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Abstract

Background: Network communities help the functional organization and evolution of complex networks. However, the
development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous
network, has proven to be rather difficult.

Methodology/Principal Findings: Here we introduce the novel concept of ModuLand, an integrative method family
determining overlapping network modules as hills of an influence function-based, centrality-type community landscape,
and including several widely used modularization methods as special cases. As various adaptations of the method family,
we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine
pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an
efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict
network dynamics.

Conclusions/Significance: The concept opens a wide range of possibilities to develop new approaches and applications
including network routing, classification, comparison and prediction.
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Introduction

In real networks, module or community structure plays a central

role in the understanding of topology and dynamics. Numerous

module determination methods are based on the intuitive picture

identifying the network communities as dense groups of the

network, whose nodes have a much stronger influence on each

other than on the rest of the network. The development of a

method, which translates this intuitive definition of modules into a

practically applicable, fast, accurate and widely usable algorithm

turned out to be a very challenging problem. So far a wide variety

of great ideas and powerful approaches based on very different

physical or algorithmic grounds were applied in order to solve this

problem. At the moment there is no ‘best method’ available to find

network modules, and even the widely used algorithms may suffer

from serious problems (see Figure S1.1, and Tables S1.1 and S1.2

in the Electronic Supplementary Material S1) [1–7], although they

usually provide useful and clear dissections of networks.

In 2002 Girvan and Newman published a seminal paper [2]

using an algorithm for detecting communities by iteratively

removing edges of high betweenness centrality values from the

network, and defining communities as the connected components

of the network after these edge removals. Later they [8] introduced

the modularity measure, Q with which the optimal number of

removed edges could be determined. In a short time the Q

function evaluating the goodness of partitioning a graph into given

clusters became an essential element of a wide range of clustering

methods. Different kind of approaches have also been developed,

including ones utilizing spectral functions of the graphs [9,10],

dynamic algorithms like random walks [5,11], spin models (e.g. the

Potts model) [12] or synchronization models [13]. The most

popular method to find overlapping communities is the Clique

Percolation Method described by Palla et al. in [7], but other

excellent methods optimizing overlapping quality functions such as

that of Nepusz et al. [4] or the link-based method resulting in

pervasive overlaps [14] also exist. Although the field of community

detection is quite diversified, we tried to collect the main

algorithms in Table S1.2 in the Electronic Supplementary

Material S1, and we also recommend a current extensive review

of the field by Santo Fortunato [1].

In this paper we introduce an integrative network module

determination method family, called ModuLand (see Box 1 for the

glossary of novel terms). This module determination method

family is based on the novel concept of understanding the

overlapping modules as hills of an influence function-based,

centrality-type community landscape. The ModuLand method
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family gives a common framework for the development and

comparison of a large variety of modularization methods resulting

in network modules with variable overlaps, requiring different

computational speed and providing a different level of accuracy.

Results

Description of the ModuLand Method Family
Keeping in mind the emerging needs for an integrative approach

for the determination of network modules, we have developed the

ModuLand method family (Figure 1 and Figure S1.2 in the

Electronic Supplementary Material S1). All members of the Modu-

Land method family are based on the following common steps:

1) Determination of influence functions: If a node lies in a

module, than its influence on the links of the given module is

typically larger than on more distant links of the network. As

a first step, we determine the influence function, fi of each

node i of the network on the links of the entire network.

After perturbation-flow type calculations detailed below

starting from each node i of the network, we acquire a set of

fi(j,k)§0 values over all links (j,k) of the network for node i.

2) Construction of a community landscape: The influence

functions of different nodes in the same module are

generally different. Nevertheless, the module is the set of

nodes, which mutually have a large influence on each other.

In order to take this mutuality into account, we summarize

the influence function values of Step 1 over each link of the

network: c(j,k)~
P

i fi(j,k). The resulting c(j,k) values

represent a smooth, centrality-type quantity, which is larger

for the module cores and smaller for the surrounding

regions. We represent these non-negative c values as a

vertical measure forming a community landscape over the

links of the 2D visualization of the original network (Figure

S1.3 in the Electronic Supplementary Material S1).

3) Determination of hills of the community landscape: Modules

are determined as the ‘mountains and hills’ of the community

landscape of Step 2. We present two different approaches:

a. Modules are the connected components above a chosen

centrality-threshold.

b. Modules are determined by local maxima of the

community landscape and their surrounding region

(Figures S1.4 and S1.5 in the Electronic Supplementary

Material S1).

4) Determination of a hierarchy of higher level networks: We

note that a higher level network of the modules of Step 3 can

also be constructed, where each former module is a node of

this higher level network. If the higher level networks are re-

assessed with the ModuLand method again and again, a set of

hierarchical layers of modules can be defined until the giant

component of the whole network coalesces to a single node

(Figure S1.6 in the Electronic Supplementary Material S1).

In the followings we will describe the four major steps of the

ModuLand method in detail.

Step 1: Determination of influence functions. In

principle, the determination of the influence functions (or

indirect impact of a node or link) requires a network-dependent

perturbation-flow simulation on the network (as an example, see

our PerturLand algorithm in Section IV.2. in the Electronic

Supplementary Material S1), which is a challenging problem in

itself. However, the details of the influence functions usually

average out during the community landscape construction, which

justifies the use of less specific, faster approximations. Here we

present our simplest influence function calculation algorithm, the

NodeLand algorithm in detail, which can be applied on weighted,

undirected networks.

NodeLand algorithm: starting from a given node s, the

NodeLand algorithm iteratively determines the set of nodes A,

which is strongly influenced by node s. For any given A set, we

define the density of the set as

d~

P
(i,j)[A wi,j

DAD
,

where wij is the weight of the link between node i and j, and |A| is

the number of nodes in A. Initially, A consists of the staring node

only, thus A~ sf g. In each iterative step we will expand A. For

each neighboring node k 6[A we determine the potential new

density value, including node k in A:

d ’~

P
(i,j)[A|fkg wi,j

DADz1
:

If the density of A can be increased this way, then we add the

nodes with maximal d ’ value to the set A, and start a new step of

the iteration. We stop the process, when the density can not be

further increased with the addition of single neighboring nodes. At

Box 1. Glossary. Here we present a short guide to
the algorithms and methods defined in this paper
and in the Electronic Supplementary Material S1 in
detail.

