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Reconstruction of plant–pollinator networks
from observational data
Jean-Gabriel Young1,2,3✉, Fernanda S. Valdovinos 3,4,5 & M. E. J. Newman 3,6

Empirical measurements of ecological networks such as food webs and mutualistic networks

are often rich in structure but also noisy and error-prone, particularly for rare species for

which observations are sparse. Focusing on the case of plant–pollinator networks, we here

describe a Bayesian statistical technique that allows us to make accurate estimates of net-

work structure and ecological metrics from such noisy observational data. Our method yields

not only estimates of these quantities, but also estimates of their statistical errors, paving the

way for principled statistical analyses of ecological variables and outcomes. We demonstrate

the use of the method with an application to previously published data on plant–pollinator

networks in the Seychelles archipelago and Kosciusko National Park, calculating estimates of

network structure, network nestedness, and other characteristics.
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Network-based methods of analysis have contributed sub-
stantially to our understanding of ecological systems by
helping us identify structure in the patterns of interaction

between species1–4. Theoretical studies have shown that such patterns
affect the dynamics and stability of ecosystems5–7. This is particularly
the case for mutualistic networks such as plant-pollinator interac-
tions-our focus in this paper-whose functions are critical to terrestrial
biodiversity8–10 and crop production10–12.

A central prerequisite for quantitative analysis of network
structure and function is accurate network data, and significant
effort has been invested in recent years in data gathering for
ecological networks of many kinds, including mutualistic net-
works. There is, however, some debate over whether the observed
structure of mutualistic networks represents the true interaction
patterns produced by evolutionary and ecological mechanisms, at
least to a good approximation4,6,13, or whether, conversely, it is
biased by incomplete sampling14, for instance failing to detect the
interactions of rare species15–18. In this paper we describe a new
technique that aims to give quantitative answers to these ques-
tions by applying methods of Bayesian inference to ecological
network data. Treating the case of plant–pollinator networks, we
show that it is possible to accurately infer interaction network
structure from observational data while taking into account
confounding variables such as varying species abundances. The
output of our calculations is an estimate of the true structure of
the network and also a quantification of our uncertainty about
this structure. Standard techniques from statistical network
science19,20 and network ecology18 can then help us make precise
statements about the accuracy of any further conclusions we draw
from the network structure. Estimates of interaction certainty can
also help us identify interactions that would benefit from greater
sampling effort.

The structure of mutualistic networks is typified by several char-
acteristic features21: moderate connectance, meaning that a modest
fraction of all potential interactions are realized; long-tailed degree
distributions, meaning that there are many specialist species with a
small number of interactions and a few generalist species with many
interactions; and nestedness, meaning that the interactions of the
least-connected species are often subsets of the interactions of better-
connected species. (These features are not necessarily independent.
For instance, it has been suggested that nestedness is itself a con-
sequence of the long-tailed degree-distribution22.) A significant
volume of research has been devoted to explaining these features in
terms of ecological and evolutionary mechanisms—see Bascompte
and Jordano6 and Vázquez et al.13 for reviews. Other work, however,
has suggested that they can also be generated merely as artifacts of
skewed abundance distributions and incomplete sampling, both very
common in ecological systems15,16. In particular, Blüthgen et al.15

have shown that nestedness and broad degree distributions can be a
result of failure to observe interactions between rare species because
of low sampling effort and/or the infrequency of the interactions in
question. Findings like this have stimulated further investigations of
the effects of sampling bias on network structure4, both empirically
by varying sampling effort in the field23–27 and theoretically using
models of network structure15,28–30. These studies suggest that
incomplete sampling strongly underestimates the number of inter-
actions in networks and overestimates the degree of specialization.
The approach described in this paper offers one way to address these
shortcomings and obtain reliable estimates of the structure of
mutualistic networks, free of measurement bias.

The paper is organized as follows. We first outline a first-
principles statistical model of plant–pollinator interactions and
show how it can be used to estimate network structure from
error-prone observational data. Then, we demonstrate these
methods with an application to two typical plant–pollinator data
sets, showing how they give us not only the network structure

itself but also statistically principled estimates of quantities such
as nestedness. Finally, we give some conclusions and directions
for future work.

Results
Network reconstruction from observational data. The typical
field study of plant–pollinator interactions involves recording
instances of potential pollinators (such as insects) visiting plants
within a prescribed observation area and over a prescribed period of
time. We will refer to these records as visitation data. Network
ecologists analyze visitation data by constructing networks of plant
and pollinator species, where a connection between two species
indicates that a plant-pollinator interaction exists between them.

However, the meaning of edges in ecological networks is not
always clear31. One popular way to transform visitation data into
networks is to connect two species when they interact “enough”—
say when a pollinator species is seen on the reproductive organ of
a plant species a specified number of times—but in this case the
precise meaning of an edge will depend on the details of the data
collection and the choices made in the analysis. How many visits
do we take as evidence of a plant–pollinator interaction? A single
visit is probably not enough—it might well be an error or
misobservation. Is two enough, or ten, or a hundred? And what
about observations that were missed entirely? Other methods of
analysis transform the data in different ways, for instance
encoding them as weighted networks, possibly with some
statistical processing along the way32. Even in this case, however,
the edges still just count numbers of visits (perhaps transformed
in some way), so the resulting networks are effectively histograms
in disguise, recording only potential interactions rather than true
biological connections.

A more principled approach to network construction begins
with a clear definition of what relationship (or relationships) a
network’s edges encode33. We argue that network ecology often
calls for a network of preferred interactions. In the context of
plant-pollinator networks the edges of such a network indicate
that pollinators preferentially visit certain plant species and they
encode a variety of mechanisms that constrain species interac-
tions, such as temporal or spatial uncoupling (i.e., species that do
not co-occur in either time or space), constraints due to trait
mismatches (e.g., proboscis size very different from corolla size),
and physiological-biochemical constraints that prevent the
interactions (e.g., chemical barriers). (One can regard preferred
interactions as being the opposite of the “forbidden links”
described in refs. 34–36). Preferred interactions are arguably the
relevant ones for instance when analyzing the reaction of a
network to abrupt changes: when one removes a plant species
from a system, for example, the pollinators that prefer it will have
to modify their behavior7,37,38. The interactions we consider are
binary—either a species prefers another species or it doesn’t—so
the network does not encode varying strengths of interaction.

While the data gathered in a typical field study are certainly
reflective of preferred interactions, they are, for many reasons, not
perfect measurements of networks of preferred interactions13,17.
First, there may be observational errors. While the observers
performing the work are usually highly trained individuals, they
may nonetheless make mistakes. They may confuse one species
for another, which is particularly easy to do for small-bodied
insects, or smaller species may be overlooked altogether.
Observers may make correct observations but record them
wrongly. And there will be statistical fluctuations in the number
of visits of an insect species to a plant species over any finite time.
For rare interactions there may even be no visits at all if we are
unlucky. The insects themselves may also appear to make
“mistakes” by visiting plants that they typically do not pollinate.
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These and other factors mean that the record of observed visits is
an inherently untrustworthy guide to the true structure of the
network of preferred interactions. Here we develop a statistical
method for making estimates of network structure despite these
limitations of the data.

