applies it to a multi-
level network of advice seeking among agents and contracts among their companies.

10.3.1 Co-authorship Network at Two Time-points

This example shows how the linked blockmodeling approach can be used for networks measured
at several time points, specifically the co-authorship networks of Slovenian researchers regis-
tered with the Slovenian Research Agency (ARRS) in the discipline ”Process engineering” mea-
sured in two 10-year periods (1991–2000 and 2001–2010) which were also used in [10]. When
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needed, the shorthand notation for the periods, t1 and t2, are used. Data were obtained from
the Co-operative Online Bibliographic System and Services (COBISS) and the Slovenian Cur-
rent Research Information System (SICRIS), maintained by the Institute of Information Science
(IZUM) and ARRS. A tie between two researchers in this network is defined as co-authorship
of at least one relevant bibliographic unit according to ARRS: original, short, or review articles,
published scientific conference contributions, monographs or parts of monographs, scientific or
documentary films, sound or video recordings, complete scientific databases, corpus and patents
[10]. Similar data were analyzed in several works by Kronegger and Ferligoj and colleagues
[15, 16, 20–22, 25]. The specific discipline was mainly chosen based on the size of the network
among the data used in [10]. Where a network is too small blockmodeling approaches usually
do not provide much added value compared to looking at the original data, while the use of large
networks is problematic due to the time complexity of the generalized blockmodeling algorithm
(using a relocation algorithm) as implemented in [37]. In order to reduce the size of the data, only
nodes with a degree of at least 2, at a minimum of one time point were retained. This left us with
71 units in the period 1991–2000 (period 1) and 68 units in the period 2001–2010 (period 2).
In addition to the co-authorship networks in both periods, a two-mode network connecting the
same authors in different time periods was created. The linked network representation of this
network is presented in Figure 10.1. The thick lines separate sets of authors at different time
points. The upper/left nodes represent authors in period 1 and the lower/right those in period 2.
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Figure 10.1 The linked network representation of the co-authorship network in two time points.
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The co-authorship networks are shown as the two diagonal blocks. The lower left part of the
network ties the same authors from different time points. Therefore, there is at most one tie in
each row and each column in this two-mode network. An empty column here means the column
author was only observed in the first time period, but not in the second, while the empty row
means the opposite → the row unit was not observed in the first period, but was present in the
second.

This linked network is blockmodeled simultaneously in the linked blockmodeling approach.
However, as a starting point and to gain an impression about a suitable number of clusters, a
separate analysis is first performed. For all blockmodeling tasks, binary blockmodeling accord-
ing to structural equivalence with differential weights as suggested in [35] for sparse networks
is used. In accordance with [35], the weight of the null blocks is set to 1 and that of the complete
blocks to d∕(1 − d), here d is the density of the analyzed network. The reason for choosing this
approach is that finding a smaller number of clusters that have a similar pattern of non-ties is pre-
ferred to finding many clusters of almost totally structurally equivalent nodes (relatively “clean”
null blocks are preferred to relatively “clean” complete blocks). Of course, any (generalized)
blockmodeling approach could be selected, if desired (and appropriate).

10.3.1.1 Separate Analysis

The results for blockmodeling the period 1990–2000 are presented in Figure 10.2. The first plot
represents the inconsistencies by number of clusters via a scree plot, while the others show parti-
tioned matrices for different numbers of clusters. Based on this figure, a five-cluster partition was
chosen. Although a different algorithm was used, the basic multi-core-semiperiphery-periphery
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Figure 10.2 Blockmodeling of the first period (1991–2000) only.
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Figure 10.3 Blockmodeling of the second period (2001–2010) only.

structure as described and found in [10, 15, 20] can be observed at most resolutions (number of
clusters). Based on the scree plot, the five-cluster partition seems the most appropriate. The five
clusters are as follows

• A core group, a relatively densely group also connected to a peripheral group.
• Two relatively cohesive groups that are unconnected to other groups.
• A peripheral group, internally disconnected, connected only to the core group.
• A disconnected group, both internally and externally disconnected.

The same procedure is then applied to the second period (2001–2010). The results are pre-
sented in Figure 10.3. Based on the scree plot, five clusters can again be chosen. The clusters
are, however, now different:

• A core group, a relatively densely group also connected to a peripheral group.
• A weakly connected group (two unconnected stars) that has ties to its own periphery group.
• A relatively cohesive group that is unconnected to other groups.
• Two peripheral groups, internally disconnected, connected only to either the first group (main

core) or the second group.

Based on these two results (for period 1991–2000 and for period 2001–2010), we can also
present the “linked” view of these two partitions, that is by partitioning the linked network pre-
sented in Figure 10.1 by these two partitions. The result is shown in Figure 10.4. The additional
information compared to the results seen in Figures 10.2 and 10.3 is mainly the partitioned
two-mode network. No clear pattern is present, although the members of the first two clusters
in the second period are members of only specific clusters from the first period.
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Figure 10.4 Linked view of the separately obtained partitions.

10.3.1.2 A True Linked Blockmodeling Approach

As a true linked approach is much more time-consuming than the separate analysis due to its use
of twice the number of both nodes and clusters2 and the possibility of different combinations of
cluster numbers at both time points, not all numbers of clusters that are possible are explored.
Rather, the number of clusters as found appropriate in the separate analysis is used and then
updated if required. Therefore, five clusters are used in each period. The weights of different
parts of the network (both one-mode networks for each time period and the two-mode network
joining them) were computed as inversely proportional to the average inconsistency of 1000
random partitions (selected from a multinomial distribution) based on the same approach as used
in true linked blockmodeling, in this case that is binary blockmodeling according to structural
equivalence with different weights for null and complete blocks (the same approach as for the
separate analysis and thus described there). This weighting is called “original” in this chapter.
The actual weights are presented in Table 10.1.

The results are presented in Figure 10.5. However, the blocks in the one-mode network in
this result are relatively “messy”, especially in the second period, while the two-mode net-
work has practically minimal inconsistency (the minimum number of complete blocks and no

Table 10.1 The weights used in a true linked approach

t1 × t1 t2 × t2 t2 × t1

Original 1.00 0.98 5.67
Two-mode halved 1.00 0.98 2.84

2 Given the restriction that each time period has its own clusters, the complexity is lower than it would be if we had
blockmodeled an ordinary one-mode network of that size.
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Figure 10.5 Results of linked blockmodeling with five clusters in each period and the “original”
weighting.

inconsistencies in the null blocks). This indicates the weight of the two-mode network was set
too high, which might also seriously hamper the search procedure for a good partition [36].

To rectify this, the weight for the two-mode network was halved, as shown in Table 10.1.
The results of using these “two-mode halved” weights are given in Figure 10.6. These results
are much better because the one-mode networks are much clearer while the two-mode network
is not much worse. In fact, the criterion function value for this partition using the “original”
weights is significantly lower than the value or the criterion function obtained when searching
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Figure 10.6 Results of linked blockmodeling with five clusters in each period and the “two-mode halved”
weighting.
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Figure 10.7 Results of linked blockmodeling with four clusters in each period and the “two-mode
halved” weighting.

for the partition using the “original” weights. This just further demonstrates the claim made by
Žiberna [36] that excessively high weights for the two-mode networks can deteriorate the results
of optimization via the relocation algorithm.

The results of the linked approach using the “two-mode halved” weights (presented in
Figure 10.6) show that at both time points the two groups have a very similar pattern of ties
in the one-mode networks. Because of this, the number of groups was reduced to four at both
time points. Results using the “two-mode halved” weights are shown in Figure 10.7. In this
example, this is used as the final solution, although a higher number of clusters and different
approaches to generalized blockmodeling could also be explored. The groups in the period
1991–2000 are:

• A relatively large cohesive group that is almost unconnected to other groups. A closer view
reveals this group could be further partitioned into at least three more densely connected
cohesive groups, which would, however, also be more loosely connected to each other and
almost unconnected to others, which is why they are here grouped into a single group in
addition to mainly being in the same groups at the second time point.

• A loosely connected group with relatively strong (for inter-group) ties to a peripheral group.
• A peripheral group, internally disconnected, connected only to the previously mentioned core

group.
• A disconnected group, both internally and externally disconnected.

In the period 2001–2010, the groups are:

• A core group that is internally connected and also has the strongest ties (among all inter-group
groups) to all other groups (although the tie to the other cohesive group is very low).

• An internally relatively densely connected cohesive group with non-existent or low ties to
other groups.
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• Two peripheral groups, mainly internally disconnected, connected only to the core group.
They mainly differ in their ties to the groups in the previous period.

The transitions of groups between the periods are as follows:

• Most units from the first group (cohesive group) from t1 move to the second periphery group
in t2.

• The core group of t1 (second group) also mainly moves (together with the previously men-
tioned group) into the second periphery group of t2.

• The peripheral group of t1 (third group) moves into the first peripheral group in t2.
• The disconnected group of t1 splits into the core group and the cohesive group of t2.
• The core and cohesive groups of t2 also obtain several new authors not present in t1.

Perhaps the most noteworthy result of this analysis is that the most cohesive groups are almost
totally different in the two periods. Members of the cohesive or core groups of the first period
move to the periphery or are no longer present in the second period. However, a few units also
move to the cohesive group in the second period.

In more general terms, this example shows how the linked blockmodeling approach can be
used to blockmodel networks measured at several time points. The most beneficial result of this
approach compared to separate analysis is that the transitions of the groups in time are made
much clearer.

10.3.2 A Multilevel Network of Participants at a Trade Fair for TV Programs

The data used in this example come from a trade fair for TV programs held in Eastern Europe
in 2012 as gathered and analyzed by Brailly and colleagues [4, 5]. There are two sets of nodes
in this dataset, persons (agents of the companies/organizations,3 buyers and sellers of TV pro-
grams) and the organizations in the business of TV programs, namely the broadcasters, distrib-
utors, independent buyers, and media groups (in principle also producers, but they were not
observed in this time period).

Among the persons an advice relation is recorded, while among the organizations a contract
relation (signing a deal) is recorded. A contract relation is recorded as an asymmetric relation
with the direction based on who reported it. However, since it is intrinsically a symmetric rela-
tion, it was symmetrized prior to the analysis. Only units that have reported at least one tie
were retained, that is 97 persons and 105 companies. The unordered linked/multilevel network
is presented in Figure 10.8.

In addition to these relational data, two attribute variables are used. One is the task of a person
(seller or buyer), while the other is the type of company (broadcaster, distributor, independent
buyer or media group). While both variables were collected from the persons, the companies
are assigned aggregates of their employees.4 See [4] and especially [5] for more details about
the data and its collection.

3 These two terms are used interchangeably.
4 The type of company is the same for all its employees, while the task of employees can for a company also be “both”
in addition to the original categories.
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Figure 10.8 Original (unpartitioned) multilevel network of advice (persons × persons), contracts (orga-
nization × organization), and affiliation (organizations × persons) at a TV show trade fair.

For this network, the homogeneity sum of squares blockmodeling introduced in [34] and
described in Chapter 5 according to structural equivalence was selected. The reason for choos-
ing this algorithm is that it produces denser complete blocks than binary blockmodeling with
differential weights according to the average density.5 Based on a comparison with the attribute
data, it seems that this better captures the roles the units play in the network.

10.3.2.1 Separate Analysis

First, separate analysis was performed. The results are presented in Figure 10.9.
Based on the scree plot, we cannot easily identify the appropriate number of clusters, although

three and five seem suitable. Five clusters were selected, mainly due to them having fewer nodes
in the largest, disconnected cluster, which is later demonstrated to be “mixed”.

For this partition, we also explored the association with selected attribute variables, as
presented in Table 10.2. The description of clusters based on both the partitioned matrix
(Figure 10.9) and attribute data is as follows:

5 Using binary blockmodeling according to structural equivalence with an equal weight of all blocks resulted in only
singleton clusters and one giant cluster for up to eight clusters.
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Figure 10.9 Blockmodeling of the advice relation among persons.

Table 10.2 Association of partition of the advice network and attribute variables: the number of
persons from each cluster with each task and organization type (based on the organization type of each
person’s organization)

C
lu

st
er Task Organization type

Buyer Seller Broadcaster Distributor Independent buyer Media group

1 5 0 4 0 0 1
2 1 13 1 10 0 3
3 5 2 1 2 3 1
4 1 9 1 6 0 3
5 30 31 24 23 6 8

• Cluster 1, first cluster of buyers, connected in both ways only to Cluster 2 (cluster of sellers).
• Cluster 2, first cluster of sellers, connected in both ways only to the first buyers’ cluster.
• Cluster 3, more mixed clusters with five buyers and two sellers, connected only to cluster 4,

with more outgoing (advice-seeking) ties than ingoing.
• Cluster 4, the second sellers’ cluster, mainly connected to cluster 3, as described below.
• Cluster 5, the cluster of remaining units with about equal representation of both buyers and

sellers, a disconnected cluster.

All clusters are internally disconnected and all but the last one (with the third also being
more mixed) are composed of either mainly buyers or mainly sellers. Also, it can be observed
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Figure 10.10 Results of blockmodeling of the contract network among organizations.

that diagonal blocks (except the largest one) are sparser than other null-like blocks.6 Moreover,
the buyers’ clusters are not connected among themselves, neither are sellers’ clusters (null-like
blocks are sparser), indicating that buyers and sellers only seek advice from the other group.
In addition, buyers seek more advice than sellers, which makes sense since they need to get to
know about the programs they might purchase.

Now we move on the second level: organizations. The results of blockmodeling the con-
tract network of organizations are shown in Figure 10.10. The scree plot again does not pro-
vide a definitive answer, although numbers of clusters 3, 5, and 7 seem more appropriate. The
five-cluster partition was selected for further use. For this partition, we also explored the asso-
ciation with selected attribute variables, as presented in Table 10.3. The description of clusters
based on the relational and attribute data is as follows:

• Cluster 1, a very active broadcaster/buyer, which had made deals with all companies from
cluster 4 and the majority of cluster 3 (both mainly sellers, non-broadcasters).

• Cluster 2, the only cluster of buyers made up of nine distributors and one media group. They
are linked to cluster 3 (non-broadcasters).

• Cluster 3, the first cluster of sellers (10/11), non-broadcasters, linked to clusters 1 (one very
active broadcaster) and 2 (buyers, mainly broadcasters).

• Cluster 4, mainly sellers, non-broadcasters, all members have made deals with one broad-
caster (cluster 1).

6 When using homogeneity blockmodeling without modifications we do not classify blocks into null blocks.
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Table 10.3 Association of partition of the contract network and attribute variables. The first part of the
table (Task) shows the number of organizations from each cluster that have only buyers, only sellers or
both types of agents. The second part (Organization type) shows the number of organizations of each
organization type for each cluster

C
lu

st
er Task Organization type

Buyer Both Seller Broadcaster Distributor Independent buyer Media group

1 1 0 0 1 0 0 0
2 9 1 0 9 0 0 1
3 1 1 9 0 4 1 6
4 2 3 21 1 17 3 5
5 31 2 24 17 19 14 7

• Cluster 5, the cluster of remaining units with about equal representation of both buyers and
sellers, of all organizational types (although the proportion of independent buyers is much
higher than for overall), a disconnected cluster.

Like with the network of persons, most contracts are (as expected) between buyers/
broadcasters and sellers/non-broadcasters.

The partitions of persons and organizations are also presented together on the multilevel net-
work to provide a multilevel/linked view of these two solutions in Figure 10.11. Even here, we
notice quite some correspondence among the clusters of persons and the clusters of organiza-
tions. If we disregard the biggest, mixed (in some sense undetermined) cluster in each level,
we can observe than for each cluster of organizations, its members usually (in some cases also
solely) come from only two clusters of persons. Something similar can be said if we exchange
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Figure 10.11 Results of the separate analysis presented on a multilevel network of a trade fair.
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the roles of clusters of organizations and clusters of persons. This was, of course, expected,
especially since at both levels the clusters differ substantially in terms of the task the persons
play and the type of organization.

10.3.2.2 A True Linked Blockmodeling Approach

Based on these preliminary results, we conducted a true multilevel analysis by simultaneously
partitioning the multilevel network into five clusters on both levels. The results are presented
in Figure 10.12. However, here note that the last two clusters of persons have a very similar
pattern of advice ties. Therefore, a solution with only four clusters of persons and five clusters
of organizations was obtained. This solution is shown in Figure 10.13. The association with the
attribute data is presented in Table 10.4. This result is discussed in greater detail bellow. The
descriptions of the clusters of persons are as follows:

• Cluster 0, the most active buyers-only cluster, coming from broadcasters and media groups.
It is mainly linked in both directions to the sole sellers-only cluster, cluster 2. Only a few
internal ties exist.

• Cluster 1, a buyers/broadcasters-only cluster, which also has ties in both directions to seller
cluster 2. Two of its members also seek advice from all other members. While this seems
very strange based on the previous analysis, a glimpse at the multilevel view helps explain
this situation. All members of this cluster are agents of the same organization and therefore
not competitors.

• Cluster 2, a relatively large (20) sellers-only cluster (10/11) of non-broadcasters, linked in
both directions to both clusters of buyers.

• Cluster 3, a mixed cluster with mainly seemingly sporadic ties.
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Figure 10.12 Results of a true multilevel/linked approach with five clusters on each level for the trade
fair network.
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Figure 10.13 Results of a true multilevel/linked approach with four clusters of persons and five clusters
of organizations for the trade fair network.

Table 10.4 Association of the multilevel partition and the attribute variables. The upper part (Persons)
shows the frequencies of the types of agents by tasks and the types of their organizations for each cluster
of persons (see caption of Table 10.2 for details). The lower part (Organizations) shows similar
information aggregated to organization for each cluster of organizations (see caption of Table 10.3 for
details)

C
lu

st
er Task Organization type

Buyer Both Seller Broadcaster Distributor
Independent

buyer
Media
group

Pe
rs

on
s 0 7 0 0 4 0 0 3

1 5 0 0 5 0 0 0
2 0 0 20 0 14 1 5
3 30 0 35 22 27 8 8

O
rg

an
iz

at
io

ns 4 1 0 0 1 0 0 0
5 9 2 0 10 0 0 1
6 1 3 11 0 5 2 8
7 31 2 24 17 19 14 7
8 2 0 19 0 16 2 3

Regarding the partitioned matrix, it should be noted that the first organization cluster only
contains one unit and is “hidden” within the line separating persons and organizations. The
descriptions of the clusters of organizations are as follows:

• Cluster 4, a single buyer/broadcaster, has contracts with most organizations from clusters 6
and 8 (mainly sellers, non-broadcasters).
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• Cluster 5, another cluster of buyers and broadcasters (and one media group) with many links
to cluster 6 (mainly sellers, non-broadcasters).

• Cluster 6, mainly sellers and non-broadcasters, as described above, in contrast to clusters 4
and 5 (buyers/broadcasters).

• Cluster 7, a mixed cluster with mainly seemingly sporadic ties, with a few more ties (higher
block density) to cluster 5 (buyers/broadcasters).

• Cluster 8, mainly sellers/non-broadcasters, in relational terms similar to the previous cluster,
except that all units have contracts with cluster 4 (a single buyer/distributor).

Some connections among the clusters of persons and organizations are also very clear,
especially with buyer (person) clusters. The first person cluster (buyers) is only composed
of agents of organizations from the second organization cluster (broadcasters and one media
group), while these organization cluster members also have agents in the mixed cluster of
persons. The second cluster of persons (cluster 1) is only composed of the agents of a single
broadcaster and vice versa, also explaining the unexpected advice ties within this cluster.
The seller/person cluster (cluster 2) is mainly7 composed of agents from both clusters of
organizational sellers/non-broadcasters. The two clusters of non-broadcasters (organizations)
also largely comprise agents from the person cluster made up of sellers (cluster 2). The mixed
cluster of persons is composed of the agents of organizations from most organization clusters,
while organizations from the mixed cluster of organizations have agents who are almost
exclusively members of the mixed cluster of persons.

The main conclusion arising from this analysis is that both agents and organizations
are divided mainly on the dimension buyers/broadcasters–sellers/non-broadcasters. In both
one-mode networks, most ties are between clusters from the opposite side of this divide
(the exception being the advice ties among agents of a single broadcaster). While the advice
network is constructed as asymmetric, at least on the cluster level, most ties are quite reciprocal,
although buyers also tend to be somewhat more active than sellers. All clusters of persons
(except mixed) are quite clearly mainly tied to only one or two clusters of organizations, while
the ties are not so clear from the view of the non-broadcasters’ organizations’ clusters.8

10.4 Conclusion

The blockmodeling of linked networks was introduced in this chapter. A linked network is a
collection of two or more one-mode networks tied by two-mode networks. We might also say
that linked networks are networks on several sets of nodes where ties both within and between
node sets are possible. The aim of blockmodeling linked networks is to blockmodel the whole
linked network in such a way that each node set is partitioned separately so that each cluster
contains nodes from only one node-set. Special cases of linked networks include multilevel
networks [28], networks measured at several time points, and meta-networks/matrices [19].

7 In addition, one agent is from the mixed cluster of organizations and four agents are not tied to any organization from
the contract network.
8 This simply shows that non-mixed clusters of persons are much less tied to the cluster of mixed organizations than the
non-mixed clusters of organizations are to the cluster of mixed persons.
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As multilevel networks are a special case of linked networks, it was argued that essentially the
same approach used for blockmodeling multilevel networks [36, 38] can be also used for linked
networks. Separate analysis was suggested as the initial step in analysis for linked networks,
followed by a true linked blockmodeling approach where the whole linked network is partitioned
simultaneously. For both approaches, any blockmodeling approach could in principle be used,
although generalized blockmodeling [12, 34, 35] was used in this paper.

The most problematic issue in a true linked blockmodeling approach is “negotiating” the
influence of different parts of the whole linked network on the final solution. In generalized
blockmodeling, this is translated in the how criterion values of different parts of the network are
taken into account when searching for the combined partition. In this chapter, the weighted sum
approach to multi-criteria optimization [13, 14] is suggested, with the weights selected so that
they are inversely proportional to the average inconsistency of random partitions for a selected
part of the linked network using the same settings as in [38].

The main benefit of using the linked blockmodeling approach over separate analysis is that, in
addition to modeling ties among clusters of the same node set, ties between clusters of different
node sets can also be modeled. This usually makes the ties between clusters from different
node sets much clearer, as shown in the co-authorship temporal network example and multilevel
network of ties among organizations and their agents at a trade fair for TV programs.

Of course, several problems remain unsettled. One concerns how to combine multiple crite-
ria for blockmodeling linked networks (one for (each relation of) each part of a network). Here,
the weighted sum approach was used and even within this approach more research is needed
on how to set the appropriate weights. However, a true multi-criteria approach like that used in
[6] might be better. In addition, one limitation when applying this approach within generalized
blockmodeling is its computational complexity, making its use on larger networks (a few hun-
dred nodes) impractical, if not impossible. A possible solution would be to implement the linked
approach within some fast version of stochastic blockmodeling [e.g. [2, 11, 17]] or within an
approach based on a two-mode k-means algorithm [7, 31].
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Bayesian Stochastic Blockmodeling
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This chapter provides a self-contained introduction to the use of Bayesian inference
to extract large-scale modular structures from network data, based on the stochastic
blockmodel (SBM), as well as its degree-corrected and overlapping generalizations.
We focus on nonparametric formulations that allow their inference in a manner that
prevents overfitting and enables model selection. We discuss aspects of the choice
of priors, in particular how to avoid underfitting via increased Bayesian hierarchies,
and we contrast the task of sampling network partitions from the posterior distri-
bution with finding the single point estimate that maximizes it, while describing
efficient algorithms to perform either one. We also show how inferring the SBM
can be used to predict missing and spurious links, and shed light on the fundamental
limitations of the detectability of modular structures in networks.

11.1 Introduction

Over the past decade and a half there has been an ever-increasing demand to analyze network
data, in particular those stemming from social, biological, and technological systems. Often
these systems are very large, comprising millions or even billions of nodes and edges, such
as the World Wide Web, and the global-level social interactions among humans. A particular
challenge that arises is how to describe the large-scale structures of these systems in a way that
abstracts away from low-level details, allowing us to focus instead on “the big picture.” Differ-
ently from systems that are naturally embedded in some low-dimensional space – such as the
population density of cities or the physiology of organisms – we are unable just to “look” at
a network and readily extract its most salient features. This has prompted much of activity in
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developing algorithmic approaches to extract such global information in a well-defined manner,
many of which are described in the remaining chapters of this book. Most of them operate on
a rather simple ansatz, where we try to divide the network into “building blocks,” which then
can be described at an aggregate level in a simplified manner. The majority of such methods
go under the name “community detection,” “network clustering” or “blockmodeling.” In this
chapter we consider the situation where the ultimate objective when analyzing network data in
this way is to model it, i.e. we want to make statements about possible generative mechanisms
that are responsible for the network formation. This overall aim sets us in a well-defined path,
where we get to formulate probabilistic models for network structure, and use principled and
robust methods of statistical inference to fit our models to data. Central to this approach is the
ability to distinguish structure from randomness, so that we do not fool ourselves into believing
that there are elaborate structures in our data which are in fact just the outcome of stochastic
fluctuations, which tends to be the Achilles’ heel of alternative nonstatistical approaches. In
addition to providing a description of the data, the models we infer can also be used to gener-
alize from observations, and make statements about what has not yet been observed, yielding
something more tangible than mere interpretations. In what follows we will give an introduction
to this inference approach, which includes recent developments that allow us to perform it in a
consistent, versatile and efficient manner.

11.2 Structure Versus Randomness in Networks

If we observe a random string of characters we will eventually encounter every possible sub-
string, provided the string is long enough. This leads to the famous thought experiment of a large
number of monkeys with typewriters: assuming that they type randomly, for a sufficiently large
number of monkeys any output can be observed, including, for example, the very text you are
reading. Therefore, if we are ever faced with this situation, we should not be surprised if a such
a text is in fact produced and, most importantly, we should not offer its simian author a place in a
university department, as this occurrence is unlikely to be repeated. However, this example is of
little practical relevance, as the number of monkeys necessary to type the text “blockmodeling”
by chance is already of the order of 1018, and there are simply not that many monkeys.

Networks, however, are different from random strings. The network analogue of a random
string is an Erdős-Rényi random graph [22] where each possible edge can occur with the same
probability. But differently from a random string, a random graph can contain a wealth of struc-
ture before it becomes astronomically large, particularly if we search for it. An example of this
is shown in Figure 11.1 for a modest network of 5000 nodes, where its adjacency matrix is
visualized using three different node orderings. Two of the orderings seem to reveal patterns
of large-scale connections that are tantalizingly clear, and indeed would be eagerly captured by
many network clustering methods [39]. In particular, they seem to show groupings of nodes that
have distinct probabilities of connections to each other, in direct contradiction to the actual pro-
cess that generated the network, where all connections had the same probability of occurring.
What makes matters even worse is that Figure 11.1 shows only a very small subset of all order-
ings that have similar patterns, but are otherwise very distinct from each other. Naturally, in the
same way we should not confuse a monkey with a proper scientist in our previous example,
we should not use any of these node groupings to explain why the network has its structure.
Doing so should be considering overfitting it, i.e. mistaking random fluctuations for generative
structure, yielding an overly complicated and ultimately wrong explanation for the data.
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Figure 11.1 The three panels show the same adjacency matrix, with the only difference between them
being the ordering of the nodes. The different orderings show seemingly clear, albeit very distinct, patterns
of modular structure. However, the adjacency matrix in question corresponds to an instance of a fully
random Erdős–Rényi model, where each edge has the same probability p = ⟨k⟩∕(N − 1) of occurring,
with ⟨k⟩ = 3. Although the patterns seen in the second and third panels are not mere fabrications – as they
are really there in the network – they are also not meaningful descriptions of this network, since they arise
purely out of random fluctuations. Therefore, the node groups that are identified via these patterns bear
no relation to the generative process that produced the data. In other words, the second and third panels
correspond each to an overfit of the data, where stochastic fluctuations are misrepresented as underlying
structure. This pitfall can lead to misleading interpretations of results from clustering methods that do not
account for statistical significance.

The remedy to this problem is to think probabilistically. We need to ascribe to each possi-
ble explanation of the data a probability that it is correct, which takes into account modeling
assumptions, the statistical evidence available in the data, as well any source of prior infor-
mation we may have. Imbued in the whole procedure must be the principle of parsimony – or
Occam’s razor – where a simpler model is preferred if the evidence is not sufficient to justify a
more complicated one.

In order to follow this path, before we look at any network data, we must first look in the “for-
ward” direction, and decide which mechanisms generate networks in the first place. Based on
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this, we will finally be able to look “backwards,” and tell which particular mechanism generated
a given observed network.

11.3 The Stochastic Blockmodel

As mentioned in the introduction, we wish to decompose networks into “building blocks” by
grouping together nodes that have a similar role in the network. From a generative point of
view, we wish to work with models that are based on a partition of N nodes into B such building
blocks, given by the vector b with entries

bi ∈ {1, … ,B},

specifying the group membership of node i. We wish to construct a generative model that takes
this division of the nodes as parameters and generates networks with a probability

P(A|b),
where A = {Aij} is the adjacency matrix. But what shape should P(A|b) have? If we wish to
impose that nodes that belong to the same group are statistically indistinguishable, our ensemble
of networks should be fully characterized by the number of edges that connects nodes of two
groups r and s,

ers =
∑

ij

Aij𝛿bi,r
𝛿bj,s

, (11.1)

or twice that number if r = s. If we take these as conserved quantities, the ensemble that reflects
our maximal indifference towards any other aspect is the one that maximizes the entropy [48]

S = −
∑

A

P(A|b) ln P(A|b) (11.2)

subject to the constraint of Equation (11.1). If we relax somewhat our requirements, such that
Equation (11.1) is obeyed only for expectations then we can obtain our model using the method
of Lagrange multipliers, using the Lagrangian function

F = S −
∑
r≤s

𝜇rs

(∑
A

P(A|b)∑
i<j

Aij𝛿bi,r
𝛿bj,s

− ⟨ers⟩
)

− 𝜆

(∑
A

P(A|b) − 1

)
(11.3)

where ⟨ers⟩ are constants independent of P(A|b), and 𝝁 and 𝜆 are multipliers that enforce our
desired constraints and normalization, respectively. Obtaining the saddle point 𝜕F∕𝜕P(A|b) = 0,
𝜕F∕𝜕𝜇rs = 0 and 𝜕F∕𝜕𝜆 = 0 gives us the maximum entropy ensemble with the desired proper-
ties. If we constrain ourselves to simple graphs, i.e. Aij ∈ {0, 1}, without self-loops, we have as
our maximum entropy model

P(A|p, b) = ∏
i<j

p
Aij

bi,bj
(1 − pbi,bj

)1−Aij
, (11.4)

with prs = e−𝜇rs∕(1 + e−𝜇rs) being the probability of an edge existing between any two nodes
belonging to groups r and s. This model is called the stochastic blockmodel (SBM), and has its
roots in the social sciences and statistics [44, 72, 100, 105], but has appeared repeatedly in the
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Figure 11.2 SBM: (a) the matrix of probabilities between groups prs defines the large-scale structure of
generated networks and (b) a sampled network corresponding to (a), where the node colors indicate the
group membership.

literature under a variety of different names [8–10, 12, 17, 102]. By selecting the probabilities
p = {prs} appropriately, we can achieve arbitrary mixing patterns between the groups of nodes,
as illustrated in Figure 11.2. We stress that while the SBM can perfectly accommodate the usual
“community structure” pattern [25], i.e. when the diagonal entries of p are dominant, it can
equally well describe a large variety of other patterns, such as bipartiteness, core-periphery, and
many others.

Instead of simple graphs, we may consider multigraphs by allowing multiple edges between
nodes, i.e. Aij ∈ ℕ. Repeating the same procedure, we obtain in this case

P(A|𝝀, b) = ∏
i<j

𝜆

Aij

bi,bj

(𝜆bi,bj
+ 1)Aij+1

, (11.5)

with 𝜆rs = e−𝜇rs∕(1 − e−𝜇rs) being the average number of edges existing between any two nodes
belonging to group r and s. Whereas the placement of edges in Equation (11.4) is given by a
Bernoulli distribution, in Equation (11.5) it is given by a geometric distribution, reflecting the
different nature of both kinds of networks. Although these models are not the same, there is in
fact little difference between the networks they generate in the sparse limit given by prs = 𝜆rs =
O(1∕N) with N ≫ 1. We see this by noticing how their log-probabilities become asymptotically
identical in this limit, i.e.

ln P(A|p, b) ≈ 1
2

∑
rs

ers ln prs − nrnsprs + O(1), (11.6)

ln P(A|𝝀, b) ≈ 1
2

∑
rs

ers ln 𝜆rs − nrns𝜆rs + O(1). (11.7)
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Therefore, since most networks that we are likely to encounter are sparse [66], it does not matter
which model we use, and we may prefer whatever is more convenient for our calculations. With
this in mind, we may consider yet another variant, which uses instead a Poisson distribution to
sample edges [50],

P(A|𝝀, b) = ∏
i<j

e
−𝜆bi ,bj

𝜆

Aij

bi,bj

Aij!
×
∏

i

e−𝜆bi ,bi
∕2(𝜆bi,bi

∕2)Aii∕2

(Aii∕2)!
, (11.8)

where now we also allow for self-loops. Like the geometric model, the Poisson model generates
multigraphs, and it is easy to verify that it also leads to Equation (11.7) in the sparse limit. This
model is easier to use in some of the calculations that we are going to make, in particular when
we consider important extensions of the SBM, therefore we will focus on it.1

The model above generates undirected networks. It can be very easily modified to generate
directed networks instead, by making 𝜆rs an asymmetric matrix, and adjusting the model like-
lihood accordingly. The same is true for all model variations that are going to be used in the
following sections. However, for the sake of conciseness we will focus only on the undirected
case. We point out that the corresponding expressions for the directed case are readily available
in the literature (e.g. [78, 84, 85]).

