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ABSTRACT
Estimating the number of communities is one of the fundamental problems in community detection. We
re-examine the Bayesian paradigm for stochastic block models (SBMs) and propose a “corrected Bayesian
information criterion” (CBIC), to determine the number of communities and show that the proposed
criterion is consistent under mild conditions as the size of the network and the number of communities go
to infinity. The CBIC outperforms those used in Wang and Bickel and Saldana, Yu, and Feng which tend to
underestimate and overestimate the number of communities, respectively. The results are further extended
to degree corrected SBMs. Numerical studies demonstrate our theoretical results.
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1. Introduction

Community structure is one of the most widely used struc-
tures for network data. For instance, peoples form groups in
social networks based on common locations, interests, occu-
pations, etc.; proteins form communities based on functions
in metabolic networks; publications can be grouped to com-
munities by research topics in citation networks. The links (or
edges) between nodes are generally dense within communities
and relatively sparse between communities. Identifying such
subgroups provides important insights into network formation
mechanism and how network topology affects each other.

The stochastic block model (SBM) proposed by Holland,
Laskey, and Leinhardt (1983) is one of the best studied network
models for community structures. See Snijders and Nowicki
(1997) and Nowicki and Snijders (2001) for a first application
of the SBM in community detection. We briefly describe the
model. Let A ∈ {0, 1}n×n be the symmetric adjacency matrix
of an undirected graph with n nodes. In the SBM with k com-
munities, each node is associated with a community, labeled by
zk(i), where zk(i) ∈ [k]. Here [m] = {1, . . . , m} for any positive
integer m. In other words, the nodes are given a community
assignment zk : [n] → [k]n. The diagonal entries of A are
zeros (no self-loop) and the entries of the upper triangle matrix
A are independent Bernoulli random variables with success
probabilities that only depend on the community labels of nodes
i and j. That is, all edges are independently generated given the
node communities, and for a certain probability matrix θk =
{θkab}1≤a,b≤k,

P(Aij = 1 | zk(i), zk(j)) = θkzk(i)zk(j).

For simplicity, θk and zk are abbreviated to θ and z,
respectively.

A wide variety of methods have been proposed to estimate
the latent community membership of nodes in an SBM,
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including modularity (Newman 2006a), profile-likelihood
(Bickel and Chen 2009), pseudo-likelihood (Amini et al.
2013), variational methods (Daudin, Picard, and Robin 2008;
Latouche, Birmele, and Ambroise 2012), spectral clustering
(Rohe, Chatterjee, and Yu 2011; Fishkind et al. 2013; Jin 2015),
belief propagation (Decelle et al. 2011), etc. The asymptotic
properties of these methods have also been established under
different settings (Bickel and Chen 2009; Rohe, Chatterjee, and
Yu 2011; Celisse, Daudin, and Pierre 2012; Bickel et al. 2013;
Gao, Lu, and Zhou 2015; Zhang and Zhou 2016).

However, most of these works assume that the number of
communities k is known a priori. In a real-world network, k is
usually unknown and needs to be estimated. Therefore, it is of
importance to investigate how to choose k (called model selec-
tion in this article). Some methods have been proposed in recent
years, including a recursive approach (Zhao, Levina, and Zhu
2011), spectral methods (Le and Levina 2015), sequential tests
(Bickel and Sarkar 2015; Lei 2016), and network cross-validation
(Chen and Lei 2018). The likelihood-based methods for model
selection have also been proposed (Daudin, Picard, and Robin
2008; Latouche, Birmele, and Ambroise 2012; Saldana, Yu, and
Feng 2017).

Wang and Bickel (2017) proposed a penalized likelihood
method with the penalty function

λ
k(k + 1)

2
n log n, (1.1)

where λ is a tuning parameter. An alternative penalty function
k(k+1)

2 log n (called the “BIC”) was used to select the number
of communities in Saldana, Yu, and Feng (2017). As will be
shown later in the article, using the penalty function (1.1) and
the BIC to estimate k tends to underestimate and overestimate
the number of communities, respectively. We therefore propose
a “corrected Bayesian information criterion” (CBIC) that is in
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the midway of those two criteria. Specifically, we propose the
following penalty function

λn log k + k(k + 1)

2
log n, (1.2)

which is lighter than (1.1) used by Wang and Bickel (2017)
and is heavier than the BIC penalty used by Saldana, Yu, and
Feng (2017). Rigorously speaking, Wang and Bickel (2017) dealt
with the marginal log-likelihood where z as latent variables are
integrated out, while we plug a single estimated community
assignment into the log-likelihood.

For fixed k, Wang and Bickel (2017) established the
limiting distribution of the log-likelihood ratio under model
misspecification—both underfitting and overfitting, and thereby
determined an upper bound o(n2) and a lower bound n of the
order of the penalty term for a consistent model selection.
Based on the work of Wang and Bickel (2017), we derived
new upper and lower bounds for increasing k. According to
our theory (see the proof of Theorem 4 for details), the main
orders of both the upper and lower bounds are n log k. In
this sense, the bounds we obtained are sharp. Based on these
results, we establish the consistency of the CBIC in determining
the number of communities. The results are further extended
to degree corrected block models. Along the way of proving
consistency, we also obtain the Wilks theorem for SBMs.

The remainder of the article is organized as follows. In Sec-
tion 2, we re-examine the Bayesian paradigm for SBMs and
propose the CBIC to determine the number of communities.
In Section 3, we analyze the asymptotic behavior of the log-
likelihood ratio and establish their asymptotic distributions.
In Section 4, we establish the consistency of the estimator for
the number of communities. We extend our results to degree
corrected SBMs in Section 5. The numerical studies are given in
Section 6. Some further discussions are made in Section 7. All
proofs are given in the Appendix.

2. Corrected BIC

In this section, we re-examine the Bayesian paradigm for the
SBM and propose a corrected family of Bayesian information
criteria.

For any fixed (θ , z), the log-likelihood of the adjacency
matrix A under the SBM is

log f (A|θ , z) =
∑

1≤a≤b≤k
(mab log θab +(nab −mab) log(1−θab)),

where na = ∑n
i=1 1{z(i) = a}, for a �= b,

nab = nanb, mab =
n∑

i=1

∑
j �=i

Aij1{z(i) = a, z(j) = b},

naa = na(na − 1)/2, maa =
∑
i<j

Aij1{z(i) = a, z(j) = a}.

Saldana, Yu, and Feng (2017) used the following penalized
likelihood function to select the optimal number of communi-
ties

�̌(k) = sup
θ∈�k

log f (A|θ , z) − k(k + 1)

2
log n, (2.1)

where �k = [0, 1] k(k+1)
2 . Note that (2.1) is not a standard BIC

criterion but a BIC approximation of the log-likelihood for given
z (see (2.2)). Saldana, Yu, and Feng (2017) essentially estimates
the number of communities k using the following criterion,
which we refer to as the BIC hereafter

�̄(k) = max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) − k(k + 1)

2
log n.

According to our simulation studies, this BIC tends to overes-
timate the number on communities (see Section 6). We now
provide some insight of why this phenomenon occurs.

Let Z be the set of all possible community assignments under
consideration and let ξ(z) be a prior probability of community
assignment z. Assume that the prior density of θ is given by
π(θ). Then the posterior probability of z is

P(z|A) = g(A|z)ξ(z)∑
z∈Z g(A|z)ξ(z)

,

where g(A|z) is the likelihood of community assignment z, given
by

g(A|z) =
∫

f (A|θ , z)π(θ)dθ .

Under the Bayesian paradigm, a community assignment
ẑ that maximizes the posterior probability is selected. Since∑

z∈Z g(A|z)ξ(z) is a constant,

ẑ = max
z∈[k]n

g(A|z)ξ(z).

By using a BIC approximation1 (Schwarz 1978; Saldana, Yu, and
Feng 2017), we have

log(
∫

f (A|θ , z)π(θ)dθ) = sup
θ∈�k

log f (A|θ , z) (2.2)

− 1
2

k(k + 1)

2
log

n(n − 1)

2
+ O(1).

Thus,

log g(A|z)ξ(z) = sup
θ∈�k

log f (A|θ , z) (2.3)

− k(k + 1)

2
log n + O(1) + log ξ(z).