Model of plant–pollinator data. Consider a typical plant–pollinator
study in which some number np of plant species, labeled by i= 1…
np, and some number na of animal pollinator species, labeled by j=
1…na, are under observation for a set amount of time, producing a
record of observed visits such that Mij is the number of times plant
species i is visited by pollinator species j. Collectively the Mij can be
regarded as a data matrixM with np rows and na columns. This is the
input to our calculation.

The unknown quantity, the thing we would like to understand,
is the network of plant–pollinator interactions. We can think of
this network as composed of two sets of nodes, one representing
plant species and the other pollinator species, with connections or
edges joining each pollinator to the plants it pollinates. In the
language of network science this is a bipartite network, meaning
that edges run only between nodes of unlike kinds—plants and
pollinators—and never between two plants or two pollinators.
Such a network can be represented by a second matrix B, called
the incidence matrix, with the same size as the data matrix and
elements Bij= 1 if plant i is preferentially visited by pollinator j
and 0 otherwise.

The question we would like to answer is this: What is the
structure of the network, represented by B, given the data M? It is
not straightforward to answer this question directly, but it is
relatively easy to answer the reverse question. If we imagine that
we know B, then we can say what the probability is that we make
a specific set of observations M. And if we can do this then the
methods of Bayesian inference allow us to invert the calculation
and compute B from a knowledge of M and hence achieve our
goal. The procedure is as follows.

Consider a specific plant-pollinator species pair i, j. How many
times do we expect to see j visit i if there is, or is not, a preferred
interaction between i and j? The answer will depend on several
factors. First, and most obviously, we expect the number of visits
to be higher if j is in fact a pollinator of i. That is, we expectMij to
be larger if Bij= 1 than if Bij= 0. Second, we expect there to be
more visits if there is greater sampling effort—for instance if the
period of observation is longer or if the land area over which
observations take place is larger15,16,26,27. Third, we expect to see
more visits for more abundant plant and pollinator species than
for less abundant ones, as demonstrated by several studies28,30.
And fourth, as discussed above, we expect there to be some
random variation in the number of visits, driven by fluctuations
in individual behavior and the environment. These are the
primary features that we incorporate into our model. It is possible
to add others to handle specific situations (see ref. 39 and the
Methods), but we focus on these four here.

We translate these factors into a mathematical model of
plant–pollinator interaction as follows. The random variations in
the numbers of visits will follow a Poisson distribution for each
plant–pollinator pair i, j, parameterized by a single number, the
distribution mean μij, provided only that measurements are made
sufficiently far apart to be independent (which under normal
conditions they will be). We expect μij to depend on the factors
discussed above and we introduce additional parameters to
represent this dependence. First we introduce a parameter r to
represent the change in the average number of visits when two
species are connected (Bij= 1), versus when they are not (Bij= 0).
We write the factor by which the number of visits is increased as
1+ r with r ≥ 0, so that r= 0 implies no increase and successively
larger values of r give us larger increases. Second, we represent the

effect of sampling effort by an overall constant C that multiplies
the mean μij. The same constant is used for all i and j, since the
same sampling effort is devoted to all plant–pollinator pairs.
Third, we assume that the number of visits is proportional to the
abundance of the relevant plant and pollinator species: twice as
many pollinators of species j, for instance, will mean twice as
many visits by that species, and similarly for the abundance of the
plant species13. Thus the number of visits will be proportional to
σiτj, for some parameters σi and τj representing the abundances of
plant i and pollinator j, respectively, in suitable units (which we
will determine shortly).

Putting everything together, the mean number of observed
visits to plant i by pollinator j is

μij ¼ Cσ iτjð1þ rBijÞ; ð1Þ
and the probability of observing exactly Mij visits is drawn from a
Poisson distribution with this mean:

PðMijjμijÞ ¼
μ
Mij

ij

Mij!
e�μij : ð2Þ

This equation gives us the probability distribution of a single
element Mij of the data matrix. Then, combining Eqs. (1) and (2),
the data likelihood—the probability of the complete data matrix
M—is given by the product over all species thus:

PðMjB; θÞ ¼
Y
i;j

Cσ iτjð1þ rBijÞ
h iMij

Mij!
e�Cσ iτjð1þrBijÞ; ð3Þ

where θ is a shorthand collectively denoting all the parameters of
the model: C, r, σ and τ. Our model is thus effectively a model of
an entire network, rather than single interactions, in contrast with
other recent approaches to the modeling of network data
reliability17,18,32.

There are two important details to note about this model. First,
the definition in Eq. (1) does not completely determine C, σ, and τ
because we can increase (or decrease) any of these parameters by
a constant factor without changing the resulting value of μij if we
simultaneously decrease (or increase) one or both of the others.
In the language of statistics we say that the parameters are not
“identifiable.” We can rectify this problem by fixing the
normalization of the parameters in any convenient fashion. Here
we do this by stipulating that σi and τj sum to one, thus:

∑
np

i¼1
σ i ¼ ∑

na

j¼1
τj ¼ 1: ð4Þ

In effect, this makes σi and τj measures of relative abundance,
quantifying the fraction of individual organisms that belong to
each species, rather than the total number. (This definition differs
from traditional estimates of pollinator abundance that define the
abundance of a pollinator species in terms of its number of
observed visits.) Second, there may be other species-level effects
on the observed number of visits in addition to abundance, such
as the propensity for observers to overlook small-bodied
pollinators. There is, at least within the data used in this paper,
no way to tell these effects from true variation in abundance—no
way to tell for example if there are truly fewer individuals of a
species or if they are just hard to see and hence less often
observed. As a result, the abundance parameters in our model
actually capture a combination of effects on observation
frequency. This does not affect the accuracy of the model, which
works just as well either way, but it does mean that we have to be
cautious about interpreting the values of the parameters in terms
of actual abundance. This point is discussed further in the
applications below.
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Bayesian reconstruction. The likelihood of Eq. (3) tells us the
probability of the data M given the network B and parameters θ.
What we actually want to know is the probability of the network
and parameters given the data, which we can calculate by
applying Bayes’ rule in the form

PðB; θjMÞ ¼ PðMjB; θÞPðBjθÞPðθÞ
PðMÞ : ð5Þ

This is the posterior probability that the network has structure B
and parameter values θ given the observations that were made.
There are three important parts to the expression: the likelihood
P(M∣B, θ), the prior probability of the network P(B∣θ), and the
prior probability of the parameters P(θ). The denominator P(M)
we can ignore because it depends on the data alone and will be
constant (and hence irrelevant for our calculations) once M is
determined by the observations.

