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Preface

By its very nature, computational complexity seeks a precise characterization of
problems and the means required to solve them. Statistical physics tolerates—
even exploits—uncertainty in a problem's description. And yet, a great scientific
success story of the past ten years has been the way in which each of these fields
has contributed to the other. Physicists have productively applied concepts de-
veloped in condensed matter theory to reshape our understanding of solving hard
computational problems and to develop better algorithms. Theoretical computer
scientists have contributed methods of analysis to statistical physics models that
put physicists' predictions on a rigorous footing and help understand the detailed
structure of physical systems.

With this as background, we organized a workshop in September 2001,
in Santa Fe, New Mexico, entitled Computational Complexity and Statistical
Physics. The stated aim was to "provide an interdisciplinary forum for the ex-
change of ideas, enabling a better understanding of the state-of-the-art, and
more ambitiously, charting the course towards a theory of critical phenomena
in algorithmic problems." Much of this sounds rather generic. But at the time,
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few venues enabled the contributing scientific communities to interact. We were
struck by how well they interacted, and how much progress was subsequently
made towards what we called the more ambitious goal: developing a theoretical
understanding of how phase transitions impact algorithms.

The Santa Fe workshop was followed by a workshop on Phase Transitions
and Algorithmic Complexity in June 2002, at the Institute for Pure and Applied
Mathematics, UCLA. At both of these meetings, we put out a call for chapter
submissions to a peer-reviewed, edited volume. The volume was intended not
as a conference proceedings per se, but rather as an overview of an emerging
field. To this end, we requested that submissions be at a level where they could
be appreciated by an interdisciplinary audience, and we particularly encouraged
review papers giving a broad perspective.

We were excited by the enthusiasm with which leading researchers responded.
The excitement turned to delight when we read the submissions. We asked one
or more anonymous referees to review each submission, and we edited the result-
ing chapters for thematic, stylistic, and notational cohesion, in close consultation
with authors. While much hard work has gone into this volume, from the editors'
point of view it has been a labor of love. We hope that the outcome is a volume
with both timely and timeless qualities, serving as a reference for years to come.

This book consists of four parts. Fundamentals provides background to cur-
rent research in the field. Statistical Physics and Algorithms presents physical
methods of analysis and their impact on performance of algorithms. Identifying
the Threshold outlines the probabilistic and numerical methods used by com-
puter scientists to understand the phase structure of combinatorial problems.
Extensions and Applications, finally, gives a number of broader views of the im-
pact of computational complexity on statistical physics and vice-versa. We have
aimed to ensure that all parts of the book can be appreciated by researchers who
are not experts in the field. We mean it to be accessible to motivated graduate
students, and to highly motivated undergraduates as well.

We owe a large debt of gratitude to the many people who have helped make
this book possible, and who have exercised extraordinary patience in waiting for
it to see the light of day. Our thanks go, first of all, to the authors, as well as to
the anonymous referees. We are grateful to the Santa Fe Institute and Oxford
University Press for having agreed to publish this book, and for having good-
naturedly accommodated our complex scheduling needs. Above all, we thank
the Santa Fe Institute's publication's office—Delia Ulibarri, production man-
ager, Laura Ware, publications assistant, and Ronda K. Butler-Villa, director
of publications—without whose support and extremely hard work this volume
would never have made it into print. We also gratefully acknowledge the assis-
tance provided by Roderick Garcia and Andi Sutherland in making the 2001
Santa Fe workshop such a success. Additional financial support for this project
and the original workshops was provided by the Laboratory-Directed Research
and Development program and the Center for Nonlinear Studies at Los Alamos
National Laboratory, the Institute for Pure and Applied Mathematics at UCLA,
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the Intelligent Information Systems Institute at Cornell University, Microsoft
Research, and the National Science Foundation. We deeply appreciate their gen-
erous funding. Finally, our families have been the source of inspiration, joy, and
every imaginable form of support. For them, we reserve our deepest and most
universal thanks.

Los Angeles and Santa Fe, September 2005

Allon G. Percus
Institute for Pure and Applied Mathematics, UCLA &
Los Alamos National Laboratory

Gabriel Istrate
Los Alamos National Laboratory

Cristopher Moore
University of New Mexico & Santa Fe Institute
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CHAPTER 1

Introduction: Where Statistical Physics
Meets Computation

Allon G. Percus
Gabriel Istrate
Cristopher Moore

1 BACKGROUND

Computer science and physics have been closely linked since the birth of modern
computing. This book is about that link. John von Neumann's original design for
digital computing in the 1940s was motivated by applications in ballistics and
hydrodynamics, and his model still underlies today's hardware architectures.
Within several years of the invention of the first digital computers, the Monte
Carlo method was developed, putting these devices to work simulating natural
processes using the principles of statistical physics. It is difficult to imagine how
computing might have evolved without the physical insights that nurtured it. It
is impossible to imagine how physics would have evolved without computation.

While digital computers quickly became indispensable, a true theoretical
understanding of the efficiency of the computation process did not occur until
twenty years later. In 1965, Hartmanis and Stearns [227] as well as Edmonds [139,
140] articulated the notion of computational complexity, categorizing algorithms
according to how rapidly their time and space requirements grow with input

Computational Complexity and Statistical Physics, edited by
Allon G. Percus, Gabriel Istrate, and Cristopher Moore, Oxford University Press. 3



Introduction: Where Statistical Physics Meets Computation

size. The qualitative distinctions that computational complexity draws between
algorithms form the foundation of theoretical computer science. Chief among
these distinctions is that of polynomial versus exponential time.

A combinatorial problem belongs in the complexity class P (polynomial time)
if there exists an algorithm guaranteeing a solution in a computation time, or
number of elementary steps of the algorithm, that grows at most polynomially
with input size. Loosely speaking, such problems are considered computationally
feasible. An example might be sorting a list of n numbers: even a particularly
naive and inefficient algorithm for this will run in a number of steps that grows
as O(n2), and so sorting is in the class P. A problem belongs in the complexity
class NP (non-deterministic polynomial time) if it is merely possible to test,
in polynomial time, whether a specific presumed solution is correct. Of course,
P C NP: for any problem whose solution can be found in polynomial time, one
can surely verify the validity of a presumed solution in polynomial time.

However, finding a needle in a haystack involves a great deal more than just
verifying that an object is a needle. For many problems in NP, even our best
attempts at finding a solution have yielded algorithms that require exponential
time. A famous example is the traveling salesman problem of finding a tour
with n cities, such that the tour's total length is less than a fixed constant. One
can readily confirm whether a proposed solution meets the desired criteria, but
there is no known polynomial-time algorithm for locating a solution among the
n! possible orders in which we could visit the cities. Thus, some problems in
NP appear to be computationally hard or intractable. To the extent possible, we
would like to categorize which NP problems are also in P, and which are not.

In the early 1970s, Cook [109] and Karp [299] took a large step towards such a
categorization with the notions of NP-hardness and NP-completeness. A problem
A is NP-hard if any NP problem can be converted or reduced to it in polynomial
time: if there were a polynomial-time algorithm for A, all NP problems could
be solved in polynomial time. A problem is NP-complete if it is both NP-hard
and itself in NP. NP-complete problems are therefore the hardest among NP
problems. If any of them could be solved by a polynomial-time algorithm, that
would immediately imply P = NP. It is widely believed that this is not the
case. Finding a solution in an exponentially large search space seems intrinsically
harder than checking a proposed solution. But proving or disproving that P — NP
remains an open question to this day, and is unquestionably the central unsolved
problem in theoretical computer science [124].

Cook's main result was a proof that the problem of satisfiability, or decid-
ing whether or not a propositional formula in Boolean logic can be satisfied,
is NP-complete. Having established satisfiability as the founding NP-complete
problem, one may then prove that other problems are NP-complete by show-
ing that satisfiability can be reduced to them. This is indeed what Karp did,
for a host of well-known combinatorial problems including graph coloring, ver-
tex cover, number partitioning, and the traveling salesman problem. Since that
time, many thousands of other problems have been proven NP-complete, ranging

4
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over an astonishing variety of problem domains, from industrial resource allo-
cation to predicting how proteins fold. It appears highly unlikely that there are
algorithms that can guarantee a solution to any of these problems in polynomial
time.

The crucial term, however, is "guarantee." Computational complexity theory
deals with the universal quantifier: can one solve the problem in polynomial time,
for all possible instances of the problem? This is a worst-case notion. Computer
scientists sometimes imagine a fictitious adversary who designs instances that are
as hard as possible, deliberately trying to make our algorithms fail. But in many
cases, we would be satisfied with a weaker guarantee. What if the problem is NP-
complete, but for many types of instances it can still be solved in polynomial
time? What if the hard instances are actually rather rare, and in practice the
problem can almost always be solved in polynomial time? It did not case take
researchers very long to discover that this is exactly what happens for certain
forms of the satisfiability problem [167, 203].

Here is where physics comes back into the picture. Physicists are used to
problems given to them by nature, not designed by a malicious adversary. To
physicists, nature can be astonishingly benevolent, often admitting beautiful and
elegant solutions to its problems. While computer science has to work in some
contexts where there really is an adversary—for instance, in cryptography—
perhaps real-world instances of NP-complete problems are more like natural
systems than maliciously designed ones.

There is another crucial cultural difference between computer science and
physics. While computer scientists think of problem instances as given with com-
plete specificity, statistical physicists try to study the macroscopic properties of
a system and avoid explicit consideration of its microscopic details. The canon-
ical nineteenth century example is Boltzmann's unification of thermodynamics
with Newtonian dynamics, showing how bulk properties such as temperature and
pressure emerge from the statistical behavior of atoms in a gas. This approach
necessarily implies averaging over the local properties of individual atoms in order
to obtain a broad statistical description, explaining how the system "typically"
behaves at an appropriate level of resolution.

Kirkpatrick, Gelatt, and Vecchi [320] exploited the relation between compu-
tationally hard combinatorial problems and the principles of statistical physics
in their 1983 paper introducing the simulated annealing method. The idea was
as follows. Finding the solution to a combinatorial optimization problem, such
as the shortest possible traveling salesman tour, is formally equivalent to finding
the ground state, or lowest-energy state, of a physical system in thermal equi-
librium. In both cases there is an objective function to be minimized, consisting
of contributions from all the components of the system: the tour length is the
sum of all link lengths in the tour, and the energy is the sum of the interaction
energies among all atoms in the system. In statistical mechanics, given a certain
physical temperature r (measured in units of energy), the probability of the sys-
tem finding itself in a specific state C with energy E(C) is proportional to the

5



6 Introduction: Where Statistical Physics Meets Computation

Boltzmann factor:

In the zero-temperature limit r —» 0, this probability is concentrated at the
ground state. The third law of thermodynamics tells us that achieving r = 0 is
a physical impossibility, but by annealing a system, or cooling it slowly enough,
one may at least come close to reaching the ground state. The computational
analogy for a combinatorial optimization problem is to pick as a starting point
some valid solution—not necessarily the optimal one—along with some starting
value of the temperature parameter r, and iteratively update this solution by a
Monte Carlo process that mimics thermal fluctuations. One then slowly reduces
r over the course of the simulation, in the hope of descending upon the solution
that minimizes the objective function.

Simulated annealing offered a very practical recipe for finding solutions to
NP-hard problems that are optimal or near-optimal. But the analogy it suggested
opened the way to a far broader view of the connections between statistical
physics and theoretical computer science. The key insight involves considering
computational problems whose inputs are random combinatorial structures: for
instance, satisfiability over suitably generated random formulas, or graph col-
oring over a particular random graph ensemble. As Kirkpatrick et al. noted in
their paper [320], this view is entirely appropriate for problems with large input
size n. The asymptotic limit n —> oo is analogous to the thermodynamic limit
in statistical physics, where the law of large numbers should apply and relative
fluctuations around the average case should go to zero. When this occurs, the
system is said to be self-averaging. Of course, asymptotic analysis is no stranger
to complexity theory either. When one speaks of an algorithm that runs in poly-
nomial time, one refers to the way running time scales with n in precisely the
same limit n —» oo.

While statistical physicists initially studied models on regular lattices, such
as the Ising model of magnetism, they subsequently considered disordered models
in which the parameters or topology of the interactions vary randomly from site
to site. One model of particular interest has been that of spin glasses [396],
generalizations of the Ising model that describe how glassy materials behave.
It was noticed early on that finding the ground state of a spin glass is an NP-
hard combinatorial optimization problem. Inspired by this analogy, researchers
became increasingly interested in applying techniques from spin glasses to other
combinatorial problems. This resulted in some important successes. Using the
replica method, which we outline later in this chapter, Mezard and Parisi [394]
provided a closed-form analytical prediction for the optimal value of the objective
function in the minimum-weight matching problem, over an ensemble of random
weights in the asymptotic limit. They subsequently extended this analysis to the
traveling salesman problem [393], giving numerical estimates for the asymptotic
optimal tour length that later studies have largely confirmed [282, 348, 434].
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2 PHASE TRANSITIONS

Let us return to the issue of worst-case versus average-case complexity, as that
leads us to one of the primary subjects of this book. In 1991, a paper by Cheese-
man, Kanefsky, and Taylor appeared in the artificial intelligence literature, en-
titled "Where the really hard problems are" [91]. The paper pointed out two
empirical properties taking place in random instances of several NP-complete
problems, including satisfiability and graph coloring.

• With an appropriate parametrization of the ensemble, there is a sharp phase
boundary separating different problem instances. In the case of satisfiability,
when the density a of logical constraints in the formula (specifically: the num-
ber of clauses per variable) lies below a certain critical value ac, the formula
is almost certainly satisfiable. This is shown by the solid curve in figure 1.
When a > ac, the formula is almost certainly unsatisfiable. Furthermore, the
threshold becomes increasingly sharp as the problem size n increases. Such a
phase boundary had in fact been predicted several years earlier, by Huberman
and Hogg [264], in the context of artificial intelligence applications.

• These problems are relatively easy to solve as long as the input instance is
clearly in one phase or the other. The hard instances are those near the bound-
ary between the two regions: that is where search algorithms require the largest
running time to find a solution, or determine that there is none. Increasing the
control parameter a gives rise to an "easy-hard-easy" pattern, as one moves
from the underconstrained region, across the critical threshold, and into the
overconstrained region. This is shown by the broken curve in figure 1.

To a statistical physicist this looks conspicuously like a phase transition. As
some macroscopic parameter crosses a critical threshold, the system undergoes
a sudden change in its properties. The canonical example is when water freezes;
when the temperature crosses the freezing point, the global behavior changes
drastically even though the local interactions between water molecules stay the
same. Furthermore, phase transitions are associated with the phenomenon of
critical slowing-down, where relaxation times diverge and the system can take
very long to reach equilibrium. Phase transitions have been a major area of
study in mathematical physics since years before the introduction of compu-
tational complexity theory [80, 159, 285]. There is a well-developed theory of
critical phenomena for modeling and analyzing the system's properties, partic-
ularly the types of nonanalyticities that appear at the critical point and how
various quantities scale in its vicinity.

The study of phase transitions also has a distinguished history in graph
theory. In their 1959 paper, Erdos and Renyi [148] proved that over an ensemble
of random graphs with n vertices, for large n the global structure of the graph
changes dramatically when the mean degree is increased from slightly below 1
to slightly above 1. Below the threshold, connected clusters of vertices are very

7



8 Introduction: Where Statistical Physics Meets Computation

FIGURE 1 Schematic representation of phase transition in satisfiability. Solid curve
denotes probability that a formula is satisfiable, falling rapidly from 1 to 0 at the
threshold. Broken curve denotes computational cost for determining satisfiability, and
displays easy-hard-easy pattern as constraint density is increased across the threshold.

small, and with high probability the largest one has size only O(logn). At the
threshold, however, there is an abrupt change, and above the threshold a giant
component of size O(n) emerges. The probability that the graph possesses a giant
component is governed by a zero-one law, jumping discontinuously from zero to
one at the threshold.

Whether referred to as phase transitions, sharp thresholds, or zero-one laws,
these phenomena are hardly anomalous. As discussed in chapter 2, one might
argue that in view of the law of large numbers, when the size of the problem gets
large enough, the probability distribution of an event over independent random
inputs should become very sharply peaked. If one tosses a coin many times, and
the coin is even very slightly biased, with high probability the results of the
overall experiment will closely reflect the bias. If the coin comes up heads with
probability p, and p is an adjustable parameter, then if one were to increase p
from 1/2 — e to 1/2 -f e the chances of seeing more heads than tails would jump
abruptly from very low to very high. As the number n of coin tosses goes to
infinity, this threshold becomes sharp. Admittedly, the example of coin tossing
is trivial. But it motivates why one should not be altogether surprised if, say, the
minimum fraction of constraints violated in a Boolean formula becomes sharply
concentrated about its mean for large formulas. The critical value ac of the
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constraint density would then be the value at which this fraction reaches zero
and the formula becomes satisfiable.

To the extent that threshold phenomena in computationally hard problems
mirror phase transitions as studied in statistical physics and graph theory, much
existing work can be carried over to the realm of computer science. That is
what Kirkpatrick and Selrnan did in 1994 [319], in their paper analyzing the
satisfiability phase transition. Using the statistical physics techniques of finite-
size scaling, they provided numerical estimates of several fundamental properties
of the transition, including the control parameter's critical value and the critical
exponent characterizing how quickly the critical window narrows with increasing
problem size. The hope was that an improved understanding of phase transitions
in this context would lead to an improved understanding of which instance classes
of an NP-hard problem are truly hard, what makes them hard, and how one
might design algorithms appropriately.

This hope is well on its way to being fulfilled. Over the past decade, the goal
of understanding and exploiting the relationship between phase transitions and
average-case complexity has mobilized computer scientists, mathematicians, and
physicists alike. A flurry of activity has resulted, encompassing conjectures, theo-
retical insights, and numerical as well as rigorous results. These form the subject
of the upcoming chapters, and fall into two broad and occasionally commin-
gled categories: methods of analysis from statistical physics used to investigate
algorithmic behavior near the threshold, and probabilistic techniques used to
prove properties of the threshold. The first category contains recent work [406]
inspired by the statistical mechanics of the satisfiability problem, exploring the
connection between the precise nature of the phase transition and the problem's
average-case complexity. It also includes the more detailed view of phase struc-
ture discussed in chapter 3, originating from spin glass theory, and resulting
in algorithmic methods such as the survey propagation algorithm described in
chapter 4. The second category contains a host of new results in probabilistic
analysis. Examples include an exact mathematical characterization of the phase
transition [67] for a specific variant of satisfiability (albeit one in P), as well
as bounds on the location of the critical threshold for the NP-complete variant
3-SAT, discussed in chapter 7.

3 BASIC MODELS

The satisfiability problem will occupy our attention for much of this book. It
has become the combinatorial model of choice for investigating threshold behav-
ior, due to its fundamental role in NP-completeness, its practical applicability
in artificial intelligence, and its simple formulation. In this section we define
satisfiability, as well as two more model problems, graph coloring and the spin
glass. Other combinatorial problems that have attracted the attention of physi-

9
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cists, such as vertex cover and number partitioning, will be described in depth
in subsequent chapters of the volume.

3.1 SATISFIABILITY (SAT)

Consider n Boolean variables X i , . . . , xn, where each Xi can be assigned the value
TRUE or FALSE. Define a logical formula (j)(x\,... , xn) as a Boolean function of
these variables, composed of the logical operators AND, OR, and NOT. The
satisfiability problem is to determine whether there is a truth assignment for
these variables such that < / > ( x i , . . . , xn) — TRUE.

Any Boolean formula can be rewritten in conjunctive normal form (CNF),
defined as follows. Let a literal be either a variable Xi or its complement "xl —
NOT Xi. Let a clause be the disjunction, i.e., the OR, of a set of literals. A CNF
formula is then the conjunction, i.e., the AND, of a set of clauses. Thus a possible
CNF formula might be

In this particular formula, the clauses do not all have the same length (number
of literals). When they do, and when the length is fc, the formula is said to be
A:-CNF. Satisfiability on fc-CNF formulas is a frequently discussed version of the
problem, and is known as /c-SAT.

It is possible to rewrite any CNF formula, and thus any Boolean formula, in
3-CNF form. For instance, by introducing two new variables z\ and 22» eq. (2)
can be rewritten as

Satisfiability is known to be NP-complete. It is relatively straightforward to
transform any CNF formula into a 3-CNF formula in a number of steps that
is polynomial in n, using the method above. It follows that 3-SAT, and more
generally /c-SAT for any k > 3, is NP-complete. By contrast, 2-SAT is in the
complexity class P, and it is not generally possible to transform a CNF formula
into a 2-CNF formula!

All of these forms of SAT are decision problems. The goal is to answer the
yes/no question of whether the formula is satisfiable. But there is also an analo-
gous optimization problem, MAX-SAT: find a truth assignment that maximizes
the number of satisfied clauses. Since it is not clear how to verify that a pro-
posed truth assignment is optimal, it is common to define an NP version of this
problem in which we ask whether it is possible to satisfy more than a certain
number of clauses. Interestingly, this version of MAX-2-SAT, the optimization
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problem corresponding to 2-SAT, is NP-complete in spite of the fact that 2-SAT
is solvable in polynomial time.

If we wish to construct random k-SAT instances with n variables and m
clauses, a natural way to do so is as follows. Construct each clause by choosing
k variables randomly and negating each one with probability 1/2. The clause
density is then a — ra/n; note that we take the limits ra, n —> oo simultaneously
so that a is held constant.

The satisfiability threshold conjecture states that there is a critical ac sepa-
rating the underconstrained phase from the overconstrained phase. Specifically,
it is believed that for each k > 3, there is a sharp threshold ac with the following
property: given any 6 > 0, in the limit n —» oo the probability that a random k-
SAT formula is satisfiable tends to 1 if a < (l~e)ac and to 0 if a > (1 + e)ac. For
k — 2, this is known to be true, and the threshold is exactly ac = 1. For k = 3, it
has not yet been rigorously proven that a sharp threshold exists; but assuming
it does, numerical evidence and arguments from statistical physics suggest that
a c«4.27 [395].

3.2 GRAPH COLORING (COL)

Consider a graph with n vertices and edges connecting certain pairs of vertices.
The graph coloring problem is to assign colors to vertices so that no edge connects
two vertices of the same color. When our palette is limited to q colors, the problem
is known as q-COL.

Analogously to SAT, 3-COL is NP-complete whereas 2-COL can be solved
in polynomial time. The optimization problem corresponding to the decision
problem is to find the color assignment that minimizes the number of violated
edges, connecting vertices of the same color. This is best described by a picture:
figure 2 shows an example of a 3-COL assignment that results in two violated
edges.

Now construct graphs randomly, so that an edge connects any given pair of
the n vertices with probability p. This is the famous Qn^p ensemble of random
graphs studied by Erdos and Renyi [148]. The mean degree of such a graph is
a — p(n — 1) ~ pn in the limit n —» oo. Just as there is a sharp threshold at a = 1
where the giant component emerges, we believe that for any q > 3, <?-COL has a
sharp threshold where the probability of (/-colorability drops abruptly from 1 to
0. Recent numerical estimates for the 3-COL threshold location give ac w 4.69
or 4.70 [59, 412].

3.3 SPIN GLASSES

Computer scientists typically describe problems using hard constraints, where
for instance every clause must be satisfied or every edge must have endpoints of
different colors. Physicists, on the other hand, often describe systems in terms
of an energy function or Hamiltonian. To map one onto the other, we may as-
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FIGURE 2 3-COL assignment in a graph, with two edge violations. Colors assigned to
vertices are represented by filled circles, shaded circles and empty circles. Dashed lines
denote violated edges in the graph, connecting a pair of vertices of the same color.

sign a positive energy contribution to each violated constraint; then the system's
ground-state energy will be zero if and only if it is possible to satisfy all con-
straints. This mapping has been especially fruitful in the case of the spin glass
Hamiltonian, a central topic of research among statistical physicists over the past
two decades. Arguably, the spin glass model is as fundamental to the physics of
disordered systems as satisfiability is to computational complexity.

Before discussing the spin glass, let us define the simpler I sing model, which
uses the language of spins to provide a basic explanation of the physical phe-
nomenon of ferromagnetism. Consider n binary variables s i , . . . ,sn, where any
Si can be assigned the value +1 or — 1. Physically, these variables represent the
quantum mechanical spin state of a spin-1/2 particle. We call Si = +1 "up" and
Si — — 1 "down." The energy associated with interactions between particles is
given by the Ising Hamiltonian
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where the notation ( i , j ) represents all pairs of particles i and j that are nearest
neighbors on a square lattice. Recall that at a given temperature r, the probabil-
ity of the system adopting a specific configuration C of the spin variables is given
by the Boltzmann factor, eq. (1). In the thermodynamic limit (n —> oc), and for
positive J, there is a phase transition at the Curie temperature rc. For r > rc

there is no overall magnetization: there are as many up spins as down spins, and
distant sites are independent of one another. But for r < rc, the system becomes
spontaneously magnetized, and the majority of spins align with one another.
At r = 0 the system adopts a ground-state configuration, minimizing £ising by
having all spins s^ taking on the same value: either up or down.

The Ising model is clearly an idealization or "toy model" of magnetic materi-
als: in particular, it assumes that spins are arranged in a square lattice and only
interact with their nearest neighbors. However, physicists have found that while
the transition temperature rc depends on the details of a materials' topology
and interactions, the type of transition does not. In particular, the critical ex-
ponents describing how correlations, relaxation times, and magnetizations scale
near the phase transition depend only on the dimension of the lattice, and not,
for instance, on whether it is triangular versus square, or on whether interac-
tions extend to neighbors several steps away. This fortunate fact means, first of
all, that the Ising model is a far more effective description of real ferromagnetic
materials, such as iron, than we might have originally thought. Second of all, it
inspires physicists to think of systems as being grouped into universality classes
that abstract away their details and capture the qualitative aspects of their be-
havior. Such a qualitative classification is not altogether dissimilar to that of
computational complexity theory, in which constraint satisfaction problems are
generically NP-complete and only a few special cases are in P.

While the Ising model displays a nontrivial phase structure, as a combinato-
rial optimization problem it is uninteresting. But now, imagine that the material
being modeled is not entirely homogeneous and that interactions are not only
between lattice neighbors. Furthermore, imagine that not all interactions are
ferromagnetic, encouraging spins to align in the same direction; some are also
antiferromagnetic, encouraging them to align in opposite directions. The Hamil-
tonian generalizes to

where the coupling constants J^ can be positive, negative or zero. Equation (3)
describes the Hamiltonian for the spin glass, so named because magnetic mate-
rials modeled in this way, such as copper-manganese alloys, can have a "glassy"
phase displaying short-range order but long-range disorder.

Finding the ground state of a spin glass is, in general, an NP-hard prob-
lem [31]. Like the models we have considered up until now, it is appropriate
to consider the spin glass over an ensemble of random inputs. Physically, this
makes sense: glasses are distinguished by the randomness of the disorder spread
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through them, as distinct from the ordered structure of a crystalline solid. Thus,
the theory of spin glasses has focused on studying these materials when the cou-
pling constants Jij are chosen randomly. One analytically tractable ensemble,
introduced by Sherrington and Kirkpatrick in 1975 [474], considers J^ for each
unordered pair i,j to be chosen independently from a Gaussian distribution with
mean zero. Another ensemble, the Ed wards- Anderson ±J spin glass [141], con-
siders J^ to be nonzero only when i and j are lattice neighbors — as in the Ising
model — in which case it is chosen from 4- JQ or —Jo with equal probability.

The basic problem we have posed for the spin glass is an optimization prob-
lem rather than a decision problem. Of course, the model is related in a formal
sense to combinatorial problems that are well-studied outside of the physics
community. For instance, a straightforward transformation of eq. (3) shows that
finding the ground state of a spin glass is equivalent to the classic graph-theoretic
problem of weighted MAX-CUT [31]. In this problem, the vertices of a weighted
graph must be partitioned into two sets, while maximizing the sum of the weights
along all edges that connect vertices in opposite sets.

Moreover, the NP-complete problems we have presented earlier can be cap-
tured by variants of the spin glass Hamiltonian. Consider first graph coloring.
One may generalize the basic Ising model to the Potts model, where spins Si
are not binary but can take on any one of q values, or colors, in {1, . . . , q}. The
Potts Hamiltonian is then

where the Kronecker 6 function gives 1 when Si = Sj and 0 otherwise. This model
can be extended from a lattice to an arbitrary graph. If J is negative, the Potts
model is antiferromagnetic and adjacent spins try to have different colors; since
the energy is J times the number of violated edges, the ground-state energy is
zero if and only if the graph is g-colorable.

Now consider satisfiability. For each Boolean variable x^, define a correspond-
ing spin Si = 4-1 if xi — TRUE, and Si = — 1 if Xi — FALSE. Define the clause
matrix W such that Wji — -f 1 if clause j includes literal #;, Wji — —I if clause
j includes literal #7, and Wji = 0 otherwise. It follows that for fc-CNF formulas,
the indicator expression

takes on the value 0 when clause j is satisfied and 1 when it is violated. The
number of violated clauses is then given by
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Minimizing the number of violated clauses is the same as maximizing the number
of satisfied clauses, so finding the ground state of this "fc-SAT Hamiltonian" is
equivalent to solving the MAX-fc-SAT problem. The ground-state energy is zero
if and only if the formula is satisfiable. The main difference between eq. (4) and
the spin glass Hamiltonian of eq. (3) is that now there are interactions between
groups of k spins, rather than just between pairs. Fortunately, models of this
type are well known in statistical physics.

In satisfiability and graph coloring, we might be tempted to focus simply
on finding a solution or confirming that none exists. Indeed, this is traditionally
how computer scientists have framed such problems. But the analogy with spin
glasses reveals that the system's behavior is far richer than that: the transition
from satisfiability to unsatisfiability is only a part of the picture. As we will see
in the next section, the order parameter relevant to the transition is not only the
probability that a solution exists, but is in fact an entire probability distribution
describing the solution structure. Certain techniques developed for spin glasses
lend themselves particularly well to the study of fc-SAT [405], leading to both
analytical insights and new algorithms.

4 THE VIEW FROM STATISTICAL PHYSICS

The chapters of this volume discuss diverse methods of analysis that researchers
have brought to bear on combinatorial problems, drawn from computer science,
mathematics, and physics. In this section, we give a glimpse of how statistical
physicists study the structure of these problems, focusing in particular on the
replica method.

The replica method is a powerful analytical approach developed in spin glass
theory and recently applied to a variety of NP-hard problems. We do not attempt
to cover the technical details involved in the replica method; rather, we outline
the method in the hope of demonstrating how analyzing the physics of the prob-
lem can provide valuable insight. Our discussion serves as background to much
of the material in this book. In illustrating the replica method and related ap-
proaches, we use /c-SAT as a model problem and follow the language of Martin
et al. [382].

Consider a physical system in thermal equilibrium at temperature r. As we
have seen in eq. (1), the probability of being at a specific state C is proportional
to the Boltzmann factor exp(~E(C)/r). Normalizing this gives

But the quantity Z, called the partition function, is far more than a mere nor-
malizing constant: it embodies a considerable amount of information about the
system. Z is a generating function from which one can directly obtain many ther-

Where
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modynamic quantities of interest. For instance, the thermally-aver aged energy
of the system,

In principle, the ground-state energy EGS is then found by taking the limit
r —> 0. There, one can show that (E) approaches —rlogZ.

This is all for a given realization of the system, meaning a given setting of
the couplings J^ in a spin glass, or a given instance of graph coloring or fc-SAT.
We want to work over an ensemble of random instances. In the case of fc-SAT,
in order to study the problem's phase behavior for clause density a near ac,
we need to understand the distribution of the random variable EGS over the
ensemble. Notably, if we denote by EGS the average over random instances at
a given a—not to be confused with the thermal average above—then a typical
instance will be satisfiable if EGS — 0 and unsatisfiable if EGS > 0.

Using the /c-SAT Hamiltonian in eq. (4), EGS fc>r m ~ an clauses can be
written as

Since this form does not clearly lend itself to analysis, let us make use of the
partition function. We know that

Calculating the ensemble average of the logarithm of a function is difficult if not
impossible. However, note that the logarithm satisfies the property

We now introduce the replica trick: proceed as if r were a positive integer,
and calculate the rth moment of the partition function. Then, after doing so,

is given by Z and its first derivative:

where

so
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perform an analytic continuation to real r and finally take the limit r —> 0.
Proceeding in this way,

We can interpret the leading sums as being over the states of r copies, or replicas,
of the system, all with the same random realization. Thus, for integer r, the rth
moment Zr is the average partition function for the r replicas.

Although it is much easier to calculate Zr than log Z, it is by no means easy.
Furthermore, even if we can calculate Zr for all integer r, its analytic continuation
may or may not make sense in the limit r — » 0. One can argue that for finite n,
given all moments of Z, one can perfectly reconstruct its probability distribution
and, therefore, justify the existence and uniqueness of the analytic continuation.
Unfortunately, we are interested in the n — > oo limit where this argument does
not hold. It is remarkable that in spite of the lack of rigorous justification, the
replica method has been extremely successful in predicting effects later confirmed
by other theoretical approaches and by numerical experiments.

After a certain amount of algebraic manipulation [382], writing Zr in the
limit n — » oo leads to a saddle-point integral. In order to write this inte-
gral, we introduce the notation ff to represent an r-dimensional binary vector,
3 £ {— 1, l}r, with components a1, . . . , ar over the r replicas. We furthermore
introduce u to represent a real- valued 2r-dimensional vector with components
{u$ : a £ { — l,l}r}, in turn, over the 2r possible values of 3. Then,

In the replica formalism, u$ has a physical interpretation as the fraction of spin
indices i with the sequence of values s^ = aa over the replicas a G {1,... ,r}.
Note that u$ is constrained by the Dirac ^-function, representing a normalization
condition. Counting the 2r dimensions of u and the one constraint, Zr is an
integral over a space of 2r — 1 dimensions.

The saddle-point approximation for this integral gives Zr ~ exp(nFmax)
in the large n limit, where F is maximized over all u. F is symmetric under
any permutation 7r(a) of the replicas: as long as a certain vector u* maximizes
F, so too does any vector u where i^1,...,^ = u^(l) o.7r(r) for all <j, i.e., u*

Where



18 Introduction: Where Statistical Physics Meets Computation

with its components reshuffled. If, furthermore, F has a unique maximum, then
w*i ar — u*,^) ^(r) for all <j, and we may restrict our space to vectors u
that are themselves invariant under permutation. For a given i6^, we need only
consider how many components of a have the value 1 and how many have the
value — 1.

The assumption of a unique maximum for F is known as replica symmetry.
Under such an assumption, we can write u$ in the form

which may be inserted into the equation for F(u). We can now perform the
analytic continuation of r to the real numbers and take the limit r —> 0. The result
is a functional equation for F[P(//)]. Using Lagrange multipliers we optimize F
over the function space of P(Ai), leading to a self-consistent integral equation for
P(p>). What is the meaning of P(f^) when r —* 0? Let /^ be the magnetization, or
average value of a given variable Si over all possible ground-state configurations.
It turns out that if the assumption of replica symmetry is correct, P(/x) gives the
distribution of magnetizations /^. Thus, P(/x) is simply the probability density
for a variable's value averaged over the ground states.

