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Voter model on the two-clique graph
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I examine the mean consensus time (i.e., exit time) of the voter model in the so-called two-clique graph. The
two-clique graph is composed of two cliques interconnected by some links and considered as a toy model of
networks with community structure or multilayer networks. I analytically show that, as the number of interclique
links per node is varied, the mean consensus time experiences a crossover between a fast consensus regime [i.e.,
O(N )] and a slow consensus regime [i.e., O(N2)], where N is the number of nodes. The fast regime is consistent
with the result for homogeneous well-mixed graphs such as the complete graph. The slow regime appears only
when the entire network has O(1) interclique links. The present results suggest that the effect of community
structure on the consensus time of the voter model is fairly limited.
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I. INTRODUCTION

In collective opinion formation taking place in a popu-
lation of interacting agents, competing opinions are often
approximately as strong as each other. The voter model is
a simple stochastic process to represent competitive dynamics
between equally strong states (i.e., opinions) [1–6]. In the
voter model, an agent flips its state to a new state at a rate
proportional to the number of neighboring agents that possess
the new state. In a finite connected network, consensus of
one state is always the eventual outcome of the voter model
dynamics.

Social networks in which opinion formation takes place are
usually complex. In particular, community structure, in which
connection is dense within groups and sparse across different
groups, is a hallmark of a majority of social networks. A
community would correspond to a circle of friends, school
class, organization, household, and so on [7]. Consensus
formation in networks with community structure may need
a long time because communities are sparsely connected to
each other by definition and different communities have to
align their states for the consensus in the entire network to be
reached. In fact, in the voter model in metapopulation networks
in which agents randomly diffuse from one metapopulation
to another, a small diffusion rate (corresponding to sparse
connectivity between communities) slows down consensus
[8]. In addition, consensus is often hampered in other opinion
formation models when the network possesses community
structure [9–14].

However, the extent to which the community structure
slows down the consensus dynamics is unclear. Previous
numerical results suggest that the dependence of the time to
consensus on the number of nodes does not differ between
networks with and without community structure [15]. The
consensus time is also independent of the network structure
for a related model of language exchange [16]. In the present
study, I confine myself to a toy network model mimicking
community structure and also multilayer networks [17], called
the two-clique graph. The voter model in this graph was briefly
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analyzed in Ref. [18]. For the two-clique graph, I reveal the
scaling relationship between the time to consensus and the
number of nodes, which depends on the number of links
connecting two cliques.

II. MODEL

Consider a graph in which each of the two cliques has N

nodes [18]; the entire network has 2N nodes. The two cliques
are connected by M (0 < M � N2) interclique links. Each
node has

C ≡ M/N (1)

interclique links on average. The interclique links are either
regularly placed such that each node has (approximately) C

interclique links or randomly placed such that the number
of interclique links that a node possesses obeys a binomial
distribution with mean C.

I run a variant of the two-state voter model according to
the link dynamics rule [18–21] on this network. Specifically,
each node takes either of the two states 0 and 1. Initially, N/2
voters in each clique are assumed to be in the 0 state. The
other N/2 voters in each clique are in the 1 state. In each time
step, I randomly pick a link with the equal probability, i.e.,
1/[N (N − 1) + M], and then select one of the two endpoints
of the link with probability 1/2. Then, the selected node copies
the state of the other endpoint of the link. Then, I move forward
the clock by time 1/2N such that each node is updated once
on average per unit time. The dynamics eventually reaches the
consensus of either state. Denote the consensus time and its
mean by T and 〈T 〉, respectively.

III. FOKKER-PLANCK EQUATION

The Fokker-Planck equation for this dynamics was previ-
ously formulated [18]. For the Fokker-Planck equation to be
valid, it is necessary that each node has exactly C interclique
links or C is large such that the fluctuation in the number of
interclique links per node is negligible. The Fokker-Planck
equation in terms of the density of 1 voters in the two cliques,
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where P = P (ρ1,ρ2,t) represents the probability density.
When C � 1, Eq. (2) implies that the drift term dominates

over the diffusion term. This case was previously solved for
more general network structure by adiabatic approximation
[16,22]. In the case of the two-clique graph, the density in
both cliques relaxes to (ρ1 + ρ2)/2 on a fast time scale. The
dynamics on a slow time scale, which leads to the consensus
in the entire population, is essentially the same as that for the
complete graph. Therefore, 〈T 〉 ≈ 2N ln 2 [23].