Of the three non-constant parts, the first, the likelihood, we have
already discussed—it is given by Eq. (3). For the prior on the network
P(B∣θ) we make the conservative assumption—in the absence of any
knowledge to the contrary—that all edges in the network are a priori
equally likely. If we denote the probability of an edge by ρ, then the
prior probability on the entire network is

PðBjθÞ ¼
Y
i;j

ð1� ρÞ1�BijρBij : ð6Þ

We consider ρ an additional parameter which is to be inferred from
the data and which we will henceforth include, along with our other
parameters, in the set θ.

To complete Eq. (5), we also need to choose a prior P(θ) over
the parameters. We expect there to be some limit on the value of
r, which we impose using a minimally informative prior with
finite mean (this distribution turns out to be the exponential
distribution). For the remaining parameters we use uniform
priors. With these choices, we then have everything we need to
compute the posterior probability, Eq. (5).

Once we have the posterior probability there are a number of
things we can do with it. The simplest is just to maximize it with
respect to the unknown quantities B and θ to find the most likely
structure for the network and the most likely parameter values,
given the data. This, however, misses an opportunity for more
detailed inference and can moreover give misleading results. In
most cases there will be more than one value of B and θ with high
probability under Eq. (5): there may be a unique maximum of the
probability, a most likely value, but there are often many other
values that have nearly as high probability and offer plausible
network structures competitive with the most likely one. To get
the most complete picture of the structure of the network we
should consider all these plausible structures.

For example, if all plausible structures are similar to one
another in their overall shape then we can be quite confident that
this shape is reflective of the true preferred interactions between
plant and pollinator species. If plausible structures are widely
varying, however, then we have many different candidates for the
true structure and our certainty about that structure is
correspondingly lower. In other words, by considering the
complete set of plausible structures we can not only make an
estimate of the network structure but also say how confident we
are in that estimate, in effect putting “error bars” on the network.

How do we specify these errors bars in practice? One way is to
place posterior probabilities on individual edges in the network.
For example, when considering the edge connecting plant i and
pollinator j, we would not ask “Is there an edge?” but rather
“What is the probability that there is an edge?” Within the
formulation outlined above, this probability is given by the

average

PðBij ¼ 1jMÞ ¼ ∑
B

Z
BijPðB; θjMÞdθ; ð7Þ

where the sum runs over all possible incidence matrices and the
integral over all parameter values. More generally we can
compute the average of any function f(B, θ) of the matrix B
and/or the parameters θ thus:

f ðB; θÞ� � ¼ ∑
B

Z
f ðB; θÞ PðB; θjMÞdθ: ð8Þ

Functions of the matrix and functions of the parameters can both
be interesting—the matrix tells us about the structure of the
network but the parameters, as we will see, can also reveal
important information.

Computing averages of the form (8) is unfortunately not an
easy task. A closed-form expression appears out of reach and the
brute-force approach of performing the sums and integrals
numerically over all possible networks and parameters is
computationally intractable in all but the most trivial of cases.
The sum over B alone involves 2npna terms, which is normally a
very large number.

Instead therefore we use an efficient Monte Carlo sampling
technique to approximate the answers. We generate a sample of
network/parameter pairs (B1, θ1),…, (Bn, θn), where each pair
appears with probability proportional to the posterior distribu-
tion of Eq. (5). Then we approximate the average of f(B, θ) as

f ðB; θÞ� � ’ 1
n
∑
n

i¼1
f ðBi; θiÞ: ð9Þ

Under very general conditions, this estimate will converge to the
true value of the average asymptotically as the number of Monte
Carlo samples n becomes large. Full details of the computations
are given in Materials and Methods, and an extensive simulation
study of the model is presented in Supplementary Note 1.

Checking the model. Inherent in the discussion so far is the
assumption that the data can be well represented by our model. In
other words, we are assuming there is at least one choice of the
network B and parameters θ such that the model will generate data
similar to what we see in the field. This assumption could be violated
if our model is a poor one, but there is nothing in the method
described above that would tell us so. To be fully confident in our
results we need to be able not only to infer the network structure, but
also to check whether that structure is a good match to the data. The
Bayesian toolbox comes with a natural procedure for doing this.
Given a set of high-probability values of B and θ generated by the
method, we can use them in Eq. (3) to compute the likelihood P
(M∣B, θ) of a data setM and then sample possible data sets from this
probability distribution, in effect recreating data as they would appear
if the model were in fact correct. We can then compare these data to
the original field data to see if they are similar: if they are then our
model has done a good job of capturing the structure in the data.

In the parlance of Bayesian statistics this approach is known as
a posterior–predictive assessment40. It amounts to calculating the
probability

Pð eMijjMÞ ¼ ∑
B

Z
Pð eMijjB; θÞPðB; θjMÞdθ ð10Þ

that pollinator species j makes eMij visits to plant species i in
artificial data sets generated by the model, averaged over many
sets of values of B and θ. We can then use this probability to
calculate the average value of eMij thus:

h eMiji ¼ ∑eMij

eMij Pð eMijjMÞ: ð11Þ
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The averages for all plant–pollinator pairs can be thought of as
the elements of a matrix h eMi, which we can then compare to the
actual data matrix M, or alternatively we can calculate a residue
M � h eMi. If h eMi and M are approximately equal, or equivalently
if the residue is small, then we consider the model a good one.

To quantify the level of agreement between the fit and the data
we can also compute the discrepancy40 between the artificial data
and M as

X2 ¼ ∑
ij

ðMij � h eMijiÞ
2

h eMiji
: ð12Þ

Under the hypothesis that the model is correct, X2 follows a chi-
squared distribution with np × na degrees of freedom40. A good fit
between model and data is signified by a value of X2 that is much
smaller than its expectation value of np × na. Note that the
calculation of Pð eMijjMÞ in Eq. (10) is of the same form as the one

in Eq. (8), with f ðB; θÞ ¼ Pð eMijjB; θÞ, which means we can

calculate Pð eMijjMÞ in the same way we calculate other average
quantities, using Monte Carlo sampling and Eq. (9).

Application to visitation data sets
Well-sampled data. To demonstrate how the method works in
practice, we first consider a large data set of plant–pollinator
interactions gathered by Kaiser-Bunbury and collaborators41 at a
set of study sites on the island of Mahé in the Seychelles. The data
describe the interactions of plant and pollinator species observed
over a period of eight months across eight different sites on the
island. The data also include measurements of floral abundances
for all observation periods and all sites. Our method for inferring
network structure does not make use of the abundance mea-
surements, but we discuss them briefly at the end of this section.

The study by Kaiser-Bunbury et al. focused particularly on the
role of exotic plant species in the ecosystem and on whether
restoring a site by removing exotic species would significantly
impact the resilience and function of the plant–pollinator
network. To help address these questions, half of the sites in
the study were restored in this way while the rest were left
unrestored as a control group.

As an illustration of our method we apply it to data from one
of the restored sites, as observed over the course of a single month
in December 2012 (the smallest time interval for which data were
available). We pick the site named “Trois-Frères” because it is
relatively small but also well sampled. Our calculation then
proceeds as shown in Fig. 1. There were 8 plant and 21 pollinator
species observed at the site during the month, giving us an 8 × 21
data matrix M as shown in Fig. 1a. (Following common
convention, the plots of matrices in this paper are drawn with
rows and columns ordered by decreasing numbers of observed
interactions, so that the largest elements of the data matrix—the
darkest squares—are in the top and left of the plot.)