The self-consistent equation for P(/i) admits a family of solutions. All of
these share an important qualitative feature in the r —> 0 limit. For a below a
fixed ac (ac = 1 for 2-SAT, ac w 4.6 for 3-SAT), P(-l) = P(l) = 0, meaning
that the expected fraction of variables completely "frozen" to a value of TRUE
or FALSE over all optimal assignments is zero. For a > ac, however, the form of
P(IJL) changes and the distribution starts having nonzero weight at fi = ±1: a
"backbone" emerges, in which certain variables are constrained to be TRUE or
FALSE. P(IJL) is, therefore, not only a function, but also an order parameter that
signals a phase boundary.

In calculating Zr ~ exp(nPmax) under the assumption of replica symmetry,
one finds that the structural change in P(IJL) is mirrored by a structural change
in EQS- For a < ac, ECS — 0, whereas for a > ac, EGS > 0- The latter is
certainly not surprising: if a finite fraction of the variables could be frozen to
specific values over all satisfying assignments, the addition of a single new clause
would with finite probability lead to a violation. Interestingly, though, the nature
of the transition in P(/i) is different for 2-SAT and for 3-SAT [406]. In the case of
2-SAT, there is a continuous transition. At a = ac, P(±l) = 0 and then increases
continuously with increasing a. In the case of 3-SAT, there is a discontinuous
transition. Already at a = ac, a nonzero backbone spontaneously emerges with
P(±l) >0.

The replica symmetric (RS) solution is a very convenient one, and helps
provide a valuable physical understanding of the phase structure. But it only
tells part of the story. The manner in which the various limits are taken lacks
mathematical rigor, and there is no guarantee that replica symmetry holds: F
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may not have a unique maximum. Indeed, while the RS solution is exact for
2-SAT, it does not give the correct threshold location for 3-SAT. Empirically, we
know that ac is closer to 4.27 than to 4.6. We do not yet know how to provide a
firm mathematical foundation for the replica method, but we can, on the other
hand, improve upon the RS solution by explicitly introducing a form of replica
symmetry breaking (RSB) into F(u) [56].

The intuition for RSB is as follows. Consider two different optimal assign-
ments for a 3-SAT instance, and look at the relative Hamming distance d be-
tween them: the fraction of variables that are set to TRUE in one configuration
but FALSE in the other. A consequence of the RS assumption and eq. (5) is that,
for large n, over the space of optimal configuration pairs the Hamming distance
distribution p(d) is sharply peaked at a single value

Under RSB, however, one allows p(d) to take on a non-trivial structure. The sim-
plest form of RSB, called "one-step replica symmetry breaking," assumes that
the distribution has two sharp peaks. One might imagine optimal assignments
being contained within clusters, so that any pair within a given cluster is sep-
arated by Hamming distance do, but pairs from different clusters are separated
by Hamming distance d\. More complex forms of RSB impose multiple peaks
in p(d), corresponding to a hierarchical construction of clusters within clusters.
The limiting case of this is the full RSB scheme, introduced by Parisi for the
Sherrington-Kirkpatrick spin glass [396], where p(d) is a continuum.

For 3-SAT, one-step RSB appears to be sufficient. The resulting analysis [56,
395] suggests a more subtle phase diagram than the one seen in figure 1. For a
below OLRSB ~ 3.92, the RS solution appears to be correct. The distribution
p(d) only displays a single peak, at C/RS, and with high probability instances are
satisfiable. In this "easy satisfiable" phase, one is very likely to find a satisfying
assignment with minimal computational effort. At OLRSB, the system undergoes
a replica symmetry breaking transition, and for a RSB < a < ac, p(d) displays
both peaks do and d\. This is the "hard satisfiable" phase, where with high
probability instances are satisfiable, but the satisfying assignments are separated
into clusters, creating many local optima and making it difficult to find a solution.
Finally, at ac, the system becomes over constrained, and enters the unsatisfiable
phase where satisfying assignments are unlikely to exist.

This clustering picture is one of the topics of chapter 3. The most successful
approach for analyzing it is based on the cavity method, which uses techniques
closely related to the replica method but not identical. In addition to provid-
ing a refined understanding of the fc-SAT phase structure, the cavity method
results in a prediction for the threshold location that is believed to be exact:
ac ~ 4.27 for fc = 3. Even more significantly, the method gives rise to an efficient
algorithmic procedure for finding satisfying assignments in the hard satisfiable
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phase. The procedure, known as survey propagation, is discussed and analyzed in
chapter 4. It is a perfect example of how improved insights into critical phenom-
ena in combinatorial problems can lead to direct improvements in algorithmic
performance.

5 THE VIEW FROM COMPUTER SCIENCE

Theoretical tools from the physics community, such as the replica method, have
been instrumental in improving our understanding of the fundamentals of com-
puting. At the same time, advances in theoretical computer science—both from a
probabilistic and from an algorithmic perspective—have expanded the frontiers
of mathematical physics. One clear difference between these two approaches is
in the methods of analysis. But another very fundamental cultural difference
involves the questions that are asked. Statistical physicists have been deeply
interested in understanding the structure of computational problems and algo-
rithms, characterizing critical behavior through appropriate order parameters
and critical exponents. Theoretical computer scientists have focused on proving
threshold properties with the aim of obtaining increasingly tight bounds on al-
gorithmic performance. One of the great successes of the past decade has been
the interaction between these two groups. Let us now highlight some of the main
results that have come from the computer science community, and how these
have motivated further results among physicists.

Two key challenges related to the phase transition in satisfiability are proving
that a unique sharp threshold exists for random /c-SAT, and identifying its loca-
tion. For k > 3, both of these remain open problems. Friedgut [182] has shown
that there exists a function ac(ri) such that the threshold becomes arbitrarily
sharp about ac(n) in the large n limit. However, it has not been proven that ac(n)
converges to a constant ac as n —> oo, in spite of overwhelming belief and a large
body of experimental and nonrigorous evidence such as the survey propagation
method mentioned above. Much effort has, therefore, been devoted to establish-
ing upper and lower bounds on the threshold location, discussed at length in
chapter 7. For k = 3, the best lower bound [223, 295] and upper bound [132] to
date give 3.52 < ac < 4.506, still leaving a considerable gap. For large fc, the best
lower bounds [3, 4] and upper bound [167] give ac — (1 —o(l) )2 f c log A;, confirming
nonrigorous results from the replica method [405] and survey propagation [395].

The case of k = 2 is quite different. As mentioned above, random 2-SAT
is known to have a sharp threshold at ac == 1 [94, 202]. Moreover, a lot is now
understood about this transition [67], including exact values for the critical ex-
ponents that characterize the sharpness of the threshold. This has put on a
firm mathematical footing the original 1994 numerical study of Kirkpatrick and
Selman [319], at least for k — 2. In addition, Bollobas et al. [67] have proven
an essential property concerning the nature of the 2-SAT transition: an order
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parameter called the spine goes to zero continuously as a approaches ac from
above. Since the spine is an upper bound on the backbone mentioned above, a
corollary of this result is that the replica prediction of a continuous backbone
transition at the 2-SAT threshold is correct.

Rigorous results have been obtained for a number of other variants of sat-
isfiability. One example is the problem of 1-in-k satisfiability, a form of fc-SAT
where a clause is satisfied only if exactly one literal in the clause is TRUE. For
k > 3, l-in-/c-SAT has been shown [7] to have a sharp threshold at ac = l/(2)-
Interestingly, even though l-in-/c-SAT is NP-complete, what makes the precise
threshold value possible to obtain here is the structural similarity of the problem
to 2-SAT. Just as in 2-SAT, if one maps the formula to a hypergraph, unsatis-
fiability emerges as a direct consequence of contradictory cycles of implications.
Another example of satisfiability—albeit not an NP-complete one—with a rig-
orously determined threshold is the XORSAT problem. Here, the logical XOR
operator, or exclusive or, replaces the OR operator in a CNF formula. This is
equivalent to solving a linear system of equations modulo 2, and is solvable in
polynomial time by Gaussian elimination. The problem has attracted the inter-
est of statistical physicists as being a form of SAT that is particularly amenable
to analysis via the replica method. A one-step RSB calculation [445] predicts
a threshold location of ac w 0.918 for 3-XORSAT. Recent work in theoretical
computer science [131] has shown rigorously that the replica prediction is indeed
exact, justifying not only the numerical results of the replica method but also
the physical picture that it provides. In particular, this work has proven the exis-
tence of a hard satisfiable phase like the one proposed for 3-SAT, where solutions
exist but are grouped into clusters with large Hamming distances between them.

Finally, several connections have been suggested between the nature of the
phase transition and the complexity of various classes of algorithms. Recall that
in 2-SAT, the backbone order parameter marking the transition is continuous
(though nonanalytic) across the threshold, whereas in 3-SAT, the replica method
indicates that it is discontinuous. Now consider a broad class of resolution algo-
rithms that work by successively assigning values to variables and backtracking
to an earlier assignment when a constraint is violated. This class of algorithms,
known as Davis-Putnam or DPLL [117, 118], is described in chapter 3. To analyze
the relation between the continuity of the order parameter and the complexity
of DPLL algorithms on random formulas at the transition, Monasson et al. [406]
have considered the problem (2 + p)-SAT, for real p £ [0,1], that interpolates
between 2-SAT and 3-SAT. Random instances of (2 + p)-SAT with constraint
density a are generated by drawing a(l — p)n random clauses of length 2 and
apn random clauses of length 3. Based on the replica method, the transition ap-
pears continuous for p close to zero but becomes discontinuous when p exceeds
a critical value po — 2/5. At the same PQ, the complexity of DPLL algorithms
seems to change from polynomial to exponential.

Recent results in the computer science literature have both supported this
picture and helped clarify its limitations. It has been confirmed [8] that for p G
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[0, 2/5], the threshold behavior of (2 +p)-SAT resembles that of random 2-SAT,
and the location of the threshold is simply the constraint density at which the 2-
CNF component of the random formula becomes unsatisfiable. Furthermore, the
spine order parameter that was proven continuous for the 2-SAT threshold [67]
has indeed been shown to be discontinuous for fc-SAT when k > 3 [273]. This
is a weaker result than showing that the backbone is discontinuous, and hence
does not in itself confirm the replica prediction, but motivates considering the
spine as the order parameter of interest. The connection with the complexity of
DPLL algorithms closely involves the study of proof complexity, of key interest
in automated theorem proving: one attempts to bound the number of steps
needed to confirm or refute a proposition. A combination of old and new work
in proof complexity [9, 95, 273] shows that a discontinuity in the k-SAT spine
directly correlates with exponential resolution complexity, meaning that verifying
the unsatisfiability of a formula takes DPLL an exponential number of steps.
Conversely, a continuous spine implies that the resolution complexity must be
smaller than any exponential—as for instance in 2-SAT and 1-in-fc-SAT, where
contradictions are verified in O(ri) steps. These results can be extended from
fc-SAT to more general constraint satisfaction problems [401], and lead to the
hope that a better understanding of a problem's resolution complexity might
help identify the threshold location.

6 OUTLINE OF THE VOLUME

In this introductory chapter, we have sketched some of the models, methods
of analysis, and results at the intersection of complexity theory and statistical
mechanics. These have given rise to the rich set of scientific interactions that
form the subject of this book as a whole. Our broad aim is to provide the
reader with an appreciation of how physical approaches have contributed to the
study of computationally hard problems, and how advances in probabilistic and
algorithmic techniques have made the connection such a fruitful one. To this
end, the volume draws on contributions from authors in the computer science,
mathematics, and physics communities—roughly in equal measure, and often in
close collaboration. We hope to make apparent how the constituent disciplines
have worked together to create a new and flourishing field of research. Among
the products of these research efforts have been new algorithmic methods, new
combinatorics, and new physics.

Our main focus here is on phase transitions and threshold phenomena in the
context of random combinatorial structures. The book is composed of four parts:

• Part 1: Fundamentals. This part includes two chapters, introducing the
reader to the basic combinatorial and physical concepts of the volume. The
present chapter has given the essential background. Chapter 2 provides a
deeper view of the mathematical foundations of threshold phenomena. The
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authors explain the origins of sharp thresholds, and guide the reader through
an explicit description of how they relate to complexity theory and mathemat-
ical physics, as well as applications in other fields of science such as economics.
They highlight a number of important open problems that are echoed in sub-
sequent chapters.

• Part 2: Statistical Physics and Algorithms. The four chapters of this
part are devoted to the role of physical analysis in computational problems
as well as the use of algorithmic methods in understanding the structure of
physical problems. Chapter 3 studies the dynamics of DPLL and local search
algorithms, showing how both the critical threshold and a different "dynam-
ical" transition affect algorithmic complexity. Chapter 4 presents the algo-
rithmic framework of survey propagation, describes the theory, and applies
it to satisfiability and graph coloring. Chapter 5 discusses number partition-
ing, analyzing the phase transition by exploiting its similarities to a tractable
physical problem. Chapter 6 considers the spin glass model, and shows how a
well-studied algorithmic method can lead to a physical understanding of the
dynamics of glassy systems.

• Part 3: Identifying the Threshold. This part contains three chapters that
demonstrate the probabilistic and numerical techniques used to argue for the
existence of thresholds, as well as to identify their location. Chapter 7 reviews
recent improvements on upper bounds for ac in the case of A:-SAT, illustrating
the methods by which these bounds have been derived. Chapter 8 presents
a powerful methodology for proving conditional randomness that enables the
analysis of search heuristics and leads to improved lower bounds on ac. Chapter
9 discusses the phase transition for a form of satisfiability called HornSAT,
using numerical finite-size scaling techniques together with related analytical
models to investigate the nature of the threshold.

• Part 4: Extensions and Applications. The final part of the volume con-
tains four chapters that connect the foregoing discussion to a range of ap-
plications extending far beyond model problems. Chapter 10 considers phase
transitions in the context of quantum computing, and shows how the behavior
of quantum search algorithms relates to problem structure. Chapter 11 relates
computational complexity to physical models of surface growth, analyzing the
scalability of parallel simulation processes by means of techniques from statis-
tical mechanics. Chapter 12 introduces a biological motivation, investigating
a model of RNA folding by way of random graph analysis and the threshold
where a giant component emerges. Chapter 13 extends the concept of typical-
case complexity beyond ensembles of random instances: the chapter proposes
a framework in which realistic instances of a problem can be considered, and
provokes thoughts on future directions for computational complexity.

The entire collection of chapters is intended to form a cohesive volume, rather
than simply a set of technical articles. The chapters have been arranged to form
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a logical and pedagogical progression, although they may also be appreciated
individually and do not necessarily have to be read in order.

A major challenge in editing a volume of this kind is anticipating the audi-
ence and adjusting the level of discussion to this audience. We expect our subject
to interest a wide range of researchers in computer science, mathematics, and
physics. Given the different scientific cultures and backgrounds, it is an ambi-
tious exercise to make statistical physics understandable to computer scientists
and computer science understandable to physicists. Nevertheless, we have worked
hard to strike the right balance between phenomenology and theory. Wherever
possible, we have standardized notation and terminology across the entire vol-
ume. We assume only basic literacy in the research tools of discrete mathematics
and physics.

Of course, the intersection of computational complexity and statistical
physics is vast. It is impossible to do it justice in a single volume. By focus-
ing primarily on threshold phenomena, we necessarily omit other important and
exciting research topics, such as the probabilistic analysis of Markov chain al-
gorithms and the study of network dynamics. Nevertheless, we hope that this
volume will serve both as a reference on an emerging cross-disciplinary field, and
as a snapshot of the state of the field at this point in time.



CHAPTER 2

Threshold Phenomena and Influence:
Perspectives from Mathematics, Computer
Science, and Economics

Gil Kalai
Shmuel Safra

1 INTRODUCTION

Threshold phenomena refer to settings in which the probability for an event to
occur changes rapidly as some underlying parameter varies. Threshold phenom-
ena play an important role in probability theory and statistics, physics, and
computer science, and are related to issues studied in economics and political
science. Quite a few questions that come up naturally in those fields translate
to proving that some event indeed exhibits a threshold phenomenon, and then
finding the location of the transition and how rapid the change is. The notions
of sharp thresholds and phase transitions originated in physics, and many of
the mathematical ideas for their study came from mathematical physics. In this
chapter, however, we will mainly discuss connections to other fields.

A simple yet illuminating example that demonstrates the sharp threshold
phenomenon is Condorcet's jury theorem, which can be described as follows.
Say one is running an election process, where the results are determined by
simple majority, between two candidates, Alice and Bob. If every voter votes

Computational Complexity and Statistical Physics, edited by
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for Alice with probability p > 1/2 and for Bob with probability 1 — p, and if
the probabilities for each voter to vote either way are independent of the other
votes, then as the number of voters tends to infinity the probability of Alice
getting elected tends to 1. The probability of Alice getting elected is a monotone
function of p, and when there are many voters it rapidly changes from being very
close to 0 when p < 1/2 to being very close to 1 when p > 1/2.

The reason usually given for the interest of Condorcet's jury theorem to
economics and political science [535] is that it can be interpreted as saying that
even if agents receive very poor (yet independent) signals, indicating which of
two choices is correct, majority voting nevertheless results in the correct deci-
sion being taken with high probability, as long as there are enough agents, and
the agents vote according to their signal. This is referred to in economics as
asymptotically complete aggregation of information.

Condorcet's jury theorem is a simple consequence of the weak law of large
numbers. The central limit theorem implies that the "threshold interval" is of
length proportional to l/\/n. Some extensions, however, are much more diffi-
cult. When we consider general economic or political situations, the aggregation
of agents' votes may be much more complicated than a simple majority. The
individual signal (or signals) may be more complicated than a single bit of in-
formation, the distribution of signals among agents can be more general and,
in particular, agents' signals may depend on each other. On top of that, voters
may vote strategically by taking into account the possible actions of others in
addition to their own signal, and distinct voters may have different goals and
interests, not only different information. In addition, the number of candidates
may be larger than two, resulting in a whole set of new phenomena.

Let us now briefly mention two other areas in which threshold behavior
emerges. The study of random graphs as a separate area of research was initiated
in the seminal paper of Erdos and Renyi [148] from 1959. Consider a random
graph G(n,p) on n vertices where every edge among the (™) possible edges
appears with probability p. Erdos and Renyi proved a sharp threshold property
for various graph properties. For example, for every c > 0, if p — (1 -f e) logn/n
the graph is connected with probability tending to 1 as n tends to infinity, while
for p = (1 — e)logn/n the probability that the graph will be connected tends
to zero. Since the time of their work, extensive studies of specific random graph
properties have been carried out and, in recent years, results concerning the
threshold behavior of general graph properties have been found. For a general
understanding of the threshold properties of graphs, symmetry plays a crucial
role: when we talk about properties of graphs we implicitly assume that those
properties depend only on the isomorphism type of the graphs, and not on the
labeling of vertices. This fact introduces substantial symmetry to the model. We
will discuss how to exploit this symmetry.

Next, we mention complexity theory. Threshold phenomena play a role, both
conceptual and technical, in various aspects of computational complexity theory.
One of the major developments in complexity theory in the last two decades
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is the emerging understanding of the complexity of approximating optimization
problems. Here is an important example: for a graph G let m(G) be the maximum
number of edges between two disjoint sets of vertices of G. MAX-CUT, the
problem of dividing the vertices of a given input graph into two parts so as
to maximize the number of edges between the parts, is known to be NP-hard.
However, simply finding a partition such that the number of edges between the
two parts is at least m(G)/2 is easy. The emerging yet unproven picture for
this problem is that if we wish to find a partition of the vertices with at least
cra(G) edges between the parts, then there is a critical value c0 such that the
problem is easy (a randomized polynomial-time algorithm solves it) for c < CQ,
and hard (likely NP-hard) for c > c0. For MAX-CUT, the critical value c0 =
0.878567... is reached by the famous Goemans-Williamson algorithm [200] based
on semidefinite programming. More generally, for many other problems we can
expect a sharp threshold between the region where approximation is easy and
the region where approximation is hard. In addition, the study of threshold
phenomena and other related properties of Boolean functions is an important
technical tool in understanding the hardness of approximation.

Another connection with complexity theory occurs in the area of circuit
complexity. It turns out that Boolean functions in very "low" complexity classes
necessarily exhibit coarse threshold behavior. For example, the majority func-
tion that exhibits a very sharp threshold behavior cannot be represented by a
bounded-depth Boolean circuit of small size. This insight is related to another
major success of complexity theory: lower bounds for the size of bounded-depth
circuits.

Let us now explicitly define the basic mathematical object that is the sub-
ject of our considerations. A Boolean function is a function / (x i ,x 2 , . . . ,xn)
where each variable Xi is a Boolean variable, taking the value 0 or 1. The value
of / is also 0 or 1. A Boolean function / is monotone if / (2/1,2/2, •-• ?2 /n) >
/(xi, X 2 , . - • , xn) when yi > x^ for every i. Some basic examples of Boolean func-
tions are named after the voting method they describe. For an odd integer n, the
majoritys function M(x\, x % , . . . , xn) equals 1 if and only if x\ -\- #2 + . . . 4- xn >
n/2. The dictatorship function is / ( x i , X 2 , . . . , xn) = Xi for some i. Juntas refer
to the class of Boolean functions that depend on a bounded number of variables,
namely functions that disregard the value of almost all variables except for a
few, whose number is independent of n.

Now consider the probability p,p(f) that / (x i ,x 2 , . . . ,xn) = 1, when the
probability that Xi — 1 is p, independently for i = 1 , 2 , . . . , n, just as we had
earlier for the election between Alice and Bob. When / is a monotone Boolean
function, the function /xp(/) is a monotone real function of p. Given a real number
1/2 > 6 > 0, the threshold interval depending on e is the interval [^1,^2] where
fj,pi (y) = e and HP2(f) = 1 — 6. Understanding the length of this threshold interval
is one of our central objectives.

Before we describe this chapter's sections it is worth noting that the notion of
a sharp threshold is an asymptotic property and therefore applies to a sequence of
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Boolean functions when the number of variables becomes large. Giving explicit,
realistic, and useful estimates is an important goal. In the election example above,
the central limit theorem provides explicit, realistic, and useful estimates. In more
involved settings, however, this task can be quite difficult.

The main messages of this chapter can be summarized as follows:

• The threshold behavior of a system is intimately related to combinatorial
notions of "influence" and "pivotality" (section 2).

• Sharp thresholds are common. We can expect a sharp threshold unless there
are good reasons not to (section 3 and 5.3).

• A basic mathematical tool in understanding threshold behavior is Fourier anal-
ysis of Boolean functions (section 4).

• Higher symmetry leads (in a subtle way) to sharper threshold behavior (section
5.2).

• Sharp thresholds occur unless the property can be described "locally" (section
5.3).

• Systems whose description belongs to a very low complexity class have rather
coarse (not sharp) threshold behavior (section 6.1).

• In various optimization problems, when we seek approximate solutions, there
is a sharp transition between goals that are algorithmically easy and those
that are computationally intractable (section 6.3).

In section 2 we introduce the notions of pivotality and influence and discuss
Russo's lemma, which relates these notions to threshold behavior. In section 3 we
describe basic results concerning influences and threshold behavior of Boolean
functions. In section 4 we discuss a major mathematical tool required for the
study of threshold phenomena and influences: Fourier analysis of Boolean func-
tions. In section 5 we discuss the connection to random graphs and hypergraphs
and to the fc-SAT problem. In section 6 we discuss the connections to com-
putational complexity. Section 7 is devoted to the related phenomenon of noise
sensitivity. Section 8 discusses connections with the model of percolation. Section
9 discusses an example from social science: a result by Feddersen and Pesendorfer
that exhibits a situation of self-organized criticality. Section 10 concludes with
some of the main open problems and challenges.

2 PIVOTALITY, INFLUENCE, POWER, AND THE THRESHOLD
INTERVAL

In this section we describe the n-dimensional hypercube, and define the notions
of "pivotal" variables and influence for Boolean functions. We state Russo's fun-
damental lemma connecting influences and thresholds.
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2.1 THE DISCRETE CUBE

Let £7n = {0, l}n denote the discrete n-dimensional cube, namely, the set of 0-1
vectors with n entries. A Boolean function is a map from Qn to {0,1}. Boolean
functions on Qn are of course in one-to-one correspondence with subsets of £ln.
Elements in On are themselves in one-to-one correspondence with subsets of
[n] — {1,2, . . . ,n} . Boolean functions appear under different names in many
areas of science.

We will equip f2n with a metric, namely a distance function, and a probability
measure. For x,y € fin the Hamming distance d ( x , y ] is defined by

Denote by £ln(p) the discrete cube endowed with the product probability
measure /^p, where HP({x : Xj = 1}) — p. In other words,

2.2 PIVOTALITY AND INFLUENCE OF VARIABLES

Consider a Boolean function /(xi,X2, • . . , xn) and the associated event A C
On(p), such that / = XA, namely that / is the indicator function of A. For
x = ( x i ,X2 , . - . , x^) G On we say that the kth variable is pivotal if flipping the
value of Xk changes the value of /. Formally, let

and define the kth variable to be pivotal at x if

The influence of the fcth variable on a Boolean function /, denoted by /£(/), is
the probability that the kth variable is pivotal, that is,

The influence of a variable in a Boolean function and more general notions of
influences were introduced by Ben-Or and Linial [46] in the context of "collective
coin-flipping."

The total influence Ip(f) is the sum of the individual influences.

Where
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We omit the superscript p for p = 1/2. For a monotone Boolean function
1 /*?

thought of as an election method, /&(/) (= Ik (/))is referred to as the Banzhaf
power index of voter k. The quantity

A simple calculation gives, for general p,

is called the Shapley-Shubik power index of voter k.
The mathematical study (under different names) of pivotal agents and in-

fluences is quite basic in percolation theory and statistical physics, as well as in
probability theory and statistics, reliability theory, distributed computing, com-
plexity theory, game theory, mechanism design and auction theory, other areas
of theoretical economics, and political science.

2.3 RUSSO'S LEMMA AND THRESHOLD INTERVALS

A Boolean function / is monotone if its value does not decrease when we flip
the value of any variable from 0 to 1. For a monotone Boolean function / c £ln>
let /%?(/) be the probability that / (xi , . . . , xn) = 1 with respect to the product
measure /xp. Note that p>p(f) is a monotone function of p. Russo's fundamental
lemma [210, 450] asserts that

Suppose now that / is a non-constant monotone Boolean function. Given a
small real number e > 0, let p\ be the unique real number in [0,1] such that
A*PI (/) — e and let p2 be the unique real number such that //P2 (/) = ! — c. The
interval [pi,p2] is called a threshold interval and its length p2 — Pi is denoted
by t€(f). Denote by pc the value satisfying //Pc(/) = 1/2, and call it the critical
probability of the event A.

By Russo's lemma, a large total influence around the critical probability
implies a short threshold interval.

Remark: Let us now exhibit the notions introduced here using a simple exam-
ple. We will return to this example to demonstrate several issues discussed in
the chapter. Let M3 represent the majority function on three variables. Thus,
MS(zi, £2,2:3) = 1 if ̂ i +X2 +x3 > 2 and M3(xi,X2,xs) = 0 otherwise. Clearly,
//(M3) — 1/2. This follows from the fact that M3 is an odd Boolean function,
namely one that satisfies the relation
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As for the influence of the variables, we obtain /fc(M3) = 1/2 and /£(M3) =
2p(l -p)2 + 2p2(l -p) for k = 1,2,3. Therefore, J(M3) - 3/2 and IP(M3) =
6(p(l — p)), which is indeed equal to diJip(M^)/dp.

3 BASIC RESULTS ON INFLUENCES AND THRESHOLD
BEHAVIOR OF BOOLEAN FUNCTIONS

Some basic facts on influences and the corresponding results on threshold in-
tervals are as follows. Dictatorships and juntas have small total influence, and
thus coarse thresholds. Conversely, when the critical probability is 1/2, a coarse
threshold implies that the function "looks like" a junta. These results are for-
malized as follows.

3.1 THE TOTAL INFLUENCE CANNOT BE OVERLY SMALL

Theorem 3.1. For every Boolean function f,

In particular, if p>i/2(f) = 1/2 then /(/) > 1 and equality holds if and only
if / is a dictatorship, namely f(x\,... ,xn) = Xi for some i, or an "antidictator-
ship," /(#!,... ,xn) = 1 — Xi for some i. Inequality (11) has its origins in the
works of Loomis and Whitney [364], Harper [225], Bernstein [50], Hart [226],
and others. It is of great importance in many mathematical contexts. Inequality
(11) is often referred to as the edge-isoperimetric inequality. It can be regarded
as an isoperimetric relation for subsets of the discrete cube, analogous to the
famous Euclidean isoperimetric relations. This analogy goes a long way, and we
will return to it in section 5.4. Ledoux's book [357] is an excellent source for the
related phenomenon of "measure concentration."

An upper bound for the length of the threshold interval can be derived from
the bounds on the sum of influences combined with Russo's lemma.

Theorem 3.2 (Bollobas and Thomason [66]). For every monotone Boolean func-
tion f ,

Two brief remarks are in order. First, note that for a function /(#i, £2, • • • , xn)
we can consider the "dual" function defined by

Then it is easily seen that
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Otherwise, we say that the sequence demonstrates a coarse threshold behavior.
When the critical probabilities for the functions fn are bounded away from 0 and
1 then having a sharp threshold simply means that for every

3.2 SIMPLE MAJORITY MAXIMIZES THE TOTAL INFLUENCE OF
MONOTONE BOOLEAN FUNCTIONS

Let n be an odd integer. Denote by Mn a simple majority function on n variables.

Proposition 3.3. Let f be a monotone Boolean function over n variables, n odd,
and with pc(f) = 1/2. Then for every p, 0 < p < I ,

This theorem answered a question posed by Ben-Or and Linial [46], who gave
an example of a Boolean function / with u(f) = 1/2 and /&(/) = O(logn/n).
Note that theorem 3.5 implies that when all individual influences are the same,
that is, when A is invariant under the induced action from a transitive permuta-
tion group on [n], then the total influence is at least K min(/^(/), 1 — /x(/)) logn.
An extension for arbitrary product probability spaces was found by Bourgain,
Kahn, Kalai, Katznelson, and Linial [75]. Talagrand [499] extended the result

Due to this duality we may, without loss of generality, restrict ourselves to the
case where pc(f) < 1/2, which will simplify several of the statements below.
Second, note that another way to state the Bollobas and Thomason result is
that for every Boolean function / and every e > 0 there exists a value c(e) such
that te(f)/pc(f) < c(e).

Theorem 3.2 is the basis for the following definition: we say that a sequence
(fn) of Boolean functions has a sharp threshold if for every e > 0,

See, for example, lemma 6.1 of Friedgut and Kalai [178] and Chayes et al. [90].
By Russo's lemma it follows that:

Proposition 3.4. Let f be a monotone Boolean function over n variables, n odd,
and with pc(f) — 1/2. Then, for every p > 1/2, fjip(Mn) > p,p(f).

3.3 NOT ALL INDIVIDUAL INFLUENCES CAN BE SMALL

Theorem 3.5 (Kahn-kalai-Linal[287]). There exists a universal constant K Such
that for every Boolean function f,
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of Kahn, Kalai, and Linial in various directions and applied these results for
studying threshold behavior. Talagrand also presented a very useful extension
for arbitrary real functions on the discrete cube. Talagrand's extension for the
product measure ^p is stated as follows:

Theorem 3.6 (Talagrand [499]). There exists a universal constant K such that
for every Boolean function f ,

L For every k, 1 <k <n, and for every p, 0 < p < 1, /£(/) < 5i [178, 449, 499].
2. For every k, 1 < k < n, and for p such that e < fJLp(f) < l — c (e.g., p = pc(f)),

/£(/) < 52 [291].
3. For every k, 1 < k < n, the Shapley-Shubik power index </>&(/) < S3 [291] .

Part 1 of the theorem was proven by Russo [449]. A sharp version was proven
by Talagrand [499] and Friedgut and Kalai [178] based on the Kahn-Kalai-Linial
theorem and its extensions.

The next result describes Boolean functions with a small total influence.

Theorem 3.7 (Friedgut [175]). Let f be a monotone Boolean function. For every
0 < z < 1/2, a > 1 and 7 > 0, there exists a value C = C(z,a,j) such that
if z < p < 1 — z and Ip(f) < a, then there is a monotone Boolean function g
depending on at most C variables, such that

Theorem 3.7 asserts that if the critical probability is bounded away from 0 and 1
and the threshold is coarse, then for most values of p in the threshold interval, /
can be approximated by a junta with respect to the probability measure IJLP. Note
that when p tends to zero with increasing n, the size of the junta is no longer
bounded; when p tends to zero as a fractional power of 1/n, the theorem carries
no information. We will return to this important range of parameters later.

Likewise, if no one influence is unduly large, then the threshold is sharp, as
demonstrated by the following.

Theorem 3.8 (Russo-Talagrand-Friedgut-Kalai). Let f be a Boolean function.
For every 0 < z < 1/2, e > 0 and 7 > 0, there exist values Si — #i(z,e, 7) > 0,
i = 1,2,3 such that if z < pc(f) < 1 ~~ z, then any of the following conditions
implies that
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Parts 2 and 3 are based on Friedgut's result and some additional observa-
tions, and are derived in Kalai [291], but the values of #2, #3 are rather weak
(doubly logarithmic in 7). It would be interesting to find better bounds. Part 3
in the theorem above is, in fact, a characterization:

Theorem 3.9. Let (fn) be a sequence of monotone Boolean functions. For every
c >0 ,

4 FOURIER ANALYSIS OF BOOLEAN FUNCTIONS

In this section we describe an important mathematical tool in the study of thresh-
old phenomena and in various related areas. The material described here is not
essential for reading most of the remaining sections, and so the reader who wishes
to skip this section may safely do so. But as the topic is central to many of the
mathematical results presented in the chapter, we feel it is important to famil-
iarize the reader with it at this early stage.

4.1 ALL THE WAY TO PARSEVAL

Let fin denote the set of 0-1 vectors (x\,..., xn) of length n. Let £2(^/1) denote
the space of real functions on f2n, endowed with the inner product

Note that if / is a Boolean function, then /2(x) is either 0 or 1 and therefore
\\f\\2 = E(x1,..,xn)eari 2~n/2(*) is simply the probability /x(/) that / - 1 (with
respect to the uniform probability distribution on On). If the Boolean function
/ is odd, i.e., satisfying relation (9), then \\f\\% = 1/2.

For a subset 5 of [n] consider the function

It is not difficult to verify that the 2n functions us for all subsets 5 form an
orthonormal basis for the space of real functions on £2n.

if and only if the maximal Shapley-Shubik power index for fn tends to zero [291].

The inner product space L^(^ln) is 2n-dimensional. The I/2-norm of / is defined
by
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For a function / G Z/2(^n), the Fourier-Walsh coefficient f ( S ) of / is

This last relation is called Parseval's formula.

Remark: To demonstrate the notions introduced here we return to our exam-
ple. Let MS represent the majority function on three variables. The Fourier
coefficients of M3 are easy to compute: Ms(0) = ZXV8)^3(X) — 1/2. In
general, if / is a Boolean function then /(0) is the probability that /(#) —
1 and when / is an odd Boolean function, /(0) = 1/2. Next, Ms({l}) =
1/8(M3(0,1,1) - M3(l,0,l) - M3(l,l,0) - M3(l,l,l)) - (1 -3)/8 and thus
M3({j}) = -1/4, for j = 1,2,3. Next, M3(5) = 0 when |5| = 2 and finally
M3({1,2,3}) - 1/8(M3(1,1,0) + M3(l, 0,1) + M3(0,1,1) - /(1,1,1)) - 1/4.

