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Abstract Kolmogorov (Dokl. Akad. Nauk USSR, 14(5):953-956, 1957) showed that
any multivariate continuous function can be represented as a superposition of one-
dimensional functions, i.e.,

2n n
SO, xn) = Z(pq (Z ‘ﬂq,p(%ﬂ))-
q=0 p=1

The proof of this fact, however, was not constructive, and it was not clear how to
choose the outer and inner functions @, and v, ,, respectively. Sprecher (Neural
Netw. 9(5):765-772, 1996; Neural Netw. 10(3):447-457, 1997) gave a construc-
tive proof of Kolmogorov’s superposition theorem in the form of a convergent al-
gorithm which defines the inner functions explicitly via one inner function ¢ by
Vp.q = Ap¥(xp+qa) with appropriate values A ,, a € R. Basic features of this func-
tion such as monotonicity and continuity were supposed to be true but were not ex-
plicitly proved and turned out to be not valid. Képpen (ICANN 2002, Lecture Notes
in Computer Science, vol. 2415, pp. 474-479, 2002) suggested a corrected definition
of the inner function ¥ and claimed, without proof, its continuity and monotonicity.
In this paper we now show that these properties indeed hold for Képpen’s ¢, and
we present a correct constructive proof of Kolmogorov’s superposition theorem for
continuous inner functions v similar to Sprecher’s approach.
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1 Introduction

The description of multivariate continuous functions as a superposition of a number
of continuous functions [13, 24] is closely related to Hilbert’s thirteenth problem
[10] from his Paris lecture in 1900. In 1957 the Russian mathematician Kolmogorov
showed the remarkable fact that any continuous function f of many variables can
be represented as a composition of addition and some functions of one variable [14].
The original version of this theorem can be expressed as follows:

Theorem Ler f : 1" :=[0, 1]" — R be an arbitrary multivariate continuous func-
tion. Then it has the representation

2n n
FOer, o x) =Z¢>q<z wq,p(xp)>, (1.1)
q=0 p=1

with continuous one-dimensional outer and inner functions @, and V4 ,. All these
functions @4, g p are defined on the real line. The inner functions vy, , are inde-
pendent of the function f.

Kolmogorov’s student Arnold also made contributions [1-3] in this context that
appeared at nearly the same time. Several improvements of Kolmogorov’s original
version were published in the following years. Lorentz showed that the outer func-
tions @, can be chosen to be the same [19, 20], while Sprecher proved that the inner
functions ¥, , can be replaced by A,v, with appropriate constants A, [25, 26].
A proof of Lorentz’s version with one outer function that is based on the Baire cat-
egory theorem was given by Hedberg [9] and Kahane [13]. A further improvement
was made by Friedman [5], who showed that the inner functions can be chosen to be
Lipschitz continuous. A geometric interpretation of the theorem is that the 2n + 1
inner sums Z;=1 Yy, p map the unit cube I" homeomorphically onto a compact

set I' ¢ R2**! Ostrand [23] and Tikhomirov [15] extended Kolmogorov’s theo-
rem to arbitrary n-dimensional metric compact sets. The fact that any compact set
K C R” can be homeomorphically embedded into R>**! was already known from
the Menger—Nobeling theorem [11].

More recently, Kolmogorov’s superposition theorem found attention in neural net-
work computation by Hecht—Nielsen’s interpretation as a feed-forward network with
an input layer, one hidden layer, and an output layer [7, 8, 25]. However, the in-
ner functions in all these versions of Kolmogorov’s theorem are highly non-smooth.
Also, the outer functions depend on the specific function f and hence are not rep-
resentable in a parameterized form. Moreover, all one-dimensional functions are the
limits or sums of some infinite series of functions, which cannot be computed prac-
tically. Therefore Girosi and Poggio [6] made the criticism that such an approach is
not applicable in neurocomputing.

The original proof of Kolmogorov’s theorem is not constructive, i.e., one can show
the existence of a representation (1.1), but it cannot be used in an algorithm for nu-
merical calculations. Kurkova [17, 18] partly eliminated these difficulties by substi-
tuting the exact representation in (1.1) with an approximation of the function f. She
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replaced the one-variable functions with finite linear combinations of affine transfor-
mations of a single arbitrary sigmoidal function . Her direct approach also enabled
an estimation of the number of hidden units (neurons) as a function of the desired ac-
curacy and the modulus of continuity of f being approximated. In [21] a constructive
algorithm is proposed that approximates a function f to any desired accuracy with
one single design, which means that no additional neurons have to be added. A short
overview of the history of Kolmogorov’s superposition theorem in neural network
computing is also given in [21]. Other approximative, but constructive, approaches to
function approximation by generalizations of Kolmogorov’s superposition theorem
can be found in [4, 12, 22].