Now that we have defined how networks with prescribed modular structure are generated, we
need to develop the reverse procedure, i.e. how to infer the modular structure from data.

11.4 Bayesian Inference: The Posterior Probability of Partitions

Instead of generating networks, our nominal task is to determine which partition b generated an
observed network A, assuming this was done via the SBM. In other words, we want to obtain
the probability P(b|A) that a node partition b was responsible for a network A. By evoking
elementary properties of conditional probabilities, we can write this probability as

P(b|A) = P(A|b)P(b)
P(A)

(11.9)

with

P(A|b) =
∫

P(A|𝝀, b)P(𝝀|b) d𝝀 (11.10)

being the marginal likelihood integrated over the remaining model parameters, and

P(A) =
∑

b

P(A|b)P(b), (11.11)

1 Although the Poisson model is not strictly a maximum entropy ensemble, the generative process behind it is easy to jus-
tify. We can imagine it as the random placement of exactly E edges into the N(N − 1)∕2 entries of the matrix A, each with

a probability qij of attracting an edge, with
∑

i<jqij = 1, yielding a multinomial distribution P(A|q,E) = E!
∏

i<jq
Aij

ij ∕Aij!,
where, differently from Equation (11.8), the edge placements are not conditionally independent. But if we now
sample the total number of edges E from a Poisson distribution P(E| ̄E) with average ̄E, by exploiting the relation-

ship between the multinomial and Poisson distributions, we have P(A|q) = ∑
EP(A|q,E)P(E| ̄E) = ∏

i<je
−𝜔ij

𝜔

Aij

ij ∕Aij!,
where 𝜔ij = qij∕ ̄E, which does amount to conditionally independent edge placements. Making qij = ̄E𝜆bi ,bj

, and allow-

ing self-loops, we arrive at Equation (11.8).
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which is called the evidence, i.e. the total probability of the data under the model, which serves
as a normalization constant in Equation (11.9). Equation (11.9) is known as Bayes’ rule, and far
from being only a simple mathematical step, it encodes how our prior beliefs about the model,
i.e. before we observe any data – in the above represented by the prior distributions P(b) and
P(𝝀|b) – are affected by the observation, yielding the so-called posterior distribution P(b|A).
The overall approach outlined above has been proposed to the problem of network inference
by several authors [5, 16, 37, 41, 43, 51, 64, 65, 71, 79, 84, 85, 89, 93, 95, 109], with different
implementations that vary in some superficial details in the model specification, approximations
used, and in particular in the choice of priors. Here we will not review or compare all approaches
in detail, but rather focus on the most important aspects, while choosing a particular path that
makes exact calculations possible.

The prior probabilities are a crucial element of the inference procedure, as they will affect
the shape of the posterior distribution and, ultimately, our inference results. In more traditional
scenarios, the choice of priors would be guided by previous observations of data that are believed
to come from the same model. However, this is not an applicable scenario when considering
networks, which are typically singletons, i.e. they are unique objects, instead of coming from a
population (e.g. there is only one internet, one network of trade between countries, etc).2 In the
absence of such empirical prior information, we should try as much as possible to be guided by
well-defined principles and reasonable assumptions about our data, rather than ad hoc choices.
A central proposition we will be using is the principle of maximum indifference about the model
before we observe any data. This will lead us to so-called uninformative priors,3 which are
maximum entropy distributions that ascribe the same probability to each possible parameter
combination [48]. These priors have the property that they do not bias the posterior distribution
in any particular way, and thus let the data “speak for itself.” But as we will see in the following,
the naive application of this principle will lead to adverse effects in many cases, and upon closer
inspection we will often be able to identify aspects of the model that we should not be agnostic
about. Instead, a more meaningful approach will be to describe higher-order aspects of the model
with their own models. This can be done in a manner that preserves the unbiased nature of our
results, while being able to provide a more faithful representation of the data.

We begin by choosing the prior for the partition, b. The most direct uninformative prior is the
“flat” distribution where all partitions into at most B = N groups are equally likely, namely

P(b) = 1∑
b′1

= 1
aN

(11.12)

where aN are the ordered Bell numbers [99], given by

aN =
N∑

B=1

{N
B

}
B! (11.13)

2 One could argue that most networks change in time, and hence belong to a time series, thus possibly allowing priors
to be selected from earlier observations of the same network. This is a potentially useful way to proceed, but also
opens a Pandora’s box of dynamical network models, where simplistic notions of statistical stationarity are likely to be
contradicted by data. Some recent progress has been made on the inference of dynamic networks [13, 27, 29, 59, 76,
87, 108, 113], but this field is still in relative infancy.
3 The name “uninformative” is something of a misnomer, as it is not really possible for priors to truly carry “no informa-
tion” to the posterior distribution. In our context, the term is used simply to refer to maximum entropy priors, conditioned
on specific constraints.
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where
{

N
B

}
are the Stirling numbers of the second kind [98], which count the number of ways

to partition a set of size N into B indistinguishable and nonempty groups (the B! in the above
equation recovers the distinguishability of the groups, which we require). However, upon closer
inspection we often find that such flat distributions are not a good choice. In this particular case,
since there are many more partitions into B + 1 groups than there are into B groups (if B is
sufficiently smaller than N), Equation (11.12) will typically prefer partitions with a number of
groups that is comparable to the number of nodes. Therefore, this uniform assumption seems
to betray the principle of parsimony that we stated in the introduction, since it favors large
models with many groups, before we even observe the data.4 Instead, we may wish to be agnostic
about the number of groups itself, by first sampling it from its own uninformative distribution
P(B) = 1∕N, and then sampling the partition conditioned on it

P(b|B) = 1{
N
B

}
B!
, (11.14)

since
{

N
B

}
B! is the number of ways to partition N nodes into B labelled groups.5 Since b

is a parameter of our model, the number of groups B is a called a hyperparameter, and its
distribution P(B) is called a hyperprior. But once more, upon closer inspection we can identify
further problems: If we sample from Equation (11.14), most partitions of the nodes will occupy
all the groups approximately equally, i.e. all group sizes will be the approximately the same.
Is this something we want to assume before observing any data? Instead, we may wish to be
agnostic about this aspect as well, and choose to sample first the distribution of group sizes
n = {nr}, where nr is the number of nodes in group r, forbidding empty groups,

P(n|B) =
(N − 1

B − 1

)−1
, (11.15)

since
(

N−1
B−1

)
is the number of ways to divide N nonzero counts into B nonempty bins. Given

these randomly sampled sizes as a constraint, we sample the partition with a uniform probability

P(b|n) =
∏

rnr!
N!

. (11.16)

This gives us finally

P(b) = P(b|n)P(n|B)P(B) =
∏

rnr!
N!

(N − 1
B − 1

)−1
N−1

. (11.17)

At this point the reader may wonder if there is any particular reason to stop here. Certainly we
can find some higher-order aspect of the group sizes n that we may wish to be agnostic about,

4 Using constant priors such as Equation (11.12) makes the posterior distribution proportional to the likelihood. Maxi-
mizing such a posterior distribution is therefore entirely equivalent to a “non-Bayesian” maximum likelihood approach,
and nullifies our attempt to prevent overfitting.
5 We could have used simply P(b|B) = 1∕BN , since BN is the number of partitions of N nodes into B groups, which are
allowed to be empty. However, this would force us to distinguish between the nominal and the actual number of groups
(discounting empty ones) during inference [71], which becomes unnecessary if we simply forbid empty groups in our
prior.
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and introduce a hyperhyperprior, and so on, indefinitely. The reason why we should not keep
recursively being more and more agnostic about higher-order aspects of our model is that it
brings increasingly diminishing returns. In this particular case, if we assume that the individual
group sizes are sufficiently large, we obtain asymptotically

ln P(b) ≈ −NH(n) + O(ln N) (11.18)

where H(n) = −
∑

r(nr∕N) ln(nr∕N) is the entropy of the group size distribution. The value
ln P(b) → −NH(n) is an information-theoretical limit that cannot be surpassed, regardless of
how we choose P(n|B). Therefore, the most we can optimize by being more refined is a marginal
factor O(ln N) in the log-probability, which would amount to little practical difference in most
cases.

In the above, we went from a purely flat uninformative prior distribution for b to a Bayesian
hierarchy with three levels, where we sample first the number of groups, the groups sizes, and
then finally the partition. In each of the levels we used maximum entropy distributions that are
constrained by parameters that are themselves sampled from their own distributions at a higher
level. In doing so, we removed some intrinsic assumptions about the model (in this case, number
and sizes of groups), thereby postponing any decision on them until we observe the data. This
will be a general strategy we will use for the remaining model parameters.

Having dealt with P(b), this leaves us with the prior for the group to group connections,
𝝀. A good starting point is an uninformative prior conditioned on a global average, 𝜆, which
will determine the expected density of the network. For a continuous variable x, the maximum
entropy distribution with a constrained average x is the exponential, P(x) = e−x∕x∕x. Therefore,
for 𝝀 we have

P(𝝀|b) = ∏
r≤s

e−nrns𝜆rs∕(1+𝛿rs)𝜆nrns∕(1 + 𝛿rs)𝜆, (11.19)

with 𝜆 = 2E∕B(B + 1) determining the expected total number of edges,6 where we have
assumed the local average ⟨𝜆rs⟩ = 𝜆(1 + 𝛿rs)∕nrns, such that that the expected number of
edges ers = 𝜆rsnrns∕(1 + 𝛿rs) will be equal to 𝜆, irrespective of the group sizes nr and ns [85].
Combining this with Equation (11.8), we can compute the integrated marginal likelihood of
Equation (11.10) as

P(A|b) = 𝜆

E

(𝜆 + 1)E+B(B+1)∕2
×

∏
r<sers!

∏
rerr!!∏

rn
er
r
∏

i<jAij!
∏

iAii!!
. (11.20)

Just as with the node partition, the uninformative assumption of Equation (11.19) also leads to its
own problems, but we postpone dealing with them to Section 11.6. For now, we have everything
we need to write the posterior distribution, with the exception of the model evidence P(A) given
by Equation (11.11). Unfortunately, since it involves a sum over all possible partitions, it is not
tractable to compute the evidence exactly. However, since it is just a normalization constant, we

6 More strictly, we should treat 𝜆 just as another hyperparameter and integrate over its own distribution. But since this
is just a global parameter, not affected by the dimension of the model, we can get away with setting its value directly
from the data. It means we are pretending we know precisely the density of the network we are observing, which is not
a very strong assumption. Nevertheless, readers who are uneasy with this procedure can rest assured that this can be
completely amended once we move to microcanonical models in Section 11.6 (see footnote 15).
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will not need to determine it when optimizing or sampling from the posterior, as we will see
in Section 11.8. The numerator of Equation (11.9), which comprises of the terms that we can
compute exactly, already contains all the information we need to proceed with the inference,
and also has a special interpretation, as we will see in the next section.

The posterior of Equation (11.9) will put low probabilities on partitions that are not backed
by sufficient statistical evidence in the network structure, and it will not lead us to spurious
partitions such as those depicted in Figure 11.1. Inferring partitions from this posterior amounts
to a so-called nonparametric approach; not because it lacks the estimation of parameters,
but because the number of parameters itself, a.k.a. the order or dimension of the model, will
be inferred as well. More specifically, the number of groups B itself will be an outcome
of the inference procedure, which will be chosen in order to accommodate the structure in
the data, without overfitting. The precise reasons why the latter is guaranteed might not be
immediately obvious to those unfamiliar with Bayesian inference. In the following section we
will provide an explanation by making a straightforward connection with information theory.
The connection is based on a different interpretation of our model, which allows us to introduce
some important improvements.

11.5 Microcanonical Models and the Minimum Description Length
Principle

We can re-interpret the integrated marginal likelihood of Equation (11.20) as the joint likelihood
of a microcanonical model given by7

P(A|b) = P(A|e, b)P(e|b), (11.21)

where

P(A|e, b) =
∏

r<sers!
∏

rerr!!∏
rn

er
r
∏

i<jAij!
∏

iAii!!
, (11.22)

P(e|b) = ∏
r<s

𝜆

ers

(𝜆 + 1)ers+1

∏
r

𝜆

ers∕2

(𝜆 + 1)ers∕2+1
= 𝜆

E

(𝜆 + 1)E+B(B+1)∕2
, (11.23)

and e = {ers} is the matrix of edge counts between groups. The term “microcanonical” –
borrowed from statistical physics – means that model parameters correspond to “hard”
constraints that are strictly imposed on the ensemble, as opposed to “soft” constraints that are
obeyed only on average. In the particular case above, P(A|e, b) is the probability of generating
a multigraph A where Equation (11.1) is always fulfilled, i.e. the total number of edges between
groups r and s is always exactly ers, without any fluctuation allowed between samples (see
[85] for a combinatorial derivation). This contrasts with the parameter 𝜆rs in Equation (11.8),

7 Some readers may wonder why Equation (11.21) should not contain a sum, i.e. P(A|b) = ∑
eP(A|e, b)P(e|b). Indeed,

that is the proper way to write a marginal likelihood. However, for the microcanonical model there is only one element of
the sum that fulfills the constraint of Equation (11.1), and thus yields a nonzero probability, making the marginal likeli-
hood identical to the joint, as expressed in Equation (11.21). The same is true for the partition prior of Equation (11.17).
We will use this fact in our notation throughout, and omit sums when they are unnecessary.
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which determines only the average number of edges between groups, which fluctuates between
samples. Conversely, the prior for the edge counts P(e|b) is a mixture of geometric distributions
with average 𝜆, which does allow the edge counts to fluctuate, guaranteeing the overall
equivalence. The fact that Equation (11.21) holds is rather remarkable, since it means that – at
least for the basic priors we used – these two kinds of model (“canonical” and microcanonical)
cannot be distinguished from data, since their marginal likelihoods (and hence the posterior
probability) are identical.8

With this microcanonical interpretation in mind, we may frame the posterior probability in an
information-theoretical manner as follows. If a discrete variable x occurs with a probability mass
P(x), the asymptotic amount of information necessary to describe it is −log2P(x) (if we choose
bits as the unit of measurement), by using an optimal lossless coding scheme such as Huffman’s
algorithm [57]. With this in mind, we may write the numerator of the posterior distribution in
Equation (11.9) as

P(A|b)P(b) = P(A|e, b)P(e, b) = 2−Σ, (11.24)

where the quantity
Σ = −log2P(A, e, b) (11.25)

= −log2P(A|e, b) − log2P(e, b) (11.26)

is called the description length of the data [35, 91]. It corresponds to the asymptotic amount of
information necessary to encode the data A together with the model parameters e and b. There-
fore, if we find a network partition that maximizes the posterior distribution of Equation (11.20),
we are also automatically finding one which minimizes the description length.9 With this, we
can see how the Bayesian approach outlined above prevents overfitting: As the size of the model
increases (via a larger number of occupied groups), it will constrain itself better to the data, and
the amount of information necessary to describe it when the model is known, −log2P(A|e, b),
will decrease. At the same time, the amount of information necessary to describe the model itself,
−log2P(e, b), will increase as it becomes more complex. Therefore, the latter will function as a
penalty10 that prevents the model from becoming overly complex, and the optimal choice will
amount to a proper balance between both terms.11 Among other things, this approach will allow

8 This equivalence occurs for a variety of Bayesian models. For instance, if we flip a coin with a probability p of coming
up heads, the integrated likelihood under a uniform prior after N trials in which m heads were observed is P(x) =
∫

1
0 pm(1 − p)N−m dp = (N − m)!m!∕(N + 1)!. This is the same as the “microcanonical” model P(x) = P(x|m)P(m) with

P(x|m) =
(

N
m

)−1
and P(m) = 1∕(N + 1), i.e. the number of heads is sampled from a uniform distribution, and the coin

flips are sampled randomly among those that have that exact number of heads.
9 Sometimes the minimum description length principle (MDL) is considered as an alternative method to Bayesian infer-
ence. Although it is possible to apply the MDL in a manner that makes the connection with Bayesian inference difficult,
as, for example, with the normalized maximum likelihood scheme [34, 97], in its more direct and tractable form it is
fully equivalent to the Bayesian approach [35]. Note also that we do not in fact require the connection with micro-
canonical models made here, as the description length can be defined directly as Σ = −log2P(A, b), without referring
explicitly to internal model parameters.
10 Some readers may notice the similarity between Equation (11.26) and other penalty-based criteria, such as the
Bayesian information criterion (BIC) [96] and the Akaike information criterion (AIC) [6]. Although all these crite-
ria share the same overall interpretation, BIC and AIC rely on specific assumptions about the asymptotic shape of the
model likelihood, which are known to be invalid for the SBM [110], unlike Equation (11.26) which is exact.
11 An important result in information theory states that compressing random data is asymptotically impossible [14].
This lies at the heart of the effectiveness of the MDL approach in preventing overfitting, as incorporating randomness
into the model description cannot be used to reduce the description length.
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Figure 11.3 Bayesian inference of the SBM for a network of American college football teams [30]. (a)
The partition that maximizes the posterior probability of Equation (11.9), or, equivalently, minimizes the
description length of Equation (11.24). Nodes marked in red are not classified according to the known divi-
sion into “conferences.” (b) Description length as a function of the number of groups of the corresponding
optimal partition, for both the original and randomized data.

us to properly estimate the dimension of the model – represented by the number of groups B – in
a parsimonious way.

We now illustrate this approach with a real-world dataset of American college football
teams [30], where a node is a team and an edge exists if two teams play against each other in
a season. If we find the partition that maximizes the posterior distribution, we uncover B = 10
groups, as can be seen in Figure 11.3a. If we compare this partition with the known division of
the teams into “conferences” [23, 24], we find that they match with a high degree of precision,
with the exception of only a few nodes.12 In Figure 11.3b we show the description length of the
optimal partitions if we constrain them to have a pre-specified number of groups, which allows
us to see how the approach penalizes both too simple and too complex models, with a global
minimum at B = 10, corresponding to the most compressive partition. Importantly, if we now
randomize the network, by placing all its edges in a completely random fashion, we obtain
instead a trivial partition into B = 1 group, indicating that the best model for this data is indeed
a fully random graph. Hence, we see that this approach completely avoids the pitfall discussed
in Section 11.2 and does not identify groups in fully random networks, and that the division
shown in Figure 11.3a points to a statistically significant structure in the data that cannot be
explained simply by random fluctuations.

11.6 The “Resolution Limit” Underfitting Problem and the Nested SBM

Although the Bayesian approach outlined above is in general protected against overfitting, it
is still susceptible to underfitting, i.e. when we mistake statistically significant structure for

12 Care should be taken when comparing with “known” divisions in this manner, as there is no guarantee that the
available metadata is in fact relevant for the network structure. See [47, 69, 77] for more detailed discussions.
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Figure 11.4 Inference of the SBM on a simple artificial network composed of 64 cliques of size
10, illustrating the underfitting problem. (a) The partition that maximizes the posterior probability of
Equation (11.9) or, equivalently, minimizes the description length of Equation (11.24). The 64 cliques
are grouped into 32 groups composed of two cliques each. (b) Minimum description length as a function
of the number of groups of the corresponding partition, both for the SBM and its nested variant, which is
less susceptible to underfitting, and puts all 64 cliques in their own groups.

randomness, resulting in the inference of an overly simplistic model. This happens whenever
there is a large discrepancy between our prior assumptions and what is observed in the data.
We illustrate this problem with a simple example. Consider a network formed of 64 isolated
cliques of size 10, as shown in Figure 11.4a. If we employ the approach described in the previous
section, and maximize the posterior of Equation (11.9), we obtain a partition into B = 32 groups,
where each group is composed of two cliques. This is a fairly unsatisfying characterization of
this network, and also somewhat perplexing, since the probability that the inferred SBM will
generate the observed network, i.e. each of the 32 groups will simultaneously and spontaneously
split in two disjoint cliques, is vanishingly small. Indeed, intuitively it seems we should do
significantly better with this rather obvious example, and that the best fit would be to put each
of the cliques in their own group. In order to see what went wrong, we need to revisit our
prior assumptions, in particular our choice for P(𝝀|b) in Equation (11.19) or, equivalently, our
choice of P(e|b) in Equation (11.23) for the microcanonical formulation. In both cases, they
correspond to uninformative priors, which put approximately equal weight on all allowed types
of large-scale structures. As argued before, this seems reasonable at first, since we should not
bias our model before we observe the data. However, the implication of this choice is that we
expect a priori the structure of the network at the aggregate group level, i.e. considering only
the groups and the edges between them (not the individual nodes) to be fully random. This is
indeed not the case in the simple example of Figure 11.4, and in fact it is unlikely to be the
case for most networks that we encounter, which will probably be structured at a higher level as
well. The unfavorable outcome of the uninformative assumption can also be seen by inspecting
its effect on the description length of Equation (11.24). If we revisit our simple model with C
cliques of size m, grouped uniformly into B groups of size C∕B, and we assume that these values
are sufficiently large so that Stirling’s factorial approximation ln x! ≈ x ln x − x can be used, the
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description length becomes

Σ ≈ −(E − N)log2B + B(B + 1)
2

log2E, (11.27)

where N = Cm is the total number of nodes and E = C
(

m
2

)
is the total number of edges, and

we have omitted terms that do not depend on B. From this, we see that if we increase the number
of groups B, this incurs a quadratic penalty in the description length given by the second term
of Equation (11.27), which originates precisely from our expression of P(e|b): it corresponds
to the amount of information necessary to describe all entries of a symmetric B × B matrix that
takes independent values between 0 and E. Indeed, a slightly more careful analysis of the scaling
of the description length [79, 85] reveals that this approach is unable to uncover a number of
groups that is larger than Bmax ∝

√
N, even if their existence is obvious, as in our example of

Figure 11.4.13

Trying to avoid this limitation might seem like a conundrum, since replacing the uninforma-
tive prior for P(e|b) amounts to making a more definite statement on the most likely large-scale
structures that we expect to find, which we might hesitate to stipulate, as this is precisely what we
want to discover from the data in the first place, and we want to remain unbiased. Luckily, there
is in fact a general approach available to us to deal with this problem: we postpone our decision
about the higher-order aspects of the model until we observe the data. In fact, we already saw
this approach in action when we decided on the prior for the partitions; we do so by replacing the
uninformative prior with a parametric distribution, whose parameters are in turn modelled by a
another distribution, i.e. a hyperprior. The parameters of the prior then become latent variables
that are learned from data, allowing us to uncover further structures, while remaining unbiased.

The microcanonical formulation allows us to proceed in this direction in a straightforward
manner, as we can interpret the matrix of edge counts e as the adjacency matrix of a multigraph
where each of the groups is represented as a single node. Within this interpretation, an elegant
solution presents itself, where we describe the matrix e with another SBM, i.e. we partition each
of the groups into meta-groups and the edges between groups are placed according to the edge
counts between meta-groups. For this second SBM, we can proceed in the same manner and
model it by a third SBM, and so on, forming a nested hierarchy, as illustrated in Figure 11.5 [82].
More precisely, if we denote by Bl, bl and el the number of groups, the partition and the matrix
of edge counts at level l ∈ {0, … ,L}, we have

P(el|bl−1, el+1, bl) =
∏
r<s

((
nl

rn
l
s

el+1
rs

))−1 ∏
r

((
nl

r(nl
r + 1)∕2

el+1
rs ∕2

))−1

, (11.28)

with
((

n
m

))
=
(

n+m−1
m

)
counting the number of m-combinations with repetitions from a set

of size n. Equation (11.28) is the likelihood of a maximum-entropy multigraph SBM, i.e. every

13 This same problem occurs for slight variations of the SBM and corresponding priors, provided they are uninformative,
such as those in [16, 71, 95], and also with other penalty-based approaches that rely on a functional form similar to
Equation (11.27) [106]. Furthermore, this limitation is conspicuously similar to the “resolution limit” present in the
popular heuristic of modularity maximization [26], although it is not yet clear if a deeper connection exists between
both phenomena.
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multigraph occurs with the same probability, provided they fulfill the imposed constraints14

[78]. The prior for the partitions is again given by Equation (11.17),

P(bl) =
∏

rn
l
r!

Bl−1!

(
Bl−1 − 1

Bl − 1

)−1

B−1
l−1, (11.29)

with B−1 = N, so that the joint probability of the data, edge counts, and the hierarchical partition
{bl} becomes

P(A, {el}, {bl}|L) = P(A|e1, b0)P(b0)
L∏

l=1

P(el|bl−1, el+1, bl)P(bl), (11.30)

where we impose the boundary conditions BL = 1 and P(bL) = 1. We can treat the hierarchy
depth L as a latent variable as well, by placing a prior on it P(L) = 1∕Lmax, where Lmax is the
maximum value allowed. But since this only contributes to an overall multiplicative constant,
it has no effect on the posterior distribution, and thus can be omitted. If we impose L = 1, we
recover the uninformative prior for e = e1,

P(e|b0) =
((

B(B + 1)∕2
E

))−1

, (11.31)

which is different from Equation (11.23) only in that the number of edges E is not allowed to
fluctuate.15 The inference of this model is done in the same manner as the uninformative one,
by obtaining the posterior distribution of the hierarchical partition

P({bl}|A) = P(A, {bl})
P(A)

=
P(A, {el}, {bl})

P(A)
, (11.32)

and the description length is given analogously by

Σ = −log2P(A|{el}, {bl}) − log2P({el}, {bl}). (11.33)

This approach has a series of advantages; in particular, we remain a priori agnostic with respect
to what kind of large-scale structure is present in the network, having constrained ourselves
simply in that it can be represented as a SBM at a higher level, and with the uninformative
prior as a special case. Despite this, we are able to overcome the underfitting problem encoun-
tered with the uninformative approach: if we apply this model to the example of Figure 11.4, we
can successfully distinguish all 64 cliques, and provide a lower overall description length for the
data, as can be seen in Figure 11.4b. More generally, by investigating the properties of the model

14 Note that we cannot use in the upper levels exactly the same model we use in the bottom level, given by
Equation (11.22), as most terms in the subsequent levels will cancel out. This happens because the model in
Equation (11.22) is based on the uniform generation of configurations, not multigraphs [85]. However, we are free
to use Equation (11.28) in the bottom level as well.
15 The prior of Equation (11.31) and the hierarchy in Equation (11.30) are conditioned on the total number of edges E,
which is typically unknown before we observe the data. Similarly to the parameter 𝜆 in the canonical model formula-
tion, the strictly correct approach would be to consider this quantity as an additional model parameter, with its prior
distribution P(E). However, in the microcanonical model there is no integration involved, and P(E) – regardless of how
we specify it – would contribute to an overall multiplicative constant that disappears from the posterior distribution after
normalization. Therefore we can simply omit it.
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Figure 11.5 (a) Diagrammatic representation of the nested SBM described in the text, with L = 3 levels,
adapted from [82]. (b) Average group sizes N∕B obtained with the SBM using uninformative priors, for a

variety of empirical networks, listed in [82]. The dashed line shows a slope
√

E, highlighting the systematic
underfitting problem. (c) The same as in (b), but using the nested SBM, where the underfitting has virtually
disappeared, with datasets randomly scattered in the allowed range.

likelihood, it is possible to show that the maximum number of groups that can be uncovered with
this model scales as Bmax ∝ N∕ log N, which is significantly larger than the limit with uninfor-
mative priors [82, 85]. The difference between both approaches manifests itself very often in
practice, as shown in Figure 11.5b, where systematic underfitting is observed for a wide variety
of network datasets, which disappears with the nested model, as seen in Figure 11.5c. Cru-
cially, we achieve this decreased tendency to underfit without sacrificing our protection against
overfitting: Despite the more elaborate model specification, the inference of the nested SBM is
completely nonparametric, and the same Bayesian and information-theoretical principles still
hold. Furthermore, as we have already mentioned, the uninformative case is a special case of the
nested SBM, i.e. when L = 1, and hence it can only improve the inference (e.g. by reducing the
description length), with no drawbacks. We stress that the number of hierarchy levels, as with
any other dimension of the model, such as the number of groups in each level, is inferred from
data and does not need to be determined a priori.

In addition to the above, the nested model also gives us the capacity of describing the data
at multiple scales, which could potentially exhibit different mixing patterns. This is particularly
useful for large networks, where the SBM might still give us a very complex description, which
becomes easier to interpret if we concentrate first on the upper levels of the hierarchy. A good
example is the result obtained for the internet topology at the autonomous systems level, shown
in Figure 11.6. The lowest level of the hierarchy shows a division into a large number of groups,
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Figure 11.6 Fit of the (degree-corrected) nested SBM for the internet topology at the autonomous sys-
tems level, adapted from [82]. The hierarchical division reveals a core-periphery organization at the higher
levels, where most routes go through a relatively small number of nodes (shown in the inset and in the
map). The lower levels reveal a more detailed picture, where a large number of groups of nodes are iden-
tified according to their routing patterns (amounting largely to distinct geographical regions). The layout
is obtained with an edge bundling algorithm by Holten [45], which uses the hierarchical partition to route
the edges.

with a fairly complicated structure, whereas the higher levels show an increasingly simplified
picture, culminating in a core-periphery organization as the dominating pattern.

11.7 Model Variations

Varying the number of groups and building hierarchies is not the only way we have of adapting
the complexity of the model to the data. We may also change the internal structure of the model,
and how the division into groups affects the placement of edges. In fact, the basic ansatz of the
SBM is very versatile, and many variations have been proposed in the literature. In this section
we review two important ones – SBMs with degree correction and group overlap – and review
other model flavors in a summarized manner.

Before we go further into the model variations, we point out that the multiplicity of models is a
strength of the inference approach. This is different from the broader field of network clustering,
where a large number of available algorithms often yield conflicting results for the same data,
leaving practitioners lost in how to select between them [32, 46]. Instead, within the inference
framework we can in fact compare different models in a principled manner and select the best
one according to the statistical evidence available. We proceed with a general outline of the
model selection procedure before following with specific model variations.
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11.7.1 Model Selection

Suppose we define two versions of the SBM, labeled C1 and C2, each with their own posterior
distribution of partitions, P(b|A,C1) and P(b|A,C2). Suppose we find the most likely partitions
b1 and b2, according to C1 and C2, respectively. How do we decide which partition is more
representative of the data? The consistent approach is to obtain the so-called posterior odds
ratio [48, 49]

Λ =
P(b1,C1|A)
P(b2,C2|A) =

P(A|b1,C1)P(b1)P(C1)
P(A|b2,C2)P(b2)P(C2)

, (11.34)

where P(C ) is our prior belief that variant C is valid. A value of Λ > 1 indicates that the choice
(b1,C1) is Λ times more plausible as an explanation for the data than the alternative, (b2,C2).
If we are a priori agnostic with respect to which model flavor is best, i.e. P(C1) = P(C2), we
have then

Λ =
P(A|b1,C1)P(b1)
P(A|b2,C2)P(b2)

= 2−ΔΣ, (11.35)

where ΔΣ = Σ1 − Σ2 is the description length difference between both choices. Hence, we
should generally prefer the model choice that is most compressive, i.e. with the smallest descrip-
tion length. However, if the value of Λ is close to 1, we should refrain from forcefully rejecting
the alternative, as the evidence in data would not be strongly decisive either way. In other words
the actual value of Λ gives us the confidence with which we can choose the preferred model.
The final decision, however, is subjective, since it depends on what we might consider plausi-
ble. A value of Λ = 2, for example, typically cannot be used to forcefully reject the alternative
hypothesis, whereas a value of Λ = 10100 might.

An alternative test we can make is to decide which model class is most representative of the
data, when averaged over all possible partitions. In this case, we proceed in an analogous way
by computing the posterior odds ratio

Λ′ =
P(C1|A)
P(C2|A) =

P(A|C1)P(C1)
P(A|C2)P(C2)

, (11.36)

where
P(A|C ) =

∑
b

P(A|b,C )P(b) (11.37)

is the model evidence. When P(C1) = P(C2),Λ′ is called the Bayes factor, with an interpretation
analogous to Λ above, but where the statement is made with respect to all possible partitions, not
only the most likely one. Unfortunately, as mentioned previously, the evidence P(A|C ) cannot
be computed exactly for the models we are interested in, making this criterion more difficult to
employ in practice (although approximations have been proposed, see e.g. [85]). We return to
the issue of when it should we optimize or sample from the posterior distribution in Section 11.9,
and hence which of the two criteria should be used.