GradientHill method: a local maxima-based module
determination approach, in which the module member-
ship value of a link is determined by the module
membership value(s) only of its neighboring link(s) having
maximal centrality values (see Section V.2.b. in the Elec-
tronic Supplementary Material S1).
LinkLand algorithm: an influence function calculation
method starting from a given link in undirected networks
(see main text and Section IV.1.b. in the Electronic Supple-
mentary Material S1).
ModuLand method family: the integrative name of our
module determination approach based on the hills of the
community landscape (see main text and Section II. in the
Electronic Supplementary Material S1).
NodeLand algorithm: an influence function calculation
method starting from a given node in undirected networks
(see main text and Section IV.1.a. in the Electronic Supple-
mentary Material S1).
PerturLand algorithm: an influence function calculation
method starting from a given node in directed networks (see
Section IV.2. in the Electronic Supplementary Material S1).
ProportionalHill method: a local maxima-based module
determination approach, in which the module member-
ship value of a link is determined by the module member-
ship values only of its neighboring links having non lower
centrality values (see main text and Section V.2.b. in the
Electronic Supplementary Material S1).
TotalHill method: a local maxima-based module deter-
mination approach, in which the module membership
value of a link is determined by all the module member-
ship values of its neighboring links (see Sections V.2.c. and
V.2.d. in the Electronic Supplementary Material S1).

ModuLand Module Determination
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this point, we will have a final set A containing the nodes strongly

influenced by the starting node, s (including s itself). The influence

function fs over the links is defined as fs(i,j)~wi,j , if (i,j)[A and

zero otherwise.

LinkLand algorithm: the LinkLand algorithm, used in our

module determinations of the main text below, differs from the

NodeLand algorithm in two points.

N In the LinkLand algorithm the influence functions are assigned

to starting links instead of starting nodes, thus initially A = {k,l}

containing the two end-nodes of the starting link (k,l).

N In contrast to the NodeLand algorithm, while calculating the

influence function the weight of the starting link (k,l) is also

taken into account: fs(i,j)~wi,jwk,l , if (i,j)[A, and zero

otherwise.

On undirected networks we prefer to use the LinkLand

algorithm, which is found to provide an acceptable compromise

between precision and speed. Identification of the influence

function of a node or link in the case of NodeLand and LinkLand

algorithms is structurally similar to a breadth-first search, therefore

the worst-case runtime complexity of the two algorithms for all

Figure 1. Description of the ModuLand method family. For this illustrative example we used the network science co-authorship network [15]
without link weights using the LinkLand influence function calculation method with the TotalHill module membership assignment method. The
network was laid out using the Kamada-Kawai algorithm and was visualized with a custom Blender script. On the vertical axes influence function
values (panel A), or community landscape values (panels B, C and D) of the links are shown. Influence functions of panels A1, or A2 belong to the
Barabási-Vicsek, or Girvan-Newman author-pairs, respectively. Panel A3 shows the merged influence function of the Arenas-Pastor-Satorras and
Guimera-Amaral co-authorship links. Links and nodes of panels C and D are colored in proportion of the colors of the modules they belong. Panel A:
influence function calculation. First, the influence function of each link (or node) of the network were identified. If a link is in the ‘middle’ of a module,
it is affected by many influence functions (all the three widely collaborating author-pairs, whose influence functions are shown by the arrows, are
from this category). On the contrary, links at module ‘edges’ are affected by few influence functions only. At the bottom of the panel the names of the
three algorithms we described in details are shown. Panel B: community landscape construction. Next, the community landscape is constructed by
summing up the influence function values for all nodes or links. The hills of the community landscape correspond to the modules of the network.
Panel C: determination of overlapping modules. Last, modular centers are identified as the links at the local maxima of the community landscapes,
and memberships of links in all network modules are determined. At the top of the panel the names of the three methods we described in details are
shown. Panel D: determination of network hierarchy. Optionally, a higher level hierarchical representation of the network can be created, where
nodes of the higher level correspond to modules of the original network, and links of the higher level correspond to overlaps between the respective
modules. Sizes of higher level nodes correspond to the log size of the respective lower level modules, where the module size is the sum of the
membership assignment strengths of all nodes to that module.
doi:10.1371/journal.pone.0012528.g001
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nodes or links is O(n(n+e)) and O(e(n+e)), respectively, where n is the

number of nodes and e is the number of links in the network.

However, in practice these algorithms are very fast as the influence

zone of any given starting node or link rarely covers the whole

network. For downloading the ModuLand program package

including the NodeLand, LinkLand influence function calculation

algorithms and their User Guide, see our homepage: http://www.

linkgroup.hu/modules.php.

As an example for the results obtained by the LinkLand

algorithm, Figure 1A shows three influence functions defined over

the links of the ‘network science’ co-authorship network [15]. All

the three starting links highlighted by the arrows belong to widely

collaborating, key players of the field, resulting extended influence

zones.

Step 2: Construction of a community landscape. In order

to find the regions with nodes mutually having a relatively large

influence on each other, we calculate the sum of the individual

influence functions on a given network link resulting in the

c(j,k)~
P

i fi(j,k)§0 centrality-type value. From the centrality of

the links the centrality of the nodes can be derived by a summation:

c(i)~
P

j c(i,j). When mentioning ‘centrality’, throughout the

paper we refer to these definitions. The centrality values can be

plotted on a vertical scale resulting in a community landscape over a

2D representation of the links of the network (see Figure 1B and

Figure S1.3 in the Electronic Supplementary Material S1). Now we

can see the ‘hills and mountains’ of the community landscape,

consisting of the nodes influencing each other stronger than the rest

of the network. This is exactly the intuitive definition of modules

given in the first section of this paper. The precise definition of these

hills will be the subject of the following section.

Step 3: Determination of hills of the community

landscape. Here we present two main approaches of hill-

determination suitable for the determination of modules.

