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We study pairwise Ising models for describing the statistics of multineuron spike trains, using data from a
simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and
examine their statistical properties. To do this, we extract the optimal couplings for subsets of size up to 200
neurons, essentially exactly, using Boltzmann learning. We then study the quality of several approximate
methods for finding the couplings by comparing their results with those found from Boltzmann learning. Two
of these methods—inversion of the Thouless-Anderson-Palmer equations and an approximation proposed by
Sessak and Monasson—are remarkably accurate. Using these approximations for larger subsets of neurons, we
find that extracting couplings using data from a subset smaller than the full network tends systematically to
overestimate their magnitude. This effect is described qualitatively by infinite-range spin-glass theory for the
normal phase. We also show that a globally correlated input to the neurons in the network leads to a small
increase in the average coupling. However, the pair-to-pair variation in the couplings is much larger than this
and reflects intrinsic properties of the network. Finally, we study the quality of these models by comparing their
entropies with that of the data. We find that they perform well for small subsets of the neurons in the network,
but the fit quality starts to deteriorate as the subset size grows, signaling the need to include higher-order
correlations to describe the statistics of large networks.
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I. INTRODUCTION

Computation in the brain is performed by large popula-
tions of neurons. Because these neurons are highly connected
and because the external inputs that they receive are usually
correlated, the neuronal spike trains are also correlated.
These correlations depend on neuronal properties, synaptic
connectivity, and the external drive in a highly nontrivial
way.

The large number of neurons involved in any computation
and the fact that they are correlated make deciphering the
mechanisms of neural computations a difficult challenge. A
major technical breakthrough in this challenge has been the
advent of techniques for recording simultaneously from large
numbers of neurons. Yet, making a link between these re-
cordings and an understanding of the computations is non-
trivial and requires new mathematical approaches. This is
because, in most cases, using the observed data to answer
questions about computation requires building statistical
models, i.e., writing down the probability distribution over
spike patterns �1�. However, the high dimensionality of the
space of possible spike patterns makes it very hard to collect
enough data to build an exact statistical description of them.

One approach to circumvent the problem of high dimen-
sionality of the space of spike patterns is to use parametric
models. In this approach, one uses the data to fit a parametric
probability with a much smaller number of parameters than
the dimensionality of the space of spike patterns. To use any
such parametric model reliably, one needs to answer two
questions: how can we fit the parameters of the model effi-
ciently and how close is the model to the true probability
distribution?

In this paper, we try to provide answers to these questions
for the case of the maximum entropy binary pairwise model,
the Ising model, using data from a simulated network of
spiking neurons. The Ising model has received a lot of atten-
tion as a parametric model for neural data following the
study by Schneidman et al. �2�. Using binned spike trains
from recorded retinal or cortical neurons, these authors mod-
eled the true distribution of the spike patterns by the Gibbs
distribution of an Ising model,

pIsing�s� � exp��
i

hisi + �
i�j

Jijsisj� , �1�

where s= �s1 ,s2 , . . . ,sN�, and each spin si= �1 represents the
firing or not firing of neuron i in each time bin. The external
fields hi and the coupling parameters Jij were fit so that the
resulting distribution had the same means and pairwise cor-
relations as the data, that is,

�si	Ising = �si	data, �2a�

�sisj	Ising = �sisj	data, �2b�

where � 	Ising represents averaging with respect to the Ising-
model distribution �1�, and � 	data represents averages com-
puted from the data. The couplings inferred in this way can
be thought of as some sort of functional couplings between
the neurons �3,4�.

The experimental studies by Schneidman et al. �2� and
others �3,5� showed that the pairwise Ising model provided
good approximations to the true distributions for sets of up to
10 neurons with small probability of spiking. These experi-
mental studies were followed by a theoretical analysis by
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Roudi et al. �6� in which the authors studied the quality of
pairwise models using a perturbative expansion in N�̄�t,
where N is the population size, �̄ is the mean population
firing rate, and �t is the time bin chosen for binning the data.
They showed that pairwise models always provide a good
statistical description of spikes as long as N is small com-
pared to Nc= ��̄�t�−1. That is, a pairwise model is almost
guaranteed to give a good result for any N if the average
firing rate is low enough and/or the time bins are small
enough such that N�Nc. This may be taken as good news,
but there is a flip side to it: finding that the Ising distribution
is a good model for N�Nc does not tell us whether it is
going to be a good model in the large N limit.

In the first part of this paper, we address the first question
mentioned above, i.e., finding the parameters of the Ising
model given the measured means and correlations: the “in-
verse Ising problem.” Here, we study various fast approxi-
mations for extracting the couplings of the Ising model and
compare their results with the commonly used—usually
slow—but potentially exact Boltzmann learning algorithm
�7�. We show that the couplings found using the inversion of
the Thouless-Anderson-Palmer �TAP� equations �8,9� and the
approximation recently proposed by Sessak and Monasson
�SM� �10� do a very good job in approximating true cou-
plings. Furthermore, the inversion of the TAP equations leads
to overestimating the couplings, while the Sessak and Mo-
nasson approximation leads to underestimating them, and we
note that simply averaging them gives an even better result.
We also study the dependence of the inferred couplings on
the size of the subset of neurons for which the couplings are
extracted. We find that the mean and standard deviation of
the couplings exhibit size dependences compatible with
those predicted for an infinite-range spin-glass model �the
Sherrington-Kirkpatrick �SK� model �11�� when it is in its
normal phase, i.e., outside its spin-glass phase. We also show
that these dependences are mainly caused by scaling of the
individual couplings rather than restructuring the couplings.