When C = O(1), the drift and diffusion terms are compa-
rable. In this case, the problem is essentially two-dimensional
and seems difficult to solve.

When C � 1, the diffusion terms are dominant on a fast
time scale. In this situation, the approximate consensus within
each clique may be reached before the two cliques effectively
start to interact. If this is the case, the bias terms play a role
after the consensus in each clique has been reached. In fact, the
Fokker-Planck approximation given by Eq. (2) breaks down
when C � 1 because the number of interclique links crucially
differs node by node. In other words, most nodes possess either
zero or one interclique link, and not having any interclique
link and having one interclique link may result in substantially
different behavior of nodes.

IV. MEAN CONSENSUS TIME OBTAINED FROM
THE COALESCING RANDOM WALK

In this section, I theoretically determine the dependence of
〈T 〉 on N using a random-walk method. The same scaling
results as those derived in this section can be obtained
with the use of a different, more intuitive, analysis method
(Appendix A). However, the method shown in Appendix A is
valid only when C � 1/N , which is unrealistic. The analysis
in this section is valid for the entire range of C.

The dual process of the voter model is the coalescing
random walk, in which walkers visiting the same node coalesce
into a single walker. For arbitrary networks, the consensus
time is equal to the time needed for the N simple random
walkers, one walker initially located per node, to coalesce
into one [1,24–26]. The time needed for the last two walkers
to coalesce is considered to dominate the consensus time.
Therefore, in this section I estimate the mean consensus time
by analyzing the mean time before the two walkers starting
from random positions meet.

A. When each node has many interclique links

When C � 1, the number of interclique links for a node
does not differ much among the nodes. Therefore, I assume
that all nodes in the same clique are structurally the same,
as implicitly assumed in the derivation of the Fokker-Planck

equation [Eq. (2)]. The following analysis is also valid when
each node has exactly C interclique links and C = O(1).

Denote by p1(t) the probability that the two walkers are
located at different nodes in the same clique at time t . Denote
by p2(t) the probability that the two walkers are located in
the opposite cliques at time t . Finally, r(t) is the probability
that the two walkers coalesce at time t . In each time step,
one of the two walkers is selected with probability 1/2 and
moves to a neighbor according to the simple random walk.
The selected walker moves to a neighbor with probability
1/(N + C − 1) ≡ 1/�. The network under consideration is
regular. Therefore, the simple random walk is equivalent to
selecting an arbitrary link and its direction with probability
1/2M and moving a walker (if any) along the direction of the
selected link, up to a time rescaling.

I obtain (
p1(t)

p2(t)

)
= At

(
p1(0)

p2(0)

)
(3)

and

r(t + 1) = v1p1(t) + v2p2(t), (4)

where

A ≡ 1

�

(
N − 2 (N−1)C

N

C N − 1

)
(5)

and

v ≡ (v1 v2) = 1

�

(
1

C

N

)
. (6)

By using

(I − A)−1 = �N

(N + C)C

(
C (N−1)C

N

C C + 1

)
, (7)

one can verify

∞∑
t=1

r(t) =
∞∑
t=1

vAt−1

(
p1(0)

p2(0)

)
= v(I − A)−1

(
p1(0)

p2(0)

)

= p1(0) + p2(0) = 1 (8)

regardless of p1(0) and p2(0). By ignoring the transient process
in which the N random walkers coalesce into two random
walkers, the mean consensus time is evaluated as

〈T 〉 ≈
∞∑
t=1

tr(t) = v(I − A)−2

(
p1(0)

p2(0)

)

= (1 1)(I − A)−1

(
p1(0)

p2(0)

)
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= (N + C − 1)N

(N + C)C

×
[

2Cp1(0) +
(

1 − C

N
+ 2C

)
p2(0)

]
. (9)

If C � 1, I obtain 2Cp1(0) � (1 − C/N)p2(0) unless
p1(0) = 0, which leads to 〈T 〉 = O(N ). It should be noted
that, even for C = O(1), Eq. (9) implies 〈T 〉 = O(N ).