Centrality threshold based hills: as a natural choice, hills may be

identified as the connected components of the community land-

scape above a given threshold. This approach results in distinct

network modules without overlaps, like in case of the widely used

Girvan and Newman method [2]. Generally, it is a rather difficult

problem to choose the most appropriate value for the threshold

(see Figure S1.4 and Table S1.2 in the Electronic Supplementary

Material S1). On one hand, if we raise the detection limit too high,

we will find only the largest communities. On the other hand, if we

set the detection limit too low in order to be able to see the smaller

modules, then most of the large communities would merge

together. This is the manifestation of the well known giant-

component problem [6,16–18]. As the centrality threshold-based

approach is very general, most of the former methods yielding

non-overlapping modules can be interpreted in the ModuLand

method family as the application of the threshold-based hill

determination method over an appropriate community landscape.

Local maxima based hills: in this method we start the identifi-

cation of the modules by finding the module centers, which are

identical with the hill-tops or local maxima of the community

landscape, defined as follows:

N Undirected networks: A hill-top of the community landscape

contains all connected links having the same, locally maximal

centrality value, while having all of their neighboring links with

lower centrality values.

N Directed networks: The definition of hill-tops is more

complicated in directed networks, but we also show it here

for clarity. Let the outbound links of a link (i,j) denote the

outbound links of its end-point, node j. Then a hill-top is either

a single link with all of its outbound links having a lower

centrality, or a strongly connected component (meaning that

every node of the component is reachable from every other

node by a directed walk on this component) consisting of all

links of the same centrality with all of their outbound links

having lower centralities.

By this definition the number of local maxima automatically

yields the number of modules, and at the same time all small and

large modules are identified simultaneously. This is in strong

contrast to the previously described threshold-based approach,

which often needs special criteria to determine the threshold value.

At this stage only the central links or plateaus of the modules

have been identified. In the next step, the modules will be

extended towards lower regions of the community landscape. We

have developed several methods for this extension process detailed

in Section V.2. in the Electronic Supplementary Material S1. We

suggest the use of the ProportionalHill method described below,

determining the module-membership values of the links propor-

tionally to the membership values of their neighbors located higher

in the community landscape. Using this method the hills will

naturally overlap, resulting in links which are assigned to multiple

modules simultaneously.

ProportionalHill method for the determination of network

modules: here we present the algorithm of the ProportionalHill

method for undirected networks, while the analogous directed

version can be found in Section V.2.b. in the Electronic

Supplementary Material S1. As the first step, the community

landscape is divided into hills (corresponding to network modules)

defined by the local maxima of the community landscape

described above. For a given link (i,j), Hm(i,j) is the hill (or

module) membership value of the link in the m-th hill. The module

membership values are normalized to the centrality of the given

link,
P

m Hm(i,j)~c(i,j). If link (i,j) is part of the module center of

module m, then let Hk(i,j)~ci,j , if k~m, and Hk(i,j)~0
otherwise. For the other links we apply the following rule:

Hk(i,j)~ci,j

P
(a,b)[N Hk(a,b)
P

(a,b)[N ca,b
,

where N is the set of neighboring links of link (i,j) having larger or

equal centrality than that of link (i,j). Now the community

landscape is divided into multiple hills identified as the modules of

the network. Thus, Hm(i,j) readily gives the module membership

value of link (i,j) in module m. Finally, the module membership

values of a given node i is given by Hk(i)~
P

j[S Hk(i,j), where S

is the set of the neighboring nodes of node i and k is the module

considered. The presented ProportionalHill method has a runtime

complexity of O(edM), with e being the number of links, d being the

average node degree and M being the number of the identified

modules.

If we need smaller or larger overlaps between the modules, than

those obtained with the ProportionalHill method, we may use the

GradientHill or TotalHill methods, respectively, as described in

Section V.2. in the Electronic Supplementary Material S1 and

Figure S1.5 in the Electronic Supplementary Material S1. While

for practical purposes we suggest the use the ProportionalHill

method, the most detailed module overlap information is

acquirable with the computationally more expensive TotalHill

method. The TotalHill method also takes into account the

neighboring links of lower centrality during the module-extension

step. The TotalHill approach requires the solution of M

appropriate linear equation systems of size n by n, with n being

the number of nodes. Results obtained using the TotalHill method

ModuLand Module Determination
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can be seen on Figure 1C and Figure S1.3 in the Electronic

Supplementary Material S1, where large segments of the network

belong to at least two modules. For downloading the ModuLand

program package including the ProportionalHill and TotalHill

method algorithms and their User Guide, see our homepage:

http://www.linkgroup.hu/modules.php.

Step 4: Determination of a hierarchy of higher level

networks. Optionally, a higher level hierarchical representation

of the network can also be created, where the nodes of the higher

level correspond to the modules of the original network, and the

links of the higher level correspond to the overlaps between the

respective modules (Figure 1D, Figures S1.2 and S1.6 in the

Electronic Supplementary Material S1).

In the description of the calculation of the higher hierarchical

level let us consider here the undirected case only (the directed

case is described in Section VII. in the Electronic Supplementary

Material S1). Let the strength of the overlap (equaling with the

weight of the link at the one level higher hierarchy) between

modules i and j be the sum of the node-wise calculated overlap

values Oij(n):

W(i,j)[L’~
X

n
Oij(n),

where Oij(n) is proportional to the module membership values

Hi(n) and Hj(n) and being normalized to the centrality as:

Oij(n)~2
Hi(n)Hj(n)

c(n)
,

where c(n) is the centrality of node n, and the factor of 2 refers to

that both directions between the modules have been taken into

account.

The steps leading to a higher level hierarchical representation

can be applied repetitively until the giant component of the whole

original network is represented by a single node allowing a fast,

zoom-in type analysis of large networks (Section VII. in the

Electronic Supplementary Material S1).

A simple case illustrating this scenario can be seen on Figure

S1.6 in the Electronic Supplementary Material S1 showing the

hierarchical levels of the network science collaboration network

[15]. It can be seen that the modules of higher and higher

hierarchical levels correspond to larger and larger groups (e.g. the

modules of the modules etc.) of the original network nodes.