4.2 THE RELATION WITH INFLUENCES

It is surprising how far one can get with the simple base-change of the Fourier-
Walsh transform and Parseval's formula. The relation between influences and
Fourier coefficients is given by the following expressions, whose proof is elemen-
tary:

If / is monotone we also have /&(/) = — 2/({fc}).
The following notation is useful:

allowing us to rewrite relation (27) as 

Since the functions us form an orthogonal basis, it follows that

In particular,
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To practice these notions, observe that /(0) = \\f\\2 — /•*(/)> so from Par-
seval's formula, !t follows from eq. (27)
that

If one considers a Boolean function / where //(/) = 1/2, /(/) > 1. This is an
important special case of the edge-isoperimetric inequality (11).

Remark: Indeed, for our example M% we have

4.3 BERNOULLI MEASURES

When we consider the probability distribution //p, we have to define the inner
product by

(30)

We need an appropriate generalization for the Walsh-Fourier orthonormal
basis for general Bernoulli probability measures \JLP. Those are given by

The relations with influences also extend as follows:

Let p be a fixed real number, 0 < p < 1. Every real function / on Qn can be
expanded to

where
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Exercise: Compute the coefficients Mz(S,p) and verify eq. (33) for the case of
M3.

4.4 THE BONAMI-GROSS-BECKNER RELATION

The reader who did not skip this whole section may still wish to skip this sub-
section. We will consider here a technical inequality that will not be explicitly
mentioned again in the chapter, but nevertheless underlies many of the proofs
and results. There are many ways of viewing the inequality, and its remark-
able effectiveness remains somewhat mysterious. We will present the simplest
application of it that we know.

For a real function / : Qn —> 7£, / = ^f(S}uSi define the Lw-norm of a
function / to be

Note that, due to the normalization coefficient 2 n in the definition, if 1 <
v < w then

Next define the operator

so that

The Bonami-Gross-Beckner (BGB) inequality [40, 68, 213] asserts that for every
real function / on Qn,

Because this inequality involves two different norms, it is referred to as hy-
percontractive [212]. The inequality can be regarded as an extension of the Khint-
chine inequality [311], which states that the different Lw-norms of functions of
the form ^k a^u^j differ only by absolute multiplicative constants. Beckner
used this inequality in the early 1970s to handle classical problems in harmonic
analysis. The work was influenced by earlier hypercontractive inequalities by Nel-
son and others, originating in the mathematical study of quantum field theory
[213, 413].

Here is a quick and sketchy argument giving a flavor of the use of the BGB
inequality. Note that for a Boolean function / and every w > 1,
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Let 0 < p < 1. Now, if a large portion of the Z/2-norm of / is concentrated at
"low frequencies" |5|, then ||TP(/)||2 will not be too much smaller than ||/||2. The
BGB inequality implies that in this case, ||/||i+p2 cannot be too much smaller
than ||/||2 either. This fact, however, cannot coexist with eq. (39) if //(/) is
sufficiently small.

More formally, suppose that //(/) = s < 1/2, and we will try to give
lower bounds for /(/). In section 4.2 we derived from Parseval's formula that
I(f) > 4(5 — s2). The edge-isoperimetric inequality (eq. (11)) asserts that /(/) >
2slog2(l/s). Let us try to understand the appearance of Iog2(l/s). Take p — 1/2
and thus 1 + p2 = 5/4. The BGB inequality and eq. (39) give

Noting that 22'5! < 1/^/s for 0 < \S\ < log2(l/s)/4,

for some constant K < 1, since s < 1/2. This implies that a finite fraction of the
1/2 norm of / is concentrated at Fourier coefficients f(S) where \S\ > K'log(l/s).
It then follows from the discussion in section 4.2 that /(/) > K"(p,(f)(l —
n(f)) log(l/^u(/)). Up to a multiplicative constant this gives the fundamental
edge-isoperimetric relation (eq. (11)), but the information on Fourier coefficients,
while not sharp, is even stronger.

An extension of the BGB inequality for general p can be found in Tala-
grand [499]. The recent remarkable notion of Orlitz hypercontractivity [35] ap-
pears to be very promising for further applications.

REMARKS

• The Fourier coefficients of Boolean functions are tailor-made to deal with the
total influence that by Russo's lemma gives the "local" threshold behavior.
However, to understand the behavior in the entire threshold interval, a fur-
ther understanding of the relation between the behavior at different points is
required. For a global understanding of influences over the entire threshold
interval, the quantities /0 f(S,p)dp may play a role: it would be interesting to
study them.

• This section is only a taste of a rather young field of Fourier analysis of Boolean
functions which has many connections, extensions, applications, and problems.
We hope to be able to give a fuller treatment elsewhere.
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5 FROM ERDOS AND RENYI TO FRIEDGUT: RANDOM
GRAPHS AND THE K-SAT PROBLEM

5.1 GRAPH PROPERTIES AND BOOLEAN FUNCTIONS

Another origin for the study of threshold phenomena in mathematics is random
graph theory and, particularly the seminal works by Erdos and Renyi [148]. Some
good references on random graphs are Alon and Spencer [17], Bollobas [62], and
Janson et al. [279].

Consider a graph G — (V, £), where V is the set of vertices and E is the
set of edges. Let X I , X % , . . . , X \ E \ be Boolean variables corresponding to the edges
of G. An assignment of the values 0 and 1 to the variables Xi corresponds to a
subgraph H C G, where H = (V, Er) and e <E E1 if and only if xe = 1. We will
mostly consider the case where G is the complete graph, namely, E = (^).

This basic Boolean representation of subgraphs (or substructures for other
structures) is very important. A graph property P is a property of graphs that
does not depend on the labeling of the vertices. In other words, P depends only
on the isomorphism type of G. The property is monotone if when a graph H
satisfies it, every graph G on the same vertex set obtained by adding edges
to H also satisfies the property. Examples include: "the graph is connected,"
"the graph is not planar" (a graph is planar if it can be drawn in the plane
without crossings), "the graph contains a triangle," and "the graph contains a
Hamiltonian cycle." Understanding the threshold behavior of monotone graph
properties for random graphs was the main motivation behind the theorem of
Bollobas and Thomason ([66], theorem 3.2). Their result applies to arbitrary
monotone Boolean functions, so it does not rely on the symmetry that Boolean
functions representing graph properties have.

Theorem 5.1 (Friedgut and Kalai [178]). For every monotone property P of
graphs, there exists a constant C such that

Theorem 5.1, which answered a question suggested by Nati Linial, is a simple
consequence of the Kahn-Kalai-Linial theorem and its extensions combined with
Russo's lemma. The crucial observation is that all influences of variables are
equal for Boolean properties defined by graph properties. As a matter of fact,
this continues to be true for Boolean functions / describing random subgraphs
of an arbitrary edge-transitive graph.1 All influences being equal implies that
the total influence I p ( f ) is at least as large as /fmin(//p(/), 1 - jjLp(f)) logn. By
Russo's lemma, this gives the required result.

1A graph is edge-transitive if for every two edges e and e' there is an automorphism of
the graph that maps e to e1.
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Friedgut and Kalai [178] raised several questions that were addressed in later
works:

• What is the relation between the group of symmetries of a Boolean function
and its threshold behavior?

• What would guarantee a sharp threshold when the critical probability pc tends
to zero with increasing n?

• What is the relation between influences, the threshold behavior, and other
isoperimetric properties of /?

We will describe in some detail the work of Bourgain and Kalai [74] on the
first question and the works of Friedgut [177] and Bourgain [73] on the second.
The last question was addressed by several papers of Talagrand [495, 496, 497]
arid also Benjamirii et al. [45], though we will not elaborate on it here.

Let us make one comment at this point. When we consider the Fourier
coefficients f ( S ) of a Boolean function representing a graph property, then the
set 5, which can be regarded as a subset of the variables, also represents a graph.
As mentioned above, being a graph property implies large symmetry for the
original Boolean function: it is invariant under permutations of the variables that
correspond to permutations of the vertices of the graph. The same is true for the
Fourier coefficients: the Fourier coefficient f ( S ) depends only on the isomorphism
type of the graph described by the set S. This is a crucial observation for the
results that follow.

5.2 THRESHOLD UNDER SYMMETRY

We now describe a measure of symmetry that is related to the threshold behavior.
The key intuition is that the more symmetry we have, the sharper the threshold
behavior we observe. The measure of symmetry is based on the size of orbits.

A graph property for graphs with n' vertices is described by a Boolean
function on n = (^) variables. Such Boolean functions are invariant under the
induced action of the symmetric group Snr on the vertices, namely the group of
all permutations of the vertices, acting on the edges. (Note that the variables
of / correspond to the n edges of the complete graph on n' vertices.) In the
previous section we used this symmetry to argue that all individual influences
are the same. Here we would like to exploit further the specific symmetry in the
situation at hand.

Bourgain and Kalai [74] studied the effect of symmetry on the threshold
interval, leading to the following result:

Theorem 5.2 (Bourgain and Kalai). For every monotone property P of graphs
with n' vertices, and every r > 0, there exists a value C(r] such that
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It is conjectured that the theorem continues to hold for r = 0. Let F be
a group of permutations of [n]. Thus F is a subgroup of the group of all n\
permutations of [n]. The group F acts on fin as follows:

for TT G F. A Boolean function is F-invariant if /(TT(X)) = /(#) for every x £ Qn

and every TT G F. We would like to understand the influences and threshold
behavior of Boolean functions that are F-invariant.

We now describe certain parameters of F that depend on the size of the
orbits in the action of F on subsets of [n]. Divide the discrete hypercube fin

into layers: write fi™ for the vectors in Qn with exactly m 1's. For a group F of
permutations of [n], let T(m) denote the number of orbits in the induced action
of F on $1™ and let B(m) be the smallest size of an orbit of F acting on £1™.
For graph properties, T(m) is the number of isomorphism types of graphs with
n' vertices and ra edges, and B(m] is the minimum number of (labeled) graphs
with n' vertices and m edges that are isomorphic to a specific graph H. The
number of graphs isomorphic to H is n'!/|Aut(ff)|, where Aut(H) denotes the
automorphism group of H.

When we consider graph properties for graphs with n' vertices, B(m) grows
as (J^)- To see this, note that when ra = (*) for some s < n' ', graphs H with
the fewest isomorphic copies (hence with the largest automorphism groups) are
complete graphs on s vertices, leading to B(m) = (™ ).

Define the parameter K(T) as follows:

Since greater symmetry leads to smaller B(m), ft(F) measures the "size" of the
group of symmetries.

Define also for r > 0:

Bourgain and Kalai showed that for every r > 0 the total influence Ip(f] of
a F-invariant Boolean function / satisfies the inequality

where K(r) is a positive function of r. It can be shown that this reduces to The-
orem 5.2 when we specialize to graph properties, emphasizing that the symmetry
implied by F-invariance leads directly to a sharp threshold.

Bourgain and Kalai also gave examples of F-invariant functions fn such that
/x(/n) is bounded away from 0 and 1 and I ( f n ) — Q(^(/n))- Based on this result
and results on primitive permutation groups (that require the classification of
finite simple groups), it is possible to classify the coarsest threshold behavior
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for F-invariant Boolean functions, when F is a primitive permutation group.
Welcome results here would include sharper lower bounds for the influences and,
for example, proving a lower bound of K log n//(/)(l — //(/)) on the influence of
Boolean functions that describe graph properties. See Bourgain and Kalai [74]
for further details.

5.3 THRESHOLD BEHAVIOR FOR SMALL CRITICAL PROBABILITIES

Theorem 3.7 addressed the consequences of a coarse threshold when p is bounded
away from 0. In this section we state theorems by Friedgut [177] and by Bour-
gain [73] on the sharpness of thresholds (as defined by eq. (15)), that apply when
the critical probability pc tends to zero. These theorems yield sharp threshold
results for graph properties when pc tends to zero. Recall that theorem 5.2 as-
serts that a sharp threshold is guaranteed for graph properties when the critical
probability is bounded away from 0 and 1.

Given a family Q of graphs, let g$ be the Boolean function describing the
graph property: "The graph contains a subgraph //, where H € £/." For a graph
H, e(H) denotes the number of edges in H.

Theorem 5.3 (Friedgut [177]). Let f represent a monotone graph property. For
every a > I and 7 > 0, there exists a value C = C(a,7) such that if Ip(f] < a,
then there is a family Q of graphs such that

e(H) < C for every H e G

and

The interpretation of the theorem is that a coarse threshold implies that the
function has "local" behavior.

Friedgut's proof relies on symmetry and the statement extends to hyper-
graphs and similar structures. The crucial property appears to be that the num-
ber of orbits of sets of a given size, or T(m) in the notation of the previous
section, has a uniform upper bound. (For graphs this reads: For a fixed nonneg-
ative integer m, the number of isomorphism types of graphs with n' vertices and
m edges is uniformly bounded.)

Friedgut conjectured that his theorem can be extended to arbitrary Boolean
functions. For a collection Q of subsets of [n] (which without loss of generality
we assume to be an antichain of sets, so it does not contain two sets Q and R
with Q C R) let g g ( x \ , x < 2 , . . . ,xn) be defined as follows: gg(x\,x^^ ... ,xn) — 1
if and only if for some S € £?, Xi = I for every i G 5. The sets S in Q are
called minterms for the function gg. Of course, every Boolean function can be
represented in such a way.
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Conj0ctur9 5.4 (Friedgut). Let f be a monotone Boolean function. For every
a > 1 and 7 > 0, there is a value C = C(a,j) such that if Ip(f) < a, then there
is a family Q of subsets of [n] such that

and

In other words, Priedgut's conjecture asserts that a Boolean function with
low influence can be approximated by a Boolean function with small minterms.

A theorem towards this conjecture which is very useful for applications is:

Theorem 5.5 (Bourgain [73]). Let f be a monotone Boolean function. For every
a > I , there is a value S — 6(a) > 0 such that if Ip(f) < a then there is a set S
of variables, \S\ < 10a, such that

Both Friedgut's and Bourgain's theorems are very useful for proving sharp
threshold behavior in many cases. We will mention one example that was studied
in Friedgut's original paper, and is central to this volume. We refer the reader
to Friedgut's recent survey article [176] for many other examples. This survey
article also describes various handy formulations of theorems 5.3 and 5.5.

The 3-SAT problem. This problem has been discussed at length in chapter 1.
Consider n Boolean variables, x i , . . . , xn. A "literal" Zi is either xi or xj. A clause
c is an expression of the form (zi V Zj V Zk) where the symbol V represents the
logical OR and \<i<j<k<n. K 3-CNF formula with ra clauses is a formula
of the form (c\ A c<2 A • • • A cm), where the symbol A represents the logical AND.
A random formula of length ra is obtained by choosing Q uniformly at random
among the possible 8Q) possible clauses. A closely related model is obtained by
choosing each one of the possible 8(3) clauses at random with probability p. (See
chapter 7 for further discussion of the differences between these ensembles.) A
formula is satisfiable if we can assign truth values to the variables so that the
Boolean value of the entire formula is TRUE. The larger ra is, the more difficult
it is. Using a slight extension of Theorem 5.3, Friedgut proved that there is a
threshold ac(n) such that for every e > 0, a random formula with (ac(n) -f e)n
clauses is satisfiable with probability tending to 0 (as n tends to infinity) while a
random formula with (ac(n) — e)n clauses is satisfiable with probability tending
to 1. It is still an outstanding problem to show that ac(n) can be replaced by
a constant ac in the large n limit, meaning that the location of the critical
probability does not oscillate.

Recent advances concerning the location of the critical value for the k-SAT
problem are discussed in chapter 7.

for every

for every
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5.4 MARGULIS' THEOREM

Margulis [381] found in 1974 a remarkable condition guaranteeing a sharp thresh-
old for Boolean functions, and applied it to study random subgraphs of highly
connected graphs. His paper also contains an earlier proof of Russo's lemma.
The theorem later improved by Talagrand [498] gives another general method
for proving threshold behavior.

Let / be a monotone Boolean function. For x G ^n let

with the Hamming distance d(x,y] as defined in eq. (1). Thus, h(x) counts the
number of neighbors of x for which the value of / changes, which is the number
of pivotal variables at x. Note that the total influence is then given by

Define h+(x) = h(x) if f ( x ) — 1 and h+(x) — 0 if /(x) = 0. Since every pair
x,y with f ( x ) 7^ f ( y ) has precisely one element where / attains the value one,
one finds

Theorem 5.6 (Talagrand [498]).

Suppose (for simplicity) that pc(f) is bounded away from 0 and 1. Suppose
also that if h+(x) > 0 then h+(x) > k. This implies that

It then follows from theorem 5.6 that

By Russo's lemma the length of the threshold interval is O(l/\/fc).
Here is Margulis' original application. Let G be a fc-connected graph, that

is, at least k vertices must be deleted from G for it to no longer be connected.
Consider a random spanning subgraph H where an edge of G is taken to be
absent from H with probability p. We assume that H has n edges and let / be the
Boolean function that represents the property: "H is not connected." Margulis
proved that the threshold interval for connectivity is of length O(\/^fk). The
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reason is that if H is not connected, but it is possible to make H connected by
adding back a single edge of G (so that /i+(x) > 0), then H must have precisely
two connected components. Since G is /c-connected, there are at least k edges
in G\H such that adding any of them to H yields a connected graph. It thus
follows that if /i+(x) > 0 then ft+(x) > k.

5.5 FURTHER CONNECTIONS AND PROBLEMS

• The giant component. Both Talagrand's strengthening of Margulis' theo-
rem and Friedgut's theorem give the sharp threshold of graph connectivity as
a special case. This is nice, but a serious criticism would be that the more
interesting phase transition relating to connectivity occurs earlier, when p is
around 1/n. The value 1/n is the critical probability of the emergence of the
"giant component" [17, 147, 279]. It would be desirable to understand even the
basic facts concerning the giant component in the context of general threshold
phenomena, discrete isoperimetry, and Fourier analysis.

• Graph invariants. We have discussed a monotone graph property, or more
generally a monotone Boolean function, and varied the parameter p. A differ-
ent scenario would be to consider a parameter of graphs or a function defined
on the discrete cube and study its distribution for a fixed p. We can consider,
for example, the chromatic number, the clique number, the size of the max-
imal component, etc. The probabilistic properties of monotone functions on
the discrete cube, and especially those which come from interesting graph pa-
rameters are of great interest. Discrete isoperimetric relations play a central
role in this study. But direct relations with threshold results and with Fourier
analysis are sparse.

• Hereditary properties. We could also consider non-monotone properties.
A property of graphs (on n vertices) described by a Boolean function / is
hereditary if there is a collection H of graphs such that / = 1 if the graph
contains a subgraph H from H, as an induced subgraph. Alon and Kalai asked
for which hereditary properties is it the case that the measure of the set of p's
for which e < / x p ( / )< ! — e tends to 0 as n tends to infinity. Since / need not
be monotone, this set will not necessarily be an interval. Of course, monotone
properties are hereditary.

• Influence of Boolean functions with tiny measure. Another criticism
would be that we concentrate on the secondary problem of threshold behavior
while neglecting the primary problem of finding the location of the critical
probability. Indeed, finding the critical probability of particular properties of
random structures is a large and beautiful field, and is the subject of later
chapters of this book. We comment that there are a very few cases where
knowing that the threshold is sharp helps in estimating its location, since it is
sufficient to show that the property is satisfied with a probability that is small
but bounded away from zero. The analogy with physical models suggests that
the threshold behavior, like certain critical exponents for models of statistical
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physics, may exhibit more "universal" behavior than the location of the critical
probability.
Finally, recent work of Kahn and Kalai [286] suggests that for a large class
of problems, good estimates on the location of critical probabilities can fol-
low from understanding the behavior of the function te(f) when e itself is a
function that tends to zero with increasing n. Such an understanding can be
derived from some conjectures, quite similar to theorems 5.3, 5.5 and conjec-
ture 5.4, about influences of Boolean functions when p,p(f) tends to zero with
increasing n.

6 THRESHOLD BEHAVIOR AND COMPLEXITY

In this section we will discuss two areas where threshold phenomena and com-
plexity theory are related. First we will describe results on bounded depth cir-
cuits, a very basic notion in computational complexity. Second we will describe
the connection to the area of "hardness of approximation."

6.1 BOUNDED DEPTH BOOLEAN CIRCUIT

The important complexity class AC0 of Boolean functions consists of those that
can be expressed by Boolean circuits of polynomial size (in the number of vari-
ables) and bounded depth. Although functions belonging to AC0 are of very low
complexity, the class is an important one. Here we show that such functions must
have a coarse threshold behavior.

A Boolean circuit is a directed acyclic graph with 2n sources, each corre-
sponding to a variable Xi or its negation #7, and one sink representing the output
of the computation. The intermediate vertices are called gates and can represent
the Boolean operations AND and OR. The size of a Boolean circuit is the num-
ber of vertices including all sources, gates, and sink. The depth is the maximum
length of a directed path.

Boppana [69] proved that if a Boolean function / is expressed by a depth-c
circuit of size N, then

Earlier, Linial, Mansour, and Nisan [362] proved that for Boolean functions that
can be expressed by Boolean circuits of polynomial (or quasi-polynomial) size and
bounded depth, the Fourier coefficient sum Wjt(/) defined in equation (28) decays
exponentially with k when k is larger than poly-logarithmic in the number of
variables. This result relies on the fundamental Hastad switching lemma [17, 232],
and a more precise result was recently given by Hastad [234]. It appears that all
these results and their proofs apply to the probability measure HP(f) when p is
bounded away from 0 and 1.
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Remark: A monotone circuit is one where all the gates are monotone increasing
in the inputs, that is, there are no NOT gates. The Hastad lemma for monotone
Boolean circuits is easier, and was already proven much earlier by Boppana [70].

It can be conjectured that the only reason for a small total influence, and
hence for a coarse threshold behavior, comes from bounded depth small circuits.
Here, small means a slowly growing function of n. For that to be the case, an
inequality that is roughly the reverse of eq. (48) must also hold. The following
conjecture is a particularly bold version of the statement:

Conjecture 6.1 (Reverse Hastad). Let f be a monotone Boolean function. For
every e > 0 there is a value K — K(e) > 0 and another function g expressible as
a Boolean circuit of size N and depth c, such that

and

Remarks:

• As discussed in the previous chapter, a large number of papers in recent years
have suggested a bold and far-reaching statistical physics approach to fun-
damental questions in complexity. These papers regard classical optimization
problems as zero-temperature cases of statistical physics systems. The ap-
proach further proposes that the complexity of problems may be related to
the type of phase transition of the physical system. In addition, statistical
physics suggests both a way of thinking and heuristic mathematical machinery
for dealing with these problems. This approach has met with some skepticism
within the complexity theory community, and evidence for its usefulness is still
tentative. The results by Hastad, Linial-Mansour-Nisan, and Boppana can be
interpreted as going in the direction suggested by physicists. Of course, when
we deal with complexity classes beyond AC0, caution is still advised.

• Connections between influences and the model of decision trees can be found
in Friedgut et al. [179] and O'Donnell et al. [418].

6.2 HARDNESS OF APPROXIMATION AND POP

Given an optimization problem, what is the complexity of finding an approx-
imation to an optimal solution? Sometimes approximation is intractable and
sometimes it is easy. The theory of probabilistically checkable proofs (PCP)
is a powerful tool for studying approximation. Technical results pertaining to
sharp threshold phenomena are important for showing that certain approxima-
tion problems are difficult.

The PCP theorem concerns constraint satisfaction problems (sometimes re-
ferred to as label-cover problems) of various types, and is the main tool in proving
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NP-hardness for approximation problems. As examples, consider the following
two computational problems:

Vertex cover (VC): Given a graph G, find the smallest set of vertices whose
complement is an independent set.

MAX-CUT: Given a graph G, find a partition of its vertices that maximizes
the number of edges between the two sets of the partition.

Coming up with the optimal solution for these problems is known to be NP-
hard [299]: The next best option is to approximate the optimal solution. In the
case of VC, that means coming up with an appropriate set that may not be the
smallest, but whose size is larger by at most some fixed approximation factor.
Approximating MAX-CUT requires coming up with a partition that may not
maximize the cut size, but gives a cut whose size is within a fixed approximation
factor of the maximum.

Proving that such problems are NP-hard requires extending the Cook-
Levin [109, 360] characterization of NP, which in simple terms states that SAT
is NP-complete. One has to show that even approximating SAT is NP-hard, in
the following sense.

A constraint satisfaction problem (CSP) involves a set of variables and con-
straints over the assignment to those variables. Let X and Y be two sets of (not
necessarily Boolean) variables, whose range is RX and Ry respectively. RX and
RY are two fixed sets independent of the sizes of X and Y. For some pairs of
variables (x,t/) where x E X and y € Y", there is a constraint (j>x,y C RX x RY,
specifying the values of x and y that satisfy it. The constraints imposed on the
variables are local, in the sense that they only involve one variable in X and one
in Y. Let us further assume that all constraints have the projection property:
for each constraint 0x,y, for every a € RX there is only one b G RY so that both
satisfy 4>x,y. Our objective is to find an assignment for all variables x G X and
y € Y such that no constraint will be violated.

A very general version of the PCP theorem is as follows:

Theorem 6.2 (PCP [20, 21, 438]). Given a CSP $ as defined above, there ex-
ists a constant 8 > 0 such that it is NP-hard to exclude either of the following
alternatives:

Note that if we had an approximation algorithm determining whether or not
there is an assignment satisfying at least an e fraction of the constraints, this
algorithm would necessarily rule out one of the two alternatives. Namely, given

• There is a variable assignment satisfying all the constraints
• There is no variable assignment satisfying even a fraction \Rx\~3 of the con-

straints 0 € $.
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a CSP instance, if the algorithm satisfies an e fraction of the entire set of con-
straints, the second alternative is ruled out, while if it satisfies less than an e
fraction of the constraints, the first alternative is ruled out. Therefore, the cor-
responding approximation problem is NP-hard.

A general scheme for proving hardness of approximation was developed in
Arora et al. [21], Arora and Safra [20], Bellare et al. [43], Dinur and Safra [125],
and Hastad [233, 235]. Let us demonstrate this scheme on the VC problem from
above. We consider a basic combinatorial construction in which sufficiently large
independent sets—or equivalently, small vertex covers—are represented by jun-
tas. We then sketch a reduction of CSP to VC, such that juntas lead to variable
assignments satisfying an e fraction of the constraints. By the PCP theorem, this
implies that approximating VC is NP-hard.

We proceed as follows. First, consider the graph Gj , whose vertex set £ln is
the set of all binary vectors {0, l}n of length n. One may think of these vertices
as all possible input vectors to a function over n Boolean variables. In Gj , two
vertices v and u are adjacent if there is no i G [n] so that vi — Ui — 1. This
is referred to as the non-intersection graph, and it is the complement of the
intersection graph (where two vectors are adjacent if the sets of indices where
they are 1 have non-empty intersection), which has been investigated extensively.
It is easy to see that no independent set in Gj contains more than half of the
vertices. This upper bound corresponds to an independent set that for some
index i takes all vectors whose ith entry is 1. Such an independent set is the
pre-image of a dictatorship Boolean function. What other large independent sets
can one find in Gjl

The pre-image of the majority function (or any other odd monotone Boolean
function) is also an independent set in the non-intersection graph, as any two
vectors with more than half of their indices being 1 must have an index in which
both are 1. For odd n that independent set matches the upper bound. To apply
the PCP theorem we will need to "eliminate" independent sets, such as the
majority function, that are not close to juntas.

For this purpose, one may impose a different distribution on the vertices of
Gj that will rule out such examples. One can assign weights to the vertices of
Gj according to yUp, for some p smaller than 1/2, weighting independent sets
as the sum of their vertices' weight. In that case, dictatorships' weights are p,
while majority's weight tends to 0 as n tends to infinity.

What about independent sets that are smaller than those corresponding to
dictatorships, but still within some constant factor of that size? It turns out that
for p < 1/2 any independent set of non-negligible weight must correspond in
some sense to a junta. The following result relies on Friedgut's theorem 3.7 and
Russo's lemma.

Theorem 6.3 (Dinur and Safra [125]). Let W be a locally maximal independent
set in Gj (thus, every vertex x G Gj is either in W or is adjacent to a vertex
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in W), and let f be a Boolean function where f ( x ) = 1 if x E W and f ( x ) = 0 if
x <£W. For every 0 < p < 1/2, 7 > 0 and e > 0, there exists a value q £ [p,p+7],
a value C(7, e) < 2°(1/'ye) and another Boolean function g depending on at most
C variables, such that

Note that if we let J C [n] denote the C variables that g depends on, the pre-
image g~l(l) represents a set of vectors over J that constitutes an independent
set over G\.

We now sketch the reduction from the CSP instance $ above to VC. One
constructs a graph G$ as follows. G$ consists of one copy of Gfx for every
variable x G X, and one copy of Gl

 Y for every variable y £ Y. Additional edges,
representing constraints, are then added to connect the copies. The effect of
these edges is that large independent sets reflect consistent assignments of <£:
in particular, if there is an assignment satisfying all constraints, then the set
of vertices made up of the dictatorships in each copy forms an independent set
in G$. Theorem 6.3 guarantees that any independent set in G$ corresponds to
juntas in many of the copies of G/ in G<j>, so a sufficiently large independent
set allows one to design an assignment that satisfies at least an t fraction of <I>.
This excludes the second alternative in the PCP theorem. Consequently, finding
whether or not such a large independent set exists must be NP-hard.

We now describe another powerful form of PCP. Consider a further restricted
CSP variant. Above we required the constraints to satisfy the projection prop-
erty, meaning that for any constraint 0X)2/, the value for x, a £ RX, determines a
unique value for y so that both satisfy 0x,y. What if we require in addition that
the value for y uniquely determines the value of x?

Given a CSP instance satisfying this uniqueness property, one can efficiently
figure out whether there is an assignment satisfying all constraints. Nevertheless,
one may consider the following problem which was recently studied extensively
by Khot.

Unique game [312]. Given a CSP instance $ that conforms to the uniqueness
property, decide whether one of the following alternatives can be exlcuded:

• There exists an assignment satisfying at least a fraction 1 — e of the constraints
<t> e $

• No assignment satisfies even a fraction e of $.

For e > 0, the complexity of this problem is still wide open. No polynomial
algorithm is known for it; neither is it known to be NP-hard. (Khot himself
conjectures that the problem is NP-hard.) Placing this problem within the known
complexity classes is an exciting open question. The motivation for this problem,
and the reason it is so interesting, is that it is often possible to relate the hardness
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of approximation problems to that of the unique game problem. We will give
examples in the next section.

6.3 THE SHARP THRESHOLD BETWEEN EASY AND HARD PROBLEMS

In the previous section we briefly discussed POP and indicated how technical
results for threshold phenomena are used. There is another threshold aspect to
the story. It turns out that for various optimization problems, when we try to
approximate the solution, there is a sharp threshold between cases that are very
easy to solve and cases in which the problem is NP-hard. This insight and the
methodology for observing such phenomena are fairly recent, and a deeper un-
derstanding of the issues involved may lead both to improved approximation
algorithms and to tighter hardness results. (We do not see a clear connection be-
tween the two appearances of sharp thresholds in this story.) Harmonic analysis
of Boolean functions has already proven to be a powerful tool for such consider-
ations.

Here are some results concerning sharp transitions between easy and hard
computational problems:

• MAX-3-LIN(2): Given a set of linear equations over 1L^ (integers modulo 2),
assign variables in such a way as to satisfy as many of them as possible.
Satisfying half of the equations is easy—by just taking a random assignment—
and this "algorithm" can be derandomized easily. However, for all e > 0, it is
NP-hard to distinguish instances where 1/2 + 6 of the equations are satisfied
and instances where 1 — e of the equations are satisfied [235].

• MAX-3-SAT: A similar problem—only instead of equations one has ORs over
three literals each. A fraction 7/8 of the constraints are expected to be satisfied
by a random assignment, yet distinguishing between 7/8 + e and 1 is NP-hard
[235].

• SET-COVER: Given a collection of subsets of [n], find the smallest number
of sets from the collection such that their union is [n]. A log n approximation
(one that uses at most log n times as many sets as actually necessary) is simple
to obtain, but nothing better can be achieved unless NP-complete problems
with input size n have a deterministic algorithm with running time n°(loglogn)
[153, 439].

When we consider reductions to the unique game problem, further results
can be proven.

• MIN-2-SAT-DELETION: The instance is a formula in 2-CNF form, that is,
a conjunction of clauses, each one consisting of 2 literals connected by OR.
The goal is to delete as few of the clauses as possible, such that the remaining
instance is completely satisfiable. Approximation within any constant factor
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(finding a solution that deletes at most a constant times as many clauses as
actually necessary) is as hard as the unique game problem [312].

• VERTEX COVER: Given an undirected graph, find the minimal number of
nodes that touch all edges. A 2-approximation, namely covering the edges by
at most twice the number of nodes needed, is quite easy—for example, by
taking both ends of each as yet uncovered edge. Any better approximation is
as hard as the unique game problem [313].

• MAX-CUT: Find a 2-partition of the nodes of a given graph such that there
are as many edges as possible between the two parts. We will return to this
problem in the next section.

Remarks:

1. Other interesting cases of threshold behavior in complexity theory concern
fault-tolerant computations, both for classical notions of computation and for
quantum computation.

2. A recent paper by Khot and Vishnoi [314] presents a remarkable connection
between Fourier analysis on the discrete cube, unique games, and classical
embedding problems for metric spaces.

7 NOISE SENSITIVITY

Motivated by mathematical physics, Benjamini, Kalai, and Schramm [45] have
studied low levels of noise in the signals—or viewed differently, to small errors in
the counting of votes. Their assumption is that there is a probability e > 0 of a
mistake in counting a given vote and these probabilities are independent. Simple
majority tends to be quite stable in the presence of noise. Two-level majority
like the U.S. electoral system is less stable and multi-tier council democracy is
quite sensitive to noise. This study is also closely related to works by Tsirelson,
Vershik and Schramm [460, 505, 506]. For an attempt to apply the notion of
noise sensitivity in finance, see Akahori [12].

For a Boolean function / and LJ > 0, consider the following scenario. First
choose voter signals £ i , £ 2 , . . . , xn randomly such that Xi — I with probability
p, independently for i — 1, 2 , . . . , n. Let S = /(#i,£2, • • • » ^ n ) - Next let yi — x^
with probability 1 — u; and yi — 1 — Xi with probability a;, independently for
i — 1,2, . . . , r a . Let T = f ( y i , y 2 , • • - , yn)- Define C(jj(f] to be the correlation
between S and T.

Let p, 0 < p < 1, be fixed. A sequence (/n)n=i,2,... of Boolean functions such
that Hp(fn) is bounded away from 0 and 1 is called asymptotically noise-sensitive
if, for every t > 0,
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We will now define the complementary notion of noise stability. A class J- of
Boolean functions is uniformly noise-stable if for every / £ T and every s > 0
there exists a value u; = uj(s) > 0 such that 

A basic result concerning noise sensitivity is that the class of simple and
weighted majority functions / such that iip(f) is bounded away from 0 and 1
is noise-stable. A sharp version was recently demonstrated by Peres [435]. Note
that when the individual influences tend to 0, the property is a consequence of
the central limit theorem.

The main result of Benjamini et al. [45] is a sort of converse of this. It asserts
the following:

Theorem 7.1. For every sequence (fn) of monotone Boolean functions such that
P'p(fn) is bounded away from 0 and 1 and (fn) is not asymptotically noise-
sensitive, there exists a weighted majority function g such that the correlation
between (fn) and g is bounded away from zero.

