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Abstract. We consider the problem associated to recovering the block
structure of an Ising model given independent observations on the bi-
nary hypercube. This new model, called the Ising blockmodel, is a per-
turbation of the mean field approximation of the Ising model known
as the Curie–Weiss model: the sites are partitioned into two blocks
of equal size and the interaction between those of the same block is
stronger than across blocks, to account for more order within each
block. We study probabilistic, statistical and computational aspects of
this model in the high-dimensional case when the number of sites may
be much larger than the sample size.
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1. INTRODUCTION

The past decades have witnessed an explosion of the amount of data col-
lected. Along with this expansion comes the promise of a better understanding
of an observed phenomenon by extracting relevant information from this data.
Larger datasets not only call for faster methods to process them but also lead us
to completely rethink the way data should be modeled. Specifically, these new
datasets arise as the agglomeration of a multitude of basic entities and, rather
than their average behavior, most of the information is contained in their interac-
tions. Graphical models (a.k.a Markov Random Fields) have proved to be a very
useful tool to turn raw data into networks that are amenable to clustering or
community detection. Specifically, given random variables σ1, . . . , σp, the goal is
to output a graph on p nodes, one for each variable, where the edges encode condi-
tional independence between said variables [Lau96]. Graphical models have been
successfully employed in a variety of applications such as image analysis [Bes86],
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natural language processing [MS99] and genetics [LS03, SRN+05] for example.
Originally introduced in the context of statistical physics to explain the ob-

served behavior of various magnetic materials [Isi25], the Ising Model is a graphi-
cal model for binary random variables σ1, . . . , σp ∈ {−1, 1}, hereafter called spins.
Despite its simplicity, this model has been effective at capturing a large class of
physical systems. More recently, this model was proposed to model social interac-
tions such as political affinities, where σj may represent the vote of U.S. senator j
on a random bill [BEGd08] (see also the data used in [DGH08] for the U.S. House
of Representatives). In this context, much effort has been devoted to estimating
the underlying structure of the graphical model [BMS08, RWL10, Bre15] under
sparsity assumptions. At the same time, the theoretical side of social network
analysis has witnessed a lot of activity around the estimation and reconstruc-
tion of stochastic blockmodels [HLL83] as a simple but efficient way to capture
the notion of communities in social networks. These random graph models as-
sume an underlying partition of the nodes, leading to inhomogeneous connection
probabilities between nodes. Given the realization of such a graph, the goal is to
recover the partition of the nodes. Already in the context of a balanced partition
into two communities, this model has revealed interesting threshold phenom-
ena [MNS15, MNS13, Mas14].

In this work, we combine the notions of stochastic blockmodel and that of
graphical model by assuming that we observe independent copies of a vector
σ = (σ1, . . . , σp) ∈ {−1, 1}p distributed according to an Ising model with a block
structure analogous to the one arising in the stochastic blockmodel.

Specifically, assume that p ≥ 2 is an even integer and let S ⊂ [p] := {1, . . . , p}
be a subset of size |S| = m = p/2. For any partition (S, S̄), where S̄ = [p] \ S
denotes the complement of S, write i ∼ j if (i, j) ∈ S2 ∪ S̄2 and i � j if (i, j) ∈
[p]2\(S2∪ S̄2). Fix β, α ∈ IR and let σ ∈ {−1, 1}p have density fS,α,β with respect
to the counting measure on {−1, 1}p given by

(1.1) fS,α,β(σ) =
1

Zα,β
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i�j

σiσj

]
,

where

(1.2) ZS,α,β :=
∑

σ∈{−1,1}p
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i�j

σiσj

]
is a normalizing constant traditionally called partition function. Let IPS,α,β denote
the probability distribution over {−1, 1}p that has density fS,α,β with respect to
the counting measure on {−1, 1}p. We call this model the Ising Blockmodel (IBM).
We write simply fα,β and IPα,β to emphasize the dependency on α, β and and
simply IPS for emphasize the dependency on S.

When α = β > 0, the model (1.1) is the mean field approximation of the (fer-
romagnetic) Ising model and is called the Curie-Weiss model (without external
field). It can be readily seen from (1.1) that vectors σ ∈ {−1, 1}p that present a
lot of pairs (i, j) with opposite spins (high energy configurations), i.e., σiσj < 0,
receive less probability than vectors where most of the spins agree (low energy
configurations). There are however much fewer vectors with low energy in the
discrete hypercube and this tension between energy and entropy is responsible
for phase transitions in such systems.
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When positive, the parameter β > 0 is called inverse temperature and it con-
trols the strength of interactions, and therefore, the weight given to the energy
term. When β → 0, the entropy term dominates and IPβ,β tends to the uniform
density over {−1, 1}p. When β →∞, IPβ,0 → .5δ1 + .5δ−1, where δx denotes the
Dirac point mass at x and 1 = (1, . . . , 1) ∈ {−1, 1}p denotes the all-ones vector
of dimension p, the energy term dominates and it affects the global behavior of
the system as follows.

Let µCW = σ>1/p denote the magnetization of σ. When µCW ' 0, then σ has
a balanced numbers of positive and negative spins (paramagnetic behavior) and
when |µCW| � 0, then σ has a large proportion of spins with a given sign (fer-
romagnetic behavior). When p is large enough, the Curie-Weiss model is known
to obey a phase-transition from ferromagnetic to paramagnetic behavior when
the temperature crosses a threshold (see subsection A for details). This striking
result indicates that when the temperature decreases (β increases), the model
changes from that of a disordered system (no preferred inclination towards −1 or
+1) to that of an ordered system (a majority of the spins agree to the same sign).
This behavior is interesting in the context of modeling social interactions and in-
dicates that if the strength of interactions is large enough (β > 1) then a partial
consensus may be found. Formally, the Curie-Weiss model may also be defined in
the anti-ferromagnetic case β < 0—we abusively call it “inverse temperature” in
this case also—to model the fact that negative interactions are encouraged. For
such choices of β, the distribution is concentrated around balanced configurations
σ that have magnetization close to 0. Moreover, as β → −∞, IPβ,β converges to
the uniform distribution on configurations with zero magnetization (assuming
that p is even so that such configurations exist for simplicity). As a result, the
anti-ferromagnic case arises when no consensus may be found and and the spins
are evenly split between positive and negative.

In reality though, a collective behavior may be fragmented into communities
and the IBM is meant to reflect this structure. Specifically, since β > α, the
strength β of interactions within the blocks S and S̄ is larger than that across
blocks S and S̄. As will become clear from our analysis, the case where α < 0
presents interesting configurations whereby the two blocs S and S̄ have polarized
behaviors, that is opposite magnetization in each block.

The rest of this paper is organized as follows. In Section 2, we study the
probability distributions IPα,β, for α < β and exhibit phase transitions. Next, in
Section 3, we consider the problem of recovering the partition S, S̄ from n iid
samples from IPα,β.

Finally note that the size p of the system has to be large enough to observe
interesting phenomena. In this paper we are also concerned with such high dimen-
sional systems and our results will be valid for large enough p, potentially much
larger than the number of observations. In particular, we often consider asymp-
totic statements as p → ∞. However, in the statistical applications of Section 3
we are interested in understanding the scaling of the number of observations as
a function of p. To that end, we keep track of the first order terms in p and only
let higher order terms vanish when convenient.
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2. PROBABILISTIC ANALYSIS OF THE ISING BLOCKMODEL

We will see in Section 3 that given σ(1), . . . , σ(n) that are independent copies
of σ ∼ IPα,β, the sample covariance matrix Σ̂ defined by

(2.1) Σ̂ =
1

n

n∑
t=1

σ(t)σ(t)> ,

is a sufficient statistic for S. From basic concentration results (see Section 3), it
can be shown that this matrix concentrates around the true covariance matrix
Σ = IEα,β

[
σσ>

]
where IEα,β denotes the expectation associated to IPα,β. Unfor-

tunately, computing Σ directly is quite challenging. Instead, we show that when
p is large enough, then IPα,β is spiked around specific values, which, in turn, give
us a handle of quantities of the form IEα,β[ϕ(σ)] for some test function ϕ. Be-
yond our statistical task, we show phase transitions that are interesting from a
probabilistic point of view.

