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Abstract

Previous studies demonstrated that intelligence is significantly related to an impressive array of psychological, social, biological and genetic
factors and that working memory (WM) can be considered as a general cognitive resource strongly related with a wide variety of higher order
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ognitive competencies and intelligence. Also, evaluating the WM of subjects might allow one to test the neural efficiency hypothesis (NEH). WM
ypically involves functional interactions between frontal and parietal cortices. We recorded EEG signals to study neuronal interactions during one

M test in individuals who had few years of formal education (LE) as compared to individuals with university degrees (UE). The two groups of
ndividuals differed in the scores they obtained in psychological tests. To quantify the synchronization between EEG channels in several frequency
ands, we evaluated the “synchronization likelihood” (SL), which takes into consideration nonlinear processes as well as linear ones. SL was then
onverted into graphs to estimate the distance from “small-world network” (SWN) organization, i.e., an optimally organized network that would
ive rise to the data. In comparison to LE subjects, those with university degrees exhibited less prominent SWN properties in most frequency bands
uring the WM task. This finding supports the NEH and suggests that the connections between brain areas of well-educated subjects engaged in
M tasks are not as well-organized in the sense of SWN.
2006 Elsevier Ireland Ltd. All rights reserved.
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easurement of the brain’s glucose metabolism using positron
mission tomography (PET) showed that cortical activation is
ore strongly focused and glucose consumption lower in more

s compared to less intelligent individuals [9,10]. This observa-
ion has been explained by the neural efficient hypothesis (NEH),
hich predicts that lower and more focused cortical activation

eflects higher neural efficiency. Thus, more intelligent subjects
re expected to require less brain activation to accomplish a task
nd easier tasks are expected to produce lower brain activation
n relation to difficult tasks. Additional studies using fMRI and
EG to evaluate local brain activation during cognitive tasks
lso supported this hypothesis [5,7,14,17–20,32] (see however
ef. [18] for a discussion of studies failing to support the NEH).
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Working memory (WM) can be considered as one general cogni-
tive resource strongly related with a wide variety of higher order
cognitive competencies and intelligence [4,7]. If WM underlies
the mental abilities of normal individuals its study could allow
one to evaluate the NEH. Here, we used a WM test such as
the 2Back to check if persons that differ in their mental abil-
ities (as shown by psychometric testing) due to the education
they received (lower or higher) also differ in terms of neural
organization at the network level. On the basis of the NEH, we
hypothesized that brain activation is less intense when more edu-
cated individuals engage in cognitive tasks such as the 2Back
WM test. This test is not particularly demanding so that less
well-educated individuals do well albeit with longer reaction
times and some failures. Our study is related to previous evalu-
ations of the NEH in individuals with low or high intelligence.
The latter term is used here in the sense of the empirical con-
struct “g” (general intelligence) as discovered and described by
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Table 1
The psychological tests

Low educated High educated

WM: 2Back reaction time (ms) 1405.0 (610.1) 1043.2 (245.0)*

WM: 2Back error rates 4.4 (5.0) 0.0*

Digit span F 5.9 (1.2) 6.7 (1.2)*

Digit span B 4.5 (1.3) 5.9 (1.4)*

Digit symbol 51.6 (14.2) 63.0 (9.1)*

Stroop WCT 41.4 (8.2) 53.4 (11.4)*

Stroop Interference −1.5 (5.8) 7.0 (8.6)*

Verbal IQ 110.6 (11.0) 129.9 (8.1)*

Mean scores (and S.D.) for psychological tests in both groups are presented.
Asterisks indicate significant differences by Mann–Whitney test.

Spearman in 1904, and encompasses many individual cognitive
abilities positively correlated with one another [4]. Additionally,
g is significantly related to an impressive array of psychologi-
cal, social, biological, and genetic factors [12]. Nevertheless, we
decided to refer to the two groups of normal individuals we stud-
ied, as LE (those with few years of formal education) and UE
(those with university degrees), respectively. Moreover, these
two groups can be differentiated using classical psychometric
tests as shown in Table 1.