The basic relation between noise sensitivity and influences is that for a
sequence (/n) of asymptotically noise-sensitive monotone Boolean functions,
lim/p(/n) = oo. Therefore, if / is noise-sensitive in its threshold interval, it must
have a sharp threshold behavior. On the other hand, in this case the threshold
interval is of length ^(l/A/n).

In this chapter, we have described several results where, in order to demon-
strate a sharp threshold behavior, we exhibited a large total influence. In some
of these results the proofs actually give the stronger property of noise sensitivity.

The following four remarks will further demonstrate the relevance of noise
sensitivity:

1. The connection with Fourier coefficients. A simple but important result
from Benjamini et al. [45] asserts

Theorem 7.2. For every sequence (fn) of Boolean functions such that
is bounded away from 0 and 1, (fn) is asymptotically noise- sensitive if and
only if for every k > 0

Thus, / is noise- sensitive if and only if most of the L2-norm of / is concen-
trated at "high frequencies." By the same token, noise stability is equivalent
to the statement that most of the L^-noim of / is concentrated at "low fre-
quencies."
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Theorem 7.3. A class F of Boolean functions is uniformly noise-stable if and
only if for every f G J- and every e > 0 there exists a value k such that

2. The majority-is-stablest conjecture. What are the Boolean functions
most stable under noise? It was conjectured by several authors that under
several conditions that exclude individual variables having a large influence,
majority is (asymptotically) most stable to noise. This conjecture has recently
been proven by Mossel, O'Donnell, and Oleszkiewicz [410].
We define a sequence (fn) of Boolean functions to have a diminishing indi-
vidual influence if

Theorem 7.4 (Mossel-O'Donnell-Oleszkiewicz [410]). For every sequence (fn)
of Boolean functions with diminishing individual influence,

The fact that the right-hand side gives the precise asymptotic description of
the noise stability of the majority function is a nineteenth-century result by
Sheppard.

3. MAX-CUT. Khot, Kindler, Mossel, and O'Donnell [315] showed that the
majority-is-stablest theorem (which at the time was a conjecture that they
posed) implies a sharp threshold for approximating MAX-CUT based on the
unique game problem. The famous Goemans- Williamson algorithm based on
semidefmite programming achieves the ratio a = .878567 . . . Khot, Kindler,
Mossel, and O'Donnell showed that assuming the majority-is-stablest theo-
rem, anything better is as hard as the unique game problem.

4. Monotone threshold circuits. Threshold circuits form an important class
of circuits that are more general than Boolean circuits, since they allow
weighted majority gates. Contrary to the situation for Boolean circuits, it
is not the case that functions expressible by constant depth threshold circuits
have coarse threshold behavior, as is evident from the majority of such cir-
cuits. But there is a far-reaching conjecture [45] regarding their stability to
noise that is analogous to the theorems by Boppana, Linial-Mansour-Nisan,
and Hastad mentioned in the previous section:

Conjecture 7.5. Consider the class F of monotone Boolean functions f that
are expressed by monotone depth-c threshold circuits of size N(f). Then, for
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every f E T and every e > 0 there is a value K — K(c) such that

Equation (51) shows that a noise-stable Boolean function can be well ap-
proximated by a low depth threshold circuit, but we do not know whether,
when the function is monotone, this can be achieved by a monotone threshold
circuit.

Finally, let us note an important criticism arising from works by Schramm
and Tsirelson [460, 505]. These demonstrate that Boolean functions are too re-
stricted for various problems and applications concerning noise sensitivity, and
indicate that "binary trees" (in the form used in basic probability theory) rather
than "cubes" are the correct mathematical framework. That more general set-
ting allows the study, for example, of "correlated" random walks and Brownian
motions. It suggests that the extensive investigation of Boolean functions, based
on the discrete cube, may be complemented by investigations based on binary
trees. This point of view may reflect on other topics studied in this chapter.

8 PERCOLATION

We have mentioned in the introduction that the area in which threshold behavior
was originally studied is physics. In this section we will discuss the model of
percolation.

Consider the graph G of an ra by ra +1 planar rectangular grid. The vertices
of G are thus points of the form ( i , j ) : 1 < i < ra, 1\< j < ra + 1, and two vertices
are adjacent in the graph G if they agree in one coordinate and differ by one in
the other coordinate. Questions concerning percolation in the plane (usually on
the infinite grid) are very important. Russo's lemma was proven in the context of
percolation, and Kesten proved a sharp threshold result on the way to proving
his famous result [306] on critical probabilities for planar percolation. (For a
simple proof of Kesten's theorem and an extension to Voronoi percolation, see
the recent papers by Bollobas and Riordan [64, 65].)

Choose every edge in G to be "open" with probability p. What is the proba-
bility of an open path from the left side of the rectangle to the right side? Is there
a sharp threshold? We can ask and immediately answer the analogous question
on the torus when we identify the left and right sides of the rectangle and the
top and bottom sides, or even just for a cylinder when we identify only the left
and right sides. When we look for a path homotopic to the horizontal path from
(0,0) to (0, m 4-1), a sharp threshold follows from the proof of theorem 5.1.

The total influence of the Boolean function / described by "left-right" per-
colation on the ra 4- 1 by m grid is a basic notion in percolation theory. It is
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conjectured that /(/) c± ra3/4 ~ n3/8, where n is the number of variables. This
conjecture was verified for one of the variants of planar percolation (site perco-
lation on the triangular grid) based on the works of Smirnov [479], and Lawler,
Schramm, and Werner [355].

Basic Problem: For a Boolean function / with //(/) bounded away from 0 and
1, find sufficient conditions to guarantee that for some a,/? > 0, na < /(/) <
n1/'-/?.

It was shown by Kesten [307, 308] that this property holds for the crossing
event for planar percolation. Why does the total influence for percolation behave
as a power of n? We can expect that the reason lies in some symmetry like the
one considered in theorem 5.2 of Bourgain and Kalai. However, two facts are
worth noting. The first is that the present formulation of Theorem 5.2 is not
sufficiently strong to yield lower bounds of the form /(/) > na. The second is
that the Boolean function we described does not admit many symmetries. What
it does seem to have is "approximate" symmetries. We expect that as the grid
becomes finer, there will be some "limit object" (the scaling limit) reflecting an
approximate symmetry of our functions under continuous maps of the square
to itself. Such a symmetry is expected in any dimension. In two dimensions,
it is expected that the limit object is symmetric under conformal maps. This
was proven by Smirnov [479] for site percolation on the triangular grid. Noise
sensitivity for the crossing event was proved in Benjamini et al. [45] and Schramm
and Steif [459] recently proved a very strong form of it.

We now briefly discuss several related issues:

1. First passage percolation. Let / be a Boolean function. Consider a real
function g defined on the discrete cube. Let 2 / i » 2 / 2 > • • • ?2/n De independent,
identically distributed random variables. Define

Understanding the behavior of the function g is of interest in percolation
theory. In this context / is the Boolean function that describes the existence
of a path of open edges between two points on the grid. Curiously, the same
model is related to questions raised in mechanism design in economics theory.
Influences and methods used to study them apply very nicely to the study of
first passage percolation [44].

2. Models with dependence. One of the major research challenges is to
extend the results described in this chapter to models where the probability
distribution is not a product distribution. Important cases are the Ising and
the more general Potts and random cluster models, as well as models based
on random walks of various types. The random cluster model is a model of
random subgraphs of a graph G with n edges, where one has a real parameter
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q > 0. The probability of a spanning graph H with k edges is proportional to

where c is the number of connected components of H. This model thus defines
a two-parameter probability distribution on random subgraphs. The challenge
is to find useful discrete isoperimetric theory and useful harmonic analysis for
these probability distributions that will allow us to extend some of the general
theorems described in this chapter. Very recently, Graham and Grimmett
[207] have made a breakthrough in this area, extending the Kahn-Kalai-Linial
theorem and deducing sharp threshold theorems for measures of the random-
cluster type.

3. The Fourier coefficients. The Fourier coefficients of the crossing (and
other) events for percolation are indexed by subgraphs of the grid. The Fourier
transform gives a distribution on such subgraphs which is very interesting.

9 ECONOMICS AND VOTING: AN EXAMPLE OF
SELF-ORGANIZED CRITICALITY

Let us now return to the Condorcet jury theorem from section 1. A key assump-
tion in the theorem is that each agent votes according to his or her signal. There
is recent interesting literature on the case where voters vote strategically based
on their signals. Suppose that every voter wishes to minimize the probability of
mistakes, where we may assign different weights to mistakes in the two direc-
tions. Feddersen and Pesendorfer [152] considered the example of juries, where a
much larger weight is typically given to an innocent person being convicted than
to a guilty one being acquitted. Suppose that in order to convict, one needs two
thirds of the votes. Suppose furthermore that each juror k receives a Boolean
signal Sk such that if the defendant is guilty then Sk = 1 with probability p > 1/2
and if the defendant is innocent then Sk = 1 with probability 1 — p. (We assume
these signals are independent.) Now, if jurors vote according to their signals,
then when p = 0.51 and the number of jurors is large, they will hardly ever
convict.

Feddersen and Pesendorfer considered the case where jurors vote strategi-
cally, using mixed (randomized) strategies. The surprising conclusion is that in
such a situation, ever with a high threshold for conviction and a weak signal,
the probability of either convicting an innocent defendant or acquitting a guilty
one tends to zero as the number of jurors grows, even if the signal is weak. The
one case where this does not hold is where unanimity among all jurors is re-
quired. Feddersen and Pesendorfer's result and analysis is based on the notion
of Nash equilibrium. Nash equilibrium in this case gives us a nice example of
"self-organized criticality." The behavior at the critical point is significant even
when the voting method is biased from the beginning.
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For the reader who is not familiar with game theory, some explanation is in
order. To start with, every member of the jury has four pure strategies for how to
act, given the signal he or she receives: act according to the signal, act opposite
to the signal, acquit regardless of the signal, and convict regardless of the signal.
A mixed strategy means a strategy involving randomization, so the outcome is
probabilistic. In our case, a mixed strategy for juror k would be: upon receiving a
signal to acquit, acquit with probability ak and convict with probability 1 — o^;
upon receiving a signal to convict, acquit with probability /3k and convict with
probability 1 - /3k- We assume that each juror knows the signal Sk he or she has
received, but not the signals or strategies of the other voters, and the jurors vote
in a secret ballot. Furthermore, we assume that the signal strength p is known
to all.

Each juror now votes in such a way as to maximize his or her own perceived
"payoff," defined as follows. Jurors want to minimize the probability of a wrong
decision, and it is considered worse to convict an innocent defendant than to
acquit a guilty defendant. So if the jury reaches the right decision, the payoff for
each juror is zero. If the jury acquits a guilty defendant, the payoff for each juror
is —q, where q G (0,0.5). If the jury convicts an innocent defendant, the payoff
for each juror is q — 1. Note that the payoff function is the same for all jurors, and
depends only on the collective decision of the jury. Given a sequence of mixed
strategies, one for each juror, and based on an equal prior probability of innocence
and guilt, a juror can estimate the posterior probability that the defendant is
guilty as well as the expected payoff. In game theory, the Nash equilibrium point
is a sequence of mixed strategies such that no player can expect a gain in payoff
by deviating from his or her strategy as long as none of the other players deviates.

When we consider general voting methods and not only majority rules, it
can be shown that "asymptotically complete aggregation of information" is in-
timately related to having a sharp threshold [451]. In particular, if there is a
sharp threshold, then there is always a Nash equilibrium point for which the
probability of mistakes tends to zero as the number of voters grows.

Fedderson and Pesendorfer's result is related to the question of why we care
about critical behavior to start with. Why is it so often the case that shortly
before an election between two candidates, both of them appear to have a signif-
icant chance of being elected? How come the probabilities we can assign to the
choices of each individual voter do not "sum up" to a decisive collective outcome?
This seems especially surprising in view of the sharp threshold phenomenon. Fed-
derson and Pesendorfer's result suggests that the strategic behavior of voters can
push the situation towards criticality. Another explanation would challenge the
independence of the signals received by the voters.

There are other relations between threshold phenomena and economics and
social choice theory. We have already seen in theorem 3.9 that having a sharp
threshold for a sequence of monotone Boolean functions is equivalent to hav-
ing a diminishing Shapley-Shubik power index. A famous result in social choice
theory is Arrow's impossibility theorem [22] concerning election methods when
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there are three or more candidates. Condorcet's famous "paradox" demonstrates
that given three candidates A, B, and C, the majority rule may result in the
society preferring A to B, B to C, and C to A. Arrow's Impossibility Theo-
rem is an extension of Condorcet's paradox, and states that under certain gen-
eral conditions such non-transitive social preferences cannot be avoided under
any non-dictatorial voting method. Relations between threshold phenomena and
Arrow-type theorems are described in Kalai [288, 289].

As in the percolation discussion in section 8, a further problem in the context
of economics is to understand matters under more realistic probabilistic assump-
tions, moving away from product distributions. This poses interesting conceptual
and technical problems. Haggstrom, Kalai, and Mossel [222] studied aggregation
of information in models with dependence. Another challenge in the economic
arena is to study threshold phenomena (aggregation of information) and related
notions such as noise sensitivity for more complex models.

10 CONCLUSIONS AND OPEN PROBLEMS

Threshold phenomena and related concepts such as pivotality, influence, and
noise sensitivity are important in many areas of mathematics, science, and engi-
neering. We have described some mathematical advances in the understanding of
threshold behavior and related phenomena, as well as various applications and
connections, and some open problems. The underlying mathematical concepts
are similar in different disciplines. However, bridging the different points of view,
methodologies, and interpretations is a major challenge. The subequent chapters
of this book address this challenge from the perspectives of physics and computer
science.

Over the course of this chapter, we have highlighted some important open
problems. These include proving Friedgut's conjecture 5.4 and finding sharper
versions of Bourgain and Kalai's theorem 5.2.2 A less explicit but nevertheless
important problem is to explain the emergence of power laws in the threshold
interval, where the width of the interval behaves as n~@ where j3 > 0 is a real
number.

A fundamental challenge is to relate the threshold behavior to the threshold's
location, and to find methods to exclude the possibility of oscillating critical
probabilities. We have mentioned this issue in the context of the &-SAT problem.
It is equally of interest for many other problems as well.

Another important challenge is to find methods to deal with the influence
of events of small probability. This is related to a detailed understanding of how
the function //p(/) behaves, and especially to the analysis of large deviations of
the threshold behavior. In this chapter we have dealt mainly with te(f) when c is

2Falik and Samorodnitsky [150] have very recently found a new proof of the Kahn-Kalai-
Linial theorem based on an extension of the edge-isoperimetric inequality. Their methods may
be relevant to some of the problems that we have mentioned.
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fixed. It is of great interest to understand dependence on e. The precise behavior
of the function np(f) in the threshold interval and the situation when c itself is
very small and expressed as a function of n are both very interesting topics. Kahn
and Kalai [286] have proposed far-reaching conjectures concerning the influence
Ip(f] of Boolean functions / when iip(f) is a function of n and tends to 0
with increasing n. Additionally, they have studied possible applications towards
finding the location of the critical probability.

It would also be interesting to study threshold behavior and influences when
we replace the Boolean cube {0, l}n by En when £ is a finite alphabet with more
than two letters. We expect, in that case, that for symmetric monotone functions
the transition will occur in small "membranes" [290]. There is interesting related
work concerning powers of arbitrary graphs by Alon, Dinur, Friedgut, and Su-
dakov [18]. There are various other generalizations of Boolean functions. Some
can be found in Ben-Or and Linial's original paper [46] on collective coin flipping
and are waiting to be explored further. Another important generalization is to
functions of the form

These are of great importance in mathematics (e.g., error-correcting codes) and
computer science (e.g., extractors).

Finally, it is worth repeating a problem already mentioned in several con-
texts: studying threshold behavior and related notions of noise sensitivity and
Fourier analysis for various models, with non-product probability distributions,
namely, when the assumption of probability independence is dropped.
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CHAPTER 3

Analyzing Search Algorithms with Physical
Methods
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1 INTRODUCTION

The computational effort needed to deal with large combinatorial structures
varies considerably with the task to be performed and the resolution procedure
used [425]. The worst-case complexity of a decision or optimization problem is
defined as the time required by the best algorithm to treat any possible input to
the problem. For instance, the worst-case complexity of the problem of sorting a
list of n numbers scales as n log n: there exist several algorithms that can order
any list in at most ~ n log n elementary operations, and none with asymptotically
fewer operations. Unfortunately, the worst-case complexities of many important
computational problems, called NP-complete, are not known. Partitioning a list
of n numbers in two sets with equal partial sums is one among hundreds of known
NP-complete problems. It is a fundamental conjecture of theoretical computer
science that there exists no algorithm capable of partitioning any list of length
n, or of solving any other NP-complete problem with inputs of size n, in a
time bounded by a polynomial of n. Therefore, when trying to solve such a
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problem exactly, one necessarily uses algorithms that may take exponential time
on some inputs. Quantifying how "frequent" these hard inputs are for a given
algorithm is the question answered by the analysis of algorithms. We will present
an overview of recent work by physicists to address this point, and more precisely
to characterize the average performance—hereafter simply called complexity—of
a given algorithm over a distribution of inputs to a computational problem.

The history of algorithm analysis by physical methods and ideas is at least
as old as the use of computers by physicists. One well-established chapter in
this history is the analysis of Monte Carlo sampling algorithms for statistical
mechanics models. It is well known that phase transitions, that is, abrupt changes
in the physical properties of the model, can imply a dramatic increase in the time
necessary for the sampling procedure. This phenomenon is commonly known as
critical slowing down. The physicist's insight comes from the analogy between the
dynamics of algorithms and the physical dynamics of the system. That analogy
is quite natural: in fact many algorithms mimic the physical dynamics.

A very new idea is, instead, to abstract from physically motivated problems
and use ideas from statistical mechanics to analyze the dynamics of algorithms.
There are many reasons to consider the analysis of algorithms and statistical
physics as close relatives. In both cases one would like to understand the asymp-
totic behavior of dynamical processes acting on configuration spaces that are
exponentially large in the size of the problem. The differences between the two
disciplines lie mainly in the methods—and, we are tempted to say, the style—
of investigation. Theoretical computer science derives rigorous results based on
probability theory. However, these results are sometimes too weak for a complete
characterization of the algorithm. Physicists instead provide heuristic results
based on intuitively sensible approximations. These approximations are eventu-
ally validated by a comparison with numerical experiments. In some lucky cases,
approximate results are exact in the asymptotic limit of large problem size: esti-
mates are turned into conjectures which are left for future rigorous derivations.

Perhaps more interesting than stylistic differences is the "point of view" that
physics brings. Let us highlight two consequences of this point of view.

First, a particular importance is attributed to complexity phase transitions,
in other words, abrupt changes in the resolution complexity as some parame-
ter defining the input distribution is varied [177, 254]. We shall consider two
examples in the next sections:

1. Random satisfiability of Boolean constraints (SAT). In fc-SAT one is given
an instance, namely a set of ra logical constraints (clauses) among n Boolean
variables X i , . . . ,xn, and wants to find a truth assignment for the variables
that fulfills all the constraints. Each clause is the disjunction (logical OR) of k
literals, a literal being one of the n variables or its negation. An example of a
3-SAT clause might be (xi Vxi7 Vz5T). Random k-SAT is the k-SAT problem
supplied with a distribution of inputs uniform over all instances having fixed
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values of n and ra. The limit of interest is n, ra —> oo at fixed ratio a — m/n
of clauses per variable [196, 400].

2. Vertex cover of random graphs (VC). An input instance of the VC decision
problem consists of a graph G with n vertices and ra edges, and an integer
number X. The problem is to find a way of distributing X covering marks
over the vertices in such a way that every edge of the graph is covered: that
is, at least one of its ending vertices is marked. A possible distribution of
inputs is provided by drawing random graphs G a la Erdos-Renyi, that is,
with uniform probability among all the graphs having n vertices and ra edges.
The limit of interest is n, ra —> oo at fixed mean degree c = 2ra/n.

The algorithms for random SAT and VC we shall consider in the next sec-
tions undergo a complexity phase transition as the input parameter TT (= a for
SAT, c for VC) crosses some critical threshold TTC. Typically, resolution of a ran-
domly drawn instance requires linear time below the threshold TT < ITC and expo-
nential time above TT > TTC. The observation that the most difficult instances are
located near the phase boundary confirms the relevance of the phase-transition
phenomenon.

Second, a key role is played by the intrinsic (algorithm-independent) prop-
erties of the instance under study. The intuition is that, underlying the dramatic
slowing down of a particular algorithm, a qualitative change occurs in some struc-
tural property of the problem, that is, the geometry of the space of solutions.
While there is no general understanding of this question, we can further specify
the statements above case-by-case. Let us consider, for instance, a local search
algorithm for a combinatorial optimization problem. If the algorithm never in-
creases the value of the cost, or energy function E(C) where C is the configuration
(assignment) of variables to be optimized over, the number and geometry of the
local minima of E(C) will be crucial for the understanding of the dynamics of the
algorithm. This example is illustrated in section 3.3. The "dynamical" behavior
of a particular algorithm is not necessarily related to any "static" property of
the instance, but this approach is nevertheless of great interest because it could
conceivably provide us with "universal" results. Some properties of the instance,
for example, may imply the ineffectiveness of an entire class of algorithms.

While in this chapter we mainly study the performance of search algorithms
applied to hard combinatorial problems such as SAT and VC, we also consider
easy—that is, polynomial—problems as benchmarks for these algorithms. The
reason is that we want to understand if the average hardness of resolution for
an NP-complete problem with a given distribution of instances and a given al-
gorithm truly reflects the intrinsic hardness of the combinatorial problem, or
is simply due to the algorithm's lack of efficiency. The benchmark problem we
shall consider is random XORSAT, a version of satisfiability that is much simpler
than SAT from a computational complexity point of view [112]. The essential
difference with SAT is that a clause is said to be satisfied if the exclusive, rather
than inclusive, disjunction of its literals is TRUE: logical OR is replaced by XOR.
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XORSAT may be recast as a linear algebra problem, where a set of ra equations
involving n Boolean variables must be satisfied modulo 2, and is, therefore, solv-
able in polynomial time by methods such as Gaussian elimination. Nevertheless,
it is legitimate to investigate the performance of general search algorithms for
this kind of polynomial computational problem. In particular, we shall see that
some algorithms requiring exponential time to solve random SAT instances be-
have badly on random XORSAT instances too. A related question we shall focus
on in section 3.2 is decoding, which in some cases may also be expressed as the
resolution of a set of Boolean equations.

The chapter is organized as follows. Section 2.1 gives an overview of back-
tracking search algorithms, which, roughly speaking, work in the space of in-
stances. We explain the general ideas and then illustrate them on random SAT
(sec. 2.2) and VC (sec. 2.3). In section 2.4 we consider the fluctuations in run-
ning times of these algorithms and analyze the possibility of exploiting these
fluctuations in random restart strategies. In section 3 we turn to local search
algorithms, which work in the space of configurations. We review the analysis of
such algorithms for decoding problems (sec. 3.2), random XORSAT (sec. 3.3),
and SAT (sec. 3.4). Finally, we suggest some possible future developments in the
field.

2 ANALYSIS OF THE DAVIS-PUTNAM-LOVELAND-LOGEMAN
SEARCH PROCEDURE

2.1 OVERVIEW OF THE ALGORITHM AND PHYSICAL CONCEPTS

In this section, we briefly describe the Davis-Putnam-Loveland-Logemann
(DPLL) procedure [118, 220]. A decision problem can be formulated as a con-
straint satisfaction problem, where variables must be assigned so as to fulfill the
required constraints. For simplicity, we suppose here that variables may take a
finite set of values with cardinality v, that is, v — 2 for SAT or VC. DPLL is an
exhaustive search procedure operating by trial and error, the sequence of which
can be represented graphically by a search tree (fig. 1). The tree is defined as
follows:

1. A splitting node in the tree corresponds to a variable being selected, by a
heuristic method to be specified.

2. An outgoing branch (edge) codes for the value of the variable and the logical
implications of this choice upon constraints and variables not yet assigned.
Clearly, a splitting node gives birth to v branches at most.

3. Implications can lead to:
3.1 a solution (S in fig. 1) satisfying all constraints, terminating the search

process
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FIGURE 1 Types of search trees generated by the DPLL solving procedure for vari-
ables taking v = 2 values at most. Splitting nodes (black dots) stand for the selection
of variable made by a heuristic, and edges between nodes denote the implications of
assigning a value to the variable, (a) simple branch: the algorithm easily finds a solution
S without any backtracking, (b) dense tree: in the absence of a solution, the algorithm
repeatedly encounters contradictions C and builds a "bushy" tree, with many branches
of various lengths, before stopping, (c) mixed case, branch + tree: if many contradic-
tions C arise before reaching a solution, the resulting search tree can be decomposed
in a single branch followed by a dense tree. The junction G is the highest backtracking
node reached back by DPLL.

3.2 a violated constraint, in which case the branch ends in a contradiction
(C in fig. 1), the last choice is modified (backtracking on the tree) and
the procedure goes on along a new branch (repeat at step 2 above)

3.3 a state where some constraints remain and further assumptions on the
variables have to be made (repeat at step 1 above)

A computer-independent measure of computational complexity is the num-
ber of operations necessary to solve the instance. This reflects the resolution time,
and is given by the size Q of the search tree: the number of splitting nodes it
contains. Performance can be improved by designing sophisticated heuristic rules
for choosing variables in step 1 above. Q is a stochastic variable that depends
on the instance under consideration and on the choices made by the variable as-
signment procedure. Its average value,1 Q, is a function of the input distribution

1More precisely, we are interested in the median value. The mean and median coincide
in the absence of large fluctuations, but even in the presence of large fluctuations the median
behavior can be reconstructed from the mean complexity of a search subtree. We will see this
in section 2.2.3.
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parameters TT, that is, the ratio a of clauses per variable for SAT, or the average
degree c for the VC of random graphs. Our aim is to determine the values of TT
for which the complexity is linear, Q = ^n or exponential, Q = 2nuJ, in the size
n of the instance. We also wish to calculate the coefficients 7,0; as functions of
7T.

The DPLL algorithm gives rise to a dynamical process. The initial instance
is modified during the search through the assignment of some variables and
the simplification of the constraints that contain these variables. Therefore, the
parameters of the input distribution are modified as the algorithm runs. This
dynamical process has been studied rigorously and understood in the case of
a search tree reducing to one branch (fig. l(a)) [1, 88, 89, 182, 294]. Study
of trees with massive backtracking, that is, figure l(b) and (c), is much more
difficult. Backtracking introduces strong correlations between nodes visited by
DPLL at very different times, but close in the tree. In addition, the process is non-
Markovian in that instances attached to each node are committed to memory,
to allow the search to resume after a backtracking step.

The study of the operation of DPLL is based on the following, elementary
observation. Since instances are modified when treated by DPLL, a description of
their statistical properties requires not only the defining parameter (or parame-
ters) TT of the input distribution, but also additional parameters TT' characterizing
the progress of the algorithm. Our task therefore consists of:

1. identifying these extra parameters TT', a point considered in greater mathe-
matical depth in chapter 8;

2. deriving the phase diagram of this new, extended distribution TT, TT' to iden-
tify, in TT, TT' space, the critical surface separating instances having a solution
with high probability (the satisfiability, or SAT phase) from instances having
generally no solution (the UNSAT phase), see figure 2;

3. tracking the evolution of an instance under resolution with time t (number of
steps of the algorithm), that is, the trajectory of its characteristic parameters
7r(t),7r'(£) in the phase diagram.

Whether this trajectory remains confined to one of the two phases or crosses
the boundary in between them has dramatic consequences on the resolution
complexity. We find three typical behaviors, depicted in figure 2:

I . Lower (easy) SAT. If the initial instance has a solution and the trajectory
remains in the SAT phase, the instance is easily satisfiable: resolution is linear
with high probability and there is almost no backtracking (fig. l(a)).2 The
trajectory coordinates 7r(t),7rf(t) of the instance during resolution obey a set

2This statement is correct for SAT and VC but is not true for the graph coloring prob-
lem on random graphs [409]. For graph coloring, linear resolution takes place with a finite
probability, though not tending to one when the size of the instance goes to infinity.
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dynamically generated parameter li

FIGURE 2 Schematic representation of the resolution trajectories in the SAT phase
(branch trajectories symbolized by dashed lines) and UNSAT phase (tree trajectories
represented by shaded regions). For simplicity we have considered the case where both
TT and TT* are scalar rather than vector parameters. The vertical axis is the defining pa-
rameter TT for the instance distribution. Instances are almost always satisfiable (SAT) if
TT < TTC, unsatisfiable (UNSAT) if TT > TTC. Under the action of DPLL, the distribution of
instances is modified and requires another parameter TT' to be characterized (horizontal
axis). Here, TT' is equal to zero prior to any action of DPLL. For non-zero values of
TT', the critical value of the defining parameter -n changes: the bold line TT^TT') defines
a boundary separating typically SAT from typically UNSAT instances. For satisfiable
and easy instances S, DPLL goes along a branch trajectory in a linear time. For unsat-
isfiable instances U, DPLL takes an exponential time to go through the tree trajectory.
For the mixed case of hard satisfiable instances MS, a branch trajectory crosses the
boundary separating the two phases at point G (corresponding to junction in fig. l(c)),
leading to the exploration of UNSAT subtrees before a solution is finally found.

of coupled ordinary differential equations, accounting for the changes in the
distribution parameters under DPLL.

2. UNSAT. If the initial instance has no solution, then solving the instance—by
finding a proof of unsatisfiability—takes exponentially large time and makes
use of massive backtracking (fig. l(b)). Analysis of the search tree is much
more complicated than in the linear regime, and requires a partial differential
equation that gives information on the population of branches with parame-
ters TT, TT' throughout the growth of the search tree.

3. Upper (hard) SAT. In some intermediary regime, instances are satisfiable but
hard: finding a solution one requires an exponentially long time (fig. l(c)).
This may be related to the crossing of the boundary between SAT and UNSAT
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phases of the instance trajectory. We therefore have a mixed behavior that
can be understood as a combination of the two cases above.

We now explain how to apply this approach concretely to the cases of random
SAT and VC.

2.2 AVERAGE-CASE ANALYSIS OF RANDOM SAT

The input distribution of 3-SAT is characterized by a single parameter TT = a,
the ratio of clauses to variables. The action of DPLL on an instance of 3-SAT,
illustrated in figure 3, causes the changes of the overall numbers of variables and
clauses, and thus of a. Furthermore, DPLL reduces some 3-clauses to 2-clauses.
We use a mixed 2+p-SAT distribution [407], where TT' — p is the fraction of
3-clauses, in order to model what remains of the input instance at a node of the
search tree. The phase diagram of 2-hp-SAT is the natural space in which the
DPLL dynamics takes place. An input 3-SAT instance with ratio a shows up
on the right vertical boundary of figure 4 as a point of coordinates (p = l,a).
Under the action of DPLL, the representative point moves away from the 3-
SAT vertical axis and follows a trajectory in the (p, a) plane. Using experiments
and methods from statistical mechanics [407] as well as rigorous calculations [8],
the threshold line ac(p) separating SAT from UNSAT phases may be estimated
with the results shown in figure 4. For p < p0 = 2/5, that is, left of point T, the
threshold line is given by ac(p) = 1/(1 — p)- Above p0> no exact expression for
ac(p) is known.

In this section, we show that the trajectory location in the phase diagram
allows a precise understanding of the search tree structure and of complexity as
a function of the parameter a of the instance to be solved (inset of fig. 4). In
addition, we present an approximate calculation of trajectories accounting for the
case of massive backtracking, for UNSAT instances as well as slightly below the
threshold in the SAT phase. Our approach is based on a non-rigorous extension
of works by Chao and Franco, who first studied the action of DPLL (without
backtracking) on easy satisfiable instances [88, 89] as a way of obtaining lower
bounds on the threshold ac. See Achlioptas [1] for a recent review.

DPLL requires a mechanism for selecting variables at splitting nodes. We
consider two heuristics [88, 89] for doing this:

1. Unit Clause (UC): pick a literal at random among a unit clause if any, or pick
any unset variable at random otherwise; and

2. Generalized Unit Clause (GUC) heuristic: pick a literal at random among the
shortest available clauses.

Let us emphasize that the idea of trajectory is made possible thanks to
an important statistical property of these heuristics, namely that they induce no
bias or correlation in the instance distribution [89]. Such a statistical "invariance"
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FIGURE 3 Example of 3-SAT instance and DPLL resolution. Step 0. The instance
consists of m = 5 clauses involving n = 4 variables x, y, it;, z, which can be assigned to
TRUE (T) or FALSE (F); w means NOT w and V denotes the logical OR. The search tree
is empty. 1. DPLL selects a variable using a specified heuristic, and assigns a value to
the variable, e.g., w = T. A node and an edge symbolizing respectively the variable
selected (w) and its value (T) are added to the tree. 2. The logical implications of
the last choice are extracted: clauses containing w are satisfied and eliminated, clauses
including w are simplified and the remaining ones are left unchanged. If no unit clause
(with a single variable) is present, a new variable has to be selected. 3. Splitting takes
over. Another node and another edge are added to the tree. 4. Same as step 2 but
now unit clauses are present. The variables they contain have to be fixed accordingly.
5. Propagation of the unit clauses results in a contradiction. The current branch dies
out and gets marked with C. 6. DPLL backtracks to the last split variable (x), inverts
it (F) and creates a new edge. 7. Same as step 4. 8. Propagation of the unit clauses
eliminates all the clauses. A solution S is found and the instance is satisfiable. For an
unsatisfiable instance, unsatisfiability is proven when backtracking (see step 6) is not
possible anymore since all split variables have already been inverted. In this case, all
the nodes in the final search tree have two descendant edges and all branches terminate
in a contradiction C.
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(see ch. 8) is required to ensure that the dynamical evolution generated by DPLL
remains confined to the phase diagram of figure 4. Note that more sophisticated
heuristics, that is, those based on the occurences of variables in the instance,
could require tracking an infinite number of parameters TT' [294, 521].

2.2.1 Lower SAT Phase and Branch Trajectories. Let us consider the action of
DPLL in the absence of backtracking, where the search tree is a single branch
(fig. l(a)). The numbers of 2- and 3-clauses are initially equal to C<2 — 0, Cs —
a0n respectively, where a0 is the clause-to-variable ratio for the instance to be
solved. Under the action of DPLL, C<2 and €3 follow a Markovian stochastic
evolution process, as the absolute depth T along the branch (number of assigned
variables) or relative depth t — T/n (fraction of assigned variables) increases.
Note that since there is no backtracking, the depth also represents the time or
number of steps for which the algorithm has been running.

It may be shown that both C<2 and C% are concentrated around their average
values, whose densities Cj(t) = E[Cj(tn)/n] (j — 2,3) obey a set of coupled
ordinary differential equations [1, 88, 89],

representing the flows out of the 3-clause population as well as into and out of
the 2-clause population. The function p ( t ) is the heuristic-dependent probability
that DPLL selects a literal from a 2-clause [97, 100]: puc(t) = 0, and provided
a0 > 2/3, pcuc(^) = 1 — [c2(£)/(l — t)}. To obtain the single branch trajectory
in the phase diagram of figure 4, we solve the ODEs (1) with initial conditions
C2(0) = 0,cs(0) = a®, and perform the change of variables

Results are shown for the GUC heuristics and starting ratios c*o = 2 and
2.8 in figure 4. Trajectories, indicated by light dashed lines, first head to the
left and then reverse to the right until reaching a point on the 3-SAT axis at a
small ratio. Further action of DPLL leads to a rapid elimination of the remaining
clauses and the trajectory ends up at the right lower corner S, where a solution
is found.