11.7.2 Degree Correction

The underlying assumption of all variants of the SBM considered so far is that nodes that belong
to the same group are statistically equivalent. As it turns out, this fundamental aspect results in
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a very unrealistic property. Namely, this generative process implies that all nodes that belong to
the same group receive on average the same number of edges. However, a common property of
many empirical networks is that they have very heterogeneous degrees, often broadly distributed
over several orders of magnitudes [66]. Therefore, in order for this property to be reproduced
by the SBM, it is necessary to group nodes according to their degree, which may lead to some
seemingly odd results. An example of this was given in [50] and is shown in Figure 11.7a.
It corresponds to a fit of the SBM to a network of political blogs recorded during the 2004
American presidential election campaign [2], where an edge exists between two blogs if one
links to the other. If we guide ourselves by the layout of the figure, we identify two assortative
groups, which happen to be those aligned with the Republican and Democratic parties. How-
ever, inside each group there is a significant variation in degree, with a few nodes with many
connections and many with very few. Because of what just has been explained, if we perform
a fit of the SBM using only B = 2 groups, it prefers to cluster the nodes into high-degree and
low-degree groups, completely ignoring the party alliance.16 Arguably, this is a bad fit of this
network, since – similarly to the underfitting example of Figure 11.4 – the probability of the
fitted SBM generating a network with such a party structure is vanishingly small. In order to
solve this undesired behavior, Karrer and Newman [50] proposed a modified model, which they
dubbed the degree-corrected SBM (DC-SBM). In this variation, each node i is attributed with
a parameter 𝜃i that controls its expected degree, independently of its group membership. Given
this extra set of parameters, a network is generated with probability

P(A|𝝀,𝜽, b) = ∏
i<j

e
−𝜃i𝜃j𝜆bi ,bj (𝜃i𝜃j𝜆bi,bj

)Aij

Aij!
×
∏

i

e−𝜃
2
i
𝜆bi ,bi

∕2(𝜃2
i 𝜆bi,bi

∕2)Aii∕2

(Aii∕2)!
, (11.38)

where 𝜆rs again controls the expected number of edges between groups r and s. Note that since
the parameters 𝜆rs and 𝜃i always appear multiplying each other in the likelihood, their individual
values may be arbitrarily scaled, provided their products remain the same. If we choose the
parametrization

∑
i𝜃i𝛿bi,r

= 1 for every group r, then they acquire a simple interpretation: 𝜆rs is
the expected number of edges between groups r ans s, 𝜆rs = ⟨ers⟩, and 𝜃i is proportional to the
expected degree of node i, 𝜃i = ⟨ki⟩∕∑s𝜆bi,s

.
When inferring this model from the political blogs data – again forcing B = 2 – we obtain

a much more satisfying result, where the two political factions are neatly identified, as seen
in Figure 11.7b. As this model is capable of fully decoupling the community structure from
the degrees, which are captured separately by the parameters 𝝀 and 𝜽, respectively, the degree
heterogeneity of the network does not interfere with the identification of the political factions.

Based on the above example, and on the knowledge that most networks possess heterogeneous
degrees, we could expect the DC-SBM to provide a better fit for most of them. However, before
we jump to this conclusion, we must first acknowledge that the seemingly increased quality of
fit obtained with the SBM came at the expense of adding an extra set of parameters, 𝜽 [110].
However intuitive we might judge the improvement brought on by degree correction, simply
adding more parameters to a model is an almost sure recipe for overfitting. Therefore, a more

16 It is possible that unexpected results of this kind inhibited the initial adoption of SBM methods in the network science
community, which focused instead on more heuristic community detection methods, save for a few exceptions (e.g. [11,
36, 37, 41, 43, 93]).
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(a) (b)

Figure 11.7 Inferred partition for a network of political blogs [2] using (a) the SBM and (b) the DC-SBM,
in both cases forcing B = 2 groups. The node sizes are proportional to the node degrees. The SBM divides
the network into low and high-degree groups, whereas the DC-SBM prefers the division into political
factions.

prudent approach is once more to frame the inference problem in a Bayesian way, by focusing
on the posterior distribution P(b|A), and on the description length. For this, we must include a
prior for the node propensities 𝜽. The uninformative choice is the one which ascribes the same
probability to all possible choices,

P(𝜽|b) = ∏
r

(nr − 1)!𝛿(
∑

i

𝜃i𝛿bi,r
− 1). (11.39)

Using again an uninformative prior for 𝝀,

P(𝝀|b) = ∏
r≤s

e−𝜆rs∕(1+𝛿rs)𝜆∕(1 + 𝛿rs)𝜆 (11.40)

with 𝜆 = 2E∕B(B + 1), the marginal likelihood now becomes

P(A|b) =
∫

P(A|𝝀,𝜽, b)P(𝝀|b)P(𝜽|b) d𝝀d𝜽

= 𝜆

E

(𝜆 + 1)E+B(B+1)∕2
×
∏

r<sers!
∏

rerr!!∏
i<jAij!

∏
iAii!!

×
∏

r

(nr − 1)!
(er + nr − 1)!

×
∏

i

ki!, (11.41)

where ki =
∑

jAij is the degree of node i, which can be used in the same way to obtain a poste-
rior for b, via Equation (11.9). Once more, the model above is equivalent to a microcanonical
formulation [85], given by

P(A|b) = P(A|k, e, b)P(k|e, b)P(e|b), (11.42)

with

P(A|k, e, b) =
∏

r<sers!
∏

rerr!!
∏

iki!∏
i<jAij!

∏
iAii!!

∏
rer!!

, (11.43)

P(k|e, b) = ∏
r

((
nr

er

))−1

, (11.44)
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Figure 11.8 Illustration of the generative process of the microcanonical DC-SBM. Given a partition of
the nodes, the edge counts between groups are sampled (a), followed by the degrees of the nodes (b) and
finally the network itself (c). Adapted from [85].

and P(e|b) given by Equation (11.23). In the model above, P(A|k, e, b) is the probability of
generating a multigraph where the edge counts between groups as well as the degrees k are
fixed to specific values (see Figure 11.8).17 The prior P(k|e, b) is the uniform probability of
generating a degree sequence, where all possibilities that satisfy the constraints imposed by the
edge counts e, namely

∑
iki𝛿bi,r

= er, occur with the same probability. The description length
of this model is then given by

Σ = −log2P(A, b) = −log2P(A|k, e, b) − log2P(k, e, b). (11.45)

Because uninformative priors were used to derive the above equations, we are once more subject
to the same underfitting problem described previously. Luckily, from the microcanonical model
we can again derive a nested DC-SBM, by replacing P(e) by a nested sequence of SBMs, exactly
in the same was as was done before [82, 85]. We also have the opportunity of replacing the
uninformative prior for the degrees in Equation (11.44) with a more realistic option. As was
argued in [85], degree sequences generated by Equation (11.44) result in exponential degree
distributions, which are not quite as heterogeneous as what is often encountered in practice. A
more refined approach, which is already familiar to us at this point, is to increase the Bayesian
hierarchy and choose a prior that is conditioned on a higher-order aspect of the data, in this case
the frequency of degrees, i.e.

P(k|e, b) = P(k|e, b, 𝜼)P(𝜼|e, b), (11.46)

where 𝜼 = {𝜂r
k}, with 𝜂r

k being the number of nodes of degree k in group r. In the above, P(𝜼|e, b)
is a uniform distribution of frequencies and P(k|e, b, 𝜼) generates the degrees according to the
sampled frequencies (we omit the respective expressions for brevity, and refer to [85] instead).
Thus, this model is capable of using regularities in the degree distribution to inform the division
into groups and is generally capable of better fits than the uniform model of Equation (11.44).

17 The ensemble equivalence of Equation (11.42) is in some ways more remarkable than for the traditional SBM. This is
because a direct equivalence between the ensembles of Equations (11.38) and (11.43) is not satisfied even in the asymp-
totic limit of large networks [28, 78], which does happen for Equations (11.8) and (11.22). Equivalence is observed only
if the individual degrees ki also become asymptotically large. However, when the parameters 𝝀 and 𝜽 are integrated out,
the equivalence becomes exact for networks of any size.
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(a) (b) (c)

Figure 11.9 Most likely hierarchical partitions of a network of political blogs [2], according to the three
model variants considered, as well as the inferred number of groups B1 at the bottom of the hierarchy, and
the description length Σ: (a) NDC-SBM, B1 = 42, Σ ≈ 89,938 bits, (b) DC-SBM, B1 = 23, Σ ≈ 87,162
bits, (c) DC-SBM with the degree prior of Equation (11.46), B1 = 20, Σ ≈ 84,890 bits. The nodes circled
in blue were classified as “liberals” and the remaining ones as “conservatives” in [2] based on the blog
contents. Adapted from [85].

If we apply this nonparametric approach to the same political blog network of Adamic
and Glance [2], we find a much more detailed picture of its structure, revealing many more
than two groups, as shown in Figure 11.9, for three model variants: the nested SBM, the
nested DC-SBM, and the nested DC-SBM with the degree prior of Equation (11.46). All three
model variants are in fact capable of identifying the same Republican/Democrat division at
the topmost hierarchical level, showing that the non-degree-corrected SBM is not as inept
in capturing this aspect of the data as the result obtained by forcing B = 2 might suggest.
However, the internal divisions of both factions that they uncover are distinct from each other.
If we inspect the obtained values of the description length with each model we see that the
DC-SBM (in particular when using Equation (11.46)) results in a smaller value, indicating that
it better captures the structure of the data, despite the increased number of parameters. Indeed,
a systematic analysis carried out in [85] showed that the DC-SBM does in fact yield shorter
description lengths for a majority of empirical datasets, thus ultimately confirming the original
intuition behind the model formulation.

11.7.3 Group Overlaps

Another way we can change the internal structure of the model is to allow the groups to overlap,
i.e. we allow a node to belong to more than one group at the same time. The connection patterns
of the nodes are then assumed to be a mixture of the “pure” groups, which results in a richer
type of model [5]. Following Ball et al. [7], we can adapt the Poisson formulation to overlapping
SBMs in a straightforward manner,

P(A|𝜿,𝝀) = ∏
i<j

e−𝜆ij
𝜆

Aij

ij

Aij!
∏

i

e−𝜆ii∕2(𝜆ii∕2)Aii∕2

Aii∕2!
, (11.47)
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with
𝜆ij =

∑
rs

𝜅ir𝜆rs𝜅js, (11.48)

where 𝜅ir is the probability with which node i is chosen from group r, so that
∑

i𝜅ir = 1, and 𝜆rs
is once more the expected number of edges between groups r and s. The parameters 𝜿 replace the
disjoint partition b we have been using so far by a “soft” clustering into overlapping categories.18

Note, however, that this model is a direct generalization of the non-overlapping DC-SBM of
Equation (11.38), which is recovered simply by choosing 𝜅ir = 𝜃i𝛿r,bi

. The Bayesian formulation
can also be performed by using an uninformative prior for 𝜿,

P(𝜿) =
∏

r

(n − 1)!𝛿(
∑

i

𝜅ir − 1), (11.49)

in addition to the same prior for 𝝀 in Equation (11.40). Unfortunately, computing the marginal
likelihood using Equation (11.47) directly,

P(A|𝜿) =
∫

P(A|𝜿,𝝀)P(𝝀) d𝝀, (11.50)

is not tractable, which prevents us from obtaining the posterior P(𝜿|A). Instead, it is more useful
to consider the auxiliary labelled matrix, or tensor, G = {Grs

ij }, where Grs
ij is a particular decom-

position of Aij where the two edge endpoints – or “half-edges” – of an edge (i, j) are labelled
with groups (r, s), such that

Aij =
∑

rs

Grs
ij . (11.51)

Since a sum of Poisson variables is also distributed according to a Poisson, we can write
Equation (11.47) as

P(A|𝜿,𝝀) = ∑
G

P(G|𝜿,𝝀)∏
i≤j

𝛿

∑
rsGrs

ij
,Aij
, (11.52)

with each half-edge labelling being generated by

P(G|𝜿,𝝀) = ∏
i<j

∏
rs

e−𝜅ir𝜆rs𝜅js (𝜅ir𝜆rs𝜅js)
Grs

ij

Grs
ij !

×
∏

i

∏
rs

e−𝜅ir𝜆rs𝜅is∕2(𝜅is𝜆rs𝜅is∕2)G
rs
ii
∕2

(Grs
ii ∕2)!

. (11.53)

We can now compute the marginal likelihood as

P(G) =
∫

P(G|𝜿,𝝀)P(𝜿)P(𝝀|𝜆) d𝜿d𝝀,

= 𝜆

E

(𝜆 + 1)E+B(B+1)∕2

∏
r<sers!

∏
rerr!!∏

rs
∏

i<jG
rs
ij !
∏

iG
rs
ii !!

×
∏

r

(N − 1)!
(er + N − 1)!

×
∏

ir

kr
i !, (11.54)

18 Note that, differently from the non-overlapping case, here it is possible for a node not to belong to any group, in
which case it will never receive an incident edge.



�

� �

�

312 Advances in Network Clustering and Blockmodeling

which is very similar to Equation (11.41) for the DC-SBM. With the above, and knowing from
Equation (11.51) that there is only one choice of A that is compatible with any given G, i.e.

P(A|G) =
∏
i≤j

𝛿

∑
rsGrs

ij
,Aij
, (11.55)

we can sample from (or maximize) the posterior distribution of the half-edge labels G, just like
we did for the node partition b in the nonoverlapping models,

P(G|A) = P(A|G)P(G)
P(A)

∝ P(G) ×
∏
i≤j

𝛿

∑
rsGrs

ij
,Aij
, (11.56)

where the product in the last term only accounts for choices of G which are compatible with
A, i.e. fulfill Equation (11.51). Once more, the model of Equation (11.54) is equivalent to its
microcanonical analogue [84],

P(G) = P(G|k, e)P(k|e)P(e), (11.57)

where

P(G|k, e) =
∏

r<sers!
∏

rerr!!
∏

irk
r
i !∏

rs
∏

i<jG
rs
ij !
∏

iG
rs
ii !!

∏
rer!

, (11.58)

P(k|e) = ∏
r

((er

N

))−1
(11.59)

and P(e) given by Equation (11.23). The variables k = {kr
i } are the labelled degrees of the

labelled network G, where kr
i is the number of incident edges of type r a node i has. The descrip-

tion length becomes likewise

Σ = −log2P(G) = −log2P(G|k, e) − log2P(k|e) − log2P(e). (11.60)

The nested variant can be once more obtained by replacing P(e) in the same manner as before,
and P(k|e) in a manner that is conditioned on the labelled degree frequencies and degree of
overlap, as described in detail in [84].

Equipped with this more general model, we may ask ourselves again if it provides a better
fit of most networks, like we did for the DC-SBM in the previous section. Indeed, since the
model is more general, we might conclude that this is a inevitability. However, this could be a
fallacy, since more general models also include more parameters and hence are more likely to
overfit. Indeed, previous claims about the existence of “pervasive overlap” in networks, based
on nonstatistical methods [3], seemed to be based to some extent on this problematic logic.
Claims about community overlaps are very different from, for example, the statement that net-
works possess heterogeneous degrees, since community overlap is not something that can be
observed directly; instead it is something that must be inferred, which is precisely what our
Bayesian approach is designed to do in a methodologically correct manner. An example of such
a comparison is shown in Figure 11.10, for a small network of political books. This network,
when analyzed using the nonoverlapping SBM, seems to be composed of three groups, easily
interpreted as “left wing,” “right wing” and “center,” as the available metadata corroborates. If
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(a) (b) (c)

Figure 11.10 Network of co-purchases of books about US politics [54], with groups inferred using (a) the
non-overlapping DC-SBM, with description length Σ ≈ 1938 bits, (b) the overlapping SBM with descrip-
tion length Σ ≈ 1931 bits, and (c) the overlapping SBM forcing only B = 2 groups, with description length
Σ ≈ 1946 bits.

we fit the overlapping SBM, we observe a mixed division into the same kinds of group. If we
force the inference of only two groups, we see that some of the “center” nodes are split between
“right wing” or “left wing.” The latter might seem like a more pleasing interpretation, but look-
ing at the description length reveals that it does not improve the description of the data. The best
model in this case does seem to be the overlapping SBM with B = 3 groups. However, the dif-
ference in the description length between all model variants is not very large, making it difficult
to fully reject any of the three variants. A more systematic analysis done in [84] revealed that for
most empirical networks, in particular larger ones, the overlapping models do not provide the
best fits in the majority of cases, and yield larger description lengths than the nonoverlapping
variants. Hence it seems that the idea of overlapping groups is less pervasive than that of degree
heterogeneity, at least according to our modeling ansatz.

It should be emphasized that we can always represent a network generated by an overlapping
SBM by one generated with the nonoverlapping SBM with a larger number of groups represent-
ing the individual types of mixtures. Although model selection gives us the most parsimonious
choice between the two, it does not remove the equivalence. In Figure 11.11 we show how net-
works generated by the overlapping SBM can be better represented by the nonoverlapping SBM
(i.e. with a smaller description length) as long as the overlapping regions are sufficiently large.

11.7.4 Further Model Extensions

The simple and versatile nature of the SBM has spawned a large family of extensions and gen-
eralizations incorporating various types of more realistic features. This includes, for example,
versions of the SBM that are designed for networks with continuous edge covariates (a.k.a.
edge weights) [4, 86], multilayer networks that are composed of different types of edges [18,
74, 83, 101, 103], networks that evolve in time [13, 27, 29, 59, 76, 87, 108, 113], networks that
possess node attributes [75] or are annotated with metadata [47, 69], networks with uncertain
structure [58], as well as networks that do not possess a discrete modular structure at all, and
are instead embedded in generalized continuous spaces [70]. These model variations are too
numerous to be described here in any detail, but it suffices to say that the general Bayesian
approach outlined here, including model selection, also applicable to these variations, without
any conceptual difficulty.
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Figure 11.11 (a) Artificial network sampled from an assortative overlapping SBM with B = 4 groups
and expected mixture sizes given by n

⃗b ∝ 𝜇

|⃗b|, with 𝜇 ∈ [0, 1] controlling the degree of overlap (see [83]
for details). (b) the same network as in (a), but generated according to an equivalent nonoverlapping SBM
with B = 15 groups. (c) Description length per edge Σ∕E for the same models in (a) and (b), as a function
of the degree of overlap 𝜇, showing a cross-over where the nonoverlapping model is preferred. Adapted
from [83].

11.8 Efficient Inference Using Markov Chain Monte Carlo

Although we can write exact expressions for the posterior probability of Equation (11.9) (up to a
normalization constant) for a variety of model variants, the resulting distributions are not simple
enough to allow us to sample from them – much less find their maximum – in a direct manner. In
fact, fully characterizing the posterior distribution or finding its maximum is, for most models
like the SBM, typically a NP-hard problem. What we can do, however, is to employ Markov
chain Monte Carlo (MCMC) [68], which can be done efficiently, and in an asymptotically exact
manner, as we now show. The central idea is to sample from P(b|A) by first starting from some
initial configuration b0 (in principle arbitrary) and making move proposals b → b′ with a prob-
ability P(b′|b), such that, after a sufficiently long time, the equilibrium distribution is given
exactly by P(b|A). In particular, given any arbitrary move proposals P(b′|b) – with the only
condition that they fulfill ergodicity, i.e. that they allow every state to be visited eventually – we
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can guarantee that the desired posterior distribution is eventually reached by employing the
Metropolis–Hastings criterion [42, 60], which dictates we should accept a given move proposal
b → b′ with a probability a given by

a = min

(
1,

P(b′|A)
P(b|A)

P(b|b′)
P(b′|b)

)
, (11.61)

otherwise the proposal is rejected. The ratio P(b|b′)∕P(b′|b) in Equation (11.61) enforces a
property known as detailed balance or reversibility, i.e.

T(b′|b)P(b|A) = T(b|b′)P(b′|A), (11.62)

where T(b′|b) are the final transition probabilities after incorporating the acceptance criterion
of Equation (11.61). The detailed balance condition of Equation (11.62) together with the
ergodicity property guarantee that the Markov chain will converge to the desired equilibrium
distribution P(b|A). Importantly, we note that when computing the ratio P(b′|A)∕P(b|A)
in Equation (11.61), we do not need to determine the intractable normalization constant of
Equation (11.9), since it cancels out, and thus it can be performed exactly.

The above gives a generic protocol that we can use to sample from the posterior when-
ever we can compute the numerator of Equation (11.9). If instead we are interested in max-
imizing the posterior, we can introduce an “inverse temperature” parameter 𝛽, by changing
P(b|A) → P(b|A)𝛽 in the above equations, and making 𝛽 → ∞ in slow increments; what is
known as simulated annealing [53]. The simplest implementation of this protocol for the infer-
ence of SBMs is to start from a random partition b0, and use move proposals where a node i
is randomly selected, and then its new group membership b′i is chosen randomly between all
B + 1 choices (where the remaining choice means we populate a new group),

P(b′i|b) = 1
B + 1

. (11.63)

By inspecting Equations (11.20), (11.41), (11.54) and (11.17) for all SBM variants considered,
we notice that the ratio P(b′|A)∕P(b|A) can be computed in time O(ki), where ki is the degree
of node i, independently of other properties of the model such as the number of groups B.
Note that this is not true for all alternative formulations of the SBM, e.g. for the models in
[16, 33, 71, 90, 95] computing such an update requires O(ki + B) time [the heat-bath move
proposals of [71] increases this even further to O(B(ki + B))], thus making them very inefficient
for large networks, where the number of groups can reach the order of thousands or more.
Hence, when using these move proposals, a full sweep of all N nodes in the network can be
done in time O(E), independent of B.

Although fairly simple, the above algorithm suffers from some shortcomings that can seri-
ously degrade its performance in practice. In fact, it is typical for naive implementations of the
Metropolis–Hastings algorithm to perform very badly, despite its theoretical guarantees. This is
because the asymptotic properties of the Markov chain may take a very long time to be realized,
and the equilibrium distribution is never observed in practical time. Generally, we should expect
good convergence times only when (i) the initial state b0 is close enough to the most likely states
of the posterior and (ii) the move proposals P(b′|b) resemble the shape of the posterior. Indeed, it
is a trivial (and not very useful) fact that if the starting state bo is sampled directly from the pos-
terior, and the move proposals match the posterior exactly, P(b′|b) = P(b′|A), the Markov chain
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would be instantaneously equilibrated. Hence if we can approach this ideal scenario, we should
be able to improve the inference speeds. Here we describe two simple strategies in achieving
such an improvement which have been shown to yield a significance performance impact [80].
The first one is to replace the fully random move proposals of Equation (11.63) by a more infor-
mative choice. Namely, we use the current information about the model being inferred to guide
our next move. We do so by selecting the membership of a node i being moved according to

P(bi = r|b) = ∑
s

P(s|i) esr + 𝜀
es + 𝜀(B + 1)

, (11.64)

where P(s|i) = ∑
jAij𝛿bj,s

∕ki is the fraction of neighbors of node i that belong to group s, and
𝜀 > 0 is an arbitrary parameter that enforces ergodicity, but with no other significant impact in
the algorithm, provided it is sufficiently small (however, if 𝜀 → ∞ we recover the fully ran-
dom moves of Equation (11.63)). What this move proposal means is that we inspect the local
neighborhood of the node i and see which groups s are connected to this node, and we use the
typical neighborhood r of the groups s to guide our placement of node i (see Figure 11.12a).
The purpose of these move proposals is not to waste time with attempted moves that will almost
surely be rejected, as will typically happen with the fully random version. We emphasize that
the move proposals of Equation (11.64) do not bias the partitions toward any specific kind of
mixing pattern; in particular they do not prefer assortative versus non-assortative partitions.
Furthermore, these proposals can be generated efficiently, simply by following three steps: (i)
sample a random neighbor j of node i and inspect its group membership s = bj, (ii) with proba-
bility 𝜀(B + 1)∕(es + 𝜀(B + 1)) sample a fully random group r (which can be a new group, and
(iii) sample a group label r with a probability proportional to the number of edges leading to
it from group s, esr. These steps can be performed in time O(ki), again independently of B, as
long as a continuous book-keeping is made of the edges which are incident to each group, and
therefore it does not affect the overall O(E) time complexity.

The second strategy is to choose a starting state that lies close to the mode of the poste-
rior. We do so by performing a Fibonacci search [52] on the number of groups B, where for
each value we obtain the best partition from a larger partition with B′

> B using an agglomer-
ative heuristic, composed of the following steps taken alternatively: (i) we attempt the moves
of Equation (11.64) until no improvement to the posterior is observed and (ii) we merge groups

i
bi = r

j
bj = t

etr

ets

etur
t

s

u

(a)

→

(b)

Figure 11.12 Efficient MCMC strategies. (a) Move proposals are made by inspecting the neighborhood
of node i and selecting a random neighbor j. Based on its group membership t = bj, the edge counts between
groups are inspected (right) and the move proposal bi = s is made with probability proportional to ets. (b)
The initial state of the MCMC is obtained with an agglomerative heuristic, where groups are merged
together using the same proposals described in (a).
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together, achieving a smaller number of groups B′′ ∈ [B,B′], stopping when B′′ = B. We do the
last step by treating each group as a single node and using Equation (11.64) as a merge proposal,
and selecting the ones that least decrease the posterior (see Figure 11.12b). As shown in [80],
the overall complexity of this initialization algorithm is O(Elog2N), and thus can be employed
for very large networks.

The approach above can be adapted to the overlapping model of Section 11.7.3, where
instead of the partition b, the move proposals are made with respect to the individual half-edge
labels [84]. For the nested model, we have instead a hierarchical partition {bl}, and we proceed
in each step of the Markov chain by randomly choosing a level l and performing the proposals
of Equation (11.64) on that level, as described in [85].

The combination of the two strategies described above makes the inference procedure quite
scalable, and has been successfully employed on networks on the order of 107 to 108 edges,
and up to B = N groups. The MCMC algorithm described in this section, for all model vari-
ants described, is implemented in the graph-tool library [81], freely available under the GPL
license at http://graph-tool.skewed.de.

11.9 To Sample or To Optimize?

In the examples so far, we have focused on obtaining the most likely partition from the posterior
distribution, which is the one that minimizes the description length of the data. But is this in fact
the best approach? In order to answer this, we need first to quantify how well our inference is
doing by comparing our estimate ̂b of the partition to the true partition that generated the data b∗,
by defining a so-called loss function. For example, if we choose to be very strict, we may reject
any partition that is strictly different from b∗ on equal measure, using the indicator function

Δ( ̂b, b∗) =
∏

i

𝛿
̂bi,b

∗
i
, (11.65)

so thatΔ( ̂b, b∗) = 1 only if ̂b = b∗, otherwiseΔ( ̂b, b∗) = 0. If the observed data A and parameters
b are truly sampled from the model and priors, respectively, the best assessment we can make
for b∗ is given by the posterior distribution P(b|A). Therefore, the average of the indicator over
the posterior is given by

Δ( ̂b) =
∑

b

Δ( ̂b, b)P(b|A). (11.66)

If we maximize Δ( ̂b) with respect to ̂b, we obtain the so-called maximum a posteriori (MAP)
estimator

̂b = argmax
b

P(b|A), (11.67)

which is precisely what we have been using so far and it is equivalent to employing the MDL
principle. However, using this estimator is arguably overly optimistic, as we are unlikely to find
the true partition with perfect accuracy in any but the most ideal cases. Instead, we may relax
our expectations and consider instead the overlap function

d( ̂b, b∗) = 1
N

∑
i

𝛿
̂bi,b

∗
i
, (11.68)
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which measures the fraction of nodes that are correctly classified. If we maximize now the
average of the overlap over the posterior distribution

d( ̂b) =
∑

b

d( ̂b, b)P(b|A), (11.69)

we obtain the marginal estimator

̂bi = argmax
r

𝜋i(r), (11.70)

where
𝜋i(r) =

∑
b∖bi

P(bi = r, b∖bi|A) (11.71)

is the marginal distribution of the group membership of node i, summed over all remaining
nodes.19 The marginal estimator is notably different from the MAP estimator in that it leverages
information from the entire posterior distribution to inform the classification of any single
node. If the posterior is tightly concentrated around its maximum, both estimators will yield
compatible answers. In this situation the structure in the data is very clear, and both estimators
agree. Otherwise, the estimators will yield different aspects of the data, in particular if the
posterior possesses many local maxima. For example, if the data has indeed been sampled
from the model we are using, the multiplicity of local maxima can be just a reflection of the
randomness in the data, and the marginal estimator will be able to average over them and
provide better accuracy [63, 112].

In view of the above, one could argue that the marginal estimator should be generally pre-
ferred over MAP. However, the situation is more complicated for data which are not sampled
from model being used for inference (i.e. the model is misspecified). In this situation, mul-
tiple peaks of the distribution can point to very different partitions that are all statistically
significant. These different peaks function as alternative explanations for the data that must
be accepted on equal footing, according to their posterior probability. The marginal estimator
will in general mix the properties of all peaks into a consensus classification that is not rep-
resentative of any single hypothesis, whereas the MAP estimator will concentrate only on the
most likely one (or an arbitrary choice if they are all equally likely). An illustration of this
is given by the well-known Zachary’s karate club network [111], which captures the social
interactions between members of a karate club amidst a conflict between the club’s adminis-
trator and an instructor, which lead to a split of the club in two disjoint groups. The measure-
ment of the network was done before the final split actually happened, and it is very often
used as an example of a network exhibiting community structure. If we analyze this network

19 The careful reader will notice that we must have in fact a trivial constant marginal 𝜋i(r) = 1∕B for every node i, since
there is a symmetry of the posterior distribution with respect to re-labelling of the groups, in principle rendering this
estimator useless. In practice, however, our samples from the posterior distribution (e.g. using MCMC) will not span the
whole space of label permutations in any reasonable amount of time, and instead will concentrate on a mode around one
of the possible permutations. Since the modes around the label permutations are entirely symmetric, the node marginals
obtained in this manner can be meaningfully used. However, for networks where some of the groups are not very large,
local permutations of individual group labels are statistically possible during MCMC inference, leading to degeneracies
in the marginal 𝜋i(r) of the affected nodes, resulting in artefacts when using the marginal estimator. This problem is
exacerbated when the number of groups changes during MCMC sampling.
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Figure 11.13 Posterior distribution of partitions of Zachary’s karate club network using the DC-SBM.
(a)–(c) show three modes of the distribution and their respective description lengths; (d) 2D projection
of the posterior obtained using multidimensional scaling [15]; (e) marginal posterior distribution of the
number of groups B.

with the DC-SBM, we obtain three partitions that occur with very high probability from the
posterior distribution: a trivial B = 1 partition, corresponding to the configuration model with-
out communities (Figure 11.13a), a “leader-follower” division into B = 2 groups, separating
the administrator and instructor, together with two close allies, from the rest of the network
(Figure 11.13b), and finally a B = 2 division into the aforementioned factions that anticipated
the split (Figure 11.13c). If we would guide ourselves strictly by the MDL principle (i.e. using
the MAP estimator), the preferred partition would be the trivial B = 1 one, indicating that the
most likely explanation of this network is a fully random graph with a pre-specified degree
sequence, and that the observed community structure emerged spontaneously. However, if we
inspect the posterior distribution more closely, we see that other divisions into B > 1 groups
amount to around 50% of the posterior probability (see Figure 11.13e). Therefore, if we consider
all B > 1 partitions collectively, they give us little reason to completely discard the possibility
that the network does in fact posses some group structure. Inspecting the posterior distribution
even more closely, as shown in Figure 11.13d, reveals a multimodal structure clustered around
the three aforementioned partitions, giving us three very different explanations for the data, none
of which can be decisively discarded in favor of the others, at least not according to the evidence
available in the network structure alone.
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Figure 11.14 Hierarchical partitions of a network of collaboration between scientists [67]. (a) Most likely hierarchical partition according to the
DC-SBM with a uniform hyperprior. (b) Uncorrelated samples from the posterior distribution. (c) Marginal posterior distribution of the number of groups
at the first three hierarchical levels, according to the model variants described in the legend. The vertical lines mark the value obtained for the most likely
partition. Adapted from [85].
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The situation encountered for the karate club network is a good example of the so-called
bias-variance trade-off that we are often forced to face: If we choose to single-out a singe parti-
tion as a unique representation of the data, we must invariably bias our result toward any of the
three most likely scenarios, discarding the remaining ones at some loss of useful information.
Otherwise, if we choose to eliminate the bias by incorporating the entire posterior distribution
in our representation, by the same token it will incorporate a larger variance, i.e. it will simulta-
neously encompass diverging explanations of the data, leaving us without an unambiguous and
clear interpretation. The only situation where this trade-off is not required is when the model
is a perfect fit to the data, such that the posterior is tightly peaked around a single partition.
Therefore, the variance of the posterior serves as a good indication of the quality of fit of the
model, providing another reason to include it in the analysis.