By comparing Equations (2.1) and (2.3), we can see that the
BIC essentially assumes that ξ(z) is a constant for z over Z,
that is, ξ(z) = 1/τ(Z), where τ(Z) is the size of Z. Suppose
that the number of nodes in the network is n = 500. The
set of community assignments for k = 2, Z2, has size 2500,
while the set of community assignments for k = 3, Z3, has size
3500. The constant prior in the BIC assigns probabilities to Zk
proportional to their sizes. Thus, the probability assigned to Z3
is 1.5500 times that assigned to Z2. Community assignments with
a larger number of communities get much higher probabilities
than community assignments with fewer communities. This
provides an explanation for why the BIC tends to overestimate
the number of communities.

1The BIC approximation is a general principle and is not to be confused with
the BIC criterion used in Saldana, Yu, and Feng (2017).
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This re-examination of the BIC naturally motivates us to
consider a new prior over Z. Assume that Z is partitioned
into

⋃
k=1 Zk. Let τ(Zk) be the size of Zk. We assign the prior

distribution over Z in the following manner. We assign an equal
probability to z in the same Zk, that is, P(z|Zk) = 1/τ(Zk) for
any z ∈ Zk. This is due to that all the community assignments in
Zk are equally plausible. Next, instead of assigning probabilities
P(Zk) proportional to τ(Zk) , we assign P(Zk) proportional to
τ−δ(Zk) for some δ. Here δ > 0 implies that a small number
of communities are plausible while δ < 0 implies that a large
number of communities are plausible. This results in the prior
probability

ξ(z) = P(z|Zk)P(Zk) ∝ τ−λ(Zk), z ∈ Zk,

where λ = 1 + δ. Thus,

log g(A|z)ξ(z) = sup
θ∈�k

log f (A|θ , z)

− k(k + 1)

2
log n + O(1) − λn log k.

This type of prior distribution on the community assignment
suggests a corrected BIC criterion (CBIC) as follows

�(k) = max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) −
[
λn log k + k(k + 1)

2
log n

]
,

(2.4)
where the second term is the penalty and λ ≥ 0 is a tuning
parameter. Then we estimate k by maximizing the penalized
likelihood function

k̂ = arg max
k

�(k).

We make some remarks on the choice of the tuning
parameter. If we have no prior information on the number of
communities—that is, both small number of communities and
large number of communities are equally plausible, then λ = 1
(δ = 0) is a good choice. It is similar to the case of variable
selection in regression analysis, where the BIC is also tuning
free.

The CBIC is also related to an integrated classification like-
lihood (ICL) method proposed by Daudin, Picard, and Robin
(2008). The penalty function in ICL can be written as

k∑
a=1

na log(n/na) + k2 + 2k
2

log n. (2.5)

The penalty term in the ICL criterion uses unknown quan-
tities na that need to be estimated, and is thus not a standard
BIC-type criterion. With equal-sized estimated communities,
this penalty is almost the same as the CBIC with λ = 1 since∑k

a=1 na log(n/na) = n log k. However, the CBIC has tuning
parameter λ that gives more flexibility. If we have prior infor-
mation that large numbers of communities are plausible, λ < 1
(δ < 0) is a good choice and the CBIC performs significantly
better than the ICL in simulation studies (see Section 6).

Moreover, theoretical properties of ICL have not been well-
studied while the consistency of the CBIC will be established in
this article. To obtain the consistency of the CBIC, we analyze
the asymptotic order of the log-likelihood ratio under model-
misspecification in the next section.

3. Asymptotics of the Log-Likelihood Ratio

In this section, we present the order of the log-likelihood ratio
built on the work of Wang and Bickel (2017). The results here
will be used for the proof of Theorem 4 in the next section.

We consider the following log-likelihood ratio

Lk,k′ = max
z∈[k′]n

sup
θ∈�k′

log f (A|θ , z) − log f (A|θ∗, z∗),

where θ∗ and z∗ are the true parameters. Further, k′ is the
number of communities under the alternative model and k is
the true number of communities. Therefore, the comparison is
made between the correct k-block model and a fitted k′-block
model.

The asymptotic distributions of Lk,k′ for the cases k′ < k and
k′ > k are given in this section. For the case k′ = k, we establish
the Wilks theorem.

3.1. k′ < k

We start with k′ = k − 1. As discussed in Wang and Bickel
(2017), a (k−1)-block model can be obtained by merging blocks
in a k-block model. Specifically, given the true labels z∗ ∈ [k]n

and p = (pab)k×k, where pab = nab(z∗)/(n(n−1)
2 ), we define

a merging operation Ua,b(θ
∗, p) which combines blocks a and

b in θ∗ by taking weighted averages with proportions in p. For
example, for θ ′ = Uk−1,k(θ

∗, p),

θ ′
ab = θ∗

ab for 1 ≤ a ≤ b ≤ k − 2,

θ ′
a(k−1) = pa(k−1)θ

∗
a(k−1)

+ pakθ
∗
ak

pa(k−1) + pak
for 1 ≤ a ≤ k − 2,

θ ′
(k−1)(k−1) = p(k−1)(k−1)θ

∗
(k−1)(k−1)

+ p(k−1)kθ
∗
(k−1)k + pkkθ

∗
kk

p(k−1)(k−1) + p(k−1)k + pkk
.

For consistency, when merging two blocks (a, b) with b > a, the
new merged block will be relabeled as a and all the blocks c with
c > b will be relabeled as c−1. Using this scheme, we also obtain
the merged node labels Ua,b(z∗). For z′ = Uk−1,k(z∗), define

mab(z′) = mab, nab(z′) = nab for 1 ≤ a ≤ b ≤ k − 2,

ma(k−1)(z′) = ma(k−1) + mak, na(k−1)(z′) = na(k−1) + nak

for 1 ≤ a ≤ k − 2,

m(k−1)(k−1)(z′) = m(k−1)(k−1) + m(k−1)k + mkk,
n(k−1)(k−1)(z′) = n(k−1)(k−1) + n(k−1)k + nkk.

To obtain the asymptotic distribution of Lk,k′ , we need the
following conditions.
(A1) There exists C1 > 0 such that min1≤a≤k na ≥ C1n/k for
all n.
(A2) Any two rows of θ∗ should be distinct.
(A3) The entries of θ∗ are uniformly bounded away from 0
and 1.

In Condition (A1), the lower bound on the smallest com-
munity size requires that the size of each community is at least
proportional to n/k. This is a reasonable and mild condition; for



4 J. HU ET AL.

example, it is satisfied almost surely if the membership vector
is generated from a multinomial distribution with n trials and
probability π = (π1, . . . , πk) such that min1≤u≤k πu ≥ C1/k.
This condition was also used in Lei (2016). Condition (A2)
requires that the model cannot be collapsed further to a smaller
model.

Condition (A3) requires the overall density of the network
to be a constant. To allow for a sparser network, we can further
parametrize θ∗ = ρnθ̃∗ where θ̃∗ is a constant and ρn → 0 at
the rate nρn/ log n → ∞. (Using this parameterization ρn ≡ 1
indicates a constant graph density.) Condition (A3) in this case
becomes

(A3′) The entries of θ̃∗ are uniformly bounded away from 0
and 1.

The asymptotic distribution of Lk,k−1 for a dense network is
stated below, the proof of which is given in the Appendix.

Theorem 1. Suppose that A ∼ Pθ∗,z∗ , conditions (A1)–(A3)
hold, and ρn ≡ 1. If k = o((n/ log n)1/2), we have

(n−1Lk,k−1 − nμ)/σ(θ∗) d→ N(0, 1),

where

μ = 1
n2

( ∑
k−1≤a≤b≤k

n′
ab

(
θ ′

ab log
θ ′

ab
1 − θ ′

ab
+ log(1 − θ ′

ab)

)

−
∑

k−1≤a≤b≤k
nab

(
θ∗

ab log
θ∗

ab
1 − θ∗

ab
+ log(1 − θ∗

ab)

))
,

σ 2(θ∗) = 1
n2

( ∑
k−1≤a≤b≤k

n′
abθ

′
ab(1 − θ ′

ab)

(
log

θ ′
ab

1 − θ ′
ab

)2

+
∑

k−1≤a≤b≤k
nabθ

∗
ab(1 − θ∗

ab)

(
log

θ∗
ab

1 − θ∗
ab

)2 )
.