Frieze and Suen [182] have shown that for the GUC heuristic, at ratios
&o < aL ~ 3.003 the number of backtrackings necessary to reach a solution is
bounded from above by a power of logn. Thus, the full search tree essentially
reduces to a single branch, and is entirely described by the ODEs (1). The
average size Q of the branch then scales linearly in n with a multiplicative factor
7(0:0) = Q/n that can be computed analytically [97, 100]

The boundary otL of this lower SAT region can be defined as the largest
initial ratio QQ such that the branch trajectory p(t),a(t) issued from ao never
leaves the SAT phase in the course of DPLL resolution.
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FIGURE 4 Phase diagram of 2-fp-SAT and resolution trajectories under DPLL action.
The bold solid line marking the threshold ac(p) separates the SAT from UNSAT phase.
Departure points for DPLL trajectories are located on the 3-SAT vertical axis. Arrows
indicate the direction of "motion" along trajectories (dashed curves) parametrized by
the fraction t of variables set by DPLL. For small ratios a < OLL (~ 3.003 when DPLL
selects variables using the generalized unit clause heuristic), branch trajectories remain
confined to the SAT phase and end in a solution S at coordinates (1,0), found with a
simple search process as in figure l(a). For a > ac ~ 4.3, proofs of unsatisfiability are
given by complete search trees where all leaves contain contradictions, as in figure l(b).
The tree trajectories are represented by bold dashed lines (full arrows) ending near the
halt (dot-dashed) line. For ratios &L < a < ac, the branch trajectory intersects the
threshold line at some point G. A contradiction almost surely arises and extensive back-
tracking up to G is needed, as in figure l(c). Only with exponentially small probability
does the trajectory (dashed curve) cross the "dangerous" region where contradictions
are likely to occur, and then exit from this region to end up with a solution (low-
est dashed trajectory). Inset: Resolution time of 3-SAT instances as a function of the
ratio of clauses per variable a and for three different sizes. Data correspond to the
median resolution time of 10,000 instances by DPLL; the mean time may be somewhat
larger due to the presence of rare, exceptionally hard instances, cf. section 2.4. The
computational complexity is linear for a < O.L ~ 3.003, exponential above.
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FIGURE 5 Imaginary, parallel growth process of an UNSAT search tree used in the
theoretical analysis of the computational complexity of satisfiability. Variables are fixed
through unit clause propagation, or the splitting heuristics as in the DPLL procedure,
but branches evolve in parallel. T denotes the absolute depth in the tree: the number
of variables assigned by DPLL along each (living) branch. At depth T1, one literal is
chosen on each branch, either among 1-clauses (unit clause propagation: grey circles,
not shown in fig. 1 representation), or among 2- or 3-clauses (split: black circles as in
fig. 1). If a contradiction occurs as a result of unit propagation, the branch gets marked
with C and dies out. The growth of the tree proceeds until all branches die out. The
resulting tree is identical to the one built through the usual, sequential operation of
DPLL.

2.2.2 UNSAT Phase and Tree Trajectories. For ratios above the threshold (ao >
ac w 4.3), instances almost never have a solution, but a considerable amount
of backtracking is necessary before proving that clauses are incompatible. As
shown in figure l(b), a generic UNSAT tree includes many branches. The average
number of nodes, Q, or the average number of branches (leaves), B — Q—l, grows
exponentially with n [95]. It is convenient to define its logarithm w as B — 2nuJ.
Contrary to the previous section, the sequence of points (p, a) characterizing
the evolution of the 2-fp-SAT instance solved by DPLL no longer constitutes a
line, but rather a patch or a cloud of points with a finite extension in the phase
diagram of figure 2.

We can compute analytically the logarithm u of the size of these patches,
as a function of QO, extending the probabilistic analysis of DPLL to the UNSAT
region. A priori, this would seem to be a very difficult task since the search
tree of figure l(b) is the output of a complex, sequential process: nodes and
edges are added by DPLL through successive descents and backtrackings. We
instead imagine a different construction, resulting in the same complete tree but
mathematically analyzable: we grow the tree in parallel, layer by layer (fig. 5).
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A new layer is added by assigning one more variable along each living branch,
according to the DPLL heuristic. As a result, a branch may (1) split, (2) keep
growing, or (3) result in a contradiction and die out. Cases 1, 2 and 3 are stochas-
tic events, the probabilities of which depend on the characteristic parameters
c2,cs defining the 2-fp-SAT instance carried by the branch, and on the relative
depth (fraction of assigned variables) t — T/n in the tree. We take into account
the correlations between the parameters C2,ca on each of the two branches is-
sued from splitting (case 1), but neglect any further correlation between different
branches at different levels in the tree [97, 100]. This Markovian approximation
enables us to write an evolution equation for the logarithm u;(c2,C3,£) of the
average number of branches with parameters C2,ca as the depth t increases,

H incorporates the details of the splitting heuristic. In terms of the partial deriva-
tives 2/2 = d<jj/dc<2, ys = duj/dcz, we find for the UC and GUC heuristics

Partial differential equation (3) is analogous to growth processes encountered
in statistical physics [385]. (For a different perspective on surface growth and
computational models, see also ch. 11.) The surface u;, growing with "time" t
above the plane (c2,ca)—or equivalently from (2), above the plane (/?, a), as
shown in figure 6—describes the whole distribution of branches. The average
number of branches at depth t in the tree equals B(t) = f dp da 2nuj(p,a,t) ^
2no>*(t)^ where u*(i) — maxp)Q; is the maximum of cj(p, a,t) over p, a, reached
at p*(t),a*(t). In other words, the exponentially dominant contribution to B(t)
comes from branches carrying 2+p-SAT instances with parameters p*(£),a*(£),
which define the tree trajectories on figure 4.

The hyperbolic line in figure 4 indicates the halt points, where contradictions
prevent dominant branches from further growth. Each time DPLL assigns a
variable through unit propagation, an average number u(p, a) of new 1-clauses
is produced, resulting in a net addition of it — 1 1-clauses. As long as u < 1,
1-clauses are quickly eliminated and do not accumulate. Conversely, if u > 1,
1-clauses tend to accumulate. Opposite 1-clauses x and x are likely to appear,
leading to a contradiction [88, 182]. The halt line is defined by u(p,a) = 1, and

Where
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in the case of GUC, may be calculated explicitly as

This result exhibits the expected scaling [39]. It may indeed be exact: as a0

increases, search trees become smaller and smaller, and correlations between
branches become weaker and weaker.

2.2.3 Upper SAT Phase and Mixed Branch-Tree Trajectories. The advantages of
the trajectory approach proposed in this chapter are best seen in the upper SAT
phase, namely for ratios ao ranging from a/, to ac. This intermediate region
juxtaposes branch and tree behaviors: see figure l(c). The branch trajectory
starts from the point (p = l,a — QQ) corresponding to the initial 3-SAT in-
stance and hits the critical line ac(p) at a point G with coordinates (PG,OLG)
after ntc variables have been assigned by DPLL (fig. 4). The algorithm then
enters the UNSAT phase and generates 2-fp-SAT instances with no solution,
requiring it to search through an entire dense subtree between G and the halt
line (fig. 4). The size of this subtree is 2n(1~ tG)u;G, where UG corresponds to
the complexity of the equivalent 2+p-SAT instance at G and can be predicted
analytically from our theory for UNSAT instances. We expect that to a good
approximation, the complexity of the full DPLL search tree is dominated by the
complexity of the dense subtree below G in figure l(c), and so u — O>G(! — to)-
We have verified this scenario experimentally for ao — 3.5. The coordinates of
the average highest backtracking node (po ~ 0.78,ac ~ 3.02), coincide with
the analytically computed intersection of the single branch trajectory and the
critical line ac(p) [97, 100]. As for complexity, experimental measures of a; from
3-SAT instances at ao = 3.5, and of the analogous quantity UJQ from 2+0.78-SAT
instances at OLQ — 3.02, obey the expected identity a; = UG (1 — to) and are m
very good agreement with theory [97, 100]. Therefore, the structure of search
trees for 3-SAT reflects the existence of a critical line for 2-fp-SAT instances.

Note that the upper SAT phase is characterized by large run-to-run com-
plexity fluctuations, arising from fluctuations of the branch trajectory. We will

Along the tree trajectory in figure 4, u*(t) grows from 0 at the right vertical
axis to some final positive value Cj on the halt line. This growth is seen in figure 6.

The value Cj is our theoretical prediction for the logarithm of the complexity
(divided by ri). Values of ti obtained for 4.3 < ao < 20 by solving eq. (3)
compare very well with numerical results [97, 100]. Although our calculation is
not rigorous, it provides a very good quantitative estimate of the complexity.
Furthermore, complexity is found to scale asymptotically as
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FIGURE 6 Snapshots of the surface cj(p, a) for ao = 10 at three different depths:
t = 0.01 (a), t = 0.05 (b) and t = 0.09 (c). The height u*(t) of the top of the surface,
with coordinates p*(£), #*(£), is the logarithm (divided by n) of the number of branches.
The halt line is hit at th w 0.094.
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see in section 2.4 how small complexity fluctuations can be exploited to shorten
the average resolution time. Large fluctuations of the complexity contribute to
the mean complexity in a dominant way, shifting it away from the median value
of interest. Remarkably, by first considering the typical branch trajectory up to
the crossing of the SAT/UNSAT critical line, and then the average size of the
subtree built from this point, we are able to keep these large complexity fluctu-
ations from influencing the calculation, and, therefore, to gain access directly to
the median complexity.

2.3 AVERAGE-CASE ANALYSIS OF VERTEX COVER ON RANDOM
GRAPHS

We now consider the vertex cover (VC) problem, where inputs are random
graphs. One approach is to choose graphs from the Gn,m ensemble: uniformly
at random among all graphs with n vertices and m edges, so that the mean de-
gree is c = 2ra/n. The more analytically tractable approach that we adopt here is
the Gn,p ensemble: the graph has n vertices and each pair of vertices contains an
edge with probability p = c/n, independently of other pairs. Solving VC requires
distributing X covering marks over the vertices such that every edge is covered.
As the density x = X/n of covering marks is lowered, the model undergoes a
cover able/uncover able transition at a critical value xc(c) in the limit n —> oo. For
x > xc(c), vertex covers of size nx exist with probability 1, whereas for x < xc(c)
the number of covering marks is not sufficient. The statistical mechanics analysis
of Weigt and Hartmann [523] gives the result

where W(c) solves the equation Wew = c. This result is compatible with the
bounds of Friez [180] and Gazmuri [193], and has been shown to be exact [37].
For c> e, eq. (7) only gives an approximate estimate of xc(c). More sophisticated
calculations can be found in Weigt and Hartmann [522].

Let us consider a simple implementation of the DPLL procedure for the
present problem. During the computation, vertices can be covered, uncovered,
or simply free, meaning that the algorithm has not yet assigned any value to
that vertex. In the beginning all the vertices are set to free. At each step the
algorithm chooses a vertex i at random among those that are free. If i has
any neighboring vertices that are either free or uncovered, it becomes covered.
If i has only covered neighbors, it becomes uncovered. The process continues
unless the number of covered vertices exceeds X. In that case, the algorithm
backtracks and a previously assigned vertex is given the opposite assignment,
unless this corresponds to making uncovered a vertex that has one or more
uncovered neighbors. The algorithm halts if it finds a solution (in which case it
declares the graph to be coverable), or after unsuccessfully exploring the entire
search tree (in which case it declares the graph to be uncoverable).

for
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FIGURE 7 Phase diagram of VC. The low-x, high-c UNCOV phase is separated from
the high-a;, low-c COV phase by the dashed line xc(c), see eq. (7). The symbols (numer-
ical results) and continuous lines (analytical predictions, see eq. (8)) refer to the simple
search algorithm described in the text. The dotted line XL(C) separates the upper COV
branch trajectories from the lower COV mixed trajectories.

Of course, one can improve on this algorithm by using smarter heuris-
tics [521]. One remarkable example is the leaf-removal algorithm defined in Bauer
and Golinelli [37]. Instead of picking a vertex at random, one chooses a degree-one
vertex, declares it uncovered, and declares its neighbor covered. This is repeated
on the subgraph of free nodes until no degree-one nodes are left. In the low-
degree, coverable region {c < e,x > xc(c}}, the procedure stops only when the
graph is completely covered. As a consequence, this algorithm can solve VC in
linear time with high probability in the entire region. No equally good heuristic
exists for higher degree, c > e.

2.3.1 Branch Trajectories. Under the action of the algorithms above, the in-
stance is progressively modified and the number of variables reduced. At each
step, a vertex is selected and can be eliminated from consideration regardless of
whether it is declared covered or uncovered. The analysis of the first algorithm
is greatly simplified by the fact that, as long as backtracking has not begun,
the new vertex is selected at random. This implies that the modified instance
produced by the algorithm is still a random graph (see also ch. 8). Its evolution
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FIGURE 8 Number of operations required to solve (or to show that no solution exists
to) the VC decision problem with the search algorithm described in the text. The
logarithm of the number of nodes of the backtracking tree, divided by the size n, is
plotted versus the density of covering marks. Here we consider random instances with
mean degree c — 2. The phase transition is at xc(c — 2) ~ 0.3919 and coincides with
the peak in computational complexity.

can be described by a trajectory in the (c, x) space: starting from the parameters
c0, #0, a straightforward calculation shows that after nt steps of the algorithm
one ends up with a new instance of size n(l — t) and parameters [524]

Similar to the behavior we have seen with DPLL on random satisfiability, two
types of trajectories under this algorithm start out as a branch: simple branches
leading directly to a solution (cf. fig. l(a)) and mixed cases eventually entering
the uncoverable or UNCOV phase (cf. fig. l(c)). This is shown in the phase
diagram in figure 7. By solving eq. (8) for the values of x0 and c0 satisfying the
limiting condition x(t) = 1 as t —» 1, one obtains the line separating the upper
COV easy phase from the lower COV hard phase [524]
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This is shown in figure 7 by the dotted line. Above the line, the algorithm solves
the problem in linear time.

For more general heuristics the analysis becomes less straightforward, be-
cause a graph produced by an intermediate step of the algorithm does not nec-
essarily belong to the standard random graph ensemble. It may be necessary to
increase the number of parameters that describe the evolution of the instance. As
an example, the leaf-removal algorithm mentioned in the previous section is con-
veniently described by three parameters, collectively characterizing the degree
distribution of intermediate graphs [521].

2.3.2 Tree Trajectories. Below the critical line xc(c) (cf. eq. (7)), no solution
exists to a typical random instance of VC. To prove this, our algorithm must
explore a large backtracking tree, taking exponential time. The size of the back-
tracking tree can be computed along the lines of section 2.2.2. However, a good
result can also be obtained from a simple "static" calculation [523].

As in figure 5, we imagine the evolution of the backtracking tree proceeding
"in parallel." At the level / of the tree a set of / vertices has been visited. Call G\
the subgraph induced by these vertices. Since we put a covering mark on every
vertex surrounded by uncovered vertices, each node on the backtracking tree
represents a vertex cover for the associated subgraph G\. Therefore, the number
of backtracking nodes in the full tree is given by

where Nvc(Gi] X) is the number of VCs for G\ using at most X marks. A very
crude estimate of the right-hand side of the equation above is

where we bound the number of VC's of size Xf on GI by the number of ways of
placing Xr marks on / vertices. Weigt and Hartmann [524] provide a refined esti-
mate based on the annealed approximation used in statistical mechanics. Figure 8
compares the results of this calculation with the numerics.

2.3.3 Mixed Trajectories. If the parameters characterizing an instance of VC lie
in the region between xc(c) (cf. eq. (7)) and XL(C) (cf. eq. (9)) the problem can
still be solved but our algorithm takes an exponential time to solve it. After a
certain number of vertices have been visited and declared either covered or un-
covered, the remaining subgraph Gfree can no longer be covered with the leftover
marks. Typically, this happens when the first descent trajectory (8) crosses the
critical line (7).
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FIGURE 9 Probability distributions of the logarithm u of the resolution complexity,
based on 20,000 runs of DPLL on random 3-SAT instances with ratio a = 3.5. Each
distribution corresponds to one randomly drawn instance of size n = 300.

It takes some time for the algorithm to realize this fact. More precisely, it
takes the time needed to prove that Gfree is uncoverable. This time dominates
the computational complexity in this region and can be calculated using meth-
ods similar to those sketched in the previous section. The result, once again, is
reported in figure 8, clearly showing a computational peak at the phase boundary.

Finally, note that this mixed behavior is a consequence of the heuristic used
in the DPLL algorithm, and is absent in the entire c < e region when the leaf-
removal procedure is adopted for the first descent.

2.4 DISTRIBUTION OF RESOLUTION TIMES

Up until now we have studied the typical resolution complexity. The study of the
fluctuations of resolution times is interesting too, particularly in the upper SAT
(lower COV) phase where solutions exist but are found at the price of a large
computational effort. We may expect that there exist lucky but rare resolutions
able to find a solution in a time much smaller than the typical one. Due to the
stochastic character of DPLL, the complexity of the algorithm indeed fluctu-
ates from run to run on the same instance. In figure 9 we show this run-to-run
distribution of the logarithm (jo of the resolution complexity for four instances
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FIGURE 10 Resolution of random 3-SAT instances in the upper SAT phase: logarithm
of complexity with DPLL (u\ circles show simulations, dotted line shows theory) and
restarts (£: squares show simulations, solid line shows theory) as a function of ratio a.

of random 3-SAT with the same ratio a = 3.5. The run-to-run distributions are
qualitatively independent of the particular instances, and exhibit two peaks. The
wide right one, located at LU ~ 0.035, characterizes the majority of resolutions.
It acquires more and more weight as n increases and corresponds to the typical
behavior analyzed in section 2.2.3. The left peak characterizes much faster reso-
lutions, taking place in linear time. The weight of this peak (fraction of runs with
complexities falling within the peak) decreases exponentially fast with n, and can
be estimated numerically as W\-m = 2~n^ with £ « 0.011. Therefore, instances
at a = 3.5 are typically solved in exponential time while a tiny (exponentially
small) fraction of runs only need linear time to find a solution.

A systematic stop-and-restart procedure may be introduced to take advan-
tage of this fluctuation phenomenon and speed up resolution. If a solution is not
found before n splits, DPLL is stopped and rerun after some random permuta-
tions of the variables and clauses. Since the expected number Nresi of restarts
needed to find a solution is equal to the inverse probability l/W\-m of linear
resolutions, the resulting complexity scales as n W^ ~ 2n .̂

To calculate C, Cocco and Monasson [98, 99] have analyzed the whole distri-
bution of complexity for a given ratio a in the upper SAT phase, using methods
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FIGURE 11 The computational complexity of the search algorithm for VC, with
restarts after exp(nu'R) backtracking steps. The complexity is defined as the loga-
rithm of the total number of visited nodes, divided by the size n of the graph. Symbols
refer to n — 30 (circles), 60 (triangles), and 120 (diamonds). The stars are the result
of an n —> oo extrapolation. The continuous and dashed lines reproduce the theoret-
ical prediction with and without taking into account fluctuations of the first descent
trajectory.

similar to those for studying the growth of the search tree in the UNSAT phase,
Linear resolutions are found to correspond to branch trajectories that cross the
UNSAT phase without being hit by a contradiction, see figure 4. Results are
reported in figure 10 and compare very well with the experimentally measured
number 7Vrest of restarts necessary to find a solution. Throughout the upper
SAT phase, the use of restarts offers an exponential gain with respect to the
usual DPLL resolution (see fig. 10 for a comparison of (" and a;). However, the
DPLL algorithm with the stop-and-restart procedure is no longer a complete
algorithm, and cannot prove the absence of solutions unless some sophisticated
modifications are introduced [27].

A slightly more general restart strategy consists of stopping the backtracking
procedure after a fixed number of nodes QR — enujR have been visited. A new
(and statistically independent) DPLL procedure is then started from the begin-
ning. In this case one exploits^lucky, but still exponentially numerous, stochastic
runs. The tradeoff between the exponential gain of time and the exponential
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FIGURE 12 Restart experiments for VC with initial condition CQ — 3.2, XQ = 0.6
(empty circle). The long-dashed line is the critical line (7). The dotted line on the
right is the typical trajectory. The dotted line on on the left is the rare trajectory,
ending at the last (successful) restart of the algorithm for UJ'R — 0.1. The symbols are
numerical results for the (c, x) coordinates of the root of the backtrack tree generated
by the algorithm since the last restart, for different values of u'R. Triangles, squares and
stars denote n — 30, 60, 120, respectively. The solid line is an approximate analytical
prediction for the same quantity.

number of restarts can be optimized by tuning the parameter UJ'R. This approach
is analyzed in Montanari and Zecchina [408], taking VC as a working example. In
figure 11 we show the computational complexity of such a strategy as a function
of the restart parameter UJR. We compare the numerics with an approximate
calculation [408]. The instances are random graphs with average degree c = 3.2
and x = 0.6 covering marks per vertex. The optimal choice of the parameter
seems (in this case) to be w'R w 0, corresponding to polynomial runs.

The analytical prediction reported in figure 11 requires, as for 3-SAT, an
estimate of the execution-time fluctuations of the DPLL procedure (without
restart). It turns out that one major source of fluctuations is, in the present
case, the location in the (c, x) plane of the highest node in the backtracking tree.
In a typical run this coincides with the intersection (CG,XG) between the first
descent trajectory (8) and the critical line (7). However, once an upper bound
ujf

R on the backtracking time is fixed, the problem is solved in those lucky runs
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characterized by an atypical highest backtracking node. Roughly speaking, this
means that the algorithm has made some very good (random) choices in its first
steps. In figure 12 we plot the position of the highest backtracking point in the
(last) successful runs for several values of u f

R . Once again the numerics are in
good agreement with an approximate calculation.

3 ANALYSIS OF LOCAL SEARCH ALGORITHMS

We now turn to the description and study of algorithms of another type, namely
local search algorithms. As a common feature, these algorithms start from a
configuration (assignment) of the variables, and then make successive improve-
ments by changing the values of a few of the variables in the configuration (local
move) at each step. For instance, in the SAT problem, one variable is flipped
from being TRUE to FALSE, or vice versa, at each step. Whereas algorithms of
the DPLL type are complete, giving a definitive answer to any instance of a
decision problem, exhibiting either a solution or a proof of unsatisfiability, local
search algorithms are incomplete, giving a sure answer when a solution is found
but unable to prove unsatisfiability. However, these algorithms can sometimes
be turned into one-sided probabilistic algorithms, with an upper bound on the
probability that after T steps of the algorithm an existing solution has not yet
been found, decreasing to zero when T —> oo [411].

3.1 LANDSCAPE AND SEARCH DYNAMICS

Local search algorithms perform repeated changes to a configuration C of vari-
ables (values of the Boolean variables for SAT, vertex status—marked or un-
marked—for VC) according to some criterion. This criterion is usually based on
the comparison of the cost function F (number of unsatisfied clauses for SAT,
number of uncovered edges for VC) evaluated at C and over its neighborhood.
It is, therefore, clear that the shape of the multidimensional surface C —> E(C),
called the cost or energy function landscape, is of high importance. On intuitive
grounds, if the landscape is relatively smooth with a unique minimum, local pro-
cedures such as gradient descent should be very efficient. Conversely, the presence
of many local minima could hinder the search process (fig. 13). The fundamental
underlying question is to what extent the performance of the dynamical pro-
cess (ability to find the global minimum and time needed to reach it) can be
understood in terms of an analysis of the cost function landscape alone.

This question was intensively studied and answered some years ago for a
limited class of cost functions, called mean-field spin glass models [114]. Indeed,
the characterization of landscapes is of huge importance in physical systems of
this kind. The cost function is simply the physical energy, and local dynamics
are usually low-temperature or zero-temperature Monte Carlo dynamics, essen-



Simona Cocco et al. 87

FIGURE 13 Landscapes corresponding to three different cost functions. Horizontal
axis represents the space of configurations C, while vertical axis is the associated cost
E(C}: (a) smooth cost function, with a single minimum easily reachable with local
search procedures, e.g., gradient descent; (b) rough cost function with many local min-
ima whose presence may damage the performances of local search algorithms. The vari-
ous global minima are spread out homogeneously over the configuration space; (c) rough
cost function with global minima clustered in some portions of the configuration space
only.

tially equivalent to gradient descent.3 Depending on the parameters of the input
distribution, the minima of the cost functions may undergo structural changes,
notably a phenomenon that in physics is called clustering.

Clustering has been shown rigorously to take place in the random 3-XORSAT
problem [101, 112, 131, 170, 398, 445], and is likely to exist in many other random
combinatorial problems such as 3-SAT [56, 395]. Instances of the 3-XORS AT
problem with ra = an clauses and n variables almost surely have solutions as
long as a < ac « 0.918 [101, 131, 170, 398, 445]. The clustering phase transition

3The Monte Carlo algorithm we consider, e.g., in section 3.2 is a sequence of variable
changes from an initial (random) configuration performed according to some simple rule
allowing the stationary distribution of configurations to obey the Gibbs measure, P(C) oc
exp(—E(C)/r) where r(> 0) is called temperature. The Metropolis scheme is one such rule:
attempt to change the configuration from C —•* C"; if E(Cf) < E(C), accept the change; if
E(C') > E(C), accept the change with probability p = exp(-(E(C") - E(C))/r) and reject it
with probability 1 — p.
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takes place at as w 0.818 and is related to a change in the geometric structure
of the space of solutions, illustrated in figure 13:

1. When a < a5, the space of solutions is connected. This means that given a
pair of solutions C, C", that is, two assignments of the n Boolean variables
that satisfy the clauses, there almost surely exists a sequence of solutions
CjJ = 0 ,1 ,2 , . . . , J, with C0 = C, Cj = C1', J = O(n), connecting the
two solutions such that the Hamming distance (number of different variables)
between Cj and Cj+i is bounded from above by some finite constant when
n —> oo.

2. When as < a < ac, the space of solutions is no longer connected. It is
made up of an exponential (in n) number of connected components, called
clusters, each containing an exponentially large number of solutions. Clusters
are separated by large voids: the Hamming distance between two clusters,
namely the smallest Hamming distance between pairs of solutions belonging
to these clusters, is of the order of n.

On intuitive grounds, a change in the statistical properties of the cost func-
tion landscape—such as in the structure of the solution space—could affect the
search dynamics. This connection between static properties and dynamics has
been established in numerous cases in the context of mean-field models of spin
glasses [114], and subsequently also proposed in studies of local search algorithms
in combinatorial optimization problems [56, 395, 494]. It is a crucial element in
the algorithmic approach discussed in chapter 4. So far, there is no general ex-
planation as to when and why features of dynamical phenomena that are a priori
algorithm-dependent should be related to, or predictable from, statistical prop-
erties of the cost function landscape. In the following, we shall see some examples
in which such a connection indeed exists (sec. 3.2) and others where its presence
is far less obvious (sec. 3.3,3.4).

3.2 ALGORITHMS FOR ERROR CORRECTING CODES

Coding theory is a rich source of computational problems (and algorithms) for
which average-case analysis is deeply relevant [33, 481]. Let us focus, for the sake
of concreteness, on the decoding problem. Codewords are sequences of symbols
with built-in redundancy. If we consider the case of linear codes on a binary
alphabet, this redundancy can be implemented as a set of linear constraints. In
practice, a codeword is a vector x G {0, l}n (with n ^> 1) satisfying the equation

where HI is an m x n binary matrix (parity check matrix). Each one of the m linear
equations involved in eq. (12) is called a parity check. This set of equations can
be represented graphically by a Tanner graph, as shown in figure 14. A Tanner
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FIGURE 14 Tanner graph of a regular linear code. A left-hand node is associated with
each variable, and a right-hand node with each parity check. A link is drawn between
two nodes whenever the variable associated with the left-hand one enters in the parity
check corresponding to the right-hand one.

graph is a bipartite graph highlighting the relations between the variables Xi and
the constraints (parity checks) acting on them. The decoding problem consists
of finding, among the solutions of eq. (12), the closest one x& to the output xout
of some communication channel. This problem is, in general, NP-hard [49].

The precise meaning of closest depends upon the nature of the communica-
tion channel. Let us give two examples:

1. The binary symmetric channel (BSC). In this case the output of the com-
munication channel xout is a codeword, that is, a solution of (12), in which a
fraction p of the entries have been flipped. "Closest" is meant in the Hamming-
distance sense, xa is the solution of eq. (12) minimizing the Hamming distance
from x0ut-

2. The binary erasure channel (EEC). The output xout is a codeword in which
a fraction p of the entries have been erased. One needs to find a solution x&
of eq. (12) that is compatible with the remaining entries. Such a problem has
a "unique" solution for small enough erasure probability p.
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There are two sources of randomness in the decoding problem: (1) the matrix
HI which defines the code is usually drawn from some random ensemble] (2) the
message received is distributed according to some probabilistic model of the com-
munication channel (in the two examples above, the bits to be flipped/erased are
chosen randomly). Unlike many other combinatorial problems, there is, there-
fore, a "natural" probability distribution defined on the instances. Average-case
analysis with respect to this distribution is of great practical relevance.

Recently, amazingly good performance has been obtained by using low-
density parity check (LDPC) codes [93]. LDPC codes are defined by parity check
matrices H that are large and sparse. As an example we can consider Gallager
regular codes [188]. In this case HI is chosen with flat probability distribution
among the family of matrices having v ones per row and w ones per column.
These are decoded using a suboptimal linear-time algorithm known as belief
propagation or the sura-product algorithm [188, 431], discussed in greater length
in chapter 4. Belief propagation is an iterative algorithm taking advantage of the
locally tree-like structure of the Tanner graph, see figure 14, for LDPC codes.
After T iterations it incorporates the information conveyed by the variables up
to distance T from the one to be decoded. This can be done in a recursive fashion
allowing for linear-time decoding.

Belief propagation decoding shows a striking threshold phenomenon as the
noise level p crosses some critical (code-dependent) value pd- While for p < Pd
the transmitted codeword is recovered with high probability, for p > Pd decoding
will almost always fail. The threshold noise pd is, in general, smaller than the
threshold pc for optimal decoding (with unbounded computational resources).

Rigorous analysis in Richardson and Urbanke [446] allows a precise determi-
nation of the critical noise pd under quite general circumstances. Nevertheless,
some important theoretical questions remain. Can we find a smarter linear-time
algorithm whose threshold is greater than p^l Is there any "intrinsic," algorithm-
independent, characterization of the threshold phenomenon taking place at £></?
As a first step towards answering these questions, Franz et al. [169] explore the
dynamics of local optimization algorithms by using statistical mechanics tech-
niques. The interesting point is that belief propagation is by no means a local
search algorithm.

Let us focus on the BEC. In this case we can treat decoding as a combina-
torial optimization problem within the space of bit sequences of length up (the
number of erased bits, with the others being fixed by the received message). The
cost function to be minimized is the energy density

where we denote as d n ( x i , X 2 } the Hamming distance between two vectors x\
and X2 and we introduce the normalizing factor for later convenience. Note that
both arguments of djj in eq. (13) are vectors in {0, l}m.
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FIGURE 15 The (6,3) Gallager code decoded by local search with 1-neighborhoods.
At each time step, the algorithm looks for a bit (among the ones incorrectly received)
such that flipping it decreases the cost function (13), which is the number of violated
parity checks (multiplied by 2/ra). We plot the average cost after the algorithm halts,
as a function of the erasure probability p.

We define the .R-neighborhood of a given sequence x as the set of sequences
z such that dn(x,z) < R, and call J^-stable states those bit sequences that are
optima of the decoding problem within their R- neighbor hood. One can easily
devise local search algorithms [425] for the decoding problem that use the R-
neighborhoods. The algorithm starts from a random sequence and, at each step,
optimizes it within its ^-neighborhood. This algorithm is clearly suboptimal and
halts on /^-stable states. Let us consider, for instance, a (v — 6,w = 3) regular
code and decode it by local search in 1-neighborhoods. Figure 15 shows the
resulting energy density e after the local search algorithm halts, as a function
of the erasure probability p. We averaged over 100 different realizations of the
noise and of the matrix HI. For the sake of comparison we note that the threshold
for belief propagation decoding is pd ~ 0.429440 [446], while the threshold for
optimal decoding is pc ~ 0.488151 [169]. It is evident that local search by 1-
neighborhoods performs quite poorly.

A natural question is to what extent these performances can be improved by
increasing R. It is, therefore, natural to study metastable states: states that are
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/^-stable for any R — o(n).4 There exists no completely satisfactory definition of
such states. Here we merely suggest one possibility among others. The difficulty
is that we do not know how to compare jR-stable states for different values of
n, making it impossible to use the asymptotic definition of metastability. Our
approach is to count /^-stable states, take the n — » oo limit and, at the end,
the R — -> oo limit [55]. On physical grounds, we expect .R-stable states to be
exponentially numerous. In particular, if we call NR(€) the number of .R-stable
states taking a value e of the cost function (13), we may write

NR(e) ~ exp{nSfi(£)} . (

We then define the physical complexity S(e) (distinct from the computational
complexity) as follows,

Roughly speaking, we can say that the number of metastable states is exp{nE(^)}.
Of course there are several different ways of taking the limits R — » oo, n — + oo,
and we do not yet have a proof that these procedures give the same result for
E(e). Nevertheless, it is quite clear that the presence of an exponential num-
ber of metastable states should dramatically affect the behavior of local search
algorithms.

Methods from statistical mechanics [169] make it possible to determine the
complexity E(^) [404]. In "difficult" cases (such as for error-correcting codes),
the actual computation may involve an approximation, that is, the use of a
variational Ansatz. Nevertheless, the outcome is usually quite accurate. In figure
16 we consider a (6, 3) regular code on the binary erasure channel. We report the
resulting complexity for three different values of the erasure probability p. The
general picture is as follows. Below pd there is no metastable state, except the one
corresponding to the correct codeword. Between pd and pc there is an exponential
number of metastable states (£(e) is strictly positive) when the energy density
belongs to an interval £QS < £ < £D- Above pc, CGS = 0. The maximum of S(e:)
is always at CD-

Since complexity is a property of infinitely large neighborhoods, this pic-
ture suggests that any local algorithm will run into difficulties above pd- As
confirmation, Franz et al. [169] have performed numerical computations using
simulated annealing for the decoding algorithm, for large codes (n = 104 bits).
At each value of p, the simulation starts with a fixed fraction (1 — p) of bits set
to one (this part is kept fixed all along the run). The remaining pn spins are
the dynamical variables updated during annealing in order to try to satisfy all
the parity checks. The energy of the system measures the number of unsatisfied
parity checks.

4We use the standard notation

14)
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FIGURE 16 The complexity £(e) of a (6,3) code on the BEG, for (top to bottom)
p = 0.45 (below pc), p = 0.5, and p = 0.55 (above pc). Recall that £(e) is positive only
above pd « 0.429440.

The cooling schedule is chosen in the following way: Monte Carlo sweeps/
take place5 at each of 1000 equidistant temperature values between r = 1 and
T = 0. The highest temperature is such that the system equilibrates very rapidly.
The simulation described here uses 1000 Monte Carlo sweeps per temperature
value.