Recently, Sprecher derived in [27, 28] a numerical algorithm for the implementa-
tion of both internal and external univariate functions, which promises to construc-
tively prove Kolmogorov’s superposition theorem. In these articles, the inner func-
tions v, are defined as translations of a single function v that is explicitly defined as
an extension of a function which is defined on a dense subset of the real line. There,
the r-th iteration step of Sprecher’s algorithm works as follows: For a chosen ap-
propriate basis y € N, the n-dimensional unit cube [0, 1] is divided into subcubes
which are separated by small gaps whose sizes depend on y. Also, Sprecher’s defin-
ition of the inner function is based on this y such that, for fixed g, the corresponding
inner sum maps the subcubes into intervals on the real line. These intervals are then
again separated by gaps. This allows the definition of a continuous outer function
052 on the intervals such that the residual f. between f and the previous iterate is
approximated on the subcubes by the superposition of the g-th outer function and an
inner sum. Since the approximation error cannot be controlled on the gaps, the cubes
are additionally translated by a variation of the ¢’s. This is done such that for each
point x € [0, 11" the set of g-values for which x is contained in a subcube is larger
than the set for which it lies in a gap. The r-th approximation is then defined as the
sum over all values of ¢ and the previous iterate. Sprecher proved convergence of this
algorithm in [27, 28]. Throughout this proof, he relied on continuity and monotonic-
ity of the resulting . It can, however, be shown that his i does not possess these
important properties. This was already observed by Koppen in [16], where a modified
inner function i was suggested. Koppen claims, but does not prove, the continuity
of his ¥, and merely comments on the termination of the recursion which defines his
corrected function .

In this article we close these gaps. First, since the recursion is defined on a dense
subset of R, it is necessary to show the existence of an expansion of Képpen’s ¥ to
the real line. We give this existence proof. Moreover, it is also not clear a priori that
Koppen’s i possesses continuity and monotonicity, which are necessary to prove the
convergence of Sprecher’s algorithm and therefore Kolmogorov’s superposition theo-
rem. We provide these properties. Altogether, we thus derive a complete constructive
proof of Kolmogorov’s superposition theorem along the lines of Sprecher but based
on Koppen’s .

The remainder of this article is organized as follows: As starting point, we spec-
ify Sprecher’s version of Kolmogorov’s superposition theorem in Sect. 2. Then, in
Sect. 3 we briefly repeat the definitions of the original inner function ¥ and the con-
structive algorithm that was developed by Sprecher in [27, 28]. The convergence of
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this algorithm would prove Kolmogorov’s superposition theorem. First, we observe
that Sprecher’s ¥ is neither continuous nor monotone increasing on the whole inter-
val [0, 1]. We then show that Koppen’s ¢ indeed exists, i.e., it is well defined and
has the necessary continuity and monotonicity properties. Endowed with this knowl-
edge, we then follow Sprecher’s lead and prove the convergence of the algorithm,
where the original inner function is replaced by the corrected one. This finally gives
a constructive proof of Kolmogorov’s superposition theorem.

2 Definitions and Algorithm
2.1 A Version of Kolmogorov’s Superposition Theorem

Many different variants of Kolmogorov’s superposition theorem (1.1) were developed
since the first publication of this remarkable result in 1957. Some improvements can
be found, e.g., in [20, 25]. In [5] it was shown that the inner functions v, , can
be chosen to be Lipschitz continuous with exponent one. Another variant with only
one outer function and 2n + 1 inner functions was derived in [20]. A version of
Kolmogorov’s superposition theorem recently developed by Sprecher in [25] reads
as follows:

Theorem 2.1 Let n > 2, m > 2n and y > m + 2 be given integers, and let X =
(X1, ...,%y) and x4 = (x1 +qa, ..., x, +qa), where a :=[y(y — 1)]71. Then, for
any arbitrary continuous function f :1" — R, there exist m + 1 continuous functions
®,:R—R,q=0,...,m, such that

=)@ 08(x,), withs(xg) =Y ap¥(x,+qa). @.1)

q=0 p=1
ar=1a,=322y~P=DBO for p>1and B(r) =" —1)/(n — 1).

This version of Kolmogorov’s superposition theorem involves m one-dimensional
outer functions @, and one single inner function . The definition of v will be
discussed in detail in the following.

For a fixed base y > 1 we define for any k € N the set of terminating rational
numbers

k
Dr =Di(y) = {dk €eQ:dr = Zi,y", ire{0,...,y —1};. 2.2)
r=1
Then the set
D= ] (2.3)
keN

is dense in [0, 1].
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In [28] Sprecher formulated an algorithm whose convergence proves the above
Theorem 2.1 constructively. In this algorithm, the inner function i was defined point-
wise on the set D. Further investigations on this function were made in [27]. However,
to make this proof work, two fundamental properties of i, namely continuity and
monotonicity, are needed. Unfortunately, the inner function ¥ in [27, 28] is neither
continuous nor monotone. In the following, we repeat the definition of i here and
show that it indeed does not define a continuous and monotone increasing function.

Let (i1) :=0 and for r > 2 let

Q) 0 wheni,=0,1,...,y —2,
i) =
' 1 wheni,=y —1.

Furthermore, we define [i{] := 0 and, for r > 2,

0,1 0 wheni,=0,1,...,y —3,
ir]:=
' 1 wheni, =y -2,y —1,

I =1 — (¥ —2)(ir),

and

r—1
my = (ir)(Z([iS] '''' [i”_l]))'

s=1

The function v is then defined on Dy by

k

Y(dy) =Y 5,27y TP, (2.4)

r=1

Note that the definition of ¢ depends on the dimension z since 8(-) depends on n.
For a simpler notation we dispense with an additional index. The graph of the func-
tion ¢ is depicted in Fig. 1 for k =5, y =10 and n = 2, i.e., it was calculated with
the definition (2.4) on the set of rational decimal numbers Dy. The function ¥ from
(2.4) has an extension to [0, 1], which also will be denoted by  if the meaning is
clear from the context.