Characterization of the Overlapping Modules Identified
by the ModuLand Method Family

The ModuLand method family, even with its simplest Node-

Land influence function calculation method correctly identified

the observed split of the gold-standard Zachary karate club

network [19], while uncovering a third, previously identified

module and several club-members in modular overlaps (Figure

S1.7 in the Electronic Supplementary Material S1).

Application of the LinkLand influence function calculation

method to the University of South Florida word association

network [20] resulted in a set of modules having a highly

heterogeneous degree, module size and module overlap distribu-

tion (Figure S1.8 in the Electronic Supplementary Material S1),

which is in agreement with earlier data (see Supplementary

Discussion in the Electronic Supplementary Material S1) [3,7].

The application of the ModuLand method on the benchmark

graphs of Lancichinetti et al. [21] generated over a range of

parameter settings showed (Figure S1.13. and Section VI.2. in

the Electronic Supplementary Material S1) that the identified

ModuLand modules corresponded consistently to the original

modules, while modules can be defined in the strong sense (where

‘strong sense’ means, at least the half of the neighboring nodes are

assigned to the same module as the given node, see ref. [21] and

Table S1.3 in the Electronic Supplementary Material S1).

To obtain a more detailed picture we directly compared the

method-pair of NodeLand, or LinkLand influence function

calculation algorithm and the ProportionalHill hillfinder method

with the InfoMap method [5] Louvain method [22] and the CFinder

method using k = 4 cliques [7]. Figure 2A shows the accuracy of the

4 methods in terms of generalized normalized mutual information

[23] on the non-overlapping benchmark graphs of Lancichinetti

et al. [21]. Our method compares well to the other 3 methods,

however, at less defined modules it is not as accurate as the InfoMap

method. It is worth to note, that the benchmark graphs used [21]

have been developed for the comparison of not overlapping

modularization methods, which may – in part – explain why the

two overlapping methods did not perform extremely well on them.

Benchmark graphs have been criticized recently due to their

limited capacity to reflect the complexity of real-world networks

[24]. Therefore, we decided to compare the accuracy of the 4

methods mentioned before on a high-fidelity yeast protein-protein

interaction network [25]. The analysis of the modular distribution

of a central regulator of yeast cells, the cAMP-dependent kinase

family [26] and their neighbors is shown on Figure 2B. While the

NodeLand method identified 10 highly overlapping modules (and

functions) of the 3 catalytic subunits and their regulatory subunit,

the InfoMap, Louvain and CFinder methods all assigned these

family members to a single module. These single modules were

signaling modules in case of the InfoMap and CFinder methods,

while the Louvain method assigned the whole cAMP-dependent

kinase family to a vesicular traffic module, which reflects only a

small part of their biological regulatory function (Fig 2B and Table

S1.4 in the Electronic Supplementary Material S1). The modular

assignment of the 16 neighbors of the cAMP-dependent kinase

family enriched the modular composition by 4, 11, 8, and 6

modules in case of the NodeLand, InfoMap, Louvain and CFinder

methods, respectively. In contrast to the other 3 methods, which

assigned all 16 neighbors to various modules, the CFinder found

modules for 5 neighbors only (Fig 2B and Table S1.4 in the

Electronic Supplementary Material S1). The overlap of the

neighbor-enriched cAMP kinase-related modules had similar

values between all methods tested (25% to 75% and 33% to

50% agreement between the NodeLand and the other 3 methods

vs. in between the other three methods, respectively; Table S1.5 in

the Electronic Supplementary Material S1). Similarly, the number

of modules, whose functional association with the cAMP kinase

family was supported by experimental data, was also in the same

range (71%, 58%, 89% and 57% for NodeLand, Infomap,

Louvain and CFinder methods, respectively; Table S1.5 in the

Electronic Supplementary Material S1).

In conclusion, both i.) the comparison of ModuLand-derived

modules with those obtained by other methods and ii.) the

experimental data of the literature showed that the pervasive

overlaps of the ModuLand method give an adequate representa-

tion of the functional multiplicity of protein-protein interaction

network nodes. It is important to note that, in contrast to the other

methods tested, the ModuLand method gives this rich background

of functional information at the single node level as opposed to the

subnetwork level of other methods. Moreover, the Moduland-

based, different modular assignment strengths of related nodes

(such as those of the 3 cAMP-kinase catalytic subunits; Table S1.4

in the Electronic Supplementary Material S1) give a detailed

suggestion on the nodes’ functional specificity.

ModuLand Module Determination
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Variable Overlaps of Modules Surrounding Heteronym
and Antagonym Words in a Word Association Network

Extending the analysis of the gold-standard Zachary karate club

network, we examined the much larger University of South

Florida word association network having 10,617 nodes and 63,788

links [20], which was a target of a successful previous

modularization study yielding overlapping modules [7]. This

detailed analysis took 10 minutes on a computer with a 3 GHz

Intel CPU. Figure 3 shows the modular environment of the

antagonym word, ‘‘terrific’’ and that of the heteronym, ‘‘content’’.

The mingling colors indicate a high overlap between the modules.

Importantly, the overlap of the modules with alternative meanings

of the two words is much greater in the case of ‘‘terrific’’ than in

case of ‘‘content’’, which is a reasonable consequence of the fact

that variations of antagonistic meanings (‘‘terrific’’) are often

amongst our associations, leading to a large joint module

containing words with both positive (like ‘‘good’’, ‘‘better’’ and

‘‘great’’) and negative (like ‘‘bad’’, ‘‘awful’’ and ‘‘worse’’) mean-

ings. We note that the word ‘‘well’’ has multiple meanings, and

therefore it is also the member of other distant modules (like the

module of ‘‘water’’ or the module connected to ‘‘health’’). On the

contrary to the word ‘‘terrific’’, the associations between differently

pronounced meanings (‘‘content’’) are much more seldom. Over-

lap between the multiple meanings of the words ‘‘bright’’ and

‘‘focus’’ (Figure S1.9 in the Electronic Supplementary Material S1)

is closer to that of ‘‘terrific’’ than that of ‘‘content’’. However,

in case of these latter, multiple meaning words the similarly

pronounced meanings are not divided into two major sections as

in case of the heteronyms, which is again in agreement with our

common knowledge.