For a general k′ < k, the same type of limiting distribution
under conditions (A1)–(A3) holds. But the proof will involve
more tedious descriptions of how various merges can occur as
discussed in Wang and Bickel (2017).

For a sparse network, we have the following result.

Corollary 1. Suppose that A ∼ Pθ∗,z∗ , (A1), (A2), and (A3′)
hold, and nρn/ log n → ∞. If k = min{o(nρn/ log(nρn)),
o((n/ log n)1/2)}, we have

(n−1Lk,k−1 − nμ)/σ(θ∗) d→ N(0, 1).

3.2. k′ = k

For fixed k, we establish the Wilks theorem for a dense network.

Theorem 2. Suppose that A ∼ Pθ∗,z∗ , conditions (A1)–(A3)
hold, and ρn ≡ 1. For fixed k, we have

2( max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) − log f (A|θ∗, z∗)) d→ χ2
k(k+1)

2
.

For increasing k, we have the following two results which will
be used to establish the consistency of the CBIC.

Corollary 2. Suppose that A ∼ Pθ∗,z∗ , conditions (A1)–(A3)
hold, and ρn ≡ 1. If k = o(n/ log n), we have

2( max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) − log f (A|θ∗, z∗)) = Op(k2 log k).

For a sparse network, we have the following result.

Corollary 3. Suppose that A ∼ Pθ∗,z∗ , (A1), (A2), and (A3′)
hold, and nρn/ log n → ∞. If k = o(nρn/ log(nρn)), we have

2( max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) − log f (A|θ∗, z∗)) = Op(ρnk2 log k).

3.3. k′ > k

As discussed in Wang and Bickel (2017), it is difficult to obtain
the asymptotic distribution of Lk,k′ in the case k′ > k. Instead,
we obtain its asymptotic order, which is a generalization of
Theorem 2.10 in Wang and Bickel (2017) to increasing k.

Theorem 3. Suppose that A ∼ Pθ∗,z∗ , conditions (A1)–(A3)
hold, and ρn ≡ 1. If k = o(n1/2), we have

Lk,k′ ≤ αn log k′ + supθ∈�k
log f (A|θ , z∗) − log f (A|θ∗, z∗)

= αn log k′ + Op(k2 log k)
= αn log k′(1 + op(1)),

where 0 < α ≤ 1 − C
log k′ + 2 log n+log k

n log k′ .
For a sparse network, we have the following result.

Corollary 4. Suppose that A ∼ Pθ∗,z∗ , (A1), (A2), and (A3′)
hold, and nρn/ log n → ∞. If k = o((n/ρn)1/2), we have

Lk,k′ ≤ αn log k′ + supθ∈�k
log f (A|θ , z∗) − log f (A|θ∗, z∗)

= αn log k′ + Op(ρnk2 log k)
= αn log k′(1 + op(1)).

4. Consistency of the CBIC

In this section, we establish the consistency of the CBIC in the
sense that it chooses the correct k with probability tending to
one when n goes to infinity.

To obtain the consistency of the CBIC, we need an additional
condition.

(A4) (Consistency condition) nμ/ log k → −∞, for k′ < k.
Note that μ ≤ 0 is clearly true asymptotically when k′ < k

since it is the expectation of 1
n2 Lk,k′ . What we assume here is μ

being bounded away from 0 or going to 0 at a rate slower than
log k/n.

Theorem 4. Suppose that A ∼ Pθ∗,z∗ , (A1)–(A4) hold, and ρn ≡
1. Let �(k) be the penalized likelihood function for the CBIC,
defined as in (2.4). If k = o((n/ log n)1/2),
for k′ < k, we have

P(�(k′) > �(k)) → 0;

for k′ > k, when λ > (α log k′)/(log k′ − log k), we have

P(�(k′) > �(k)) → 0,

where α is given in Theorem 3.
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For sparse networks, we have the following results.

Corollary 5. Suppose that A ∼ Pθ∗,z∗ , (A1), (A2), (A3′),
(A4) hold, and nρn/ log n → ∞. Let �(k) be the penalized
likelihood function for the CBIC, defined as in (2.4). If k =
min{o(nρn/ log(nρn)), o((n/ log n)1/2)},
for k′ < k, we have

P(�(k′) > �(k)) → 0;

for k′ > k, when λ > (α log k′)/(log k′ − log k), we have

P(�(k′) > �(k)) → 0.

By Theorem 4, the probability P(�(k′) > �(k)) goes to zero,
regardless of the value of the tuning parameter λ in the case of
k′ < k. When k′ > k, it depends on the parameter λ. Then a
natural question is whether λ = 1 is a good choice. Note that
it also depends on α. With an appropriate α, the probability
P(�(k′) > �(k)) also goes to zero when λ = 1 for fixed k as
demonstrated in the following corollary.

Corollary 6. Suppose that A ∼ Pθ∗,z∗ , (A1)–(A4) hold, and ρn ≡
1. Let �(k) be the penalized likelihood function for the CBIC,
defined as in (2.4). If k is fixed,
for k′ < k, we have

P(�(k′) > �(k)) → 0;

for k′ > k, suppose α < 1 − log k
log k′ , for λ = 1, we have

P(�(k′) > �(k)) → 0.

By checking the proof of Theorem 4, it is not difficult to see
that for k′ > k, P(�̃(k′) > �̃(k)) → 1. This implies that the
BIC tends to overestimate the number of communities k for
SBMs.

5. Extension to a Degree-Corrected SBM

Real-world networks often include a number of high degree
“hub” nodes that have many connections (Barabási and
Bonabau 2003). To incorporate the degree heterogeneity
within communities, the degree corrected stochastic block
model (DCSBM) was proposed by Karrer and Newman
(2011). Specifically, this model assumes that P(Aij = 1 |
z(i), z(j)) = ωiωjθz(i)z(j), where ω = (ωi)1≤i≤n are a set
of node degree parameters measuring the degree variation
within blocks. For identifiability of the model, the constraint∑

i ωi1{z(i) = a} = na can be imposed for each community
1 ≤ a ≤ k.

As in Karrer and Newman (2011), we replace the Bernoulli
random variables Aij by the Poisson random variable. As dis-
cussed in Zhao, Levina, and Zhu (2012), there is no practical
difference with respect to performance. The reason is that the
Bernoulli distribution with a small mean is well approximated
by the Poisson distribution. An advantage of using Poisson dis-
tributions is that it will greatly simplify the calculations. Another
advantage is that it will allow networks to contain both multi-
edges and self-edges.

For any fixed (θ , ω, z), the log-likelihood of observing the
adjacency matrix A under the DCSBM is

log f (A|θ , ω, z) =
∑

1≤i≤n
di log ωi +

∑
1≤a≤b≤k

(mab log θab −nabθab),

where di = ∑
1≤j≤n Aij.

We first consider the case ω is known, which was also
assumed by Lei (2016) and Gao et al. (2016) in their theoretical
analyses. With similar arguments, one can show that the
previous Theorems 1 and 3 still hold in the DCSBM. Although
Theorem 2 does not hold in the DCSBM, we have the following
result.

Theorem 5. Suppose that A ∼ Pθ∗,z∗ , (A1)–(A3) hold, and ρn ≡
1. If k = o(n/ log n), we have

max
z∈[k]n

sup
θ∈�k

log f (A|θ , ω, z) − log f (A|θ∗, ω, z∗) = Op(k2 log k).

Therefore, Theorem 4 still holds in the DCSBM.
If ωi’s are unknown, we use a plug-in method. That is, we

need to estimate ωi’s. After imposing the identifiability con-
strain on ω, the MLE of the parameter ωi is given by ω̂i =
nadi/

∑
j:zj=zi dj. Simulation studies indicate that the CBIC can

estimate k with high accuracy for the DCSBM.

6. Experiments

6.1. Algorithm

Since there are kn possible assignments for the communities,
it is intractable to directly optimize the log-likelihood of the
SBM. Since the primary goal of our article is to study the penalty
function, we use a computationally feasible algorithm—spectral
clustering to estimate the community labels for a given k.