We performed all this analysis for two sets of data. For
one set, which we describe as “tonic firing,” the neurons in
the network fired at constant rates. For the other set, which
we call “stimulus driven,” the external input to the network
was varied temporally, evoking a modulation of the firing of
all the neurons in the network and, thus, additional
“stimulus-induced” correlations. Our findings are nearly the
same for the two data sets, so in most of the following we
show results only for the tonic case. The only systematic
difference between the results in the two cases is a small
increase in the mean of the inferred couplings in the
stimulus-driven case, as described in Sec. V.

All studies to date on the quality of the pairwise model
have been carried out for sets of neurons smaller than Nc by
factors of 2 to 3 �in the regime where a good pairwise fit is
trivial �6��. In Sec. VI we test the quality of pairwise models
for set sizes above Nc, using our data. We find, as predicted
in �6�, that the fit quality deteriorates as N increases and this
continues to be the case even for N�Nc.

II. SIMULATION DATA

We obtained our data from a simulated model cortical
network of 1000 spiking neurons �80% of them excitatory

and 20% inhibitory�, operating in a high-conductance state
�12� of balanced excitation and inhibition �13�. There is a
general consensus that cortical networks operate in such a
state. The connectivity in the network was random, with a
10% probability of connection between any two neurons.
The model is fairly realistic: its neurons have Hodgkin-
Huxley spike generating dynamics, and its synapses are
modeled as conducting ion channels which are opened for
short times by presynaptic spikes. The neurons fire irregu-
larly and asynchronously, and they are weakly correlated.
Their membrane potential and firing statistics are in good
agreement with in vivo measurements on local cortical net-
works. The details of the simulations are described in the
Appendix.

Spike trains generated from the simulated network were
divided into bins of length 10 ms. To each bin, we then
assigned a vector of spin variables s= �s1 , . . . ,sN� in which
si=−1 if neuron i did not emit a spike in that bin, and si=1
otherwise �2,3,5�. We then compute the mean magnetization
and pairwise correlations of these spin variables and use
them to fit the Ising model that generates the same mean and
pairwise correlations. In the analysis reported here, we only
studied excitatory cells with mean magnetization larger than
−0.98 �i.e., firing rates greater than 1 Hz�. We did this for
two reasons. First, the estimation of the means and, impor-
tantly, correlations for cells with very small firing probabili-
ties is very inaccurate. Second, fitting these small numbers
using essentially any method is also inaccurate.

III. APPROXIMATE AND EXACT SOLUTIONS TO THE
INVERSE ISING PROBLEM

The simplest method for finding the fields and couplings
such that Eq. �2� is satisfied is Boltzmann learning �7�. This
is an iterative algorithm in which, at each step, the fields and
the couplings are adjusted as follows. Starting from some
initial guess for the parameters, one computes the means and
the pair correlations under the Ising distribution using the
current values of the parameters. One then makes changes
�hi and �Jij in the parameters according to

�hi = 	
�si	data − �si	Ising� , �3a�

�Jij = 	
�sisj	data − �sisj	Ising� . �3b�

One then recomputes the model means and correlations us-
ing the new parameters, makes new parameter changes, and
so forth until the model statistics agree with the measured
ones within the desired accuracy.

The averages over the Ising distribution can be done ei-
ther by exact summation for small N or by Monte Carlo
sampling. In principle, the Boltzmann learning is exact in the
sense that it is guaranteed to converge to the correct fields
and couplings after sufficiently many minimization steps and
for sufficiently many Monte Carlo steps per minimization
step. Although Boltzmann learning is in principle exact, it is
usually a slow algorithm. This is particularly true for large N,
for which one needs to run very long Monte Carlo sampling
steps per minimization step. It is therefore useful to have
easily computed approximate solutions: either to use directly
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or as initial conditions for Boltzmann learning. In this sec-
tion, we compare the couplings obtained from four fast ap-
proximation methods with those obtained from Boltzmann
learning. The four approximations are �1� naive mean-field
theory, �2� an independent-pair approximation, �3� a combi-
nation of �1� and �2� introduced recently by SM �10�, and �4�
inversion of the TAP equations �8,9� of spin-glass theory.
These four approximations are described below.

A. Naive mean-field theory

A naive mean-field �nMF� theory estimate can be derived
simply by differentiating the mean-field equations for the
magnetizations with respect to the fields and using the
fluctuation-response relationship. Using the notation mi
��si	 and Cij ��sisj	−mimj, this yields

Cij =
�mi

�hj
=

�

�hj
tanh
hi + �

k

Jikmk�
= �1 − mi

2���ij + �
k

JikCkj� . �4�

Equivalently, one can write

JnMF = P−1 − C−1, �5�

where Pij = �1−mi
2��ij.

B. Independent-pair approximation

One simple approximation is obtained by treating every
pair of neurons as if they were independent of the rest of the
system. Consider two spins i and j and let us denote the field
on spin i�j� in the absence of the bond Jij between them by
hi

c�hj
c�. We can then write the probability distribution over the

states of this two-spin system as

Zijpsi,sj
= ehi

csi+hj
csj+Jijsisj , �6�

where Zij is the partition function of this two-spin system. In
writing the above equation, we assume that the state of spin
i will not have any effect on hj

c and vice versa. �A sufficient
condition for this to hold is that the system is on a Bethe
lattice.�

Equations �6� can be solved for Jij

Jij
pair =

1

4
log
 p++p−−

p+−p−+
� , �7�

where p++ is the probability that both spins are up, p+− when
the first spin is up the second one is down, etc. Expressing
the probabilities in terms of the means and correlations, one
gets

Jij
pair =

1

4
ln� �1 + mi + mj + Cij

� ��1 − mi − mj + Cij
� �

�1 − mi + mj − Cij
� ��1 + mi − mj − Cij

� �� , �8�

where Cij
� =Cij +mimj.