Notice that, for any fixed cooling schedule, the computational complexity
of the simulated annealing method is linear in n. We expect it to be affected
by metastable states of energy CD, which are present for p > Pd- the energy
relaxation should be strongly reduced around ED and eventually blocked com-
pletely. Results are plotted in figure 17 together with the theoretical prediction
for ED- The good agreement confirms our picture. The algorithm gets stuck in
metastable states, which in the great majority of cases have energy density SD-

Both "belief propagation" and local search algorithms fail to decode correctly
between pd and pc. This leads naturally to the conjecture that no linear-time
algorithm can decode in this regime of noise. The (typical case) computational
complexity changes from being linear below pd to superlinear above pd- In the

5 Each Monte Carlo sweep consists of n proposed bit flips. Each proposed bit flip is accepted
or rejected according to the Metropolis scheme.
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case of the binary erasure channel, it remains polynomial up to pc, since optimal
decoding can be realized with linear algebra methods. However, it is plausible
that for a general channel it becomes non-polynomial.

Recently, statistical physics and coding theory have inspired an important
development in the field of local search algorithms: the "survey propagation"
algorithm [395, 397] discussed in chapter 4. This is a message-passing algorithm
like belief propagation. Unlike belief propagation, however, it is designed to deal
with situations in which metastable states proliferate exponentially. The new
algorithm is very efficient on random 3-SAT and graph coloring, where clusters
of solutions are an example of metastable states.

It is, therefore, natural to ask whether the new algorithm implies any im-
provement in the original decoding problem. The answer is no. Survey propa-
gation is constructed to treat in an average fashion the exponentially numerous
metastable states with positive complexity S(e) > 0. However, in the interesting
regime pd < p < pc, the solution of the decoding problem (e — 0) is separated by
a gap from such states, as seen at the top of figure 16. Moreover, it is statistically
unrelated to them.

FIGURE 17 The (6,3) LDPC code on the BSC decoded by simulated annealing. The
circles give the number of violated checks in the resulting sequence. The continuous
line is the analytical result for the typical energy density of metastable states (CD in
fig. 16).
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3.3 GRADIENT DESCENT AND XORSAT

The local procedure we now consider is gradient descent (GD). In the language
of satisfiability, GD is defined as follows.

1. Start from an initial randomly chosen configuration of the variables. Let E
be the number of unsatisfied clauses.

2. If E = 0 then stop (a solution is found). Otherwise, pick one variable at
random, say x^ and compute the number E' of unsatisfied clauses when this
variable is negated. If E' < E, accept this change, i.e., replace Xi with Xi and
E with E''. If Ef > E, reject the change. Repeat step 2.

The study of the performance of GD in finding the minima of cost functions
related to statistical physics models has recently motivated various studies [119,
221, 386, 482, 493). Numerics indicate that GD is typically able to solve random
3-SAT instances with ratios a < 3.9 [395, 494], close to the onset of clustering
[56, 395, 428]. We will now show that this is not the case for 3-XORSAT.

Recall that XORSAT differs from SAT in that literals (variables or their
negations) within a clause are connected by the XOR logical operator. Let us
apply GD to an instance of XORSAT. The instance has a graph representation
illustrated in figure 18. Vertices are in one-to-one correspondence with variables.
A clause is fully described by a plaquette joining three variables and a Boolean
label equal to the number of negated variables it contains, modulo 2 (not shown
in fig. 18). Once a configuration of the variables is chosen, each plaquette may be
labelled by its status, S or U, denoting whether the associated clause is satisfied
or unsatisfied. A fundamental property of XORSAT is that each time a variable
is changed, that is, its value is negated, the clauses it belongs to change status
as well.

This property facilitates the analysis of certain properties of GD. Consider
the hypergraph made up of 15 vertices and 7 plaquettes in figure 19, and suppose
the central plaquette is violated (U) while all other plaquettes are satisfied (S).
The number of unsatisfied clauses is E = 1. Now run GD on this special instance
of XORSAT. Two cases arise, symbolized in figure 19, depending on whether or
not the variable to be flipped belongs to the central plaquette. It is easy to check
that in both cases, E' = 2 and the change is rejected by GD. We will refer to the
hypergraph of figure 19 as an island. When the status of the central plaquette is
U and the peripheral plaquettes are S, the island is called blocked. Even though
the instance of the XORSAT problem encoded by a blocked island is in fact
satisfiable (by negating simultaneously the variable at a vertex V of the central
plaquette and a variable in each of the two peripheral plaquettes joining the
central plaquette at V\ GD will never be able to find the solution and will be
blocked forever at the E = I local minimum.

We show in this section that this situation is typical for random instances of
XORSAT. More precisely, while almost all instances of XORSAT with a ratio of
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FIGURE 18 Graphical representation of an XORSAT instance with two clauses in-
volving variables x 1,0:2,0:3 and #2,£4,#5. Each clause or equation is represented by
a plaquette whose vertices are the variables included in it. When the variables are
assigned values, the clauses can be either satisfied (S) or unsatisfied (U).

clauses per variable below a ~ 0.918 have a lot of solutions, GD is almost never
able to find one. Even worse, with high probability when n —* oo, the number of
violated clauses reached by GD is bounded from below by ty(a) n where

In other words, the number of clauses remaining unsatisfied at the end of a
typical GD run is of the order of n. Our analysis, inspired from Haggstrom [221],
is based on the fact that, with high probability, a random instance of XORSAT
contains a large number of blocked islands of the type of figure 19.

To make the proof easier, we shall study the following fixed-clause probability
ensemble. Instead of requiring the number of clauses to be equal to m(= cm),
we allow any triplet r of three vertices (among n) to carry a plaquette with
probability // = cm/Q) = 6a/n2 -f O(l/n3). Notice that this probability ensures
that, on the average, the number of plaquettes equals an. Let us now draw a
hypergraph with this distribution. For each triplet r of vertices, we define Ir = I
if T is the center of a island, 0 otherwise. We shall calculate the average value of
the total number of islands / — ̂ r Ir in the large n limit, and show that / is
highly concentrated at this average value.

The expectation value of Ir is equal to

where A — 7 is the number of plaquettes in the island, and
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FIGURE 19 A blocked island (left) is an instance of 7 clauses (1 central, 6 peripheral)
with variables such that the central plaquette is unsatisfied and all peripheral plaquettes
are satisfied. Inversion of any variable increases the number of unsatisfied clauses by 1,
be it attached to the central (middle) or to a peripheral (right) plaquette.

is the number of triplets not carrying a plaquette but having at least one vertex
among the 15 vertices in the island. The explanation for eq. (17) is straightfor-
ward. Since the central triplet r occupies three vertices, there are (n^3) ways
to pick vertices for the first peripheral plaquette of the island, and then (n^5)
ways to pick vertices for the other peripheral plaquette having a common vertex
with the first one. Since the order in which these two plaquettes are built does
not matter, an additional factor 1/2 prevents double counting. The remaining
four peripheral plaquettes have multiplicities calculable in the same way (with
correspondingly fewer available vertices). The terms in \i and 1 — n represent
the probability that such a 7-plaquette configuration is drawn on the 15 ver-
tices of the island, and is disconnected from the remaining n — 15 vertices. The
expectation value of the number i = I /n of islands per vertex then reads

To show that i is concentrated around this average value, let us calculate the
second moment of the number of islands, E[/2] = ]T)r a ^[Irla}. Clearly, J&[lrla]
depends only on the number i — 0,1, 2, 3 of vertices common to triplets r and <j.
It is obvious that no two triplets of vertices can both be centers of islands when
they have i — 1 or i = 2 common vertices. If i — 3, r — a and £^=3 = E[/^] =
E[/r] has been calculated above. For i — 0, a similar calculation gives
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Finally, we obtain

Therefore, the variance of i vanishes, and from Chebyshev's inequality, i is, with
high probability, equal to its average value given by eq. (19). Since an island has a
probability 1/27 = 1/128 of being blocked due to the assignment of its variables,
the number of blocked islands per vertex in a random XORSAT instance with
ratio a is almost surely equal to ^(a) given by eq. (16). Furthermore, each
blocked island has one unsatisfied clause, so this is also a lower bound on the
number of violated clauses per variable. In practice, of course, \£(a) is very small:
it is bounded from above by 1.5 x 10~9 over the range of interest, 0 < a < 0.918.
Therefore, one could need billions of variables before entering the true asymptotic
regime of GD where solutions cannot be reached.

The proof can easily be generalized to versions of gradient descent where
one looks ahead more than one step. To extend the notion of blocked islands
to the case where GD is allowed to invert R variables at a time (rather than
only 1), it is sufficient to have R 4- 1 peripheral plaquettes (rather than only 2)
attached to each vertex of the central plaquette. The calculation of the lower
bound \I/(a, R) on the number of violated clauses per variable reached by GD is
straightforward and not reproduced here. Qualitatively, the consequence is the
same: GD, even with R simultaneous flips allowing the algorithm to overcome
local barriers, almost surely remains trapped at an extensive (O(n)) number of
violated clauses for any finite R. The lower bound ^(a,R)n tends to zero only
if R is of the order of log n.

Interestingly, the statistical physics calculation of physical complexity S (see
sec. 3.2) predicts that there are no metastable states for a < 0.818 [170, 445], even
though GD is almost surely trapped by the presence of blocked islands for any
a > 0. This apparent discrepancy comes from the fact that GD is sensitive to the
presence of configurations blocked for finite R, whereas the physical complexity
only reflects states that are metastable in the limit R — » oo [55]. It is worth
noting that where GD is unable to reach solutions, Monte Carlo, with a low and
eventually decreasing temperature, might. A study of this algorithm and of the
dependence of its performance upon the annealing scheme would be a welcome
development.

3.4 THE WALKSAT PROCEDURE

The Pure Random WalkSAT (PRWSAT) algorithm for solving fc-SAT is defined
by the following rules [424].

1. Choose a random configuration of the Boolean variables.
2. If all clauses are satisfied, output "satisfiable" and terminate.
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3. If not, choose randomly one of the unsatisfied clauses and one of the k variables
in this clause. Flip (invert) the chosen variable. The selected clause is now
satisfied, but the flip operation may have violated other clauses that were
previously satisfied.

4. Repeat at step 2, until a predefined limit on the number of flips has been
reached. Then output "don't know" and terminate.

If the algorithm outputs "satisfiable," there is an associated solution. If the
algorithm outputs "don't know," no certainty on the status of the formula is
reached. This procedure was first introduced for fc = 2 [424], where it was shown
that with high probability it solves any satisfiable 2-SAT instance in a number
of steps (flips) of the order of n2. Recently, Schoning [458] has proven the follow-
ing very interesting result for 3-SAT [458]. Define a trial as a run of PRWSAT
consisting of a random initial configuration followed by 3n steps of the proce-
dure. If none of T successive trials on a given instance has successfully provided
a solution, then the probability that this instance is satisfiable is lower than
exp(-T(3/4)n). In other words, after T > (4/3)n trials of PRWSAT, most of
the configuration space has been probed, and if there were a solution, it would
likely have been found. Although this local search algorithm is not complete, the
uncertainty on its output can be made as small as desired and it can be used to
prove unsatisfiability (in a probabilistic sense).

This bound holds for any instance. Restriction to specific input distributions
leads to stronger results: instances of random 3-SAT with clause-to-variable ratio
a < 1.63 are in fact, with high probability, solved by PRWSAT in polynomial
time [14].

3.4.1 Behavior of the Algorithm. In this section, we briefly sketch the behavior of
PRWSAT, as seen from numerical experiments [430] and the analysis of [36, 472].
A dynamical threshold a^ (« 2.7 for 3-SAT) is found, separating two regimes:

1. For a < a^, the algorithm finds a solution very quickly, with the number of
flips growing linearly with the number of variables n. Figure 20(a) shows the
fraction </?o of unsatisfied clauses as a function of relative time t (number of
flips divided by the number of clauses ra = an) for one instance with n = 500
variables and ratio a = 2. The plot displays a rapid decrease from the initial
value (in the large n limit, (pQ(t = 0) = 1/8 independent of a) down to zero on
a time scale £res = O(l). Fluctuations decrease as n grows. tres is an increasing
function of a. This relaxation regime corresponds to the study above [14]: as
expected, o^ > 1.63.

2. For instances in the range ad < OL < ac, the initial relaxation phase tak-
ing place on a time scale t = O(l) is not sufficient to reach a solution
(fig. 20 (b)). The fraction </?Q of unsatisfied clauses then fluctuates around some
plateau value for a very long time. On the plateau, the system is trapped in
a metastable state. The lifetime of this metastable state, or trapping time,
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is so huge that it is meaningful to define a quasi-equilibrium probability dis-
tribution pn((po) for the fraction (p$ of unsatisfied clauses (second inset of
fig. 20(b)). The distribution of (/?o is peaked around an average value (mean
height of the plateau), and the left and right tails decrease exponentially fast
in n: pn(^Po) °° exP(^C(^o)) with £ < 0. Eventually a large negative fluctua-
tion will bring the system to a solution <p0 = 0. Assuming that these fluctu-
ations are independent random events occuring with probability pn(0) on an
0(1) interval of time, the resolution time is a stochastic variable with expo-
nential distribution. Its average is, to leading exponential order, the inverse
of the probability of resolution on the O(l) time scale: tres ~ exp(n£) with
(" = — C(0). The time scale for escape from the metastable state is therefore
exponentially large in n, as confirmed by numerical simulations for different
sizes. Note that the probabilistic result mentioned above for successive tri-
als of PRWSAT [458] can be interpreted as a lower bound C(0) > log(3/4),
bounding the probability by pn(Q) > (3/4)n for any instance.

The plateau energy, or the fraction of unsatisfied clauses reached by PRWSAT
on the linear time scale, is plotted in figure 21. The dynamic critical value o^,
above which the plateau energy is positive (PRWSAT stops finding a solution in
linear time), is strictly smaller than the static ratio ac where formulas go from
being satisfiable with high probability to unsatisfiable with high probability. In
the intermediate range a^ < a < ac, instances are almost surely satisfiable but
PRWSAT needs an exponentially large time to prove this. Interestingly, ad and
ac coincide for 2-SAT, in agreement with the result above [424] that with high
probability PRWSAT solves any satisfiable 2-SAT instance in polynomial time.
Finally, note that the dynamical transition does not appear to be related to the
onset of clustering, which takes place at as ~ 3.9.

3.4.2 Resultsforthe Linear Phase a < ad. When PRWSAT finds a solution easily,
the number of steps it requires is of the order of n, or equivalently, m. Let us
call tres(a, k) the average of this number divided by the number of clauses ra. By
definition of the dynamic threshold, tres diverges when a —> a~f. Assuming that
tres (a, k) can be expressed as a series of powers of a, we obtain the expansion [472]

around a = 0. Only a finite number of terms in this expansion have been
computed, so we do not control its radius of convergence. However, as shown
in figure 22, numerical experiments provide convincing evidence in favor of its
validity.

The calculation leading to eq. (22) is based on two facts. First, for a <
l / ( k ( k — l ) ) the instance under consideration splits into independent subinstances
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FIGURE 20 Fraction y?o of unsatisfied clauses as a function of time t (number of flips
over number of clauses m) during the action of PRWSAT on two randomly drawn
n — 500 instances of 3-SAT with ratios a = 2 (a) and a = 3 (b). Note the difference of
time scales between the two figures. Left inset of figure (b): enlargement of the initial
relaxation of </?o, taking place on the 0(1) time scale as in (a). Right inset of figure (b):
histogram ^500(^0) of the fluctuations of </?o over the plateau 1 < t < 130.

FIGURE 21 Fraction </?o of unsatisfied clauses on the metastable plateau of PRWSAT
for 3-SAT, as a function of the ratio a of clauses per variable. Diamonds show an
infinite-size extrapolation from numerical simulations at sizes ranging from n = 1,000
to n = 10,000, with 1,000 instances at each size. The dotted line serves as a guide
to the eye. The ratio at which <£>o begins being positive, ad ~ 2.7, is smaller than the
threshold as w 3.9 at which solutions gather into distinct clusters, and smaller than
the threshold ac « 4.3 above which instances almost surely have no solution. The full
line is the prediction of the Markovian approximation of section 3.4.3.
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FIGURE 22 Average resolution time tres(a,3) for PRWSAT on 3-SAT. Symbols: nu-
merical simulations, averaged over 1,000 runs for n = 10,000. Solid line: prediction
from the cluster expansion (22).

(involving no common variable) that contain a number of variables of the order
of log n at most. Moreover, the number of "connected components" containing
j clauses, computed with probabilistic arguments very similar to those of sec-
tion 3.3, contribute to a power series expansion in a only at order a-7'. Second, the
number of steps the algorithm needs to solve the instance is simply equal to the
sum of the numbers of steps needed for each of the independent subinstances.
This additivity remains true when one averages over the initial configuration
and the choices made by the algorithm. One is then left with enumerating the
different subinstances of a given size and with calculating the average number
of steps for their resolution. Equation (22) is the output of the enumeration of
subinstances with up to three clauses. A detailed presentation of the method is
given in a general context in Semerjian and Cugliandolo [471], and applied more
specifically to this problem in Semerjian and Monasson [472].

3.4.3 Results for the Exponential Phase a > ad. The small a expansion above does
not allow us to investigate the a > ad regime. We turn now to an approximate
method better adapted to this situation.

Let us denote by C an assignment of the Boolean variables. PRWSAT de-
fines a Markov process on the space of the configurations C, a discrete set of
cardinality 2n. It is impossible to follow the probabilities of all these configura-
tions as a function of the number of steps T of the algorithm. Instead, one looks
for a simpler description of the state of the system during the evolution of the
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algorithm. The simplest, and crucial, quantity to follow is the number of clauses
violated by the current assignment of the Boolean variables, rao(C). As soon as
this value vanishes, the algorithm has found a solution and stops.

A crude approximation consists of assuming that, at each time step T, all
configurations with a given number of unsatisfied clauses are equiprobable. This,
along with the fact that the Hamming distance between two configurations vis-
ited at step T and T + K of the algorithm is at most K, allows us to derive a
Markovian evolution equation for the probability that mo clauses are unsatis-
fied after T steps. The results obtained from the approximation are surprisingly
good. Using methods similar to the ones in section 2.2, we find [36, 472]:

1. the average fraction of unsatisfied clauses, (po(t), after T — tm steps of the
algorithm. For ratios a > ad(k) — (2k — l)/fc, <£?o remains positive at large
times, meaning that a large formula typically will not be solved by PRWSAT,
and that the fraction of unsatisfied clauses on the plateau is (po(t —> oo).
The predicted value for A: = 3, ad = 7/3, is in good though not perfect
agreement with the estimates from numerical simulations, around 2.7. The
plateau height, 2~k(l — a^(/c)/a), is compared to numerics in figure 21.

2. the probability pn((po) ~ exP(^C((/:?o)) that the fraction of unsatisfied clauses
is (PQ. It has been argued above that the distribution of resolution times in
the a > ad phase is expected to be, at leading order, an exponential distri-
bution with average en(* where £ = — C(0). Predictions for £(0) are plotted
and compared to experimental values of £ in figure 23. Despite the roughness
of our Markovian approximation, theoretical predictions are in qualitative
agreement with numerical experiments.

A similar study of the behavior of PRWSAT has also been performed on
XORSAT problems [36, 472], with qualitatively similar conclusions: there exists
a dynamic threshold ad for the algorithm, smaller than both the satisfiability
and clustering thresholds (known exactly in this case [101, 131, 398]). For low
values of a, the resolution time is linear in the size of the formula; between ad
and ac resolution occurs on exponentially large time scales, due to fluctuations
around a plateau value for the number of unsatisfied clauses. In the XORSAT
case, the agreement between numerical experiments and this approximate study
(which predicts ad = 1/fc) is quantitatively better and seems to improve with
increasing k.

4 CONCLUSION AND PERSPECTIVES

In this chapter, we have aimed to give an overview of the studies that physicists
have devoted to the analysis of algorithms. This presentation is certainly not
exhaustive, and further methods and results are discussed in the next three
chapters. A few other examples outside of the scope of this volume include binary
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FIGURE 23 Large deviations for the action of PRWSAT on 3-SAT. The logarithm
£ of the probability of successful resolution within O(ri) time steps, divided by n,
plotted as a function of the ratio a of clauses per variable. Prediction for £ has been
obtained within the approximations of section 3.4.3. Diamonds correspond to (minus)
the logarithm ( of the average resolution times obtained from numerical simulations at
sizes ranging from n = 500 to n = 4,000, divided by n and extrapolated to n —> oo.
Number of samples ranges from 2,000 to 10,000, depending on the values of a and n.
Error bars are of the order of the size of the diamond symbol. Lower bound [458] is
C > log(3/4) w -0.288.

search trees [374], learning in neural networks [146] and extremal optimization
[58, 60].

The objection may be made that algorithms are well-defined mathemat-
ical objects and, as such, can properly be analyzed with rigorous techniques
only. While this is clearly a desirable goal, the state of available probabilistic
and combinatorial tools compared with the sophisticated nature of computer
science algorithms makes it unrealistic at present. We hope the reader is now
convinced that ideas and techniques from statistical physics can be of help in ac-
quiring a quantitative intuition or even in formulating conjectures on the average
performance of search algorithms. A wealth of concepts familiar to physicists,
such as phase transitions and diagrams, dynamical renormalization flow, out-of-
equilibrium growth phenomena, metastability and perturbative approaches have
proven useful in understanding the behavior of algorithms. It is a safe bet that
this list will get longer in the near future, and that increasingly powerful methods
derived from modern theoretical physics will find their place in the field.
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Numerous open questions remain. Variants of DPLL with complex splitting
heuristics or random backtracking [27], or applied to combinatorial problems
with internal symmetries [142], are worth further study. On the subject of local
search algorithms, it would be very interesting to study refined versions of the
Pure WalkSAT procedure that alternate random and greedy steps [259, 384, 468],
in order to understand the observed existence and properties of optimal strate-
gies (a simple case of this is considered by Weigt [521]). One of the main related
challenges is understanding to what extent performance is related to intrinsic
features of the combinatorial problem, rather than to details of the search algo-
rithm [353]: as we have seen, the structures of the cost function landscape can
induce trapping or slowing down of search algorithms [428]. Finally, the input
distributions of instances we have focused on here are far from being realistic.
Real instances have structure that strongly influence the performance of algo-
rithms. Adapting present methods of analysis to more realistic distributions—or,
better yet, obtaining results that hold for all instances—would be of great value
to this evolving field.
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CHAPTER 4

Constraint Satisfaction by Survey
Propagation

1 INTRODUCTION

Methods and analyses from statistical physics are of use not only in studying the
performance of algorithms, but also in developing efficient algorithms. Here, we
consider survey propagation (SP), a new approach for solving typical instances
of random constraint satisfaction problems. SP has proven successful in solving
random /^-satisfiability (/c-SAT) and random graph ^-coloring (q-COL) in the
"hard SAT" region of parameter space [79, 395, 397, 412], relatively close to the
SAT/UNSAT phase transition discussed in the previous chapter. In this chapter
we discuss the SP equations, and suggest a theoretical framework for the method
[429] that applies to a wide class of discrete constraint satisfaction problems. We
propose a way of deriving the equations that sheds light on the capabilities of
the algorithm, and illustrates the differences with other well-known iterative
probabilistic methods.

Our approach takes into account the clustered structure of the solution space
described in chapter 3, and involves adding an additional "joker" value that
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variables can be assigned. Within clusters, a variable can be frozen to some
value, meaning that the variable always takes the same value for all solutions
(satisfying assignments) within the cluster. Alternatively, it can be unfrozen,
meaning that it fluctuates from solution to solution within the cluster. As we will
discuss, the SP equations manage to describe the fluctuations by assigning joker
values to unfrozen variables. The overall algorithmic strategy is iterative and
decomposable in two elementary steps. The first step is to evaluate the marginal
probabilities of frozen variables using the SP message-passing procedure. The
second step, or decimation step, is to use this information to fix the values of
some variables and simplify the problem. The notion of message passing will
be illustrated throughout the chapter by comparing it with a simpler procedure
known as belief propagation (mentioned in ch. 3 in the context of error correcting
codes) in which no assumptions are made about the structure of the solution
space.

The chapter is organized as follows. In section 2 we provide the general
formalism, defining constraint satisfaction problems as well as the key concepts
of factor graphs and cavities, using the concrete examples of satisfiability and
graph coloring. In section 3 we introduce the notions of warnings and local fields,
whose histograms lead to the belief propagation equations. Finally, in Section 4
we discuss the role of clusters and derive the SP equations. The equations are
given explicitly for both 3-SAT and 3-COL, and the decimation procedure is
discussed.

2 GENERALITIES

2.1 CONSTRAINT SATISFACTION PROBLEMS

Consider a constraint satisfaction problem (CSP) defined on a set of n discrete
variables, Xi for i G / = {!,..., n}. We use the vector notation x — (xi) i^i
to denote this configuration or set of variables. Each Xi can take on q possible
values, so x £ X = {1,... , <?} n. Note that it is straightforward to generalize this
to the case where the number of possible values depends on i.

The variables are subject to a set of ra constraints, Ca for a G A = {1,..., ra}.
The index sets / and A are disjoint, so that their elements uniquely determine
a single variable or constraint. Assume each constraint Ca can involve only a
subset of variables (#i)ie/(a)» where I (a) C /. Equivalently, each variable Xi is
only involved in the constraints (Ca)aeA(i) where A(i) C A. The constraint Ca

is defined as a mapping Ca : {1,..., q} —> {0,1}, where the value Ca — 0
corresponds to a satisfied constraint, and Ca — 1 to an unsatisfied constraint.

We define the cost function
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counting the number of unsatisfied constraints. Our goal is to satisfy all con-
straints simultaneously, that is, to find a solution configuration s G X with
C[s\ = 0. We thus introduce the subset Sc C X of solutions to our CSP instance
as

The algorithm aims at finding one solution s*G 5c- We concentrate a priori
on instances that possess a non-empty solution set Sc>

2.2 FACTOR GRAPH

The factor graph [351] representation for a CSP is as follows:

Definition 2.1. For any instance of the CSP problem, its factor graph is a bi-
partite undirected graph G = (V,E). The vertex set V contains two types of
nodes:

• variable nodes i G / and
• function nodes a G A.

Edges can only connect one node type with the other. The edge (z, a) belongs to
the edge set E if and only if the constraint Ca involves the variable Xi, that is, if
a G A (i) or equivalently i G /(a). More formally, we define the vertex set V —
A U / and the edge set 

In the figures in this chapter, we represent variable nodes by circles and
function nodes by squares. This notation will help to distinguish between the
different meanings of the two node types.

2.3 CAVITIES

Given a CSP and its factor graph, we will use the cavity graphs obtained by
removing a variable:

Definition 2.2. Given a factor graph G and one variable node i € I, the cavity
graph G^ is obtained by deleting from G all function nodes a G A(i) adjacent
to i, as well as all edges incident to these function nodes.

The cavity graph G^ defines a new CSP, with cost function

Note that in this new problem the variable Xi is isolated, and can take any value
without violating a constraint. The solution set S^ for the cavity problem G^
is larger than the original solution set 5c, since constraints have been removed.
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2.4 TWO EXAMPLES: SATISFIABILITY AND COLORING

Although in principle the survey propagation algorithm applies to arbitrary CSP,
we present two specific examples: satisfiability and coloring.

In the satisfiability problem a constraint Ca is a clause, violated by only
one assignment of the variables (xi)ie/(a)- In random 3-SAT each clause involves
three variables (|/(o)| = 3), the indices of which are chosen randomly with a
uniform distribution in /. This is shown in figure 1. For a given a and /(a), there
are eight different types of constraints Ca, corresponding to the combinations
of possible negations of literals in one clause. In random 3-SAT the clauses are
chosen uniformly at random from among these eight types.

In the g-coloring problem we are given an undirected graph. The problem is
to color the vertices, using q colors, so that two vertices connected by an edge
have different colors. One constraint is, therefore, associated with each edge of
the original graph, and the factor graph is a decoration of the original graph
(fig. 2) where function nodes are added on each original edge. There is only one
type of function node. In the random <?-COL problem, the original graph is a
random graph from the Qn# ensemble with mean degree pn.

We are particularly interested in algorithmic behavior for large n. Note that
both k-SAT and q-COL are problems where \A(i)\ has a limiting Poisson distri-
bution with finite mean when n —» oo, so \A(i)\ is typically much smaller than
n. Moreover, the structure of the factor graph is locally tree-like. This will guide
us in the definition of the algorithm below, and appears to be an important
ingredient in the algorithm's success.

3 BELIEF PROPAGATION

3.1 WARNINGS AND FIELDS

Given a CSP and a configuration x G -AT, we define [79, 395] the following three
quantities associated with x:

Definition 3.1. For a given edge ( a , i ) of the factor graph, with a G A and
i G /(a), the warning is the q-dimensional vector ua_^(x) £ {0, l}q with com-
ponents:

This notation means that Ca is calculated with all variables of the configuration
x that are neighbors of constraint a except for Xi, which is assigned the value p.
Thus, ua^i(x) may be interpreted as a "message" from constraint a to variable
i, warning it not to take on any value p for which u^^^x) — 1, or else the
constraint will be violated. Note that since the warning depends explicitly only on
(xj)j€/(a)\i; we ao n°t need to know the value of Xi for computing -ua_^(x).
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FIGURE 1 3-SAT: the factor graph corresponding to the simple formula:
(xi V X2 V XB) A (x2 V x~s V x ^ ) . Variable nodes are represented as circles, clauses (func-
tion nodes) as squares. A triangle-shaped mark indicates that the corresponding literal
is negated.

FIGURE 2 Graph coloring: the original graph (left) and its factor graph (right).
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Definition 3.2. For a given node i € /, the local field is the q-dimensional vector
hi(x] E {0,1}9 with components:

The local field summarizes all warnings sent to i from all neighboring constraints.
Given the values of all other variables (xj)j£i(a)\i> xi cannot be assigned any
value p for which h%(x) = 1 without incurring at least one constraint violation.

Definition 3.3. For a given edge (i, a) of the factor graph, with i G / and a € A ( i ) ,
the cavity field is the q-dimensional vector hi_>a(x) £ {0,1}9 with components:

The cavity field summarizes all warnings sent to i from neighboring constraints
other than a. Given the values of all variables (£j)j'e/(a)\i> %i cannot be assigned
any value p for which h%_+a(x) = I without incurring a constraint violation with
one of its other neighbors.

3.2 HISTOGRAMS

The elementary messages above are defined for an arbitrary configuration x. We
are ultimately interested in knowing, for each variable z, the histogram of local
fields for the configurations that are solutions to the CSP:

where 6 is the (g-dimensional) Kronecker-Delta function. This histogram can also

be interpreted as a probability distribution Hi(h) = Pr 

local fields for randomly chosen solutions.
Local field histograms contain useful information about the set Sc of solu-

tions, which can be exploited by an algorithm to construct a solution recursively.
If, for instance, one of the field components is non-zero for all solutions s£ Sc,
that particular value is forbidden to the variable. Conversely, if all but one com-
ponents are non-zero, the variable is frozen to one specific value in all solutions.
It belongs to what is known as the backbone, and can be assigned right away.

Computing Hi(h) is a difficult task, but it can be done approximately using a
message passing procedure. We first try to find a recursion relation for the related
histograms of the warnings ua-+i(s) over all solutions s £ Sc [79]. Considering
figure 3 as an example, note that the histogram of iTa_^(s) depends on the "joint"
histogram of all the warnings Ub-^j (5) sent to all variables j £ {ji , j/2, ja} "above"
function node a. We call these the incoming warnings. The obvious problem

\hi(s) = h \ s € Sc\ of
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FIGURE 3 Iteration for u warnings.

is that their joint distribution is not known. If the Ub-+j(s) were independent
variables, we would be able to factorize the joint histogram into the product
of all individual histograms of warnings Ub-*j(s), and then obtain a recursion.
But, in general, there is no reason for them to be independent. Moreover, they
cannot even be approximately independent, as the variables "above" variable
nodes j—the small unnamed ones in the figure—are connected to each other by
very short paths, via at most three function nodes. Those variables in turn define
the Ub-*j(s) messages.

This is where the cavity graph becomes useful. For each edge (6, j) of the
factor graph, we define the belief Ub-+j(u) as the histogram of the warnings Ub-+j
over the configurations s E S^ that are solutions of the problem on the cavity
graph

The second line in eq. (5) refers again to the probabilistic interpretation: Ub~>j(u)
describes the probability of having a warning u for a randomly chosen solution
of G^\ Note that even though the function node b is itself absent from the cavity
graph, the warning Ub-+j is still well defined, with respect to the full factor graph.
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Now look again at the example of figure 3. The factor graph G is a tree, so the
vertices above j i , j % and js become disconnected if function nodes 6^ are removed,
and the various messages Ub^j are uncorrelated. In this case, we can determine
the belief Ua->i as a function of all the incoming beliefs—the histograms {Ub-+j}
of the incoming warnings with j G / (a)\i and b G A (j)\a—and so on recursively
for the full factor graph. Standard belief propagation uses this same recursion also
in more general factor graphs with loops, as a means to compute approximately
the local field histograms and the beliefs (see e.g., Yedidia et al. [533]).

3.3 BELIEF PROPAGATION EQUATIONS

In order to write the corresponding belief propagation (BP) equations explicitly,
we use notation similar to that of figure 3. Given the edge (a, i) connecting the
function node a to the variable z, denote by J the set of indices of the variable
nodes "above" the function node a, that is J = /(a) \ i (J = {ji,J2>js} in the
figure). For each j € J, we denote by Bj — A(j) \ a the set of function nodes
"above" the variable j (Bjl — {bi, 62} in the figure) and by B the union of these
sets, B — [Jj£jBj. The incoming messages, which can be warnings or beliefs,
are all the messages propagated on the edges b —> j, where j e J, and for each
such j, b G Bj.

Let us first consider a set of incoming warnings {u^j}. This warning set
may or may not lead self-consistently to a configuration (SJ)JGJ satisfying all
constraints (Cb)b£B- One can easily carry out an enumerative procedure to eval-
uate all configurations (SJ)JQJ compatible with the warning set. First compute
the cavity fields (Definition 3.3) component-wise: h^_^a = max^^ ;(M&_>J). For
each j e J, the allowed values of Sj are those where hsj_+a = 0. We denote by
T({hj-+a}) C {1, ...,g}'Jl the set of allowed configurations for the Sj variables:

For each (sj) in T({/ij_a}), one can then determine the outgoing warning ua-*i
using Definition 3.1.

This procedure can be embedded into the probabilistic description of solu-
tions on the cavity graph. Assuming that incoming warnings are "independent,"
we follow the steps above, first calculating from the incoming beliefs the his-
togram of cavity fields. This is the probability of having a cavity field hj-+a — h
for a randomly chosen solution of the cavity graph G^\ or equivalently, the
fraction of such solutions sending warnings to j that produce a cavity field h:

where the sum is over sets of warnings {ub-*j}beBj with all possible warning
values Ub^j £ {0?1}9- The new distribution of warnings ua->i is then given by
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an average over cavity fields,

The pre-factor Z * is a normalization constant. Note that each cavity field con-
figuration {hj-+a} contributes |T({/^_+a})| terms. As a result, contradictory mes-
sages never contribute to eq. (8).

The BP eqs. (7) and (8) are equivalent to the so-called sum-product (or
belief network, or Bayesian network) equations [188, 431). One can try to solve
them by iteration, starting from randomly chosen beliefs and then updating
Ua-*i sequentially on randomly chosen (a, i) edges. In some cases the process
converges to a unique solution, independently of the updating scheme. When
the belief propagation equations converge, one can use the resulting beliefs to
estimate the histogram of local fields, using:

and this histogram can be used for decimation.