The following calculation shows directly that this function is not continuous, in
contrast to the claim in [27]. With the choice y = 10 and n = 2, one gets with the
definition (2.4) the function values

¥(0.58999) =0.55175 and (0.59) =0.55. (2.5)

This counter-example shows that the function i is not monotone increasing. We
furthermore can see from the additive structure of v in (2.4) that

¥(0.58999) < y(x) forall x € (0.58999, 0.59). (2.6)

This shows that the function i is also not continuous.
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Fig. 1 The graph of Sprecher’s ¢ from (2.4) on the interval [0, 1] (left) and a zoom into a smaller in-
terval (small, left), computed for the values of the set D5, y = 10 and n = 2. One can clearly see the
non-monotonicity and discontinuity near the value x = 0.59. The right image shows Koppen’s version
from (2.7) for the same parameters and a zoom into the same region (small, right). Here, the discontinuity
is no longer present

Remark 2.2 Discontinuities of i arise for all values x = 0.i19,i; =0,...,9.

Among other things, the convergence proof in [27, 28] is based on continuity and
monotonicity of {. As the inner function defined by Sprecher does not provide these
properties, the convergence proof also becomes invalid unless the definition of i is
properly modified. To this end, Koppen suggested in [16] a corrected version of the
inner function and stated its continuity. This definition of ¢ is also restricted to the
dense set of terminating rational numbers D. K&ppen defines recursively

dy fork=1,
Y (di) = { Yie—1(dix — k)—i— m) fork>1landiy <y —1,
T (W—1 (dx — )+wk 1(dk+ )+ w)) fork>1landig=y —1,

2.7)

and claimed that this recursion terminates. He assumed that there exists an extension
from the dense set D to the real line as in Sprecher’s construction and that this ex-
tended i is monotone increasing and continuous, but he did not give a proof for it.
In the following, we provide such a proof. The function v is depicted in Fig. 1 for
the same parameters k =5, y = 10 and n = 2 as before.

We first consider the existence of an extension and begin with the remark that
every real number x € [0, 1] has a representation

oo . k.
i . i .
x:E —~ = lim —r=11mdk.

r k r k
— Y —>00 —l Y — 00

For such a value x, we define the inner function

k i
Y(x) = lim Yi(di) = lim g Z 238)

Ir
y"
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and show the existence of this limit.
For the following calculations it is advantageous to have an explicit representation
of (2.7) as a sum. To this end, we need some further definitions. The values of ¥ ;

at the rational points dg— ;, dx—j + V’%f € [0, 1] are denoted as

1
Vi—j i =Vi—j(di—j) and Y= <dk—j + F)

Then, the recursion (2.7) takes for k — j > 1 the form

ik—j )
= T Vi—j-1 forip_i <y —1,
S L e 29)
Zyﬁ(’(—./} + QWk—j—l + jwk*j*l for lk—j =y — 1’
and
y;k(;j./‘) + yﬂ—(llc—j) + Yk—j—1 forix—; <y —2,
+ i .
Viej = 2yl§<kjff) + 3V j1+5v o forij =y -2, (2.10)
l/fktj—l forig—j=y — 1.
Using the values
0 forig_j41<y—2,
- 0 forijp_ijy1<y—1,
sji= % forix_j;1=y—2, and §;:=1, ‘k j+HL <Y @.11)
1 ' 5 forig_jp1=y—1,

forig—j1=y —1,

we can define the matrix and vector
(A =Sj+1) Sjt1
M; = 1= si1) ' and
( Sji+1)  Sj+1

_ 3. ik—j < y=2
(1 =284 5a7 +Sj+1 5w

— Sj+1)[% +(1- 2Sj+1)—yﬂ(llc—j)]

Now, the representations (2.9) and (2.10) can be brought into the more compact form

‘”"’):M Vejt b; 2.12
(w;r_/ J (1//-]:__]__1 + j- ( . )

Next, we define the values 6y := 1, 90+ =0,0; :=1-57, 91+ := 51, and set recursively

9j+1> T 0;
= M- (2.13)
(9;1 / 9;“
for j=1,...,k— 1. By induction we can directly deduce from (2.13) and (2.11) the

useful properties

0; +67

=1 and 6;,0] >0. (2.14)

@ Springer



660 Constr Approx (2009) 30: 653-675

With these definitions, the £-th step of the recursion can be written as the sum

£—1
_ y-2
Wk:;)ef[ =25+ 50— ﬁ(k 5t ﬁ(k n}

+ k=j , 1 +.+
+9/ [(1 S]+1)<m+(l—2sj+l)m>i| +9§¢k-§+9s wk—f
(2.15)
Proof by induction & = 1: From (2.12) for j =0 we directly get

N)/—

2
_ < <t
wk—[u 2505 + yﬁ(k)}m SOV + R

& — &4 1:With (2.12) and (2.13) we have

< v=2
Wk—ze [(1 25540 5@ ﬁ(k = +sj+1y/3(k—j):|

j=0

+ 1 _ . ke Che L
+9; [(1 Sf“)(yﬁ(kj)“l 2s,+1)yﬁ(kj))}
+9§ |:(1 - §$+1)Wk—(5+1) ‘|‘§$+11//]j;(g’:+1)

. y—2

(=25 g s + e B
+6; [(1 — S+ DVk—+1) + e -1V ey

1 e SR L
+( _s.s:-‘-l—l) yﬂ(kfs)—i_( - ss+1)yﬂ(k7§:)