In the low-rate limit, mi→−1 and mj→−1, the above ex-
pression simplifies to

Jij
LR =

1

4
ln�1 +

Cij

�1 + mi��1 + mi�
� , �9�

which is identical to the result derived by perturbative ex-
pansion in N�̄�t in �6� which we simply call the low-rate
expansion. The fact that this low-rate expansion gives iden-
tical results to the limiting case of independent-pair approxi-
mation is expected since for sufficiently low rates, the con-
tribution of feedback loops to the local field on each site can
be neglected. Consequently, one can ignore the contribution
from other spins to the correlation function of i and j.

C. Sessak-Monasson approximation

Recently Sessak and Monasson �10� derived an expres-
sion relating the couplings to the means and correlations us-
ing a perturbative expansion in the correlations. This was
done by extending the approach proposed by Georges and
Yedidia �14�: instead of performing one Legendre transform
to fix the magnetizations, as in �14�, they performed two
Legendre transforms of the free energy, one to fix the mag-
netization and the other one to fix the correlations. They then
expanded the result in a high-temperature Plefka �15� series.
The authors noticed that some of the terms in the expansion
can be summed up, yielding a closed-form approximation for
the couplings that takes the form

Jij
SM = Jij

loop + Jij
pair −

Cij

�1 − mi
2��1 − mj

2� − �Cij�2 , �10�

where Jpair is given by Eq. �8� and

Jij
loop = �LiLj�−1/2�M�I + M�−1�ij �11�

with Li=1−mi
2, Mij =Cij�LiLj�−1/2, and Mii=0. This expres-

sion for Jij
loop can easily be shown to be equivalent to the

naive mean-field solution �5�.

D. Inversion of TAP equations

The TAP equations are mean-field equations that relate
the local magnetizations mi to the external fields and the
couplings

tanh−1 mi = hi + �
j

Jijmj − mi�
j

Jij
2 �1 − mj

2� . �12�

The right-hand side is the total internal field acting on spin i,
including the Onsager reaction field in the last term. Differ-
entiating Eq. �12� with respect to mj and using the
fluctuation-response relation, one obtains

�C−1�ij =
�hi

�mj
= − Jij

TAP − 2�Jij
TAP�2mimj, �i � j� . �13�

Given the means and correlations, we can solve Eq. �13�
to find the couplings and use the results in Eq. �12� to find
the external fields. This is the simplest version of the scheme
introduced by Kappen and Rodriguez �8� and Tanaka �9�.
The TAP equations are exact in the limit of “infinite-range
interactions” where the Jij’s have means and variances that
scale like 1 /N. For arbitrary couplings, the TAP equations
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constitute the first two terms in the Plefka �15� series which
is a small-coupling �high-temperature� expansion. In prin-
ciple, one can include higher-order terms in the Plefka ex-
pansion instead of Eq. �12�, compute its derivative to find the
susceptibility, and use the fluctuation-response relation to re-
late it to the connected correlations functions. Here we stop
at the level of TAP equations.

E. Comparison between Boltzmann learning and the
approximate solutions

We considered 4000 s worth of data from our simulated
network �about 1 h, which is on the order of a stable retina
recording session�, binned the data into 10 ms bins, and com-
puted the means and equal-time pairwise correlations of the
spin representation of the data �see Sec. II�. We first inferred
the couplings of the Ising model using 40000 steps of Bolt-
zmann learning with a learning rate of 	=0.1. At each step,
the model means and correlations were computed on the ba-
sis of 30000 Monte Carlo sampling steps. We then compared
these results with those obtained from the approximation
schemes listed in the preceding subsection. In this compari-
son, we are assuming that the couplings inferred using Bolt-
zmann learning are the correct ones and judging the approxi-
mate methods according to how well they agree with them.
Before going on with the comparison results, we take a mo-
ment to justify this claim.

The results of the Boltzmann learning may not be correct
for two reasons. First, the correlations passed to the Boltz-
mann algorithm are, in general, not the true correlations,
since they are computed from finite data. Second, Boltzmann
learning converges to the true results only in the limit of
infinitely many learning steps, and there is always a chance
that one has not run it long enough. To see how much error
such effects led to in our results, we conducted two tests.
First, we divided our spike trains of 4000 s into two halves
and computed two sets of correlations and means: one from
the first half of the data and other from the whole set �this
latter set is what we use in the subsequent analysis�. We then
scatter plotted the Jij’s inferred from the first half of the data
versus those computed from the full 4000 s of simulation.
We also plotted the results found after 20000 learning steps
against those found from 400000 steps �using correlations

computed from all our data�. The results are plotted in Fig. 1.
This figure shows that within the scale of the errors of the
various approximations �see Fig. 3�, the Boltzmann results
can be considered to be stable and accurate.

We now move on to the comparison of the couplings
found from the approximate solutions with those found from
Boltzmann learning. The results for a set of N=20 neurons
are shown in Fig. 2. This figure shows that for this subset
size, all approximations do well, although the Sessak-
Monasson approximation outperforms the others by a small
margin followed closely by the TAP-inversion solution. For
larger sets, the difference between the qualities of different
approximations becomes more clear. Figure 3 shows the re-
sults for N=200. Here the Sessak-Monasson approximation
and TAP inversion outperform the rest by a significant
amount. Figures 2 and 3 also show that the SM and the
TAP-inversion approximations differ in the way their errors:
SM tends systematically to underestimate the couplings,
while TAP inversion overestimates them. This suggests that
naively averaging the two, i.e., summing them and dividing
by two, should do a better job. The results of such a hybrid
approximation shown in Figs. 2�f� and 3�f� confirm this ex-
pectation.

