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Abstract

EEG and MEG (magnetoencephalography) are widely used to study functional connectivity between different brain regions. We address

the question whether such connectivity patterns display an optimal organization for information processing. MEG recordings of five healthy

human subjects were converted to sparsely connected graphs (N ¼ 126; k ¼ 15) by applying a suitable threshold to the N p N matrix of

synchronization strengths. For intermediate frequencies (8–30 Hz) the synchronization patterns were similar to those of an ordered graph

with a consistent drop of synchronization strength as a function of distance. For low (,8 Hz) and high (.30 Hz) frequency bands the

synchronization patterns displayed the features of a so-called ‘small-world’ network. This might reflect an optimal organization pattern for

information processing, connecting any two brain area by only a small number of intermediate steps.

q 2004 Elsevier Ireland Ltd. All rights reserved.
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Patterns of statistical interdependencies between EEG,

MEG and more recently also fMRI are widely studied to

gain information about what is called ‘functional connec-

tivity’ in the brain. Functional connectivity depends upon,

but is not the same as the actual anatomical connections of

the underlying neuronal networks. One question in relation

to functional connectivity is whether it reflects specific

spatial and temporal features related to an optimal state for

information processing. In this context Tononi and Edelman

introduced the neural complexity measure Cn to quantify a

balance between local independence and global integration

in functional connectivity patterns [17]. However some of

the predictions of Tononi’s model could not be confirmed in

experimental studies [5,18]. In this paper we use a different

approach and examine functional connectivity patterns from

the point of view of graph theory. We address the question

whether these connectivity patterns display the features of

an optimal, ‘small-world’ like network.

The small-world phenomenon (also popularly called ‘six

degrees of separation’) originally stems from sociology. It

refers to the surprising property of large, sparsely connected

social networks that any two people are connected by at

most a few (no more than six) intermediate acquaintances.

In a seminal paper Watts and Strogatz proposed a simple

model to explain this property of networks [19]. They

consider a one-dimensional graph with N nodes (called

vertices in graph theory), each vertex being connected to its

k nearest neighbours (where N q k q ln[N ]). The connec-

tions between vertices are called edges; the number k of

edges per vertex is also called the degree of the graph. Next,

with a probability P, a random edge is chosen and rewired to

connect to a randomly chosen vertex. By varying P between

0 and 1 graphs can be created which span the whole range

from regular (P ¼ 0) to random (P ¼ 1).

Two measures were introduced to characterize such

graphs: the characteristic path length Lp is the mean of the

shortest path (expressed in number of edges) connecting any

two vertices on the graph. The cluster coefficient Cp is the

likelihood (between 0 and 1) that the kv neighbors of vertex

v are also connected to each other, averaged over all

vertices. Regular networks or graphs have a high Cp

(Cp < 3/4) but a long characteristic path length

(Lp < N/2k); random graphs have a low Cp (k/N) but the

shortest possible path length (Lp < ln(N)/ln(k)). The

discovery of Watts and Strogatz was that networks with

0 , P p 1, thus regular networks with only a very small

number of random edges, have a path length that is much
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smaller than that of a regular network, while the Cp is still

close to that of a regular network. This dramatic drop in Lp

for P only slightly higher than 0 implies that any vertex on

the graph can be reached from any other vertex in only a

small number of steps. This is equivalent to the small-world

phenomenon and this type of graph (Cp close to regular

network; Lp close to random network) was called a small-

world graph by Watts and Strogatz. They showed that many

real world networks such as networks of actors playing in

the same movies, the power grid of North America and the

neuronal network of Caenorhabditis elegans have small-

world features. Furthermore, they suggested that such

networks may be optimal for information processing in

complex systems.

Since then it has been shown that many real networks

display small world features and that these may reflect an

optimal architecture for information processing (for a

review see ref. [16]). Lago-Fernandez et al. showed that

neural network models with small-world structure facilitate

fast system response and the emergence of coherent

oscillations [9]. A similar relationship between small-

world architecture and synchronous oscillations was

shown in model networks by Barahona and Pecora [2].

Sporns and Tononi used a genetic algorithm to select

artificial neural networks with maximal entropy, integration

or complexity [12]. The most interesting category was the

group of networks with the highest complexity. The

complexity measure Cn(x) obtains it highest values for

networks with an optimal combination of segregation and

integration; for application to EEG and MEG see refs. [5,

18]. Networks with the highest complexity and thus optimal

information processing properties showed typical small-

world properties [12].