It should also be remarked that when using a nonparametric approach, where the dimension
of the model is also inferred from the posterior distribution, the potential bias incurred when
obtaining only the most likely partition usually amounts to an underfit of the data, since the
uncertainty in the posterior typically translates into the existence of a more conservative parti-
tion with fewer groups.20 Instead, if we sample from the posterior distribution, we will average
over many alternative fits, including those that model the data more closely with a larger number
of groups. However, each individual sample of the posterior will tend to incorporate more ran-
domness from the data, which will disappear only if we average over all samples. This means
that single samples will tend to overfit the data, and hence we must resist looking at them indi-
vidually. It is only in the aforementioned limit of a perfect fit that we are guaranteed not to be
misled one way or another. An additional example of this is shown in Figure 11.14 for a network
of collaborations among scientists. If we infer the best nested SBM, we find a specific hierar-
chical division of the network. However, if we sample hierarchical divisions from the posterior
distribution, we typically encounter larger models, with a larger number of groups and deeper
hierarchy. Each individual sample from the posterior is likely to be an overfit, but collectively
they give a more accurate picture of the network in comparison with the most likely partition,
which probably over-simplifies it. As already mentioned, this discrepancy, observed for all three
SBM versions, tells us that neither of them is an ideal fit for this network.

The final decision on which approach to take depends on the actual objective and resources
available. In general, sampling from the posterior will be more suitable when the objective is
to generalize from observation and make predictions (see next section and [104]), and when
computational resources are ample. Conversely, if the objective is to make a precise statement
about the data, e.g. in order to summarize and interpret it, and the computational resources are
scarce, maximizing the posterior tends to be more adequate.

11.10 Generalization and Prediction

When we fit a model like the SBM to a network, we are doing more than simply dividing
the nodes into statistically equivalent groups; we are also making a statement about a possible
mechanism that generated the network. This means that, to the extent that the model is a good
representation of the data, we can use it generalize and make predictions about what has not been

20 This is different from parametric posteriors, where the dimension of the model is externally imposed in the prior and
the MAP estimator tends to overfit [63, 112].



�

� �

�

322 Advances in Network Clustering and Blockmodeling

observed. This has been most explored for the prediction of missing and spurious links [11, 37].
This represents the situation where we know or stipulate that the observed data is noisy, and may
contain edges that in fact do not exist, or does not contain edges that do exist. With a generative
model like the SBM, we are able to ascribe probabilities to existing and non-existing edges of
being spurious or missing, respectively, as we now describe.

Following [104], the scenario we will consider is the situation where there exists a complete
network G which is decomposed in two parts,

G = AO + 𝛿A (11.72)

where AO is the network that we observe, and the 𝛿A is the set of missing and spurious edges that
we want to predict, where an entry 𝛿Aij > 0 represents a missing edge and 𝛿Aij < 0 a spurious
one. Hence, our task is to obtain the posterior distribution

P(𝛿A|AO). (11.73)

The central assumption we will make is that the complete network G has been generated using
some arbitrary version of the SBM, with a marginal distribution

PG(G|b). (11.74)

Given a generated network G, we then select 𝛿A from some arbitrary distribution that models
our source of errors

P
𝛿A(𝛿A|G). (11.75)

With the above model for the generation of the complete network and its missing and spurious
edges, we can proceed to compute the posterior of Equation (11.73). We start from the joint
distribution

P(AO
, 𝛿A|G) = P(AO|𝛿A,G)P

𝛿A(𝛿A|G) (11.76)

= 𝛿(G − (AO + 𝛿A))P
𝛿A(𝛿A|G), (11.77)

where we have used the fact P(AO|𝛿A,G) = 𝛿(G − (AO + 𝛿A)) originating from Equation
(11.72). For the joint distribution conditioned on the partition, we sum the above over all
possible graphs G, sampled from our original model,

P(AO
, 𝛿A|b) = ∑

G

P(AO
, 𝛿A|G)PG(G|b) (11.78)

= P
𝛿A(𝛿A|AO + 𝛿A)PG(AO + 𝛿A|b). (11.79)

The final posterior distribution of Equation (11.73) is therefore

P(𝛿A|AO) =

∑
b

P(AO
, 𝛿A|b)P(b)

P(AO)
(11.80)

=
P
𝛿A(𝛿A|AO + 𝛿A)

∑
b

PG(AO + 𝛿A|b)P(b)
P(AO)

, (11.81)
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with P(AO) being a normalization constant, independent of 𝛿A. This expression gives a general
recipe to compute the posterior, where one averages the marginal likelihood PG(AO + 𝛿A|b)
obtained by sampling partitions from the prior P(b). However, this procedure will typically
take an astronomical time to converge to the correct asymptotic value, since the largest values
of PG(AO + 𝛿A|b) will be far away from most values of b sampled from P(b). A much better
approach is to perform importance sampling, by rewriting the posterior as

P(𝛿A|AO) ∝ P
𝛿A(𝛿A|AO + 𝛿A)

∑
b

PG(AO + 𝛿A|b)PG(AO|b)
PG(AO|b)P(b) (11.82)

∝ P
𝛿A(𝛿A|AO + 𝛿A)

∑
b

PG(AO + 𝛿A|b)
PG(AO|b) PG(b|AO), (11.83)

where PG(b|AO) is the posterior of partitions obtained by pretending that the observed network
came directly from the SBM. We can sample from this posterior using MCMC as described
in Section 11.8. As the number of entries in 𝛿A is typically much smaller than the number of
observed edges, this importance sampling approach will tend to converge much faster. This
allows us to compute P(𝛿A|AO) in practical manner, up to a normalization constant. However,
if we want to compare the relative probability between specific sets of missing/spurious edges,
{𝛿Ai}, via the ratio

𝜆i =
P(𝛿Ai|AO)∑
jP(𝛿Aj|AO)

, (11.84)

this normalization constant plays no role. The above still depends on our chosen model for
the production of missing and spurious edges, given by Equation (11.75). In the absence of
domain-specific information about the source of noise, we must consider all alternative choices
{𝛿Ai} to be equally likely a priori, so that the we can simply replace P

𝛿A(𝛿A|AO + 𝛿A) ∝ 1 in
Equation (11.83), although more realistic choices can also be included.

In Figure 11.15 we show the relative probabilities of two hypothetical missing edges for the
American college football network, obtained with the approach above. We see that a particular
missing edge between teams of the same conference is almost a hundred times more likely than
one between teams of different conference.

The use of the SBM to predict missing and spurious edges has been employed in a variety
of applications, such as the prediction of novel interactions between drugs [38], conflicts in
social networks [94], as well to provide user recommendations [31, 40], and in many cases has
outperformed a variety of competing methods.

11.11 Fundamental Limits of Inference:
The Detectability–Indetectability Phase Transition

Besides defining useful models and investigating their behavior in data, there is another line of
questioning which deals with how far it is possible to go when we try to infer the structure of
networks. Naturally, the quality of the inference depends on the statistical evidence available
in the data, and we may therefore ask if it is possible at all to uncover planted structures, i.e.
structures that we impose ourselves, with our inference methods, and if so, what is the best
performance we can expect. Research in this area has exploded in recent years [63, 112] after
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(a)

(b)

Figure 11.15 Two hypothetical missing edges in the network of American college football teams. The
edge (a) connects teams of different conferences, whereas (b) connects teams of the same conference.
According to the nested DC-SBM, their posterior probability ratios are 𝜆a ≈ 0.013(1) and 𝜆b ≈ 0.987(1).

it was shown by Decelle et al. [19, 20] that not only may it be impossible to uncover planted
structures with the SBM, but the inference undergoes a “phase transition” where it becomes
possible only if the structure is strong enough to cross a non-trivial threshold. This result was
obtained using methods from statistical physics, which we now describe.

The situation we will consider is a “best case scenario,” where all parameters of the model are
known, with the exception of the partition b, this in contrast to our overall approach so far, where
we considered all parameters to be unknown random variables. In particular, we will consider
only the prior

P(b|𝜸) = ∏
i

𝛾bi
, (11.85)

where 𝛾r is the probability of a node belonging in group r. Given this, we wish to obtain the
posterior distribution of the node partition, using the SBM of Equation (11.8),

P(b|A,𝝀, 𝜸) = P(A|b,𝝀)P(b|𝜸)
P(A|𝝀, 𝜸). = e−H (b)

Z
(11.86)

which was written above in terms of the “Hamiltonian”

H (b) = −
∑
i<j

(Aij ln 𝜆bi,bj
− 𝜆bi,bj

) −
∑

i

ln 𝛾bi
, (11.87)

drawing an analogy with Potts-like models in statistical physics [107]. The normalization con-
stant, called the “partition function,” is given by

Z =
∑

b

e−H (b)
. (11.88)
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Far from being an unimportant detail, the partition function can be used to determine all
statistical properties of our inference procedure. For example, if we wish to obtain the
marginal posterior distribution of node i, we can do so by introducing the perturbation
H ′(b) = H (b) − 𝜇𝛿bi,r

and computing the derivative

P(bi = r|A,𝝀, 𝜸) = 𝜕 ln Z
𝜕𝜇

||||
𝜇=0

=
∑

b

𝛿bi,r
e−H (b)

Z
. (11.89)

Unfortunately, it does not seem possible to compute the partition function Z in closed form for
an arbitrary graph A. However, there is a special case for which we can compute the partition
function, namely when A is a tree. This is useful for us, because graphs sampled from the SBM
will be “locally tree-like” if they are sparse (i.e. the degrees are small compared to the size of the
network ki ≪ N), and the group sizes scale with the size of the system, i.e. nr = O(N) (which
implies B ≪ N). Locally tree-like means that typical loops will have length O(N), and hence at
the immediate neighborhood of any given node the graph will look like a tree. Although being
locally tree-like is not quite the same as being a tree, the graph will become increasing closer to
being a tree in the “thermodynamic limit” N → ∞. Because of this, many properties of locally
tree-like graphs will become asymptotically identical to trees in this limit. If we assume that this
limit holds, we can compute the partition function by pretending that the graph is close enough
to being a tree, in which case we can write the so-called Bethe free energy (we refer to [19, 62]
for a detailed derivation)

F = − ln Z = −
∑

i

ln Zi +
∑
i<j

Aij ln Zij − E (11.90)

with the auxiliary quantities given by

Zij = N
∑
r<s

𝜆rs(𝜓
i→j
r 𝜓

j→i
s + 𝜓 i→j

s 𝜓

j→i
r ) + N

∑
r

𝜆rr𝜓
i→j
r 𝜓

j→i
r (11.91)

Zi =
∑

r

nre
−hr

∏
j∈𝜕i

∑
r

N𝜆rbi
𝜓

j→i
r , (11.92)

where 𝜕i means the neighbors of node i. In the above equations, the values 𝜓 i→j
r are called

“messages” and they must fulfill the self-consistency equations

𝜓

i→j
r = 1

Zi→j
𝛾re

−hr
∏

k∈𝜕i∖j

(∑
s

N𝜆rs𝜓
k→i
s

)
(11.93)

where k ∈ 𝜕i∖j means all neighbors k of i excluding j, the value Zi→j is a normalization constant
enforcing

∑
r𝜓

i→j
r = 1, and hr =

∑
i
∑

r𝜆rbi
𝜓

i
r is a local auxiliary field. Equations (11.93) are

called the belief-propagation (BP) equations [62], and the entire approach is also known under
the name “cavity method” [61]. The values of the messages are typically obtained by iteration,
where we start from some initial configuration (e.g. a random one) and compute new values
from the right-hand side of Equation (11.93), until they converge asymptotically. Note that the
messages are only defined on edges of the network, and an update involves inspecting the values
at the neighborhood of the nodes, where the messages can be interpreted as carrying information
about the marginal distribution of a given node, if the same is removed from the network (hence
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the names “belief propagation” and “cavity method”). Each iteration of the BP equations can be
done in time O(EB2), and the convergence is often obtained only after a few iterations, rendering
the whole computation fairly efficient, provided B is reasonably small. After the messages have
been obtained, they can be used to compute the node marginals,

P(bi = r|A,𝝀, 𝜸) = 𝜓

i
r =

1
Zi
𝛾r

∏
j∈𝜕i

[∑
s

(N𝜆rs)Aije−𝜆rs
𝜓

j→i
s

]
, (11.94)

where Zi is a normalization constant.
This whole procedure gives a way of computing the marginal distribution P(bi = r|A,𝝀, 𝜸)

in a manner that is asymptotically exact, if A is sufficiently large and locally tree-like. Since
networks that are sampled from the SBM fulfill this property,21 we may proceed with our original
question and test if we can recover the true value of b we used to generate a network. For the
test, we use a simple parametrization named the planted partition model (PP) [12, 21], where
𝛾r = 1∕B and

𝜆rs = 𝜆in𝛿rs + 𝜆out(1 − 𝛿rs), (11.95)

with 𝜆in and 𝜆out specifying the expected number of edges between nodes of the same groups
and of different groups, respectively. If we generate networks from this ensemble, use the BP
equations to compute the posterior marginal distribution of Equation (11.94) and compare
its maximum values with the planted partition, we observe, as shown in Figure 11.16, that
it is recoverable only up to a certain value of 𝜀 = N(𝜆in − 𝜆out), above which the posterior

1.0 1.5 2.0 2.5 3.0

ϵ = N(λin − λout)

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

Figure 11.16 Normalized mutual information (NMI) between the planted and inferred partitions of a PP
model with N = 105, B = 3 and ⟨k⟩ = 3, and 𝜀 = N(𝜆in − 𝜆out). The vertical line marks the detectability

threshold 𝜀∗ = B
√⟨k⟩.

21 Real networks, however, should not be expected to be locally tree-like. This does not invalidate the results of this
section, which pertain strictly to data sampled from the SBM. However, despite not being exact, the BP algorithm yields
surprisingly accurate results for real networks, even when the tree-like property is violated [19].
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distribution is fully uniform. By inspecting the stability of the fully uniform solution of the BP
equations, the exact threshold can be determined [19],

𝜀

∗ = B
√⟨k⟩, (11.96)

where ⟨k⟩ = N
∑

rs𝜆rs∕B2 is the average degree of the network. The existence of this threshold
is remarkable because the ensemble is only equivalent to a completely random one if 𝜀 = 0, yet
there is a non-negligible range of values 𝜀 ∈ [0, 𝜀∗] for which the planted structure cannot be
recovered even though the model is not random. This might seem counter-intuitive, if we argue
that making N sufficiently large should at some point give us enough data to infer the model
with arbitrary precision. The hole in logic lies in the fact that the number of parameters – the
node partition b – also grows with N, and that we would need the effective sample size, i.e.
the number of edges E, to grow faster than N to guarantee that the data is sufficient. Since for
sparse graphs we have E = O(N), we are never able to reach the limit of sufficient data. Thus,
we should be able to achieve asymptotically perfect inference only for dense graphs (e.g. with
E = O(N2)) or by inferring simultaneously from many graphs independently sampled from the
same model. Neither situation, however, is representative of what we typically encounter when
we study networks.

The above result carries important implications into the overall field of network clustering.
The existence of the “detectable” phase for 𝜀 > 𝜀∗ means that, in this regime, it is possible for
algorithms to discover the planted partition in polynomial time, with the BP algorithm doing
so optimally. Furthermore, for B > 4 (or B > 3 for the dissortative case with 𝜆in < 𝜆out) there
is another regime in a range 𝜀∗ < 𝜀 < 𝜀†, where BP converges to the planted partition only
if the messages are initialized close enough to the corresponding fixed point. In this regime,
the posterior landscape exhibits a “glassy” structure, with exponentially many maxima that are
almost as likely as the planted partition, but are completely uncorrelated with it. The problem
of finding the planted partition in this case is possible, but conjectured to be NP-hard.

Many systematic comparisons of different community detection algorithms were done in a
manner that was oblivious to these fundamental facts regarding detectability and hardness [55,
56], even though their existence had been conjectured before [88, 92] and hence should be
re-framed with it in mind. Furthermore, we point out that although the analysis based on the BP
equations is mature and widely accepted in statistical physics, they are not completely rigorous
from a mathematical point of view. Because of this, the result of Decelle et al. [19] leading to
the threshold of Equation (11.96) has initiated intense activity from mathematicians in search of
rigorous proofs, which have subsequently been found for a variety of relaxations of the original
statement (see [1] for a review) and remains an active area of research.

11.12 Conclusion

In this chapter we gave a description of the basic variants of the stochastic blockmodel (SBM),
and a consistent Bayesian formulation that allows us to infer them from data. The focus has been
on developing a framework to extract the large-scale structure of networks while avoiding both
overfitting (mistaking randomness for structure) and underfitting (mistaking structure for ran-
domness), and doing so in a manner that is analytically tractable and computationally efficient.

The Bayesian inference approach provides a methodologically correct answer to the very
central question in network analysis of whether patterns of large-scale structure can in fact be
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supported by statistical evidence. Besides this practical aspect, it also opens a window into the
fundamental limits of network analysis itself, giving us a theoretical underpinning we can use
to understand more about the nature of network systems.

Although the methods described here go a long way to allowing us to understand the structure
of networks, some important open problems remain. From a modeling perspective, we know
that for most systems the SBM is quite simplistic and falls very short of giving us a mechanistic
explanation for them. We can interpret the SBM as being to network data what a histogram is to
spatial data [73], and thus while it fulfills the formal requirements of being a generative model, it
will never deplete the modeling requirements of any particular real system. Although it is naive
to expect to achieve such a level of success with a general model like the SBM, it is yet still
unclear how far we can go. For example, it remains to be seen how tractable it is to incorporate
local structures – like densities of subgraphs – together with the large-scale structure that the
SBM prescribes.

From a methodological perspective, although we can select between the various SBM flavors
given the statistical evidence available, we still lack good methods to assess the quality of fit of
the SBM at an absolute level. In particular, we do not yet have a systematic understanding of
how well the SBM is able to reproduce properties of empirical systems, and what would be the
most important sources of deficiencies, and how these could be overcome.

In addition to these outstanding challenges, there are areas of development that are more
likely to undergo continuous progress. Generalizations and extensions of the SBM to cover
specific cases are essentially open ended, such as the case of dynamic networks, and we can
perhaps expect more realistic models to appear. Furthermore, since the inference of the SBM is
in general a NP-hard problem, and thus most probably lacks a general solution, the search for
more efficient algorithmic strategies that work in particular cases is also a long term goal that is
likely to attract further attention.
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12.1 Introduction

The language of networks and graphs has become a ubiquitous tool to formalize and analyze
systems and relational data across scientific disciplines, from biology to physics, from computer
science to sociology [50]. Accordingly, scholars from a variety of areas have investigated such
networks from different angles, developing diverse computational and mathematical toolboxes
in order to analyze and ascribe meaning to the different patterns found in specific networks
of interest. Modular structures are one of the most commonly studied features of networks in
this context [24, 25, 58, 67, 74]. Yet, as highlighted by the lack of a common terminology
(modules, partitions, blocks, communities, and clusters are but a few terms commonly found
to denote various notions of modular structure in the literature), why scholars are interested
in modular structures and how these structures are construed can be broadly different. Hence
the perspective adopted when studying the modular structure in networks must depend on the
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context and specific application in mind [72, 74]. In the following, we focus on one particular
motivation: namely, the rich interplay between network structure and a dynamics acting on top
of the network as a means of identifying modules in the network or describing the effect that
modules can have on the dynamical behavior of a system.

Why a Dynamical Perspective?

One of the main motivations for identifying modular structures in networks is that they provide
a simplified, coarse-grained description of the system structure. Think of a social network, in
which we might be able to decompose the system into (overlapping) groups of people such
as circles of friends. We may then represent the system in terms of the interactions between
these different groups, thereby reducing the complexity of the description. The hope is not only
to arrive at a more compact structural description but also that the obtained modules can be
interpreted as building blocks with a functional meaning.

For instance, consider the well-known Karate Club network studied by Zachary [85], rep-
resenting the social interactions between members of a karate club that eventually split into
two factions after a dispute. An interesting feature of this network is the fact that the split of
the club is commensurate with the graph structure: if we apply graph partitioning methods to
this network, the partition into two groups found is commonly well aligned with the split that
occurred in reality. While the example of the Karate Club is by no means to be taken as a gen-
eral indication of the relationship between structure and function, or between network structure
and any other type of external data [55], it highlights the ultimate rationale for the detection
of modules is often to gain insight into the system behavior. For instance, we might be inter-
ested in how rumors spread in a social network, or opinions are formed. To understand such
processes, we need to take into account the system structure but we also need an understand-
ing of the dynamics that acts on top of this structure, since the system behavior is the result of
the interplay between the structure of a network and the dynamics acting on top of it. We thus
aim to gain a reduced description of the system that takes into account both its structure and
dynamics.

Dynamics on Networks or Dynamics of Networks?

We should make a distinction here between the dynamics of the network structure itself, which
we call structural dynamics in the sequel, and dynamical processes that happen on top of a fixed
network structure.

On the one hand, a social network can be subject to a structural dynamics over time as people
become acquainted or start to dislike each other so that links and nodes appear, disappear or
change weight (e.g., if we see who follows whom on twitter, who declares to be friends on
Facebook, etc). The study of how these structures vary over time can be of central importance,
e.g. for the spread of pathogens that can spread faster or slower depending on contact patterns.
See [32] for an overview and further references on these topics.

On the other hand, data may often be naturally interpreted as a dynamics evolving and sup-
ported on a latent, unobserved fixed network. For instance, communication patterns between
different people (e.g. on an online social network, an email or a mobile phone call network)
may be thought as a type of point process that activates latent links at particular times [87].
The sequence of activation patterns may not be completely random at each step, but have a
certain type of path dependence or memory (e.g. travellers traversing a network of flight con-
nections from one to another city [64]). Hence, while the information recorded is temporal, the
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underlying network itself may be interpreted as a quasi-static object on which a path-dependent
dynamics occurs.

There are of course other systems in which the dynamics on the network and the structural
dynamics of the network influence each other leading to an evolution of the network structure
that reflects the prevalent dynamic patterns on it. For instance, neuronal networks are known to
have high plasticity and adjust their weight structure (links) based on the activity of their nodes
(neurons), a feature that is commonly associated with learning.

Whether one should focus on structural dynamics, dynamics on top of a network, or both
is therefore dependent on what the network representation aims to capture. In reality, all of
these viewpoints are ultimately abstractions and thus attempts to capture different aspects of
real world systems which hopefully provide additional insight into their behavior.

Network Dynamics: the Scope of this Chapter

Our focus here will be on dynamical processes acting on top of networks. We thereby assume
that the underlying (latent) network structure is known and approximately constant over the
time scales of the observed dynamics. Hence, we largely omit the issue of structural dynamics,
even though this may not be justified in certain applications. In the sequel, we will show that this
approach is fruitful in many contexts, yielding insights that go beyond purely structural network
analysis. While clearly important, the joint treatment of structural dynamics in conjunction with
dynamics on networks has received less attention in the literature and requires a more elaborate
mathematical machinery that goes beyond the scope of this chapter. Furthermore, we do not
consider here the question of how and why the networks have arisen in the first place. (A reader
interested in these questions may refer to some of the other chapters in this book.) We will
therefore assume that the observed network is well defined, i.e. we treat it as an empirical reality
with low uncertainty. The dynamical perspective adopted here is especially useful in such cases:
the network is specified, but the emergent behavior (our object of interest) might be hard to grasp
due to the complexity of the system.

More explicitly, think again of the Karate Club example. From a statistical perspective, one
might want to answer the question of why the structure of the network is as observed. We
may adopt a generative model (e.g. a stochastic blockmodel) and assume that the observed
network is a random realization from this model. We could then attempt to find a classification
of the nodes such that the observed link probabilities between blocks of nodes reflect the
observed block structure, hence explaining parsimoniously the main features in the data [76].
Using this perspective, we assume that if we could repeat the experiment that created the
network multiple times, the realization of the network would be different each time, and
we want our model to correspond to the simplest generative process consistent with those
observations. In many circumstances this is a hypothetical question, however, as we only have
access to a single observed network, and thus need to assume that our class of models (e.g.
stochastic blockmodels) provides a suitable approximate depiction of all important features of
the network.

Here we ask a complementary question: given the particular network we observe and an
endowed dynamics taken place on it, are there partitions aligned with this process? For the
Karate Club this could give an indication of whether the split of the club was facilitated by how
its particular network structure influenced the opinion formation process in this social network.
Irrespective of the network’s genesis, these types of questions are of interest in many areas and
underpin our perspective in this chapter.
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Outline of this Chapter

We divide this chapter into three parts. In the first part, we introduce the general mathematical
setup for the types of dynamics we consider throughout the chapter. We provide two guid-
ing examples, namely consensus dynamics and difussion processes (random walks), motivating
their connection to social network analysis, and provide a brief discussion on the general dynam-
ical framework and its possible extensions.

In the second part, we focus on the influence of graph structure on the dynamics taking place
on the network, focusing on three concepts that allow us to gain insight into this notion. First, we
describe how time scale separation can appear in the dynamics on a network as a consequence
of graph structure. Second, we discuss how the presence of particular symmetries in the network
give rise to invariant dynamical subspaces that can be precisely described by graph partitions.
Third, we show how this dynamical viewpoint can be extended to study dynamics on networks
with signed edges, which allow us to discuss connections to concepts in social network analysis,
such as structural balance.

In the third part, we discuss how to use dynamical processes unfolding on the network to
detect meaningful network substructures. We then show how different such measures can be
related to seemingly different methods for community detection and coarse-graining proposed
in the literature. We conclude with a brief summary and highlight interesting open future
directions.

Our account is geared towards conveying intuition rather than covering technical details. We
provide pointers to additional literature with detailed results throughout the text.

Notation

For simplicity, in the following we consider mainly undirected, connected graphs with n nodes
(vertices) and m links (edges). Our ideas extend to directed graphs, however, and we provide
appropriate references to the literature for the interested reader as we go along. The topology of
a graph is encoded in the weighted adjacency matrix A ∈ ℝn×n, where Aij is the weight of the
link between node i and node j. Clearly, for an undirected graph A = A⊤. Typically, most graphs
are unsigned (i.e. Aij ≥ 0, ∀i, j). The weighted out-degrees (or strengths) of the nodes are given
by the vector outdeg = d = A𝟏, where 𝟏 is the n × 1 vector of ones. For a given vector v, we will
sometimes define the associated diagonal matrix diag(v) with elements vi on the diagonal and
zero elsewhere. For instance, we define the diagonal matrix of degrees D = diag(d) and denote
the total weight of the edges by w = 𝟏⊤D𝟏∕2 = 𝟏⊤d∕2.

The combinatorial graph Laplacian is defined as L = D − A, while the normalized graph
Laplacian is defined as LN = D−1∕2LD−1∕2 = I − D−1∕2AD−1∕2. Both these Laplacians are
symmetric positive semi-definite, with a simple zero eigenvalue when the graph is con-
nected [16, 28]. When describing diffusion processes on graphs, it is also useful to define the
(asymmetric) random walk Laplacian LRW = D−1L, which is isospectral with the normalized
Laplacian for undirected graphs.

We will also consider signed graphs, where the weights Aij can be positive or negative. In
the case of signed graphs, we define the vector of absolute degrees dS = |A|𝟏, where the abso-
lute value is taken element-wise, with the corresponding absolute degree matrix DS = diag(dS).
For signed networks, we will define the signed Laplacian LS = DS − A, which is also positive
semi-definite. The signed Laplacian reduces to the combinatorial Laplacian in the case of an
unsigned graph.
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A (hard) partition P of a graph of n nodes into k cells {Ci}k
i=1 can be encoded by an indicator

matrix C ∈ {0, 1}n×k, with entries Cij = 1 if node i is part of cell Cj and Cij = 0 otherwise. Hence
the columns of C are the indicator vectors c(i) of the cells:

C ∶= [c(1), … , c(k)]. (12.1)

12.2 Part I: Dynamics on and of Networks

12.2.1 General Setup

In its most general form, we are interested in dynamical systems of the form:

ẋ(t) = A (x(t), t) x(t) + B(t) u(t) A ∈ ℝ𝓁×𝓁
, B ∈ ℝ𝓁×p (12.2a)

y(t) = D(t) x(t) D ∈ ℝc×𝓁
, (12.2b)

where x ∈ ℝ𝓁
, y ∈ ℝc

,u ∈ ℝp are the state, the observed state, and the input vectors of the
system, respectively. Discrete time versions are also of interest [19, 20], but we will stick to the
continuous time version henceforth.

In the context of networked systems, the system of ordinary differential equations
Equation (12.2) arises by endowing each node with one or more state variables, whose
union corresponds to the state vector x. In general, the matrix A is linked to the network: a
time-varying, state-dependent coupling between the state variables of the agents (nodes). A set
of exogenous inputs, described by the vector u, acts on the state variables through the input
matrix B. In such a system, we may not be able to observe and measure all the system states.
This is captured by the fact that the output y is a linear transformation of x. This framework can
naturally account for weighted, signed or other types of interactions. Furthermore, the fact that
each node can be endowed with several state variables allows for the modeling of higher order
dynamics (e.g. higher order Markov processes) [21, 30, 64, 65]. Note that this form also allows
for the inclusion of exogenous inputs, a factor usually neglected in standard network analyses,
although it has recently gained prominence for the problem of controlling networks [44].

The system Equation (12.2) formally describes the full coupled dynamics of and on a net-
work, since the network (encapsulated in the matrix A (x(t), t)) is both state and time-dependent.
However, such systems are difficult to analyze in general. When the coupling A (t) is only
time-dependent, the system describes the dynamics on a time-varying network. Such linear
time-varying models have a long history in systems and control theory, and there is a rich
literature pertaining to their analysis [12, 35] at the expense of more advanced mathematical
machinery. Although a growing literature in dynamical social network analysis melding such
concepts from control and dynamical systems with social network analysis (e.g. for opinion
formation [59]) has recently emerged, such models have been comparably less studied within
the scope of network theory.

Dynamics on Fixed Networks

To simplify our exposition, we will here assume that the (latent) coupling remains constant over
time, i.e. A ,B,D have no explicit time dependence. This is what we have termed dynamics on
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a (fixed) network. It is important to remark that this assumption does not imply that each link is
constantly activated over time, but that it is available for a potential interaction [21, 30, 64, 65].
We will also assume that 𝓁 = p = c = n, which implies that there is only one state variable per
node:

ẋ = A x + B u(t) A ∈ ℝn×n
, B ∈ ℝn×n (12.3a)

y = D x D ∈ ℝn×n
. (12.3b)

In the following, we consider examples of this simpler form, which provide rich insights into
problems of interest in practical applications. Specifically, we first consider consensus dynamics
and its variants (motivated by opinion formation), followed by diffusion processes and random
walk dynamics (motivated by information propagation).

12.2.2 Consensus Dynamics

Consensus is one of the most popular and well studied dynamics on networks [33, 52, 53, 61,
62, 84], and can be thought of as a linear version of synchronization [9, 34]. The attractive-
ness of consensus lies in its analytic tractability and simplicity, which nevertheless provides
a good first description of some fundamental behaviors. For instance, in the socio-economic
domain, consensus provides a model for opinion formation in a society of individuals, whereas
in engineering systems, consensus constitutes a basic building block for efficient distributed
computation of global functions in networks of sensors, robots, or other agents [33]. For a recent
survey of consensus processes with a particular focus on opinion formation, we refer the reader
to Proskurnikov et al. [59].

To define the standard consensus dynamics, consider a given connected network of n nodes
with adjacency matrix A. Let us endow each node with a scalar state variable xi ∈ ℝ. The con-
sensus dynamics on such a network is defined as:

ẋ = −Lx, (consensus dynamics) (12.4)

where L is the graph Laplacian. Clearly, the consensus dynamics amounts to

ẋi = −Diixi +
∑

j

Aijxj = −
∑

j

Aij(xi − xj), ∀i,

i.e. each node adjusts its state such that the difference to its neighbors is reduced. The name
of the dynamics derives from the fact that for any given initial state x𝟎 = x(0), the differential
equation Equation (12.4) drives the state to a global consensus state, where the state variables
of all nodes are equal to the arithmetic average of the initial node states: xi = x∗ ∀i, where x∗ =
𝟏⊤x𝟎∕n as t → ∞. Relative to our framework Equation (12.3), the standard consensus dynamics
Equation (12.4) corresponds to A = −L, D = I, u = 𝟎.