Modular Hierarchy of a Social Network
The modular hierarchy of the high school friendship

Community-44 of the Add-Health dataset [27] was uncovered

using several influence function calculation methods. All of

these methods revealed four well-distinguishable main modules

with a large amount of further sub-modules (Figure 4A and

Figures S1.10, S1.11 and S1.12 in the Electronic Supplementary

Material S1). Girls were less likely to form multiracial friendship

communities (chi-square p,0.05; Figure 4B), and boys were in

the overlap of significantly more friendship communities than

girls (chi-square p,0.0001; Figure 4C). These differences are in

agreement with the sociological observations indicating a larger

cohesiveness of friendship circles of girls than that of boys

[28,29].

Efficient Determination of Central, Key Nodes of Power-
Grid Network

To test whether the ModuLand method family can identify key

network nodes, we calculated the change of network integrity [30]

during the disintegration of the USA Western Power Grid network

[31]. Nodes were removed in the decreasing order of their degree,

betweenness centrality and ModuLand bridgeness (measuring the

bridge-like role of the nodes between the modules as defined in

Section V.6.d. in the Electronic Supplementary Material S1).

Figure 5 shows that the impact of bridgeness-based node removal

on network integrity was larger than that of the degree-based

attacks and was well comparable to, or better than the result of

betweenness centrality-based node removal. The equal-to-better

performance of bridgeness-based disintegration compared to that

using betweenness centrality is surprising all the more, since the

global network integrity measure corresponds extremely well to

the global betweenness centrality measure [30].

Discrimination Between Date- and Party-Hubs
Discrimination of date- and party-hubs of protein interaction

networks, i.e. proteins sequentially or simultaneously interacting with

a large number of neighbors, is a rather difficult task [32–37]. We

hypothesized, that among date-hubs and party-hubs of similar

centrality, date-hubs may have a higher bridgeness (i.e. they are

more overlapping between modules of the network). This assump-

tion was substantiated by the inter-modular position of date-hubs

[34,36] and by the similarly high efficiency of bridgeness-based and

date-hub-based network disintegration (cf. Figure 5 with Figure 2 of

[34] and [37]). The identification of the overlapping modules of a

high-confidence yeast protein-protein interaction network [25]

resulted in a number of modules with well-known functions

(Figure 6A and Figure S1.14 in the Electronic Supplementary

Material S1). We calculated the bridgeness and centrality measures

of the individual proteins, and plotted these values on Figure 6B. The

separation of date- and party-hubs represented by the line of

Figure 6B classified 84 party-hubs correctly of the total of 201, and

307 date-hubs of the total of 318. This result becomes even more

convincing, if we consider that 10 out of 11 incorrectly identified

date-hubs (91%) and 89 out of 117 incorrectly identified party-hubs

(76%) have been potentially misclassified, if comparing them to the

consensus of classifications [32–36]. In conclusion, by the help of the

novel measures of the ModuLand-based analysis, we were able to

discriminate between date- and party-hubs, thus predicting the

dynamic behavior of network nodes using only the topological

information of their network.

Figure 2. Comparison of the ModuLand method with other modularization methods. Panel A: Comparison of the identified modules with
the modules of the benchmark graph of Lancichinetti et al. [21]. Modularization has been performed on benchmark graphs with degree and module
size distribution exponents c= 2 and b= 1 using the NodeLand or LinkLand influence function calculation algorithm with the ProportionalHill module
membership assignment method with merging highly correlated modules using an arbitrary chosen correlation threshold of 0.9 (see Section VI.1. in
the Electronic Supplementary Material S1; red squares with dashed line and red rectangles with solid line for NodeLand and LinkLand, respectively),
the InfoMap method (black circles with dotted line, [5]), the Louvain method (black circles with solid line, [22]) and the CFinder method with k = 4
cliques (black circles with dashed line, [7]). The number of nodes of the benchmark graphs was N = 1000, the maximum degree was Kmax = 50, the
average degree was K = 15 and the network fuzziness m of the x-axis of Panel A) was ranging from 0.1 to 0.85, where m.0.5 means that the modules
are no longer defined in the strong sense. Higher normalized mutual information (shown on the y-axis) represents a better recovery of the original
modules. The panel shows the averaged results of 50 representations. Panel B: comparison of module assignment of the cAMP-dependent protein
kinase family in the yeast protein-protein interaction network. The panel shows the modular assignment of the 3 catalytic and the regulatory subunit
of the yeast cAMP-dependent protein kinase together with that of their first neighbors in the high fidelity protein-protein interaction network of
Ekman et al. [25]. For the sake of simplicity only intra-subnetwork contacts have been included. The top left, top right, bottom left and bottom right
figures show the modular assignment using the NodeLand, InfoMap, Louvain and CFinder methods, respectively, determined as described in the
legend of Panel A. Various colors correspond to different modules. Overlapping ModuLand modules of cAMP kinase members and CFinder modules
of their casein kinase II neighbor are marked with pie-charts, where the area of color-codes is proportional to the module membership value of the
given node in the given module. To simplify the figure, in case of the NodeLand method (top right figure of Panel B) all neighbors of cAMP-
dependent protein kinase family members (which should all have similar pie-charts to the 4 central members due to their multiple modules) were
assigned to their maximal modules only.
doi:10.1371/journal.pone.0012528.g002
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General Characterization of the ModuLand Method
Family

After the examples showing the utility of the ModuLand method

family to determine overlapping modules of a variety of model and

real world networks in this section we will summarize the

characteristics of the ModuLand method family. In principle both

the calculation of the influence functions and the determination of

the community landscape hills are demanding problems, requiring

specific solutions depending on the precise nature of the analyzed

network. However, by constructing the community landscape, the

small details of the influence functions get averaged out, therefore in

practical cases fast and approximate solutions of the mentioned

problems become possible and sufficient. This is the reason why

rather simple influence function calculation methods (like the

NodeLand algorithm) perform well on various kinds of real-world

networks. On the other hand, the module membership value of any

given node is obtained as the sum of the module membership value

of the links of the given node, thus the small details of the hill

determination step get also averaged out. The summation of the link

module membership values provides an overlapping modulariza-

tion of the nodes even in the absence of an overlapping modu-

larization of the links themselves. (A similar situation is described in

ref. [14].) To summarize, we divided the very challenging problem

of module determination into two likewise hard subproblems, but

fortunately in most cases a relatively fast, approximate treatment of

these subproblems provided sufficiently fine modularizations in the

end. However, depending on the precise nature of the application, it

is possible, or even advised to devise a more elaborate treatment of

the subproblems of influence function calculation and community

landscape hill determination.