The algorithm finds the eigenvectors u1, . . . , uk associated
with the k eigenvalues of the Laplacian matrix that are largest
in magnitude, forming an n × k matrix U = (u1, . . . , uk),
and then applies the k-means algorithm to the rows of U. For
details, see Rohe, Chatterjee, and Yu (2011). They established
the consistency of spectral clustering in the SBM under proper
conditions on the density of the network and the eigen-structure
of the Laplacian matrix.

For the DCSBM, we apply a variant of spectral clustering,
called spectral clustering on ratios-of-eigenvectors (SCORE)
proposed by Jin (2015). Instead of using the Laplacian matrix,
the SCORE collects the eigenvectors v1, . . . , vk associated with
the k eigenvalues of A that are largest in magnitude, and then
forms the n × k matrix V = (1, v2/v1, . . . , vk/v1). The SCORE
then applies the k-means algorithm to the rows of V . The
corresponding consistency results for the DCSBM were also
established by Jin (2015).

We restrict our attention to candidate values for the true
number of communities in the range k′ ∈ {1, . . . , 18}, both in
simulations and the real data analysis.

6.2. Simulations

Simulation 1. In the SBM setting, we first compare the empir-
ical distribution of the log-likelihood ratio with the asymptotic
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results in Theorems 1–3. We set the network size as n = 500
and the probability matrix θ∗

ab = 0.03(1 + 5 × 1(a = b)). We
set k = 3 with π1 = π2 = π3 = 1/3. Each simulation in this
section is repeated 200 times. The plot for n−1Lk,k−1 is shown
in Figure 1. The empirical distribution is well approximated by
the normal distribution in the case of underfitting. Figure 2
plots the empirical distribution of 2Lk,k in the case of k′ = k.
The distribution also matches the chi-square distribution well.
Figure 3 plots the empirical distribution of Lk,k+1.

Figure 1. Empirical distribution of n−1Lk,k−1. The solid curve is normal density
with mean nμ and σ(θ∗) as given in Theorem 1.

Figure 2. Empirical distribution of 2Lk,k . The solid curve is chi-square density with

degree k(k+1)
2 = 6.

Figure 3. Empirical distribution of 2Lk,k+1.

Simulation 2. In the SBM setting, we investigate how the accu-
racy of the CBIC changes as the tuning parameter λ varies. We
let λ increase from 0 to 3.5. The probability matrix is the same as
in Simulation 1. We set each block size according to the sequence
(60, 90, 120, 150, 60, 90, 120, 150). That is, if k = 1, we set the
network size n to be 60; if k = 2, we set two respective block
sizes to be 60 and 90; and so forth. This setting is the same as in
Saldana, Yu, and Feng (2017). As can be seen in Figure 4, the rate
of the successful recovery of the number of communities is very
low when λ is close to zero. When λ is between 0.5 and 1.5, the
success rate is almost 100%; when λ becomes larger, the success
rate decreases in which the change point depends on k. It can be
seen from Figure 4 that λ = 1 is a safe tuning parameter.

Simulation 3. In the SBM setting, we compare the CBIC with the
BIC proposed by Saldana, Yu, and Feng (2017), the bootstrap
corrected sequential test proposed by Lei (2016), the ICL pro-
posed by Daudin, Picard, and Robin (2008), and the penalized
likelihood method (PLH) proposed by Wang and Bickel (2017).
For the bootstrap corrected sequential test, we select threshold
tn corresponding to the nominal Type I error bound 10−4. The
network size n is the same as in Simulation 2 and the probability
matrix is θ∗

ab = 0.03(1 + r × 1(a = b)). Note that in the
SBM setting, the method of Lei (2016) is better than the network
cross-validation of Chen and Lei (2018) (NCV) according to our
simulations. Thus, in the SBM setting, the CBIC is not compared
with the NCV of Chen and Lei (2018).

The numerical results are shown in Tables 1–3. From these
tables, we can see that the CBIC shows a significant improve-
ment over the BIC and the bootstrap corrected sequential test.
It can be seen from Table 1 that, for r = 5, the CBIC (λ =
1) recovers the number of communities k perfectly while the
success rates for the BIC and the bootstrap corrected sequential
test are low for k ≤ 4 and k ≥ 5, respectively. It can also be
seen from Table 3 that, for r = 3, the CBIC (λ = 1) recovers
the number of communities k quite well for k ≤ 4. When the
number of communities k is large (e.g., k ≥ 5), for r = 3, the
BIC outperforms the CBIC. For this case, the performance of the
CBIC can be improved by using a smaller λ.

Additionally, the CBIC with λ = 1/2 consistently outper-
forms the ICL in all scenarios as shown in these tables. The
CBIC with λ = 1/4 performs even better for large k; for small

Figure 4. Success rate versus λ.
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Table 1. Comparison of model selection methods for SBM: r = 5.

CBIC (λ = 1/4) CBIC (λ = 1/2) CBIC (λ = 1) BIC Lei (2016) ICL PLH

Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean

k = 2 0.92 2.10 1.00 2.00 1.00 2.00 0.24 3.15 1.00 2.00 1.00 2.00 0.00 10.48
k = 3 1.00 3.01 1.00 3.00 1.00 3.00 0.63 3.57 0.99 3.03 1.00 3.00 0.02 9.02
k = 4 1.00 4.00 1.00 4.00 1.00 4.00 0.78 4.34 0.97 4.02 1.00 4.00 0.15 7.17
k = 5 1.00 5.00 1.00 5.00 1.00 5.00 0.94 5.08 0.86 4.86 1.00 5.00 0.73 5.70
k = 6 1.00 6.00 1.00 6.00 1.00 6.00 0.97 6.03 0.65 5.65 1.00 6.00 1.00 6.00
k = 7 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 0.21 6.21 1.00 7.00 1.00 7.00
k = 8 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 0.16 7.16 1.00 8.00 1.00 8.00

Table 2. Comparison of model selection methods for SBM: r = 4.

CBIC (λ = 1/4) CBIC (λ = 1/2) CBIC (λ = 1) BIC Lei (2016) ICL PLH

Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean

k = 2 0.94 2.08 1.00 2.00 1.00 2.00 0.37 2.92 1.00 2.00 1.00 2.00 0.00 10.35
k = 3 0.98 3.02 1.00 3.00 1.00 3.00 0.73 3.36 0.95 3.04 1.00 3.00 0.03 8.68
k = 4 1.00 4.00 1.00 4.00 1.00 4.00 0.84 4.26 0.62 4.31 1.00 4.00 0.13 7.06
k = 5 1.00 5.00 1.00 5.00 0.91 4.91 0.98 5.04 0.08 4.50 0.98 4.99 0.40 6.71
k = 6 1.00 6.00 1.00 6.00 0.90 5.91 0.99 6.01 0.02 5.14 0.99 5.99 0.82 6.38
k = 7 1.00 7.00 1.00 7.00 0.85 6.85 1.00 7.00 0.04 6.00 0.96 6.96 1.00 7.00
k = 8 0.99 8.00 0.97 7.97 0.70 7.70 1.00 8.01 0.05 6.40 0.86 7.86 0.98 8.00

Table 3. Comparison of model selection methods for SBM: r = 3.

CBIC (λ = 1/4) CBIC (λ = 1/2) CBIC (λ = 1) BIC Lei (2016) ICL PLH

Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean Prob Mean

k = 2 0.91 2.11 1.00 2.00 1.00 2.00 0.33 3.07 0.99 2.01 1.00 2.00 0.00 10.03
k = 3 1.00 3.00 1.00 3.00 0.99 2.99 0.80 3.31 0.47 3.00 1.00 3.00 0.02 9.35
k = 4 0.99 4.01 1.00 4.01 0.96 3.96 0.92 4.14 0.15 3.33 0.98 3.99 0.42 5.87
k = 5 0.90 4.92 0.73 4.74 0.30 4.24 0.88 5.04 0.13 3.67 0.44 4.41 0.54 6.25
k = 6 0.55 5.64 0.45 5.47 0.14 4.93 0.57 5.85 0.07 4.17 0.20 4.95 0.49 6.65
k = 7 0.28 6.28 0.19 6.09 0.06 5.66 0.32 6.53 0.00 4.89 0.06 5.58 0.31 7.03
k = 8 0.12 6.86 0.05 6.67 0.01 6.36 0.20 7.25 0.00 5.50 0.02 6.17 0.20 7.49

k (k = 2, 3), it performs slightly worse than the ICL. These
results also suggest that when the number of communities is
relatively small, λ = 1 is a good choice. On the other hand,
when the number of communities is relatively large, λ < 1,
that is, a lighter penalty is a better choice. If we have some prior
knowledge about the number of communities, this observation
provides some guidance on the selection of λ.