Now we use our Monte Carlo procedure to draw 2000 sets of
incidence matrices B and parameters θ from the posterior
distribution of Eq. (5) (Fig. 1b). These samples vary in their
structure: some edges, like the one connecting the plant N.
vanhoutteanum and the pollinator A. mellifera, are present in
nearly all samples, while others, like the one between M.
sechellarum and A. mellifera, appear only a small fraction of the
time. Some others never occur at all. Averaging over these
sampled networks we can estimate the probability, Eq. (7), that
each connection exists in the network of preferred interactions
between plant and animal species—see Fig. 1c. Some connections
have high probability, close to 1, meaning that we have a high
degree of confidence that they exist. Others have probability close

to 0, meaning we have a high degree of confidence that they do
not exist. And some have intermediate probabilities, meaning we
are uncertain about them (such as the M. sechellarum–A.
mellifera connection, which has probability around 0.45). In the
latter case the method is telling us that the data are not sufficient
to reach a firm conclusion about these connections. Indeed, if we
compare with the original data matrix M in Fig. 1a, we find that
most of the uncertain connections are ones for which we have
very few observations, relative to the total number of observations
for these species—say Mij= 1 or 2 for species with dozens of total
observations overall.

As we have mentioned, we also need to check whether the model
is a good fit to the data by performing a posterior–predictive test.
Figure 2 shows the results of this test. The main plot in the figure
compares the values of the 40 largest elements of the original data
matrix M with the corresponding elements of the generated matrixeM. In each case, the original value is well within one standard
deviation of the average value generated by the test, confirming the
accuracy of the model. The inset of the figure shows the residue
matrix M � eM, which reveals no systematic bias unaccounted for
by the model. The discrepancy X2 of Eq. (12) takes the value 26.94
in this case, well below the expected value of npna= 168, which
indicates that the good fit is not a statistical fluke.

In addition to inferring the structure of the network itself, our
method allows us to estimate many other quantities from the
data. There are two primary methods by which we can do this.
One is to look at the values of the fitted model parameters, which
represent quantities such as the preference r and species
abundances σ, τ. The other is to compute averages of quantities
that depend on the network structure or the parameters (or both)
from Eq. (9).

As an example of the former approach, consider the parameter
ρ, which represents the average probability of an edge, also known
as the connectance of the network. Figure 3a shows the
distribution of values of this quantity over our set of Monte
Carlo samples, and neatly summarizes our overall certainty about
the presence or absence of edges. If we were certain about all
edges in the network, then ρ would take only a single value and
the distribution would be narrowly peaked. The distribution we
observe, however, is somewhat broadened, indicating significant
uncertainty. The most likely value of ρ, the peak of the
distribution, turns out to be quite close to the value one would
arrive at if one were simply to assume that every pair of species
that interacts even once is connected in the network. This does
not mean, however, that one could make this assumption and get
good results. As we show below, the network one would derive by
doing so would be badly in error in other ways.

Figure 3b shows the distribution of another of the model
parameters, the parameter r, which measures the extent to which
pollinators prefer the plants they normally pollinate over the ones
they do not. For this particular data set the most likely value of r
is around 40, meaning that pollinators visit their preferred plant
species about 40 times more often than non-preferred ones,
indicating all other things being equal, an impressive level of
selectivity on the part of the pollinators.

For the calculation of more complicated network properties we
can perform an average over the value of any function f(B, θ), as
long as there is an algorithm to compute it. As an example, Fig. 3c
shows a calculation of the quantity known as “Nestedness based
on Overlap and Decreasing Fill” (NODF), a measure of the
nestedness property discussed in the introduction. This quantity
measures the extent to which specialist species—those with
relatively few interactions—tend to interact with a subset of the
partners of generalist species42. While it is complicated to
compute NODF analytically, due to the fact that one must order
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Fig. 1 Illustration of the method of this paper applied to data from the study of Kaiser-Bunbury et al.41. aWe start with a data matrixM that records the
number of interactions between each plant species and pollinator species. Species pairs that are never observed to interact (Mij= 0) are shown in white.
b We then draw 2000 samples from the distribution of Eq. (5), four of which are shown in the figure. Each sample consists of a binary incidence matrix
B, values for the relative abundances σ and τ (shown as the orange and blue bar plots, respectively), and values for the parameters C, r, and ρ (not shown).
c We combine the samples using Eqs. (7)–(9) to give an estimate of the probability of each edge in the network and the complete parameter set θ. For the
data set studied here our estimates of the expected values of the parameters C, r, and ρ are 〈C〉= 20.2, 〈r〉= 45.9, and 〈ρ〉= 0.244.
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the species by degrees22, it is straightforward to calculate it within
our framework: we simply calculate the value for each sampled
network B and plot the resulting distribution. Interestingly, the
most likely value of NODF is significantly different from the one
we would calculate had we assumed, as discussed above, that a
single interaction is sufficient to consider two species connected.

On the contrary, we find that the system is almost certainly more
nested than this simple analysis would conclude.

In Fig. 3d, we compare the values of our estimated floral
abundance parameters σ to the measured abundances reported by
Kaiser-Bunbury et al.41. These parameters are not measures of
abundance in the usual sense, because they combine actual
abundance (quantity or density) with other characteristics such as
ease of observation. We do find a correlation between the
estimated and observed abundances, but it is relatively weak
(R2= 0.54), signaling significant disagreement, on which we
elaborate in the discussion section.

Undersampled data. As we have pointed out, the connections in
the network about which we are most uncertain tend to be ones
that are undersampled, i.e., those for which we have only a small
amount of data. In an ideal world we could address this problem
by taking more data, but it is rare that we have the opportunity to
do this. More commonly the data have already been gathered and
our task is to produce the best results we can with those data.
There are nonetheless some remedies open to us, such as aggre-
gating data over different geographical areas or time windows. In
Fig. 4 we compare the edge probabilities estimated from data
recorded individually at the four “restored” sites in the Mahé
study during October 2012 to the edge probabilities we obtain
when we aggregate these observations into a single data matrix
and only then estimate the network. (We use restored sites
observed during the same month because they are likely to be
ecologically similar, meaning the data are measuring approxi-
mately the same system.) Comparison of the two distributions
shows—as we would hope—that there are fewer uncertain edges

Fig. 3 Analyses that can be performed using samples from the posterior distribution of Eq. (5). a Distribution of the connectance ρ. Connectance values
for binary networks obtained by thresholding the data matrix atMij > 0 andMij≥ 5 are shown as vertical lines for reference. b Distribution of the preference
parameter r. The mean value of r is 〈r〉= 45.9 and its mode close to 40, but individual values as high as 100 are possible. c Distribution of the nestedness
measure NODF. Values obtained by thresholding the data matrix at Mij > 0 and Mij > 1 are shown for reference. d Measured and estimated abundances for
each of the plant species (R2= 0.54).