2.1 Free energy

Let Hibm
α,β denote the IBM Hamiltonian (or “energy”) defined on {−1, 1}p by

(2.2) Hibm
α,β(σ) = −

( β
2p

∑
i∼j

σiσj +
α

2p

∑
i�j

σiσj
)
,

so that

fα,β(σ) =
e−H

ibm
α,β(σ)

Zα,β

Akin to the Curie-Weiss model, the density fα,β puts uniform weights on con-
figurations that have the same magnetization structure. To make this statement
precise, for any A ⊂ [p] define 1A ∈ {0, 1}p to be the indicator vector of A and
let µA = σ>1A/|A| denote the local magnetization of σ on A. It follows from
elementary computations that

(2.3) Hibm
α,β(σ) = −m

4

(
2αµSµS̄ + β(µ2

S + µ2
S̄)
)
,

where we recall that m = p/2. Moreover, the number of configurations σ with
local magnetizations µ = (µS , µS̄) ∈ [−1, 1]2 is given by(

m
µS+1

2 m

)(
m

µS̄+1
2 m

)
This quantity can be approximated using Stirling’s formula (see Lemma 18): For
any µ ∈ (1 + ε, 1− ε), there exists two positive constants c, c̄ such that

c√
m
e−mh

(
µ+1

2

)
≤
(

m
µ+1

2 m

)
≤ c̄√

m
emh

(
µ+1

2

)
, ∀m ≥ 1

where h : [0, 1] → IR is the binary entropy function defined by h(0) = h(1) = 1
and for any s ∈ (0, 1) by

h(s) = −s log(s)− (1− s) log(1− s) .
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Thus, IBM induces a marginal distribution on the local magnetizations that has
density

(2.4)
`m

mZα,β
exp

[
− m

4
g(µS , µS̄)

]
,

where c2 ≤ `m ≤ c̄2 and

(2.5) g(µS , µS̄) = −2αµSµS̄ − β(µ2
S + µ2

S̄)− 4h
(µS + 1

2

)
− 4h

(µS̄ + 1

2

)
.

Note that the support of this density is implicitly the set of possible values for
pairs local magnetizations of vectors in {−1, 1}p, that is the set M2, where

(2.6) M2 :=
{s>1[m]

m
, s ∈ {−1, 1}m

}
⊂ [−1, 1]2 .

We call the function g the free energy of the Ising blockmodel and its structure
of minima is known to control the behavior of the system. Indeed, g∗ denote the
minimum value of g over M2. It follows from (2.4) that any local magnetization
(µS , µS̄) ∈ M2 such that g(µS , µS̄) > g∗ has a probability exponentially smaller
than any magnetization that minimizes g over M2. Intuitively, this results in a
distribution that is concentrated around its modes. Before quantifying this effect,
we study the minima, known as ground states of the free energy g, when defined
over the continuum [−1, 1]2.

2.2 Ground states

Recall that when α = β, the block structure vanishes and the IBM reduces to
the well-known Curie-Weiss model. We gather in Appendix A useful facts about
the Curie-Weiss model that we use in the rest of this section.

The following proposition characterizes the ground states of the Ising block-
model. For any p ∈ [1,∞], we denote by ‖ · ‖p the `p norm of IR2 and by
Bp = {x ∈ IR2, : ‖x‖p ≤ 1} the unit ball with respect to that norm.

Proposition 1. For any b ∈ IR, let ±x̃(b) ∈ (−1, 1), x̃(b) ≥ 0 denote the
ground state(s) of the Curie-Weiss model with inverse temperature b. The free
energy gα,β of the IBM defined in (2.5) has the following minima:
If β + |α| ≤ 2, then gα,β has a unique minimum at (0, 0).
If β + |α| > 2, then three cases arise:

1. If α = 0, then gα,β has four minima at (±x̃(β/2),±x̃(β/2)),

2. If α > 0, then gα,β has two minima at s̃ = (x̃(β+α
2 ), x̃(β+α

2 )) and −s̃,
3. If α < 0, then gα,β has two minima at s̃ = (x̃(β−α2 ),−x̃(β−α2 )) and −s̃.

In particular, for all values of the parameters α and β, all ground states (x̃, ỹ)
satisfy x̃2 = ỹ2 < 1.

This result is illustrated in Figure 2, composed of contour plots of the free
energy gα,β on the square [−1, 1]2, for several values of the parameters.

Proof. Throughout this proof, for any b ∈ IR, we denote by gcwb (x), x ∈
[−1, 1], the free energy of the Curie-Weiss model with inverse temperature b. We
write g := gα,β for simplicity to denote the free energy of the IBM.
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(III)(I)

(II)

↵

�

Figure 1: The phase diagram of the Ising block model, with three regions for the
parameters ↵ and � > 0. In region (I), where ↵ < 0 and � + |↵| > 2, there are
two ground states of the form (x,�x) and (�x, x), x > 0. In region (II), where
� + |↵| < 2, there is one ground state at (0, 0). In region (III), where ↵ > 0 and
� + |↵| > 2, there are two ground states of the form (x, x) and (�x,�x), x > 0.
At the boundary between regions (I) and (III), there are four ground states. The
dotted line has equation ↵ = �, we only consider parameters in the region to its
left, where � > ↵.

Proof. Throughout this proof, for any b 2 IR, we denote by gcw
b (x), x 2

[�1, 1], the free energy of the Curie-Weiss model with inverse temperature b. We
write g := g↵,� for simplicity to denote the free energy of the IBM.

Note that

(2.7) g(x, y) = gcw
�+↵

2

(x) + gcw
�+↵

2

(y) + ↵(x � y)2 .

We split our analysis according to the sign of ↵. Note first that if ↵ = 0, we have

g(x, y) = gcw
�
2

(x) + gcw
�
2

(y) .

It yields that:

• If �  2, then gcw
�
2

has a unique local minimum at x = 0 which implies that g

has a unique minimum at (0, 0)
• If � > 2, then gcw

�
2

has exactly two minima at x̃(�/2) and �x̃(�/2), where

x̃(�/2) 2 (�1, 1). It implies that g has four minima at (±x̃(�/2), ±x̃(�/2)).

Next, if ↵ > 0, in view of (2.7) we have

g(x, y) � gcw
�+↵

2

(x) + gcw
�+↵

2

(y)

with equality i↵ x = y. It implies that:

• If ↵ + �  2, then g has a unique minimum at (0, 0)

Figure 1: The phase diagram of the Ising block model, with three regions for the
parameters α and β > 0. In region (I), where α < 0 and β + |α| > 2, there are
two ground states of the form (x,−x) and (−x, x), x > 0. In region (II), where
β + |α| < 2, there is one ground state at (0, 0). In region (III), where α > 0 and
β + |α| > 2, there are two ground states of the form (x, x) and (−x,−x), x > 0.
At the boundary between regions (I) and (III), there are four ground states. The
dotted line has equation α = β, we only consider parameters in the region to its
left, where β > α.

α = −6 α = −2.5 α = −0.5 α = 0

α = −4 α = −0.9 α = −0.2 α = 0

Figure 2: Contour plots of the values of the free energy gα,β, with higher values
in red and lower values in blue, corresponding to ground states. Top row : Several
choices for α < 0, and β = 1.5 < 2. Bottom row : Several choices for α < 0, and
β = 2.5 > 2. The same plots with α > 0 can be obtained by a 90◦ rotation, by
symmetry of the function.



THE ISING BLOCKMODEL 7

Note that

(2.7) g(x, y) = gcwβ+α
2

(x) + gcwβ+α
2

(y) + α(x− y)2 .

We split our analysis according to the sign of α. Note first that if α = 0, we have

g(x, y) = gcwβ
2

(x) + gcwβ
2

(y) .

It yields that:

• If β ≤ 2, then gcwβ
2

has a unique local minimum at x = 0 which implies that g

has a unique minimum at (0, 0)
• If β > 2, then gcwβ

2

has exactly two minima at x̃(β/2) and −x̃(β/2), where

x̃(β/2) ∈ (−1, 1). It implies that g has four minima at (±x̃(β/2),±x̃(β/2)).

Next, if α > 0, in view of (2.7) we have

g(x, y) ≥ gcwβ+α
2

(x) + gcwβ+α
2

(y)

with equality iff x = y. It implies that:

• If α+ β ≤ 2, then g has a unique minimum at (0, 0)
• If α + β > 2, then g has two minima on A at (x̃(β+α

2 ), x̃(β+α
2 )) and at

(−x̃(β+α
2 ),−x̃(β+α

2 )).

Finally, note that (x−y)2 ≤ 2x2 +2y2 with equality iff x = −y. Thus, if α < 0,
in view of (2.7) we have

(2.8) g(x, y) ≥ gcwβ−α
2

(x) + gcwβ−α
2

(y)

with equality iff x = −y. It implies that

• If β − α ≤ 2, then g has a unique minimum at (0, 0)
• If β − α > 2, then g has two minima at (x̃(β−α2 ),−x̃(β−α2 )) and at

(−x̃(β−α2 ), x̃(β−α2 )).