A slightly different model which also explains the small-

world phenomenon is constituted by scale-free networks. In

such networks the likelihood that a vertex will have k edges

is inversely proportional to k [1]. It has been shown that the

networks studied by Watts and Strogatz as well as the world

wide web and metabolic pathways in 43 different types of

organisms are of this type [1,8]. The characteristic path

length of scale-free networks may be even smaller (of the

order of ln(In(N)) than that of the model proposed by Watts

and Strogatz (where it is of the order of ln(N)); such graphs

have been called ‘ultra small’ [6].

If small-world or scale free properties of neuronal

networks are really important for optimal information

processing, it is important to know whether the typical

features such as a high Cp, a low Lp and a scale-free degree

distribution can be discovered in patterns of functional

connectivity as well. To address this question we studied no-

task, eyes-closed MEG recordings of five healthy human

subjects (two females; mean age 30.5 year, range 25–38

year; all right-handed). MEG was recorded with a whole-

head MEG system (CTF, Canada). Epochs of 4096 samples

(sample frequency: 625 Hz) and 126 artefact free channels

recorded during a no-task, eyes-closed condition were

selected for analysis. The pattern of functional connectivity

was determined by computing the synchronization like-

lihood between all pair wise combinations of channels,

resulting in a 126 by 126 connectivity matrix (synchroniza-

tion likelihood analysis of this data set was reported in ref.

[14]). The synchronization likelihood (SL) is a general

measure of the degree of linear and non-linear coupling

between two channels [15]. Briefly, from two discrete time

series xi and yi vectors are reconstructed with the method of

time-delay embedding. The synchronization likelihood SL

at time i is then defined as the likelihood (between 0 and 1),

averaged over all j, that the distance between Yi and Yj is

smaller than a cutoff distance rcutoff, given the distance

between Xi and Xj is smaller than rcutoff. SL close to 0

indicates no coupling, whereas a SL ¼ 1 indicates complete

coupling.

To convert the full connectivity matrix to a sparsely

connected graph, we choose a threshold such that only pairs

of channels with a SL above this threshold were considered

to be connected by an edge; otherwise they were not

considered to be connected. By varying the threshold the

average number k of edges per vertex (vertex corresponds to

MEG channel) could be varied.

Because there is strong evidence that synchronization in

different frequency bands may be related to different

functions in the brain, we applied the analysis to MEG

data filtered in several frequency bands: delta (0.5–4 Hz);

theta (4–8 Hz); alpha (8–13 Hz); beta (13–30 Hz) and

gamma (30–48 Hz). For most analyses the threshold was

chosen such that k ¼ 15; in all cases N ¼ 126: For the

resulting graphs the cluster coefficient Cp and the

characteristic path length Lp were determined. These were

compared to the same measures of a regular/ordered graph

(here the strength of the coupling was inversely proportional

to the physical distance between the MEG sensors) with the

same N and k and to the mean of 50 random graphs with the

same N and k.

The results for the cluster coefficient Cp are shown in

Fig. 1a. As expected, the Cp of the ordered network was the

highest and the Cp of the random network was the lowest.

Cp of MEG data is equal to that of an ordered graph in the

alpha and beta band (95% confidence intervals overlap) and

slightly lower (but still much higher than that of random

graphs) in the other bands (non-overlapping 95% confidence

intervals). Pathlengths for different types of graphs are

shown in Fig. 1b. Here the path length of the ordered graph

is the longest and the path length of the random graphs is the

shortest. For the MEG data path lengths were comparable to

those of an ordered graph in the alpha (8–13 Hz) and beta

(13–30 Hz) band (overlapping confidence intervals); in the

other frequency bands the path length of the MEG data was

intermediate between that of an ordered and that of a

random graph (non-overlapping confidence intervals).

To study the possible influence of the choice of k on these

results, gamma band (30–48 Hz) filtered data of one subject

were analyzed for different values of k from k ¼ 10 to k ¼
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20 (Fig. 2). Fig. 2a shows the Cp for the ordered network,

the MEG data and 50 random networks as a function of k.