Intuitively, this dynamics may be interpreted as an opinion formation process on a network of
agents who, in the absence of further inputs, will eventually agree on the same value of their state
(opinion), namely, the average opinion of their initial states. Figure 12.1b shows an example of
the consensus dynamics on the Karate Club network starting from a random initial condition for
the agents and converging asymptotically towards the common, final opinion. Yet the network
structure plays a role in the form in which this opinion is approached: the opinions of each of
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Figure 12.1 Consensus dynamics on the Karate Club network. (a) The Karate Club network origi-
nally analyzed by Zachary [85] with nodes colored according to the split that occurred in the real case.
(b) Consensus dynamics on the Karate Club network starting from a random initial condition. As time
progresses, the states of the individual nodes become more aligned and eventually reach the consensus
value equal to the arithmetic average of the initial condition. Note that above in the time scale given by the
eigenvalue 1∕𝜆2(L) ≈ 1∕0.47, the agents converge into two groups that reflect the observed split before
converging to global consensus (see Section 12.3.1). (c) If an external input is applied to the system (see
text), the opinion dynamics will in general not converge to a single value but lead to a dispersed set of final
opinions, which still reflect the split observed in reality.

the two factions (as recorded by their eventual split in real life) converge earlier towards a group
opinion with higher cohesion.

While in the absence of external inputs the standard consensus dynamics converges to a fixed
point, the framework Equation (12.3) allows us to explore the influence of inputs over time
u(t) ≠ 𝟎, e.g. by external agents, media, etc. In that case, the asymptotic convergence of the
dynamics to an eventual consensus is not guaranteed. For instance, some agents may behave
like zealots, who do not update their opinion as described above, but give more weight to their
own opinion [1, 47, 60]. Let us consider the Karate Club network with a constant external input:

ẋ = −Lx + u, (12.5)

with upresident = −1 for the president, uinstructor = +1 for the instructor, and all other nodes have
no input ui = 0. This can be thought of as a simplified model of a zealot-like behavior of these
two agents. In this case, there is no final consensus reached within the system: the final opinion
of each of the agents is dispersed between the extreme positions taken by the instructor and
the president (Figure 12.1c). Importantly, the final opinions of the agents are well aligned with
the split that eventually occurred in the Karate Club, in which half of the members joined the
instructor to form a new club and the other half stayed with the president.

These results highlight how the graph properties (encapsulated by the graph Laplacian L) can
shape and constrain the dynamics on the network, and thus influence the observed behavior of
the system.

Discussion: More Detailed Consensus Models

The consensus dynamics studied here is chosen for its simplicity. Of course, real-world
systems the process of opinion formation is much more complex. For instance, opinions can be
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interlinked and part of a belief system [26, 59], update and gossiping processes may be nonlin-
ear or asynchronous [34, 53, 84], and noisy external inputs may influence the process [83]. All
these factors lead to a much more complex dynamics. In particular, opinions may not converge
to a single value, or might stabilize to different values in different parts of the network. See [59]
and references therein for a discussion on the so-called social cleavage problem.

12.2.3 Diffusion Processes and Random Walks

Random walks are another important dynamical process which can naturally evolve on graphs.
Random walks are often taken as a (simple) proxy for diffusive processes and, like consensus
processes, these type of models have found applications in various domains, including infor-
mation diffusion in social networks. Other applications of such processes include searching
on networks, web browsing, dimensionality reduction via diffusion maps, respondent driven
sampling, and, indeed, community detection [2, 46]. Perhaps the most popular example is the
celebrated PageRank algorithm, which is used for the ranking of webpages, and can be seen as
an application of random walks on directed networks.

The dynamics of a continuous-time unbiased random walk on a network with combinatorial
Laplacian L is governed by the Kolmogorov forward equation:

ṗ⊤ = −p⊤LRW (random walk) (12.6)

where LRW = D−1L is the random walk Laplacian. This equation describes the diffusion of a
random particle on the network; specifically, the time evolution of the probability mass function
p(t) of an n-dimensional random vector x(t) with components xi(t) = 1 if the particle is at node
i at time t and zero otherwise. For a connected, undirected network, this dynamics will converge
to the stationary distribution 𝝅 = d∕2w. For the general case of a directed graph, see [20, 40, 41].

An illustration of the time evolution of such a random walk on the Karate Club network is
displayed in Figure 12.2. As time progresses, the process converges towards the distribution 𝝅,
which is proportional to the degree vector. It is known that the degree is also a simple centrality
measure for the nodes of a graph [41], and this observed behavior highlights how the centrality
of the instructor and the president (the highest degree nodes) is also of dynamical importance.
Figure 12.2b also illustrates the notion of information propagation: two random walks started
one from the instructor or alternatively from the president spread initially mostly within their
natural groups before eventually spreading across the whole network.

Discussion: Random Walks and Consensus as Dual Processes

It is worth remarking that the random walk dynamics Equation (12.6) may be seen as the dual
of a non-standard consensus dynamics of the form ẋ = −D−1Lx, which (unlike the standard
consensus Equation (12.4)) converges to a different final value: a degree-weighted average of
the initial node-states. Conversely, a combinatorial Laplacian dynamics of the form ṗ⊤ = −p⊤L
can also be seen as describing a different random walk, which is the dual of the standard con-
sensus Equation (12.4).
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Figure 12.2 Illustration of the evolution of a random walk dynamics on the Karate Club network. (a)
The Karate Club network with labelled nodes. The factions of the ultimate split observed in reality are
indicated by color (grayscale). (b) The evolution of the probability distribution of the random walk over
time exemplified at three time snapshots from two different initial conditions: the random walker starts at
time t = 0 at the president node 34 (upper three panels) or at the instructor node 1 (lower three panels).
As time evolves, the probability of the walker being found on the other nodes becomes more spread out
on the graph and eventually reaches the stationary distribution 𝝅 = d∕2w. Note that for short times, the
probability is spread mostly within the corresponding factions (i.e. president for the top panels; instructor
for the bottom panels). Beyond the slowest time scale in this dynamics given by 1∕𝜆(LRW) ≈ 1∕0.13, the
random walk becomes well mixed and the information spreads across factions (see Section 12.3.1 for more
details).
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12.3 Part II: The Influence of Graph Structure on Network Dynamics

12.3.1 Time Scale Separation in Partitioned Networks

Standard Time Scale Separation

The classic concept of time scale separation in a dynamical system follows from the simple
system:

dx
dt

= f (x, y), (12.7a)

𝜀

−1 dy

dt
= g(x, y), (12.7b)

where f , g are bounded functions and 𝜀 is a small constant relative to those bounds. By a simple
rescaling we may assume that f , g are of order 1 and 𝜀 ≪ 1. In this system, x(t) changes much
more rapidly than y(t) since dy∕dt = 𝜀g(x, y), which is small by construction. An alternative,
equivalent statement follows from defining a slow time variable 𝜏 ∶= 𝜀 t, hence Equation (12.6)
can be rewritten as dy∕d𝜏 = g(x, y). From this rewriting, it follows that there is a separation of
time scales in the dynamics, where y evolves according to the slow time scale 𝜏 and x evolves
according to the faster t.

When a time scale separation is present in a system, it can be exploited to simplify its analysis
in various ways. If we are interested in the short-term behavior of the system, we may effectively
treat y as a fixed parameter and ignore its time evolution, leading to an effective one-dimensional
system description based on the fast time scale, for instance describing the (fast) convergence of
x to the fixed point x∗(y). On the other hand, if we are interested in the long-term behavior of the
system, then it is y we are most interested in. Since the dynamics of x is faster than that of y, we
may assume that x ≃ x∗(y) at all times beyond an initial transient, leading to a one-dimensional
system for the evolution of y(t). Using these simplifications will, of course, lead to errors when
comparing the approximation to the actual time-evolution. However, the error can be bounded
through time scale separation theory.

In summary, when there are two well-separated time scales in the system (t and 𝜏 = 𝜀t) the
dynamics almost decouples into two different regimes: for the fast behavior, we may simply con-
centrate on x, whereas for the slow, long-term behavior we may focus on y and forget about the
detailed dynamics of x. When several distinct time scales are present, we can similarly approx-
imate the dynamics over particular time scales by reduced dynamics that can be obtained by
finding quasi-invariant subspaces in the original system. These concepts emerge naturally in the
study of networked dynamics, as we discuss below.

Time Scales in Consensus Dynamics on Networks

Time scale separation can appear naturally in the context of dynamics on networks. For
simplicity, we will describe the results here in the context of consensus dynamics, though
translating these ideas to diffusion processes is straightforward.

Given an initial condition x0, linear systems theory tells us that the solution to the consensus
dynamics Equation (12.4) is given by

x(t) = exp(−Lt) x0,
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where exp(⋅) denotes the matrix exponential. Writing the full solution in this manner obscures
the time scales present in the evolution of x(t), and how they get mixed via the network inter-
actions represented by the Laplacian L. To reveal the characteristic time scales, we use the
spectral decomposition of the Laplacian (if the graph is undirected), or a slightly more careful,
yet related, treatment for directed graphs [41].

For simplicity of exposition, let us assume that the graph is undirected (i.e. L = L⊤). Let us
denote the eigenvectors of L by vi with associated eigenvalues 𝜆i in increasing order 0 = 𝜆1 ≤

𝜆2 ≤ … ≤ 𝜆n. The spectral decomposition of the Laplacian is then

L =
n∑

i=1

𝜆iviv
⊤

i .

Accordingly, the solution of the consensus dynamics can be written in the spectral basis as

x(t) =
n∑

i=1

e−𝜆it viv
⊤

i x0 =
n∑

i=1

(v⊤i x0)e−𝜆it vi.

In this rewriting, the time scales of the process become apparent: they are dictated by the
eigenvalues of the Laplacian matrix, with each eigenvector (eigenmode) decaying with a char-
acteristic time scale 𝜏i = 1∕𝜆i. Hence, if there are large differences (gaps) between eigenval-
ues, the system will have time scale separation. For instance, if the k smallest eigenvalues
{𝜆1 = 0, … , 𝜆k} are well separated from the remaining eigenvalues such that 𝜆k ≪ 𝜆k+1, the
eigenmodes associated with {𝜆k+1, … , 𝜆n} become negligible for t > 1∕𝜆k+1 and it follows that
the system can be effectively described by the k smallest eigenmodes for t > 1∕𝜆k+1. More tech-
nically, we say that the first k eigenvectors form a dominant invariant subspace of the dynamics
and there exists an associated lower dimensional (k < n) description of the dynamics on the
network which is valid after the time scale 1∕𝜆k+1. A natural question is: how is the time scale
separation that emerges from the spectral properties of the Laplacian related to the network
structure? In the case of networks, time scale separation is typically associated with a lower
dimensional description of the dynamics which is aligned with localized substructures in the
graph, as we illustrate through the following example.

Example: A Modular Partitioned Network Structure Induces Time Scale Separation

To illustrate the discussion above, let us consider a network composed of k modules with strong
in-block coupling and weaker inter-block coupling, as given by the adjacency matrix

A =
⎛⎜⎜⎜⎝

A1
A2

⋱
Ak

⎞⎟⎟⎟⎠
+ Arandom ∶= Astructure + Arandom. (12.8)

Here Arandom can be interpreted as a realisation of an Erdös–Rényi (ER) random graph with
unstructured, sparse connectivity, whereas the Ai are the adjacency sub-matrices of the individ-
ual modules that have higher random connectivity inside. Here, we model these modules also as
ER graphs that possess a higher connectivity probability than Arandom (Figure 12.3). How does
the structure present in the graph affect the spectrum and eigenvectors of the corresponding
Laplacian, L = Lstructure + Lrandom?
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Figure 12.3 Consensus dynamics on a structured network. (a) Visualization of the network and adja-
cency matrix of an unweighted structured network with three groups of the form Equation (12.8). (b) The
consensus dynamics on this network displays time scale separation: after t ≈ 1∕𝜆4 = 0.06, approximate
consensus is reached within each group (groups indicated by color/grayscale) followed by global consen-
sus across the whole network. A similar effect can be observed in the consensus dynamics and random
walk on the Karate Club network in Figures 12.1 and 12.2.

Let us first consider the case where Arandom = 0, i.e. the graph consists of k disconnected
components. In that case, it is easy to see that we have a repeated eigenvalue 𝜆 = 0 with multi-
plicity k and the associated k-dimensional eigenspace can be spanned by the k indicator vectors
c(j) ∈ ℝn defined in Equation (12.1), which are localized on the blocks in the graph.

To gain insight into the case where Arandom ≠ 0, we invoke matrix perturbation theory and
random matrix theory [10, 78, 81, 82]. For a network of the form Equation (12.8), a form of
the Davis–Kahan theorem [8, 42, 63, 81] provides bounds on the angular distance between
the subspace S spanned by the block-vectors {c(j)}k

i=1 and the subspace S ′ spanned by the
eigenvectors of L associated with the k smallest eigenvalues.

Intuitively, Davis–Kahan states that if the random component is small, then S ≈ S ′. The
implication is that the dominant invariant subspaces will be commensurate with the structural
decomposition of the network in terms of the block-vectors. Hence the long-term dynamics
will directly reflect the structural decomposition of the network. In other words, the time scale
separation in such a networked system takes an intuitive meaning: quasi-consensus is reached
more quickly within each block, while global consensus is only reached on a longer time scale.

These points are illustrated numerically in Figure 12.3, where we show how the consensus
dynamics evolves on a network of the form Equation (12.8) consisting of three groups with
100 nodes each. As shown in Figure 12.3b, the dynamics becomes effectively low dimensional
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after around t ≃ 1∕𝜆4, beyond which it is well approximated by the three dominant eigenmodes
aligned with the intrinsic blocks in the network.

Discussion: Time Scale Separation Beyond Homogeneous Block Structures

It is important to emphasise that time scale separation may also be induced by network structures
that are not block-homogeneous. Many networks contain natural non-clique-like substructures
(e.g. ring-shaped), which may act effectively as a dynamical substructure over a particular time
scale [69, 70]. The presence of such substructures will too affect the observed consensus dynam-
ics on the network.

Furthermore, our discussion is not limited to the case where the structure of the network is
block-diagonal, but can be extended seamlessly to networks consisting of a low-rank structure
plus a random noise component [10, 49, 56, 86]. Such networks encompass stochastic block-
models [42, 63], although the spectral properties of a realization of a stochastic blockmodel
may not be concentrated around their expectation when the network is very sparse [18, 37, 48].
For more details on stochastic blockmodels, see [6, 31, 76] and some of the other chapters in
this book.

12.3.2 Strictly Invariant Subspaces of the Network Dynamics and External
Equitable Partitions

Let us now consider another type of network structure that induces a specific form of exact
coarse-graining of the dynamical process acting on the network [51, 71]: the so-called external
equitable partition (EEP).

In order to introduce EEPs, we first recall the well known graph-theoretic notion of equitable
partition [28]. An equitable partition splits the graph into a set {Ci} of non-overlapping groups
of nodes called cells that fulfil the following condition: for each node v ∈ Ci, the number of
connections to nodes in cell Cj is only dependent on i, j. Stated differently, the nodes inside each
cell of an equitable partition have the same out-degree pattern with respect to every cell. The
EEP is a relaxed version of the equitable partition: the requirement on equal out-degree need
only hold for the number of connections between different cells Ci,Cj, where i ≠ j. EPs and
EEPs are closely related to so-called orbit partitions and to symmetry properties of a graph, and
may be detected using tools from computational group theory [54, 66, 77]. An example of a
graph with an EEP is shown in Figure 12.4a.

The presence of an EEP in a network has important consequences for a dynamics taking place
on it. To see this, we consider the algebraic characterization [13, 15, 22] of an EEP of a graph of
n nodes into k cells encoded by the n × k indicator matrix C Equation (12.1). Associated with
the EEP there is a quotient graph, a coarse-grained version of the original graph, such that each
cell becomes a node and the weights between these new nodes are the total out-degrees between
the cells in the original graph (Figure 12.4a). It can then be verified that

LC = CL𝜋

, (12.9)

where L𝜋 is the k × k Laplacian of the quotient graph induced by C:

L𝜋 = (C⊤C)−1C⊤LC = C+LC. (12.10)
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Here the k × n matrix C+ is the (left) Moore–Penrose pseudoinverse of C. Observe that multiply-
ing a vector x ∈ ℝn by C⊤ from the left sums up the components within each cell, and that C⊤C
is a diagonal matrix with the number of nodes per cell on the diagonal. Hence, C+ = (C⊤C)−1C⊤

can be simply interpreted as a cell averaging operator [51]. After straightforward algebraic
manipulations it is easy to show that

C+L = L𝜋C+
, (12.11)

which summarizes the relationship between the cell averaging operator C+ and the Laplacians
of the original and quotient graphs. Note that although the Laplacian of the original (undirected)
graph L is symmetric, the Laplacian of the quotient graph L𝜋 will be asymmetric in general.

Dynamical Implications of EEPs

The definition of the EEP Equation (12.9) implies an invariance of the partition encoded by C
with respect to the Laplacian L. Specifically, if we apply the Laplacian to the indicator matrix
C we obtain a linearly rescaled (by L𝜋) version of C. A similar invariance of the cell averaging
operator C+ with respect to L underpins Equation (12.11).

Let us expand on some of the consequences of this invariance. Equation (12.9) implies that the
columns of C span an invariant subspace of L. As the invariant subspaces of L are expressible in
terms of its eigenvectors, it follows that there exists a set of eigenvectors of L whose components
are constant on each cell of the partition. Furthermore, it can be shown that the eigenvalues
associated with the eigenvectors spanning the invariant subspace are shared with L𝜋 [51]. If L
has degenerate eigenvalues, an eigenbasis can be chosen such that it is localized on the cells of
the partition [51].

These algebraic properties of an EEP have implications for the dynamics dictated by L, as we
illustrate now for consensus dynamics [51]. First, an EEP is consistent with partial consensus
such that the agreement within a cell (if present) is preserved. Specifically, let the initial state
vector be given by x = Cy for some arbitrary y, so that every node within cell Ci has the same
initial value yi of their opinion variable. Then the nodes inside each cell remain identical for all
times and the dynamics of the cell variables is governed by the quotient graph

ẋ = Cẏ with ẏ = −L𝜋y, (12.12)

which follows directly from Equation (12.9). In words, if consensus has been reached within
each EEP cell, then the lower dimensional Laplacian matrix L𝜋 (with dimensionality equal to
the number of cells k) describes the full dynamics of the system (Figure 12.4b). This dynamical
invariance thus provides a simpler model of the system.

A second consequence of the presence of an EEP is that the dynamics of the cell-averaged
states ⟨x⟩Ci

is exactly described by the quotient graph:

d⟨x⟩Ci

dt
= −L𝜋⟨x⟩Ci

where ⟨x⟩Ci
∶= C+x. (12.13)

This dynamical coarse-graining follows directly from Equation (12.11). Hence the cell-averaged
dynamics is also governed by the lower dimensional quotient Laplacian (Figure 12.4c), and if
we are only interested in such cell averages we can reduce our model significantly.
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Figure 12.4 The external equitable partition and its dynamical implications. (a) A graph with n = 12
nodes (left) with an external equitable partition into five cells (indicated with colors) and its associated
quotient graph according to the EEP (right). (b) Invariance of the EEP: the consensus dynamics on the
full graph (Equation (12.4)) from an initial condition x = Cy is shown with dash-dotted lines, whereas
the associated quotient dynamics (Equation (12.12)) governing y is shown with circles. If all states within
each cell are equal (i.e. cluster-synchronized), the dynamics will always remain cluster-synchronized and
are described by the dynamics of the quotient graph for all times. (c) Cell-averaging dynamics of the EEP:
for consensus dynamics, the quotient graph dynamics (circles) also describes the cell-averaged dynamics
(solid lines) of the unsynchronized full graph dynamics (dash-dotted lines), as given by Equation (12.13).

Finally, a third implication of the EEP structure relates to the system with inputs. It can be
shown [51] that all the results for the autonomous consensus dynamics with no inputs can be
equivalently rephrased for the system with inputs

ẋ = −Lx + u(t), (12.14)

when the input u(t) = Cv(t), v(t) ∈ ℝc is consistent with the cells of an EEP. In that case, the
nodes inside each cell remain identical for all times, as in Equation (12.12).

Remark: While we have focused here on the implications of an EEP for linear consensus
dynamics, invariant partitions like the EEP play a similar role for other linear and nonlinear
dynamics (e.g. Kuramoto synchronization). See [71] for an extended discussion including syn-
chronization dynamics, as well as dynamics on signed networks.
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Discussion: Differences and Relationships between EEPs and Time Scale Separation

Let us discuss briefly the difference between the presence of an EEP in a network, and time scale
separation in the system. In our context, both concepts can be related to the notion of (strictly or
almost) invariant subspaces in the dynamics. However, the link between structure and dynamics
that each of them represents can be very different.

The presence of an EEP is related to symmetries in the graph, which translate into the fact
that a set of Laplacian eigenvectors have components that are constant on each cell in the graph.
However, these eigenvectors can be associated to any eigenvalue of the graph, whether fast
or slow. In broad terms, for the EEP the shape of the eigenvectors with respect to the cells is
important, but the eigenvalues themselves are not relevant.

This notion is therefore different to the time scale separation discussed in Section 12.3.1,
where the defining criterion focuses on the eigenvalues, more precisely, on the existence of
gaps between eigenvalues that separate them into groups associated with different time scales.
In our particular example of a planted partition model in Figure 12.3, the associated eigenvectors
were indeed approximately constant on each cell (i.e. on each block of nodes) and would tend
to align with the cells as the random part decreases. Hence in this case both the (approximate)
EEP structure and the time scale separation are well aligned. However, this may not always the
case. We may indeed have an EEP in which the set of eigenvectors corresponding to the cells
are precisely the slowest eigenmodes, but this is not necessary. Conversely, the eigenvectors
corresponding to the slowest time scales do not have to be exactly constant on every cell, or
may not be block-structured in general [69, 70]. Therefore the notions of EEP and time scale
separation are distinct but not mutually exclusive.

12.3.3 Structural Balance: Consensus on Signed Networks and Polarized
Opinion Dynamics

Signed Networks and Structural Balance

In social networks, relationships can be friendly or hostile, or reflect either trust or distrust
between individuals. The positive or negative character of links between agents is a central
concept associated with the emergence of conflict and tension in social psychology, and has
been studied within the classic literature in social network theory [14, 29]. More recently, the
study of networks with signed interactions has gained popularity in the context of online social
networks [43] and online cooperation [79]. More broadly, networks with signed edges are also
essential to model biological systems and their dynamics. Examples include genes that promote
or repress the expression of other genes in genetic regulatory networks [17], or neurons that can
excite or inhibit the firing of other neurons in neuronal networks, thereby shaping the global
dynamics of the system [27, 70].

Following Cartwright [14], a network is structurally balanced if the product of the signs along
any closed path in the network is positive. This implies that only consistent social relationships
are allowed in triangles of three nodes: either all interactions are positive or there are exactly
two negative links, which may be interpreted in the sense that “the enemy of my enemy is my
friend” [29]. Equivalently, a network is structurally balanced if it can be split into two factions,
where each faction contains only positive interactions internally, while the connections between
the two factions are purely antagonistic [4], as illustrated in Figure 12.5. It has been shown that
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Figure 12.5 Example of a structurally balanced graph. A structurally balanced graph (left) with positive
edges (solid, red), and negative edges (dashed, blue) can be redrawn in a different way (right) so that it can
be split into two groups such that the negative edges connect nodes of different groups and links between
nodes in the same group are positive.

many social networks are empirically close to structural balance [23], suggesting that there
might be a structural dynamics driving social networks towards structural balance [45, 80].

Consensus Dynamics on Signed Networks and Polarization

There are several mathematical formulations that incorporate positive and negative network
interactions. Here we consider systems where the interactions are mediated through a signed
Laplacian matrix defined as [4, 39]:

LS = DS − A, (12.15)

where DS = diag(|A|𝟏) is the diagonal absolute degree matrix, and the adjacency matrix A can
contain both positive and negative weights. Like the standard Laplacian, the signed Laplacian LS
is positive semidefinite and its spectrum contains a zero eigenvalue when the graph is connected
and structurally balanced [4, 39]. To see this, note that the signed Laplacian can be decomposed
as:

LS = BWabsB
⊤

, (12.16)

where Wabs = diag(|we|) is the diagonal matrix containing the absolute edge weights and B ∈
ℝn×m is the node-to-edge incidence matrix:

Bie =

{
1 if i is the tail of edge e,

−sign(e) if i is the head of edge e.

When the graph is connected but not structurally balanced, LS is positive definite.
The following interesting alternative characterization of a structurally balanced graph was

highlighted by Altafini [4, 5]: a network is structurally balanced if there exists a ±1 diagonal
matrix 𝚺 such that the matrix

L𝚺 = 𝚺LS 𝚺 (12.17)

contains only negative elements on the off-diagonal. In other words, L𝚺 is a standard Laplacian
matrix for another (associated) graph with only positive weights. The matrix 𝚺 is called
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switching equivalence, signature similarly, or gauge transformation in the literature [5].
Choosing 𝚺 = I makes it clear that a network with only positive weights is itself balanced,
which emphasizes that LS is a proper generalization of the standard graph Laplacian. Using this
characterization, one can efficiently determine whether a network is structurally balanced [23]
and obtain the corresponding switching equivalence matrix 𝚺.

We are now in a position to study the opinion dynamics on a signed network given by:

ẋ = −LSx. (12.18)

The above equation is often called signed consensus dynamics and we will adopt this name
here, but it is important to note that this dynamics does not have to lead to a single consensus
for all agents [3, 4, 60]. Intuitively, this should be clear: since the agents can be repelled by the
opinions of their neighbors, the eventual dynamics need not converge to a unique consensus,
even in the absence of external inputs. This is in contrast to the standard consensus case shown
in Figure 12.1.

A remarkable feature of structurally balanced networks is that the signed consensus dynamics
Equation (12.18) converges asymptotically to a polarized state, i.e. a state where the final value
for all nodes is the same in magnitude, but the nodes are divided into two sets with opposite
sign (Figure 12.5). More precisely, there is an eigenvector of LS associated with eigenvalue 0 of
the form 𝝈 = [𝜎1, … , 𝜎N]T where all 𝜎i ∈ {−1,+1} such that the dynamics Equation (12.18)
converges to the final state

lim
t→∞

x(t) =
𝝈Tx0

n
𝝈. (12.19)

The sign pattern of 𝝈 corresponds precisely to the switching equivalence transformation 𝚺 =
diag (𝝈) and 𝜎i is denoted the polarization of node i. Note that the overall sign of 𝝈 is arbitrary,
so that the polarization of a node is only meaningful relative to that of other nodes. An example
of this behavior is shown in Figure 12.6.

(a) (b)

4
20 –1

0

1

18
16
14
12
10
8
6
4
2

8 12 16

Node

N
o
d
e

20 10–2 10–1 100 101
–0.6

–0.4

–0.2

0

0.2

time, t

x
(t

)

(c)

Figure 12.6 Polarized opinion dynamics in structurally balanced networks. (a) Visualization of a struc-
turally balanced network with positive (solid) and negative (dashed) links. As indicated by the drawing,
the network can be partitioned into two subsets such that all negative links are between nodes in different
sets. (b) The adjacency matrix of the same structurally balanced network. Fom this representation it is
no immediately obvious whether or not the network is structurally balanced. (c) Starting from a random
initial condition, the signed consensus dynamics (Equation (12.18)) on this structurally balanced network
converges asymptotically to a state of two polarized opinions (Equation (12.19)), where the final opinions
are exactly the same in magnitude, but opposite in sign for the two groups shown in (a).
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Discussion: Dynamics of Networks Towards Structural Balance

Our discussions up to now have focused mostly on the effects of graph structure on the dynamics
taking place on a fixed network. Let us now briefly discuss a form of structural dynamics (where
the network structure itself changes) in the context of signed networks.

Albeit commonly explained from a static perspective (i.e. parity of the cyclic paths in the
network), structural balance is essentially a dynamical theory: it posits that networks tend to
evolve towards a state of structural balance. An important question is therefore how such a
structural dynamics of network evolution could look like. Antal et al. [7] provided one of the first
explorations of this issue in the discrete time setting, followed by the continuous time version
by Kułakowski et al. [38], which was analyzed in detail by Marvel and collaborators [45]. Here
we focus on the following variation of this model proposed by Traag et al. [80]:

̇X = XX⊤ with X(0) = X0, (12.20)

where X ∈ ℝn×n denotes the matrix of opinions that agents have of each other.
It can be shown [80] that this model converges to a structurally balanced network for almost

all initial conditions, i.e. we reach either a split into two factions of opposing opinions or a
state in which all nodes have positive opinion about each other. More precisely, the normalized
solution of Equation (12.20) converges for some time t∗ to

lim
t→t∗

X(t)
∥ X∥F

= vvT
,

where ∥ ⋅∥F denotes the Frobenius norm and v is a real-valued vector whose sign pattern indi-
cates the two factions. However, an important shortcoming of this model is the fact that while
the sign pattern converges to a balanced network, the magnitude of the opinions diverge after a
finite time t∗, unless certain technical conditions are fulfilled [80]. A second shortcoming is the
assumption of homogeneity in the network an in the agents: each agent has an opinion about
every other agent in the network (all-to-all connectivity) and all agents follow the same update
rule. These assumptions are unrealistic in many real-world scenarios. However, extended mod-
els that relax these simplifications are far more difficult to analyze rigorously, thus providing an
interesting object for further study.

12.4 Part III: Using Dynamical Processes to Reveal Network Structure

As we have seen in the previous sections, graph structure can have a notable impact on a dynam-
ics acting on a network. What about the converse? Can we choose a dynamics, let it evolve on
a graph, and learn a modular or coarse-grained description of the network based on some of its
properties (time scale separation, quasi-invariance, etc)?

In the following, we provide a high-level, algorithmic point of view of how this may be
achieved. Interestingly, many community detection methods and graph partitioning heuristics in
the literature can be seen as particular cases of this general abstract viewpoint [19, 20]. Although
not every method for community detection is best interpreted in terms of dynamical quanti-
ties [72], the dynamics-based perspective presented here can serve as a general framework to
establish differences and similarities between the plethora of existing methods. Our perspective
reveals some surprising relationships between measures and methods that have been proposed
in seemingly different ares in the literature.
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12.4.1 A Generic Algorithmic Framework for Dynamics-Based Network
Partitioning and Coarse Graining

Given a complex network, one important task is to find relevant communities (i.e. groups of
nodes that can act as a coarse-grained description of the particular network) in an unsupervised
manner. There is a very large array of such methods. However, as we will make more pre-
cise through an example below, one can interpret many of the community detection algorithms
through the following generic algorithmic recipe, which includes four ingredients:

1. A dynamical process x ∶ t → x(t) acting on a given network.
2. An inference operator F , which is used to characterize some statistical information about

the dynamical process.
3. A selection and summary operator S , which assigns nodes into groups and clusters (or

coarse-grains) the dynamical process.
4. A quality function Q, which scores the clustering

While more general scenarios can be used, in the cases we discuss below these ingredients
take the following form. Given a graph, we use a dynamical process x(t) to assign to each node
a particular time trajectory or a time-evolving probability measure. We then apply the infer-
ence operator F on this time-course data to produce a node-to-node time-dependent similarity
measure. The similarity measure is then aggregated according to a given grouping of nodes by
the selection operator S . The proposed clustering is then evaluated by the quality function Q,
which can then be optimized (Figure 12.7).

Example of the Framework: Markov Stability for Community Detection

Let us exemplify these ideas through the Markov Stability framework, as discussed in
[19, 20, 69]. We use this example to demonstrate the applicability of the proposed algorithmic
framework, since it can be shown that the Markov Stability framework encompasses a variety
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Figure 12.7 Schematic of the algorithmic framework for partitioning of networks based on dynamics.
A dynamics x(t) operating on a network with inputs u(t) is filtered through the inference operator F
to provide a similarity matrix between the nodes, from which a partitioning (or coarse-graining) of the
nodes is obtained by a selection and summary operator S . The quality of this partition is summarized
by a numerical metric through the quality operator Q. This abstraction of dynamics-based community
detection covers many existing methods in the literature and opens up a wide array of possibilities suited
to different purposes.
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of community detection methods as particular cases [19, 20, 69], including modularity, spectral
clustering, and various Potts models. For a discussion that includes processes beyond diffusion
and further relations to control-theoretic notions we refer to [73].

Markov Stability is a quality function that scores a given non-overlapping partition P of a
graph into node groups Ci. The Markov Stability [19, 40] score is parametrically dependent on
a time parameter t and is given by

Markov Stability(t,P) ∶= r(t,P) =
∑

Ci∈P

Pr(Ci, 0, t) − Pr(Ci, 0,∞) (12.21)

where Pr(Ci, 0, t) is the probability for a random walker to be in the same cell Ci at time zero
and at time t. For an extended discussion of this framework, see [19, 20, 40, 41, 69].

We now see how Markov Stability fits within the above four ingredient recipe:

1. To an undirected, connected graph with Laplacian L we associate a diffusion dynamics (ran-
dom walk) given by

ṗ⊤ = −p⊤LRW, (12.22)

which describes the evolution of the probability mass function p(t) of an n-dimensional ran-
dom indicator vector x(t) with xk(t) = 1 if the particle is at node i at time t and zero otherwise.
Recall that LRW = D−1L is the random walk Laplacian.