B. When each node has at most one interclique link

Equation (9) extrapolated to the case C < 1 indicates
〈T 〉 = O(N/C). In particular, substitution of C = O(1/N )
in Eq. (9) yields 〈T 〉 = O(N2). However, the assumption that
each node has C interclique links, which justified the annealed
approximation (i.e., each node has exactly C interclique links
even if C is not integer) developed in Sec. IV A, breaks down
when C < 1. When C < 1, some nodes do not possess any
interclique link, whereas other nodes typically possess one
interclique link. A single-step random walk starting from a
node without an interclique link and that with an interclique
link may be substantially different because only the latter
allows the transition to the opposite clique.

In this section, I carry out a quenched analysis (i.e., number
of interclique links that each node possesses is explicitly
considered) of the coalescing random walk for the case C < 1.
Assume that NC nodes in each clique has one interclique
link each, and N (1 − C) nodes in each clique does not have
any interclique link. I have implicitly assumed that different
interclique links do not share an endpoint. These assumptions
exactly hold true when C � 1. I consider two coalescing
random walkers starting from different positions and assess
the coalescing time, as was done in Sec. IV A.

The nodes in the two-clique graph are divided into four
equivalent classes, as shown in Fig. 1. The first class of nodes,
which is called class a, contains N (1 − C) nodes in clique 1
that are not an endpoint of any interclique link. The second
class, which is called class b, contains NC nodes in clique
1 that are an endpoint of an interclique link. The third class,
which is called class c, contains NC nodes in clique 2 that are
an endpoint of an interclique link. The fourth class, which is
called class d, contains N (1 − C) nodes in clique 2 that are
not an endpoint of any interclique link.

At any time t , the coalescing random walk takes either of the
following six configurations, as shown in Fig. 2, unless the two
walkers coalesce. Denote by (i,j ) (i,j ∈ {a,b,c,d}) the event
that two random walkers are located at a class i node and a
class j node. Denote by p1(t) the probability that both walkers
visit two different nodes in class a [i.e., (a,a)] or in class d

FIG. 1. Schematic of the four classes of nodes when C < 1.

FIG. 2. Schematic of the six configurations of the coalescing
random walk when C < 1. It should be noted that clique 1 may
correspond to either the left or right clique in the figure.

[i.e., (d,d)] at time t . The sum of the probability of (a,b) and
that of (c,d) is denoted by p2(t). The sum of the probability of
(a,c) and that of (b,d) is denoted by p3(t). The probability of
(a,d) is denoted by p4(t). The sum of the probability of (b,b)
and that of (c,c) is denoted by p5(t). Finally, the probability
of (b,c) is denoted by p6(t).

In each time step, one of the N (N + C − 1) links in the
network is selected with the equal probability, i.e., 1/[N (N +
C − 1)]. Then, one of the two endpoints of the link selected
with probability 1/2 adopts the state of the other endpoint. To
explain the calculation of Aij , i.e., the transition probability
from configuration j to configuration i (1 � i,j � 6), consider
configuration 1, in which the two walkers occupy different
class-a nodes (Fig. 2). There are three possible types of
transition in one time step. First, one of the two walkers moves
to a node in class b. This event occurs with probability A21 =
2NC/[N (N + C − 1)] × (1/2) = C/(N + C − 1). Second,
the two walkers coalesce with probability 2/[N (N + C −
1)] × (1/2) = 1/[N (N + C − 1)]. Otherwise, the configura-
tion does not change such that A11 = 1 − C/(N + C − 1) −
1/[N (N + C − 1)].