Figure 3. Overlapping modules of a word-association network. Modules of the University of South Florida word association network [20]
were determined using the LinkLand influence function calculation method and the TotalHill module membership assignment method. During the
post-processing of the module assignment, we merged the modules with ProportionalHill module membership assignment-based correlation higher
than 0.9 (see Section VI. in the Electronic Supplementary Material S1, we received similar results without this merging process; data not shown). The
network was laid out using the Kamada-Kawai algorithm of Graphviz [48] and visualized using a custom program written in Python language using
OpenGL graphics. Links were colored in proportion to the colors of the modules they belong. Panel A: modules around the antagonym word,
‘‘terrific’’. Panel B: modules around the heteronym word, ‘‘content’’. In addition to the selected words ‘‘terrific’’ and ‘‘content’’ similar words above a
similarity threshold of 10% are also shown with a contrast corresponding to their degree of similarity. The extent of similarity between two words was
calculated as the sum of the two pair-wise minima of their unity-normalized module membership vector giving the membership assignment strength
of the given word to all modules of the network (for more details see Section V.6.e. in the Electronic Supplementary Material S1).
doi:10.1371/journal.pone.0012528.g003
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Several widely used efficient network modularization methods

[2,7] can be interpreted as parts of the ModuLand method family

either by 1.) identifying the underlying influence function calcu-

lation method or by 2.) identifying the community landscape directly

(Section IV.4. in the Electronic Supplementary Material S1).

Previous methods as potential influence function

calculation methods of the ModuLand method family. As

an important example for the first case, Bagrow and Bollt [38]

define local communities by the spreading of l-shells from the nodes

of the network, which are suitable as influence functions for the

ModuLand method family. The recent work of Roswall and

Bergstrom [5] published during the course of the current study [39]

uses the probability flow of random walks to construct a map of

scientific communication yielding non-overlapping modules. Pons

and Latapy also use [11] random walks in their algorithm called

‘Walktrap’ to define a similarity value for merging communities.

The random walks used in these methods can be interpreted also as

influence functions. The method of Lancichinetti et al. [23]

iteratively finds local modules optimizing a local fitness function.

However, instead of executing the local module finding for each

node of the network, it is only executed for nodes not contained in

any local module yet. This local module finding step can be inserted

into the ModuLand method family as a (binary) influence function

calculation method. (Note that executing the influence function

calculation method only for a fraction of nodes is a possible valid

approximation method inside the ModuLand method family, too.)

The method of Lancichinetti et al. [23] does not yield fine

information about the membership strength of the nodes to different

modules as the ModuLand method family does, but yields binary

containment information instead. The method and the ModuLand

method family have different approaches for the determination of

hierarchical levels (see Section VII. in the Electronic Supplementary

Material S1).

Previous methods as potential community landscape

identification methods of the ModuLand method

family. As examples for the second case, namely, for the

direct identification of the community landscape in previous

methods, we briefly summarize the previously described network

Figure 4. Overlapping modules of a school-friendship network. We have determined the modular structure of Community-44 of the Add
Health survey [27] using the LinkLand influence function calculation method together with the ProportionalHill module membership assignment
method. During the post-processing of the module assignment, we merged the modules with ProportionalHill module membership assignment-
based correlation higher than 0.9 (see Section VI. in the Electronic Supplementary Material S1, we received similar results without this merging
process; data not shown). Panel A: modules of Community-44. The school friendship network was laid out using the Kamada-Kawai algorithm. Nodes
represent the individual students, and were colored according to the color of the friendship module they assigned the most. We show the modular
structure of the first hierarchical level having 18 modules. The inset of Panel A shows color-codes of the modules with an area proportional to the size
of the respective module. Panel B: the number of network modules in case of boys (blue, solid bars) and girls (red-black hatched bars) with mixed
racial contents at the lowest hierarchical level (level 0). The extent of mixed racial content was monitored using the ‘‘effective number of races’’
(Section V.6.b. in the Electronic Supplementary Material S1) with a bin-size of 0.5. Panel C: overlaps of boys and girls in friendship circles. The number
of boys (blue, solid bars) and girls (red-black hatched bars) having different overlaps in friendship circles were determined in the first hierarchical level
with a bin-size of 1. Overlap was measured as the ‘‘effective number’’ (Section V.6.b. in the Electronic Supplementary Material S1) of modules of the
given student.
doi:10.1371/journal.pone.0012528.g004
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landscapes. Previous network landscape construction methods

used clustering coefficients [33], edge number per visualized

network unit area [40], loop-coefficients [41], or degrees [42] to

define the landscape-height. The ‘‘leading eigenvector method’’ of [15]

is able to divide the network in two (or if applied recursively, more)

non-overlapping communities maximizing the modularity

measure Q. Both the ModuLand method family and modularity-

based methods let their users adapt to the specificities of the

analyzed network. However, in case of the ModuLand method

family this adaptation is achieved by the choice of the sub-steps

(like the community landscape construction method), while the Q

modularity-based methods require a null-model to be chosen,

which is reflecting the experimenter’s expectations about the

network. The ‘‘community centrality’’ introduced in [15], just as any

centrality measure, is a valid basis of forming a ModuLand

community landscape, therefore making it possible to include this

modularity-based method into the ModuLand method family.