: —2
=29./[ AR =) ;3(k i ﬂ(k n}
j=0

T G P (e IS B VS S
j AR VI S+ BG=)

+ O 1 Yk e+1) + 0, Uy : O
§+1Vk—(E+D) E+1 7 k—(E+1)

Choosing £ = k — 1 we finally obtain a pointwise representation of the function
Y as the direct sum

— . S —lk_l S _2
Vi(do =6, [(1 ~ 240 gy i ﬁ<k 1)}
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+ . k= s
i1+ 1
v

+ Ok — lJ/ +9 (2.16)

Now we have to show the existence of the limit (2.8). To this end, we consider the
behavior of the function values ¥ and 1//,:r as k tends to infinity:

Lemma 2.3 For growing values of k one has for ¥ defined in (2.9) and w,j' from
(2.10)

v =+ 00,

Proof With (2.12), the fact that y#() = yﬁ(j_l)y"j_], and y" > 2, we have

1 y —2
|1/f]:r_wk| = E|W]j;1 _wk—l|+m

1\ k-1 N 1\ k-2 k pj-2
5(5) vy —w1!+(5) (v — ><2; ﬂm)

1\ k-1 N 1\ k2 0 5 \J2
< (5) ¥ —w1|+(5> (y—%(%(;)

J
NIy =2p”
-(3) [+ %)

and the assertion is proved. g

S~——

If we now apply this result to arbitrary values k and k', we can show the following
lemma:

Lemma 2.4 The sequence i defined in (2.9) is a Cauchy sequence.

Proof For k, k' € N and without loss of generality k > k’, we set & := k — k" in (2.15).
Then we obtain by (2.14) and with Lemma 2.3 the following estimate:

Vi = Y| < [Okrvn + 67 ¥ — Y| +2(r = 2) Z yﬁm

j=k'+1

k 1 j—1
- 5 ()

j=k'+1

= |9k—k’ Vi + elj_,k/ 1#,:7 — Vi

= Ot Vi + 0 (i + OQ27F)) — Y
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L =2 (] Ko\
l —_ yﬂ yn yn
=2 1\ 1\
soe 2 2((5) () )
1 — yn yn yil

The right-hand side tends to 0 when &, k' —> oo0. O

The real numbers R are complete, and we therefore can infer the existence of a
function value for all x € [0, 1]. Thus, the function i from (2.8) is well defined. It
remains to show that this i is continuous and monotone increasing. This will be the
topic of the following subsections.

2.2 The Continuity of

We now show the continuity of the inner function 1. To this end we first recall some
properties of the representations of real numbers.
Let

oo . oo

i i0
X = L and xp:= =L
14 14

r=1 r=1

be the representation of the values x and xg in the base y, respectively. Let xg € (0, 1)
be given and

oo o0

X . iO,r 1 iO,r
8 (ko) := min Z R T Z o
r=ko+1 r=ko+1
For any x € (xg — §(ko), xo + & (ko)) it follows that
i =ip, forr=1,... ko. (2.17)

Special attention has to be paid to the values xo = 0 and xo = 1. In both cases, we
can choose 8 (ko) = y %. Then (2.17) holds for all x € [0, §(ko)) if xo = 0 and all
x € (1 = 8(kop), 1] if xg = 1. The three different cases are depicted in Fig. 2.

Altogether we thus can find for any given arbitrary xo € [0, 1] a §-neighborhood

U:= (xo — 8(ko), xo + 5(k0)) N[0, 1]

in which (2.17) holds. To show the continuity of the inner function ¥ in xg, we now
choose this neighborhood and see from (2.16) for x, xg € U:

[ (x) = ¥ (x0)| = Jim | (di) = ¥ (don)|
k—ko—1

' - Ik—j - y —2
X(:) 0 [(1 — i) gy i yﬁ(k—j):|
]:

ol .. i i)
+67 [(1 Sf+‘)<yﬁ<k—j>+(1 zsf“)yﬂ(k—f))}

= lim
k— o0
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(ko) L (ko)
1 N 1

r= k0+17 L do,r dor 1 1— L
o =17 I T T =

S 1

3

Fig.2 The figure shows the interval [0, 1]. For any two values x1 and x; that both lie in one of the depicted
small intervals, it holds that iy , =ip , forr=1,..., ko. The three intervals represent the possible cases
that occur in the proof of Theorem 2.5

k—ko—1 2
_ z_(:) 9()’]' [( — 250, J+])7ﬂ(k ) + 5o, ‘]+17Vﬂ(k ])i|
ji
I _ i0,k—j _ 1
90,1- [(1 - SO,/+1)<W + (1 - 250,]+1)m>]‘
k—ko—1

g mns i o V=2
i [(1 2j+1) L BG— + St yﬂ(kj)]‘

+

s gy
9 [(1 SjJrl)(yﬂ(kj) + zsf“)yﬁ(kj))”
k—ko—1

l1m Z

y—2
90’[(1_25‘”“) A +s0]+1yﬁ(k J>]‘

00,k—j 1
0 [(1 - So,j+1)<m +(1 - 2So,,/+1)m)”

Ay (y —2) ( 1 )" ( 1)"0 4y"<y—z>( 1 )"0
<lm —||—) - | — =—\— .
k—)OO l_yn yl’l yn l_yn yn

(2.18)

Note that the estimation of the last two sums was derived in a similar way to that
of the proof of Lemma 2.4.