For the purposes of this study, we used graph theoretical
analysis to estimate neural organization during WM. Graphs,
as mathematically defined, are abstract representations of
networks consisting of sets of vertices (nodes) linked by edges
(connections). Their complexity due to their size and their
architecture necessitates the use of mathematical tools for their
study. Graphs are characterized by a cluster coefficient C and a
characteristic path length L. The cluster coefficient is a measure
of the local interconnectedness of the graph. Technically it is
the likelihood that the neighbours of a vertex will be connected
to each other, averaged over all vertices. The path length is an
indicator of its overall connectedness. It is the mean shortest dis-
tance (expressed in number of edges) between pairs of vertices,
once again averaged over the whole graph. “Small-world” net-
works, as explained below, are characterized by a high C and a
low L.

The method derived from this theory, can be used to study
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distance connections. This has been proposed as a sign of opti-
mal organization during specific functions [3,24].

To apply graph theoretical analysis to multi channel EEG
data, we first estimated the synchronization likelihood (SL) to
determine the scalp-wide pattern of functional connectivity. SL
is a measure sensitive to both linear and nonlinear synchroniza-
tion between signals, hence giving more accurate information
about functional interactions [28]. This measure was then used
to construct and evaluate the graph parameters. Because they
are known to differ in terms of functional significance and their
relation to each other [2,11,23,31], patterns of functional con-
nectivity were determined with SL in different frequency bands
of the EEG.

The 20 normal volunteers that were relatively less well-
educated went to school for 11.3 years on the average. Fourteen
of them were male and 6 female, while 17 were right-handed,
3 left-handed, and their average age was 31.9 years. The 20
volunteers with university degree were 27.4 years old, on the
average and spent an average of 18.3 years in school. Fifteen
were male and 5 female, 19 were right-handed and 1 left-handed.
All evaluated individuals had unremarkable developmental his-
tories and no relatives with psychotic illness. Additionally, they
were examined with the Mini International Neuropsychiatric
Interview to exclude major psychiatric disease. Prior to EEG
recording, participants undertook the 1Back-, 2Back- and 3Back
WM tests using Greek letters. The 1Back WM test is not really
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oth local and long distance functional connectivity in complex
etworks. Interest in using graph theory to study neural networks
as risen rapidly in recent years [1,8,25,24,27,30]. It provides a
nique window into the balance of local and distributed interac-
ions occurring in the brain [3,6,8,33]. It has been used in several
euroscience studies, in animals and humans, such as in stud-
es of anatomical connectivity, fMRI BOLD and EEG or MEG
ignals [15,21,27,29]. Most importantly, graph theory allows
s to define what should be considered an optimal network.
he notion of an optimal network is closely associated with the
small-world” phenomenon. The so-called “small-world” net-
ork architecture is distinguished from either ordered or random
etworks. Networks with ‘small-world’ architecture are charac-
erised by a combination of strong local clustering and a short
haracteristic path length (an index of global integration). This
eans that although most of the connectivity is local, the net-
ork remains highly integrated due to a small number of long
WM test. We used it to help subjects familiarize themselves
ith the testing procedure. The 3Back WM test was very diffi-

ult for the less well-educated subjects who failed in it from the
tart and was thus discontinued. Thus, only the 2Back WM test
as used in our study while recording EEG. Each test consisted
f 18 trials 12 of which were correct (using only 6 letters of the
lphabet called targets), while the remaining were false (foils).
esides the 2Back WM test (reaction time and error rates), both
roups were psychometrically evaluated by one of the authors
E. Pachou) with the Digit span F and B, Digit symbol, Stroop
nd Verbal IQ tests. Written informed consent was obtained after
omplete description of the study to the subjects.

The EEG signals in both groups were recorded from 28 cap
lectrodes, according to the 10/20 international system, referred
o linked A1 + A2 electrodes. We analysed epochs of 8 s at rest,
.e., while the individual had the eyes fixed on a small point
n the screen of a laptop 80 cm in front of them and then dur-
ng a 2Back working memory test using capital Greek letters
which differed from the letters used in the screening stage).
articipants viewed letters that were consecutively presented to

hem and were required to press a button with their index finger
henever a current letter was the same as the letter presented

wo letters before. The hand they used in their responses was
ounterbalanced across subjects. In order to control for possible
rrors, only EEG data acquired during correct task completion
ere further analysed.
The synchronization likelihood between all pairs of elec-

rodes was calculated after digital, zero-phase filtering to dis-
inguish the traditional EEG frequency bands (theta, 4–8 Hz;
lpha1, 8–10 Hz; alpha2, 10–13 Hz; beta, 13–30 Hz; gamma1,
0–45 Hz; gamma2, 45–90 Hz). Graph theoretical analysis was
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based on the full 28 × 28 matrix of all possible (378) pair-wise
combinations of electrodes. Computation of the SL and the two
graph theoretical measures (cluster coefficient C, and character-
istic path length L) were estimated off-line with the DIGEEGXP
software written by one of the authors (C.J. Stam).