Using the localization of the ground states from Lemma 15, we also get the
following local and global behaviors of the free energy of the IBM around the
ground states.

Lemma 2. Assume that β + |α| 6= 2. Denote by (x̃, ỹ) any ground state of
Ising blockmodel and recall that x̃2 = ỹ2. Then the following holds:

1. The Hessian Hα,β of gα,β at (x̃, ỹ) is given by

Hα,β = −2

(
β α
α β

)
+

4

1− x̃2
I2 .

In particular Hα,β has eigenvalues 2(α− β) + 4/(1− x̃2) and −2(α+ β) +
4/(1− x̃2) associated with eigenvectors (1,−1) and (1, 1) respectively.
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2. There exists positive constants δ = δ(β + |α|), κ2 = κ2(β + |α|) such that
the following holds. For any (x, y) ∈ (−1, 1)2, we have

(2.9) g(x, y) ≥ g(x̃, ỹ) +
κ2

2

(
‖(x, y)− (x̃, ỹ)‖∞ ∧ δ

)2
.

Moreover,

If β + |α| > 2, we can take δ = e−(β+|α|)β + |α| − 2

4(β + |α|) and κ2 = 1− 2

β + |α| .

If β + |α| < 2, we can take δ =
√

(2− (β + |α|))/6 and κ2 = 2− (β + |α|).

Proof. Elementary calculus yields directly that

Hα,β =

(
−2β + 4

1−x̃2 −2α

−2α −2β + 4
1−ỹ2

)
.

Moreover, it follows from Proposition 1 that all ground states satisfy x̃2 = ỹ2.
This completes the proof of the first point.

We now turn to the proof of the second point and split the analysis into four
cases: (i) α ≥ 0 and β+α < 2, (ii) α ≥ 0 and β+α > 2, (iii) α < 0 and β−α < 2,
(iv) α < 0 and β − α > 2.

Case (i): α > 0 and β+α < 2. Recall that in this case, g has a unique minimum
at (0, 0). Therefore, in view of (2.7) and Lemma 15, we have

g(x, y)− g(0, 0) = gcwβ+|α|
2

(x)− gcwβ+|α|
2

(0) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(0) + α(x− y)2

≥ 1

2

(
2− (β + |α|)

)[
(|x− 0| ∧ ε′)2 + (|y − 0| ∧ ε′)2

]
≥ 1

2

(
2− (β + |α|)

)(
‖(x, y)− (0, 0)‖∞ ∧ ε′

)2
.

where ε′ =
√

(2− (β + |α|))/6 which concludes this case.

Case (ii): α > 0 and β+α > 2. Recall that in this case, g has two minima denoted
generically by (x̃, ỹ) where x̃ = ỹ. Therefore, in view of (2.7) and Lemma 15, we
have

g(x, y)− g(x̃, ỹ) = gcwβ+|α|
2

(x)− gcwβ+|α|
2

(x̃) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(ỹ) + α(x− y)2

≥ 1

2

(
1− 2

β + |α|
)[

(|x− 0| ∧ ε)2 + (|y − 0| ∧ ε)2
]

≥ 1

2

(
1− 2

β + |α|
)(
‖(x, y)− (0, 0)‖∞ ∧ ε

)2
.

where ε = e−(β+|α|)β + |α| − 2

4(β + |α|) which concludes this case.

Case (iii): α < 0 and β−α < 2. Recall that in this case, g has a unique minimum
at (0, 0). Moreover, in view of (2.8) and Lemma 15, it holds

g(x, y)− g(0, 0) ≥ gcwβ+|α|
2

(x)− gcwβ+α
2

(0) + gcwβ+|α|
2

(y)− gcwβ+α
2

(0)

≥ gcwβ+|α|
2

(x)− gcwβ+|α|
2

(0) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(0)

≥ 1

2

(
2− (β + |α|)

)(
‖(x, y)− (0, 0)‖∞ ∧ ε′

)2
.
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where in the second inequality, we used the fact that

gcwβ+α
2

(0) = gcwβ+|α|
2

(0) = −4h(1/2) ,

and we concluded as in Case (i).

Case (iv): α < 0 and β − α > 2. Recall that in this case, g has two minima
denoted generically by (x̃, ỹ) where x̃ = −ỹ. Therefore, in view of (2.7) and (2.8),
we have

g(x, y)− g(x̃, ỹ) ≥ gcwβ+|α|
2

(x)− gcwβ+α
2

(x̃) + gcwβ+|α|
2

(y)− gcwβ+α
2

(−x̃)− 4αx̃2 .

Next, observe that from the definition (A.1) of the free energy in the Curie-Weiss
model, we have

−gcwβ+α
2

(x̃)− gcwβ+α
2

(−x̃)− 4αx̃2 = −gcwβ+|α|
2

(x̃)− gcwβ+|α|
2

(−x̃) .

The above two displays yield

g(x, y)− g(x̃, ỹ) ≥ gcwβ+|α|
2

(x)− gcwβ+|α|
2

(x̃) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(−x̃)

≥ 1

2

(
1− 2

β + |α|
)(
‖(x, y)− (0, 0)‖∞ ∧ ε

)2
.

where we concluded as in Case (ii).

2.3 Concentration

As mentioned above, quantities of the form IEα,β[ϕ(σ)] cannot in general be
computed explicitly in the IBM. Fortunately, it will be sufficient for us to com-
pute quantities of the form IEα,β[ϕ(µ)], where we recall that µ = (µS , µS̄) denotes
the pair of local magnetizations of a random configuration σ ∈ {−1, 1}p drawn
according to IPα,β. While exact computation is still a hard problem, these quanti-
ties can be be well approximated using the fact that IPα,β is highly concentrated
around its ground states for large enough p.

To leverage concentration, we need to consider the “large m” (or equivalently
“large p”) asymptotic framework. As a result, it will be convenient to write for
two sequences am, bm that am 'm bm if a = (1 + om(1))bm.

Our main result hinges on the following proposition that compares the dis-
tribution of µ = (µS , µS̄) ∈ [−1, 1] to a certain mixture of Gaussians that are
centered at the ground states.

Theorem 3. Let ϕ : [−1, 1]2 → [0, 1] be any nonnegative bounded continuous
test function. Denote by s̃ any ground state and assume that there exists positive
constants C, γ, for which IE

[
ϕ
(
s̃ + 2√

m
H−1/2Z

)]
≥ Cm−γ where Z ∼ N2(0, I2)

and H = Hα,β denotes the Hessian of the free energy gα,β at s̃. Then

IEα,β[ϕ(µ)] 'm
1

|G|
∑
s̃∈G

IE
[
ϕ(s̃+

2√
m
H−1/2Z)

]
.

where G ⊂ {(±x̃,±x̃)} denotes the set of ground states of the IBM.
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Proof. Recall that M2 defined in (2.6) denotes the set of possible values for
pairs of local magnetization and observe that

IEα,β[ϕ(µ)] =
1

Zα,β

∑
µ∈M2

ϕ(µ)zm(µ) ,

where

(2.10) zm(µ) := exp
(
−m

4

(
−2αµSµS̄ − β(µ2

S + µ2
S̄)
))( m

µS+1
2 m

)(
m

µS̄+1
2 m

)
We split the local magnetization µ according to their `2 distance to the clos-

est ground state. Let G ⊂ [0, 1]2 denote the set of ground states and fix δ ··=
(ρ/κ)

√
(logm)/m, where ρ > 0 is a constant to be chosen later and κ is defined

in Lemma 2. For any ground state s̃ ∈ G, define Vs̃ to be the neighborhood of s̃
defined by

Vs̃ =
{
µ ∈M2 : ‖µ− s̃‖∞ ≤ δ

}
,

where δ > 0 is also defined in Lemma 2. Moreover, define

V =
⋃
s̃∈G
Vs̃ ,

and assume that m is large enough so that (i) the above union is a disjoint one
and (ii), there exists a constant C > 0 depending on α and β such that for any
(x, y) ∈ V, we have ||x| − 1| ∧ ||y| − 1| ≥ C > 0. Denote by g∗α,β the value of the
free energy at any of the ground states.