Fig. 2 Results of a posterior–predictive test on the data matrix M for the
example data set analyzed in Fig. 1. The main plot shows the error on the
40 largest entries of M, while the inset shows the residue matrix M� h ~Mi.
Because the actual data M are well within one standard deviation of the
posterior–predictive mean, the test confirms that the model is a good fit in
this case. Error bars correspond to one standard deviation and are
computed with n= 2000 samples from the posterior distribution.
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in the aggregated network than in its disaggregated parts, i.e.,
there are fewer edges with probabilities in the middle of the
distribution and more with probabilities close to zero or one.

In other cases neither aggregation nor gathering more data
is possible, for instance when reanalyzing a data set already
collected by others or already maximally aggregated. Such data
sets record the results of observational studies that are already
over, and may contain too few observations, but our approach
still allows us to perform rigorous inference in these
circumstances.

For instance, Jordano et al.43 used dozens of existing plant-
pollinator and plant-frugivore data sets to argue that the degree

distributions of mutualistic networks have a long tail, but this
conclusion is undermined by issues with undersampling. As an
example, one of the data sets they studied, originally gathered by
Inouye and Pyke44, records 1314 individual interactions over a
period of 3 months in Kosciusko National Park, Australia,
between 40 plants and 85 pollinator species, which works out to
an average of 0.386 unique observations per species pair. Is this
sampling effort sufficient to establish edges with certainty? As a
point of reference, the data analyzed in Fig. 1 comprises 201
observations between 8 plants and 21 pollinators species for an
average of 1.196 observations per pair of species, and the
aggregated data of Fig. 4 contain 1.420 observations for every
pair. Nonetheless, there is uncertainty about some of the
connections in these reconstructed networks; this suggests that
the network of Inouye and Pyke, with less than a third as much
data per species pair, will contain significant uncertainty.

Even so, our method allows us to make inferences about this
network. In Fig. 5, we show estimates of the degree distributions
of both plant and pollinator nodes in the network obtained from
the posterior distribution P(B∣M), along with naive estimates
calculated by thresholding the (undersampled) data as in the
study by Jordano et al.43. As the figure shows, the results derived
from the two approaches are very different. The thresholded
degree distributions were classified as scale-free by Jordano et al.,
but this classification no longer holds once we account for the
issues with the data; the inferred degree distributions are in this
case well-modeled as Poisson distributions of means 5.53 and
2.60 for plants and pollinators respectively and the power-law
form is a poor fit. On the other hand, the abundance parameters
of the model, shown in Fig. 5, do appear to have a broad
distribution, an interesting finding that calls for a rethinking of
the relationship between abundances and degree distributions. It
is generally thought that interactions will tend to be evenly
distributed under an even distribution of abundance13 but here
the opposite seems to be true.

Discussion
In this paper, we have proposed a statistical model of
plant–pollinator interactions and shown how it can be used to
infer the structure and properties of empirical plant–pollinator
networks from noisy, error-prone measurements. The model

Fig. 4 Illustration of the effect of data aggregation on edge uncertainty.
a Histogram of the edge probabilities P(Bij= 1∣M) for the four restored sites
in the Mahé study as observed in October 2012 and analyzed individually.
b Equivalent histogram after aggregating the data over the sites and then
estimating a single network from the resulting data matrix. The horizontal
lines, both drawn at fifty observations—are added merely as a guide to the
eye. Note how the upper histogram has more mass near the middle of the
plot, while the lower one has most of its mass close to probability zero or
one, indicating greater certainty in the positions of the edges in the
aggregated data.

Fig. 5 Distributions of species-level parameters for a network of plants and pollinators in Kosciusko National Park, Australia, from the study by Inouye
and Pyke44. a Thresholded degree distributions calculated by connecting species i and j with an edge if Mij > 0. Inferred degree distributions are calculated
using the method of this paper, averaging the fraction pk of nodes with a given degree k over n= 2000 Monte Carlo samples. b Inferred distributions of
abundances σ and τ, calculated as a histogram over n= 2000 Monte Carlo samples of the abundance parameters of the fitted model. Error bars
correspond to one standard deviation in all cases.
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employs elementary ecological insights to create an expressive
and versatile structure that can capture the pattern of interactions
in a wide range of ecosystems. We use the toolbox of Bayesian
statistics to develop both an inference algorithm and a model
checking procedure for the model. Our methods explicitly allow
for the possibility that there are multiple plausible networks that
could fit a given set of observations, a hallmark of Bayesian
analysis. Doing this allows us to make accurate deductions even
in cases where data sets are small and the number of model
parameters is large.

Applying our method to previously published plant-
pollinator visitation data, we arrive at a number of conclu-
sions. First, our analysis confirms previous findings that there
is some uncertainty in measured values of the
connectance23–27 and that moderate connectance6 seems to
hold in plant-pollinator networks even once we account for
uncertainty (Fig. 3a). Second, we find that pollinators strongly
prefer the plants they normally visit over ones they do not,
with pollinators visiting their preferred plant species about 40
times more often than non-preferred ones in our results
(Fig. 3b). This highlights the strong selectivity of pollinators
for the plant species they usually visit. Third, we find that
networks reconstructed using our method are more nested
than networks built using thresholds of one or a few visits to
determine plant-pollinator interactions, which supports the
longstanding claim that plant-pollinator networks are nested6.
Finally, our analysis suggests that the distribution of number
of interactions of a species (the degree distribution) is less
skewed than previously thought43. This result supports recent
findings showing that incomplete sampling strongly under-
estimates the number of interactions and overestimates the
degree of specialization.

Our model and inference algorithm also give an estimate of
species abundances. As we have argued, these estimates actually
capture a combination of effects on observation frequency beyond
just plain abundance, which helps to explain why, as we have
seen, measured and estimated floral abundances are correlated
but not strongly so. Disagreements between measured and esti-
mated abundances were observed previously by Vazquez et al.28,
who used null models to show that measured abundances cannot
in general explain the form of visitation matrices. Taken together,
these results indicate that the frequency of observed interaction
between plants and pollinators is not in fact proportional to their
plain abundances (defined as quantity or density of individuals),
but instead incorporates a range of factors potentially including
abundance, ease of observation, network effects, and others45.
One candidate for a possible additional factor that could play a
role is adaptive foraging by pollinators, which has been shown to
influence the structure of ecological networks4,46. Adaptive
foraging occurs, for example, when pollinators deliberately visit
less abundant plants more often if those plants contain more food
(such as nectar or pollen) relative to more abundant plants with
less food7. Our estimated abundance parameters automatically
include such factors where traditional field estimates of pollinator
abundance—such as the number of visits of a pollinator species—
do not. Analyses that use traditional estimates of abundance, as in
refs. 15,16, may as a result fail to control for significant species-
level effects on observed visitation rates13. We would therefore
argue that best practice calls for the use of estimated abundances
like those proposed here rather than traditional ones when esti-
mating networks of preferred interactions.