FIG. 1. �Color online� Checking the reliability of the Boltzmann
results. �a� The couplings of a set of N=200 found using Boltzmann
learning with 20000 learning steps versus those found after 40000
learning steps. �b� Couplings learned from half of the data �200000
time bins� versus those learned from all the data �400000 time bins�

FIG. 2. �Color online� Scatter plots comparing the solutions
found from different approximations with the Boltzmann learning
results for N=20. �a� Naive mean-field approximation, �b�
independent-pair approximation, �c� low-rate limit, �d� TAP, �e� SM,
and �f� a hybrid approximation obtained by averaging TAP and SM.
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The performance of different approximations as a func-
tion of set size is shown in a more systematic way in Fig. 4.
In this figure, we computed the similarity between the Bolt-
zmann solution and the approximate ones for different sizes,
using two quantities as measures of similarity. The first was
the coefficient of determination R2 defined as

R2 � 1 −

�
ij

�Jij
approx − Jij

Boltzmann�2

�
ij

�Jij
Boltzmann − Jij

Boltzmann�2
, �14�

where Jij
approx refers to the couplings inferred using one of the

aforementioned approximations, and Jij
Boltzmann

=�i�jJij
Boltzmann / �N�N−1�. Values of R2 close to one indicate

good approximations. We also considered the rms error de-
fined as

� 1

N�N − 1��i�j

�Jij
approx − Jij

Boltzmann�2. �15�

As shown in Fig. 4, TAP inversion, SM, and the hybrid
TAP-SM outperform the other approximations for all N and
according to both measures.

We also studied the relationship between the N depen-
dence of the couplings inferred using Boltzmann learning
with those found from the approximate solutions. The results
are shown in Fig. 5. The standard deviation of the Jij’s is
well approximated by both TAP inversion and the Sessak-
Monasson formula �and therefore also by their average�. Na-
ive mean-field theory captures the decrease with N qualita-
tively correctly but gives an estimate which is systematically
too large. The independent-pair approximation fails �as does
its low-rate limit �9��. We will study the N dependence of the
couplings more carefully in the next section.

The means of the Jij’s are smaller than their standard de-
viations by 1 order of magnitude or more. The Boltzmann
value is indistinguishable from zero for N�50. Of all the
approximations, only the SM-TAP average seems to approxi-
mate it well, although SM, TAP, and naive MF estimates all
show a decrease with N.

If averaged over many samples, the independent-pair ap-
proximations will not exhibit any N dependence in either
mean or standard deviations of the couplings. Thus, they
cannot capture the observed systematic decreases of these
statistics with N.

IV. SCALING OF INFERRED COUPLINGS AND THE
COMPARISON WITH MEAN-FIELD SPIN-

GLASS BEHAVIOR

Figure 5 shows that the mean and standard deviation of
the inferred couplings have some sort of scaling behavior
with population size and that this behavior is well preserved

FIG. 3. �Color online� The same as Fig. 2, but for N=200
neurons.
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FIG. 4. �Color online� Quantifying the performance of different
approximation by computing R2 �defined in Eq. �14�� and the rms
error �defined in Eq. �15�� between the approximate solutions and
the result of Boltzmann learning, as a function of N. Black �long-
dashed line�, SM; red �short-dashed line�, TAP; blue �full curve�,
hybrid SM-TAP; green �dashed dotted line�, nMF; magenta �dashed
double dotted�, low-rate approximation; and gray �small dotted�,
independent-pair approximation.
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in the TAP, SM, and hybrid TAP-SM approximations. This N
dependence could be either due to partial or complete re-
structuring of the couplings when more and more neurons
are added or simply due to the scaling of individual cou-
plings. Figures 6 and 7 show that what is actually happening
is the latter. Figure 6�a� shows the inferred couplings be-
tween 20 neurons when no additional neurons are consid-
ered, while Fig. 6�b� shows the couplings between these neu-
rons when they are extracted from the data of a set of 200
neurons. As one can see in this figure, the main structure of
the couplings of the subset is retained in the larger set, but
they are scaled down. In Fig. 7, we trace how the largest ten
�full blue lines� and the smallest �i.e., most negative� ten �red
dashed lines� of a set of 20 neurons change as we add more
and more neurons to the pool. As can be seen, the small
weights increase their values and the large weights decrease
their values with N but only the weights that are very close to
each other cross. This observation suggests that the structure
of the weights is preserved as N is increase, i.e., there is an
approximate scaling behavior for individual weights.

How can we explain this scaling of the weights? Because
there is no spatial structure in the connectivity of our original
simulated model, we do not expect to find any such structure
in the functional connections Jij that we obtain. Thus, it
seems possible that our inferred models will be “infinite
ranged.” If so, we may describe the statistics of the couplings
by the infinite-range SK model of a spin glass �11�, in which
one assumes independently distributed Jij with a mean J0 /N

and a variance J2 /N. This model both has a normal phase
and a spin-glass phase. The normal phase may be character-
ized completely in terms of two order parameters; the mean
magnetization M =N−1�imi and the mean-square magnetiza-
tion q=N−1�imi

2. In the spin-glass phase, a much more com-
plex description is required. Fortunately, as shown below, we
will only need to consider the normal phase, where one can
derive relatively simple relations that express the mean and
variance �across all pairs of spins� of the correlations in
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J
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FIG. 5. �Color online� The N dependence of the mean and stan-
dard deviation of the solutions found from different approximations
and Boltzmann learning. Black �long-dashed line�, SM; red �short-
dashed line�, TAP; green �dashed dotted line�, nMF; blue �full
curve�, hybrid SM-TAP; magenta �dashed double dotted�, low-rate
approximation; gray �small dotted�, independent-pair approxima-
tion; and brown �large dots�, Boltzmann.