3.4 AN EXAMPLE OF BELIEF PROPAGATION: 3-COL

For the sake of clarity, let us work out BP on a simple example of the 3-COL
problem (q = 3), for which the part of the factor graph is shown in figure 4. Since
function nodes are connected to two variable nodes only (constraints represent
edges in the original graph), there is only one variable node j above function node
a. For a given configuration of incoming warnings {u&_^-}, we can make a table of
allowed values Sj, and for each of them compute the outgoing warning ua-+i(sj).
The only possible warnings are (1,0,0), (0,1,0), (0,0,1), since a function node
can only forbid one color: the value of the other variable connected to the function
node.

• Suppose that u^-^j = (1,0,0), Ub2-+j = (0,1,0), and Ub3-+j — (0,0,1). Then
hj-+a = (1,1,1) and we find a contradictory message. No satisfiable configura-
tion exists for Sj. According to the procedure given above, this configuration
does not contribute to Ua-*i>

• Suppose that u^-^j = ^b2-^j — (1>0, 0), and Ub3-+j — (0,1,0). Then hj->a =
(1,1,0), and the only possible coloring assignment for j is Sj = 3. For this
configuration, we have only one possible outgoing warning: ua-*i — (0,0,1).

• Suppose that Ubi-*j — ̂ 2->j = ^3-^ = (^0,0). Then hj^a = (1,0,0), and
there are two possible colors for Sj, namely the values 2 and 3. For the first
one we have ua->i = (0,1,0), and for the second one ua->i = (0,0,1). Both
contribute with equal weight to Ua-+i-
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FIGURE 4 An example of the coloring problem. This part of the factor graph is the
one necessary to compute the messages (warning and belief) passed from the function
node a to the variable node i.

• All other configurations are simple color permutations of the three cases men-
tioned above, and are handled analogously.

From eqs. (7) and (8), we can easily deduce the equation giving the probability
distribution Ua-*i in terms of all distributions {U^-^j',1 = 1, 2, 3}. Parametrizing
Ua-*i according to the three possible messages as

This expression can be understood easily: rfa_^i equals the probability that color
p is forbidden for node i, which means that node j has already taken this color,
Sj — p. Now, node j can take color p if and only if it is not forbidden by any
incoming warning: the numerator in eq. (11) simply calculates the probability
that none of the incoming messages forbids color p, and the denominator guar-
antees normalization. Note that configurations in which all variables hi take the
same color r are counted twice, namely in the expressions for both values of
p 7^ r. According to the discussion above, this is correct because we have two
new configurations for s j7 and two corresponding messages ua-+i can be sent.

Finally, note that due to the symmetry among colors, a trivial solution to
the BP equations is r\pa_^i = l/q for all edges (a, i) G E and all colors p. However,

we find
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in a recursive coloring algorithm some variable nodes would be assigned a color
at the outset. This would explicitly break the symmetry.

4 SURVEY PROPAGATION

4.1 CLUSTERING

Unfortunately, the belief propagation dynamics are known not to converge for the
random version of many combinatorial problems (including again 3-SAT and q-
COL) in the region of the parameters near the SAT/UNSAT threshold. Recently,
as discussed in earlier chapters, it has become possible using tools from statistical
physics to gain an understanding of what happens in the solution space around
the threshold [392, 395, 397]. Well below the threshold, where the number m/n of
constraints per variable is relatively small, a generic problem has exponentially
many solutions, which tend to form one giant cluster: for any two solutions,
it is possible to find a connecting path via other solutions that requires short
steps only (each pair of consecutive assignments in the path is close together
in Hamming distance). Close to the critical threshold, however, the solution
space breaks up into many smaller clusters. Solutions in separate clusters are
generally far apart. In addition, the cost function C[x] has exponentially many
local minima, separated from each other by large cost "barriers." These local
cost minima are exponentially more numerous than the solution clusters. As seen
explicitly in the example of error correcting codes in chapter 3, their metastability
causes them to act as traps for local search algorithms.

According to the statistical physics analysis, which considers the infinite
size limit n —•> oo, there exist exponentially many widely separated clusters
of solutions. Within a given cluster of solutions, we may identify two types of
variables: those that are frozen in one single assignment for all configurations
belonging to the cluster, and those—unfrozen—that fluctuate from solution to
solution inside the cluster. Note also that the variables that are frozen within one
solution cluster may change their value when we go to another cluster, where they
may even be unfrozen. While in general the distinction above can only provide an
approximate description of clusters, it appears from numerical experiments that
in many hard random CSPs, such as &-SAT or g-COL, this type of approximation
is already rather accurate.

4.2 THE JOKER ASSIGNMENT

Survey propagation (SP) turns out [79, 427] to be able to deal with this clustering
phenomenon for large (finite) sizes n. Although the original derivation uses subtle
statistical physics ideas, one can also develop it more directly in algorithmic
terms. The key intuition is that we no longer work with individual solutions
s G Sc, but rather with entire clusters of solutions. The variables that are frozen
within a cluster retain one single value Sj G {!,...,q} in our description. Other
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variables may take several values within the cluster. For handling these, we
introduce an additional joker value denoted by V so that within each cluster,
Sj G {!,...,(?,*}. We can then generalize the constraint to this enlarged space
and work out the corresponding belief propagation equations.

An even finer description, useful for general CSPs, would use multiple jokers
to describe the set of allowed values for the variable, so that Sj G P where P is
the ensemble built from all subsets of {!,..., q}. Within each cluster one could
then assign exactly one of these generalized values to each variable. However, we
will not develop this "derivation" in further detail, since in any event it does not
give any rigorous construction. Rather, we will directly write the SP equations
themselves, in terms of the original variables x G {!,..., g}n, and then analyze
them.

4.3 GENERALIZED MESSAGES

We first need to define the generalizations of the warnings, local fields, and cavity
fields used in survey propagation. In order to simplify the presentation, we shall
often omit the "generalized" qualifier, and use the same notation for generalized
warning as we used for warnings in the BP section. The reader should bear in
mind that in the context of SP, all these messages are taken to be "generalized"
messages.

For a given CSP, we define the warning:

Definition 4.1. For a given edge ( a , i ) of the factor graph, with a G A and
i G /(a), let S be a set of possible values for the variables (xj)j^j "above"
a. (J — I (a) \i.) The warning is the q-dimensional vector ua^i(x] G {0,1}9

with components:

This generalized warning is also known in the literature as cavity bias [395]. Note
that the set of possible warnings is enlarged in SP: for the example of 3-COL, the
null message (0,0,0) is added to (0,0,1), (0,1,0) and (1,0,0). As in section 3.4,
the non-null messages are sent if the node "above" a function node is assigned
a fixed color in the solution cluster. Correspondingly, the null message is sent if
this vertex is not fixed to a single color, that is, if it is has the joker value.

Based on these warnings, we define local and cavity fields according to defi-
nitions 3.2 and 3.3, with the single configuration argument x again replaced by
a set 5 of configurations. Using the J and Bj notation from section 3.3,
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4.4 HISTOGRAMS

Histograms of warnings and fields are now defined over clusters rather than over
individual solutions. Letting Sg represent solution cluster a, and nci the total
number of clusters, the histogram of local fields is given by

The histogram of the generalized warning on an edge ( b , j ) is called the survey,
denoted by Q&_^-(M). It is defined in terms of the clusters of solutions for the
cavity graph G^. Calling S^ the corresponding solution cluster, and n^ the
corresponding number of clusters, one defines:

4.5 SURVEY PROPAGATION EQUATIONS

Based on these definitions, one can easily infer the generalized recurrence equa-
tions for the (approximate) probabilities Qa-+i(u) that implement the solutions
in this enlarged configuration space. These SP equations lead to a small, yet
fundamental modification of the BP equations. The basic assumption is again
that incoming warnings are independent. In this case, however, contradictory
messages have to be explicitly forbidden. Keeping figure 3 in mind, we use the
incoming set of surveys {Qb->j} with b G Bj and j € J to calculate the cavity
field distributions exactly as in eq. (7):

Recall that these fields lead to contradictions if and only if hj-+a = (1,1,...,!)
for at least one j. Therefore, we introduce the ensemble of all non- contradictory
cavity field configurations,

the set of allowed configurations for the variable nodes above function node a.
Now the difference with respect to BP arises: since all elements of T({/ij_»a})

Then, for an element of M.a-*i—one specific set of {hj->a}j£ j—we again define
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give rise to a single outgoing warning, they all belong to the same cluster. The
new warning is thus computed on the set of allowed configurations, and is given
by ua-+i(T({hj^a})}. Its distribution follows:

and we look for a fixed point of this map, obtained numerically by starting with
some (random) initial {(5a-*i) and applying A iteratively:

Equations (15) and (18) are the SP equations. Note that eq. (18) produces a dra-
matic change in the iteration of the probabilities compared with the BP eq. (8):
every allowed cavity field configuration contributes only one term to the sum.
Note also that contradictory messages have to be excluded "explicitly" by sum-
ming only over Ma^i- In BP, for each configuration of input messages one takes
the full collection of possible outputs, thereby introducing a bifurcation mech-
anism that can easily become unstable. In SP, on the contrary, the presence of
multiple outputs is collapsed into a null message (which in the example of graph
coloring does not even exist in the belief propagation formalism). A variable re-
ceiving a message with at least two zero components will be "unfrozen" in the
corresponding cluster.

The eqs. (15)-(18) provide a closed set of equations for the surveys. Practi-
cally, this recurrence defines a map

Such a fixed point will be called a self-consistent set of surveys.

4.6 AN EXAMPLE OF SURVEY PROPAGATION: 3-COL

For the 3-COL example, because of the additional null message, the warning
distribution now reads [78]

and the SP equations corresponding to figure 4 are given by



The interpretation of this equation is again straightforward. We explain it for
color 1: now 77*_^ is given by the probability that Sj is forced to take value
1, that is, by the probability that the cavity field equals hj-+a = (0,1,1),
conditioned on non-contradictory cavity fields. The numerator calculates the
unconditioned probability. The first term includes all cases where hj_+a — 0:
(0,0,0), (0,0,1), (0,1,0), (0,1,1). The second term then excludes those cases where
h}_^a = hr^a - 0, summed over r ^ 1: (0,0,0), (0,0,1) for r = 2; (0,0,0), (0,1,0)
for r = 3. Finally, the third term includes (0,0,0) again since it was double-
counted in the second term. The denominator then provides for conditioning
on non-contradictory fields, by giving the probability that hj^a ^ (1,1,1). The
counting of possible cases follows a similar inclusion-exclusion principle as for
the numerator.

Note that as with belief propagation, the symmetry among colors leads to
a trivial solution: 77* _^ = 1 for all edges (a, i) of the factor graph, that is, only
null messages are sent. Clearly, this is not the correct solution in the clustered
regime, and the color symmetry is not valid at the level of solution clusters. In
fact, it is the appearance of a nontrivial solution for the rj^-^i that marks the
onset of clustering.

4.7 AN EXAMPLE OF SURVEY PROPAGATION: AT-SAT

In the case of SAT, q = 2: possible u warnings are (0,0), (1, 0), (0,1), and (1,1).
As any clause can be satisfied by any given variable (choosing the variable's
value according to whether or not the corresponding literal is negated), the (1,1)
message will never appear. Moreover, for a given edge (a, z) , the sign of the literal
at i will completely determine whether (1,0) or (0,1) can appear on ua->i- So
we can parametrize distributions Qa-*i with only one real number r/a_^, namely
the probability of the nontrivial ua-*i message, that is, a message other than
(0,0). The probability of (0,0) is then 1 — 7?a_^. The corresponding equations
have been written and implemented in Braunstein et al. [79] and at the Survey
Propagation web site [536]. In the case of 3-SAT, they read

for p G {1, 2, 3}. Then 77* _^ can be computed by normalization:
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where
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A%(j),Aa(j) are the two sets into which A(j) decomposes (A(j) = A%(j)\jAsa(j))
where the indices s and u refer to the neighbors b for which the literals (6,j)
and ( a , j ) agree and disagree, respectively. This separation corresponds to the
distinction of which neighbors cause the clause a to be satisfied or unsatisfied by
variable j.

For example, the product Ilbe^m (1 ~ Vb-^j) gives the probability that no
nontrivial message arrives at j from the function nodes b G As

a(j] (empty prod-
ucts are set to 1 by definition).

4.8 DECIMATION

Once convergence is reached in eq. (20) (we stop when maxie/)0e^(^)
iQ^-ii — Qa^il becomes small enough), we can use the information computed so
far to find a solution to the original problem [79, 395]. We can easily compute
the (approximate) local field distributions {Hi}iel introduced in eq. (13) by con-
sidering all neighboring function nodes, and forbidding contradictory messages.
Recall that in the cavity graph we delete the constraints containing variable z,
whereas in Hi we have to restrict the sum to messages that can be extended to
solutions of the complete problem. In the example of 3-COL, Hi(h) is given by

with hi determined according to eq. (12).
Given the vector h$ with a 0 entry at component p and 1 at the other two

components, the value Hi(ho] gives the probability for a variable i to be frozen
to a certain value p. A simple decimation procedure can then be implemented.
Select the variable that is frozen with the highest probability, and fix it to its
most frozen value. Then simplify the problem: certain constraints may already
be satisfied independently of the values of other participating variables, and can
be deleted from the problem instance. Other constraints might immediately fix
single variables to one value (unit clause resolution). Reconverge the warning
distributions on the smaller subproblem.

The decimation algorithm can lead to three types of behaviors:

1. The algorithm can solve the problem fixing all, or almost all variables (some
variables may not need to be fixed, even if the problem is already solved).
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2. The surveys converge at some stage to the trivial solution concentrated on
null messages, Qa->i(u) = ^,(0,0,0) f°r a^ (^M) £ E. In this case SP has
nothing more to offer. Luckily, the resulting subproblems are generally under-
constrained and then easy to solve by other means. Note that, for g-COL,
the trivial solution always exists. In numerical experiments, we found that in
the case of the existence of another solution, the latter was the correct one.
Therefore, even if a trivial solution is found once, it is reasonable to restart
the iteration of the SP equations. Only if no nontrivial solution can be found
after several restarts does the subproblem need to be passed to a different
solver.

3. The SP algorithm never converges, even if the initial problem was satisfiable.

On large random instances of 3-SAT [79, 395, 397, 429] and q-COL [78] in the
hard SAT region, though not too close to the satisfiability threshold, numerical
experiments show that the algorithm behaves as in case 2. The subproblems
generated turn out to be very simple to solve by other conventional heuristics,
such as WalkSAT [470] or unmodified belief propagation.

Case 3 generally occurs very close to the SAT/UNSAT transition. It is not
yet clear whether this outcome appears due to the existence of finite loops in the
original problem (which make the SP equations only approximate), due to the
simple decimation heuristic that always fixes the most frozen variable, or due to
problems that go beyond the validity of the SP equation itself.

5 WHAT'S NEXT

Among all the possible directions of research that may follow from the algorithm
we have presented, we would like to highlight two in particular. The first is
to formalize rigorously the notions suggested in section 4, establishing precise
definitions for the clusters, and a corresponding derivation of the SP equations.
The second, of great computational relevance, is to generalize SP. SP has been
presented here in its purest form, but can be adapted to deal with correlations
between warnings that arise from local problem structures such as small loops
in the factor graph. Similar extensions have been considered for BP [533]. A
further possible generalization would include diverse structures of the solution
space. Notions of replica symmetry breaking, discussed in chapter 1, argue for
considering clusters of solution clusters or even a hierarchical construction of
clusters. Developing this might be a further step towards more fully applying
theory and analysis from statistical physics to algorithmic methods.
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CHAPTER 5

The Easiest Hard Problem:
Number Partitioning

Stephan Mertens

1 INTRODUCTION

The number partitioning problem (NPP) is defined easily: Given a list ai, a2 , . . . ,
an of positive integers, find a partition, that is, a subset A C {1,..., n}, mini-
mizing the discrepancy

A perfect partition is a partition with E — 0 for ^ dj even, or E = 1 for ^ a,j
odd.

Number partitioning is of considerable importance, both practically and the-
oretically. Its practical applications range from multiprocessor scheduling and the
minimization of VLSI circuit size and delay [102, 504], to public key cryptogra-
phy [387], to choosing up sides in a ball game [237]. Number partitioning is also
one of Garey and Johnson's six basic NP-hard problems that lie at the heart of
the theory of NP-completeness [191, 388], and is in fact the only one of these
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problems that actually deals with numbers. Hence, it is often chosen as a base
for NP-completeness proofs of other problems involving numbers, such as bin
packing, multiprocessor scheduling [38], quadratic programming, and knapsack
problems.

The computational complexity of the NPP depends on the type of input
numbers {ai, 0 2 , . . . , an}. Consider the case where the values of a,j are positive
integers bounded by a constant A. Then the discrepancy E can take on at most
nA different values, so the size of the search space is O(nA) instead of O(2n)
and it is straightforward to devise an algorithm that explores this reduced space
in time polynomial in nA [191]. Of course, such an algorithm does not prove
P = NP: a concise encoding of an instance requires O(nlog2 A) bits, and A is
not bounded by any power of Iog2 A. This feature of the NPP is called pseudo-
poly nomiality. The NP-hardness of the NPP becomes apparent when input num-
bers are of a size exponentially large in n or, after division by the maximal input
number, of exponentially high precision.

To study typical properties of the NPP, the input numbers are often taken
to be independent, identically distributed random variables. Under this prob-
abilistic assumption, the minimal discrepancy EQ is a stochastic quantity. For
real-valued input numbers (infinite precision, see above), Karmarkar et al. [298]
proved that the median value of EQ is O(^/n2~n). Lueker [370] showed that the
same scaling holds for the mean value of £"0- From numerical simulations [157]
it is known that the standard deviation of EQ is of the same order of magnitude
as the mean: EQ is non-self-averaging.

Another surprising feature of the NPP is the poor quality of heuristic al-
gorithms [281, 448]. The differencing method, discussed below, is the best poly-
nomial time heuristic known to date, and for real-valued Q.J yields minimum
discrepancies O(n~alogn) with some positive constant a [532]. This is far above
the true optimum, yet it is the best that one can get for large systems! The
poor quality of polynomial time heuristics is a very peculiar feature that dis-
tinguishes the NPP from many other hard optimization problems such as the
Euclidean traveling salesman problem [444], for which satisfactory approxima-
tion algorithms do exist.

The NP-hardness of the NPP tells us that for numbers a,j bounded by
A — 2Kn, the worst-case complexity of any exact algorithm is almost certainly
exponential in n for all K > 0. Numerical simulations show that the typical com-
plexity on instances of the random ensemble is exponential only for K > KC > 0.
For K < KC it is polynomial. The critical value KC marks a transition point,
where the random ensemble somehow changes its character. Below ftc, typical
instances seem to have a special property that can be exploited by an exhaus-
tive algorithm. This abrupt change of an averaged quantity, as a parameter of
a statistical ensemble is varied, is called a phase transition by analogy with the
transitions observed in thermodynamic systems. Phase transitions in the average
complexity have been observed in many NP-hard problems such as satisfiability
[236, 319], or Hamiltonian circuit [91], and are discussed throughout this volume.
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Their study forms the base of an emerging interdisciplinary field of research that
encompasses the efforts of computer scientists, mathematicians and physicists
[133].

The NPP illustrates the interdisciplinary character of the field. Fu [185], a
physicist, first mapped partitioning to an infinite-range, antiferromagnetic spin
glass, concluding (incorrectly) that this model did not have a phase transition.
Gent and Walsh [194], computer scientists, demonstrated the existence of the
phase transition using numerical simulations. They introduced the control pa-
rameter K and estimated the transition point close to KC — 0.96. Mertens [389], a
physicist, reconsidered Fu's spin glass analogy and derived a phase transition at
KC = l - (I0g2 n/2n) 4- O(l/n). Then Borgs, Chayes and Pittel [71], mathemati-
cians, took over and established the phase transition and its characterization
rigorously. The mathematical proofs for the phase transitions are another ex-
ceptional feature of the NPP. For other NP-hard problems such as satisfiability,
much less is known from rigorous techniques and the sharpest results have been
obtained by the powerful but non-rigorous techniques from statistical mechanics
[395], as seen in the previous two chapters.

It is this combination of algorithmic hardness and analytical tractability that
earns the NPP the description of easiest hard problem, a phrase coined by Brian
Hayes [237]. In this chapter, we exploit the easiness of the NPP to provide an
understanding of some of its remarkable properties.

2 ALGORITHMS AND COMPLEXITY

In view of the NP-hardness of the NPP, it is wise to abandon the idea of an exact
solution and to ask instead for an approximate but fast heuristic algorithm. An
obvious approach is to place the largest number in one of the two subsets, then
continue to place the largest among the remaining numbers in the subset with
the smaller total sum so far, until all numbers are assigned. The idea behind
this greedy heuristic is to keep the discrepancy small with every decision. In
the worst case, the two subsets could be perfectly balanced just before the last
number is assigned: since numbers are assigned in decreasing order, this leads to
the discrepancy scaling as O(n~l) for real-valued o^. That, of course, is extremely
bad compared to the optimum discrepancy of O(y/n2~n). The time complexity
of the greedy algorithm is given by the time complexity to sort n numbers, or
O(nlogn). Applied to the set {CLJ} — {8,7,6,5,4}, the greedy heuristic misses
the perfect solution and yields a partition {8,5,4} {7,6} with discrepancy 4.

The differencing method of Karmarkar and Karp [297], also called the KK
heuristic, is another polynomial time approximation algorithm. The key idea of
this algorithm is to reduce the size of the numbers. This is achieved by replacing
the two largest numbers with the absolute value of their difference. This differ-
encing operation is equivalent to committing the numbers to different subsets
without actually fixing which subset each will go into. With each differencing
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FIGURE 1 Search tree of the complete differencing algorithm. Left branch means
"replace two largest numbers with their difference," right branch means "replace them
with their sum." With appropriate pruning rules only the shaded nodes have to be
visited to find the optimum solution.

operation the number of numbers decreases by one, and the final number is the
discrepancy. Applied to {8,7,6,5,4}, the differencing method yields a discrep-
ancy of 2 that results from the partition {8, 6} {7, 5, 4}. Note that reconstructing
the partition requires some additional bookkeeping that we did not mention in
our brief description of the algorithm. Again the heuristic misses the perfect so-
lution, but at least the outcome is better than the greedy result. Yakir [532] has
proven that the differencing method applied to random real-valued a,j G [0,1]
produces mean discrepancies n-al°gn with a constant a — 0.72. Again this is

much better than the greedy result, yet it is still far from the optimum. The
time complexity of the differencing method is dominated by the complexity of
selecting the two largest numbers. This is done most efficiently by sorting the
initial list and keeping the order throughout all iterations, leaving us with a time
complexity O(n log n).

Either one of these heuristics can be used as a base for an exact algorithm,
analogous to the search tree methods analyzed in chapter 3. At each iteration,
the greedy algorithm places a number in the subset with the smaller total sum
so far. The only alternative is to place the number in the other subset. Explor-
ing both alternatives means searching a binary tree that contains all 2n possible
partitions. In the KK heuristic, the corresponding alternative is to replace the
two largest numbers by their sum rather than by their difference, equivalent to
committing them to the same subet. Korf [341] calls the algorithms that ex-
plore both alternatives complete greedy and complete differencing algorithms.
Figure 1 shows the search tree of the complete differencing method for our ex-
ample {8,7,6,5,4}.
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FIGURE 2 Number of nodes visited by the complete greedy and the complete differ-
encing algorithms. Instances are sets (of cardinality n) of random 20-bit integers, each
data point representing an average over 104 instances. The dashed line indicates the
empirical probability that a given instance has a perfect solution.

Both complete algorithms have exponential time complexity in the worst
case, but it is possible to prune parts of the search tree using simple rules. For
the complete differencing method these rules are:

1. If fewer than 5 numbers are left, take the left branch (apply the differencing
operation).

2. If the largest number in the set is larger than or equal to the sum of all the
other numbers, stop branching: the best solution in this subtree is to place
the largest number in one set, and all the other numbers in the other set.

3. If a perfect partition has been found, stop the process.

The first rule needs some thought, but it can in fact be proven that the KK
heuristic always yields the optimum for n < 4. Similar pruning rules can be
added to the complete greedy method. Figure 1 shows an example in which the
rules chop off large parts of the search tree.

The question is how pruning affects the search in general and for large
instances. Figure 2 shows the number of nodes visited by the complete greedy
and the complete differencing algorithms while solving large instances of random
20-bit integers. For small values of n, the number of nodes grow exponentially
with n, that is, the pruning shows only little effect on the performance. For
systems beyond n = 23 the situation changes drastically: the number of nodes
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not only stops increasing with n, it decreases. Larger problems become easier
to solve! The pruning gets more and more effective as n increases, especially for
the complete differencing algorithm. For n > 80, it explores only n nodes of the
search tree, that is, the very first leaf of the tree represents the optimum solution,
and the algorithm "knows" it without exploring any further. This can only mean
that rule 3 from above applies, in other words, the partition generated by the
differencing heuristic must be perfect.

The appearance of perfect partitions is closely related to the transition in the
average complexity, as can be seen from the probability that a random instance
has a perfect partition. This probability jumps precisely at the point where the
algorithmic complexity changes its behavior, see figure 2. Apparently, there is a
computationally hard regime without perfect partitions and a computationally
easy regime where perfect partitions are abundant.

3 PHASE TRANSITION

As we have seen in the preceding section, the average complexity of algorithms for
the random NPP depends on the presence of perfect partitions. The probability
of perfect solutions is a property of the ensemble of instances, and can be studied
independently of algorithms. That is what we do in this section.

A partition A can be encoded by binary variables Sj = ±1: Sj — +1 if j £ A,
Sj = —I otherwise. The cost function then reads E = \D(s)\ where

is the signed discrepancy. An alternative cost function is H — D2 or

H is the Hamiltonian of an infinite-range, antiferromagnetic spin glass, which
has been studied by physicists [157, 185, 389] within the canonical framework
of statistical mechanics. Here we follow another, very simple approach that has
been used recently to analyze the multiprocessor scheduling problem [38].

The signed discrepancy D can be interpreted as the distance from the origin
of a one-dimensional walk with steps to the left (sj — —1) and to the right
(sj — +1), and with random stepsizes (oj). The average number of walks that
end at D reads

where angular brackets denote averaging over the random numbers a. By the
central limit theorem, for a fixed walk {sj} and large n, the sum £]?=i djSj is

with



Note that our walk involves only a sublattice of Z with lattice spacing 2: move-
ments are confined to either the even or odd numbers, depending on whether
^ dj is even or odd. Hence the average number of walks ending at distance D,
when D is of the same parity as ̂  aj , is given by

This is our phase transition: according to eq. (10) we have an exponential num-
ber of perfect partitions for K < KC, and no perfect partition for K > KC. Our
derivation is a bit sloppy, of course, but the result agrees with the rigorous theory
of Borgset al. [71].

From eq. (10), we expect the entropy S = Iog2 fi(0) of perfect partitions for
fixed but large n to be a linear function of K. In fact this can already be observed
for rather small problem sizes in figure 3. Linear extrapolation of the simulation
data for Iog20(0) gives numerical values for the transition points ttc(^)- Again
the numerical data for small systems agree very well with the predictions of the
asymptotic theory (fig. 4). The strong finite size corrections of order logn/n
lead to the curvature of Kc(n) and they are responsible for the incorrect value
KC = 0.96 that Gent and Walsh extrapolated from their simulations [194].

and variance

The sum over {sj} is basically an average over all trajectories of our random walk.
For large n this average is dominated by trajectories with ̂  sj — 0, leading to
(£)} == 0. Hence the probability density for ending the walk at distance D reads

Gaussian with mean
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For the location of the phase transition we can concentrate on perfect partitions,
that is, assume D — 0. If the a's are uniformly distributed ^n-bit integers (for
large n, without loss of generality J^flj can be taken to be even),

and so

with
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FIGURE 3 Entropy S = Iog2 fi(0) of perfect partitions vs. K. Theory (eq. (10)) com-
pared to numerical enumerations (symbols).

FIGURE 4 Numerical data for the transition points Kc(n) have been obtained by linear
extrapolation of the data for 5 — Iog2 f2(0) from figure 3. The solid line is eq. (11).
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FIGURE 5 Partitioning m-bit numbers with the complete greedy algorithm: number
of search nodes visited vs. n. The curves are averages over 104 random samples, and
the symbols mark the values nc given by eq. (12). The fitted curve 2°'88n shows that
pruning has almost no effect for n < nc.

The phase transition at KC is a property of the instances. In contrast to
the analysis of chapter 3, it is by no means clear how this transition affects the
dynamical behavior of search algorithms. Note that even for K < KCI the fraction
of perfect partitions is exponentially small, and finding one of these is non-trivial.

In numerical experiments like the one shown in figure 2, the number 771 — K,n
of bits is usually fixed and n is varied. Then KC translates into a critical value
nc = m K c or

For m = 20 this gives nc = 21.8, in good agreement with the location of the
hardest instances in figure 2. Figure 5 shows that the average time complexity
of the complete greedy algorithm changes its dependence on n precisely at the
values nc given by eq. (12). It is well justified to classify the two regimes K < KC

and K > KC as easy and hard.

4 EASY PHASE

The hallmark of the easy phase is the exponential number of perfect partitions,
but the easy phase is not homogeneous: the number of perfect partitions increases
with decreasing K. This phenomenon might yield an interesting structure with
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FIGURE 6 Probability of the Karmarkar-Karp differencing heuristic yielding a perfect
partition.

regard to algorithms: the performance of an algorithm improves as one moves
away from the phase boundary towards smaller values of K. In fact, figure 2
indicates that complete differencing finds a perfect partition with its very first
descent in the search tree if K is small enough (n is large enough). Does this
mean that the situation is reminiscent of satisfiability (see ch. 3) and the K < KC

region disintegrates into two phases, one in which complete differencing hits a
perfect solution on the first try and another one in which it needs to backtrack?

To test this hypothesis, we investigate the Karmarkar-Karp (KK) heuristic
solution for the NPP. Recall that this solution is the first one generated by the
complete differencing algorithm. Let Dkk be the discrepancy of the KK solution.
Our hypothesis would then be: there is a value 0 < Kkk < ^c such that

Figure 6 shows the result of a simulation of the KK algorithm. While there
is a sharp transition at a value Kkk, the value depends on n and seems to go to
0 as n —» oo.

A simple argument explains why this happens. We know from the work of
Yakir [532] that given real-valued input numbers a,j 6 [0,1], the KK algorithm
generates partitions with mean discrepancy n~alogn for some constant a > 0. So
if the numbers are integers with m — K,n bits, we would expect that on average
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FIGURE 7 Threshold value below which Karmarkar-Karp differencing yields perfect
solutions. Solid line denotes Kkk from eq. (15), symbols show results of numerical sim-
ulations.

Figure 7 shows Kkk(n) compared with the results from simulations, where we
have measured Kkk as the value where the probability of generating a perfect
partition is 1/2. For a, we take the value 0.72 reported by Yakir for the average
discrepancy of the KK solution.

Note that a similar argument suggests that even the greedy heuristic even-
tually yields perfect partitions for sufficiently small values of K. At the value
77^ — 20 used in figure 2, we expect the greedy heuristic to generate perfect
partitions for n > 839000.

5 HARD PHASE

Figure 2 shows that in the easy phase, complete differencing outperforms com-
plete greedy, and in view of the exponentially small fraction of perfect partitions,
both algorithms outperform exhaustive search through all partitions. Figure 2
also indicates that complete greedy and complete differencing perform similarly
to each other in the hard phase. In fact, in the hard phase neither is superior to
blind random search, as we will see in this section.

Therefore, Dkk < 1 as long as K < Kkk(n) with
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A first hint as to the hardness of the NPP in its hard phase was provided by
the random cost approximation to the NPP [391]. Here, the original problem is
replaced by the problem of locating the minimum number in an unsorted list of
2n~1 "independent" random, positive numbers E drawn from the distribution

To get a finite right-hand side in the large n limit, EQ must be small. Hence we
may approximate

This means that the rescaled minimum,

is an exponential random variable,

Along similar lines, one can show [187] that the density pk of the fc + 1th lowest
(fcth near-optimal) rescaled number is

Figures 8 and 9 compare eqs. (19) and (20) with the probability density of
the rescaled optimal and near-optimal discrepancies for the NPP in the K, — > oo
limit of real- valued input numbers. The agreement is amazing, even for small
values of n. In fact, eqs. (19) and (20) have been established as the asymptotic

This is exactly the probability density of discrepancies in the NPP, as seen in
eq. (7), although of course those discrepancies in the NPP are not independent
random variables. On the other hand, the approximation of independence allows
us to calculate the statistics of the optimal and near-optimal solutions.

Consider the continuous case, where K, —-> oc. Then the cost values E are
real, positive numbers drawn from eq. (16). There are 2n~1 possible cost values,
corresponding to all the different ways of partitioning. Let Ek denote the k-\- 1th
lowest of these cost values, so that EQ is the minimum (optimal) cost, followed
by EI (lowest near-optimal) and so on. The probability density pQ of EQ can
easily be calculated:



Stephan Mertens 137

FIGURE 8 Probability density of the rescaled optimum discrepancy in the hard phase.
Symbols: numerical simulations. Solid line: prediction by the random cost approxima-
tion.

FIGURE 9 Probability densities of the /cth best partition in the hard phase. Sym-
bols: numerical simulations for n = 24. Solid lines: predictions by the random cost
approximation.
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of finding discrepancies E and Ef in one instance of an NPP. It has been shown
[390] that this probability factorizes, that is, p(E, E') = p(E)p(Ef) for discrep-
ancies E and E' smaller than O(ri). To understand why small discrepancies are
uncorrelated, consider a partition in the continuous case, with very low discrep-
ancy E = O(^/n2~n). Any single local move Sj H-» sfj = —Sj increases E by
O(n~1), and it would take a lot of moves to compensate for this and get another
discrepancy E' = 0(>/n2~n). The corresponding partitions s and s' would then
have vanishingly small overlap, which leads to the factorization of p(E,E').

The random cost problem is an algorithmic nightmare. No smart heuristic
can be quicker than exhaustive search. This is the reason why there are no
good heuristics in the hard phase of the NPP, and why complete algorithms
cannot really take advantage of pruning rules. But there are differences in the
quality of heuristic solutions: recall the result from greedy, O(n~1), and from
the KK heuristic, O(n~a logn). How can these differences arise if the NPP is
essentially a random cost problem? The answer is that both algorithms exploit
correlations among the large discrepancies to stay away from bad partitions,
and the differencing method is much more efficient at this. The correlations
between large discrepancy configurations are also responsible for the fact that
the complete barrier tree characterizing the energy landscape of the NPP looks
different from the complete barrier tree of the pure random cost problem [483].

Complete algorithms differ only in the sequence in which they explore the
partitions. In the sequence generated by complete differencing, the true optimum
might appear earlier than in the sequence generated by complete greedy. But if
the random cost picture is correct, the location of the optimum is random in any
prescribed sequence. This has been checked, for example, for another smart algo-
rithm proposed by Korf [341]. Korf suggested reordering the leaves of the search
tree of the complete differencing method according to the number of right turns
(violations of the differencing heuristic) in their paths, starting with those leaves
that deviate least from the KK heuristic. In our example from figure 1 the leaves
would be visited in the sequence (2,4,4,6,0,6,8,14,8,10,12,16,18,20,22,30),
and in fact the perfect solution would appear earlier than in the order shown
in figure 1. Numerical simulation, however, revealed that in the hard phase the
position of the optimum in the sequence generated by this method is completely
random—as predicted by the random cost problem [390].

probability measure for the optimum discrepancies—rigorously and without the
assumption of independence [71].