We first treat the magnetizations outside V. Using Lemma 2 together with
Lemma 17, we get

0 ≤ exp
(m

4
g∗α,β

)∑
µ/∈V

ϕ(µ)zm(µ) ≤ exp
(m

4
g∗α,β

)∑
µ/∈V

exp
(
−m

4
gα,β(µ)

)
≤ m2 exp

(
− m

4

κ2δ2

2

)
≤ m2− ρ

2

2 = om(m−γ) ,(2.11)

for ρ > 4
√

8γ.
Next assume that µ ∈ V. Our starting point is the following approximation,

that follows from Lemma 18: for any µ ∈ V,

(2.12) zm(µ) =
1

πm

exp
(
−m

4 gα,β(µS , µS̄)
)√

(1− µ2
S)(1− µ2

S̄
)

(1 + om(1)) ,

Define V ′ = Vs̃ − {s̃}. A Taylor expansion around s̃ gives for nay u ∈ V ′,

gα,β(s̃+ u) = gα,β(s̃) +
1

2
u>Hu+O(δ3).

where H = Hα,β denotes the Hessian of gα,β at the ground state s̃. The above
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two displays yield

exp
(m

4
g∗α,β

) ∑
µ∈Vs̃

ϕ(µ)zm(µ)

= exp
(m

4
g∗α,β

) ∑
u∈V ′

ϕ(s̃+ u)zm(s̃+ u)

'm
1

πm(1− x̃2)

∑
u∈V ′

ϕ(s̃+ u) exp
(
− m

8
u>Hu

)
'm

m

π(1− x̃2)

∫
δB∞

ϕ(s̃+ x) exp
(
− m

8
x>Hx

)
dx

=
1

π(1− x̃2)

1√
detH

∫
‖H−

1
2 z‖∞≤ δ

√
m

2

ϕ
(
s̃+

2√
m
H−1/2z

)
exp

(
− ‖z‖2

2

)
dz

'm
1

1− x̃2

2√
detH

(
IE
[
ϕ
(
s̃+

2√
m
H−1/2Z

)]
− Tm

)
.

where Z ∼ N2(0, I2) and

Tm =

∫
z : z>H−1z≥mδ2

2

ϕ
(
s̃+

2√
m
H−1/2z

)
exp

(
− ‖z‖2

2

)
dz

Here, the third equality replaces the sum by a Riemann integral and in the last
one we use the following facts: (i) the set vectors z such that ‖H− 1

2 z‖∞ ≤ 1
contains a Euclidean ball of positive radius r(α, β) and (ii) δ

√
m → ∞. Next,

observe that since ϕ takes values in [0, 1], we have

0 ≤ Tm ≤ 2πIP(Z>HZ ≥ m/2)

≤ 2πIP
(
‖Z‖2 − 2 ≥ m

2λmax(H)
− 2
)

≤ 2π
√
e exp

(
− m

8λmax(H)

)
= o(m−γ)(2.13)

for m ≥ 8λmax(H) and where we used Lemma 19.
Since the same calculation holds for all ground states in G, and because the

sets Vs̃, s̃ ∈ G are disjoint, we get that

exp
(m

4
g∗α,β

)∑
µ∈V

ϕ(µ)zm(µ) 'm
1

1− x̃2

2√
detH

∑
s̃∈G

IE
[
ϕ
(
s̃+

2√
m
H−1/2Z

)]
.

Together with (2.11), the above display yields

∑
µ∈M2

ϕ(µ)zm(µ) 'm
2e−

m
4
g∗α,β

(1− x̃2)
√

detH

∑
s̃∈G

IE
[
ϕ(s̃+

2√
m
H−1/2Z)

]
,

In particular, this expression yields for ϕ ≡ 1,

Zα,β 'm
2|G|e−m4 g∗α,β

(1− x̃2)
√

detH
.

The above two displays yield the desired result.
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2.4 Covariance

The covariance matrix Σ = IEα,β[σσ>] captures the block structure of IBM and
thus plays a major role in the statistical applications of Section 3. Moreover, the
coefficients of Σ can be expressed explicitely in terms of the local magnetization
µS and µS̄ .

Lemma 4. Let Σ = IEα,β[σσ>] denote the covariance matrix of a random
configuration σ ∼ IPα,β. For any i 6= j ∈ [p], it holds

∆ := Σij =
m

2(m− 1)
IE[µ2

S + µ2
S̄ ]− 1

m− 1
if i ∼ j

Ω := Σij = IE[µSµS̄ ] if i � j .

Proof. In this proof, we rely on symmetry of the problem: all the spins σi in
a given block, S or S̄ have the same marginal distribution. Fix i 6= j.

If i ∼ j, for example if i, j ∈ S, we have by linearity of expectation.

Σij = IE[σiσj ] =
1

m(m− 1)

(
IE

∑
(i,j)∈S2

σiσj −m
)

=
m

m− 1
IE[µ2

S ]− 1

m− 1
.

Since µS and µS̄ are identically distributed, we obtain the desired result.
For any i � j we have

Σij = IE[σiσj ] =
1

m2
IE

∑
(i,j)S×S̄

σiσj = IE[µSµS̄ ] , .

Unlike many models in the statistical literature, computing Σ exactly is dif-
ficult in the IBM. In particular, it is not immediately clear from Lemma 4 that
∆ > Ω, while this should be intuitively true since β > α and therefore the spin
interactions are stronger within blocks than across blocks. It turns out that this
simple fact can be checked by other means (see Lemma 12) for any m ≥ 2. In the
rest of this subsection, we use asymptotic approximations as m → ∞ to prove
effective upper and lower bound on the gap ∆− Ω.

Proposition 5. Let ∆ and Ω be defined as in Lemma 4 and recall that G
denotes the set of ground states of the IBM. Then

∆− Ω 'm
1

2|G|
∑

(x̃,ỹ)∈G

(x̃− ỹ)2 +
1

m

( (β − α)(1− x̃2)2

2− (β − α)(1− x̃2)

)
.

In particular,

• If β + |α| < 2, then ∆− Ω 'm
1

m

( β − α
2− (β − α)

)
.

• If β + |α| > 2, then three cases arise:

1. if α = 0, then ∆− Ω 'm x̃2,

2. if α > 0, then ∆− Ω 'm
1

m

( (β − α)(1− x̃2)2

2− (β − α)(1− x̃2)

)
> 0
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3. if α < 0, then ∆− Ω 'm 2x̃2 .

Proof. It follows from Lemma 4 that

∆ =
m

m− 1
IEα,β[ϕ(µ)]− 1

m− 1

where ϕ(µ) = ‖µ‖22/2. Therefore, using Theorem 3, we get that for Z ∼ N2(0, I2),

∆ 'm
(

1 +
1

m

) 1

2|G|
∑
s̃∈G
‖s̃‖22 +

2

m
IE‖H−1/2Z‖22 −

1

m

=
(

1 +
1

m

) 1

2|G|
∑

(x̃,ỹ)∈G

(x̃2 + ỹ2) +
2

m
Tr(H−1)− 1

m
.

Using the same argument, we get that

Ω 'm
1

|G|
∑

(x̃,ỹ)∈G

x̃ỹ +
4

m
e>1 H

−1e2 ,

where e1 = (1, 0)> and e2 = (0, 1)> are the vectors of the canonical basis of IR2.
Therefore

∆− Ω 'm
1

2|G|
∑
s̃∈G

(x̃− ỹ)2 +
2

m
v>H−1v − 1

m
(1− x̃2)

where v = (1,−1). Lemma 2 implies that v is an eigenvector of H and thus of
H−1 and

v>H−1v =
1

α− β + 2/(1− x̃2)
.

This completes the first part of the proof and it remains only to check the different
cases.

• If β + |α| < 2, then x̃ = ỹ = 0 is the unique ground state, which yields the
result by substitution.
• If β + |α| > 2, and

1. if α = 0, then |G| = 4 and there are two ground states (x̃,−x̃) and (−x̃, x̃)
for which (x̃− ỹ) does not vanish. The term in 1/m is negligible;

2. if α > 0, then for both ground states (x̃− ỹ)2 = 0 so that

∆− Ω 'm
1

m

( (β − α)(1− x̃2)2

2− (β − α)(1− x̃2)

)
The fact that this quantity is positive, follows from (A.5) with γ = 0.

3. if α < 0, then there are two ground states (x̃,−x̃) and (−x̃, x̃) and we
can conclude as in the case α = 0 but gain a factor of 2 because all the
ground states contribute to the constant term.

It follows from proposition 5 that if β + |α| 6= 2 then the covariance matrix
Σ takes two values that are separated by a term of order at least 1/m and even
sometimes of order 1. In the next section, we leverage this information to derive
statistical results.
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3. CLUSTERING IN THE ISING BLOCKMODEL

In this section, we focus on the following clustering task: given n i.i.d observa-
tions drawn from IPα,β, recover the partition (S, S̄). To that end, we build upon
the probabilisitic analysis of the IBM that was carried out in the previous section
in order to study the properties of an efficient clustering algorithm together with
the fundamental limitations associated to this task.