Recently, a number of publications showed a ‘hidden metric

space’ behind network topologies, which also links the network

structure to a landscape-type representation [43]. Hinneburg and

Keim [44] used the density function landscape to determine non-

overlapping clusters for the traditional data clustering task, but did

not calculate the overlaps based on the hill detection as defined in

ModuLand method family. Actually none of the methods

mentioned above and listed in Table S1.2 in the Electronic

Supplementary Material S1 use the hills of the landscape to

determine the modular structure. Evans and Lambiotte [45] show

that meaningful modules can be found in networks by finding

modules of links instead of nodes, so that nodes can trivially belong

to multiple modules, if its links do. However, this method does not

give the fine information about the membership strength of the

nodes to different modules as can be uncovered with the

ModuLand method family.

New modularization methods can easily be generated by taking

an existing ModuLand modularization protocol, and changing

any of its influence function calculation, community landscape

generation, or hill determination methods. Additionally, former

methods yielding non-overlapping modules (which can be inter-

preted as the application of the threshold-based hill determi-

nation method) can be upgraded to overlapping modularization

methods using the local maxima-based module determination

approach of the ModuLand method family (for details see Section

IV.4. in the Electronic Supplementary Material S1).

Enriching the binary, yes/no module membership assignment

of many previous methods, the ModuLand method family gives a

continuous scale for the association of each link and node to all

modules (Figure S1.7 in the Electronic Supplementary Material

S1). To define the number of modules of a link or node the

‘effective number’ of modules was introduced (see Section V.6.b.

in the Electronic Supplementary Material S1), which is a

Figure 5. Determination of key nodes of the USA Western Power Grid network. The figure shows the decreasing integrity of the USA
Western Power Grid network [31] as a function of the number of nodes removed. Nodes were removed in the order of their decreasing degree (black
alternating dashes and dots) betweenness centrality [2] (red dashed lines) or ‘‘bridgeness’’ (solid blue lines), where ‘‘bridgeness’’ measures the overlap
of the given node between different modules as described in detail in Section V.6.d. in the Electronic Supplementary Material S1. Network integrity
has been calculated after Latora and Marchiori [30]. Bridgeness was calculated from the modular structure of the lowest hierarchical level as
determined by the LinkLand influence function calculation method and the TotalHill module membership assignment method. During the post-
processing of the module assignment, we merged the modules with ProportionalHill module membership assignment-based correlation higher than
0.9 (see Section VI. in the Electronic Supplementary Material S1, we received similar results without this merging process; data not shown). On the
vertical axis of the insets the betweenness centrality (left, color-coded from red to yellow) and bridgeness (right, color-coded from blue to green) of
the nodes of the USA Western Power Grid network are shown. Networks on the insets were laid out using the Kamada-Kawai algorithm and visualized
with a custom Blender script.
doi:10.1371/journal.pone.0012528.g005

ModuLand Module Determination

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e12528



threshold-less, continuous measure based on the effective size of

support of a probability distribution [46]. Additionally, the

ModuLand method allowed the definition of further measures

characterizing e.g. the centrality and bridgeness of network nodes

and links (see Sections IV. and V.6. in the Electronic Supplemen-

tary Material S1).

Figure 6. Prediction of the dynamical behavior of network nodes: segregation of date- and party-hubs based on their modular
overlaps. Overlapping modules of the yeast protein-protein interaction network of Ekman et al. [25] were identified using the LinkLand influence
function calculation method with the TotalHill module membership assignment method using the modular structure of the lowest level of hierarchy.
During the post-processing of the module assignment, we merged the modules with ProportionalHill module membership assignment-based
correlation higher than 0.9 (see Section VI. in the Electronic Supplementary Material S1, we received similar results without this merging process; data
not shown). Panel A: 3D view of the yeast protein-protein interaction network. The underlying 2D network layout was set by the Kamada-Kawai
algorithm. The vertical positions reflect the community landscape values of the nodes on a linear scale. Nodes were colored as the module of their
maximum membership. Panel B: centrality and bridgeness of yeast date- and party-hubs. Hubs having more than 8 neighbors and non-hubs with less
neighbors were positioned on the scattergram according to their ModuLand centrality (x-axis, the height of the community landscape) and
ModuLand bridgeness (y-axis) as defined in Section V.6.d. in the Electronic Supplementary Material S1. Date- and party-hubs are marked with red
circles and blue triangles, respectively, while non-hub proteins are represented by gray crosses. The inset shows a double logarithmic plot of hubs
with large centrality.
doi:10.1371/journal.pone.0012528.g006
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Selecting the Appropriate Method of the ModuLand
Method Family

In the ModuLand approach we divided the very challenging

problem of module determination into two likewise hard

subproblems: the influence function determination (1); and the

determination of hills of the resulted community landscape (2).

Although in most cases a relatively fast, approximate treatment of

these subproblems provides sufficiently fine modularizations in the

end, in the following section we give a brief guide to select the

optimal algorithms for these subproblems.

1) As we mentioned earlier, the determination of the influence

functions requires a network-dependent perturbation-flow

simulation on the network. However, we saw, that the details

of the influence functions usually average out during the

community landscape construction, which justifies the use of

less specific, faster approximations. We prefer to use the

LinkLand algorithm on undirected networks, which is found

to provide an acceptable compromise between precision and

speed. However, on directed networks we suggest to use the

PerturLand algorithm (see Section IV.2. in the Electronic

Supplementary Material S1) instead. We believe that our

influence function calculation algorithms (NodeLand, Link-

Land, and PerturLand) present only the first steps in the

direction towards novel accurate and fast influence simulation

techniques.

2) For the hill determination on the community landscape we

presented two main approaches (for other possibilities see

Section V. in the Electronic Supplementary Material S1):

the centrality threshold-based hill determination and the

local maxima based hill determination approaches. The

centrality threshold-based hill determination approach is

appropriate whenever the goal of the analysis is to find

modules without overlapping regions. In order to determine

the overlaps between the modules we suggest to use one of

the local maxima based methods. While for practical

purposes we suggest the use the ProportionalHill method,

the most detailed module overlap information is acquir-

able with the computationally more expensive TotalHill

method. If we need only the most important overlaps

between the modules, we may use the GradientHill method,

as described in Section V.2.b. in the Electronic Supplemen-

tary Material S1.