FIG. 6. �Color online� The couplings among 20 neurons inferred
�a� when no additional neurons are considered �a�, and when in-
ferred �b� as a part of a network of size 200. This figure shows that
the N dependence of the mean and standard deviation of the cou-
plings in Fig. 5 arises from the scaling of individual couplings.
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-0.2
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0.4

0.6

J ij

N

FIG. 7. �Color online� The behavior of the ten largest and ten
smallest couplings in the set of 20 neurons, when more and more
neurons are added. The blue �full� curves show how the ten largest
weights in the population of 20 neurons change their values as we
add more and more cells, and the red �dashed� curves show the
same thing for the ten smallest couplings. The weights are inferred
using Boltzmann learning.
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terms of the mean and variance of the couplings and the
order parameters of the model. These relations can be in-
verted to give the mean and variance of the J’s in terms of
the mean and variance of the C’s. The size N of the system
enters in these relations, so they make predictions about the
N dependence of the J’s that we can compare with the results
of the inference algorithms for different sizes of sets of neu-
rons.

Consider first the average �over off diagonal elements� of

the correlation matrix C̄= �N�N−1��−1�i�jCij. Standard
mean-field arguments �e.g., averaging Eq. �4�� lead to

C̄ =
J0�1 − q�2/N
1 − J0�1 − q�

. �16�

The mean square of the correlation matrix elements can also
be shown to be �16� �see also �17� and Sec. III B�

C2 =
J2S2/N
1 − J2S

, �17�

where

S =
1

N
�

i

�1 − mi
2�2 = 1 − 2q + N−1�

i

mi
4. �18�

Inverting Eqs. �16� and �17� to obtain the statistics of the
J’s in terms of those of the Cs, we find

J̄ =
J0

N
=

C̄

�1 − q��1 − q + NC̄�
, �19�

var�J� =
J2

N
=

C2

S�S + NC2�
. �20�

These results hold for N equal to the full system size.
However, in the inference process described here, one works
with data from a smaller number of neurons and tries to
model them by a network of that smaller size. Thus, the
inferred J’s will have �larger� means and variances than their
true ones because the N in the denominators of Eqs. �19� and
�20� will be smaller than the true size. �Note that the statistics
of the measured C’s do not—on average—depend on the size
of the set of neurons.�

The criterion for the stability of the normal phase �16� is
J2S�1. Using our extracted values of J and calculating S
from Eq. �18�, we find that J2S grows with N but never
exceeds 0.65. Therefore, the assumption that the system is in
the normal phase is self-consistent.

To the extent that our inferred network is like an SK
model, Eqs. �19� and �20� should describe the way the mean
and variance of the J’s very with N. This is easy to test
because the statistics of the C’s and the moments of the mi
that occur in q and S are readily calculated from the spike
data. Figure 8 shows how well the results of the inference
algorithms conform to this simple behavior. In this figure, the
means computed from the SM, TAP, and hybrid SM-TAP
approximations averaged over 20 random samples of the ex-
citatory neurons for N�300 and 10 samples for N�300 are
shown, together with the results of Boltzmann learning on

individual samples and the mean-field spin-glass predictions.

The quantities S ,q , C̄ and C2 that appear in Eqs. �20� and
�19� are computed from the whole population of excitatory
neurons.

The agreement of Eqs. �19� and �20� with the results of
our parameter-extraction methods is not perfect, but the mag-
nitude of the standard deviation of the Jij’s and its falloff
with N are captured reasonably well. The mean agrees well
with the TAP result, but of course the TAP Jij’s are system-
atically higher than the true �Boltzmann� ones, as described
above.

V. TONIC VERSUS STIMULUS-DRIVEN FIRING STATES

In the previous sections, we studied tonic-firing data only.
When we conducted the same analyses for the stimulus-
driven data, all the same conclusions about the quality of
different approximations and their size dependencies were
drawn. The only difference that we observed is slightly
higher mean coupling found in the stimulus-driven case. The
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FIG. 8. �Color online� Comparing the N dependence of the
mean and standard deviation of the solutions found from the first
three good approximations �SM �black, long dashed�, TAP �red,
short dashed�, and SM-TAP hybrid �solid blue�, with the SK pre-
diction �magenta, dotted�. The Boltzmann results for individual
samples up to N=200 are replotted from Fig. 5 for comparison
�brown stars�.

ISING MODEL FOR NEURAL DATA: MODEL QUALITY… PHYSICAL REVIEW E 79, 051915 �2009�

051915-7



similarity between the weights can be seen by comparing
Figs. 9 and 6�a�. The increase in the couplings of the weights
is too small to see here. It is also too small to show up in a
scatter plot.

The shifts in the mean coupling computed by Boltzmann
learning and the good approximation methods �SM, TAP, and
their average� are shown in Fig. 9�b�. While only the SM-
TAP average gets the mean coupling right, all three methods
capture the stimulus-induced shift.