There are a number of ways in which the approach presented
here could be extended. The method as described assumes an
ecosystem that is more or less static, but ecosystems can change
rapidly with the seasons. One could imagine a dynamic variant of
the model that allows parameters to evolve over time, or networks

with several levels of preference, allowing for more nuanced
description of plant–pollinator systems. On the applications side,
we have limited our analysis to the important case of
plant–pollinator networks, but similar methods could be applied
to other types of ecological networks, allowing us to better
separate signal from noise in those domains too.

Methods
As outlined in the main text, our method relies on a generative network model in
which observed visits to plants by pollinators are considered noisy measurements
of an unobserved underlying plant–pollinator network. This formulation allows us
to frame the task of determining the network structure as a Bayesian inference
problem31,47–49 in which the probability of the network having incidence matrix B
given a data matrix M is

PðB; θjMÞ ¼ PðMjB; θÞPðBjθÞPðθÞ
PðMÞ ; ð13Þ

where θ are model parameters and P(M) is an unimportant normalizing constant.
The element Mij of matrix M records the number of times insects of species j are
seen to pollinate plant species i, while Bij= 0, 1 encodes the presence or absence of
an edge between the two species in the plant–pollinator network. Both matrices are
of dimension np × na where np is the number of plants and na is the number of
pollinators.

We model the number of visits Mij as a Poisson random variable with mean

μij ¼ Cσ iτjð1þ rBijÞ; ð14Þ
and use independent priors on all parameters with

PðrÞ ¼ λe�λr ; λ ¼ 0:01; ð15Þ
and uniform priors on C, σ, and τ. We further assume that edges are a priori
equally likely with probability ρ and use a uniform prior distribution on ρ itself.
This leads to

PðB; θjMÞ / PðθÞ
Y
ij

ð1� ρÞ1�BijρBij
μ
Mij

ij

Mij!
e�μij ; ð16Þ

with P(θ) ∝ P(r). We note that in this Bayesian formulation, one can easily model
interaction specific traits39 or account for known biology like trait-matching13,50 by
altering the priors on Bij for a particular pair of species i, j48.

Bayesian reconstruction of networks. Given the probability distribution in Eq.
(16) there are a number of approaches we could take. Following recent work47,48,
we could employ an expectation–maximization (EM) algorithm to calculate the
distribution over potential network structures and a point estimate of θ, or we
could integrate out the parameters θ and then sample from the resulting marginal
distribution on B49. Neither of these approaches is completely satisfactory here
however, the first because point estimates of the parameters can be unreliable for
large models such as ours, and the second because the values of the model para-
meters are actually of interest to us, so we would prefer not to eliminate them.

Instead therefore we make use of a technique from the literature on finite
mixture models51 to sample efficiently from the joint distribution of both B and θ
and hence estimate both. First, we sample values of the parameters θ from their
marginal distribution

PðθjMÞ ¼ ∑
B
PðB; θjMÞ: ð17Þ

The sum over B can be carried out analytically because the particular P(B, θ∣M)
defined in Eq. (17) can be written in the form

∑
B
PðB; θjMÞ ¼ ∑

B

Y
ij

x
Bij

ij y
1�Bij

ij ¼
Y
ij

ðxij þ yijÞ;

where xij and yij combine all the terms associated with the situation where there is/
is not an edge. We then find that

PðθjMÞ / e�CPðθÞ
Y
ij

ðCσ iτjÞMij 1� ρþ ρð1þ rÞMij e�Cσ iτj r
� �

: ð18Þ

We can now sample from this distribution using standard methods such as
Hamiltonian Monte Carlo—see below. This gives us our estimates of the parameter
values.

For given values of the parameters we then estimate the network B itself by
sampling from the distribution

PðBjM; θÞ ¼ PðMjB; θÞPðBjθÞ
PðMjθÞ : ð19Þ

Using the previous expressions for the likelihood P(M∣B, θ) and P(B∣θ)—Eqs. (3)
and (6) of the Results—and noting that the denominator P(M∣θ) is proportional to
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Eq. (18), we find

PðBjM; θÞ ¼
Q

ijð1� ρÞ1�Bij ρð1þ rÞMij e�Cσ iτj r
� �BijQ

ij 1� ρþ ρð1þ rÞMij e�Cσ iτj r
� � ¼

Y
ij

Q
Bij
ij ð1� QijÞ1�Bij ; ð20Þ

where

Qij ¼ PðBij ¼ 1jM; θÞ ¼ ρð1þ rÞMij e�Cσ iτj r

1� ρþ ρð1þ rÞMij e�Cσiτj r
ð21Þ

is the posterior probability of an edge between species i and j, given the parameters θ.
We now simply average Qij over our sampled values of the parameters θ to get

the expected probability of an edge between any pair of nodes. More generally, we
can calculate an estimate of any function f(B, θ) by drawing m samples θk of the
parameter set and n random incidence matrices Bl(θk) for each set, with edges
appearing independently with probabilities Qij given by (21), then averaging:

f ðB; θÞ� � ’ 1
mn

∑
m

k¼1
∑
n

l¼1
f BlðθkÞ; θk
� �

: ð22Þ

Implementation. In our implementation of this approach we sample parameters θ
from the distribution of Eq. (18) using the technique known as Hamiltonian Monte
Carlo (HMC). In HMC one defines an inertial mechanics in a position space
equivalent to the space of the parameters, with auxiliary momenta chosen so that
the dynamics under the corresponding Hamilton’s equations samples from the
desired distribution52. We implement the calculation in Stan, a probabilistic pro-
gramming language that automatically performs HMC sampling for arbitrary
target distributions53. In practice, the program operates on the log of the posterior
probability, which for our distribution (18) has the form logPðθjMÞ ¼ �C þ
∑ijðXij þ YijÞ where

Xij ¼ MijlogCσ iτj; ð23Þ

Yij ¼ log 1� ρþ ρð1þ rÞMij e�Cσ iτj r
� �

: ð24Þ
To avoid potential over- or underflow and ensure numerical stability we rewrite the
latter expression slightly by defining

μij ¼ log ð1� ρÞ; νij ¼ log ρþMijlog ð1þ rÞ � Crσ iτj; ð25Þ
and then writing

Yij ¼
μij þ log 1þ eνij�μijð Þ if μij > νij;

νij þ log 1þ eμij�νijð Þ otherwise;

(
ð26Þ

which ensures that Yij is always a manageable number.
An important practical consideration is verifying the convergence of the Monte

Carlo algorithm. HMC mixes rapidly, but, like all Monte Carlo methods, it can
sometimes become trapped at local optima. To ensure representative sampling of
the posterior distribution, we therefore perform multiple Monte Carlo runs from
random initial states and if any of the runs converges to a region of significantly
smaller probability than the others then we repeat the entire calculation. In the
example calculations given in the paper we perform four runs, with an
equilibration period of 5000 Monte Carlo steps each, followed by taking
500 samples.