We also compare the results from the PLH proposed by Wang
and Bickel (2017) in Tables 1–3. We found out that a typical
tuning parameter selected by the procedure recommended in
Wang and Bickel (2017) is usually small. Therefore, the PLH
usually overestimates the number of communities k.

Simulation 4. Now we investigate the performance of the CBIC
in the DCSBM setting. Since the bootstrap corrected sequential
test is only designed for the SBM, we compare the CBIC with
the BIC and the NCV. In choosing the parameters θ , ω in the
DCSBM, we follow the approach proposed in Zhao, Levina, and
Zhu (2012). That is, ω1, . . . , ωn are independently generated
from a distribution with expectation 1, specifically

ωi =
⎧⎨
⎩

ηi, w.p. 0.8;
7/11, w.p. 0.1;
15/11, w.p. 0.1,

where ηi is uniformly distributed on the interval [ 3
5 , 7

5 ]. The edge
probability and network sizes are set the same as in Simulation 3.

The numerical results are given in Tables 4–6. The comparisons
are similar to those in Tables 1–3.

6.3. Real Data Analysis

6.3.1. International Trade Dataset
We study an international trade dataset collected by Westveld
and Hoff (2011). It contains yearly international trade data
among n = 58 countries from 1981 to 2000. One can refer
to Westveld and Hoff (2011) for a detailed description. This
dataset was revisited by Saldana, Yu, and Feng (2017) for the
purpose of estimating the number of communities. Following
their article, we only focus on data from 1995 and transform
the weighted adjacency matrix to the binary matrix using their
methods. An adjacency matrix A is created by first considering
a weight matrix W with Wij = Tradeij + Tradeji, where Tradeij
denotes the value of exports from country i to country j. Define
Aij = 1 if Wij ≥ Wα , and Aij = 0 otherwise. Here Wα denotes
the αth quantile of {Wij}1≤i<j≤n. We set α = 50 as in Saldana,
Yu, and Feng (2017). At λ = 1, the CBIC for the SBM estimates
k̂ = 5, while the BIC and the NCV estimate k̂ = 10 and k̂ = 3,
respectively. The CBIC for the DCSBM estimates k̂ = 3, while
both the BIC and the NCV estimate k̂ = 1. As discussed in
Saldana, Yu, and Feng (2017), it seems reasonable to select three
communities, corresponding to countries with highest GDPs,
industrialized European and Asian countries with medium-
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Table 4. Comparison of model selection methods for DCSBM: r = 5.

CBIC (λ = 1) BIC NCV ICL

Prob Mean Prob Mean Prob Mean Prob Mean

k = 2 0.98 2.02 0.11 3.37 0.94 2.14 0.98 2.02
k = 3 0.99 3.01 0.16 4.30 0.94 3.06 0.99 3.01
k = 4 0.99 4.01 0.37 4.91 0.89 4.14 0.99 4.01
k = 5 0.97 5.05 0.46 5.71 0.33 5.09 0.96 5.06
k = 6 0.97 6.03 0.38 6.57 0.29 7.41 0.97 6.03
k = 7 0.82 7.11 0.54 7.67 0.25 8.50 0.83 7.10
k = 8 0.72 8.09 0.50 8.36 0.15 9.38 0.71 8.13

Table 5. Comparison of model selection methods for DCSBM: r = 4.

CBIC (λ = 1) BIC NCV ICL

Prob Mean Prob Mean Prob Mean Prob Mean

k = 2 1 2 0.16 3.47 0.80 2.52 1 2
k = 3 0.98 3.02 0.24 4.14 0.65 3.60 0.97 3.04
k = 4 0.99 4.02 0.51 4.70 0.14 4.12 0.98 4.03
k = 5 0.93 5.04 0.60 5.50 0.17 5.42 0.93 5.04
k = 6 0.84 5.90 0.63 6.46 0.16 6.41 0.84 5.90
k = 7 0.17 6.43 0.21 7.11 0.23 8.00 0.17 6.45
k = 8 0.17 7.35 0.21 8.20 0 8.76 0.17 7.32

Table 6. Comparison of model selection methods for DCSBM: r = 3.

CBIC (λ = 1) BIC NCV ICL

Prob Mean Prob Mean Prob Mean Prob Mean

k = 2 0.95 2.05 0.10 3.57 0.74 2.44 0.92 2.08
k = 3 0.92 3.02 0.19 4.09 0.16 4.20 0.92 3.02
k = 4 0.18 3.38 0.30 4.44 0.15 3.56 0.18 3.36
k = 5 0.11 3.96 0.27 5.24 0.13 3.82 0.10 3.94
k = 6 0.07 4.54 0.22 5.46 0.10 5.56 0.06 4.52
k = 7 0.07 5.70 0.18 6.61 0.07 6.43 0.07 5.70
k = 8 0 6.05 0.13 7.07 0 9.09 0 6.05

level GDPs, and developing countries in South America with the
smallest GDPs.

6.3.2. Political Blog Dataset
We study the political blog network (Adamic and Glance 2005),
collected around 2004. This network consists of blogs about
US politics, with edges representing web links. The nodes are
labeled as “conservative” and “liberal” by the authors of Adamic
and Glance (2005). So it is reasonable to assume that this net-
work contains these two communities. We only consider its
largest connected component of this network which consists of
1222 nodes with community sizes 586 and 636 as is commonly
done in the literature. It is widely believed that the DCSBM is
a better fit for this network than the SBM. At λ = 1, the CBIC
for the DCSBM estimates k̂ = 2, while the PLH and the NCV
estimate k̂ = 1 and k̂ = 2, respectively. We can see that both the
CBIC and the NCV give a reasonable estimate for the number
of communities.

7. Discussion

In this article, under both the SBM and the DCSBM, we have
proposed a “corrected Bayesian information criterion” that leads
to a consistent estimator for the number of communities. The
criterion improves those used in Wang and Bickel (2017) and
Saldana, Yu, and Feng (2017) which tend to underestimate

and overestimate the number of communities, respectively. The
simulation results indicate that the criterion has a good per-
formance for estimating the number of communities for finite
sample sizes.

Some extensions of the research in this article are possible.
For instance, it is interesting to study whether the CBIC is still
consistent for correlated binary data. For this case, we plan to
study the composite likelihood studied in Saldana, Yu, and Feng
(2017).

Furthermore, we have noticed that λ = 1 is not always the
best choice. When the number of communities k is large (e.g.,
k ≥ 5), for both medium and small r (e.g., 1 < r ≤ 3), λ = 1
tends to underestimate the number of communities. As a result,
0 ≤ λ < 1 may be a better choice. For this case, we may use
other methods to choose the tuning parameter λ, which will be
explored for future work.

Finally, the theoretical studies in this article focus on the
maximum likelihood estimator of the SBM. It is well-known that
achieving the exact maximum is an NP-hard problem (Amini et
al. 2013). Many computationally efficient methods, such as the
methods proposed by Amini et al. (2013) or Rohe, Chatterjee,
and Yu (2011) can achieve weakly consistency. Theoretically,
whether the error introduced by the approximation affects the
asymptotic consistency is an open problem. Although a general
theory for these estimators may be difficult, for future work,
we plan to study the model selection consistency for specific
algorithms.
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Appendix

For simplicity, we first consider the case ρn ≡ 1. By using the tech-
niques developed in Wang and Bickel (2017), the case for ρn → 0 at
the rate nρn/ log n → ∞ can be shown in a similar way.

We quote some notations from Wang and Bickel (2017). Define

F(M, t) =
∑

1≤a≤b≤k′
tabγ

(
Mab
tab

)
,

where γ (x) = x log x + (1 − x) log(1 − x).
Define

G(R(z), θ∗) =
∑

1≤a≤b≤k′
[R11TRT(z)]abγ

(
[Rθ∗RT(z)]ab
[R11TRT(z)]ab

)
,

where R(z) is the k′ × k confusion matrix whose (a, b)-entry is

Rab(z, z∗) = 1
n

n∑
i=1

∑
j �=i

1{zi = a, z∗
j = b}.