The higher mean couplings can be understood qualita-
tively using Eq. �19�. In the stimulus-driven case, the mean
correlation is slightly higher than the tonic case �the differ-
ence is what is generally called “stimulus-induced correla-

tions”�. For the data used for Fig. 9�b�, C̄stim=0.0052 versus

C̄tonic=0.0023, leading in Eq. �19� to a larger J̄.

VI. TRUE DISTRIBUTION VERSUS THE MODEL
DISTRIBUTION

In this section, we study the second question about pair-
wise models raised in the introduction, i.e., the quality of the

model in approximating the true distribution of spikes. To
compare the fitted Ising distribution pIsing, with the true dis-
tribution ptrue, we considered the Kullback-Leibler �KL� �18�
divergence between the two defined as

DKL�ptrue � pIsing� = �
s

ptrue�s�ln
 ptrue�s�
pIsing�s�

� � dIsing.

�21�

In addition, we considered the KL divergence between the
true distribution and an independent-neuron distribution

pind � exp��
i

hi
indsi� , �22�

in which the external fields hi
ind are chosen so that Eq. �2a� is

satisfied. We also define dind�DKL�ptrue� pind�. Denoting the
averages of dIsing and dind over many samples of a given size

N by d̄Ising and d̄ind, we can define

G � 1 −
d̄Ising

d̄ind

�23�

as a measure of the goodness of pairwise models �2,3,5,6�.
�Other studies �5,6� have used the measure 
= d̄Ising / d̄ind=1
−G.� It is easy to show that

dind = Sind − Strue, �24a�

dIsing = SIsing − Strue, �24b�

and consequently

G =
Sind − SIsing

Sind − Strue

, �25�

where SIsing ,Sind, and Strue are the entropies of pIsing , pind, and
ptrue, and the overline indicated averaging over many
samples of the same size. The quantity G is the fraction of
the entropy difference between the independent model and
the data that is explained by the pairwise model. When G is
near one, the pairwise model is very good �compared to the
independent model� in terms of the amount of the true en-
tropy that it explains. When G=0, the pairwise model is just
as bad as the independent-neuron model.

In Fig. 10, we show the behavior of dind, dIsing, and G
versus N. To produce this figure, we first chose a population
of 15 neurons. For each N, we then chose � 15

N � or 2500 ran-
dom populations of N neurons from the original 15 cells,
whichever was larger. For each of these populations, we
computed the entropy using T time bins from the simulation
by simply counting the number of occurrences of each pat-
tern. We also computed the means and correlations from
these T time bins and fit an independent-neuron and an Ising
model to the data. Fitting of the parameters of the Ising
model was done by numerically exact minimization of the
error function �sptrue�s�log�ptrue�s� / pIsing�s��, using conjugate
gradient descent. We then computed the entropies of the in-
dependent and Ising models using brute force summation
over all the states. We did this procedure using T=106, T
=1.5�106, and T=1.8�106. The resulting values of

FIG. 9. �Color online� The N dependence of the mean couplings
in the stimulus-driven case as found from Boltzmann learning on
single samples �brown squares�, SM �black long-dashed lines�, TAP
�red short-dashed lines�, SM-TAP hybrid �blue full curve�, and the
prediction of Eq. �19� �magenta dotted line�. The thick curves are
the results for the stimulus-driven case, and the results of the tonic
case are plotted using thin curves.
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dind ,dIsing and G for each of these values of T are shown in
Fig. 10. As expected, finite T leads to an underestimation of
Strue and thus overestimation of dind and dIsing. To correct for
finite sampling bias, the resulting values of dind and dIsing for
each T were fit by a second-order polynomial in 1 /T, and the
limit T→� was taken �19�. The unbiased estimates are
shown in black in Fig. 10. Both dind and dIsing increase with
N, while G decreases. For the population shown here, we had
N−1�i�si	data�−0.8, indicating that Nc�10. This figure
shows that for small populations G is close to 1, but it de-
creases linearly even for values of N above Nc.

VII. DISCUSSION

Even with their shortcomings, the models of the type we
have studied here provide a potentially attractive framework
for analyzing multineuron spike data. We imagine that ex-

perimentalists would want a quick and easy way to find out
what Jij’s characterize the spike data they have measured. In
previous work, the extraction of the Jij’s was done by brute
force, using Boltzmann learning. This is in principle exact
but very slow for large N. The fast approximate parameter-
extraction methods described here offer a way to make Ising
pair models a practical data-analysis tool. Although it is also
possible to modify and speed up the Boltzmann learning al-
gorithm using the histogram Monte Carlo method �20�, such
a modified algorithm still spends a considerable amount of
time on Monte Carlo sampling and on performing gradient
descent steps. The approximate methods studied here avoid
these by providing equations relating the model parameters
and the data that can be solved instantly.

We calibrated these fast methods by comparing their re-
sults with that of Boltzmann learning for sets of neurons up
to a size N=200, which took several days for a single run.
We were able in this way to evaluate and compare several
methods: �1� the independent-pair approximation, which is
known �6� to be correct in the low-firing rate, small-N limit,
�2� inversion of the mean-field equations for the correlations,
��3� SM� a combination of �1� and �2� proposed by Sessak
and Monasson �10�, and ��4� TAP� inversion of the Thouless-
Anderson-Palmer equations.

Of these approximations, the third and fourth turned out
to work very well, with SM slightly better than TAP. SM has
a slight tendency to underestimate the Jij’s and TAP has a
slight tendency to overestimate them. We found that an ad
hoc averaging of the SM and TAP Jij’s agreed even better
with the Boltzmann learning results, with an rms error of
about half that achieved by SM or TAP. Of course, this result
has to be taken as just a bit of good luck for the particular
network used to generate these data; there is no reason to
expect it to hold generally.