One can write down A = (Aij ), the six-dimensional vec-
tor v, and the mean coalescing time as a linear sum of
p1(0), . . . ,p6(0) in the same manner as in Sec. IV A. The
detailed calculations are shown in Appendix B. In summary,
the obtained scaling reads

〈T 〉 = O(N/C). (10)

Substitution of C = O(1/N ) in Eq. (10) yields 〈T 〉 =
O(N2). This is the same scaling as the case of the one-
dimensional lattice [4,5,26]. It should be noted that, even
if C = O(1/N ), the network diameter is equal to just 3,
and the mean path length between a pair of nodes is
small; it is approximately equal to (1/2) × 1 + (1/2) × 3 = 2
independent of N .
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FIG. 3. (Color online) Relationship between the normalized
mean consensus time, 〈T 〉/N , and the number of interclique links
per node, M/N . The solid line represents the relationship 〈T 〉/N ∝
(M/N )−1 as guides to the eye.

V. NUMERICAL SIMULATIONS

I perform 103 runs of the voter model for a given set of
parameter values (N,M) and calculate 〈T 〉. A different two-
clique graph is generated for each run. The initial condition is
such that half the nodes randomly selected from each clique
takes the 0 state and the other half the 1 state. Other details of
the numerical procedure are provided in Sec. II.

By factoring out 1/(N + C) on the right-hand side of Eq. (2)
and assuming C � N , I obtain the the following scaling
ansatz:

〈T 〉
N

= f

(
M

N

)
, (11)

where f is a scaling function. In Fig. 3, 〈T 〉/N is plotted
against M/N for N = 102, 103, and 104 and various M values.
The results for different values of N and M collapse on a single
curve, confirming the validity of Eq. (11).

When C = M/N � 1, the network approaches the com-
plete graph such that 〈T 〉 = 2N ln 2. In fact, 〈T 〉 ≈ 2N ln 2
holds true even if C = O(1); the horizontal dotted line
in Fig. 3 indicates 〈T 〉/N = 2 ln 2. When C = O(1/N),
combination of Eqs. (10) and (11) yields f (x) ∝ x−1

as x → 0. Figure 3 indicates that this relationship holds
true for small x; the solid line represents 〈T 〉/N ∝
(M/N)−1.

VI. DISCUSSION

I examined the consensus time of a variant of the voter
model on the two-clique graph. Theoretically, the mean
consensus time 〈T 〉 = O(N ) when there are many (i.e., �1)
interclique links per node. Numerically, O(1) interclique links
per node is sufficient to realize the same scaling. When the
number of interclique links per node is much smaller than
unity, 〈T 〉 = O(N2). The crossover between the two regimes
seems to occur at approximately one interclique link per node
(Fig. 3). Therefore, the voter model dynamics is considerably
decelerated only when the two cliques are very sparsely
connected. It is straightforward to extend the present results to
the case of more than two cliques.

The present results are consistent with the previous
numerical results showing that networks with commu-
nity structure in which intercommunity links are not rare
yield 〈T 〉 = O(N ) [15]. A social network with an ex-
tremely sparse connectivity between communities is un-
realistic. It may bear some realism in the context of
genetic evolutionary dynamics, for which invasion dynam-
ics between sparsely interacting populations was recently
analyzed [27].

In general, the two-clique graph defined in the present
study is not regular in the node degree. In nonregular
networks, behavior of the voter model depends on the rule
according to which the node’s state is updated [3,18–21].
The so-called link dynamics rule was used in the present
study. In general, the results remain the same under different
updating rules (invasion process and the so-called voter model
rule) if the network is regular. The Fokker-Planck equation
(Sec. III) and the dual process (Sec. IV) were implicitly
considered on regular networks. In fact, the degree of a
node in the two-clique graph is equal to N − 1 plus the
number of interclique links. When the interclique links are
placed randomly, the number of interclique links obeys the
binomial distribution. However, its mean (i.e., C) and standard
deviation are much smaller than N − 1 in the parameter
range of interest [i.e., C = O(1) or smaller], rendering the
network approximately regular. Therefore, the present results
are considered to be robust with respect to the updating
rule.