3.1 Maximum likelihood estimation

Fix a sample size n ≥ 1. Given n independent copies σ(1), . . . , σ(n) of σ ∼ IPα,β,
the log-likelihood is given by

Ln(S) =
n∑
t=1

log
(
IPα,β(σ(t))

)
= −n logZα,β −

m∑
t=1

Hibm
α,β(σ(t)) .

where Zα,β is the partition function defined in (1.2) and Hibm
α,β is the IBM Hamil-

tonian defined in (2.2). While both Zα,β and Hibm
α,β could depend on the choice

of the block S, it turns out that Zα,β is constant over choices of S such that
|S| = m = p/2.

Lemma 6. The partition function Zα,β = Zα,β(S) defined in (1.2) is such
that Zα,β(S) = Zα,β([m]) for all S of size |S| = m. This statement remains true
even if m 6= p/2.

Proof. Fix S ⊂ [p] such that |S| = m and denote by π : [p] → [p] any
bijection that maps [m] to S. By (1.2) and (2.3), it holds

Zα,β(S) =
∑

σ∈{−1,1}p
exp

[ 1

4m

(
2α(σ>1S)(σ>1S̄)− β

(
(σ>1S)2 + (σ>1S̄)2

))]
=

∑
τ=π(σ)

σ∈{−1,1}p

exp
[ 1

4m

(
2α(τ>1S)(τ>1S̄)− β

(
(τ>1S)2 + (τ>1S̄)2

))]

since π is a bijection. Moreover, τ>1S = π(σ)>1S = σ>1[m] and τ>1S̄ = σ>1
[m]

.

Hence Zα,β(S) = Zα,β([m]) .

Because of the above lemma, we simply write Zα,β = Zα,β(S) to emphasize
the fact that the partition function does not depend on S. It turns out that the
log-likelihood is a simple function of S. Indeed, define the matrix Q = QS ∈ IRp×p

such that Qij = β
p for i ∼ j and Qij = α

p for i � j. Observe that (2.3) can be
written as

Hα,β(σ) =
1

2
σ>Qσ =

1

2
Tr(σσ>Q) .

This in turns implies

Ln(S) = −n logZα,β +
n

2
Tr[Σ̂Q] ,

where Σ̂ denotes the empirical covariance matrix defined in (2.1). Since α < β, it
is not hard to see that the likelihood maximization problem maxS⊂[p],|S|=m Ln(S)
is equivalent to

(3.1) max
V ∈P

Tr[Σ̂V ] , P = {vv> : v ∈ {−1, 1}p, v>1[p] = 0} .
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In particular, estimating the blocks (S, S̄) amounts to estimating vSv
>
S ∈ P,

where vS = 1S−1S̄ ∈ {−1, 1}p. Note that vSv
>
S = vS̄v

>
S̄

.For an adjacency matrix
A, the optimization problem maxV ∈P Tr[AV ] is a special case of the Minimum
Bisection problem and it is known to be NP-hard in general [GJS76]. To overcome
this limitation, various approximation algorithms were suggested over the years,
culminating with a poly-logarithmic approximation algorithm [FK02]. Unfortu-
nately, such approximations are not directly useful in the context of maximum
likelihood estimation. Nevertheless, the maximum likelihood estimation problem
at hand is not worst case, but rather a random problem. It can be viewed as
a variant of the planted partition model (aka stochastic blockmodel) introduced
in [DF89]. Indeed the block structure of Σ unveiled in Lemma 4 can be viewed
as similar to the adjacency matrix of a weighted graph with a small bisection.
Moreover, Σ̂ can be viewed as the matrix Σ planted in some noise. Here, unlike
the original planted partition problem, the noise is correlated and therefore re-
quires a different analysis. In random matrix terminology, the observed matrix
in the stochastic block model is of Wigner type, whereas in the IBM, it is of
Wishart type. It is therefore not surprising that we can use the same methodol-
ogy in both cases. In particular, we will use the semidefinite relaxation [GW95]
to the MAXCUT problem that was already employed in the planted partition
model [ABH16, HWX16].

It can actually be impractical to use directly the matrix Σ̂ in the above relax-
ations, and we apply a pre-preprocessing that amounts to a centering procedure,
which simplifies our analysis. Given σ ∈ {−1, 1}p, define its centered version σ̄
by

σ̄ = σ −
1>[p]σ

p
1[p] = Pσ ,

where P = Ip − 1
p1[p]1

>
[p] is the projector onto the subspace orthogonal to 1[p].

Moreover, let Γ = PΣP and Γ̂ = P Σ̂P respectively denote the covariance and
empirical covariance matrices of the vector σ̄.

Note that for all V ∈ P, we have that Tr[Γ̂V ] = Tr[Σ̂V ] since V 1[p]1
>
[p] = 0,

so that PV P = V . It implies that the likelihood function is unchanged over P
when substituting Σ̂ by Γ̂. Moreover, IE[Γ̂] = Γ and the spectral decomposition
of Γ is given by

(3.2) Γ = (1−∆)P + p
∆− Ω

2
uSu

>
S ,

where uS = vS/
√
p is a unit vector. Therefore the matrix Γ has leading eigenvalue

(1−∆) +p(∆−Ω)/2 with associated unit eigenvector uS . Moreover, its eigengap
is p(∆− Ω)/2. It is well known in matrix perturbation theory that the eigengap
plays a key role in the stability of the spectral decomposition of Γ when observed
with noise.

3.2 Exact recovery via semidefinite programming

In this subsection, we consider the following semi-definite programming (SDP)
relaxation of the optimization problem (3.1):

(3.3) max
V ∈E

Tr[Γ̂V ] , E =
{
V ∈ Sp : diag(V ) = 1[p], V � 0

}
,
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where Sp denotes the set of p × p symmetric real matrices. The set E is the set
of correlation matrices, and it is known as the elliptope. We recall the definition
of the vector vS = 1S − 1S̄ ∈ {−1, 1}p and note that vSv

>
S ∈ P ⊂ E . Moreover,

we denote by V̂ SDP any solution to the the above program. Our goal is to show
that (3.3) has a unique solution given by V̂ SDP = vSv

>
S , i.e., the SDP relaxation

is tight. While the dual certificate approach of [ABH16] could be used in this
case (see also [HWX16]) we employ a slightly different proof technique, more
geometric, that we find to be more transparent. This approach is motivated by
the idea that the relaxation is tight in the population case, suggesting that it
might be the case as well when Γ̂ is close to Γ.

Recall that for any X0 ∈ E , the normal cone to E at X0 is denoted by NE(X0)
and defined by

NE(X0) =
{
C ∈ Sp : Tr(CX) ≤ Tr(CX0) , ∀X ∈ E

}
.

It is the cone of matrices C ∈ Sp such that maxX∈E Tr(CX) = Tr(CX0). There-
fore, vSv

>
S is a solution of (3.3), i.e., the SDP relaxation is tight, whenever

Γ̂ ∈ NE(vSv>S ). The normal cone can be described using the following Lapla-
cian operator. For any matrix C ∈ Sp, define

LS(C) := diag(CvSv
>
S )− C,

and observe that LS(C)vS = 0. Indeed, since vS ∈ {−1, 1}p, it holds,

diag(CvSv
>
S )vS = diag(CvS1

>
[p])1[p] = CvS .

Proposition 7. For any matrix C ∈ Sp, the following are equivalent

1. C ∈ NEp(vSv>S ) .
2. LS(C) = diag(CvSv

>
S )− C � 0 ,

Moreover, if LS(C) � 0 has only one eigenvalue equal to 0, then vSv
>
S is the

unique maximizer of Tr(CV ) over V ∈ E.

Proof. It is known [LP96] that the normal cone NE(vSv>S ) is given by

NE(vSv>S ) =
{
C ∈ Sp : C = D −M,D diagonal, ,M � 0, v>SMvS = 0

}
,

where M � 0 denotes that M is a symmetric, semidefinite positive matrix. We
are going to make use of the following facts. First for any diagonal matrix D and
any V ∈ E , it holds diag(DV ) = D. Second, taking V = vSv

>
S , we get

LS(C)vSv
>
S = diag(CvSv

>
S )vSv

>
S − CvSv>S = diag(CvSv

>
S )− CvSv>S ,

so that

(3.4) diag(LS(C)vSv
>
S ) = 0 .

2. ⇒ 1. Let C ∈ v>S be such that LS(C) � 0. By definition, we have C =
diag(CvSv

>
S ) − LS(C) and it remains to check that v>S LS(C)vS = 0, which

follows readily from (3.4) with V = vSv
>
S .

1. ⇒ 2. Let C = D − M ∈ NEp(vSv>S ) where D is diagonal and M � 0,
v>SMvS = 0, which implies that MvS = 0. It yields, CvSv

>
S = DvSv

>
S and
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diag(CvSv
>
S ) = diag(DvSv

>
S ) = D so that the decomposition is necessarily D =

diag(CvSv
>
S ) and M = LS(C) = diag(CvSv

>
S )− C. In particular, LS(C) � 0.