We could then proceed to apply the good fast approxima-
tion schemes for N�200 and to identify the important ge-
neric features of the extracted couplings. We found that for
larger N, the Jij’s had a nearly zero mean value and that their
absolute values appeared to shrink systematically as N in-
creased. Furthermore, the Jij’s found to be strongest �i.e., to
have the largest absolute values� for one set of neurons were
also generally found to be the strongest within that set when
the extraction was done for a larger set of neurons. Thus, the
strong Jij’s appeared to be quite robust statistics.

A measure of the typical magnitudes of the Jij’s is pro-
vided by their standard deviation. Although the fit is not
perfect, the decrease in the standard deviation with N is cap-
tured crudely by a simple theoretical picture in which one
assumes that the Jij’s are chosen randomly and indepen-
dently. In other words, as far as its pair correlations are con-
cerned, the network behaves approximately like a
Sherrington-Kirkpatrick �infinite-range� spin glass. This find-
ing is not too surprising, in view of the fact that the network
used to generate the data had completely random connectiv-
ity. Perhaps it is more surprising that the data deviate sys-
tematically from the spin-glass prediction. We do not have
any explanation of these deviations.

In order to understand the effect of stimulus-induced cor-
relations and slow modulations of activity, we analyzed spike
data for stimulus-driven conditions in addition to the tonic-
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FIG. 10. �Color online� The behavior of the KL distances and G
versus the set size N ��a� dind�, the KL distance between the inde-
pendent and the true distributions versus N ��b� dIsing�, and the KL
distance between the Ising and the true distribution versus N ��c� the
goodness of fit G� versus N. Magenta circles, red crosses, and blue
squares represent estimations of these quantities from T=106, T
=1.5�106, and T=1.8�106 samples, respectively, while black
stars show the bias-corrected �T→�� estimates.
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firing case. In the stimulus-driven condition, the input to the
simulated cortical network was varied temporally. The fact
that all neurons received input with the same temporal modu-
lation might be expected to generate extra correlations,
which would be reflected in increased Jij’s. In fact, this did
happen, but the effect was very small. The values of the Jij’s
found in the two conditions were nearly the same. Thus, the
couplings obtained �in particular, the ways they vary from
one pair or neurons to another� are intrinsic properties of the
system. The only systematic effect of the stimulus was a
small increase in the average Jij. This weakness of this effect
is perhaps to be expected because the temporal modulation
employed was rather slow �a time constant of 100 ms� com-
pared to response times in the network �10 ms or less�. It
would of course be of interest to study the effect of varying
the time constant of the input rate fluctuations.

It would also be interesting to explore the effects of other
slow modulatory mechanisms such as synaptic adaptation.
We expect that they would affect the functional couplings in
a similar way to what the modulation of the external popu-
lation rate did here, if large numbers of neurons are modu-
lated together.

A natural question to ask is whether the Jij’s one finds
have any relation to the synaptic connections in the network
that generated the data from which they are extracted. In our
case, we know that synaptic connectivity, so we can answer
this question. Somewhat disappointingly, however, we have
found no significant relation between the Jij’s and the syn-
apses. We believe this is because we are trying to force a
description with symmetric couplings �Jij =Jji� onto a net-
work where this symmetry is absent or nearly so. We think
another approach would be required to uncover the underly-
ing synaptic connectivity: one based on correlation between
spikes by different neurons in different time bins rather than,
as here, coincidences in the same time bin. Then one might
be in a position to identify which neurons’ spikes tend to
cause spikes in which other neurons, which is more closely
related to synaptic connectivity.

In our simulated network, neurons were wired randomly
with a probability of 10% with no spatial structure in the
connectivity. In cortical networks, however, there is a notable
degree of spatial structure in the pattern of neuronal wiring
�21�. Such structure has been shown to play an important
role in the computation performed by networks of firing rate-
based neurons through spatial modulation of the activity
�22–24�. However, little is known about their influence on
spike statistics and on functional connectivity. It would thus
be very interesting to do studies on data from spiking net-
works in which the connection probabilities and/or synaptic
strengths depend systematically on the physical distance be-
tween neurons. In particular, it would be important to see to
what extent the geometry of such a network is reflected in its
functional couplings.

Although they can describe first- and second-order statis-
tics correctly, pair models are not guaranteed to be exact. For
our data and for small subsets of the neurons �N
15�, we
were able to quantify the degree of mismatch in terms of the
Kullback-Leibler distance between the true distribution and
the Ising-model Gibbs distribution. In agreement with earlier
results �2,3,5,6�, we found that pairwise Ising models per-

fectly model the true distribution in the limit of small N. We
also found that the quality-of-model measure G �Eq. �23��
decreases linearly with N for the range that we tested. For
N�Nc, this decrease can be understood using the expansion
in N�̄�t of Roudi et al. �6�. To the lowest order, one has
dind� �N�̄�t�2 and dIsing� �N�̄�t�3; consequently 1−G�N�̄�t.
However, this expansion is bound to break down, as it will
eventually predict a true entropy that decreases with N. This
can be seen by noting that Sind�N and therefore Strue=Sind

−dind=c1N−c2N2 will be a decreasing function of N for N
�c1 / �2c2�. Nevertheless, G can still be a decreasing function
of N even when the expansion breaks down, and indeed we
see in Fig. 10 that this is the case for our data. The decrease
in our data is on the order of 5% for N=10, suggesting that
one should be cautious in applying pair models for N bigger
than about 50 or so �where the pair model only explains
about 75% of the entropy difference between the
independent-neuron model and the data�. If we naively ex-
trapolate the linear dependence of G on N, we find G�0 for
N�200, indicating that at this size a pairwise model would
be no improvement on an independent-neuron model. These
results strongly motivate the study of statistical models with
higher-order interactions to describe the statistics of the spike
trains of large populations.