In conclusion, we can find for any given ¢ > 0 a kg € N and thus a §(kg) > O such
that | (x) — ¥ (x0)| < & whenever x, xg € U = (xg — 8 (ko), xo + 8 (ko)) N[0, 1]. This
is just the definition of continuity of ¥ in xo € (0, 1). Since the interval U is only
open to the right if xo = 0 and open to the left if xo = 1, the inequality (2.18) also
shows for these two cases continuity from the right and from the left, respectively.
We hence have proved the following theorem:

Theorem 2.5 The inner function ¥ from (2.8) is continuous on [0, 1].
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2.3 The Monotonicity of i

A further crucial property of the function v is its monotonicity. We show this first
on the dense subset D C R of terminating rational numbers. Note that the values
and w,j' from (2.9) and (2.10) are evaluations of i on the dense subset of rational
numbers in [0, 1].

Lemma 2.6 For every k € N, there holds
Ul >+ L
ke =VETUBm

Proof by induction k = 1:

. 1 1 11
Vi —vi=vi\di+ — | —id) =di+ - —di = - = 0
14 Y v Y

k—k+1:
~ 1 - ;
Vi — Vi = (so — 50) (Wi — v) + W(QSO — 50)ik+1

+ (1 = 50)(1 = 250) — So(y —2))

1 . ~
AR forigr1 <y —2 (so=350=0),

1+ 1 y=2 . 1 -~
= j(l/fk—l/fk)—gm forigp1 =y =2 (s0=73,5=0),

-2 . ~
%(‘/”Ij_l/’k)_%ﬁ forigpr=y—1 (so=1,5=7%).

For the first case ix4+1 < y — 2, the assertion is trivial. For the other two cases, we
have

1 1 y-—2 1 1 y-2 1 1 y—2
+ +
=90 =5 2 2 0 — ) = 5 e = 5( FIGRITER)
y y y y
I
=BG+
B

Here, the validity of the last estimate can be obtained from

k—1

1 1 y—2 - 1 1/ ¢y" y—2 - 1
2\ 8@ ~ yEGD ) = pparn < g\ pawn T pwrn ) = pEen
'y 222 o "2y e Azl O

We have thus shown that ¢ is strictly monotone increasing on a dense subset of
[0, 1]. Since the function is continuous, this holds for the whole interval [0, 1]. This
proves the following theorem:

Theorem 2.7 The function ¥ from (2.8) is monotone increasing on [0, 1].
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In summary, we have demonstrated that the inner function v defined by Sprecher
(cf. [27, 28]) is neither continuous nor monotone increasing, whereas the definition
(2.8) of ¥ by Koppen from [16] possesses these properties.

3 The Algorithm of Sprecher

We will now demonstrate that Sprecher’s constructive algorithm from [28] with Kop-
pen’s definition of the inner function i from [16] is indeed convergent. We start
with a review of Sprecher’s algorithm, where a1 = 1, ocp =32, y ~P=DBO) for
p=2,....,n,r)=m" —1)/(n—1),anda = [y (y — 1)]~! are defined as in Sect. 2.
Additionally, some new definitions are needed.

Definition 3.1 Let 0 : R — R be an arbitrary continuous function with o(x) =0
when x <0, and o(x) =1 when x > 1. For g € {0, ..., m} and k € N given, define

i =dip+qy v,

and set dk (dk Lreees dl?,n)' Then for each number é(dZ) = Z'I’,zl ocpl//(d,f’p) we

set
o0 n
r=k+1 p=1

(@] 5 yg) =0 (Y40 (3, - (a])) + 1)
o (yPE (vg — 5 (df) — (v — b))

We are now in the position to present the algorithm of Sprecher which implements
the representation of an arbitrary multivariate function f as superposition of single
variable functions. Let || - || denote the usual maximum norm of functions and let
f : " — R be a given continuous function with known uniform maximum norm LfI-
Furthermore, let  and ¢ be fixed real numbers such that 0 < 2= ”H
which implies ¢ < 1 —

3.1)

n
m—n+1"°
Algorithm 3.2 Starting with fo = f,forr =1,2,3, ..., iterate the following steps:
I. Given the function f,_1(x), determine an integer k. such that for any two points
x,X € R" with |x —x/|| < y % itholds that | f,_1(X) — f_1(X))| <&l fr_1]l. This
determines rational coordinate points dZ, = (dzr Lreees dgr‘ )
Il. Forg=0,1,...,m
II-1 Compute the values w(dgr p).
II-2 Compute the linear combinations & (dz,) = Z’;: Lo Pw(d/?r, p).
II-3 Compute the functions w(dzr; Yq)-
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III. IMI-1 Compute for g =0, ..., m the functions

1
Pq0g) = -y D fr-1@i)o(dy 5 vg), (32)
where the sum is taken over all values dZ, € D’,:r.
III-2 Substitute for ¢ = 1,...,m the transfer functions &§(x,) and compute the
functions

1
Py oE(Ry) = D fad)o(d] E(xy)).

Again, the sum is built over all values dZ, € D’,:r.
II-3 Compute the function

F® =X =Y @) 0b(x). (33)

q=0j=1

This completes the r-th iteration loop and gives the r-th approximation to f. Now
replace r by r + 1 and go to step L.