The SL matrix was converted into a graph by choosing a
threshold T and allowing the presence of an edge between two
electrodes when their SL weight was greater than T. Otherwise
that edge was set to zero. Hence the matrix of SL strengths
between all pairs of electrodes was converted into a binary or
unweighted graph. The next step was to characterize this graph in
terms of its cluster coefficient C and its characteristic path length
L. A formal description of the SL, the clustering coefficient and
path length are given in ref. [29].

A sparsely connected graph is expected, on average, to have a
lower clustering coefficient and longer path length than a densely
connected one with the same topology. When C and L are evalu-

ated as a function of threshold T for both groups, the results can
be influenced by group differences in the mean strength of syn-
chronization and the average number of edges in the graphs. To
control for this effect we repeated the analysis, computing C and
L as a function of degree K, which is the average number of edges
per vertex. This is achieved by selecting the threshold that gen-
erates the desired number of edges, which will then be the same
in all subjects. In this way any remaining differences in C and L
between the groups reflect pure differences in graph organiza-
tion. We calculated the C, L as well as the ratios C/C-s and L/L-s
where C-s and L-s denote the values of C and L for appropriate
ordered and random reference graphs, for K = 4, 5 or 6 [29]. Ran-
dom graphs were generated from the experimentally obtained
graphs by a constrained shuffle of the vertices, keeping both
the number of vertices and the degree distribution constant. The
random graphs with preserved degree distribution were obtained
with the procedure described by Sporns and Zwi [26].
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ig. 1. Mean C and L of the alpha2 band. Mean cluster coefficient C and character
ifferent values of threshold (0.01–0.05). The bars indicate the standard error of mea
hat more and more edges are lost (providing that SL < T). In contrast, increasing the
nd more edges drop out. For intermediate and higher values of thresholds, the cluste
he path length, the values of lower educated are higher at rest for intermediate and h
istic path length L of alpha2 EEG frequency band at rest and during WM for
n. Increasing the values of threshold, decrease the values of C, due to the fact
values of threshold, the average path length increases due to the fact that more
r coefficient at rest and during WM is lower in the lower educated subjects. For
igher values of threshold. There are not statistical differences.
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For statistical analysis we compared the SL values of the
different EEG bands as well as the graph parameters (C, L, C/C-
s and L/L-s) using t-tests and the neuropsychological results were
compared using the Mann–Whitney test.

The results of the psychometric evaluations of both groups are
presented in Table 1. Significant differences were found between
both groups indicative of lower overall cognitive performances
in the LE group. Not shown are the results of the 1Back “WM
test” where both groups were equally successful.

The mean values of SL in all EEG bands showed no statisti-
cally significant differences between the groups. The results of
the mean cluster coefficient C and the characteristic path length
L both as a function of threshold for alpha2 band at rest and
during WM are shown in Fig. 1. Between-group differences
(lower C and higher L for less well-educated individuals) were
observed in the alpha2 band for C and L and were more promi-
nent for higher thresholds and at rest but did not reach statistical
significance. Similar minor differences were also detected for
the other bands (not shown) at rest and/or during the working
memory test.

To control for the potential influence of subtle (non-
statistical) differences in mean SL between the groups, addi-
tional results were obtained using constant K values of 4, 5 or
6. Recall, that undertaking the analysis for fixed node degree
K instead of fixed threshold T, and constructing appropriate
reference graphs, preserving the “degree of distribution”, we
n
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Fig. 2. Ratios of C/C-s and L/L-s during WM in both groups. The C/C-s and
L/L-s during WM with K = 5 for both groups are represented. For theta, alpha1,
alpha2, beta and gamma1 frequency bands, the individuals of both groups show
L/L-s low values (near the value of 1) and C/C-s high values (near the value
of 2). These differences are more prominent for the group of lower educated
individuals. To render the difference between groups more clear we subtracted
the L/L-s from the C/C-s separately for each group and the bands: theta, alpha1,
alpha2, beta and gamma1. The resulting values were statistically significant (the
SWN organization during a WM task is lower in more educated subjects as
compared to less well-educated ones, across almost all of the frequency bands
examined).