2. The inference operator F is set to be the autocovariance function of this process, which
computes the correlation between the random state vector x(𝜏) at stationarity with itself after
a time t, x(𝜏 + t)):

F (x(t)) = cov[x(𝜏), x(𝜏 + t)] = 𝚷P(t) − 𝝅𝝅⊤. (12.23)

𝝅 = d∕2w denotes the stationary distribution of the diffusion.
3. For a given partition of the graph with indicator matrix C, we choose a selection and summary

operator S that aggregates the entries of an n × n matrix defined on the nodes of the graph
and aggregates the entries inside the k cells in the partition to return a k × k matrix. This
is achieved simply by the pre- and post-multiplication S (⋅) = C⊤(⋅) C. Applying S to the
autocovariance matrix Equation (12.23) yields

S (F (x(t)) = C⊤(𝚷P(t) − 𝝅𝝅⊤)C ∶= R(t,C), (12.24)

where R(t,C) is the clustered autocovariance of the dynamics on the network. Due to the
linearity of the chosen dynamics and the selection operator, the clustered autocovariance
matrix is also the autocovariance of the coarse-grained indicator vectors y(t) = C⊤x(t) [20].
Whence, with a slight abuse of notation, we conclude that in this case

S (F (x(t))) = F (S (x(t))) = R(t,C).

4. The quality function in Markov Stability is chosen as Q(⋅) = trace(⋅), i.e. the trace of the
matrix. When applied to the clustered autocovariance matrix R(t,C), it sums over the k auto-
covariances of each group for a given time t. Hence, the quality of the partition is the sum of
the contributions from the individual groups.
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In summary, Markov Stability can be written suggestively as the following function com-
position:

r(t,C) = Q(S (F (x(t)))) = trace C⊤(𝚷P(t) − 𝝅𝝅⊤)C. (12.25)

It is easy to verify that this expression is equivalent to Equation (12.21). To find good parti-
tions, our objective will be to maximize r(t,C) over the space of partitions {P} for each value
of t. This is usually a hard combinatorial optimization, which is approached computationally
through different heuristics.

12.4.2 Extending the Framework by using other Measures

Thinking of community detection as the composition of operators immediately opens up a range
of extensions by varying the individual ingredients. We discuss now some of these possibilities,
focusing mainly on F and Q, the inference and quality operators (the choice of dynamical
process x(t) has been discussed at length in Refs. [19, 40, 41]). Considering these extensions
allows us to establish further connections with other community detection methods and heuris-
tics proposed in the literature.

12.4.2.1 Varying the Dynamical Process x(t)

From our discussion above, it is clear that different dynamical processes will lead to differ-
ent community detection and coarse-graining algorithms. We do not dwell on this topic here,
as extended studies in [20, 40, 41] have discussed a variety of measures based on different
dynamics (discrete and continuous time), and their connection with a variety of methods and
heuristics proposed in the literature. Notably, our approach leads naturally to dynamical inter-
pretations of different variants of modularity based on distinct statistical null models which can
be understood both as stationary points of the dynamics and as centrality measures of the net-
work. Similarly, generalized modularity measures, such as Potts models, can be understood as
linearisations/linear interpolations of Markov Stability [20, 41]. Many further extensions are
possible and in particular translating these ideas to non-Markovian dynamics appears to be a
fruitful avenue for future research.

12.4.2.2 Varying the Inference Operator F

A well-known issue with the covariance is the fact that its absolute value is not easy to interpret,
as it depends on the magnitude of the random variables involved (e.g. a simple rescaling of the
variables can increase or decrease the covariance). A standard way to discount the magnitude of
the random variables is to normalize them, leading to correlation measures. A classic example
is the Pearson correlation, in which the random variables are rescaled to have unit variance.

Accordingly, we can change the inference operator to F = corr(⋅), where the cross-
correlation operator between to random vectors x𝟏, x𝟐 is defined as:

corr(x𝟏, x𝟐) = S−1∕2
x1

(𝔼(x𝟏x𝟐
⊤) − 𝔼(x𝟏)𝔼(x𝟐⊤))S

−1∕2
x2

. (12.26)



�

� �

�

Structured Networks and Coarse-Grained Descriptions: A Dynamical Perspective 355

Here Sx1
and Sx2

are diagonal matrices containing the variances of the components of the vectors
x𝟏 and x𝟐, respectively, and 𝔼 denotes the expectation operator. Substituting the inference oper-
ator in this way leads to a correlation-based equivalent of Markov Stability:

rcorr(t,C) = trace C⊤ corr(x𝟏(𝜏), x𝟏(𝜏 + t))C

= trace C⊤S−1∕2(𝚷P(t) − 𝝅𝝅⊤)S−1∕2C, (12.27)

where (like in Markov Stability) we assume that the random diffusion process is at stationarity,
and thus we need to normalize by S = 𝚷(I −𝚷) the diagonal matrix with variances of Bernoulli
random variables of mean 𝜋i on the diagonal.

Interestingly, using correlation instead of covariance was considered by Shen et al. [75] in
the context of modularity community detection for directed graphs. Their simplified formula for
undirected networks is

corr. modularity =
∑
C

∑
i,j∈C

Aij −
didj

2w√
di

(
1 − di

2w

)√
dj

(
1 − dj

2w

) . (12.28)

It is easy to see that this measure (proposed in [75] from a combinatorial viewpoint) corresponds
to the Markov Stability with dynamics governed by a discrete-time random walk with transition
matrix P(t) = (D−1A)t evaluated at time t = 1, and with the Pearson correlation as the inference
operator F :

rcorr(1,C) = trace C⊤S−1∕2[𝚷D−1A − 𝝅𝝅⊤]S−1∕2C = corr. modularity.

Indeed, in the original formulation of Markov Stability [19], it was already noted that a version
of Markov Stability based on correlations is related to normalised cut for graph partitioning.

Other Extensions:
Although we have focused here on the Pearson correlation, many other metrics are possible. A
particular area of interest is the investigation of inference operators F based on mutual infor-
mation. It is also worth remarking that a number of variants arise from changing the order
of application of the selection and inference operators, which will not commute in general
S (F (⋅)) ≠ F (S (⋅)), leading to different notions of clusterings. These directions will be the
focus of future research.

12.4.2.3 Varying the Selection and Summary Operator S

The choice of operator S opens up a broad range of directions, which are beyond the scope of
this chapter. We mention only one direction. Our focus here has been on hard graph partitions,
i.e. forcing a hard split of the nodes into non-overlapping groups. We could, however, allow for
overlapping (possibly probabilistic) membership. In terms of S , this would amount to relaxing
the assumptions of the indicator matrix C: instead of requiring that Cij = 1 if node i belongs
to community j and zero otherwise, we may merely require that

∑
jCij = 1. In that case, the

node i may belong to multiple groups with a certain probability. This relaxation is equivalent to
requiring that the matrix C is row-stochastic, instead of binary, thus opening the possibility of
using different optimization techniques.
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12.4.2.4 Varying the Quality Function Q

We now consider in some detail the choice of the quality function Q, for which an array of
possibilities is also available. Our algorithmic framework with the standard choices for Markov
Stability for the operators are F = cov(⋅), S = C⊤(⋅)C on a diffusion dynamics x(t) on the
network leading to the clustered autocovariance matrix R(t,C) given in Equation (12.24). To this
matrix, we then apply the quality function Q(⋅) = trace(⋅), which sums over all the community
autocovariances, a measure akin to taking an average of the individual autocovariances.

There are of course other options for the quality function. For instance, one could take into
account the off-diagonal terms of the matrix R(t,C) and define a metric that searches for maxi-
mally diagonal matrices. Such an alternative operator quality function would be especially rele-
vant in conjunction with a different, nonlinear inference operator F (e.g. mutual information).
Another option is to define the quality of the partition in terms not of the average autocovariance
over the groups, but of the weakest group autocovariance of the partition, i.e. we would favor
partitions where no bad groups exist. This could be achieved by using the quality function

Q = min{diag(⋅)}.

We consider this quality function in more detail as it provides an interesting connection with
another measure for community detection proposed by Piccardi [57], as we now show.

Let us consider an unbiased random walk discrete-time dynamics x(t) with transition matrix
P(t) = (D−1A)t and stationary distribution 𝝅 = d∕2w and define the inference operator to be
F = cov(⋅). To make the connection clearer and to avoid a bias towards partitions that contain
few communities of large size, we need to set our selection operator to perform a normalized
block-averaging

S (⋅) = (C⊤𝚷C)−1C⊤(⋅)C,

where (C⊤𝚷C) = diag([𝜋C1
, … , 𝜋Ck

]) and 𝜋Ci
=
∑

Ci
di∕2w in this case. Thus, the S operator

normalizes each group according to the starting probability of the diffusion process within each
community. Combining these operators gives us a clustered normalized autocovariance matrix,
to which we then apply the quality function Q = min{diag(⋅)} to obtain the following clustering
measure:

rmin(t,C) = min
i

((C⊤𝚷C)−1C⊤(𝚷P(t) − 𝝅𝝅⊤)C)ii. (12.29)

Piccardi [57] proposed a technique for community detection based on the idea that the outflow
from a community under a random walk should be small. To that end, he defined a lumped
Markov chain with transition matrix:

U = (diag(𝝅C))−1C⊤𝚷D−1AC (12.30)

and stationary distribution 𝝅𝓁 = 𝝅C, i.e. the appropriately summed version of the stationary
distribution of the original Markov process. The best split into communities (denoted an
𝛼-partition) is found through the optimization

max
C

k subject to Uii ≥ 𝛼, i = 1, 2, … , k (12.31)

where 𝛼 ∈ [0, 1] is a parameter set a priori and defining the minimal amount of flow retained
in each community.
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It can be shown that a partition C with rmin(1,C) ≥ 𝛽1 is also an 𝛼-partition with a guaranteed
value of 𝛼. This follows directly from the definitions in Equations (12.29) and (12.30):

rmin(1,C) ≥ 𝛽1 ⇒ Uii ≥ 𝛽1 + [(C⊤𝚷C)−1C⊤𝝅⊤𝝅C]ii = 𝛽1 + 𝜋𝓁,i ∶= 𝛾i. (12.32)

Therefore a partition with rmin(1,C) ≥ 𝛽1 is also an 𝛼-partition with 𝛼 = max
i
𝛾i, and optimizing

rmin(t,C) in the space of all partitions for any t encompasses 𝛼-partitions as a special case (for
t = 1). For a more detailed discussion of these connections, see [68].

12.5 Discussion

This chapter has focused on the relationship between structure and dynamics in complex net-
works, concentrating on how the notions of time scale separation, external equitable partitions,
and structural balance are related to coarse-graining and community detection in networks. We
have exemplified these concepts through consensus dynamics and random walks, both of which
have been studied extensively linked to social network analysis.

Our discussion is underpinned by the fact that both time scale separation and EEPs are inti-
mately related to the algebraic notion of invariant subspaces. Such invariance provides us with
a better understanding of the emerging dynamics on a network, and highlights structural fea-
tures in the network that are of dynamical importance. For instance, in a diffusion process time
scale separation implies regions in the network where the diffusion is trapped far longer than
one would expect. Hence, over a particular time scale, a diffusive signal emanating from a node
inside such a group will likely reach nodes inside the same group, so that these nodes are dynam-
ically almost decoupled from the rest of the network. In another example, the presence of certain
graph symmetries in the network implies the presence of EEPs, graph partitions that are invariant
under the dynamics. As a consequence, the averages of the consensus dynamics over the cells
of the EEP can be described by the reduced dynamics of the lower-dimensional quotient graph.

Alternatively, instead of looking only at the impact of the structure on the dynamics, we can
also ask the opposite question: can we use information gathered from dynamics taking place
on the network to reveal important structures in the graph? We have proposed an algorithmic
perspective to exploit this dynamics-driven route to the analysis of network structure and have
shown that, interestingly, by adopting such a viewpoint we recover many methods of commu-
nity detection proposed in the literature from seemingly different perspectives. This dynamical
interpretation for such diverse methods enables us to place them with a unifying framework,
providing additional insights that might not have been apparent from their initial definition.

Open Directions

There is a large literature on complex networks and dynamical processes acting on top of those,
and hence there are many topics of interest related to the interplay between structure and dynam-
ics that we have not discussed here.

A fruitful area to extend these ideas is to go beyond (first-order) Markovian and
diffusion-based dynamics. Indeed, many dynamics relevant to real-world phenomena,
such as epidemic spreading, are not of a diffusive type, yet being able to obtain dynamically
important modules in such systems is crucial, e.g. to design effective vaccination strategies.
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Considering higher-order or non-Markovian models, allowing for the presence of memory,
would, for instance, allow us to study bursty dynamics or other path-dependent dynamical
processes [21].

Furthermore, it will be important to connect the concept of dynamical modules considered
here in connection with model order reduction tools formally studied in control theory. Such a
link will allow us to quantify how far the modules describe the original dynamics in a precise
manner.

Ultimately, a key aim is to describe not only the dynamics on the network in a modular fashion,
but also to take into account changes of the network itself and interactions between different
types of dynamics acting on the network. Indeed, a key area for future work (barely considered
here) is that of systems where the topology of the network changes, as in social contact networks,
and the inclusion of multiple kinds of interactions within one system, formalized mathematically
through multiplex networks [11, 36].
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13.1 Introduction

Network studies of science offer researchers great insights into the dynamics of how knowledge
is created and the social structure of scientific society. The flow of ideas and the scientific com-
munity’s overall cognitive structure is observed through citations among scientific contributions,
usually manifested as patents or papers published in scientific journals. The social structure of
this society consists of relationships among scientists and their collaborations. De Haan [9] sug-
gests six operationalized indicators of collaborative relations between scientists: co-authorship,
shared editorship of publications, shared supervision of PhD projects, writing a research pro-
posal together, participation in formal research programs, and shared organization of scientific
conferences.

Due to the accessibility and ease of acquiring data through bibliographic databases, most
scientific collaboration analyses are performed with co-authorship data, which play a particu-
larly important role in research into the collaborative social structure of science. Co-authorship
networks are personal networks in which the vertices represent authors, and two authors are
connected by a tie if they co-authored one or more publications. These ties are necessarily
symmetric. The study of community structures through scientific co-authorship is especially
valuable because scientific (sub)disciplines can often display local properties that vary greatly
from the properties of the scientific network as a whole.

Yet co-authorship data have some flaws. The wide pallet of relationships among scientists
does not result in common publications [20, 24, 28]. Laudel [24] reports that about half of all
scientific collaborations are invisible in formal communication channels because they lead to
neither co-authored publications or formal acknowledgments in scientific texts. On the other
hand, we also know that co-authorship sometimes indicates false positive relations arising
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from resource-related issues [30]. Despite this, as an indicator of scientific collaboration,
co-authorship data form a reasonable compromise between quality and cost.

There are relatively few applications of blockmodeling to co-authorship networks. This may
be due to the method’s limitations regarding the size of the analyzed networks. One of the
earliest applications can be found in [13], where the results of blockmodeling (clustering of
relational data) of a co-authorship network of Slovenian sociologists and the results of cluster-
ing with a relational constraint (clustering of attribute and relational data) on the same network
were compared according to the researchers’ publication performance. As expected, the meth-
ods produced different results. This indicates that the decision about which method is used
depends on the research problem under study. The unexpected result of the analysis in [13] was
a core-periphery structure, with seven cores and a periphery, obtained when blockmodeling the
co-authorship network.

Further investigation of the multicore-periphery structure was presented in [21], where
the authors analyzed a network structure’s development over time. In their analysis of the
co-authorship networks of four scientific disciplines (physics, mathematics, biotechnol-
ogy, and sociology) measured in four consecutive 5-year time spans, they observed that a
multicore-periphery structure was present from early on in the development of each scientific
discipline. They also found that, although the number of cores increases with the growth
of a discipline, the cores’ sizes did not change. The structure’s description as constituting
multiple cores and a periphery was extended with multiple elements: a weakly connected
semi-periphery, a completely empty periphery and bridging cores, describing clusters of authors
connecting two or more cores from the central part of the network. The authors described four
levels of network complexity in the network structure’s evolution through time:

1. simple core-periphery form: simple cores, semi-periphery, periphery
2. weakly consolidated core-periphery form: simple cores, bridging individuals, semi-periphery,

periphery
3. consolidated core-periphery form: simple cores, bridging cores, semi-periphery, periphery
4. strongly consolidated core-periphery form: simple cores, bridging cores, bridging individu-

als, semi-periphery, periphery.

The multi-core–semi-periphery–periphery structure was also confirmed in a relatively small
co-authorship network constructed from the curricula vitae (CVs) and bibliographies of teach-
ing staff at the Faculty of Humanities and Education Science’s Department of Library Science
(DHUBI) at the National University of La Plata in Argentina [6].

Besides describing the overall structure, [21] attempted the first (visual) presentation to follow
individual units in the transitions between blockmodels over time to reveal differences in the
network dynamics across the disciplines analyzed here.

13.2 Methods

Considerable attention has been paid to studying the relationship between collaboration on one
side and the quality of research and speed of diffusion of scientific knowledge on the other
[1, 15, 17, 25]. While much research has considered the structure of co-authorship blockmodels
[2, 14, 29], not so much has examined the stability of long-term collaborations.
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Here, we show that blockmodeling can be used to reveal the global structure of co-authorship
networks and how the stability of the blockmodels so obtained can be operationalized and mea-
sured. This is especially important when seeking to explain the stability of research teams.

13.2.1 Blockmodeling

The goal of blockmodeling is to reduce a large, complex network to a smaller, comprehensible,
and interpretable structure [12]. It may not only be used to find groups of highly linked units
within a network, but also the relationships between the groups. While it can reveal much infor-
mation about the global co-authorship structure, obtaining the solution (especially in the case
of direct blockmodeling) can be very computationally expensive when networks with a higher
number of units are involved.

Blockmodeling can be either direct or indirect. Indirect blockmodeling is based on a dissimi-
larity matrix among units. The calculated dissimilarity measure must be consistent with a chosen
equivalence between units. The studies by Kronegger et al. [21] and Cugmas et al. [8] used the
corrected Euclidean distance, which is consistent with the structural equivalence [5]. The pro-
cess of hierarchically clustering units can be visualized in a dendrogram in which the units (or
clusters) and the dissimilarity between the units (or clusters) are represented. Kronegger et al.
[21] and Cugmas et al. [8] defined the number of positions based on such visualizations.

In contrast, unlike indirect blockmodeling, direct blockmodeling can be achieved through
a local optimization procedure [5], e.g. using an iterative method where for each displacement
of a unit from one group into another, the value of the criterion function is calculated, defined
as the difference between the ideal and empirical clustering where the ideal clustering has
to express a blockmodel’s assumed structure. It turns out that this procedure can be very
time-consuming if a higher number of units in the network is analyzed. Cugmas et al. [8] also
report that the algorithm implemented in Pajek has some difficulties detecting very small,
structurally equivalent cores, particularly in the case of scientific disciplines with a very large
number of researchers. To mitigate these characteristics, they removed the periphery and the
structurally equivalent cliques from the network before applying the procedure. They later
merged them to obtain the final solution.

13.2.2 Measuring the Obtained Blockmodels’ Stability

The main result of blockmodeling is a partition which assigns a researcher to a certain core,
semi-periphery, or periphery. In the case of temporal co-authorship networks (where time is
seen as a discrete variable), blockmodeling can be applied for each time period separately such
that one partition for each time period is obtained.1 A very important characteristic of temporal
co-authorship networks is that some researchers (called newcomers) join the network in a later
time period while others (called outgoers) leave the network in the later time period. Besides
the presence of newcomers and outgoers, the splitting of cores and merging of cores can also be
seen as separate features that indicate the lower stability of the obtained blockmodels or cores.

1 Along with the methods for generalized blockmodeling of multilevel networks [36], which can also be used to block-
model temporal networks, different versions of stochastic blockmodeling exist for temporal networks [3, 26, 34, 35].
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Figure 13.1 The features that can be used as indicators of less stable clusterings.

Nevertheless, a combination of different features usually appears simultaneously; a
visualization of each feature is presented in Figure 13.1. Each visualization is divided into
two parts: the white rectangles at the top visualize the clusters (which are cores obtained by
blockmodeling in the case of co-authorship blockmodels) from the partition U = {u1, ..., ur}
obtained on the set of units from the first time period while the rectangles on the bottom
visualize the clusters from the partition V = {v1, ..., vc} obtained on the set of units from the
second time period. Gray rectangles are added to the clusters and visualize the outgoers and
newcomers. The links between the rectangles visualize the clusters’ stability.
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Adjusted Rand Index Based on the two assumptions that the merging and splitting of clus-
ters indicate a lower level of cluster stability in time and that no newcomers or no outgoers are
present (or, at least, they are ignored), one can use one of the most popular indices for com-
paring partitions, the Adjusted Rand Index [19, 32]. Here, the adjective “adjusted” refers to the
necessary correction for chance since the expected value is usually not 0 in the case of two ran-
dom and independent partitions. This correction allows the values of the index obtained from
different partitions to be compared. We focus on the Rand Index [31], defined as

RI = a + d
a + b + c + d

where a stands for the number of pairs of researchers classified in the same cluster in both time
periods, b stands for the number of pairs of researchers classified in the same clusters in the
first period but in different clusters in the second period, c stands for the number of researchers
classified in different clusters in the first, but in the same cluster in the second period and, finally,
d stands for the number of pairs of researchers classified in different clusters in both the first
and second time periods. Following this definition, the Rand Index can be interpreted in the
co-authorship network context as the proportion of all possible pairs of researchers classified in
the same or in different clusters in both time periods out of all possible pairs of researchers.

Wallace indices There are situations when the merging and splitting of clusters has to be
considered differently. Therefore, one of two Wallace indices can be used: in the case of the
Wallace Index 1 (W1), only the splitting of clusters is considered a feature that indicates lower
cluster stability, while with the Wallace Index 2 (WI2) only the merging of cores is considered
a feature indicating the lower stability of clusters. Formally, W1 is defined as

W1 = a
a + b

where a and b are defined the same as in the case of the Rand Index. W1 can be interpreted
as the proportion of all researcher pairs placed in the same core in both time periods out of the
number of all possible researcher pairs placed in the same core in the first period. Similarly, W2
is defined as

W2 = a
a + c

and interpreted as the ratio between the number of all possible researcher pairs classified in the
same cluster in both periods and the number of all possible researcher pairs classified in the
same cluster in the second period.

Modified Rand Index and Wallace indices As mentioned, it is common in temporal
co-authorship networks for some researchers to join the network and some to leave the network
in later time periods. When this happens, one can either simply ignore those researchers when
calculating the Rand or Wallace indices, or treat the newcomers and outgoers as features
indicating a lower level of stability of the cores. When the latter is assumed, one has to
form new partitions U′ = {u1, u2, ..., ur+1} and V ′ = {v1, v2, ..., vc+1} with the new clusters of
newcomers ur+1 and outgoers vc+1 added to the partitions U and V . Then, the Modified Rand
Index (MRI), the Modified W1, and the Modified W2 are calculated in the same way as RI,
W1, and W2 where the values in the numerator consider the partitions U′ and V ′. The modified
Rand Index and the modified Wallace indices can be further modified so that only newcomers
or only outgoers are considered as features indicating lower core stability (for more details, see
[7]) (see Figure 13.2).
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Figure 13.2 Indices for measuring the stability of cores in time (the features that reduce the stability are shown in brackets).
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Along with the modified Rand Index and the modified Wallace indices, Cugmas and Ferligoj
[7] proposed a correction for chance (based on Monte Carlo simulations) that allows one to com-
pare the values of indices obtained in different scientific disciplines. With non-adjusted indices,
the number of clusters (cores, newcomers, and outgoers) and the number of researchers also
influence the expected value of an index in the case of two random and independent partitions.
The expected value of two random and independent partitions in the case of adjusted indices
equals 0, and the maximum value of an index is 1. It should be highlighted that higher values of
the presented indices indicate greater cluster stability, while lower values indicate less stability.

13.3 The Data

The data for this research were obtained from the Co-operative Online Bibliographic System and
Services (COBISS) and the Slovenian Current Research Information System (SICRIS) main-
tained by the Institute of Information Science (IZUM) and the Slovenian Research Agency
(SRA).

SICRIS provides data about all researchers who have an ID assigned by the SRA, including
their educational background and field of research according to the SRA’s classification scheme.
There are seven scientific fields and 72 scientific disciplines defined in this classification scheme.
The seventh scientific field is Interdisciplinary Studies and is not included in the analysis since
it has never gained full recognition as a separate research field in Slovenia [14].

The analyzed data are based on complete personal bibliographies of each researcher (con-
structed based on SICRIS and COBISS). The network boundaries are therefore defined only
by those researchers registered as a researcher at the SRA. Among such researchers, those who
published at least one scientific bibliographic unit between 1990 and 2010 are included. The
bibliographic units considered as a scientific publication by the SRA are listed in Table 13.1.

Compared to the analysis conducted by Kronegger et al. [21], who studied four selected
scientific disciplines in four time periods, the current analysis is performed on data for two
consecutive 10-year periods between 1991 and 2010. The difference in the length of the periods

Table 13.1 Number of published scientific bibliographic units by type for two time periods

Type of scientific bibliographic unit 1991–2000 2001–2010
(independence) (joining the EU)

Original scientific article 26531 47905
Review article 4895 5738
Short scientific article 969 2530
Published scientific conference contribution (invited lecture) 3427 5279
Published scientific conference contribution 28670 41138
Independent scientific component part in monograph 6417 14759
Scientific monograph 1725 2912
Scientific or documentary films, sound or video recording 44 133
Complete scientific database or corpus 73 182
Patent 381 710

Total 73132 121286
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mainly affects the size and density of the generated co-authorship networks and, in terms of the
stability of the research teams, results in a lower level of stability. However, the two selected
periods reflect a time of major changes in scientific research and development policies in Slove-
nia. The first period is marked by the independence of Slovenia, meaning that the country had
started adopting and implementing its own science policies, while the second period is marked
by it joining the European Union and adopting European Union standards. By the end of this
period, Slovenia had already partly integrated its national science system into the European one.

Between 1991 and 2000, 73,132 scientific bibliographic units were published and a further
121,286 scientific units were published between 2001 and 2010. The most common units are
published scientific conference contributions and original scientific articles. The distribution of
different types of bibliographic units varies among scientific disciplines. For example, published
scientific conference contributions are very common in scientific disciplines from the technical
sciences while original scientific articles are frequent among scientific disciplines within the
social sciences and humanities. There are differences at the level of scientific disciplines accord-
ing to the distribution of types of scientific bibliographic units which can be published by one or
several researchers. Kronegger et al. [22] studied the differences between scientific disciplines
according to collaboration patterns in time and confirmed the scientific discipline geography is
more similar to scientific disciplines in the scientific fields of natural sciences and mathematics
than the scientific field of the humanities, where it is found according to the SRA’s classification
scheme. Even within several scientific disciplines one can expect certain differences in types of
co-authorships. In the case of sociology, [29] concluded that quantitative work is more likely to
be co-authored than non-quantitative work.

Although many co-authorship networks are analyzed in this study, we present sociology
co-authorship networks as an example. The units represent researchers and a link between two
researchers exists if they published at least one scientific bibliographic unit in co-authorship.
Therefore, only symmetric links are possible in the case of co-authorship networks. There are
also some researchers without any link who are later classified in the so-called periphery, as
detailed in the next section. However, it should be pointed out that the absence of links is not
necessarily the consequence of only single-authored scientific bibliographic units by a certain
researcher, but can also be the outcome of co-authoring only with researchers who do not have
a researcher ID, for example with researchers from abroad. Isolated researchers are present in
both time periods. The next important network characteristic common to almost all scientific
disciplines is that the co-authorship networks grow in time.

13.4 The Structure of Obtained Blockmodels

Based on four scientific disciplines, Kronegger et al. [21] showed that the structure of
co-authorship networks consists of the multi-core, semi-periphery, and periphery. To confirm
that this structure is also present in other scientific disciplines, Cugmas et al. [8] used indirect
blockmodeling to detect the approximate number of cores and direct blockmodeling to obtain
the final solution, as described in Section 13.2.1. The assumed blockmodel structure was con-
firmed in all scientific disciplines included in the analysis. Most disciplines that were excluded
(indicated in Figure 13.3 by asterisks) were removed due to the small number of researchers
in the first or second time period or absence of co-authorship in the current period. One such
discipline is theology, which did not have a single co-authored scientific bibliographic item
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sport *
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information science and librarianship *
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process engineering
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political science
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literary sciences *
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animal production
mechanical design

sociology
telecommunications

forestry, wood and paper technology
chemical engineering

mathematics
law

human reproduction
veterinarian medicine
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linguistics
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pharmacy
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materials science and technology
biology

neurobiology
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physics
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Figure 13.3 A list of scientific disciplines with the number of researchers in the first and second peri-
ods (an asterisk indicates scientific disciplines excluded from the analysis due to the small number of
researchers in the first or second time period or absence of co-authorship in the current period).
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(a) 1991 to 2000 (b) 2001 to 2010

Figure 13.4 Structure of the sociology co-authorship blockmodel for the first and second time periods.

published in the first period. It can also be seen in Figure 13.3 that the number of researchers
who published at least one scientific bibliographic item is increasing over time in almost all
scientific disciplines. The average growth in the number of researchers publishing at least one
scientific bibliographic item in the second period is 34%. Only in the disciplines veterinary
medicine, stomatology (i.e. oral medicine), and mining and geotechnology is there a drop in
the number of researchers from the first to the second period observed.

Figure 13.4 visualizes two empirical blockmodels for the scientific discipline sociology. The
first blockmodel corresponds to the first period while the second blockmodel is for the sec-
ond period. The rows and columns of each blockmodel contain the IDs of the researchers,
where the black dots in the cells denote co-authorships between two given researchers. A clear
multi-core–semi-periphery–periphery structure can be seen in the case of sociology in both
time periods. Along with the already described multi-core, semi-periphery, and periphery, in
the blockmodel in the first period a so-called bridging core is seen (as a full off-diagonal block).
The bridging core is a group of researchers who collaborate with each other very systemati-
cally and also with researchers from at least two other cores. They are called “bridging” since
they connect two or more cores. They are relatively common in Slovenian scientific disciplines.
There was a minimum of one bridging core in at least one time period in 20 scientific disciplines
of all that were analyzed.

The visualization in Figure 13.5 emphasizes the researchers’ transitions between the cores
(including the semi-periphery and periphery) obtained for the two periods: the upper part visu-
alizes the partition of researchers for the first period while the bottom part visualizes the partition
of researchers for the second period. It is shown in Figure 13.4 that the share of researchers clas-
sified in the periphery is decreasing in sociology, which cannot be seen in the visualization of
researchers’ transitions in time in Figure 13.5b. This is caused by the newcomers and outgoers.
Figure 13.5a reveals a high share of researchers who were not classified in the cores in both time
periods (e.g. many researchers were classified in the periphery in the first and second periods).
Furthermore, many newcomers were classified in the semi-periphery or periphery in the second
period. A similar pattern of many new researchers who were not connected to any previously
existing authors was also found in other studies [2].
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(a )Transitions between the cores, semi-periphery

and periphery

(b) Transitions between the

cores, into-cores and

out-of-cores

CORES CORESSEMI-PERIPHERY PERIPHERY OUTGOERS OUT-OF-CORES

CORES INTO-CORESCORES SEMI-PERIPHERY PERIPHERY NEWCOMERS

Figure 13.5 Visualization of researchers’ transitions in two time periods for sociology.

Since the main interest of study is the stability of the cores of the obtained blockmodels,
researchers not classified in the cores in at least one period can be removed from the visu-
alization. Therefore, a new visualization is presented in Figure 13.5b consisting of two
parts (one for each period) without the semi-periphery, periphery, newcomers, and outgoers.
Instead, researchers classified in the cores in the first but not the second period are now called
“out-of-cores” researchers and, similarly, researchers not classified in the cores in the first
period but classified in the core in the second period are now called “into-cores” researchers.
Focusing on the core part of the sociology example, it can be observed that cores 1 and 2
merged in the second period, while core 3 splits into three cores in the second period. There are
also many cores which disappear in the second period (out-of-cores researchers) and a lot of
researchers not classified in the cores in the first but classified in the cores in the second period.
These into-cores researchers usually join the existing cores in the second period.

Visualizations of researchers’ transitions between the cores, into-cores, and out-of-cores in
the two periods are made for all analyzed scientific disciplines (Figure 13.6). A relatively high
share of into-cores and out-of-cores researchers in all analyzed scientific disciplines and some
merging and splitting of cores in the core part of the visualized transitions can be seen. Here,
the into-cores and out-of-cores researchers are shown to be the primary source of instability of
the core part of scientific disciplines. Although the share of into-cores researchers exceeds the
share of out-of-cores researchers in almost all analyzed scientific disciplines, some scientific
disciplines reveal that the share of out-of-cores prevails over the share of into-cores researchers.