The two-clique graph can be regarded as a simple multilayer
network with two layers [17]. In this context, the Laplacian
spectrum of multilayer networks in which each layer is a
general network is a useful tool [28,29]. Analyzing the current
model and its extensions under the framework of multilayer
networks warrants future work.
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APPENDIX A: ASSESSING THE MEAN CONSENSUS
TIME WHEN C � 1

In this section, I estimate 〈T 〉 in a hypothetical situation in
which consensus in each clique is realized fast enough before
an interclique link is selected to trigger interaction of the two
cliques. If the two cliques are disconnected, the consensus
in each clique is reached with mean time N ln 2. The mean
time before an interclique link is selected, denoted by 〈tic〉, is
given by

〈tic〉 = 1

N

[
CN

N (N − 1) + CN

]−1

= O(1/C), (A1)

because there are CN interclique links and N (N − 1) intr-
aclique links, and selection of a link consumes time 1/N .
Therefore, the condition under which the following adiabatic
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approximation is valid is given by N ln 2 � O(1/C), i.e.,
C � 1/N .

Because links are implicitly assumed to be unweighted,
C � 1/N , where the equality is realized when there is just one
interclique link in the entire network. Therefore, the condition
C � 1/N is never satisfied. Nevertheless, the arguments in
the remainder of this section turn out to predict the correct
dependence of 〈T 〉 on C when C(�1/N ) is small, which was
derived in Sec. IV B. If weighted links are allowed, C � 1/N

can be realized if, for example, there are O(1) interclique links
whose weights are much smaller than unity.

Under the assumption C � 1/N , the consensus is reached
in cliques 1 and 2 on a fast time scale. The consensus within
each clique implies the consensus of the entire network with
probability 1/2. Otherwise, I assume without loss of generality
that clique 1 reaches the 0 consensus and clique 2 reaches the
1 consensus. This event occurs with probability 1/2. In the
latter case, the consensus of the entire network occurs on a
slow time scale.

If the two cliques have reached the consensus of the opposite
states, without loss of generality, the event that happens next is
invasion of the 0 state into a node in clique 2 via an interclique
link. This event occurs when an interclique link is selected for
an update, which takes mean time 〈tic〉.

Then, one of the following two scenarios ensues. In the first
scenario, state 0 fixates in clique 2, and the consensus of the
entire network is reached. This event occurs with probability
1/N [30,31]. Under the condition that state 0 fixates in clique
2, the mean fixation time in clique 2 is equal to (e.g., [18,31])

N
1 − 1

N

1
N

ln
1

1 − 1
N

= O(N ). (A2)

Therefore, the consensus time is dominated by 〈tic〉 =
O(1/C). Here I ignored the contribution of N ln 2 derived from
the initial intraclique consensus and that given by Eq. (A2)
because C � 1/N is assumed.

In the second scenario, state 1 fixates in clique 2. This sce-
nario occurs with probability (N − 1)/N . Under the condition
that state 1 fixates in clique 2, the mean fixation time in clique
2 is equal to

N

1
N

1 − 1
N

ln
1
1
N

= O(ln N ). (A3)

In this case, the situation in which cliques 1 and 2 are in
the consensus of the opposite states is revisited. Then, either
state invades the other state in the opposite clique after mean
time 〈tic〉, and the same process repeats until the consensus of
the entire network is reached.

Therefore, I obtain

〈T 〉 ≈ N ln 2 + 1

2

1

N
〈tic〉 + 1

2

N − 1

N

1

N

× [〈tic〉 + O(ln N ) + 〈tic〉]

+ 1

2

(
N − 1

N

)2 1

N
[〈tic〉 + O(ln N ) + 〈tic〉

+O(ln N ) + 〈tic〉] + · · ·
= N〈tic〉 = O(N/C). (A4)

 0

 0.05
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fr
eq

ue
nc

y

T

FIG. 4. Distribution of T on the basis of 104 runs. I set N = 104

and M = 1. The vertical axis represents the fraction of runs that fall
in the time window specified on the horizontal axis.