Nevertheless, even when they are not good models �in the
sense that the Kullback-Leibler distance between them and
the true distribution is not small�, pairwise models offer a
conceptually simple and useful framework for characterizing
measured multineuron spike statistics. On one hand, by con-
struction, they describe the first- and second-order statistics
correctly, and on the other hand they are the only models for
which it is practically feasible to carry out the fit using data
sets of realistic size. When used with caution, they can pro-
vide robust and reliable information about the correlation
structure in the data, and the fast approximations we have
described here should be useful in applying them in practical
data analysis.

APPENDIX: SIMULATED MODEL CORTICAL NETWORK

The means and correlation functions we use in this paper
are obtained from simulating a network consisting of 1000
Hodgkin-Huxley-type model neurons with conductance-
based synapses: 800 excitatory and 200 inhibitory. The net-
work was driven by an external population of 800 excitatory
neurons, each of which was made to fire as a Poisson process
at a rate of 10 Hz. The connectivity was random, with the
probability of a synapse between any two neurons equal to
10% �except that there were no synapses from the neurons in
the network back to those in the external driving population�.
There was no synaptic randomness beyond that implied by
the random connectivity. When a synapse was present, it had
a maximum conductance which depended only on which
populations the presynaptic and postsynaptic neurons be-
longed to. The dynamics of the membrane potential Via of a
neuron i in population a=1 �excitatory� or 2 �inhibitory� is
given by
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dVia

dt
= − �

�

Gia
�,intr�t��Via − V�

rev� − �
bj

Gia,bj
syn �t��Via − Vb

rev� ,

�A1�

where VE
rev=0 and VI

rev=−80 mV, Gia
�,intr is the intrinsic con-

ductance of type �=Leak, Na, or K of neuron i in population
a, and Gia,bj

syn �t� is the conductance associated to the synapse
from neuron j in population b to neuron i in population a.
The sum on the index b runs from 0 to 2, where 0 denotes the
external driving population. The intrinsic conductances are
of the standard Hodgkin-Huxley form G�,intr=g�

0m�
p�h�

q�, with
pNa=3, qNa=1, pK=4, qK=0, and pLeak=qLeak=0. The gating
variables m� and h� obey standard kinetics with voltage-
dependent opening and closing rates. The forms of these
rates, as well as the values of the g�

0 , were taken from Des-
texhe and Paré �25�.

In the tonic state, the firing rate of the external population
was constant, leading to constant firing rates for the neurons
in the network. In the simulations used here, the average
excitatory rate was 10.33 Hz and the average inhibitory rate
was 17.04 Hz. Because of the randomness in the network
structure, these rates varied from neuron to neuron. The rate
distributions were approximately exponential, but with long
tails. The standard deviations were 13.97 and 20.44 Hz for
excitatory and inhibitory, respectively.

The synaptic conductances Gia,bj
syn �t� were obtained by fil-

tering the presynaptic spike trains Sjb�t�� with a kernel
Kia�t− t��,

Gia,bj
syn �t� = gia,bj�

−�

t

dt�Kia�t − t��Sjb�t�� . �A2�

The temporal filtering kernel Kia is a convolution of three
exponential filters; it is normalized so that �0

�Kia���d�=1.
The time constants of the three filters, representing the syn-
aptic delay, the rise time, and the fall time of the synaptic
conductance after a presynaptic spike, were chosen randomly

from uniform distributions of means 1, 3, and 5 ms, and half
widths equal to 90% of the means, respectively. In our units,
gia,bj is dimensionless and Gia,bj

syn �t� has units of inverse time.
Its average value is just gia,bj times the presynaptic rate rjb
= �Sjb	. The gia,bj were taken to be nonzero with probability
10%, and the values they had when nonzero for each pre-
postsynaptic population pair a ,b were given by the matrix


0.0703 0.0632 1.2649

0.0502 0.1054 1.2649
� . �A3�

These values were chosen so that the total average synaptic
conductance was in the range found by Destexhe et al. �12�
and so that the inhibitory neurons fired on average at about
twice the average rate of the excitatory ones. They give peak
excitatory conductances on the order of a �S and excitatory
post-synaptic potentials �epsp’s� on the order of a few mV.
The inhibitory values are larger �by 1 order of magnitude for
the conductances� in order to give an approximate balance
between excitatory and inhibitory synaptic currents �a few
nA in each direction� because there are fewer inhibitory neu-
rons and the inhibitory reversal potential is much closer to
the average membrane potential than the excitatory one is.
Such large individual synaptic conductances and epsp’s are
not realistic, but synapses of this strength are necessary to
get the right order of magnitude for the total average synap-
tic conductance in a network of size 1000.

In the stimulus-driven state, the rate of the external popu-
lation was modulated randomly in time, in order to mimic
qualitatively the experiments of Schneidman et al. �2�, where
movies of dynamic natural scenes were projected onto sala-
mander retinas. Specifically, we took the external rate to be a
constant plus exponentially filtered white noise, with a time
constant of 100 ms. As a result, the firing rates of the neurons
in the network also varied in time. The noise parameters
were chosen so that the averages of the firing rates over
intervals much longer than the time constant were approxi-
mately the same as those in the tonic state.
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