The number and size of the cores, the size of the semi-periphery, and the size of the periphery
vary across scientific disciplines (see Figure 13.7 and Tables 13.2 and 13.3). For example, the
discipline administrative and organizational sciences has six cores in the first period and 16
cores in the second. As shown below, most of the existing cores in the second time period
emerged from the non-core part of the network. The newly emerged cores are smaller in size
(on average 2.64 researchers) than the cores in the first time period. These observations indicate
that scientific collaboration might have been seen as more beneficial by the researchers from the
field administrative and organizational sciences. Keep in mind that this is a scientific discipline
with relatively few researchers (96 researchers in the first and 155 researchers – with at least
one published scientific bibliographic unit – in the second time period).
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Figure 13.6 Visualization of researchers’ transitions between the cores in the two periods for all analyzed
scientific disciplines (the black rectangles on the top and bottom correspond to the cores, the gray rectangles
on the top correspond to the group of into-cores while the gray rectangles on the bottom correspond to the
group of out-of-cores).
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Table 13.2 The considered scientific disciplines and their characteristics in the two periods – part 1

1991–2000 2001–2010

Scientific discipline and scientific field N Number
of cores

Semi-
per. (%)

Per.
(%)

Average
core size

N Number
of cores

Semi-
per. (%)

Per.
(%)

Average
core size

% of researchers
that left the cores

1. Natural sciences and mathematics
Biochemistry and molecular biology 171 11 45.61 30.41 4.56 301 17 45.85 33.55 4.13 68.29

Biology 279 12 46.59 37.63 4.40 427 18 55.04 27.40 4.69 70.45
Chemistry 443 22 64.79 12.87 4.95 553 29 67.09 11.93 4.30 68.69

Geology 211 14 44.55 34.12 3.75 294 10 43.54 42.86 5.00 64.44
Mathematics 155 9 34.19 51.61 3.14 257 13 51.36 32.30 3.82 59.09

Pharmacy 228 15 51.75 25.00 4.08 285 8 71.58 14.04 6.83 77.36
Physics 307 15 61.89 15.96 5.23 451 15 65.63 12.42 7.62 52.94

2. Engineering sciences and technologies
Chemical engineering 153 8 60.13 24.18 4.00 197 10 66.50 18.78 3.62 62.50

Civil engineering 242 15 65.29 15.70 3.54 289 18 61.94 13.49 4.44 69.57
Computer science and informatics 401 25 51.87 27.43 3.61 565 21 63.36 21.24 4.58 62.65

Electric devices 70 8 31.43 25.71 5.00 97 6 38.14 26.80 8.50 56.67
Electronic components and technologies 116 14 36.21 23.28 3.92 135 15 40.74 25.93 3.46 61.70

Energy engineering 210 15 57.14 16.67 4.23 283 14 60.07 15.90 5.67 70.91
Manufacturing technologies and systems 217 14 45.62 28.57 4.67 276 14 52.90 23.55 5.42 50.00

Materials science and technology 253 13 60.08 17.39 5.18 332 15 62.05 13.86 6.15 61.40
Mechanical design 135 11 55.56 21.48 3.44 210 13 56.19 17.62 5.00 64.52

Metrology 74 12 39.19 20.27 3.00 100 11 35.00 30.00 3.89 56.67
Process engineering 92 11 52.17 11.96 3.67 93 11 48.39 17.20 3.56 66.67

Systems and cybernetics 240 12 54.17 21.67 5.80 291 14 58.42 17.53 5.83 48.28
Telecommunications 142 15 39.44 32.39 3.08 195 13 45.13 21.03 6.00 50.00

Textile and leather 100 11 55.00 12.00 3.67 131 9 61.07 11.45 5.14 63.64
3. Medical sciences

Cardiovascular system 224 11 54.91 16.52 7.11 268 8 67.54 12.69 8.83 57.81
Human reproduction 164 7 53.66 21.95 8.00 187 7 55.61 11.76 12.20 42.50

Metabolic and hormonal disorders 74 12 13.51 45.95 3.00 97 11 38.14 28.87 3.56 66.67
Microbiology and immunology 208 10 54.81 14.90 7.88 270 8 67.78 8.89 10.50 47.62

Neurobiology 296 22 51.01 25.68 3.45 366 12 69.67 16.67 5.00 81.16
Oncology 233 10 54.08 17.60 8.25 277 11 56.32 13.36 9.33 45.45

Public health (occupational safety) 195 17 34.87 41.54 3.07 264 12 56.06 29.55 3.80 80.43
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Table 13.3 The considered scientific disciplines and their characteristics in the two periods – part 2

1991–2000 2001–2010

Scientific discipline and scientific field N Number
of cores

Semi-
per. (%)

Per.
(%)

Average
core size

N Number
of cores

Semi-
per. (%)

Per.
(%)

Average
core size

% of researchers
that left the cores

4. Biotechnical sciences
Animal production 127 11 64.57 6.30 4.11 158 12 48.73 7.59 6.90 35.14

Biotechnology 111 9 49.55 18.92 5.00 196 9 58.16 13.78 7.86 60.00
Forestry, wood and paper technology 149 12 62.42 11.41 3.90 153 10 53.59 11.76 6.62 43.59

Plant production 247 10 68.83 12.96 5.62 312 11 66.35 8.33 8.78 35.56
Veterinarian medicine 171 10 60.23 8.19 6.75 168 8 61.31 5.36 9.33 51.85

5. Social sciences
Administrative and organisational sciences 96 6 17.71 64.58 4.25 155 16 34.19 41.94 2.64 58.82

Economics 338 20 49.11 32.84 3.39 477 22 61.01 21.17 4.25 73.77
Educational studies 303 19 38.28 39.60 3.94 404 17 51.24 33.91 4.00 76.12

Law 157 10 24.20 47.13 5.62 204 15 31.37 35.78 5.15 40.00
Political science 98 12 23.47 48.98 2.70 142 9 45.77 31.69 4.57 74.07

Psychology 92 9 29.35 48.91 2.86 131 10 38.17 36.64 4.12 65.00
Sociology 135 11 28.15 42.22 4.44 203 9 48.77 31.03 5.86 45.00

6. Humanities
Geography 87 8 33.33 35.63 4.50 117 8 53.85 24.79 4.17 40.74

Historiography 186 11 9.14 74.73 3.33 251 11 23.11 60.56 4.56 43.33
Linguistics 196 15 10.71 71.94 2.62 296 25 22.64 55.07 2.87 61.76
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There is usually a higher number of cores in disciplines that have more researchers, which
is expected given the personal limits of each researcher to cooperate with a limited number of
coauthors and produce a limited number of publications [11, 21]. One such example is physics
with 307 researchers (with at least one published scientific bibliographic unit) in the first and 451
researchers in the second period. There are 15 cores revealed in both the first and second period.
As this is the case for almost all scientific disciplines, the average core size is bigger in the
second period than in the first. The decrease in the average core size is usually the consequence
of many cores of size two having emerged (e.g. biochemistry and molecular biology, chemistry,
law). These can consist of any kind of researchers, for example a core of size two can consist of
a student and his/her mentor. However, it is assumed that any kind of scientific collaboration that
leads to the creation of a scientific bibliographic unit requires very intensive collaboration – the
exchange of knowledge and ideas. Pairs of scientists who collaborate as researchers are also
very common in the field of social network analysis. One example is Borgatti and Everett.

However, some studies found that the type (e.g. natural vs. social or office vs. lab or theoretical
vs. empirical) of a scientific discipline affects the size of research teams [18, 23, 27]. Here, the
biggest average core size in the first period is observed in oncology (8.3 researchers) and human
reproduction (8.0 researchers), while the lowest average core size in the first period is observed
in linguistics (2.6 researchers) and psychology (2.9 researchers). In general, the overall average
number of cores is similar in both periods (around 11 cores), while the overall average core
size is increasing in time (from 4.4 to 5.6 researchers, p < 0.01), as confirmed by Amat and
Perruchas [4].

Following the distinction between the natural and technical sciences on one side, and the
social sciences and humanities on the other, it may be concluded that the average core size is
growing, especially in the natural and technical sciences (from 4.6 to 6.1 researchers, p < 0.01),
while in the social sciences and humanities the growth of the average core size (from 3.8 to 4.2
researchers, p = 0.30) is not statistically significant. In general, the average core size is lower in
the social sciences and humanities in the two periods (for 0.95 researchers in the first and 1.85
researchers in the second time period; p < 0.05 and p < 0.01 subsequently) (Figure 13.7).

Solo authors or authors who only published in co-authorship with authors from outside the
discipline are classified in the periphery. The average share of these authors among the analyzed
scientific disciplines decreases over time (from 29% to 23% average share of the periphery,
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Figure 13.7 The average core size and the average size of the periphery by field and time period.
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p = 0.06). The biggest reduction in the percentage of the periphery in the second period is
observed in criminology and social work (a 65% decrease). In some scientific disciplines, the
percentage of the periphery increased in the second period. These are mainly disciplines from
the natural and technical fields. However, the periphery size is greater in the social sciences and
humanities (the average size is 44%) than in scientific disciplines classified in the natural and
technical sciences (the average size is 21%) (p < 0.01). In addition, the average share of the
periphery decreases from the first to the second period, especially in the natural and technical
sciences (from 51% to 37%, p < 0.05), while the difference in the average share of the periph-
ery is not statistically significant (p = 0.11) in the social sciences and humanities (the periphery
share decreased from 23% to 19%) (Figure 13.7).

13.5 Stability of the Obtained Blockmodel Structures

In this section, the stability of cores is studied according to different operationalizations of core
stability. Although the presented visualizations of researchers’ transitions between two time
periods (Figure 13.6) provide a very efficient tool for studying the stability of the cores obtained
but whose interpretation is complex, the values of the indices proposed in Section 13.2 are
calculated. These indices are more objective operationalizations of core stability and allow us
to compare the values calculated for different scientific disciplines. The scientific disciplines
are then clustered according to the calculated indices. The groups of scientific disciplines thus
obtained are further analyzed.

In the second part, the operationalization of the stability of cores is restricted to one of the
described indices for measuring core stability, namely, as applied in Cugmas et al. [8], only the
splitting of cores and the out-of-cores researchers are seen as features, indicating the cores are
less stable. The differences in the mean stability of cores among different scientific fields are
studied using linear regression. Some further controlling explanatory variables are also included
in the model.

First, the values of each presented index for each analyzed scientific discipline are shown in
Table 13.4 and provide the basis for all further analyses. In this table, one sees that the values of
the Adjusted Rand Index and the adjusted Wallace indices are relatively large, while the others
are relatively small. This is due to the high share of into-cores and out-of-cores researchers who
are not considered when calculating the values of the Adjusted Rand Index and the adjusted
Wallace indices for each scientific discipline. The high values of the first three indices and the
low values of the others confirm that the into-cores researchers and out-of-cores researchers are
the biggest source of the obtained cores’ instability.

13.5.1 Clustering of Scientific Disciplines According to Different
Operationalizations of Core Stability

Based on the calculated standardized indices (see Table 13.4 for non-standardized values of the
indices), the analyzed scientific disciplines are clustered using Ward’s agglomerative clustering
method and squared Euclidean distance. Three clusters were chosen on using the GAP Statistics
[33] and the obtained dendrogram. By observing the means of the calculated indices for each
cluster (see Table 13.4), the obtained clusters can be ordered from the least stable (cluster 1) to
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Table 13.4 The values of different indices for measuring the stability of cores for all analyzed scientific
disciplines by obtained clusters

Discipline A
R

I

A
W

1

A
W

2

M
A

R
IO

M
W

O
1

M
W

O
2

M
A

R
II

M
W

I1

M
W

O
1

Cluster 1 (unstable)

Biochemistry and molecular biology –0.16 –0.11 –0.27 –0.02 0.00 0.00 –0.03 0.00 0.00

Geology 0.09 0.11 0.07 0.00 0.02 0.00 0.00 0.01 0.03

Psychology 0.04 0.07 0.03 0.00 0.02 0.00 –0.09 0.00 0.01

Pharmacy 0.50 0.69 0.39 0.01 0.03 0.01 0.09 0.01 0.03

Physics 0.40 0.67 0.28 0.03 0.15 0.04 0.03 0.02 0.08

Neurobiology 0.43 0.68 0.32 0.00 0.08 0.01 0.03 0.01 0.09

Materials science and technology 0.33 0.26 0.45 0.01 0.06 0.02 0.02 0.01 0.04

Public health (occupational safety) 0.37 0.32 0.42 0.00 0.03 0.00 0.00 0.00 0.02

Biology 0.38 0.48 0.31 0.01 0.09 0.02 –0.02 0.00 0.04

Educational studies 0.32 0.34 0.31 0.00 0.04 0.01 –0.02 0.01 0.07

Linguistics 0.43 0.29 0.82 0.00 0.16 0.03 0.03 0.00 0.08

Electric devices 0.50 0.46 0.56 0.03 0.11 0.06 0.04 0.03 0.07

Metrology 0.42 0.44 0.40 0.01 0.16 0.04 0.00 0.02 0.09

Cluster 1 means 0.31 0.36 0.31 0.01 0.07 0.07 0.01 0.01 0.05

Cluster 2 (average)

Mathematics 1.00 1.00 1.00 0.05 0.27 0.08 0.01 0.01 0.09

Civil engineering 0.86 0.76 1.00 0.01 0.14 0.02 0.01 0.01 0.06

Energy engineering 0.81 0.75 0.88 0.01 0.15 0.02 0.05 0.01 0.09

Systems and cybernetics 0.70 0.57 0.92 0.04 0.19 0.09 0.12 0.04 0.15

Computer science and informatics 0.63 0.57 0.71 0.01 0.19 0.03 0.04 0.02 0.14

Telecommunications 0.69 0.89 0.56 0.04 0.35 0.08 0.06 0.02 0.09

Electronic components and technologies 0.62 0.47 0.91 0.01 0.13 0.03 0.11 0.03 0.19

Mechanical design 1.00 1.00 1.00 0.04 0.23 0.06 0.04 0.01 0.09

Process engineering 0.84 0.72 1.00 0.02 0.14 0.04 0.1 0.04 0.17

Textile and leather 0.80 0.80 0.80 0.03 0.18 0.04 0.00 0.03 0.10

Human reproduction 0.40 0.93 0.26 0.08 0.28 0.14 0.12 0.06 0.14

Metabolic and hormonal disorders 0.73 1.00 0.57 0.02 0.07 0.01 –0.02 0.01 0.06

Chemistry 0.60 0.46 0.89 0.01 0.17 0.02 0.04 0.01 0.17

Forestry, wood and paper technology 0.64 0.69 0.60 0.06 0.34 0.14 0.10 0.05 0.15

Animal production 0.49 0.51 0.47 0.06 0.19 0.13 0.06 0.01 0.06

Veterinarian medicine 0.52 0.68 0.43 0.04 0.15 0.05 0.13 0.05 0.09

Biotechnology 0.73 1.00 0.57 0.04 0.14 0.05 –0.01 0.01 0.04

Economics 0.71 0.64 0.80 0.01 0.14 0.01 0.01 0.01 0.07

Administrative and organisational sciences 0.80 0.67 1.00 0.06 0.11 0.09 0.05 0.01 0.19

Law 0.58 0.80 0.45 0.09 0.29 0.17 –0.14 0.06 0.22

Political science 0.86 1.00 0.75 0.01 0.13 0.02 –0.03 0.01 0.05

Historiography 0.57 0.68 0.49 0.08 0.39 0.20 0.05 0.07 0.09

Cluster 2 means 0.71 0.75 0.73 0.04 0.20 0.17 0.04 0.03 0.12

(continued overleaf )
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Table 13.4 (continued)

Discipline A
R

I

A
W

1

A
W

2

M
A

R
IO

M
W

O
1

M
W

O
2

M
A

R
II

M
W

I1

M
W

O
1

Cluster 3 (stable)

Plant production 0.90 0.84 0.97 0.15 0.45 0.34 0.11 0.05 0.19

Oncology 0.89 0.85 0.93 0.11 0.42 0.23 0.12 0.11 0.35

Chemical engineering 1.00 1.00 1.00 0.08 0.33 0.14 0.09 0.08 0.30

Manufacturing technologies and systems 0.95 0.90 1.00 0.06 0.43 0.12 0.11 0.07 0.25

Microbiology and immunology 0.88 0.86 0.91 0.09 0.32 0.16 0.25 0.16 0.26

Cardiovascular system 1.00 1.00 1.00 0.06 0.30 0.10 0.32 0.18 0.30

Sociology 0.52 0.55 0.50 0.06 0.36 0.16 0.25 0.14 0.23

Geography 0.36 0.29 0.49 0.03 0.15 0.12 0.22 0.12 0.21

Cluster 3 means 0.81 0.79 0.85 0.08 0.35 0.02 0.18 0.11 0.26

the most stable (cluster 3). Cluster 2 is named average since the values of all indices are closest
to the global means compared to the other groups. Table 13.5 summarizes some descriptive
statistics of other blockmodels’ characteristics:

• The percentage of the into-cores (% into-cores) and out-of-cores (% out-of-cores)
researchers. The percentage of into-cores researchers is defined as the ratio between the
number of researchers not in the cores in the first period and the number of researchers clas-
sified in the cores in the first period. In contrast, the percentage of out-of-cores researchers
is defined as the ratio between the number of researchers who joined the cores in the second
period and the number of researchers classified in cores in the second period. Since Slovenian
scientific disciplines are generally growing, the average share of into-cores researchers is
less than the share of out-of-cores researchers. However, a higher percentage of into-cores
than out-of-cores researchers is typical for the unstable cluster of scientific disciplines.

• The overall average core size (core size) and the overall number of researchers across clusters
of scientific disciplines (# of res.). The average core size is relatively small, with the smallest
in the case of the unstable cluster (3.9 researchers) and the highest in the case of the most
stable cluster (5.8 researchers). While a higher average core size is typical for more stable
scientific disciplines, a higher number of researchers per discipline is related to less stable
scientific disciplines.

• The number of scientific disciplines. The average cluster, according to the values of the sta-
bility measures, has the highest number of scientific disciplines, followed by the unstable and
the stable cluster.

In the Slovenian Research Agency’s classification scheme, scientific fields are further divided
into several scientific disciplines and then into scientific sub-disciplines. Based on this, most
scientific disciplines from the fields of engineering sciences and technologies (nine out of 14),
biotechnological sciences (four out of five), and the social sciences (four out of seven) were
classified in the unstable cluster. Most (five out of seven) scientific disciplines from the natural
sciences and mathematics were classified in the average cluster and three out of seven scientific
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Table 13.5 Basic descriptive statistics of the obtained clusters (averages on the
level of clusters are reported)

Cluster % into cores % out of cores core size # of res.

Cluster 1 (N = 13) (unstable) 72 67 3.9 322
Cluster 2 (N = 22) (average) 69 58 4.2 274
Cluster 3 (N = 8) (stable) 53 48 5.8 272
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Figure 13.8 Distribution of standardized values of the first canonical discriminant FUNCTION by
clusters.

disciplines from the field of medical sciences were classified in the most stable cluster. We
can say the most stable scientific disciplines come from the medical sciences and the most
unstable ones from the technical field and social sciences. Similarly, Melin [27] concluded that
researchers from the medical sciences field almost always work in teams and from time to time
collaborate with other teams. Kyvik [23] reports that the greatest number of multi-authored
papers in Norway is in medicine.

Since a scientific discipline’s affiliation with a certain cluster is a categorical variable, one can
check if the basic characteristics presented in Table 13.5 can be used to predict the cluster to
which a given scientific discipline belongs. To do this, discriminant analysis can be used. Since
there are three clusters of scientific disciplines, two discriminant functions can be calculated
based on the four explanatory variables presented in Table 13.5. Only the first discriminant func-
tion is statistically significant (p < 0.01), meaning that based on the four explanatory variables
one can separate well between the stable cluster (cluster 3) on one side and unstable clusters
(clusters 1 and 2) on the other. The discriminant functions are defined as linear combinations
of explanatory variables. In Figure 13.8, the first discriminant function is visualized. Here, the
highest values of the first discriminant function are characterized by a higher mean percentage
of into-cores (0.74) and percentage out-of-cores researchers (0.20) and a lower average number
of researchers in the cores (−0.31). The value of the standardized canonical coefficient of the
explanatory variable “number of researchers” is relatively low (−0.09) and therefore not men-
tioned in Figure 13.8. The centroids for each cluster are also marked, along with the distribution
of the standardized discriminant function for the disciplines by clusters.
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(a) Educational studies

(N = 379)

(b) Textile and leather

(N = 123)

(c) Microbiology and immunology

(N = 226)

Figure 13.9 Visualizations of researchers’ transitions between the cores, into-cores, and out-of-cores for
the two periods for the scientific discipline closest to the centroid in each cluster (the black rectangles on
the top and on the bottom correspond to the cores, the gray rectangles on the top correspond to the group
of into cores while the gray rectangles on the bottom correspond to the group of out of cores).

A scientific discipline from each cluster of the scientific disciplines was chosen to repre-
sent the cluster (the closest one to the centroid). The representative of the unstable cluster
is the scientific discipline educational studies (see Figure 13.9). Here, many into-cores and
out-of-cores researchers can be seen. Most pairs of researchers classified in the same core at
the first time point were not classified in the same core in the second period. The representa-
tive of the average cluster is the scientific discipline of textile and leather. Here, the share of
out-of-cores and into-cores researchers is lower. Some relatively large cores which remain rela-
tively stable in the second period can also be observed. This is more typical for the representative
of the stable cluster, namely microbiology and immunology.

13.5.2 Explaining the Stability of Cores

To analyze the differences in the stability of cores among scientific fields, Cugmas et al. [8]
classified the fields into two categories: the fields natural sciences and mathematics, engineering
sciences and technologies, medical sciences, biotechnical sciences in the category “natural and
technical sciences”, and social sciences and humanities in the category “social sciences and
humanities”. The selected features that reduced the stability of the cores were the splitting of
clusters and out-of-cores researchers and, therefore, the stability of clusters was measured by the
MAW1. They show there is no statistically significant difference in the average core stability.

Given the high level of variability in the characteristics of the co-authorship networks and the
blockmodel structures across scientific disciplines, the stability of the cores must be controlled
by some additional network and blockmodel characteristics. Therefore, to explain the differ-
ences in core stability across scientific disciplines, as controlling explanatory variables Cugmas
et al. [8] also included in the linear model 2 the characteristics of the networks (number of
researchers, growth from the first period to the second period in the number of researchers and
the growth of the density) and the obtained blockmodels (average core size, percentage of cores,
presence of a bridging core at the first time point, percentage of outgoers).

2 The Least Squares Method was used to estimate the parameters’ values. The correlations among independent variables
were observed before the parameters were estimated. After that, the Variance Inflation Factor was checked to further
investigate the potential problems of multicollinearity. The distribution of the residuals was also examined to identify
any problems of heteroscedasticity or other unsatisfied assumptions.
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The main results are presented in Table 13.6. Here, the humanities is used as the reference
field since many studies suggest that the social sciences are becoming more similar to the natural
and technical sciences regarding publishing behavior [22, 23]. In Table 13.6 (Model 1), one can
see there are no statistically significant differences between the humanities and other scientific
fields when the percentage of out-of-cores is not included in the model. However, when the
percentage of out-of-cores is included in the model, the differences in the mean stability of cores
between the humanities and the engineering sciences and technologies and the humanities and
the medical sciences become statistically significant (p < 0.10). Here, the scientific disciplines
of both fields are seen as more stable than the humanities. Since the percentage of out-of-cores
researchers forms part of the core stability index, the statistically significant differences between
the mentioned scientific fields are mainly the consequence of the splitting of cores.

The effects of some controlling explanatory variables are statistically significant at (p < 0.10)
as well. When the variable percentage of out-of-cores researchers is not included in the model
(see Model 1 in Table 13.6), the growth of the density and the average core size in the first

Table 13.6 The impact of the characteristics of the network, blockmodel, and disciplines on the
stability of the cores

Model 1 Model 2

b SE(b) p b SE(b) p

Intercept 0.0906 0.2027 0.66 0.8349 0.1840 0.00
Number of researchers
(first time period) −0.0002 0.0003 0.58 0.0001 0.0002 0.77
Growth of number of researchers
(first and second time periods) 0.0010 0.0015 0.53 0.0004 0.0010 0.72
Growth of density
(first and second time periods) 0.0015 0.0010 0.04 0.0091 0.0005 0.07
Average core size
(first time period) 0.0625 0.0177 0.00 0.0053 0.0152 0.73
Percentage of cores
(first and second time periods) −0.0054 0.0049 0.28 −0.0069 0.0033 0.05
Presence of the bridge
(first time period) 0.0404 0.0450 0.38 −0.0005 0.0313 0.99
Percentage of out-of-cores Not included −1.0160 0.1667 0.00

Humanities (reference category)
Natural science and math. −0.1511 0.0892 0.10 0.0378 0.0680 0.58
Engineering sciences and tech. −0.0120 0.0834 0.89 0.1339 0.0615 0.04
Medical sciences −0.0850 0.0954 0.38 0.1421 0.0748 0.07
Biotechnical sciences −0.0353 0.1008 0.72 0.0338 0.0694 0.63
Social sciences −0.0707 0.0844 0.41 0.0847 0.0626 0.19

Number of obs. (disciplines): 43 43
AdjustedR2 : 0.23 0.65
F Statistics: 2.151 (11; 31) (p < 0.05) 7.375 (12; 30) (p < 0.01)
Method of estimation: Least Squares Method Least Squares Method
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time period are statistically significant. The density is defined as the share of all realized ties
from all possible ties. The value is typically greater in the case of smaller networks with a low
percentage of researchers in the periphery and many cores with a lot of researchers included.
Therefore, together with the variable average core size, it can be argued that in the case of
greater density there are more researchers who co-authored only occasionally (semi-periphery)
and more complete cores with a higher number of researchers. The probability of creating ties
with new researchers is therefore lower and the stability of the cores is higher. Similarly, De Haan
et al. [10] mentioned that the size of a research group affects the persistence of collaboration.

When the percentage of out-of-cores researchers is included in the model (see Model 2), the
growth of density and the percentage of cores are statistically significant (p < 0.10) along with
the controlling explanatory variable percentage of out-of-cores researchers, which is highly sta-
tistically significant (p < 0.01). Since the latter is part of the definition of the response variable,
the percentage of explained variance of the stability of cores is much higher in the model that
includes percentage of out-of-cores researchers (Adjusted R2 = 0.65) compared to the model
where this variable is not included (Adjusted R2 = 0.23).

13.6 Conclusions

It is crucial to understand how modern science works to ensure that appropriate research and
development policies are adopted that lead to improved scientific output. Modern information
databases containing information about scientific bibliographic units can help in understanding
the formation and maintenance of co-authorships among researchers. Although the borderline of
scientific collaboration is unclear and there is no accurate way to measure it [20], co-authorships
can be seen as a rough operationalization of scientific collaboration, which is one of the pri-
mary results of scientific collaboration and represents one of the most formal manifestations of
scientific communication [16].

The co-authorship patterns were studied through co-authorship networks. These are net-
works where the vertices present authors (or researchers) and a link between them exists if
they co-authored at least one scientific bibliographic unit. Kronegger et al. [21] analyzed the
co-authorship networks of four Slovenian scientific disciplines (physics, mathematics, biotech-
nology, and sociology) in four periods (from 1990 to 2010). By observing the links among
researchers from different scientific disciplines they confirmed that different co-authorship cul-
tures exist between “lab” and “office” scientific disciplines. Publishing in co-authorship is more
common in “lab” sciences while solo-authored scientific units are more common in “office”
scientific disciplines where teamwork is not so crucial for the research. Hu et al. [18] classified
four scientific disciplines into two groups: theoretical disciplines and experimental disciplines.
They observed a stronger correlation between collaboration and productivity in experimental
disciplines compared to theoretical ones.

However, one of the chief interests of the study by Kronegger et al. [21] was the global
network structure. To analyze this, they used generalized blockmodeling on network slices
in four 5-year consecutive periods. They confirmed the network structure of multi-cores,
semi-periphery, and periphery was present in all scientific disciplines. It can happen that
the mentioned structure is not so outstanding at the earliest time points in some scientific
disciplines. They defined the core as a group of researchers who very systematically co-author
with each other, but who usually do not collaborate with researchers from the other cores. The
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semi-periphery consists of authors who collaborate with others within the network, but in a less
systematic way. It is not possible to cluster researchers from the semi-periphery into several
well-separated clusters. The last part, the periphery, is the biggest part of the analyzed networks.
Here are authors who published at least one bibliographic unit but as a single author or with
researchers from abroad (with researchers not registered at the Slovenian Research Agency).
Besides the main three types of mentioned positions, they observed so-called bridging cores.
These are groups of researchers who collaborate with at least two other cores.

Cugmas et al. [8] extended the analysis at the level of all Slovenian scientific disciplines.
Like Kronegger et al. [21], they analyzed data for the period between 1991 and 2010, but
only analyzed the data in two 10-year periods. The wider time span has an effect on the
network density. Despite this, there are some scientific disciplines without any links in the
first or second period, e.g. theology. These kinds of scientific disciplines were removed from
the analysis, leaving 43 out of 72 scientific disciplines for further analysis. The assumed
multi-core–semi-periphery–periphery structure was confirmed as being present in all analyzed
scientific disciplines. In many of them, bridging cores were also found. On average, the number
of researchers is increasing in time, also reflected in the higher average core size, which is
higher in the second period in both scientific disciplines from the fields of the natural and
technical sciences and scientific disciplines from the social sciences and humanities. Here,
the average core size is smaller in the social sciences and humanities in both time periods.
The differences may be affected by the fact that authors from abroad are not included in the
analysis since the rate of co-authored publications with researchers from abroad is higher in
the natural and technical sciences than in the social sciences and humanities. As reported by
Kronegger et al. [21], the main part of co-authorship networks is represented by authors from
the periphery, which is generally decreasing over time.

Another important property of co-authorship networks is that the cores can emerge in time,
disappear, split, or merge. To measure the stability of cores, operationalized with these four
rules in different ways, several indices were proposed. The value of each was calculated for
each scientific discipline and, based on this, the scientific disciplines were clustered in three
clusters. The observation of these clusters reveals that, according to the values of the proposed
indices, they are mainly characterized by different levels of cluster stability and can therefore
be ordered from least to most stable. The majority of scientific disciplines were classified in the
stable–unstable cluster (22 scientific disciplines) while only a few were classified in the most
stable cluster (eight scientific disciplines). It turns out that the average percentage of researchers
classified in the cores in both periods is increasing along with the stability of the clusters. On
the other hand, the percentage of researchers leaving the cores in the first time period and the
percentage of researchers joining the cores in the second period is decreasing with the average
stability of cores with the obtained clusters. The average core size is higher in the most stable
cluster of scientific disciplines, indicating the existence of well-established scientific research
teams in these scientific disciplines.

A higher average number of researchers is associated with less stable cores. There are several
explanations for this phenomenon, including the fact there are many opportunities to collabo-
rate with different researchers in bigger scientific disciplines. The others are chiefly related to
national research and development policies (e.g. the Young Researchers Program) and the nature
of the work in such scientific disciplines (e.g. lab vs. office scientific disciplines or natural and
technical sciences vs. social sciences and humanities).
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To explain the differences between the natural and technical sciences and the social sciences
and humanities, Cugmas et al. [8] performed a linear regression in which several network-
and blockmodel-related variables (number of researchers in the scientific discipline, growth
in number of researchers, growth in density, average core size, average percentage of cores,
presence of a bridge) were included in the model as explanatory variables, while the stability
of cores (response variable) was operationalized by the MWI1, where the splitting of cores and
out-of-cores researchers reduces the value of an index and thus indicates lower core stability.
There were no statistically significant differences in the mean stability of cores between the nat-
ural and technical sciences on one hand and the social sciences and humanities on the other. This
could be caused by many differences in the publication culture within these two groups of sci-
entific disciplines (which is also a consequence of the characteristics of the Slovenian Research
Agency’s classification scheme of scientific fields, disciplines, and sub-disciplines). In fact, even
within some scientific disciplines the publication cultures vary widely. Moody [29] found that
quantitative work is more likely to be co-authored than non-quantitative work in sociology.