Equation (A4) implies that consensus is much slower as
compared to the case of the complete graph [i.e., 〈T 〉 = O(N )].
Extrapolation of Eq. (A4) to the case of O(1) interclique
links in the networks, i.e., C = O(1/N ), would lead to
〈T 〉 = O(N2), which is actually correct as theoretically and
numerically shown in Secs. IV and V, respectively.

The reasoning above implies that the consensus occurs
fast [i.e., O(N ) time] or slowly [i.e., O(N/C) time] with
probability 1/2 each. Consensus of the opposite states in the
different cliques does not occur in the former case, and it
occurs in the latter case. To test this point, I carried out 104

runs of the voter model with N = 104 and M = 1. Half the
nodes in each clique was initially assumed to take the 0 state.
The numerically obtained histogram of T is shown in Fig. 4.
The distribution of T is in fact bimodal with a heavy tail (note
the log scale of the abscissa). Each peak contains roughly
half the runs. In addition, the positions of the two peaks are
roughly separated by 1/C = 104 times, which is consistent
with the ratio between the O(N ) and O(N/C) consensus time
estimated for each peak.

APPENDIX B: MEAN CONSENSUS TIME WHEN C < 1
VIA THE COALESCING RANDOM WALK

When C < 1, the transition among configurations in the
system of two coalescing random walkers on the two-clique
graph is described by

p(t + 1) = A p(t) (B1)

and

r(t + 1) = v p(t), (B2)

where

p(t) = (p1(t) p2(t) · · · p6(t))�, (B3)
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� denotes the transposition,

A = 1

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� − 2NC − 2 N (1 − C) − 1 0 0 0 0

2NC � − N − 1 1 0 2N (1 − C) 0

0 1 � − N − 1 2NC 0 2N (1 − C)

0 0 N (1 − C) � − 2NC 0 0

0 NC − 1 0 0 � − 2N (1 − C) − 4 2
(
1 − 1

NC

)
0 0 NC 0 2 � − 2N (1 − C) − 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

v = 1

�

(
2 2 0 0 2

2

NC

)
, (B5)

and

� = 2N (N + C − 1) (B6)

is twice the number of links.
By adapting Eq. (9) to the present system with six configurations, I obtain

r(t) = x p(0), (B7)

where x = (x1 · · · x6) is the solution of

x(I − A) = (1 · · · 1). (B8)

In fact, I obtain

x = c0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2N (N3C + 3N2C + 3NC + 2C + 1)C

2N4C2 + N3(6C2 + C) + N2(5C2 + 2C) + N (2C2 + 3C) + 2C + 1

N4(2C2 + C) + N3(7C2 + 5C) + N2(5C2 + 5C) + N (2C2 + 5C + 1) + 2C + 1

N4(2C2 + C) + N3(7C2 + 6C) + N2(6C2 + 9C) + N (4C2 + 10C + 1) + 4C + 2

2N2(N + 1)(NC + 2C + 1)C

N [N3(2C2 + C) + N2(7C2 + 4C) + N (4C2 + C) − 2C − 1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B9)

where

c0 = N + C − 1

[N3C + N2(C2 + 4C) + N (2C2 + 5C) + 2C + 1]C
. (B10)

Given C > 1/N by definition, Eq. (B10) implies c0 = O(1/N2C2) as N → ∞. Therefore, Eq. (B9) implies that x1,x2,x5 =
O(N2) and x3,x4,x6 = O(N2/C). Therefore, r(t) = O(N2/C) in general. I implicitly normalized the time for the sake of the
present analysis such that each node is updated once per time 2N on average. In terms of the rescaled time such that each node
is updated once per unit time on average, I obtain r(t) = O(N/C).

[1] T. M. Liggett, Interacting Particle Systems (Springer, New York,
1985).

[2] S. Redner, A Guide to First-passage Processes (Cambridge
University Press, Cambridge, England, 2001).
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[15] X. Castelló, R. Toivonen, V. M. Eguı́luz, J. Saramäki,
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