Thus, if LS(C) � 0 then vSv
>
S is a maximizer of Tr(CV ) over V ∈ E . To prove

uniqueness, recall that for any maximizer V ∈ E , we have Tr(CV ) = Tr(CvSv
>
S ).

Plugging C = diag(CvSv
>
S )− LS(C) and using (3.4) yields

Tr(diag(CvSv
>
S )V )−Tr(LS(C)V ) = Tr(diag(CvSv

>
S )vSv

>
S )

= Tr(diag(CvSv
>
S )) .

Recall that Tr(diag(CvSv
>
S )V ) = Tr(diag(CvSv

>
S )) so that the above display

yields Tr(LS(C)V ) = 0. Since V � 0 and the kernel of the semidefinite positive
matrix LS(C) is spanned by vS , we have that V = vSv

>
S .

It follows from Proposition 7 that if LS(Γ̂) � 0 and has only one eigenvalue
equal to zero, then vSv

>
S is the solution to (3.3). In particular, in this case,

the SDP allows exact recovery of the block structure (S, S̄). Observe that the
conditions of Proposition 7 hold if Γ̂ is replaced by the population matrix Γ.
Indeed, using (3.2), we obtain

LS(Γ) =
(
1−∆ + p

∆− Ω

2

)
Ip − (1−∆)P − p∆− Ω

2
uSu

>
S

= (1−∆)
1[p]√
p

1>[p]√
p
− p∆− Ω

2
uSu

>
S + p

∆− Ω

2
Ip ,

where we used the fact that Ip − P is the projector onto the linear span of
1[p]. Therefore, the eigenvalues of LS(Γ) are 0, 1 − ∆ + p(∆ − Ω)/2, both with
multiplicity 1 and p(∆ − Ω)/2 with multiplicity p − 1. In particular, for p ≥ 2,
LS(Γ) � 0 and it has only one eigenvalue equal to zero.

Extending this result to LS(Γ̂) yields the following theorem, as illustrated in
FIgure 3. Let Cα,β > 0 be a positive constant such that ∆ − Ω > Cα,β/p. Note
that such a constant Cα,β is guaranteed to exist in view of Proposition 5.

Theorem 8. The SDP relaxation (3.3) has unique maximum at V = vSv
>
S

with probability 1− δ whenever

n > 16
(
3 +

2

Cα,β

) log(4p/δ)

∆− Ω
(1 + op(1)) .

In particular, the SDP relaxation recovers exactly the block structure (S, S̄).

Proof. Recall that LS(Γ̂)vS = 0 and any C ∈ Sp, denote by λ2[C] its second
smallest eigenvalue. Our goal is to show that λ2[LS(Γ̂)] > 0. To that end, observe
that

LS(Γ̂) = LS(Γ) + diag
(
(Γ̂− Γ)vSv

>
S

)
+ Γ− Γ̂ .

Therefore, using from Weyl’s inequality and the fact λ2[LS(Γ)] = p(∆−Ω)/2, we
get

(3.5) λ2[LS(Γ̂)] ≥ p∆− Ω

2
− ‖diag

(
(Γ̂− Γ)vSv

>
S

)
‖op − ‖Γ̂− Γ‖op ,

where ‖·‖op denotes the operator norm. Therefore, it is sufficient to upper bound
the above operator norms. This is ensured by the following Lemma.
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Figure 3: The main idea of our analysis of this convex relaxation. The true value
of the parameter V = vSv

>
S is the unique solution of both the maximum likelihood

problem on P and of the convex relaxation on E , as Γ belongs to both normal
cones at V . The relaxation is therefore tight in the population case. We show
that when the sample size is large enough, the sample matrix Γ̂ is close enough
to Γ and also in both normal cones.

Lemma 9. Fix δ > 0 and define

Rn,p(δ) = 2pmax
(√(1 + 2/Cα,β)(∆− Ω) log(4p/δ)

n
,

(6 + 4/Cα,β) log(p/δ)

n

)
.

With probability 1− δ, it holds simultaneously that

(3.6) ‖Γ̂− Γ‖op ≤ Rn,p(δ)(1 + op(1)) .

and

(3.7) ‖diag
(
(Γ̂− Γ)vSv

>
S

)
‖op ≤ Rn,p(δ)(1 + op(1)) .

Proof. To prove (3.6), we use a Matrix Bernstein inequality from [Tro15]. To
that end, note that

Γ̂− Γ =
1

n

n∑
t=1

Mt ,

where M1, . . . ,Mn are i.i.d random matrices given by Mt = (σ̄(t)σ̄(t)> − Γ),
t = 1, . . . , n. We have

‖Mt‖op ≤ ‖σ̄(t)σ̄(t)>‖op + ‖Γ‖op ≤ p+ ‖Γ‖op .

Furthermore, we have that

IE[M2
t ] = IE[‖σ̄(t)‖2σ̄(t)σ̄(t)> − σ̄(t)σ̄(t)>Γ− Γσ̄(t)σ̄(t)> + Γ2]

= pIE[σ̄(t)σ̄(t)>]− Γ2 − Γ2 + Γ2 � pΓ .
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As a consequence,
∑n

t=1 IE[M2
t ] � pΓ. By Theorem 1.6.2 in [Tro15], this yields

(3.8) IP
(
‖Γ̂− Γ‖op > t

)
≤ 2p exp

(
− nt2

2p‖Γ‖op + 2(p+ ‖Γ‖op)t

)
.

We have ‖Γ̂− Γ‖op ≤ t with probability 1− δ for any t such that

log(2p/δ) ≤ nt2

2p‖Γ‖op + 2(p+ ‖Γ‖op)t
.

This holds for all

t ≤ max
(√4p‖Γ‖op log(2p/δ)

n
,

4(p+ ‖Γ‖op) log(2p/δ)

n

)
.

To conclude the proof of (3.6), observe that

‖Γ‖op = p
∆− Ω

2
+ 1−∆ ≤

(
1 +

1

Cα,β

)
(∆− Ω)p ,

where Cα,β > 0 is defined immediately before the statement of Theorem 8.

We now turn to the proof of (3.7). Recall that vS ∈ {−1, 1}p so that the ith
diagonal element is given by

diag
(
(Γ̂− Γ)vSv

>
S

)
ii

= e>i (Γ̂− Γ)vS ,

where ei denotes the ith vector of the canonical basis of IRp. Hence,

‖diag
(
(Γ̂− Γ)vSv

>
S

)
‖op = max

i∈[p]

∣∣diag ((Γ̂− Γ)vSv
>
S

)
ii

∣∣ = max
i∈[p]
|e>i (Γ̂− Γ)vS | .

We bound the right hand-side of the above inequality by noting that

e>i (Γ̂− Γ)vS =
m

n

n∑
t=1

(
σ̄

(t)
i (µ

(t)
S − µ

(t)

S̄
)− IE[σ̄

(t)
i (µ

(t)
S − µ

(t)

S̄
)]
)
,

where µ
(t)
S = 1>S σ̄

(t)/m ∈ [−1, 1] and µ
(t)

S̄
is defined analogously. The random

variables σ̄
(t)
i (µ

(t)
S −µ

(t)

S̄
)−IE[σ̄

(t)
i (µ

(t)
S −µ

(t)

S̄
)] are centered, i.i.d., and are bounded

in absolute value by 2 for all t ∈ [n]. Moreover, it follows from Lemma 4 that the
variance of these random variables is bounded by

IE[(µ
(t)
S − µ

(t)

S̄
)2] ≤ 2(∆− Ω) +

4

p
=: ν2 .

By a one-dimensional Bernstein inequality, and a union bound over p terms, we
have therefore that

IP
(

max
i∈[p]
|e>i (Γ̂− Γ)vS | >

pt

n

)
≤ 2p exp

(
− t2/2

nν2 + 2t/3

)
.

which yields

max
i∈[p]
|e>i (Γ̂− Γ)vS | ≤ pmax

(√2ν2 log(2p/δ)

n
,
4 log(2p/δ)

3n

)
,

with probability 1− δ. It completes the proof of (3.7).
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To conclude the proof of Theorem 8, note that for the prescribed choice of n,
we have

2Rn,p(δ)(1 + op(1)) < p
∆− Ω

2

and it follows from (3.5) that λ2[LS(Γ̂)] > 0.