G(R(z), θ∗) can be viewed as a “population version” of the profile
likelihood. That is, roughly speaking, G(R(z), θ∗) is the expected value
of F(m(z)/n2, n(z)/n2) under θ∗. The following Lemmas 1 and 2
are essentially from Wang and Bickel (2017), which bound the vari-
ations in A and will be used in the proofs of Theorems 1–3. For
more work on this topic, we refer to Bickel and Chen (2009) and
Bickel et al. (2013).

Lemma 1 shows in the case of underfitting an SBM with (k − 1)

communities, G(R(z), θ∗) is maximized by combining two existing
communities in the true model.

Lemma 1. Given the true labels z∗, maximizing the function
G(R(z), θ∗) over R achieves its maximum in the label set

{z ∈ [k − 1]n : there exists T such that

T (z) = Ua,b(z∗), 1 ≤ a < b ≤ k},

where Ua,b merges z∗
i with labels a and b.

Furthermore, suppose z′ gives the unique maximum (up to a per-
mutation T ), for all R such that R ≥ 0, RT1 = p1,

∂G((1 − ε)R(z′) + εR(z), θ∗)

∂ε
|ε=0+< −C2 < 0.

For simplicity, R(z)θ∗R(z)T is abbreviated to Rθ∗R(z)T .

Lemma 2. Suppose z ∈ [k′]n and define X(z) = m(z)
n2 −Rθ∗R(z)T . For

ε ≤ 3,

P

⎛
⎝ ∑

1≤a≤b≤k′
|Xab(z)| ≥ ε

⎞
⎠ ≤ 2(k′)n+2 exp(−C1(θ

∗)n2ε2).

Let y ∈ [k′]n be a fixed set of labels, then for ε ≤ 3m
n

2,

P(maxz:|x−y|≤m ‖ X(z) − X(y) ‖∞> ε)

≤ 2
(n

m
)
(k′)m+2 exp(−C2(θ∗) n3ε2

m ),

where C1(θ∗) and C2(θ∗) are constants depending only on θ∗.

2This m is an integer and is not to be confused with the function m(z).

A.1. Proofs for Theorem 1

To prove Theorem 1, we need one lemma below.

Lemma 3. Suppose that A ∼ Pθ∗,z∗ . If k = o(n/ log n), with probability
tending to 1, we have

max
z∈[k−1]n

sup
θ∈�k−1

log f (A|θ , z) = sup
θ∈�k−1

log f (A|θ , z′)

Proof. The arguments are similar to those for Lemma 2.3 in Wang
and Bickel (2017). By Lemma 1, without loss of generality assume
the maximum of G(R(z), θ∗) is achieved at z′ = Uk−1,k(z∗). Denote
θ ′ = Uk−1,k(θ

∗, p). Similar to Bickel et al. (2013), we prove this by
considering z far from z′ and close to z′ (up to permutation T ). Define

I−δn
= {z ∈ [k − 1]n : G(R(z), θ∗) − G(R(z′), θ∗) < −δn},

for δn → 0 slowly enough.
By Lemma 2,

| F(m(z)/n2, n(z)/n2) − G(R(z), θ∗) |
≤ C

∑
1≤a≤b≤k−1 | mab(z)/n2 − (Rθ∗RT(z))ab |

= Op((log n/n)1/2)

since γ (·) is Lipschitz on any interval bounded away from 0 and 1.
For z ∈ I−δn

, we have

maxz∈I−δn
supθ∈�k−1 log f (A|θ , z)

≤ log(
∑

z∈I−δn
supθ∈�k−1 f (A|θ , z))

= log(
∑

z∈I−δn
supθ∈�k−1 elog f (A|θ ,z))

≤ log(supθ∈�k−1 f (A|θ , z′)(k − 1)neOp(n2(log n/n)1/2)−n2δn)

= log(supθ∈�k−1 f (A|θ , z′)) + log((k − 1)neOp(n2(log n/n)1/2)−n2δn)

< supθ∈�k−1 log f (A|θ , z′),

choosing δn → 0 slowly enough such that δn/(log n/n)1/2 → ∞.
For z /∈ I−δn

, |G(R(z), θ∗) − G(R(z′), θ∗)| → 0. Let z̄ = minT |
T (z) − z′ |. Since the maximum is unique up to T , ‖ R(z̄) −
R(z′) ‖∞→ 0.

By Lemma 2,

P(maxz/∈T (z′) ‖ X(z̄) − X(z′) ‖∞> ε | z̄ − z′ | /n)

≤ ∑n
m=1 P(maxz:z=z̄,|z̄−z′|=m ‖ X(z̄) − X(z′) ‖∞> ε m

n )

≤ ∑n
m=1 2(k − 1)k−1nm(k − 1)m+2e−Cnm → 0.

It follows for | z̄ − z′ |= m, z /∈ I−δn
,

‖ m(z̄)
n2 − m(z′)

n2 ‖∞ = op(1)
|z̄−z′|

n + ‖ Rθ∗RT(z̄) − Rθ∗RT(z′) ‖∞
≥ m

n (C + op(1)).

Observe that ‖ m(z′)
n2 − Rθ∗RT(z′) ‖∞= op(1). By Lemma 2,

‖ n(z′)
n2 − R11TRT(z′) ‖∞= op(1). Note that F(·, ·) has continuous

derivative in the neighborhood of (
m(z′)

n2 , n(z′)
n2 ). By Lemma 1,

∂F((1 − ε)
m(z′)

n2 + εM, (1 − ε)
n(z′)

n2 + εt)
∂ε

|ε=0+< −C < 0

for (M, t) in the neighborhood of (
m(z′)

n2 , n(z′)
n2 ). Hence,

F
(

m(z̄)
n2 ,

n(z̄)
n2

)
− F

(
m(z′)

n2 ,
n(z′)

n2

)
≤ −C

m
n

.
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Since

supθ∈�k−1 log f (A|θ , z) − supθ∈�k−1 log f (A|θ , z′)
≤ n2(F(

m(z̄)
n2 , n(z̄)

n2 ) − F(
m(z′)

n2 , n(z′)
n2 ))

= −Cmn,

we have

maxz/∈I−δn ,z/∈T (z′) supθ∈�k−1 log f (A|θ , z)
≤ log(

∑
z/∈I−δn ,z/∈T (z′) supθ∈�k−1 f (A|θ , z))

≤ log(
∑

z∈T (z′) supθ∈�k−1 f (A|θ , z)
∑n

m=1(k − 1)mnme−Cmn)

≤ log(supθ∈�k−1 f (A|θ , z′) ∑
z∈T (z′)

∑n
m=1(k − 1)mnme−Cmn)

= supθ∈�k−1 log f (A|θ , z′) + log((k − 1)k−1 ∑n
m=1(k − 1)mnm

e−Cmn)

< supθ∈�k−1 log f (A|θ , z′) + log((k − 1)kn2e−Cn)

= supθ∈�k−1 log f (A|θ , z′) + k log(k − 1) + 2 log n − Cn
< supθ∈�k−1 log f (A|θ , z′).

Proof of Theorem 1. By Hoeffding’s (1963) inequality, we have

P(max1≤a≤b≤k | θ∗
ab − θ̂ab |> t) ≤ ∑

1≤a≤b≤k P(| θ∗
ab − θ̂ab |> t)

≤ ∑
1≤a≤b≤k e−2t2nanb

≤ e2 log k−2C2
1n2t2/k2

.

It implies that

max
1≤a≤b≤k

| θ∗
ab − θ̂ab |= Op

(
k
√

log k
n

)
.

Note that supθ∈�k−1 log f (A|θ , z′) is uniquely maximized at

θ̂ab = mab(z′)
nab(z′) = mab

nab
= θ∗

ab+Op

(
k
√

log k
n

)
for 1 ≤ a ≤ b ≤ k−2,

θ̂ ′
a(k−1) = ma(k−1)(z′)

na(k−1)(z′) = ma(k−1) + mak
na(k−1) + nak

= θ ′
a(k−1) + Op

(
k
√

log k
n

)
for 1 ≤ a ≤ k − 2,

θ̂ ′
(k−1)(k−1) = m(k−1)(k−1)(z′)

n(k−1)(k−1)(z′) = m(k−1)(k−1) + m(k−1)k + mkk
n(k−1)(k−1) + n(k−1)k + nkk

= θ ′
(k−1)(k−1) + Op

(
k
√

log k
n

)
.