The convergence of the series { f,-} for » — oo to the limit lim, o f =: g =0
is equivalent to the validity of Theorem 2.1. The following convergence proof essen-
tially follows [27, 28]. It differs, however, in the arguments that refer to the inner
function i which is now given by (2.8), i.e., we always refer to Koppen’s definition
(2.8) if we use the inner function .

The main argument for convergence is the validity of the following theorem:

Theorem 3.3 For the approximations f.,r =0, 1,2, ... defined in step 111-3 of Al-
gorithm 3.2 there holds the estimate

froa(®) =) @ 0£(xy)

q=0

Ifrll = = nllfr=1ll-

To prove this theorem, some preliminary work is necessary. To this end, note that
a key to the numerical implementation of Algorithm 3.2 is the minimum distance of
images of rational grid points d; under the mapping &. We omit the superscript of
dZ here for convenience, since dZ € Dl’z, and the result holds for all d; € D,’é. This
distance can be bounded from below. The estimate is given in the following lemma:

Lemma 3.4 For each integer k € N, set

=Y ap[Widi ) —¥(d; )], (3.4)

p=1

where dy , d//c,p € Dy. Then

min || >y PR, (3.5)
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where the minimum is taken over all pairs dy, p, d;c’p € Dy, for which

n
> di.p —dy. | #0. (3.6)

p=1

Proof Since for each k the set Dy is finite, a unique minimum exists. For each k € N,
let dk,p,d,/{’p € Dy and Ay p = ¥ (dk,p) — w(dl/c,p) for p=1,...,n. Since ¥ is
monotone increasing, we know that Ay , # 0 for all admissible values of p. Now
from Lemma 2.6 it follows directly that

min Ay | =y F®, (3.7)
Dr

where for each fixed d, k the minimum is taken over the decimals for which |di , —
d,i’p| # 0. The upper bound

min | < o,y PE (3.8)

can be gained from the definition of the u; and the fact that | =) > ap > -+ >
o, as follows: Since |uy| < 22:1 aplAg,pl, we can see from (3.7) and (3.8) that a
minimum of || can only occur if Ay 7 #0 for some T € {2, ...,n}.

Let us now denote the k-th remainder of «, by

o
Ekpi= Z y—(l’—l)ﬂ(r) (3.9)
r=k+1
such that
k
ap—Epp = Z y—([’—l)ﬂ(r), (3.10)
r=1
and consider the expression
T
A1+ Y (@p = exp) Ak p- (3.11)
p=2

We claim the following:

T
If Apr #0,  then Agy + Y (@) — k) Ak, p # 0,
p=2

i.e., the term (o7 — €k, 1) Ak, 7 cannot be annihilated by the preceding terms in the
sum. To show this, an application of (3.10) leads to
ar —epr =y~ T=D 4= T=DBQ) 4 4, ~(T=D)
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Also note that, for the choice k =1 and ij,7 =y — 1 as well as ii’T =01in (2.16),

the largest possible term in the expansion of | A 7| in powers of y ~! is

y —1
14

Therefore, (¢r — ek, 7)| Ak, 7| contains at least one term 7 such that

~a-npry =1
y

O<t<y

But according to (3.7) and (3.10) the smallest possible term of (), — i p)| Ak, pl
for p<Tis

—(T—l)ﬁ(k)’

~(T-2pk),, k) _

14

so that the assertion holds and (3.11) indeed does not vanish.
If lig,7 —i ,/cyT| = 1, we have without loss of generality in the representation (2.16)
the values

i ik 55 6 0F s os 6 6F
1 1

y=2 y-1 0 3 1 0 3 1 1 0

y=3 y-2 0 0 1 0 o0 L1 1 0

y—4 y-3 0 0 1 0 0 0 1 0

1

and we can directly infer that the expansion of (3.11) in powers of y ~' contains the

term

= T=DBK), =B — ,~TH®). (3.12)

We now show that this is the smallest term in the sum (3.11). To this end, we use
the representation (2.16) for Ay , and factor out y ~P%=1 for each j. Since 0 ; and
0+ become smaller than 27/, we can bound each term in the sum (3.11) from below
by y ~P*=72=J The further estimation y "#*=12=J > 3 =B shows that (3.12) is
indeed the smallest term in the sum and hence cannot be annihilated by other terms
in (3.11). Therefore,

T
A1+ Y (ap —ex p)Arp| =y PO
p=2
But this implies that also
T
Apt + ZapAk,p >~ TBK),
p=2
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1

since all possible terms in the expansion of ZZ:Z &k, p Ak, p in powers of y " are too
small to annihilate y ~7#®)_ Thus, choosing T = n, the lemma is proven. O
The linear combinations & (dZ) of the inner functions serve for each ¢ =0, ..., m

as a mapping from the hypercube 1" to R. Therefore, further knowledge on the struc-
ture of this mapping is necessary. To this end, we need the following lemma:

Lemma 3.5 For each integer k € N, let

y —2
Ok =
(y — Dy

Then for all di € Dy and € > as given in (3.9) we have

(3.13)

Y(di +8) =¥ (dr) + (v —2)&k 2.