Remark 10. We have not attempted to optimize the constant 16(3 + 2/Cα,β)
that appears in Theorem 8 and it is arguably suboptimal. One way to see how it
can be reduced at least by a factor 2 is by noting that the factor p in the right-
hand side of (3.8) is in fact superfluous thus resulting in a extra logarithmic factor
in (3.6). This is because, akin to the stochastic blockmodel analysis [ABH16], the
matrix deviation inequality from [Tro15] is too coarse for this problem. The extra
factor p may be removed using the concentration results of Section 2.3 but at the
cost of a much longer argument. Indeed, using Theorem 3, we can establish the
concentration of local magnetization around the ground states and conditionally
on these magnetizations, the configurations are uniformly distributed. These con-
ditional distributions can be shown to exhibit sub-Gaussian concentration so that
σ>u and thus σ̄>u are sub-Gaussian with constant variance proxy for any unit
vector u ∈ IRp. This result can yield a bound for ‖Γ̂ − Γ‖op using an ε-net ar-
gument that is standard in covariance matrix estimation. With this in mind, we
could get an upper bound in (3.6) that is negligible with respect to Rn,p thereby
removing a factor 2. Nevertheless, in absence of a tight control of the constant
Cα,β, exact constants are hopeless and beyond the scope of this paper.

Combined with Proposition 5 that quantifies the gap ∆ − Ω in terms of p,
Theorem 8 readily yields the following corollary.

Corollary 11. There exists positive constants C1 and C2 that depend on α
and β such that the following holds. The SDP relaxation (3.3) recovers the block
structure (S, S̄) exactly with probability 1− δ whenever

1. n ≥ C1p log(p/δ) if β + |α| < 2 or α > 0
2. n ≥ C2 log(p/δ) otherwise.

In particular, if β − α > 2, α ≤ 0 a number of observations that is logarithmic in
the dimension p is sufficient to recover the blocks exactly.

These results suggest that there is a sharp phase transition in sample com-
plexity for this problem, depending on the value of the parameters α and β. We
address this question further in Section 4. The last subsection shows that these
rates are, in fact, optimal.

3.3 Information theoretic limitations

In this section, we present lower bounds on the sample size needed to recover
the partition (S, S̄) and compare them to the upper bounds of Theorem 8. In the

sequel, we write Ŝ � S if either (Ŝ,
¯̂
S) = (S, S̄) or (Ŝ,

¯̂
S) = (S̄, S) to indicate

that the two partitions are the same. We write Ŝ 6� S to indicate that the two
partitions are different.

For any balanced partition (S, S̄), consider a “neighborhood” TS of (S, S̄) com-
posed of balanced partitions such that for all (T, T̄ ) ∈ TS , we have ρ(S, T ) = 1
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and ρ(S̄, T̄ ) = 1. We first compute the Kullback–Leibler divergence between the
distributions IPS and IPT .

Lemma 12. For any positive β, α < β, and T ∈ TS, it holds that

KL(IPT , IPS) =
p− 2

p
(β − α)(∆− Ω) .

Proof. By definition of the divergence and of the distributions, we have that

KL(IPT , IPS) = IET

[
log
( IPT

IPS
(σ)
)]

= IET
[
Tr[(QT −QS)σσ>]

]
= Tr[(QT −QS)ΣT ]

Note that most of the coefficients of QT − QS are equal to 0. In fact, noting
{s} = S ∩ T̄ and {t} = S̄ ∩ T , we have

(QT −QS)ij =
α− β
p

if


i ∈ S \ {s} , j = s

i = s , j ∈ S \ {s}
i ∈ S̄ \ {t} , j = t

i = t , j ∈ S̄ \ {t}

and

(QT −QS)ij =
β − α
p

if


i ∈ S \ {s} , j = t

i = s , j ∈ S̄ \ {t}
i ∈ S̄ \ {t} , j = s

i = t , j ∈ S \ {s} ,
and 0 otherwise. There are therefore p− 2 coefficients of each sign. Furthermore,
whenever (QT − QS)ij = (α − β)/p, we have (ΣT )ij = Ω, and whenever (QT −
QS)ij = (β −α)/p, we have (ΣT )ij = ∆. Computing Tr[(QT −QS)ΣT ] explicitly
yields the desired result.

From this lemma, we derive the following lower bound.

Theorem 13. For γ ∈ (0, 3/5) and p ≥ 6 and

n ≤ γ log(p/4)

(β − α)(∆− Ω)
.

We have

inf
Ŝ

max
S∈S

IP⊗nS
(
(Ŝ,

¯̂
S) 6� (S, S̄)) ≥ p− 2

p

(
1− γ −√γ

)
> 0 ,

where the infimum is taken over all estimators of S. Note that the right-hand side
of the above inequality goes to 1 as p→∞ and γ → 0.
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Proof. First, note that by Lemma 12, for any T ∈ TS , it holds |TS | = (p/2−
1)2 so that

KL(IP⊗nT , IP⊗nS ) = nKL(IPT , IPS) ≤ n(β − α)(∆− Ω) ≤ γ log(p/4) ≤ γ

2
log |TS | .

Thus Theorem 2.5 in [Tsy09] yields

inf
Ŝ

max
S∈P

IP⊗nS (Ŝ 6� S) ≥
√
|TS |

1 +
√
|TS |

(
1− γ −

√
γ

log(|TS |)
)

≥ p− 2

p

(
1− γ −√γ

)
> 0 ,

for γ ∈ (0, 3/5).

The lower bound of Theorem 13 matches the upper bounds of Theorem 8 up
to numerical constant. This indicates that the SDP relaxation studied in the
paper is rate optimal: the sample complexity stated in Corollary 11 has optimal
dependence on the dimension p. Note that past work on exact recovery in the
stochastic blockmodel [ABH16, HWX16] was able to show that SDP was also
optimal with respect to constants. We do not pursue this questions in the present
paper.

4. CONCLUSION AND OPEN PROBLEMS

This paper introduced the Ising block model (IBM) for large binary random
vectors with an underlying cluster structure. In this model, we studied the sam-
ple complexity of recovering exactly the clusters. Unsurprisingly, this paper bears
similarities with the stochastic blockmodel but also differences. For example, in
the stochastic blockmodel one is given only one observation of the graph. In the
IBM, given one realization σ(1) ∈ {−1, 1}p, the maximum likelihood estimator is

the trivial clustering that assigns i ∈ [p] to a cluster according to the sign of σ
(1)
i ,

up to a trivial reassignment to keep the partition balanced.

Below is a summary of our main findings:

1. The model exhibits three phases depending on the values taken by two
parameters.

2. In one phase, where the two clusters tend to have opposite behavior, the
sample complexity is logarithmic in the dimension; in the other two, it
is near linear. These sample complexities are proved to be optimal in an
information theoretic sense.

3. Akin to the stochastic blockmodel, the optimal sample complexity is achieved
using the natural semidefinite relaxation to the MAXCUT problem.

Many questions regarding this model remain open. The first and most natural
is the determination of exact constants. Theorem 13 suggests that there exists a
universal constant C? such that the optimal sample complexity is

C? log(p)

β − α (∆− Ω)(1 + op(1)) .
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Throughout this paper, we have only kept loosely track of the correct depen-
dency of the constants as function of the constants (α, β). We have shown that
the optimal sample complexity, is a product of log(p)/(∆−Ω) and of a constant
term that only becomes arbitrarily large when α is very close to β, with a di-
vergence of order (β − α)−1. In the spirit of exact thresholds for the stochastic
blockmodel [Mas14, MNS15, ABH16], we find that proving existence of the con-
stant C? and computing it worthy of investigation but is beyond the scope of the
present paper.

Finally, in view of the simple spectral decomposition (3.2) of Γ, one may wonder
about the behavior of the a simple method that consists in computing the leading
eigenvector of Γ̂ and clustering according to the sign of its entries. Such a method
is the basis of the approach in denser graph models in [McS01] or [AKS98]. The
results of such an approach are easily implementable as follows.

Let û denote a leading unit eigenvectors of Γ̂ and consider the following esti-
mate for the partition (S, S̄):

(4.1) Ŝ � {i ∈ [p] | ûi > 0} .
It follows from the Perron-Frobenius theorem that Ŝ � S whenever sign(Γ̂) =
sign(Γ). This allows for perfect recovery of S, but only holds with high probability
when n is of order log(p)/(∆ − Ω)2, which is suboptimal. It is however possible
to obtain partial recovery guarantees for the spectral recovery. In order to state
our result, for any two partitions (S, S̄), (T, T̄ ) define

|S3T | = min
(
|S 4 T |, |S 4 T̄ |

)
where 4 denotes the symmetric difference.

Proposition 14. Fix δ ∈ (0, 1) and let Ŝ ⊂ [p] be defined in (4.1). Then,
there exits a constant γα,β > 0 such that with probability 1− δ,

1

p
|S3Ŝ| ≤ γα,β

log(4p/δ)

n(∆− Ω)
.