Quantifying error using posterior predictive assessment. A crucial part of the
model fitting process is assessing whether the model is a good fit to the data. In the
main text we argue that a so-called posterior predictive test is a good way of
making this assessment. The idea is to generate a new artificial data set eM from the
model using the values of the model parameters derived from the fit to the input
dataM. If we find that eM looks similar to the input data then our model has done a
good job of capturing the structure of the data.

To carry out this procedure we need to calculate the posterior predictive
distribution for species pair i, j given by

Pð eMijjMÞ ¼ ∑
B

Z
Pð eMijjB; θÞPðB; θjMÞdθ: ð27Þ

Since the likelihood P(M∣B, θ), Eq. (3), factors into separate terms for each
plant–pollinator pair i, j, this expression can with a little work be simplified to

Pð eMijjMÞ ¼
Z

PðθjMÞ QijPð eMijjBij ¼ 1; θÞ þ ð1� QijÞPð eMijjBij ¼ 0; θÞ
h i

dθ;

ð28Þ
and the integral can then be approximated by simply averaging over the set of
sampled values of θ.

Two particularly useful statistics for the posterior predictive test are the mean
and the variance of eMij, which in this case are equal since eMij by definition has a

Poisson distribution for given B and θ. Both are to a good approximation given by

λij ’
1
n
∑
n

k¼1
QijðθkÞμijðBij ¼ 1Þ þ �

1� QijðθkÞ
�
μijðBij ¼ 0Þ

h i
; ð29Þ

where μij is the mean defined in Eq. (14).

Description of the data sets. The data analyzed in Figs. 1–4 were gathered by
Kaiser-Bunbury et al.41 on inselbergs (steep-sided monolithic rocky outcroppings)
on the tropical granitic island of Mahé, located in the Indian Ocean. The vegetation
on the inselbergs is characterized by short trees, shrubs, and an absence of flow-
ering herbs. The data we analyze includes records of the visits of pollinator species
to all plant species found in each of the eight inselbergs, observed between Sep-
tember 2012 and April 2013 during the island’s eight-month-long tropical flow-
ering season. Species visiting flowers were recorded as pollinators if they touched
the sexual parts of the flowers within a standard observation window of 30
minutes54. Floral abundances were obtained by counting flowers in 1-meter cubes
randomly located along transects spanning the inselbergs. The visit data were used
to generate 64 data matrices of plant–pollinator interactions, one for each period
and location. Our primary analysis focuses on the matrix for the site known as
Trois-Frères as observed during the month of December 2012. We chose this data
set primarily because it is relatively small and hence easy to visualize.

The data analyzed in Fig. 5 were gathered by Inouye and Pyke44 in the
Kosciusko National Park, Australia, between December 21, 1983, and March 30,
1984. The observations were made in 26 plots of 2m × 2m, chosen before the
flowering season and encompassing an alpine zone at elevations ranging from 1940
to 2040 meters and a montane habitat at elevations of 1860 to 1920 meters. Flowers
were counted roughly every second day. Insect visitation data were collected
through incidental observations made during the phenological censuses of the
flowers as well as dedicated observation periods of 10 minutes length, spread
throughout the study duration. The data set of Inouye and Pyke44 is only one of
several data sets re-analyzed by Jordano et al.43. We chose this data set because it is
somewhat undersampled, making it a good example of a situation where our
method can improve network estimates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Mahé visitation data used in this study are available as supplementary material to
Kaiser-Bunbury et al.41. The data of Inouye and Pyke44 analyzed in Fig. 5 can be
downloaded from the Web of Life data base55, available at http://www.web-of-life.es,
under the network identifier M_PL_019.

Code availability
Reference implementations in stan and python of the methods described in this study
are freely available online56.

Received: 11 December 2019; Accepted: 3 June 2021;

References
1. Martinez, N. D. Artifacts or attributes? Effects of resolution on the Little Rock

Lake food web. Ecol. Monogr. 61, 367–392 (1991).
2. Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly

of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. USA 100,
9383–9387 (2003).

3. Thébault, E. & Fontaine, C. Stability of ecological communities and the
architecture of mutualistic and trophic networks. Science 329, 853–856
(2010).

4. Valdovinos, F. S. Mutualistic networks: Moving closer to a predictive theory.
Ecol. Lett. 22, 1517–1534 (2019).

5. Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances
stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

6. Bascompte, J. & Jordano, P.Mutualistic Networks. (Princeton University Press,
Princeton, NJ, 2014).

7. Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses
effects of nestedness and connectance on pollination network stability. Ecol.
Lett. 19, 1277–1286 (2016).

8. Thompson, J. N. The Coevolutionary Process. (University of Chicago Press,
Chicago, IL, 1994).

9. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are
pollinated by animals? Oikos 120, 321–326 (2011).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24149-x

10 NATURE COMMUNICATIONS |         (2021) 12:3911 | https://doi.org/10.1038/s41467-021-24149-x | www.nature.com/naturecommunications

http://www.web-of-life.es
www.nature.com/naturecommunications


10. Ollerton, J. Pollinator diversity: Distribution, ecological function, and
conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

11. Potts, S. G. et al. Safeguarding pollinators and their values to human well-
being. Nature 540, 220–229 (2016).

12. Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of
honey bee abundance. Science 339, 1608–1611 (2013).

13. Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and
process in plant-animal mutualistic networks: a review. Ann. Bot. 103,
1445–1457 (2009).

14. Gibson, R. H., Knott, B., Eberlein, T. & Memmott, J. Sampling method
influences the structure of plant-pollinator networks. Oikos 120, 822–831
(2011).

15. Blüthgen, N., Fründ, J., Vázquez, D. P. & Menzel, F. What do interaction
network metrics tell us about specialization and biological traits? Ecology 89,
3387–3399 (2008).

16. Blüthgen, N. Why network analysis is often disconnected from community
ecology: a critique and an ecologist’s guide. Basic Appl. Ecol. 11, 185–195
(2010).

17. Cirtwill, A. R., Eklöf, A., Roslin, T., Wootton, K. & Gravel, D. A quantitative
framework for investigating the reliability of empirical network construction.
Methods Ecol. Evol. 10, 902–911 (2019).

18. Poisot, T. et al. The structure of probabilistic networks. Methods Ecol. Evol. 7,
303–312 (2016).

19. Parchas, P., Gullo, F., Papadias, D. & Bonchi, F. Uncertain graph processing
through representative instances. ACM Trans. Database Syst. 40, 1–39 (2015).

20. Khan, A., Ye, Y. & Chen, L. On Uncertain Graphs. (Morgan & Claypool
Publishers, San Rafael, CA, 2018).

21. Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the
architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

22. Payrató-Borràs, C., Hernández, L. & Moreno, Y. Breaking the spell of
nestedness: the entropic origin of nestedness in mutualistic systems. Phys. Rev.
X 9, 031024 (2019).