We note that although the local maxima-based approaches we

described in this paper (including the ProportionalHill method

suggested above) outperform the traditional threshold-based

approach in terms of overcoming the giant-component problem

and producing continuously overlapping modules, nevertheless

they also have their own drawbacks. When applying the local

maxima-based approach on a ‘noisy’ community landscape,

each local maximum will result a new (and possibly highly

overlapping) module. Therefore we routinely applied a simple,

yet effective post-processing step for merging the groups of

extremely overlapping modules (having a correlation higher

than 90%) (see Section VI. in the Electronic Supplementary

Material S1).

To summarize, the hill-finding approach, which is the second

phase of the ModuLand methods, gives an additional layer of

flexibility, where the relatively inaccurate results of simpler hill

definitions, and the large computational costs of more accurate

optimization processes can be tailored to the network and to the

experimenter’s needs and possibilities.

Discussion

The ModuLand method family we introduced in this paper and

in part in an earlier patent application [39] is a novel, integrative

approach, which includes also the usual partitioning techniques

such as the threshold-based hill determination methods over

an appropriate community landscape. However by using local

maxima based hill determination methods, it yields overlapping

modules over any community landscape. Thus, our approach is

suitable to extend the previous partitioning techniques to find

overlapping modules. We presented novel, special examples for

influence function calculation (NodeLand, LinkLand and Pertur-

Land algorithms), which form the basis of the community

landscape construction. Moreover, the identification of modules

as hills of the community landscape is a new approach, including

traditional threshold-based algorithms and the novel local maxima

based algorithms (as our ProportionaHill, GradientHill and

TotalHill methods). The Moduland method family defines link-

based modules and results in pervasively overlapping modules as

some of the few most recent approaches [14], [45] published well

after our initial studies [39]. Previous methods using local com-

munity detection or yielding overlapping modules (Table S1.2 in

the Electronic Supplementary Material S1) [4,7] can be inter-

preted as special cases of our ModuLand method family, if

appropriate hill determination techniques or community land-

scape construction methods are designed.

The extensive and rich overlaps, network hierarchy, as well as

the novel centrality and bridgeness measures uncovered by the

ModuLand method can be used for the identification of long-

range, stabilizing weak links, for the determination of the recently

described creative, trend-setting nodes governing network devel-

opment and evolution [47], for prediction of missing links or

nodes, for network classification and for the design of efficient

information transfer to name only a few of the many possibilities.

Module overlaps might play a key role in the disconnection and

synchronization of modules of complex systems, and their re-

assembly during and after crisis, respectively. We invite our

colleagues to design novel versions of the framework we gave, and

to explore the above and other examples.

Materials and Methods

Networks
Network science co-authorship network. The giant

component of the undirected, un-weighted network science co-

authorship network contained 379 nodes and 914 links [15].
Karate club social network. The weighted and undirected

social network of a karate club has been reported by W. Zachary

[19] containing 34 nodes and 78 links. As the members of the

karate club have split into two factions later, the network became a

gold-standard of module determination methods [1–5,7].
Word association network. The giant component of

Appendix A of the University of South Florida word association

network (http://www.usf.edu/FreeAssociation/) [20] with

removed link directions contained 10,167 nodes and 63,788

weighted links, where weight refers to the association strength (see

Section I.3. in the Electronic Supplementary Material S1).
School friendship network. The giant component of the

high school friendship Community-44 of the Add-Health database

(http://www.cpc.unc.edu/projects/addhealth) [27] with removed

link directions contained 1,127 nodes and 5,096 weighted links,

where weights represent the strengths of friendships (see Section

I.4. in the Electronic Supplementary Material S1).
Power-grid network. The un-weighted and undirected

network of the USA Western Power Grid [31] contained 4,941
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nodes and 6,594 links (http://vlado.fmf.uni-lj.si/pub/networks/

data/map/USpowerGrid.net).
Yeast protein-protein interaction network. The giant

component of the un-weighted and undirected yeast protein-

protein interaction network [25] contained 2,444 nodes and 6,271

links, covering approximately half of the yeast genome and the

most reliable (‘strongest’) ,3% of the expected number of total

links. All these network data are included in the ModuLand

program package downloadable from our homepage: http://

www.linkgroup.hu/modules.php.

Supporting Information

Electronic Supplementary Material S1 In this Electronic

Supplementary Material S1 we give a detailed description of the

ModuLand network module determination method family. This

integrative method is based on the construction of community

landscapes from influence functions. In Section IV. we describe

three versions of the influence function calculation algorithms, the

NodeLand, LinkLand and PerturLand algorithms in detail. As the

next step. the combination of influence functions to a community

landscape is shown. We demonstrate the wide applicability of the

ModuLand method to accommodate previous community detec-

tion methods in the examples of the BetweennessCentralityLand

(BCLand) and CliqueLand community landscape determination

methods resulting in distinct and overlapping network modules,

respectively. In Section V. we show the local maxima-based

identification of modules as hills of the community landscape. The

module membership of network nodes and links is calculated using

one of the developed module membership assignment methods,

such as the GradientHill, ProportionalHill or TotalHill methods

yielding modules of minimal, fair or detailed overlaps, respectively.

In Sections VII. And VIII. we also show that the ModuLand

method family enables a hierarchical analysis of network topology

and the construction of a zoom-in network visualization method.

Besides the detailed description of the ModuLand method the

Electronic Supplementary Material S1 also contains 14 Supple-

mentary Figures and their Supplementary Discussion, as well

as a detailed summary of 18 module definitions, 129 different

modularization methods, 13 module comparison methods as 5

Supplementary Tables and 396 references.

Found at: doi:10.1371/journal.pone.0012528.s001 (4.88 MB

PDF)
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concept of bridgeness in complex networks. Phys Rev E 77: 016107.

5. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks
reveal community structure. Proc Natl Acad Sci U S A 105: 1118–1123.
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