Proof. Let û denote the leading unit eigenvector of Γ̂ and let v̂ =
√
pû. Recall

that vS = 1S − 1S̄ and observe that

|S3Ŝ| = min
( p∑
i=1

1I(v̂i · (vS)i ≤ 0),

p∑
i=1

1I(v̂i · (vS)i ≥ 0)
)

≤ min
(
‖v̂ − vS‖2, ‖v̂ + vS‖2

)
= pmin

(
‖û− uS‖2, ‖û+ uS‖2

)
,

where in the inequality, we used the fact that vS ∈ {−1, 1}p so that

1I(v̂i · (vS)i ≤ 0) ≤ |v̂i − (vS)i|1I(v̂i · (vS)i ≤ 0) ≤ |v̂i − (vS)i|2 .
Using a variant of the Davis-Kahan lemma (see, e.g, [WBS16]), we get

1

p
|S3Ŝ| ≤

‖Γ̂− Γ‖2op

(λ1(Γ)− λ2(Γ))2
,

and the result follows readily from (3.6) and the fact that the eigengap of Γ is
given by p(∆− Ω)/2.
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In terms of exact recovery, this result is quite weak as it only gives guarantees
for a sample complexity of the order of p log(p/δ)/(∆− Ω), which is suboptimal
by a factor of p. Moreover, for the bound of Proposition 14 to be non-trivial, one
already needs the sample size to be of the same order as the one required for
exact recovery by semi-definite programming. Nevertheless Proposition 14 raises
the question of the optimal rates of estimation of S with respect to the metric
|S3Ŝ|/p. While partial recovery is beyond the scope of this paper, it would be
interesting to establish the optimal rate.

APPENDIX A: FACTS ABOUT THE CURIE-WEISS MODEL

We begin by stating some well known facts about the Curie-Weiss model. These
results are standard in the statistical physics literature and the interested reader
can find more details in [FV16, Ell06] for example. However, the precise behavior
of the free energy that we need for our subsequent analysis does not seem to
be readily available in the literature so we prove below a lemma that suits our
purposes.

Recall that the Curie-Weiss model is a special case of the Ising block model
when α = β = b. In this case, the free energy takes the form:

(A.1) gcwb (µ) = −2bµ2 − 4h
(µ+ 1

2

)
where we recall that µ = σ>1/p is the global magnetization of σ. The minima
x ∈ (−1, 1) of g are called ground states and satisfy the first order optimality
condition, also known as mean field equation

log
(1 + x

1− x
)

= 2bx .

If b ≤ 1, then the unique solution to the mean field equation is x = 0. Moreover,
gcwb is increasing on [0, 1].

If b > 1, then the mean field equation has two solutions x̃ > 0 and −x̃ in
(−1, 1). In any case, these solutions are global minima that are also the only
local minima of gcwb . In particular, when b > 1, gcwb is monotone decreasing in
the interval (0, x̃) and monotone increasing in the interval (x̃, 1).

The following lemma is a refinement of these well-known facts that quantifies
the curvature of gcwb around its minima.

Lemma 15. Fix b > 1 in the Curie-Weiss model and denote by x̃ > 0 and −x̃
the two ground states. Then it holds:

1− 2b

2b2 + b− 1
< x̃2 < 1− e−2b .

Moreover, for any x ∈ (0, 1), it holds

(A.2) gcwb (x) ≥ gcwb (x̃) +
b− 1

2b
(|x− x̃| ∧ ε)2,

and

(A.3) gcwb (x) ≥ gcwb (−x̃) +
b− 1

2b
(|x+ x̃| ∧ ε)2,
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where ε = e−2b

4

(
1− 1

b

)
.

Fix b ≤ 1 in the Curie-Weiss model and recall that x̃ = 0 is the unique ground
state. Then for any x ∈ (−1, 1) it holds

(A.4) gcwb (x) ≥ gcwb (0) + (1− b)(x ∧ ε′)2 .

where

ε′ =

√
1− b

3
.

Proof. Observe that for x > 0, we have

(A.5) 2bx̃ = log
(1 + x̃

1− x̃
)
<

2x̃

1− x̃2
− γx̃3 , ∀γ ≤ 1 .

Taking γ = 0 implies that x̃ >
√

1− 1/b. Plugging this into (A.5) with γ = 1
yields

2bx̃ <
2x̃

1− x̃2
− x̃
(
1− 1

b

)
.

Solving for x̃ once again yields

(A.6)
2

1− x̃2
> 2b+ 1− 1

b

Or equivalently that

x̃2 > 1− 2b

2b2 + b− 1
.

Moreover, the mean field equation yields

2b > 2bx̃ = log
(1 + x̃

1− x̃
)
> − log(1− x̃)

so that

(A.7) x̃ < 1− e−2b

which readily yields the desired upper bound on x̃2.
We conclude this proof by showing that gcwb is at least quadratic in a neigh-

borhood of its minima when b 6= 1. To that end, observe first that the second and
third derivatives of g are given respectively by

∂2

∂x2
gcwb (x) = −4b+

4

1− x2
,

∂3

∂x3
gcwb (x) = − 8x

(1− x2)2
,

First assume that b > 1. A Taylor expansion of gcwb around x̃ together with (A.6)
and (A.7) yields that for any ε ∈ (0, 1) and x such that

|x− x̃| ≤ ε :=
e−2b

2
∧
(
1− 1

b

)
,

gcwb (x) ≥ gcwb (x̃) +
(
1− 1

b

)
(x− x̃)2 − 4

3(1− (x̃+ ε)2)2
|x− x̃|3

≥ gcwb (x̃) +
(
1− 1

b

)
(x− x̃)2 − 4

3(1− x̃− ε) |x− x̃|
3

≥ gcwb (x̃) +
(
1− 1

b

)
(x− x̃)2 − 4ε

3(e−2b − ε)(x− x̃)2

≥ gcwb (x̃) +
1

2

(
1− 1

b

)
(x− x̃)2 .
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Now, using the fact that gcwb is monotone decreasing on (0, x̃− ε) and monotone
increasing in (x̃ + ε, 1), we obtain the claim in (A.2). The lower bound (A.3)
follows by symmetry.

Next, assume that b < 1. A Taylor expansion of gcwb around 0 yields that for
any x such that |x| < ε′, ε′ ∈ (0, 1),

gcwb (x) > gcwb (0) +
[
2(1− b)− 4ε2

3(1− ε2)2

]
x2

≥ gcwb (0) + (1− b)x2

for

ε′ ≤
√

1− b
3

.

Using the fact that gcwb is monotone decreasing on [1,−ε) and monotone increas-
ing on (ε, 1] yields (A.4).

Remark 16. When b = 1, the Hessian of gcwb vanishes at 0. In this case, gcwb
is not lower bounded by a quadratic term.

APPENDIX B: INEQUALITIES

B.1 Bounds on binomial coefficients

We will need the following well known information theoretic estimate. Recall
that the binary entropy function h : [0, 1]→ IR is defined by h(0) = h(1) = 0 and
for any s ∈ (0, 1) by

h(s) = −s log(s)− (1− s) log(1− s) .

Lemma 17. Let m be a positive integer and let γ ∈ [0, 1] be such that γm is
an integer. Then (

m

γm

)
≤ exp(mh(γ)) .

Proof. Let X ∼ Bin(n, γ) be a binomial random variable. Then

1 ≥ IP(X = γm) =

(
m

γm

)
γγm(1− γ)(1−γ)m =

(
m

γm

)
exp(−mh(γ)) .

The following sharper estimate follows from the Stirling approximation of n!
developed in [Rob55].

Lemma 18. Let ε > 0, m a positive integer let γ ∈ [ε, 1− ε] be such that γm
is an integer. We then have

exp

(
− 1

12ε2m

)
≤
√

2πmγ(1− γ) exp(mh(γ))

(
m

γm

)
≤ exp

(
1

12m

)
.
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Proof. It follows from [Rob55]) that for any positive integer n,

1 ≤ exp

(
1

12n+ 1

)
≤ n!√

2πn(n/e)n
≤ exp

(
1

12n

)
.

Applying this to (
m

γm

)
=

m!

(γm)!((1− γ)m)!

yields the desired bounds.

B.2 Tail bound for χ2 distribution

We recall here a well known tail bound for χ2 distributions (see, [LM00,
Lemma 1]).

Lemma 19. Let Z ∼ N2(0, I2) be a bivariate standard Gaussian vector. Then,
for any t ≥ 2, it holds

IP(‖Z‖22 − 2 ≥ 2) ≤ exp(−t/4) .
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