Proof The proof relies mainly on the continuity of v and some direct calculations.
If we express dy as an infinite sum, we have

ko
: y =2 :
di +é= 1 d — ¢ =: lim dy,.
i+ 8 kognoo{ k+r2_1: yk+r} Jim g

Since ¥ is continuous, we get

1ﬁ(kolgnoodk") - kolgnoo V(o).

and since igy, =y — 2 for r = 1,..., ko, it follows directly that 5, =0 for j =
0,..., ko — k. Therefore 9;‘ =0and§; =1for j=0,..., ko — k. With the represen-
tation (2.15) and the choice & = kg — k, the assertion follows. Il

As a direct consequence of this lemma, we have the following corollary, in which
the one-dimensional case is treated:

Corollary 3.6 For each integer k € N and dy, € Dy, the pairwise disjoint intervals
E(dy) := [dk, dr + 8] (3.14)
are mapped by  into the pairwise disjoint image intervals
Hy (dy) = [ (di), ¥ (di) + (v — 2)ex 2] (3.15)

Proof From their definition it follows directly that the intervals Ej(dy) are pairwise
disjoint. The corollary then follows from Lemmas 3.4 and 3.5. g

We now generalize this result to the multidimensional case.
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Lemma 3.7 For each fixed integer k € N and dy € D}, the pairwise disjoint cubes
n
Se(dp) = [ | Ex(de. ) (3.16)
p=1
inI" are mapped by Z’[l):l apV (dk,p) into the pairwise disjoint intervals
n n n
Ti(dy) == [Z ap¥(dip). Y aprldsp) + (Z a,,> (v - 2>ek,2}. (3.17)
p=1 p=1 p=1

Proof This lemma is a consequence of the previous results and can be found in detail
in [27]. O

We now consider Algorithm 3.2 again. We need one more ingredient:

Lemma 3.8 For each value of q and r, the following estimate holds:
[ 2500 < —— 11l
q yt] —= m + 1 r—11-

Proof The support of each function w(dk ¥4) is the open interval
U7 0f) = (6(a) =770 6(8) + 0 = Dbk D),

Then, by Lemma 3.7, the following holds: If £(d}) # £(d;) then U/(d]) N
Ul () = @. With this property and the fact that 0 < @(d}; y,) < 1, we derive
from (3.2):

1
= ——— max
m+1

RIS

Here, the sum is taken over all values dzr € D,’:r and the maximum over all d, € DZ,.'
The lemma then follows from the definition of the maximum norm, see also [28],
Lemma 1. O

We are now ready to prove Theorem 3.3 (compare also [28]).
Proof of Theorem 3.3 For simplicity, we include the value d; = 1 in the definition of

the rational numbers Dy. Consider now for each integer ¢ and a = [y (y — D]™! as
in Theorem 2.1 the family of closed intervals

EZ (d;f) = [dZ —qa, d,? —qa+ Sk]. (3.18)

With 8, = (y —2)(y — 1)~ 1y~ we can see that

_ _ -2 _
EZ(dZ)zl:dk—%)’ k,dk—%y k+y—7/ ki|s
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Jk z  d (ik
| [ |
I I I I
L L | Ehu(dhls) (ikZ 4
P 1oL 1L Ei(di) < S;J(dtlz)
i I | L E)§<d2> Sl(dl)
L Il L E‘kj(d:i) S); d:
1L 1L Ef(df) //// k( k)
dgo T 1 53(d?)
F T "k
- sidb)
t t
di,1 di.1

Fig.3 Letk be afixed integer, m =4,y = 10and dy ; :=dy; —y . dy; == dy; +y~*,i € (1,2). The
left figure depicts the intervals EZ (dz) forg =1, ..., m. The subscript i indicating the coordinate direction
is omitted for this one-dimensional case. The point x is contained in the intervals E,?(c?,?), E,i (Jll ), Elz (d,z’),

E;(1 (d;:) (shaded) and in the gap G]% (d~]%) (dark shaded). The figure on the right shows the cubes SZ (dZ)
forn=2,q=1,...,m and different values d; € DZ. For g € {2, 3}, the marked point is not contained in

any of the cubes from the set {SZ (dZ) 1dy € DZ}

and that these intervals are separated by gaps G1(d}) := (d] — ga + 8, d — qa +
y %) of width (y — 1)~!y 7% (compare Fig. 3). With the intervals E{ we obtain for
each k and g =0, ..., m the closed (Cartesian product) cubes

Si(dY) = E¢(dy) < -+ x E{(dy,),
whose images under &(x,) = 277:1 apV(xp + ga) are the disjoint closed intervals

T (dy) = [§(d). 6 (d0) + (& — 2],

as derived in Lemma 3.7. For the two-dimensional case, the cubes S,f (dZ) are de-
picted in Fig. 3.

Now let k be fixed. The mapping &(x,) associates to each cube SZ (dZ) from the
coordinate space a unique image qu (dZ) on the real line. For fixed ¢ the images
of any two cubes from the set {SZ (dZ) : di € Dy} have empty intersections. This
allows a local approximation of the target function f(x) on these images qu (dZ) for
X € SZ (dZ). However, as the outer functions @ g have to be continuous, these images
have to be separated by gaps in which f(x) cannot be approximated. Thus, an error
is introduced that cannot be made arbitrarily small. This deficiency is eliminated by
the affine translations of the cubes SZ (dZ) through the variation of the ¢’s. To explain
this in more detail, let x € [0, 1] be an arbitrary point. With (3.18) we see that the gaps
GZ (dg) which separate the intervals do not intersect for variable g. Therefore, there
exists only one value g, such that x GZ* (d;"). This implies that for the remaining
m values of g there holds x € EZ (dZ) for some dy. See Fig. 3 (left) for an illustration
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of this fact. If we now consider an arbitrary point x € [0, 1]?, we see that there exist
at least m — n + 1 different values g, j=1,...,m —n + 1 for which x € SZj(de)
for some dy, see Fig. 3 (right). Note that the points dj can differ for different values
qj- From (3.18) we see that d; € SZj (de).