Thus, we have

n−1(maxz∈[k−1]n supθ∈�k−1 log f (A|θ , z) − log f (A|θ∗, z∗))

= n−1(supθ∈�k−1 log f (A|θ , z′) − log f (A|θ∗, z∗))

= n−1(
∑

1≤a≤b≤k−2(mab log θ̂ab
1−θ̂ab

+ nab log(1 − θ̂ab))

−∑
1≤a≤b≤k−2(mab log θ∗

ab
1−θ∗

ab
+ nab log(1 − θ∗

ab))

+∑
k−1≤a≤b≤k(mab(z′) log θ̂ ′

ab
1−θ̂ ′

ab
+ nab(z′) log(1 − θ̂ ′

ab))

−∑
k−1≤a≤b≤k(mab log θ∗

ab
1−θ∗

ab
+ nab log(1 − θ∗

ab))).

Let

K =
∑

1≤a≤b≤k−2

(
mab log

θ̂ab
1 − θ̂ab

+ nab log(1 − θ̂ab)

)

−
∑

1≤a≤b≤k−2

(
mab log

θ∗
ab

1 − θ∗
ab

+ nab log(1 − θ∗
ab)

)
,

K1 = 1
2

∑
1≤a≤b≤k−2

nab(θ̂ab − θ∗
ab)2

θ∗
ab(1 − θ∗

ab)
.

By the proof of Theorem 2, we have

K = K1 + Op

(
k3 log3/2 k

n

)
= Op(k2 log k) + Op

(
k3 log3/2 k

n

)
.

Thus, we have

(n−1(maxz∈[k−1]n supθ∈�k−1 log f (A|θ , z) − log f (A|θ∗, z∗))

−nμ)/σ(θ∗)

= (n−1(
∑

k−1≤a≤b≤k(mab(z′) log θ ′
ab

1−θ ′
ab

+ nab(z′) log(1 − θ ′
ab))

−∑
k−1≤a≤b≤k(mab log θ∗

ab
1−θ∗

ab
+ nab log(1 − θ∗

ab)))

−nμ + Op( K
n ))/σ (θ∗)

= (n−1(
∑

k−1≤a≤b≤k(mab(z′) log θ ′
ab

1−θ ′
ab

+ nab(z′) log(1 − θ ′
ab))

−∑
k−1≤a≤b≤k(mab log θ∗

ab
1−θ∗

ab
+ nab log(1 − θ∗

ab)))

−nμ + Op(
k2 log k

n ))/σ (θ∗)
d→ N(0, 1).

A.2. Proof of Corollary 1

By Hoeffding’s (1963) inequality, we have

P(max1≤a≤b≤k | θ∗
ab − θ̂ab |> t)

= P(max1≤a≤b≤k | ρnθ̃∗
ab − ρn(ρ−1

n θ̂ab) |> t)
≤ ∑

1≤a≤b≤k P(| θ̃∗
ab − ρ−1

n θ̂ab |> ρ−1
n t)

≤ ∑
1≤a≤b≤k e−2ρ−2

n t2nanb

≤ e2 log k−2C2
1n2ρ−2

n t2
.

It implies that

max
1≤a≤b≤k

| θ∗
ab − θ̂ab |= Op

(
ρnk

√
log k

n

)
.

By the proof of Theorem 2, we have

K = K1 + Op

(
ρ3

nk3 log3/2 k
n

)

= Op(ρnk2 log k) + Op

(
ρ3

nk3 log3/2 k
n

)
,

By using the techniques developed in Wang and Bickel (2017), the
proof is similar to that of Theorem 1.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

A.3. Proofs for Theorem 2

We first need one useful lemma below.

Lemma 4. Suppose that A ∼ Pθ∗,z∗ . If k = o(n/ log n), with probability
tending to 1, we have

max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) = sup
θ∈�k

log f (A|θ , z∗).

This lemma is essentially Lemma 3 in Bickel et al. (2013). The
arguments are similar and thus omitted.

Proof of Theorem 2. By Taylor’s expansion, we have

2(maxz∈[k]n supθ∈�k log f (A|θ , z) − log f (A|θ∗, z∗))

= 2(supθ∈�k log f (A|θ , z∗) − log f (A|θ∗, z∗))

= 2
∑

1≤a≤b≤k(mab log θ̂ab
θ∗

ab
+ (nab − mab) log 1−θ̂ab

1−θ∗
ab

)

= 2
∑

1≤a≤b≤k(nabθ̂ab log θ∗
ab+θ̂ab−θ∗

ab
θ∗

ab
+ nab(1 − θ̂ab)

log 1−θ∗
ab+θ∗

ab−θ̂ab
1−θ∗

ab
)

= 2
∑

1≤a≤b≤k(nab(θ∗
ab + �ab)(

�ab
θ∗

ab
− �2

ab
2θ∗2

ab
)

+nab(1 − θ∗
ab − �ab)(

−�ab
1−θ∗

ab
− �2

ab
2(1−θ∗

ab)
2 ) + O(nab�3

ab))

= 2
∑

1≤a≤b≤k(nab(�ab + �2
ab

2θ∗
ab

) + nab(−�ab + �2
ab

2(1−θ∗
ab)

)

+O(nab�3
ab)),

where �ab = θ̂ab − θ∗
ab. By the proof of Theorem 1, we have

2Lk,k = 2
∑

1≤a≤b≤k(
nab�

2
ab

2θ∗
ab

+ nab�
2
ab

2(1−θ∗
ab)

) + Op(
k3 log3/2 k

n )

= ∑
1≤a≤b≤k

nab(θ̂ab−θ∗
ab)

2

θ∗
ab(1−θ∗

ab)
+ Op(

k3 log3/2 k
n ),

which converges in distribution to the chi-square distribution with
k(k + 1)/2 degrees of freedom by the central limit theory.

A.4. Proof of Corollary 3

Note that

max
1≤a≤b≤k

| θ∗
ab − θ̂ab |= Op

(
ρnk

√
log k

n

)
.

By using the techniques developed in Wang and Bickel (2017), the proof
is similar to that of Theorem 2.

A.5. Proofs for Theorem 3

The idea for the proofs is to embed a k-block model in a larger model
by appropriately splitting the labels z∗. Define νk′ = {z ∈ [k′]: there is
at most one nonzero entry in every row of R(z, z∗)}. νk′ is obtained by
splitting of z∗ such that every block in z is always a subset of an existing
block in z∗. It follows from the definition of νk′ there exists a surjective
function h : [k′] → [k] describing the block assignments in R(z, z∗).

The following lemma will be used in the proof of Theorem 3.

Lemma 5. Suppose that A ∼ Pθ∗,z∗ . With probability tending to 1,

max
z∈[k′]n

sup
θ∈�k′

log f (A|θ , z) ≤ αn log k′ + sup
θ∈�k

log f (A|θ , z∗),

where 0 < α ≤ 1 − C
log k′ + 2 log n+log k

n log k′ .

Proof. The proof is similar to that of Lemma 3. Note that in this
case G(R(z), θ∗) is maximized at any z ∈ νk′ with the value∑

1≤a≤b≤k pabγ (θ∗
ab). Denote the optimal G∗ = ∑

1≤a≤b≤k pabγ (θ∗
ab)

and

I+δn
= {z ∈ [k′]n : G(R(z), θ∗) − G∗ < −δn},

for δn → 0 slowly enough.
By Lemma 2,

| F(m(z)/n2, n(z)/n2) − G(R(z), θ∗) |
≤ C

∑
1≤a≤b≤k′ | mab(z)/n2 − (Rθ∗RT(z))ab |

= Op((log n/n)1/2),

since γ is Lipschitz on any interval bounded away from 0 and 1.
For any z0 ∈ νk′ , it is easy to see

maxz∈I+δn
supθ∈�k′ log f (A|θ , z)

≤ log(
∑

z∈I+δn
supθ∈�k′ f (A|θ , z))

= log(
∑

z∈I+δn
supθ∈�k′ elog f (A|θ ,z))

≤ log(supθ∈�k′ f (A|θ , z0)(k′ − 1)neOp(n2(log n/n)1/2)−n2δn)

< log(supθ∈�k′ f (A|θ , z0))
= supθ∈�k′ log f (A|θ , z0)
= supθ∈�k′

∑
1≤a≤b≤k

∑
(u,v)∈h−1(a)×h−1(b)

(muv log θuv + (nuv − muv) log(1 − θuv)),

choosing δn → 0 slowly enough such that δn/(log n/n)1/2 → ∞.
Let

Lab =
∑

(u,v)∈h−1(a)×h−1(b)

(muv log θuv + (nuv − muv) log(1 − θuv)

+ λ(
∑

(u,v)∈h−1(a)×h−1(b)

nuv − nab).