For the range of k investigated (which covers the range

N q k q ln(N)) Cp of the ordered and the MEG data were

always much higher than the Cp of the random graphs. Only

for a relatively high k the Cp for ordered and MEG graphs

diverges and the difference with the random graph Cp

diminishes. Fig. 2b shows the Lp for the ordered network,

the MEG data and 50 random networks as a function of k.

Lp of the ordered graph decreases slightly with higher k; a

similar trend is seen for the MEG Lp but hardly for the

random graph Lp. For all values of k, Lp is intermediate

between Lp-o (ordered graph) and Lp-r (random graph).

Finally we investigated the degree distribution of the

gamma band data of this subject for k ¼ 15; no evidence

was found for a scale free distribution.

The results of this study show that the functional

connectivity matrix of MEG recordings can be converted

into a sparsely connected graph by applying a suitable

threshold. The resulting graphs can be readily characterized

with tools from graph theory such as the clustering

coefficient Cp, the characteristic path length Lp and the

degree distribution, despite the fact that the size N of this

graph is quite small for this type of analysis. In this study we

specifically addressed the question whether sparsely con-

nected graphs derived from MEG recordings of healthy

human subjects show the typical characteristics of a small-

world network. Such a network should have a relatively

small path length combined with a relatively high clustering

coefficient.

We found that the answer to this question depends upon

the frequency band studied. In the alpha (8–13 Hz) and the

beta band (13–30 Hz) the MEG graphs closely resembled

ordered graphs, that is they had both a high Cp as well as a

high Lp. So in the alpha and beta band MEG functional

connectivity patterns are not of the small-world type.

Instead, the strength of the synchronization between any

two MEG channels seems to decay systematically with

distance. (Please note that this indicates the results are not

simply reflecting power in the different frequency bands,

because the alpha band has very high and the beta band very

low power.) Findings in the delta, theta and gamma band

were different: here the clustering coefficient was still much

Fig. 1. (A) Cluster coefficient Cp in different frequency bands for ordered

graph (Cp-o), mean (error bars indicate 95% confidence interval

[mean ^ 2 £ SEM]) of MEG recordings of five subjects (Cp) and mean

of 50 random graphs (Cp-r). In all cases number of vertices ¼ 126 and

number of edges per vertex ¼ 15. Cp of ordered graph is much higher than

that of random graph. (B) Characteristic path length in different frequency

bands for ordered graph (Lp-o), mean (error bars indicate 95% confidence

interval [mean ^ 2 £ SEM]) of MEG recordings of five subjects (Lp) and

mean of 50 random graphs (Lp-r). In all cases number of vertices ¼ 126

and number of edges per vertex ¼ 15. Lp of ordered graph is much higher

than that of random graph.

Fig. 2. (A) Influence of different choices of the mean number k of edges per

vertex (the degree of the graph) on the cluster coefficient of an ordered

graph (Cp-o), of MEG data filtered in the gamma band (Cp) and the mean of

50 random graphs (Cp-r). (B) Influence of different choices of the mean

number k of edges per vertex (the degree of the graph) on the characteristic

path length of an ordered graph (Lp-o), of MEG data filtered in the gamma

band (Lp) and the mean of 50 random graphs (Lp-r).
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higher than that of random networks, while the path length

was intermediate between that of ordered and random

graphs. This suggests that functional connectivity patterns

in low (below 8 Hz) and high (above 30 Hz) frequency

bands do display the characteristics of a small-world

network.

The different graph types of intermediate frequency

bands (8–30 Hz) on the one hand and low/high frequency

bands (,8 Hz/ . 30 Hz) on the other hand might be related

to different functions of synchronization in these bands. In

particular the theta and gamma bands have been most

directly related to information processing: the theta band in

relation to working memory [10,13] and the gamma band in

relation to perception, attention, conscious awareness, etc.

[3]. Also, interactions between theta and gamma band

processes have been described [4,11]. It may be that the

small-world features of the low/high bands are related to the

optimal information processing in these bands. However we

should indicate that the present results relate to time series

recorded at the sensor level, and not to actual sources in the

brain. In further studies is would be worthwhile to see

whether similar ‘small-world’ like features can be detected

in activity patterns from reconstructed sources, for instance

using synthetic aperture magnetography or dynamic ima-

ging of coherent sources [7].
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