Now we consider step I of Algorithm 3.2. To this end, remember that  and ¢ are
fixed numbers such that 0 < 2= "'He + 2” ; <n < 1. Let k, be the integer given
in step I with the associated assumptlon that | fro1(X) — fr—1(X)| < el fr—1|l when
|xp — xé,l < y’k’ for p=1,...,n. Let x € [0, 1]" be an arbitrary point and let g},

j=1,...,m —n+ 1, denote the values of ¢ such that x € S;fr’ (de ). For the point
dy, € SZ: (de ) we have

| fr1 () — <ellfroill, (3.19)

and for x it holds that §(xg;) € qu (dqj ). The support U, o (dq‘j ) of the function

a)(dq’ ; ¥q;) contains the interval T (dq’ ). Furthermore, from definition (3.1) we
see that w is constant on that 1nterva1 With (3.3) we then get

D) 0 E(xy) = Zfr 1dy)oo(dy s £(x)))
d
_ 1 d 3.20
—m—_Hfr—l( k,)~ ( . )

Together with (3.19), this shows

m—+1fr 1(x) — <Dg_,.oé(xq,-)

&
<——Ifi- 3.21
=il (321

forallg;, j=1,. —n + 1. Note that this estimate does not hold for the remain-

ing values of ¢ for wh1ch X is not contained in the cube Sq (dq’ ). Let us now denote
these values by g;, j =1,...,n. We can apply Lemma 3. 8, and with the special
choice of the values € and n we obtaln the estimate

£ =) =Y ) 0£(xy)

q=0

m m—n+1

] n
= Z 1 1fr—l(X) - Z @;]_ 0 &(Xg;) — Zq)qtj 0 £(xg,)
Jj=1 j=1

q=0

m—n+1
1 r
0 D e fr 1 () — @ 08 (xy)

j=1

IA

+ ﬁ”fr—l”

m—n-+1

i 2n
< = 1. 3.22
=| 7wt e+m+1]||fr th =l fr-1ll (3.22)

This completes the proof of Theorem 3.3. O
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We now state a fact that follows directly from the previous results:

Corollary 3.9 For j =1,2,3, ... the following estimates hold:

1
o709 < m—+1”H £ (3.23)

and

Lfrll = Hf(x) =3 N vfotxy)| < IfI. (3.24)

q=0j=1

Proof Remember that fy = f. The first estimate follows from Lemma 3.8 and a
recursive application of Theorem 3.3. The second estimate can be derived from the
definition (3.3) of f; and again a recursive application of Theorem 3.3. O

We finally are in the position to prove Theorem 2.1.

Proof of Theorem 2.1 From Corollary 3.9 and the fact that n < 1, it follows that, for
allg =1,...,m, we have

> @) (vy)
j=1

r r—1 oo
=2 l#i00] = m1+1”f“_2’7] < m1+1||f||an < 00,
j=1 Jj=0 j=0
. (325
The functions @ (y,) are continuous and therefore each series > i @7 (v4) con-
verges absolutely to a continuous function @, (y,) as r — oo. Since n < 1, we see
from the second estimate in Corollary 3.9 that f, — 0 for r — oo. This proves
Sprecher’s version of Kolmogorov’s superposition theorem with K&ppen’s inner
function . g

4 Conclusion and Outlook

In this paper we filled mathematical gaps in the articles of Koppen [16] and Sprecher
[27, 28] on Kolmogorov’s superposition theorem. We first showed that Sprecher’s
original inner function v is not continuous and monotone increasing. Thus the con-
vergence proof of the algorithm from [28] that implements (2.1) constructively is
incomplete. We therefore considered a corrected version of i as suggested in [16].
We showed that this function is well defined, continuous and monotone increasing.
Then, we carried the approach for a constructive proof of Kolmogorov’s superposi-
tion theorem from [27, 28] over to the new continuous and monotone 1 and showed
convergence. Altogether, we gave a mathematically correct, constructive proof of
Kolmogorov’s superposition theorem.

The present result is, to our knowledge, the first correct constructive proof of (2.1)
and thus of (1.1). It however still involves (with r — 00) an, in general, infinite num-
ber of iterations. Thus, any finite numerical application of Algorithm 3.2 can only
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give an approximation of an n-dimensional function up to an arbitrary accuracy € > 0
(compare Corollary 3.9). While the number of iterations in Algorithm 3.2 to achieve
this desired accuracy is independent of the function f and its smoothness, the num-
ber k, which is determined in step I can become very large for oscillating functions.
This reflects the dependency of the costs of Algorithm 3.2 on the smoothness of the
function f: In step II the functions a)(er, ¥q) are computed for all rational values

dzr which can be interpreted as a construction of basis functions on a regular grid
in the unit cube [0, 1]". Since the number of grid-points in a regular grid increases
exponentially with the dimensionality n, the overall costs of the algorithm increase at
least with the same rate for n — oo. This makes Algorithm 3.2 highly inefficient in
higher dimensions. To overcome this problem and thus to benefit numerically from
the constructive nature of the proof, further approximations to the outer functions in
(2.1) have to be made. This will be discussed in a forthcoming paper.
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