Let

∂Lab
∂nuv

= log(1 − θuv) + λ = 0.

This implies that for (u, v) ∈ h−1(a) × h−1(b), θuv’s are all equal. Let
θuv = θab. Hence,∑

(u,v)∈h−1(a)×h−1(b)(muv log θuv + (nuv − muv) log(1 − θuv)
= mab log θab + (nab − mab) log(1 − θab),

where mab = ∑
(u,v)∈h−1(a)×h−1(b) muv and nab =∑

(u,v)∈h−1(a)×h−1(b) nuv.
Thus,

maxz∈I+δn
supθ∈�k′ log f (A|θ , z)

≤ supθ∈�k′
∑

1≤a≤b≤k
∑

(u,v)∈h−1(a)×h−1(b)(muv log θuv
+(nuv − muv) log(1 − θuv))

= supθ∈�k

∑
1≤a≤b≤k(mab log θab + (nab − mab) log(1 − θab))

= supθ∈�k log f (A|θ , z∗).

Note that treating R(z) as a vector, {R(z)|z ∈ νk′ } is a subset of the
union of some of the k′−k faces of the polyhedron PR. For every z /∈ I+δn

,
z /∈ νk′ , let z⊥ be such that R(z⊥) = minR(z0):z0∈νk′ ‖ R(z)−R(z0) ‖2.
R(z) − R(z⊥) is perpendicular to the corresponding k′ − k face. This
orthogonality implies the directional derivative of G(·, θ∗) along the
direction of R(z) − R(z⊥) is bounded away from 0. That is,

∂G((1 − ε)R(z⊥) + εR(z), θ∗)

∂ε
|ε=0+< −C
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for some universal positive constant C. Similar to the proof in Lemma 3,

sup
θ∈�k′

log f (A|θ , z) − sup
θ∈�k′

log f (A|θ , z⊥) ≤ −Cmn,

where | z − z⊥ |= m. For some 0 < α ≤ 1 − C
log k′ + 2 log n+log k

n log k′ , we
have

maxz/∈I+δn ,z/∈νk′
supθ∈�k′ log f (A|θ , z)

≤ log(
∑

z/∈I+δn ,z/∈νk′
supθ∈�k′ f (A|θ , z))

≤ log(
∑

z∈νk′ supθ∈�k′ f (A|θ , z)
∑n

m=1(k − 1)mnme−Cnm)

≤ log | νk′ | + maxz∈νk′ supθ∈�k′ log f (A|θ , z)

+ log(
∑n

m=1(k − 1)mnme−Cnm)

< log | νk′ | + maxz∈νk′ supθ∈�k′ log f (A|θ , z) + log(n2ke−Cn)

≤ n log k′ + maxz∈νk′ supθ∈�k′ log f (A|θ , z) + 2 log n + log k − Cn
≤ αn log k′ + supθ∈�k log f (A|θ , z∗).

Proof of Theorem 3. By Lemma 5 and Theorem 2,

maxz∈[k′]n supθ∈�k′ log f (A|θ , z) − log f (A|θ∗, z∗)

≤ αn log k′ + supθ∈�k log f (A|θ , z∗) − log f (A|θ∗, z∗)

= αn log k′ + 1
2

∑
1≤a≤b≤k

nab(θ̂ab−θ∗
ab)

2

θ∗
ab(1−θ∗

ab)
+ Op(

k3 log3/2 k
n )

= αn log k′ + Op(k2 log k)

A.6. Proof of Corollary 4

Note that

max
1≤a≤b≤k

| θ∗
ab − θ̂ab |= Op(

ρnk
√

log k
n

).

By using the techniques developed in Wang and Bickel (2017), the proof
is similar to that of Theorem 3.

A.7. Proof of Theorem 4

Let

gn(k, λ, A) = max
z∈[k]n

sup
θ∈�k

log f (A|θ , z)−
(

λn log k + k(k + 1)

2
log n

)
,

and

hn(k, λ, A) = max
z∈[k]n

sup
θ∈�k

log f (A|θ , z) − log f (A|θ∗, z∗)

−
(

λn log k + k(k + 1)

2
log n

)
.

For k′ > k, we have

P(�(k′) > �(k)) = P(gn(k′, λ, A) > gn(k, λ, A))

= P(hn(k′, λ, A) > hn(k, λ, A)))

≤ P(αn log k′ + supθ∈�k log f (A|θ , z∗) − log f (A|θ∗, z∗)

−(λn log k′ + k′(k′+1)
2 log n) >

supθ∈�k log f (A|θ , z∗)

− log f (A|θ∗, z∗) − (λn log k + k(k+1)
2 log n)).

By Theorem 3, for λ > (α log k′)/(log k′ − log k), the above probability
goes to zero.

For k′ < k, by Theorem 2, we have

P(�(k′) > �(k)) = P(gn(k′, λ, A) > gn(k, λ, A))

= P(hn(k′, λ, A) > hn(k, λ, A))

= P(hn(k′, λ, A) > supθ∈�k log f (A|θ , z∗) − log f (A|θ∗, z∗)

−(λn log k + k(k+1)
2 log n))

= P(maxz∈[k′]n supθ∈�k′ log f (A|θ , z) − log f (A|θ∗, z∗)

> λ(n log k′ − n log k) + (
k′(k′+1)

2 log n − k(k+1)
2 log n)

+ supθ∈�k log f (A|θ , z∗) − log f (A|θ∗, z∗))

= P(maxz∈[k′]n supθ∈�k′ log f (A|θ , z) − log f (A|θ∗, z∗)

> λ(n log k′ − n log k)

+(
k′(k′+1)

2 log n − k(k+1)
2 log n) + Op(k2 log k))

= P(n−1(maxz∈[k′]n supθ∈�k′ log f (A|θ , z) − log f (A|θ∗, z∗)) − nμ

> −nμ + n−1(λ(n log k′ − n log k)

+(
k′(k′+1)

2 log n − k(k+1)
2 log n)) + Op(

k2 log k
n )).

By Theorem 1, the above probability goes to zero by noticing that
λ(log k′ − log k) goes to infinity at the rate of log k.

A.8. Proof of Corollary 5

The proof is similar to that of Theorem 4 and thus is omitted.

A.9. Proof of Theorem 5

By Taylor expansion, we have

2(maxz∈[k]n supθ∈�k log f (A|θ , ω, z) − log f (A|θ∗, ω, z∗))

= 2(supθ∈�k log f (A|θ , ω, z∗) − log f (A|θ∗, ω, z∗))

= 2
∑

1≤a≤b≤k(mab log θ̂ab
θ∗

ab
− nab(θ̂ab − θ∗

ab))

= 2
∑

1≤a≤b≤k(nabθ̂ab log θ∗
ab+θ̂ab−θ∗

ab
θ∗

ab
− nab(θ̂ab − θ∗

ab))

= 2
∑

1≤a≤b≤k(nab(θ∗
ab + �ab)(

�ab
θ∗

ab
− �2

ab
2θ∗2

ab
) − nab�ab

+O(nab�3
ab))

= 2
∑

1≤a≤b≤k(
nab�

2
ab

θ∗
ab

− nab�
2
ab

2θ∗
ab

+ O(nab�3
ab))

= ∑
1≤a≤b≤k(

nab�
2
ab

θ∗
ab

+ O(nab�3
ab))

= ∑
1≤a≤b≤k

nab(θ̂ab−θ∗
ab)

2

θ∗
ab

(1 + op(1))

= Op(k2 log k)
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