Yet, when the analysis is performed on the level of scientific disciplines, the scientific disci-
pline natural sciences and mathematics is statistically significantly (p < 0.10) less stable than
the field of the humanities. The growth of density and the average core size are also statistically
significant (p < 0.05) and positively correlated with the stability of the cores. When the addi-
tional variable percentage of out-of-cores researchers is included in the model, the difference
in the average stability of cores between the humanities and medical sciences becomes statis-
tically significant (p < 0.10). Here, it must be highlighted that when the variable percentage
out-of-cores researchers is included in the model, only the splitting of cores is seen as a feature
indicating a less stable core.
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As noted in the opening chapter, our aim in designing this book was to have a sustained exam-
ination of the general topic of network clustering. A clustering is a general term that means a
set of clusters. Clustering also refers to a process for establishing a clustering. There are several
types of clusterings, including a partition (a set of clusters that do not overlap and cover the
whole set of units), a hierarchy (usually represented by a dendrogram), a pyramid, a fuzzy clus-
tering, a clustering with overlapping clusters, and a clustering with disjoint clusters not covering
the whole set of units. We use the more general term, clustering, throughout our discussion of
the contributions contained in the book’s chapters. However, when contributing authors use the
terms partition and partitions, we use these terms.

Another goal for us was to make sure we included multiple perspectives and approaches to
the problem of network clustering. As the foregoing chapters show, this topic is a highly diverse
realm, both technically and substantively. We have much to learn from each other on both the
technical and substantive fronts, at least when freed from the restrictions imposed by academic
departments, fields, sub-fields, and different specific approaches. In an ideal world, generating
knowledge transcends such constraints.

Even though many of the contributing authors ended their contributions with open prob-
lems, we use this concluding chapter to make additional suggestions regarding potential future
work. Our suggestions and speculations take two forms. One is to focus on issues raised in the
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individual chapters. The other deals with linking ideas considered in separate chapters of this
volume.

14.1 Issues Raised within Chapters

We start with Chapter 2. Given that the network clustering literature has expanding at a rapid
rate and will continue to do so, it makes sense to obtain the citation network for this literature
for 2020. No doubt the identified network will be much larger. More importantly, it will include
additional fields, new contributors, new perspectives, and new issues. All will merit further
attention. We think the coupling of ideas from multiple fields will be particularly important.

The authors of this chapter identified a set of nine link islands as shown in Figure 2.7. They
are an example of a partition not including all the units in the network. While they focused on
four of them, the others could be examined further. They all have distinct structures, which raises
the question of whether the details of network structure in citation networks have import for the
generation of scientific knowledge and its transmission over time. More generally, this concern
could be folded into the general issue of the impacts of network structure on network processes
and the design of networks to achieve specific objectives. This is a general topic of considerable
importance for the study of clustering all networks. While three of these link islands had little
to do directly with the core clustering topics of this book, the general issue remains: How does
the structure of a citation network inform our understanding of how knowledge is generated and
transmitted?

The authors, both in this chapter and in their earlier work [3], suggest that the institutional
structure of science has a very large impact on the generation of scientific knowledge and the
generation of scientific citation networks. In this context, journal citation networks seem partic-
ularly important. Some are controlled by publishers such as Elsevier, Springer, and Wiley. But
many are sponsored by professional associations defined for disciplines and specific scientific
interest groups. Many of these associations are focused on promoting their scientific interests
and those of their members. This includes the nature of publishing strategies and the promo-
tion of their journals. Journal citation networks seem worthy of greater attention. There are
two distinct but overlapping aspects to this. One features journal-to-journal networks in specific
areas of scientific inquiry, as described in Chapter 2, with the second being the study of jour-
nal networks across all disciplines. See, for example, [12] which is part of a long term effort
studying journal-to-journal networks. Bibliographic coupling, a relatively old idea introduced in
1963 [11], also merits further attention, especially with the other link islands identified by these
authors. Also, it will be desirable to do more with fractional bibliographic coupling, especially
with the Jaccard islands they identify.

In Chapter 3, the optimization approach to the clustering problem was advocated. Using an
appropriate criterion function, we can express our clustering goals, including the reduction of
complexity, understanding network structures, and modeling networks. Together, optimization
and the sought goals help define the nature of a “good” clustering. Additional knowledge about
the specific clustering problem can be expressed using the feasibility predicate which defines
the set of feasible clusterings.

Also mentioned in this chapter was that most of the existing social network clustering
approaches are essentially based on structural equivalence. In [8] a generalized blockmodeling
based on different types of equivalences is described. Current procedures for generalized
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blockmodeling can be applied to networks with up to some hundreds of nodes. An important
task is to develop efficient methods for generalized blockmodeling of large sparse networks.

Regarding Chapter 4, we were intrigued by the content of Figure 4.2 because it illustrated two
community partitions highlighting different aspects of networks as reflected in these partitions.
This seems particularly important. We have long thought that multiple partitions of the same
network have value and that the notion of having, or even wanting, a single partition of a net-
work as the “best” one makes little sense. This idea also was expressed in multiple chapters in
this book, albeit in different substantive contexts. If anything, this suggests that having multiple
partitions of the same network has considerable merit and examining them closely is impor-
tant for understanding the interplay of network structures and the network processes generating
them. Of course, this observation extends to multiple clusterings of the same network.

Given that the authors of this chapter noted the value of examining differences among the four
perspectives regarding community detection, as they outlined them, examining these differences
further is another important task. One of their four approaches has a consideration of a dynamical
perspective which merits further attention. This is important, and we comment further on this in
the next section because the issue of dynamics was raised in multiple chapters. Such ideas need
to be considered in conjunction.

Chapter 5 presented a different approach to the partitioning networks that were considered
therein, one that is very fast. To examine how the algorithm works, the author used planted com-
munity structures to explore the operation of label propagation algorithms. This is an important
idea not only in its own right but in a far more general context. While it is abundantly clear that
networks have diverse structures, most often obscured in the construction of simple networks
indices such as modularity and centrality measures, examining the global partition structure of
networks is of great importance. This suggests a need to examine a more extended set of planted
structures. In turn, this raises the issue of generating a catalog of network structures with differ-
ent global forms from which planted structures could be selected. Many discussions in this book
examined related ideas regardless of whether these structures are planted, used as demonstration
examples, or were designed to examine certain structures in the context of networks clustering.

The inclusion of node preferences in Chapter 5 is important also and forms a step towards the
inclusion of node properties in the network clustering algorithms explicitly considered therein.
This is a line of inquiry that blockmodeling folk need to consider given their preoccupation with
clustering networks without being attentive to nodal attributes. Depending on the substantive
concerns of analysts, the set of constraints provided in this chapter could be expanded along
with increasing the number of node preference regimes that could be included.

Two further items in Chapter 5 have the potential for opening new avenues of inquiry. One is
to use label propagation methods on a much wider set of empirical networks, a topic to which
we return later. The other is the consideration of having partitions with overlapping clusters and
groups. This issue, having importance for blockmodeling as well as community detection, was
raised in other chapters in this volume.

But as noted in Chapter 1, and discussed extensively in Chapter 6, clustering, or even mere
partitioning – and studying – valued networks is far from being a straightforward task. Yet it
must be done. The authors of Chapter 6 claim that when pre-specified blockmodels are needed,
generalized blockmodeling approaches are preferable. While we agree, we would argue that
more work is needed to construct a wider range of pre-specified blockmodels. This includes
going far beyond using only structural equivalence to include many other equivalence types.
The generalized blockmodeling approach is designed to facilitate the creation of many different
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types of equivalences. As a concern for network clustering is present in so many fields, it is
highly likely that the specifics of network structures in these fields will generate the construction
of new equivalence types. In general, such constructions must be driven by substantive concerns
which will vary by fields.

The authors of Chapter 6 consider a very small number of valued networks, albeit to a very
useful effect as the resulting partitions that were established are interesting both in terms of
the partitions produced and the substantive interpretations that followed. However, in a much
broader context, the number of considered valued networks must be expanded greatly both by
those using the procedures outlined in this chapter and in the employment of other methods. As
the authors note, their extension of partitioning networks is a natural - and necessary - extension.
Partitioning and, more generally, clustering many more valued networks can only expand our
understanding of dealing with valued networks.

At face value, the content of Chapter 7 may strike some readers as having limited importance
by being confined to relatively small networks. But consistent with the idea that research design
matters is the notion that data quality matters. It matters greatly how data are obtained, espe-
cially for recording data accurately and not discarding useful information. The authors focused
on actor non-response and provided methods for dealing with this problem. This is very use-
ful for recovering a full network accurately, especially for delineating the global structure of
such networks. This line of inquiry has been applied also to the study of network centrality
indices [13].

Yet attention to both errors in the recording of ties and item non-response may have even
greater importance. Detecting actor non-response is straightforward. Discerning the presence
of the other two forms of measurement error is much more difficult. Doing this is a task of great
importance.

It will be straightforward to conduct studies of these types of measurement errors with tech-
niques similar to those used in Chapter 7. The value of such efforts would depend on our ability
to detect such measurement errors. One of the data sets considered in Chapter 7 came from a
study asking questions about seeking advice from others and providing advice from others in
an organization. If the data are accurate, the transpose of one relation would correspond to the
other. Discrepancies between the two networks provide clues regarding item-specific measure-
ment error. It would be useful to have a collection of data sets with such “reversed” relations to
detect differences as measurement error and get an estimate of the amount of inaccuracy in the
reporting of such ties.

Having high quality data is of critical importance when studying the structure of networks
and the processes generating these structures. This applies to all network data sets regardless
of their sizes. While it may be tempting to think that measurement error is irrelevant for large
networks, especially very large networks, we think this view would be mistaken. As was shown
in Chapter 2, it is critical to “clean” the data, even for large networks. If the techniques described
in Chapter 7 cannot be extended easily to much larger networks, then other ways of assessing
the presence of measurement error and treating such errors must be developed. Error-prone data
are not a good source for understanding network structure nor for understanding the processes
generating them.

While on the topic of data quality, a more general statement can be made. An important
base for developing data analytic methods is the availability of a collection of data sets specific
for each selected problem. Information about data sets for network analytic problems can be
obtained, for example, at the Colorado Index of Complex Networks (ICON) [1]. Unfortunately
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for some combinations of network “dimensions” (mode, weighted, node attributes, linked, tem-
poral, spatial) the corresponding data sets are very scarce or non-existent. For example, for the
linked networks discussed in Chapter 10, only a few interesting network collections are avail-
able. This needs to be expanded. Also, to study and develop methods for temporal network
clustering [2] it is necessary to have some temporal networks with node attributes.

Chapter 8 is devoted to partitioning signed networks. By taking a formal approach, the authors
laid the foundations for further work in this area, foundations we hope others can build upon.
In this context, further developments regarding weak structural balance will be useful. Within
the blockmodeling approach, the authors note that the criterion function used for partitioning
signed networks contains a parameter, 𝛼, allowing for differential weighting of two types of
inconsistencies. One is the presence of negative ties in positive blocks and the other concerns
having positive ties in negative blocks. The formulation was a natural extension with 𝛼 = 0.5
being used most often. But it created what can be called the alpha problem: How can values for 𝛼
be selected? While using 𝛼 = 0.5 made considerable sense, it can be view as an arbitrary choice,
especially if the numbers of negative and positive ties differ greatly. Using different values for
this parameter, most often, leads to different partitions of signed networks regardless of the
number of clusters. The problem is simple to state: Is there a principled way of selecting values
for 𝛼? Some attention has been given to this but without any clear resolution emerging thus far.

The authors couple the partitioning of signed networks to community detection approaches.
In doing so, they expand the concept of modularity, defined initially for unsigned networks, to
deal with the presence of signed ties. This is particularly useful, and we look forward to future
efforts extending this line of analysis. Similarly, using spectral methods and considering the
constant Potts model was useful. A book review article of two books, produced by physicists
studying networks, introduced the idea of “The Invasion of the Physicists” [4]. Bonacich was
very clear that there were some good ideas in this literature, despite the very colonial claim that
the physicists had invented a totally new field, called network science, to which members of the
social network field needed to be attentive. There were two reactions to this invasion. One was
outrage, a very narrow parochial response. The other was to think that the “old” social network
analytic field needed to pay attention. Chapter 8 expresses this attentiveness.

In the design of this volume, only one chapter was devoted to signed networks. But this type
of network was mentioned in other chapters. We consider this further in the next section when
we look at links between many ideas expressed in different chapters of this volume.

The authors of Chapter 9 are most explicit in affirming the idea of making connections
between different parts of the overall network clustering literature. Their idea of extending the
modularity concept, defined in the community detection literature, to two-mode networks has
great appeal. We hope that their approach to two-mode data and using both projections from
such data will end, once and for all, the debates about the loss of information when projections
are made. The authors make a connection to signed two-mode networks with suggestions for
future work which we hope will be heeded. They also consider the use of spectral methods and
advocate the use of two-mode stochastic blockmodels. Clearly these ideas make explicit links
to other chapters when the use of spectral methods was raised.

Chapter 9 presents multiple partitions of a classic two-mode data set. This is fully consistent
with our idea of having multiple partitions of the same network that have legitimacy if they can
be interpreted in substantive terms. Our hope is that the ideas expressed in this chapter can be
extended to larger – even much larger – two-mode networks. We concur with their view that
“the complexities of this type of data in terms of collecting, analyzing, and interpreting remain
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challenging and deeply fascinating.” They have provided practitioners with some very useful
advice.

Chapter 10 presented ideas associated with blockmodeling linked networks conceived as
collections of different one-mode networks coupled through two-mode networks. The strong
message of this chapter, after multiple comparisons, is that the true-linked approach for ana-
lyzing linked networks has great promise. As only two empirical examples were considered,
it would be useful to have other such networks analyzed in the same fashion. One of the open
problems outlined in Chapter 10 concerns combining multiple criteria, expressed as criterion
functions. The author links this idea to other work in the literature on multi-criteria partitioning,
another observation fully consistent with the overall inclusive and integrative approach stressed
in this volume. On the topic of multi-criteria partitioning of networks, some work has been done
that we think will proved useful (see [9] and [5]). We note that having one-mode networks for
different time points opens this approach to temporal dynamics, which we consider later in this
chapter. Another link is made to stochastic blockmodeling, the topic of Chapter 11.

In our view, it does not matter if readers take a frequentist approach or Bayesian approach
to analyzing data. Adherents of both perspectives will learn a great deal from considering the
contents of Chapter 11. While the prose in this chapter comes perilously close to insisting that
the Bayesian approach is the only viable approach, we do not think this is the author’s intent. If
so, the frequentists need to pay close attention to the contents of this chapter.

One of the key, and in our view, fundamental ideas expressed in this chapter is the idea of
coupling generative mechanisms, as parts of general processes, to the coarse-grained modular
structure, regardless of how fine-grained or coarse-grained are such depictions. We would extend
this to a general statement about the coupling of network structures and the processes gener-
ating them. This idea is particularly relevant for many blockmodeling aficionados focused on
depicting the macro structure of networks without considering the underlying network processes
generating the identified network structures. In general terms, this is particularly important.

It is abundantly clear that the notion of a “model” is critical, for models can vary greatly,
and that considering variations in models is important when thinking about network clustering.
Without doubt, as the author of this chapter notes, having a multiplicity of models is a strength -
but not only in a probabilistic sense. We cleave to a view that having multiple clustering models
fitted to a network is important and that multiple such clusterings have the potential to suggest
important ideas about network structure. Discerning the “best” such model may be a quixotic
quest. But we agree with the author that any delineated clustering must have solid evidence that
the fitted model is appropriate and justified.

Chapter 12, as noted in the opening chapter, picks up the idea of delineating coarse-grained
structures of networks but within an explicit dynamic perspective. Their focus is on the “rich
interplay between network structure and dynamics acting on top of the network” as a way of
gauging the dynamical behavior of a network system. While we know that empirical networks
have actors joining the network and other actors departing, it seems very useful to consider
changes in the properties of actors located in a specific network. Not all problems can be solved
at the same time. Examining change over a fixed network has considerable merit, especially if
this can be generalized, as the authors note.

As a general framework for studying change, using a differential equation model for con-
tinuous data, or a difference equation model for discrete data, is especially appropriate. The
authors of Chapter 12 focus on consensus dynamics in a specific empirical network along with
a discussion of random walks in networks. Coupling them as dual processes is especially useful.
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It is well known that there are slow processes with a relaxed time scale for their operation and
fast processes where the dynamics operate far more quickly. At face value, this applies across
the entire network.

The idea of having a modular partitioned network for which the time scales for different parts
of a network differ is especially intriguing. The authors consider a specific modular structure in
the form of a diagonal blockmodel. This could be extended to other blockmodel structures. The
ideas presented in Chapter 12 on the dynamics for signed networks are considered in more detail
in the next section. The idea of incorporating dynamical processes to reveal network structure,
as outlined in this chapter, has additional appeal. While the substantive content of Chapter 13 is
focused on scientific coauthorship networks, the issue of dynamics is present also. The technical
context is blockmodeling with a focus on identifying cores and discerning their stability over
time as well as the instability of cores. The presence of cores is a critical feature of the structure
of coauthorship relations within scientific communities. The presentation of useful indices for
measuring the stability of cores is particularly useful, as are the visualizations of the movement
of researchers between well-identified positions in a co-authorship network. It seems reasonable
to think that these tools could be applied fruitfully to many other types of networks when there
are temporal changes.

14.2 Linking Ideas Found in Different Chapters

A wide variety of approaches and methods related to network clustering have been presented in
different chapters. While they could be viewed as rivals, it seems more fruitful to think of them
as sources for ideas that could be coupled in a fruitful fashion. One general idea is to think of
identifying, or creating, data sets where the different methods and algorithms could be used to
cluster networks. Of course, there will be no one network for which all the methods could be
applied. Differences regarding valued ties, signed ties, the number of relations studied, and the
sizes of networks makes this impossible. But for various network types, a subset of the methods
presented in this book could be mobilized. This notion can be coupled to the idea of having a
catalog of different structures for which different methods, as shown in this volume, could be
applied to useful effect.

The goal would not be to find a so-called winner but to examine the insights generated by each
of the methods. As we know, every approach has its assumptions and some constraints implied
by these assumptions. It follows that using as many different methods as possible allows us
to assess the value of the clusterings that are obtained. They can be compared in a systematic
fashion. A core feature of this effort must be grounded in the substantive concerns specific to the
fields within which network data are collected. Establishing clusterings is not the final product,
for they must be interpreted to help researchers understand the structures of networks and, if
possible, the processes generating them, or outcomes generated over networks.

Perhaps a less ambitious path would be to combine ideas from different methods to construct
different ways of thinking about tools and establishing additional methods. As a modest step in
this direction, we consider linking ideas expressed in the specific chapters of this book. In our
view, there is some value in drawing clear distinctions between different approaches to better
understand both their strengths and limitations.

There may be researchers who think that any approach not labeled as community detection
has little value. And there are others thinking that blockmodeling covers all possible network
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clustering approaches. Both views are mistaken. We have doubts about universalistic claims
for single approaches. There are claims that community detection covers everything [10]. Some
authors of this volume note that community detection is a special case of blockmodeling, a view
on which we have commented already. Others claim that the whole field of network clustering
is subsumed within stochastic blockmodeling [14].

Chapter 2 and 4 consider some of these issues. Clearly, blockmodeling and community detec-
tion have some common features. They also have different literatures, as documented in Chapter
2, suggesting there are some real differences between them. We doubt this is merely a matter
of perception. It would be useful to have clear exploration of their similarities and differences
to establish a succinct statement about them. The goal would not be to see which is “better”, a
foolish quest, but to explore ways of combining ideas from both approaches to strengthen each
of them.

One technique used in Chapter 2 was the identification of coherent parts of networks without
establishing a partition of the entire network. Both the community detection and blockmodel-
ing approaches seek partitions of entire networks. We think it would be useful to compare the
results of identifying link islands and complete partitions to couple the interpretations that each
approach yields. There may be other ways of identifying smaller parts of networks that could
be included in such comparisons.

The authors of Chapters 4 and 9 examine closely the role of modularity as it pertains to
network clustering. In doing so, they expand the formulation of this concept and provide addi-
tional operational equations. This idea is considered in other chapters also. It would be useful
to develop these ideas further in a sustained effort. It seems important to examine whether mod-
ularity could be used in the formulation of some criterion functions used in blockmodeling.
Considering whether some of the blockmodeling criterion functions could be used to reformu-
late definitions of modularity would be another avenue for exploration. Again, the objective is
one of having ideas flow between different approaches.

Many chapters consider criterion functions that are optimized when delineating clusterings,
with a wide variety of them being employed. It would be useful to examine the ways that vari-
ations across them have an impact on the clusters that are established. Also, the relationships
among different criterion functions need to be studied in detail.

Chapter 5 examined label propagation with a suggestion that this approach could be used for
signed networks. Chapter 8 focused on clustering signed networks. Could label propagation be
useful for solving some of the clustering problems for signed networks? We certainly hope so.
Chapter 8 settled for partitions consistent with strong balance, leaving open the issue of using
weak balance for such networks in future work. One example in the literature [7] showed there
were severe problems with the standard signed blockmodeling approach due to its handling of
positive ties. The signed community detection approach had major problems with its handling
of negative ties. Label propagation for signed networks has the potential to solve both problems.

There is a clear divide between deterministic approaches to network clustering and proba-
bilistic methods. Chapter 11 is resolutely within the latter approach using Bayesian ideas. The
authors of Chapter 9 and 12 make explicit links to stochastic blockmodeling, an idea meriting
detailed attention. More generally, it would be useful to have a systematic assessment of the
results stemming from the uses of deterministic and probabilistic approaches. Again, the goal
would not be to establish which is the better approach but to see if there are complementary
results and to explore any differences to see why the clustering results differ.

We turn to consider network dynamics. Chapter 11 and 12 are focused on dynamic change,
albeit in very different ways. In thinking about change in networks, the mechanisms involved in
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network processes are critical. Being able to specify them and understand their operation has the
utmost importance. This is the clear message in both chapters despite taking starkly different
approaches. In the spirit of wanting to couple different ideas, we wonder if this can be done
with these two approaches. At face value, this could be useful even though the technical issues
involved will be fearsome. A step in this direction is provided in [6].

The authors of Chapter 12 tackle also signed networks within the rubric of structural balance.
This is an ambitious approach with the potential of being very fruitful. However, it requires
abandoning the notion that the network is fixed. The study of signed networks involves the
examination of changes in the signs and strengths of ties. If actors drop out of such networks,
or others join, the task becomes far more complex. We note that Chapter 4 also has a dynamic
component that could be incorporated into this discussion.

14.3 A Brief Summary and Conclusion

Many ideas and issues have been raised throughout the book. As noted above, many avenues
have been opened for future work on network clustering. We finish by stressing two very general
ideas. One is the importance of the exchange of ideas between different approaches with the goal
of strengthening them. The second is the coupling of network processes and network structures
to help us understand both. Our hope is that this book will help promote these general issues as
well as all the ideas contained in its chapters. If it helps in doing this, then this volume will have
the impact we hoped it would have.
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generalized, 261
two-mode, 261

criterion function, 66, 164, 390, 396
cluster error, 67
conductance, 109
cut size, 108
extended, 85
general, 75
generalized Ward’s, 73
greedy approximation, 83
modularity, 6, 74, 105, 106, 109, 130, 239, 253, 396
penalty method, 78
sensitive, 73
simple, 67

cut, 22
cut-based perspective, 3, 106, 107
cycle

chordless, 231
fundamental, 229, 237
sign, 5

data quality, 392
dataset

EIES friendship, 168
EU/EFTA 2010, 173
the Correlates of War (CoW), 243

degree of balance, 232
degree-correction, 110, 365
degrees of separation, 146
density, 384, 386
dichotomization, 151, 154, 157, 169, 173
differential equation, 8, 337, 394
diffusion dynamics, 112
diffusion process, 8, 106, 340
disambiguation, 13
discriminant analysis, 381
dissimilarity, 67, 69, 365

average, 94
corrected, 89, 200, 201, 365
distance, 68
Euclidean, 69, 90, 161, 198
Hamming, 69
Mahalanobis, 72
maximum, 94
minimum, 94
Minkowski, 69
mixed units, 72
reducibility, 83
squared Euclidean, 78
transformation, 71

distribution
Bernoulli, 110
degree, 110, 157
Poisson, 110

dual process, 8, 394
dual projection, 254
dynamic process, 3, 7
dynamic programming, 79
dynamical behavior, 334
dynamical function, 112
dynamical perspective, 106, 111, 116, 391, 394
dynamical system, 337
dynamics, 106, 334, 391, 394

consensus, 8, 338, 394
polarized opinion, 348
second-order Markov, 114
short-term, 113

eigenvector, 107, 233
centrality, 133

ensemble equivalence, 298
entropy, 113
equivalence, 365

regular, 110, 162
stochastic, 3, 110, 114
structural, 4, 110, 121, 142, 158, 160, 169, 189, 190,

193, 272, 278, 390
deviational, 162, 180

type of, 390, 392
evolution, 6

faction, 227
fragments spectrum, 87
friendship, 114

GAP statistics, 380
generalized

center, 74
criterion function, 73
Huygens theorem, 74
Jensen equality, 79
Ward’s method, 78

generative
mechanism, 394

global null-model, 109
graphlets, 87
group

assortative, 142
disassortative, 142
hierarchical, 140
overlap, 140, 261

Hadoop, 137
hypothesis testing, 111
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image matrix, 171
imputation method, 5, 199, 212

hot deck, 192
mean value of incoming ties, 196, 197, 209
median of the 3 nearest neighbours, 197, 200, 205
median of the k nearest neighbors, 222
modal value of incoming ties, 196, 205, 209, 216, 218
null tie, 198, 200, 205, 210, 212, 216, 218
preferential attachment, 192
reconstruction, 192, 197
total mean, 197, 205, 209, 216, 218

index
adjusted Rand, 5, 367, 378
relative acceptance, 159
standardized, 378
Wallace, 367, 378

inertia, 74
Institute for Scientific Information, 47
Institute of Information Science IZUM, 369
international trade, 155, 174
interpolation, 80
invariant, 87

subspace, 345
item non-response, 192, 392

Jaccard
island, 53, 390

keyword, 2, 57
knowledge, 364

label
equilibrium, 124
inclusion, 123
maximal, 123
oscilation, 123
propagation, 121, 391, 396

asynchronous, 4, 124
balanced, 134
defensive, 131
hierarchical, 140
offensive, 131
optimization, 127
synchronous, 4, 123
under constraints, 129, 146
with preferences, 130

retention, 123
ties, 123

Lance-Williams-Jambu formula, 81, 83
learning

unsupervised, 106
lemmatization, 19
line index of imbalance, 232, 233, 235, 236, 241
linear model, 382
link cut, 90

link island, 2, 35, 390, 396
linked view, 274
local optimization, 3, 76, 276

local minimum, 77
local transformation, 76
neighbor, 76
neighborhood, 76, 122
procedure, 77
relocation, 77, 164
transition, 77
transposition, 77

locally tree-like, 325

main path, 30, 33
CPM, 2, 20, 26
key-route paths, 2, 20

map equation, 113, 130
Markov chain Monte Carlo (MCMC), 314
Markov stability, 113, 352
Markovian diffusion process, 112
matrix

adjacency, 107
Laplacian, 108, 112

measurement
error, 4, 189–191, 392

actor non-response, 4, 189, 190, 192, 193
item non-response, 4, 190, 192
recorded ties, 4, 190

respondent
error, 190

scale, 66, 153
interval, 153

meta matrix, 268
method

agglomerative
with relational constraints, 90

minimum description length (MDL), 111, 299
missing data treatment, 189, 190, 193
model

difference equation, 394
differential equation, 394
Hamiltonian, 128
ising, 128
Potts, 130, 393

absolute, 130
constant, 129, 130
ferromagnetic, 128, 129
q-state, 128

modular structure, 7, 333
module, 106, 113, 334

flow, 115
Monte Carlo simulation, 369
motif, 116
multi-step path, 112
multilevel method, 7
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network
acquaintance, 168
acyclic, 14
airline, 112
authorship, 2, 41
Barabasi–Albert, 112
benchmark, 105, 111
binary, 111, 189, 190, 210, 216
bipartite, 138, 251
borrowing, 202
boundary, 369
citation, 1, 12, 19, 144, 390
citations among authors, 98
clustering, 1, 106, 389, 392, 396

literature, 1, 2, 390
temporal, 393

coauthorship, 270, 363, 365, 395
complex, 74
component, 2
design, 390
directed, 122, 137
dynamics, 333, 351
ego, 157
empirical, 110
Erdös–Rényi, 114
fixed, 394
journal, 2, 47
keyword, 2
large, 3, 121, 167, 391
LFR benchmark, 115
linked, 6, 267, 284, 394
mechanism, 396
multilayer, 113, 139
multilevel, 267, 277, 282, 285
multimode, 6, 122, 139, 251
multiple links, 3, 111
multiplex, 162
multirelational, 139, 395
multiway, 251
nearest neighbor, 94
neighborhood, 77, 122
normalized, 98
one-mode, 251
partitioning, 45, 107
process, 390, 391, 394
random

model, 112
recovered, 5
science, 393
scientific, 395
signed, 3, 5, 8, 33, 137, 225, 257, 348,

395–397
social, 1

literature, 2
sparse, 3, 94, 391

structure, 390, 391, 394
catalog, 391, 395
core periphery, 189
fixed, 7
hierarchical, 189

temporal, 6, 267, 365
time scale, 8
transformation, 88
two-mode, 3, 13, 138, 251, 252
undirected, 106, 107, 112

simple, 121
valued, 4, 122, 151–153, 190, 392

newcomer, 367
node attribute, 391
node coloring, 133
node preference, 131, 391
node set constraint, 270
normalization, 157

iterative, 158, 159
number of clusters, 278

Occam’s razor, 291
opinion formation process, 338
optimization problem, 3
overfitting, 290
outgoer, 367

p-value, 111
Pajek, 12, 95, 99, 201
partitioning, 106, 121
pathway, 113
Pearson correlation, 161
penalty function, 78
People You May Know, 146
periphery, 8, 175, 377, 384
personal bibliography, 369
phase transition, 323
planted community, 4, 391
planted group structure, 111
polarised state, 350
position, 8
positioning sets of selected works, 30
prediction

missing links, 111, 321
spurious links, 321

professional association, 390
program, 201
projection, 6, 252

dual, 6, 254
proportion of incorrect block types,

201
publication culture, 386
publication performance, 364
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QAP correlation, 199
questionnaire design, 190
quotient graph, 345

R package, 268
Rand index, 199

adjusted, 199
random walk, 112, 113, 115, 131, 340, 394
ratio cut, 107
reciprocity, 216, 222
regression, 378, 386
relational capacities

unequal, 152
relational capacity, 4
representative, 73
research design, 392
research group productivity, 2, 41
researcher

into-cores, 373, 378, 380
out-of-cores, 373, 378, 380

resemblance
dissimilarity, 67
order equivalent, 70

resolution limit, 109, 302
resolution parameter, 109

science studies, 363
scientific

discipline, 369, 380
experimental, 384
lab, 384
office, 384

scientific community, 395
scientific knowledge, 390
scientific knowledge production, 8, 390
scree diagram, 169, 177, 272, 278
semi-periphery, 8, 175, 385
separate analysis, 268, 269, 272, 278
signed

adjacency matrix, 226
Laplacian, 234
link, 393, 395
network, 225, 336

Slovenian Current Research Information System
(SICRIS), 369

Slovenian Research Agency (SRA), 369
social distance, 161
Spark, 137
spectral theory, 5, 233, 258
stability, 133, 189, 365, 370, 378, 385
statistical fluctuation, 112
stochastic blockmodel, 106, 110, 129, 133, 260, 292

annotated, 313
Bernoulli, 292

degree-corrected, 306
detectability-indetectability transition, 327
dynamic, 313
generalized communities, 313
geometric, 293
microcanonical, 298
mixed-membership, 310
multilayer, 313
nested, 302
overlapping, 310
Poisson, 294
weighted, 313

strong community, 124
structural balance, 5, 8, 226–228, 348,

351, 397
strong, 5, 8, 231
timeline, 244
weak, 5, 230, 393, 396

structural property, 87, 89
structural role, 110
structure

assortative, 110
cognitive, 363
community, 105
core-periphery, 364
evolution, 364
global, 391
latent group, 109
modular

coarse-grained, 394
multicore-periphery, 364
multicore-semiperiphery-periphery, 364, 385
non-clique, 108
social, 363

structure theorem, 227, 230
first, 227
second, 231

switch, 235
symbolic object, 95

time point, 267, 270, 277
time scale, 395
time scale separation, 342, 343, 348
trade gravity, 176, 178
trail, 91
transaction flow model, 159
transformation, 88, 154, 184

deviational, 160
pre-CONCOR, 155
preprint, 20
Savage and Deutsch, 159
secondary, 157

transition, 378
treatment, 189, 193, 212
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reconstruction, 194, 197, 199, 205, 210, 212, 216,
218, 222

modal values, 192
null tie, 192

triad, 227
triadic closure, 110
types of relational constraints, 91

underfitting, 300
unequal relational capacities, 167, 174, 176
US states, 95

valued link, 395

Web of Science (WoS), 2, 11, 12
weighted

density, 194, 196–198
reciprocity, 194, 196–198, 205, 212, 222

weighting, 270, 272, 274, 276
work

cited-only, 12
world-system, 155, 162
WoS2Pajek, 12