This “small-world” pattern is not as clearly present in relatively
well-educated individuals and the differences between the two
groups are significant (C/C-s minus L/L-s differ significantly for
the mentioned bands). These findings suggest that the brain of
better-educated individuals is less prominently organized along
small-world network lines than that of less-educated subjects
when both try to perform a working memory task.

The SW organization has some optimal properties. WM has
limited capacity and exhibit linear or quadratic trends in brain
activation [7,13,16]. The 2Back WM test we used is the simplest
N-Back WM test and it is under these capacities as shown by the
clinical findings. The LE group shows an optimal SW organiza-
tion in contrast to the UE group where the more efficient WM
is expressed by less prominent organized SW networks. Under
WM load, less local activation was found in high-performing in
relation to low-performing individuals in fMRI [22] as well as
less local activation using EEG signals and ERD of the alpha
band [7]. Our results agree with these findings estimating the
coordinated activity of the neuronal assemblies. Coordination
of activity between different neural assemblies is required to
achieve a complex cognitive task or complete a perceptual pro-
cess. Theoretical and empirical findings suggest that the behav-
ior of neuronal assemblies may vary depending on the size of
the neuronal populations involved and the strength of the inter-
actions between the neurons that comprise them [31]. These are
expressed in part by diverse changes in different EEG frequency
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ormalize the networks and correct for the influence of any dif-
erences in the mean level of SL between the groups. Hence we
ocus on the ratio of C and L derived from the observed EEG data
o matching values derived from the reference random networks
C-s and L-s): C/C-s and L/L-s. C/C-s and L/L-s values close
o 1 are indicative of random networks. Simultaneous values
f C/C-s and L/L-s significantly greater than 1 are indicative of
rdered networks. Small-world network organization is evident
hen values of C/C-s are significantly greater than 1, close to 2
hilst values of L/L-s are near the value of “1”.
The most striking findings in this study are at K = 5, as pre-

ented in Fig. 2. We see large differences between C/C-s and
/L-s during WM in the less well-educated group and for theta,
lpha1, alpha2, beta and the gamma1 band. In the same fre-
uency bands, differences between C/C-s and L/L-s were less
rominent in individuals with university degrees but the graphs
btained from them also display the SWN pattern (L/L-s close
o one and C/C-s close to 2). To render the difference between
roups more clear we subtracted the L/L-s from the C/C-s sepa-
ately for each group. The resulting values were statistically sig-
ificant for theta, alpha1, alpha2, beta and gamma1 bands. This
mplies that the SWN organization during a WM task is lower in

ore educated subjects as compared to less well-educated ones,
cross almost all of the frequency bands examined. At rest the
alues show similar patterns in both groups and the comparison
f the differences showed no statistical differences.

Differing patterns of functional integration were found for the
heta, alpha1, alpha2, beta and gamma1 EEG frequency bands
n both groups. During WM, the activity of these bands showed
igher values of C and low values of L compared to (random)
eference graphs during WM in lower educated individuals.
ands. The higher SWN organization of individuals, who are less
ell-educated and are characterized by lower cognitive abilities,

uggests that they need to optimize their neuronal organization
o perform well in demanding cognitive tasks relying on WM.

WM is related to many cognitive abilities including intelli-
ence [4] and it has been used to study the NEH [7]. Neverthe-
ess, WM is one distinct cognitive function and our findings are
o interpret as directly related to that cognitive function. We used
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one simple WM task which summons long-range cross-talk and
this cross-talk typically is associated with SWN properties. The
result is that the UE group responds more efficiently with less
neuronal networks activation in this simple task. More WM load
would result in more prominent neuronal SW organization.

Small-world networks have been described in a variety of
natural and social systems [26]. They reflect a high degree of
local clustering and a small number of long-range connections.
Small-world networks have been shown to efficiently transfer
information whilst simultaneously maintaining a local “working
group” of neurons. That is, they satisfy the apparently compet-
ing needs for functional integration and functional segregation
[27]. Small-world functional connectivity has been previously
described in several frequency bands of MEG signals recorded
from healthy, resting individuals and is indicative of their opti-
mal functional organization [27]. Of particular interest is that the
same author found that the C and L parameters evaluated from
the beta band – the frequency most affected – of patients suffer-
ing from Alzheimer disease are modified in a manner indicative
of the loss of complexity of the neural networks of such patients
[29]. Studies such as this and the present one suggest that the
method we employed could supply interesting insights into the
organization of neuronal networks.
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