23. Nielsen, A. & Bascompte, J. Ecological networks, nestedness and sampling
effort. J. Ecol. 95, 1134–1141 (2007).

24. Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D.
Long-term observation of a pollination network: Fluctuation in species and
interactions, relative invariance of network structure and implications for
estimates of specialization. Ecol. Lett. 11, 564–575 (2008).

25. Hegland, S. J., Dunne, J., Nielsen, A. & Memmott, J. How to monitor
ecological communities cost-efficiently: The example of plant-pollinator
networks. Biol. Cons. 143, 2092–2101 (2010).

26. Chacoff, N. P. et al. Evaluating sampling completeness in a desert plant-
pollinator network. J. Anim. Ecol. 81, 190–200 (2012).

27. Rivera-Hutinel, A., Bustamante, R. O., Marín, V. H. & Medel, R. Effects of
sampling completeness on the structure of plant-pollinator networks. Ecology
93, 1593–1603 (2012).

28. Vázquez, D. P. et al. Species abundance and asymmetric interaction strength
in ecological networks. Oikos 116, 1120–1127 (2007).

29. Bartomeus, I. Understanding linkage rules in plant-pollinator networks by
using hierarchical models that incorporate pollinator detectability and plant
traits. PLoS ONE 8, e69200 (2013).

30. Fründ, J., McCann, K. S. & Williams, N. M. Sampling bias is a challenge for
quantifying specialization and network structure: Lessons from a quantitative
niche model. Oikos 125, 502–513 (2016).

31. Brugere, I., Gallagher, B. & Berger-Wolf, T. Y. Network structure inference, a
survey: Motivations, methods, and applications. ACM Comput. Surv. 51,
24:1–24:39 (2018).

32. Farine, D. R. & Strandburg-Peshkin, A. Estimating uncertainty and reliability
of social network data using bayesian inference. R. Soc. Open Sci 2, 150367
(2015).

33. Butts, C. T. Revisiting the foundations of network analysis. Science 325,
414–416 (2009).

34. Vázquez, D. P., Chacoff, N. & Cagnolo, L. Evaluating multiple determinants of
the structure of plant-animal mutualistic networks. Ecology 90, 2039–2046
(2009).

35. Jordano, P. Patterns of mutualistic interactions in pollination and seed
dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat.
129, 657–677 (1987).

36. Jordano, P. Sampling networks of ecological interactions. Funct. Ecol. 30,
1883–1893 (2016).

37. Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The
robustness of pollination networks to the loss of species and interactions: a
quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13,
442–452 (2010).

38. Ramos-Jiliberto, R., Valdovinos, F. S., de Espanés, P. M. & Flores, J. D.
Topological plasticity increases robustness of mutualistic networks. J. Anim.
Ecol. 81, 896–904 (2012).

39. Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants
of the microstructure of plant–pollinator networks. Ecology 95, 3314–3324
(2014).

40. Gelman, A., Meng, X.-L. & Stern, H. Posterior predictive assessment of model
fitness via realized discrepancies. Stat. Sin. 6, 733–760 (1996).

41. Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination
network resilience and function. Nature 542, 223–227 (2017).

42. Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D. & Ulrich,
W. A consistent metric for nestedness analysis in ecological systems:
Reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

43. Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in
coevolutionary networks of plant-animal interactions. Ecol. Lett. 6, 69–81
(2003).

44. Inouye, D. W. & Pyke, G. H. Pollination biology in the snowy mountains of
Australia: comparisons with montane Colorado, USA. Aust. J. Ecol. 13,
191–205 (1988).

45. Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. Using latent variable
models to identify large networks of species-to-species associations at different
spatial scales. Methods Ecol. Evol. 7, 549–555 (2016).

46. Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne,
J. A. Consequences of adaptive behaviour for the structure and dynamics of
food webs. Ecol. Lett. 13, 1546–1559 (2010).

47. Newman, M. E. J. Network structure from rich but noisy data. Nat. Phys. 14,
542–545 (2018).

48. Newman, M. E. J. Estimating network structure from unreliable
measurements. Phys. Rev. E 98, 062321 (2018).

49. Peixoto, T. P. Reconstructing networks with unknown and heterogeneous
errors. Phys. Rev. X 8, 041011 (2018).

50. Pichler, M., Boreux, V., Klein, A., Schleuning, M. & Hartig, F. Machine
learning algorithms to infer trait-matching and predict species interactions in
ecological networks. Methods Ecol. Evol. 11, 281–293 (2019).

51. Gelman, A. et al. Bayesian Data Analysis. 3rd edition (Chapman and Hall/
CRC, New York, NY, 2013).

52. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo.
Preprint at https://arxiv.org/abs/1701.02434 (2017).

53. Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw.
76, 1–32 (2017).

54. Kaiser-Bunbury, C. N., Valentin, T., Mougal, J., Matatiken, D. & Ghazoul, J.
The tolerance of island plant-pollinator networks to alien plants. J. Ecol. 99,
202–213 (2011).

55. Fortuna, M. A., Ortega, R. & Bascompte, J. The web of life. Preprint at https://
arxiv.org/abs/1403.2575 (2014).

56. Young, J.-G. plant-pollinator-inference (2021), https://doi.org/10.5281/
zenodo.4759159.

Acknowledgements
We thank Alec Kirkley, George Cantwell, and Maria Riolo for helpful discussions. This work
was funded in part by the James S. McDonnell Foundation (J.-G.Y.) and the US National
Science Foundation under grants DEB–1834497 (F.S.V.) and DMS–1710848 and
DMS–2005899 (M.E.J.N.), as well as University of Michigan MICDE grant U061182 (F.S.V.).

Author contributions
F.S.V. and M.E.J.N. conceptualized the study. All authors developed the model. J.-G.Y.
and M.E.J.N. developed the Bayesian inference framework, J.-G.Y. implemented the
model and performed the numerical experiments. All authors analyzed the results and
contributed to writing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24149-x.

Correspondence and requests for materials should be addressed to J.-G.Y.

Peer review informationNature Communications thanks Carsten Dormann,
Christopher Kaiser-Bunbury and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24149-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3911 | https://doi.org/10.1038/s41467-021-24149-x | www.nature.com/naturecommunications 11

https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1403.2575
https://arxiv.org/abs/1403.2575
https://doi.org/10.5281/zenodo.4759159
https://doi.org/10.5281/zenodo.4759159
https://doi.org/10.1038/s41467-021-24149-x
http://www.nature.com/reprints
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24149-x

12 NATURE COMMUNICATIONS |         (2021) 12:3911 | https://doi.org/10.1038/s41467-021-24149-x | www.nature.com/naturecommunications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Reconstruction of plant–nobreakpollinator networks from observational data
	Results
	Network reconstruction from observational data
	Model of plant–nobreakpollinator data
	Bayesian reconstruction
	Checking the model
	Application to visitation data sets
	Well-sampled data
	Undersampled data

	Discussion
	Methods
	Bayesian reconstruction of networks
	Implementation
	Quantifying error using posterior predictive assessment
	Description of the data sets

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