The fact that the random cost approximation gives accurate statistics for
the optimum discrepancies is of course no accident. There is a certain degree of
statistical independence among the costs in the NPP. This can be seen from the
joint probability distribution
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Apparently, there is no way to overcome the random cost nature of the NPP
in the hard phase. When the NPP is hard, it's very hard.

6 CONCLUSIONS

We have seen that random NPP has a phase transition in average complexity,
and that this phase transition goes hand in hand with a transition in probability
of perfect solutions. The control parameter K of both transitions is the ratio
m of the number of bits in the input variables to the number n of variables,
and KC — I — Iog2(n)/2n + O(n~l) is the critical value that separates the hard
(K > KC) from the easy (K < KC} phase. Much more can be said about the
phase transition, notably concerning the width of the transition window and the
probability of perfect solutions inside that window. Another proven fact is the
uniqueness of the solution in the hard phase. For all this (and much more), the
reader is referred to the paper of Borgs, Chayes, and Pittel [71]. Their work
answers most of the open questions on random NPP that are not related to
algorithms. The major open problem is putting the random cost approximation
on rigorous grounds and clarifying its relevance for algorithms. Prom a practical
point of view it would be very nice to have a polynomial time algorithm that
yields better results than the differencing method. After all, there is much room
between O(n~a logn) and O(v

/n2-n).
The NPP as shown here can be generalized and modified in various direc-

tions. An obvious generalization is to partition the numbers into q > 2 subsets.
This is called the multiprocessor scheduling problem, and in physics parlance
this corresponds to a Potts spin glass or to a walk with random stepsizes in q — I
dimensions. The latter approach has been used to analyze an "easy-hard" phase
transition in multiprocessor scheduling [38].

Another variant is the constrained NPP where the cardinality of the subsets
is fixed. This is necessary for problems such as choosing up sides in a ball game
[237], where both teams need to have the same number of players. The cardinal-
ity difference of the subsets is a control parameter that triggers another phase
transition in computational complexity, giving rise to a two-dimensional phase
diagram [72].
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CHAPTER 6

Ground States, Energy Landscape, and
Low-Temperature Dynamics of ± J Spin
Glasses

Sigismund Kobe
Jarek Krawczyk

1 INTRODUCTION

The previous three chapters have focused on the analysis of computational prob-
lems using methods from statistical physics. This chapter largely takes the reverse
approach. We turn to a problem from the physics literature, the spin glass, and
use the branch-and-bound method from combinatorial optimization to analyze
its energy landscape. The spin glass model is a prototype that combines ques-
tions of computational complexity from the mathematical point of view and of
glassy behavior from the physical one. In general, the problem of finding the
ground state, or minimal energy configuration, of such model systems belongs
to the class of NP-hard tasks.

The spin glass is defined using the language of the Ising model, the funda-
mental description of magnetism at the level of statistical mechanics. The Ising
model contains a set of n spins, or binary variables s^, each of which can take
on the value up (si — 1) or down (si — — 1). Finding the ground state means
finding the spin variable values minimizing the Ising Hamiltonian energy (cost)
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function, written in general as

for given interaction strengths J^ . This is a problem of nonlinear discrete op-
timization. When Jij is positive, interactions are called ferromagnetic. In this
case, there is a trivial solution: all spins are aligned, meaning they have identical
signs. When Jij is negative, interactions are called antiferromagnetic. Physically,
the spins are often taken to lie on a lattice. For a square or cubic lattice with
negative J^ for neighboring pairs of spins and J^ = 0 otherwise, the ground
state is clearly the configuration where adjacent spins have opposite signs.

If all nonzero interaction strengths J^ are equal, the system is said to be
ordered. For ordered systems with antiferromagnetic interactions between nearest
neighbors, but where neighbors of a given spin are also neighbors of each other,
frustration prevents certain interactions from being "satisfied." An example is the
triangular lattice: to quote the early work of Wannier, "antiferromagnetism does
not fit into the triangular pattern" [517]. While the solution to the optimization
problem is straightforward, one third of all interactions lead to conflicts that
increase the ground-state energy. The structural sensitivity of antiferromagnetic
order has been discussed by Sato and Kikuchi [453] for the face-centered cubic
lattice. Other ordered systems have been considered by Liebmann [361].

The problem becomes more complex when disorder arises, and interaction
strengths are not equal. Often, such systems can only be solved by numerical
methods. The time complexity of an algorithm is defined by the growth of the
solution time as a function of input size [230]. For many disordered spin models,
it can be shown that finding ground states is NP-hard [31, 214], and so the time
complexity likely grows faster than any polynomial. In order to address this,
Kobe and Handrich [335] introduced a "misfit" parameter characterizing the
degree of frustration, and used it to find exact ground states in a two-dimensional
system of n = 23 hard disks (an amorphous Ising model) with distance-dependent
antiferromagnetic interactions. Further exact results for two-dimensional (n =
40) and three-dimensional systems (n = 30) were obtained by Kobe [334] and
Kobe and Hartwig [336] using the branch-and-bound method of combinatorial
optimization [137, 354, 363].

Another concept for studying systems with disorder and competing interac-
tions was introduced by Toulouse [502]. He analyzed the frustration effect in a
two-dimensional lattice model with a random distribution of ferromagnetic and
antiferromagnetic nearest-neighbor interactions J^ of equal strength, known as
the Edwards- Anderson ± J model. The system may be described by plaquettes
representing elementary lattice regions, such as a unit cell on a square lattice.
The quantity $ = Y[c Jij, taken over the contour c forming the perimeter of the
plaquette, measures frustration: $ = -1 if the plaquette is frustrated, $ — 1
if it is not. The exact ground state is then associated directly with a match-
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ing [139] of frustrated plaquettes that minimizes the sum of lattice distances
between matched pairs. The multiplicity of ground states, or degeneracy, comes
from the total number of ways to create such a minimal matching. This approach
only works for two-dimensional systems, but it is an efficient one, since minimal
matching can be solved to optimality in polynomial time. In the years following
Toulouse's work, the matching method of optimization was used widely [32, 52].

This chapter is organized as follows. In section 2, we introduce the branch-
and-bound algorithm as a prototype for a numerical procedure of nonlinear
discrete optimization. Then, in section 3, we describe the Edwards-Anderson
± J spin glass model and give an overview of numerical results for the ground-
state energy and entropy. In section 4 the low-energy landscape of finite three-
dimensional ± J spin glasses (consisting of clusters and valleys) is analyzed and
visualized. The correlation with the real-space picture shows the existence of
rigid spin domains in the ground state. We discuss dynamical consequences in
section 5, focusing on the transition from one ground-state cluster to another
by way of a saddle cluster. It can be shown that internal structure contributes
to the slowing of relaxation processes. Finally, we point out the progress and
challenges of complexity theory for a better microscopic understanding of glassy
behavior.

2 BRANCH-AND-BOUND

The ground state of the Ising model with n spins Si — ±1 is the spin configuration
with energy

For interactions J^ of arbitrary sign and magnitude, finding the exact ground
state is an NP-hard problem. Since the number of states increases with 2n, only
for very small n can eq. (2) be solved by complete enumeration.

Complete algorithms for combinatorial optimization problems aim to reduce
the numerical effort while still giving an exact solution. The general principle can
be demonstrated for the branch-and-bound algorithm. The strategy of branch-
and-bound is to exclude as many states with high energy values as possible, in an
early stage of calculation [336]. Let us consider a small cluster with n = 8 spins
and J^ values of differing strengths. To simplify matters and without loss of
generality, we take the case where there are only antiferromagnetic interactions,
representing an amorphous antiferromagnetic cluster with dilution. The upper
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triangle of the interaction matrix J = (J^) is given by

In figure 1, a tree is constructed by successively fixing spin values. At the
branching depth / = 1, spin number 1 is set to the positive direction (-f). At
depth I = 2 the spin number 2 is fixed, and so on. At each branching node a
configuration (si,..., s/) and an energy value E\ is shown. For / = 1 the starting
energy E\ = E^ is chosen, where E^ — — Y^i<j \Jij\ 'ls a lower bound on the
ground-state energy EQ in eq. (2), representing the situation where all interac-
tions are satisfied and no conflict is present. The other values E\ for 1 < / < n
can be obtained by the following rule:

In the example of eq. (3), where all interactions are antiferromagnetic, k(\\l)
denotes those k for which spin k has already been fixed in the same direction
as the spin /. More generally, when both positive and negative Jij values are
present, the sum contains those contributions that arise due to conflicts of spin
/ with all spins fixed earlier. In figure 1 the values of the summation term in
eq. (4) are given at the branching lines. Prom eq. (4) it follows that

It is easy to recognize that all configurations of the system (modulo a global
spin flip) and their associated energies can be found at the end of the fully
branched tree, at / = n. The goal of the branch-and-bound strategy is to prune
some branches. In order to do this, a heuristic is used to generate an approx-
imate solution, that is, the greedyindexbranch-and-bound algorithm procedure
of steepest descent shown in figure 1 where at each step the new contribution
to the sum in eq. (4) is minimized. In our example, the energy of the resulting
configuration is —47. This value is used as Abound > and signals that branching
can stop at any node where E\ > Abound- From eq. (5) it is certain that all
branches pruned in this way can lead only to states with En > Abound » and so
none of them can yield a solution to eq. (2). Therefore, in place of a complete
enumeration of all states, the pruned tree in figure 1 can be used to search for
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FIGURE 1 Branch-and-bound tree for a cluster with n = 8 spins given by the inter-
action matrix J in eq. (3); E\<\ = —77, Abound — —47 obtained by steepest descent
(dashed line). The exact ground state with the energy EQ = —51 is marked in bold.
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EQ. Ultimately, either the ground state is found with EQ < Abound > or it can
be proven that the heuristic solution was already the exact ground state. The
reduction of numerical effort is already obvious for the small example of figure 1:
49 nodes are calculated rather than 128 states in the case of complete enumera-
tion. The increase of CPU time with system size is estimated to be tca\c = 2an,
with a = 0.23 and 0.27 for the determination of all ground states of ±J spin
glasses on square and simple cubic lattices respectively [327].

It should be mentioned that the algorithm also yields "all" low-lying states
with energies lower than Abound, if Abound > EQ is chosen. This variant of the
algorithm is used in section 4 to construct the complete energy landscape.

3 GROUND-STATE ENERGY AND ENTROPY OF THE ±J
SPIN GLASS: NUMERICAL RESULTS

In the preceding section we have given an example of applying numerical methods
of nonlinear discrete optimization to determine the ground state EQ (eq. (2)). In
this section and in the following ones, we will concentrate on a special case, the
Edwards-Anderson ± J model. Here, interactions are between nearest neighbors
on a hypercubic lattice, they are of equal strength (\Jij\ — J for all neighbor-
ing spins i and j), and their signs are random. We impose X^o' <A? = 0 f°r

each realization of the system, so that there is an equal number of ferromagnetic
and antiferromagnetic interactions. We first present a survey of the best nu-
merical results obtained by exact optimization algorithms [484]. Besides branch-
and-bound, these include the branch-and-cut method [214] based on rewriting
the quadratic energy function in eq. (2) with additional inequalities that must
hold for feasible solutions. The practical challenge here is that not all necessary
inequalities are known a priori, and can arise during the iteration procedure
[121, 122, 230]. Their number grows exponentially with the system size.

In table 1, the ground-state energy per spin for hypercubic systems of dif-
ferent dimensions are given, in the asymptotic limit of an infinite system. These
results are extrapolated from finite-size numerics. The world record in system
size for an exact solution is obtained using the matching method for a two-
dimensional system with free boundary conditions up to n = 1800 x 1800 [422].
Of course, since minimal matching can be solved in polynomial time, the com-
plexity for this version of the problem is comparatively low. For higher dimen-
sions, table 1 includes results coming both from exact and from approximation
methods. The accuracy of approximation methods is in many cases supported by
exact values obtained for smaller system sizes than the maximum shown here.
As they are incomplete methods, it is generally impossible to supply any further
evidence for their exactness [230]. However, the inclusion of such methods with
a "high level of reliability" [262] provides the possibility of considering systems
of larger size than would be otherwise available, and thus to extrapolate more
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convincingly to infinite lattices. Much less is known about the exact ground-state
energy for other than hypercubic lattices.

TABLE 1 Ground-state energy per spin eo and entropy per spin SQ of the hypercubic
± J spin glass in d dimensions. Results for infinite systems are extrapolated from system
sizes up to n = L^ax- Parenthetical numbers denote error bar in final digit(s).

d

2

2
2
2
2
2

2

2
2
3
3

3
3
3

3
4

4
4

5

method

matching*

branch-and-cut
branch-and-bound
genetic cluster appr.
genetic cluster appr.
transfer matrix x

expansion-fall-
invasion-spring
genetic
flat histogram sampling
branch-and-bound
extremal optimization

genetic
genetic cluster appr.
genetic cluster appr.

multicanonical sampling
genetic cluster appr.

genetic cluster appr.
extremal optimization

extremal optimization"*"

-^max

1800

50
8

40
40
11

10

20
32
4
12

10
8
14

12
7

6
7

4

eo

-1.40193(2)

-1.4015(8)
-1.40(6)
-1.4015(3)

-1.4024(12)

-1.40169

-1.401(1)
-1.4007(85)
-1.778(14)
-1.7865(3)

-1.787(3)

-1.7876(3)

-2.095(1)

-2.093(1)

-2.3511

so

0.077(21)

0.078(5)
0.0701(5)

0.0709(6)
0.054(16)

0.051(3)

0.04412(46)

0.027(5)

Ref.

Palmer and
Adler [422]

De Simone et al. [122]
Klotz [327]

Hartmann [232]
Hartmann [228]

Cheung and
McMillan [92]

Vogel et al. [513]

Gropengiesser [211]
Zhan et al. [537]

Klotz [327]
Boettcher and

Percus [61]
Gropengiesser [211]

Hartmann [228]
Hartmann and

Rieger [230]
Berg et al. [47]
Hartmann and

Rieger [230]
Hartmann [228]
Boettcher and

Percus [61]
Boettcher [57]

* free boundary conditions
x rectangular lattice (L x W) with Lmax
Wmax = 104 • • • 105 (free boundary conditions)
~*~ without extrapolation

= 11 (periodic boundary conditions) and

A shortcoming of presenting the ground-state energy per spin is that the
value is not comparable across different dimensions, lattice types, etc. For that
reason, a universal measure of frustration has been introduced by the misfit
parameter



148 Landscape and Low-Temperature Dynamics of Spin Glasses

TABLE 2 Misfit parameter //o of the ±J spin glass in d dimensions. Estimate for
infinite system, extrapolated from numerics.

honeycomb
square
triangular
simple cubic
hypercubic
hypercubic

2
2
2
3
4
5

0.09
0.150
0.22
0.202
0.24
0.26

Lebrecht and Vogel [356]
Table 1

Vogel et al. [511]
Table 1

Boettcher and Percus [61]
Boettcher [57]

representing the mean fraction of unsatisfied bonds in the ground state [337]. For
the ±J spin glass, IJLQ values from numerical simulations are compiled in table
2. They may be compared with //o = 1/3 for the antiferromagnetic triangular
or face-centered cubic lattice, and p,Q = 1/2 for fully frustrated hypercubic and
face-centered cubic lattices in the limiting case of infinite dimensions [16, 120].
Moreover, it can be seen that the ±J spin glass is less frustrated on the honey-
comb lattice, and more frustrated on the triangular lattice, than on the square
one.

4 ENERGY LANDSCAPE

An advantage of the branch-and-bound algorithm is that it is very easy to imple-
ment a variant allowing the calculation of all near-optimal solutions. For these
purposes, a certain Abound > EQ has to be chosen and fixed during the calcu-
lation. All states of the system with energy EI < Abound can then be found.
(Note that here, the subscript i denotes an excited state of the system, that is,
with higher energy than the ground state, rather than an intermediate level of
branch-and-bound as in section 2.) Through subsequent analysis of these states
with respect to their neighborhood structure, the complete low-energy landscape
in the high-dimensional configuration space can be obtained. The situation in
this space is analagous to that of "fog in the mountains" in a real landscape: all
areas below the upper limit of the fog are covered.

Let us first investigate the low-energy landscape of a three-dimensional sys-
tem of size n = 4 x 4 x 4, with periodic boundary conditions. All TV = 1635796
configurations up to the third excitation (fourth-lowest energy state) were calcu-
lated using branch-and-bound [231]. The configurations were then studied with
regard to their one-spin neighborhood. Two configurations that differ in the ori-
entation of only one spin are considered neighbors. Consequently, each of the
N configurations can have at most n neighbors belonging to the set of N. The

lattice d //0 E0 from
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configuration space

FIGURE 2 Schematic picture of the exact low-energy landscape up to the third ex-
citation for one system of size n = 4 x 4 x 4. Clusters are marked by circles of sizes
proportional to the number of configurations in the cluster: the two ground-state clus-
ters on the left, for instance, consist of 12 and 18 configurations. (Note that the scale
is different for different energy levels, so the largest clusters in the first, second, and
third excitations contain 819, 82,960, and 1,503,690 configurations, respectively.) Lines
denote single spin-flip connections. All clusters connected to the same neighborhood
structure are pooled in a box.

low-energy landscape is formed by all states of energy Ek, with k < 3. Due to
the discreteness of the coupling constants J^, the energy values are degenerate.
EQ is the ground-state energy and Ek — EQ 4- 4fc are the excitation energies.

An energy landscape is thus formed, consisting of clusters, valleys and sad-
dles [328, 329, 330]. A set of configurations is called a cluster if a chain connecting
them exists. The chain is built up by neighboring configurations with the same
energy. The landscape is symmetric, due to eq. (2). Two clusters of different en-
ergies are "connected" whenever at least one configuration of the first cluster is
a neighbor of one configuration of the second cluster. A schematic picture of this
low-energy landscape is illustrated in figure 2. Finally, valleys can be associated
with ground-state clusters. A valley consists of clusters that have connections to
one single ground-state cluster. Different valleys are connected by saddle clusters,
which mediate the transition over energy barriers.

Note that there is a broad distribution of realizations of the ± J systems.
The ground-state energy of 8555 systems of the size n — 4 x 4 x 4 varies between
EQ = —100 and —128. The respective values for the mean ground-state entropy
s0, the number of clusters Nc\, and the number of ground states ATgs, are given
in table 3.

In table 4, corresponding values characterizing the structure of the first ex-
citations of the same set of realizations are given. Here, the following average
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TABLE 3 Characteristic properties of the ground states for 8, 555 realizations of sys-
tems of size n — 4 x 4 x 4 with different ground-state energies EQ. Nsys denotes the
number of systems, ~SQ the mean ground-state entropy, Nc\ the mean number of clusters,
and TVgs the mean number of ground states.

Eo

-100
-104
-108
-112
-116
-120
-124
-128

Nsys

5
505

2769
3541
1358
291
52
7

so

0.1153 ±0.0091
0.0974 ± 0.0231
0.0748 ± 0.0257
0.0566 ± 0.0249
0.0448 ± 0.0221
0.0371 ± 0.0210
0.0311 ±0.0181
0.0259 ± 0.0235

Nd

10.20 ±2.82
6.19 ±3.14
3.19 ±1.99
1.91 ± 1.17
1.38 ±0.74
1.18 ±0.46
1.11 ±0.32
1.33 ±0.57

ATgs

3848
1088
326
114
45
24
14
41

8555 0.0623 ± 0.0285 2.47 ± 1.98 228

values are specified: NI is the mean number of states in the first excitation:
of these, Ns belong to saddle clusters and Nm are metastable states without
direct connections to one of the ground states. Ncn is the mean number of clus-
ters: of these, Nc\s are saddle clusters and Nc\m are met ast able clusters. It can
be seen that systems with higher ground-state energies (i.e., higher frustration)
also possess more complex energy landscapes with larger entropies and many
clusters.

The relation between the energy landscape in configuration space and the
spin structure in real space is demonstrated in figure 3. Here an example with
n — 6 x 6 x 6 spins is shown. The ground states can be grouped into four clusters,
similar to the situation in figure 2. Two clusters contain 5632 states and two
clusters contain 1280 states. The degeneracy within the clusters is caused by the
existence of free spins that feel no internal field and can thus be flipped without
energy input. Let us first consider the two clusters that remain when one ignores
the mirror states arising from a global spin flip. All spins in real space that are
free in either of these clusters are marked by empty circles. The remaining spins
are divided into two groups, marked by full circles and shaded triangles. In each
of these groups the relative orientation of any given spin is fixed with respect to
all others in the group. Due to this internal rigidity, the two groups are called
spin domains [230]. When one includes the mirror states, there are four different
orientations of the two spin domains, resulting in the four ground-state clusters in
configuration space, see also Hed et al. [238]. Many of the free spins are situated
physically between the spin domains. Thus, the low-energy excitations in figure 2
can be understood as a successive softening of the spin domains starting from
the boundary region of free spins between them. Consequently, a transition over
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TABLE 4 Characteristic properties of the first excitations for 8,555 realizations of
systems of size n = 4 x 4 x 4 with different ground-state energies EQ. NI denotes
the mean number of first excited states, Nc\i the mean number of clusters, Ns the
mean number of saddle states, Nc\s the mean number of saddle clusters, 7Vm the mean
number of metastable states, and Ncim the mean number of metastable clusters.

-100
-104
-108
-112
-116
-120
-124
-128

384825
102879
25469
6653
1895
775
395
322

61.00 ±8.51
47.64 ± 15.76
33.48 ±14.37
23.02 ±10.81
17.01 ±7.76
14.18 ±5.07
12.81 ±4. 11
13.42 ±4.75

191598
50016
11079
2199
375
81
22
13

0.70 ±0.45
0.98 ±0.68
0.99 ±0.90
0.54 ±0.77
0.30 ±0.62
0.16 ±0.41
0.15 ±0.44
0.14 ±0.38

351
543
375
151
42
14
2

0.43

7.20 ±3.56
6.31 ±3.58
4.59 ±2.73
2.57 ±1.98
1.25 ±1.28
0.59 ± 0.94
0.14 ±0.36
0.14 ±0.37

17634 26.5 ±14.4 7326 0.68 ±0.83 225 3.14 ±2.73

FIGURE 3 Two spin domains of a ± J spin glass with n = 6 x 6 x 6, marked by full
circles and shaded triangles. All spins that are free in either of the ground-state clusters
are marked by empty circles.

Eo N! Ncll Ns Ncls Nm 7Vclm
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FIGURE 4 An individual Monte Carlo run through the landscape vs. time, at inverse
temperature (3 — 2.5 for one system of size n — 4 x 4 x 4 (fig. 2). The process starts
from an arbitrary state within the ground-state cluster on the left in figure 2. The
vertical axis shows different energies belonging to valleys 1 and 2, respectively, and the
energy E\ of the saddle cluster connecting both ground-state clusters within the first
excitation.

the saddle cluster with energy E\ may be interpreted as a gradual process of
reversal of one spin domain with respect to the other, one single spin flip at a
time. By flipping spins, additional free spins are continually created and deleted:
that is the mechanism driving this process [230, 512].

5 DYNAMICS

The complete knowledge of the low-energy landscape allows us to investigate the
influence that the size of clusters and valleys and their neighborhood structure
has on dynamics [349]. The time evolution of the system in configuration space
can be described as the progressive exploration of clusters and valleys. We use
the Monte Carlo Metropolis algorithm with various values of /3 = 1/r, where r
is the temperature of the heat bath [53]. One Monte Carlo step (MCS) is taken
as the time unit. An individual run through the landscape is shown in figure 4.
We start from an arbitrary state in the leftmost ground-state cluster of figure 2.

At first, the system walks in the valley, sometimes touching the saddle cluster
in the first excitation. After an escape time tesc of the order of 107 MCS, the
system leaves the first valley and goes through the saddle cluster to the second
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FIGURE 5 The transition profile of the saddle cluster with energy E\ in figure 2
illustrated by the number of configurations vs. Hamming distance from a reference
state (see text). The shaded area marks all configuration in the saddle cluster. States
having connections with valley 1 (dark) and 2 (middle) are shown in black and grey
respectively.

one. This transition is governed by the internal structure of the saddle cluster,
shown as its transition profile in figure 5. First, all pairs of configurations are
checked to find the largest Hamming distance hd (the number of spin values
differing between the two configurations). Then, using one of these states as
the reference state, the hd values of all configurations in the saddle cluster with
respect to the reference state are calculated. Two sets of states are marked, one
consisting of states connected by a single spin flip with the first valley and the
other with the second valley. These sets denote the input and the output areas
for a transition from one valley to the other. Considering a transition as a walk
between these sets, it is clearly slowed down by the small numbers of states in
between.

Quantitatively, the random walk can be described by the spin correlation
function

where sp(0) is the ith spin of the starting configuration chosen arbitrarily from
the ground states of valley 1 or 2. The brackets denote the average of 100 runs
starting from the same state (fig. 6).
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FIGURE 6 The spin correlation function vs. time for the system of size n = 4 x 4 x 4
(fig. 2). The starting configuration is selected from the set of ground states of valley 1
and 2. The Monte Carlo process is run at inverse temperature j3 — 2.5.

The spin correlation function q(i) vs. time is characterized by a plateau with
the value qp\ followed by a temperature-dependent decay. It should be noted that
such a plateau is typical for supercooled liquids, where the dynamical process
is called a-relaxation. To examine the correlation between the structure of the
landscape and the dynamics, we compare qp\ with the size of the valley, keeping
in mind that the spin correlation within the valley can be calculated using the
mean Hamming distance hd of all pairs of states by

We find an agreement between qp\ and q^ am' (table 5), where the average in
eq. (8) approximated by the average over all states in the corresponding ground-
state clusters.

The plateau thus reflects the dynamics within the valley. The subsequent
decay of q(t) shows the escape from the valley. The escape time tesc depends on
the temperature and can be fitted by tesc ~ exp(/3 AEefi}. We found AEefi =
4.24 ±0.08 for valley number 1 and AE"eff = 4.46 ±0.09 for valley number 2. The
effective energy barrier is larger than the real one, which is AE = E\ — EQ = 4
in our example. Moreover, A£eff is larger for valley 2 than for 1. This reflects
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the fact that the system can leave the saddle cluster more easily in the direction
of 2, as there are more exit connections (see fig. 5).

6 SUMMARY

Due to the physical complexity of the spin glass problem, advanced methods
of combinatorial optimization are required. In recent years, powerful numerical
algorithms have become available, enabling us to study model systems of small
and moderate sizes from the microscopic point of view. For example, it is possible
to determine the internal structure of an energy landscape in a high-dimensional
configuration space. Understanding the slow dynamics of glassy systems is a
current challenge of solid state physics. Spin glasses are good candidates for
modeling glassy behavior.

In this chapter, we have discussed the ± J spin glass model, and shown the
correlation between the microscopic structure of the energy landscape and the
dynamical behavior. The characteristic shape of the correlation function may
be attributed to the restricted connectivity of clusters and valleys in the energy
landscape and to their internal profiles. Finding better algorithms for NP-hard
problems remains an ongoing challenge. Our hope is that with the development
of improved algorithms, the restriction to small system sizes can be eased, and
the ground-state behavior of ±J spin glasses can be analyzed with improved
confidence [534].
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TABLE 5 The values of qp\ obtained from simulations (fig. 6) and calculation (eq. (8))

Figure 6 Equation (8)

QPl (1)
QPl (2)

&QPl

0.947 ±0.004
0.932 ± 0.004
0.015 ±0.004

0.936
0.924
0.012
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CHAPTER 7

The Satisfiability Threshold Conjecture:
Techniques Behind Upper Bound
Improvements

Lefteris M. Kirousis
Yannis C. Stamatiou
Michele Zito

1 INTRODUCTION

One of the most challenging problems in probability and complexity theory is
to establish and determine the satisfiability threshold, or phase transition, for
random /c-SAT instances: Boolean formulas consisting of clauses with exactly k
literals. As the previous part of the volume has explored, empirical observations
suggest that there exists a critical ratio of the number of clauses to the number of
variables, such that almost all randomly generated formulas with a higher ratio
are unsatisfiable while almost all randomly generated formulas with a lower ratio
are satisfiable. The statement that such a crossover point really exists is called
the satisfiability threshold conjecture. Experiments hint at such a direction, but
as far as theoretical work is concerned, progress has been difficult. In an impor-
tant advance, Friedgut [177] showed that the phase transition is a sharp one,
though without proving that it takes place at a "fixed" ratio for large formulas.
Otherwise, rigorous proofs have focused on providing successively better upper
and lower bounds for the value of the (conjectured) threshold. In this chapter,
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our goal is to review the series of improvements of upper bounds for 3-SAT and
the techniques leading to these. We give only a passing reference to the improve-
ments of the lower bounds as they rely on significantly different techniques, one
of which is discussed in the next chapter.

Let 0 be a random k-SAT formula constructed by selecting, uniformly and
with replacement, ra clauses from the set of all possible clauses with k literals
(no variable repetitions allowed within a clause) over n variables. It has been
experimentally observed that as the numbers n, ra of variables and clauses tend
to infinity while the ratio or clause density m/n is fixed to a constant a, the
property of satisfiability exhibits a phase transition. For the case of 3-SAT, when
a is greater than a number that has been experimentally determined to be ap-
proximately 4.27, then almost all random 3-SAT formulas are unsatisfiable; that
is, the fraction of unsatisfiable formulas tends to 1. The opposite is true when
a < 4.27. Analogous phenomena have been observed for k-SAT with k > 3, and
the experimentally determined threshold point increases with k. The experiments
that led to these conclusions were initiated by the work of Cheeseman et al. [91].
For detailed numerical results see Crawford and Auton [110] and Mitchell et
al. [400]. For k = 2, it has been rigorously established, independently by Chvatal
and Reed [94], Goerdt [201, 202], and Fernandez de la Vega [156], that a tran-
sition from almost certain satisfiability to almost certain unsatisfiability takes
place at a clause-to-variable ratio equal to 1.

For k > 3, finding the exact value of the threshold point where this transition
occurs—or even proving that such a threshold exists—is still an open problem.
The following is known. Friedgut [177] has shown that for k-SAT the transition
is sharp, so that in the large n limit, the probability of satisfiability changes from
arbitrarily close to 1 to arbitrarily close to 0, as the density a moves along arbi-
trarily short intervals. However, it is not known whether these intervals converge
to a fixed point. Also, Istrate et al. [273] have shown that the transition is first
order: as a moves along these intervals of asymptotically zero length, the value
of a certain combinatorial parameter of the random formula jumps from zero to
a nonzero multiple of n. Such parameters are called order parameters in statis-
tical physics. The specific one used in 3-SAT is the size of the formula's spine,
defined as the set of all literals / for which a subformula ip C <p can be found,
so that / is FALSE in every truth assignment satisfying if). Furthermore, recent
theoretical work in statistical physics [395] has supplied additional and almost
conclusive evidence—though not a formal proof in the mathematical sense—for
the existence of the threshold point. Some of this has been discussed in chapter 4.

Apart from the results above, much effort has been put into rigorously estab-
lishing upper and lower bounds for the region where the fc-SAT transition occurs.
These efforts have resulted in interesting and novel probabilistic techniques. In
this chapter we will mainly concentrate on presenting the upper-bound results
and the techniques that lead to them (see also the review by Dubois [129]).
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2 GENERATING RANDOM 3-SAT FORMULAS

Let fJ denote the set of all 23(™) possible 3-SAT clauses. A random 3-SAT for-
mula <j> on in = an clauses can be formed using one of the following frequently
employed probability models:

1. Model Gm,m: select the m clauses of (j) by drawing them uniformly at random,
independently of one another and with replacement, from £7;

2. Model Qm'. as above, but with no replacement;
3. Model Qp: place each clause of £7 in 0 independently of the others and with

probability p\ and
4. Model <?3,cm: fiU each of the 3cm possible literal positions (an clauses each

having 3 literals) with literals chosen uniformly at random, independently and
with replacement, from the set of 2n possible literals over the n variables. Note
that this model allows the formation of clauses containing variable repetitions.

All of these models are variations on the fixed clause length model introduced by
Franco and Paull [167]. That model was an adaptation of the classical model for
random graphs introduced by Erdos and Renyi in a series of seminal papers pub-
lished starting in 1959 [147, 148] (see the book of Bollobas [62] for the historical
development of the field of random graphs).

The fixed clause length model is in sharp contrast to the variable clause
length model introduced by Goldberg et al. [204] in order to study the average
time complexity of satisfiability algorithms. In the variable clause length model,
each of a fixed number of clauses is formed by placing every possible literal in
the clause with some probability, and independently of the others. This model
has the disadvantage of inducing, on the set of all Boolean formulas with given
n, a probability distribution that favors easy instances. The fixed clause length
model does not have this feature, since it allows the manipulation of the instance
hardness by means of the clause density parameter (clause-to-variable ratio) a.

Each of these models has its own distinct advantages and disadvantages.
The model <?m,m usually leads to tighter results than Qp. On the other hand,
the latter has the important property of independence for events involving "non-
intersecting" sets of clauses, events that may be dependent in <?m,m. Finally, as
we will see later, £/3)Cm enables one to study as well as manipulate individual
literal appearances in a formula. This fact leads to a finer description of the
formula than the detail that the other models can achieve. As we discuss in
section 6, this may lead to better upper bound values, as one usually applies the
techniques we will examine on a more limited and well-defined set of formulas.
However, it can be shown that if a threshold exists in any one of the models
above, it exists in all of them and its value is equal in all of them, even though
the bounds obtained by a given method may differ from model to model.

In the sections where we examine the rigorous techniques that have been used
in order to bound the satisfiability threshold from above, we will see examples
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of the advantages and disadvantages mentioned and how they are exploited or
circumvented, respectively. Unless stated otherwise, we will assume throughout
this chapter that we work with the model Gm,m-

3 THE SUCCESSIVE THRESHOLD APPROXIMATIONS

For the purposes of this chapter, we will accept the satisfiability threshold conjec-
ture, and denote the k-SAT transition point in the large n limit by a^. The basic
mathematical tool employed for bounding o^ from above is a probabilistic tech-
nique known as the first moment method. This method makes use of Markov's
inequality: let X be a nonnegative integer random variable and let E[X] be the
expectation of X, then Pr[X > 1] < E[X]. In our case Markov's inequality is
applied on a sequence of random variables X = Xn, n = 0 ,1 , . . . , that depend on
certain control parameters. If one finds a condition on the control parameters that
forces E[X] to approach zero as n approaches infinity, then the probability of X
being nonzero also vanishes in the large n limit as long as that condition holds.
Despite its simplicity, the first moment method is a powerful tool that quickly
provides us with a condition (though most often not the tightest possible) for
proving that asymptotically a random variable is almost certainly zero,

The connection of the first moment method with the satisfiability threshold
conjecture was observed by a number of researchers, including Franco and Paull
[167], Simon et al. [475] and Chvatal and Szemeredi [95]. Let 0 be a random
3-SAT formula on n variables generated according to Grn,m and let An(<t>)—or
simply An if 0 is implied by the context—be the random set consisting of the
truth assignments that satisfy 0. The probability that a truth assignment satisfies
a single clause is 7/8, so given 2n possible truth assignments, E[|^4n|] — 2n(7/8)m.
Since Pr[0 is satisfiable] — Pr[|*4n| > 1], from Markov's inequality it follows
that

If by Q.M we denote the exact solution of the equation 2(7/8)a = 1 (so that
aM = log2/log(8/7) w 5.19), then we observe that under the condition a > O.M
the right-hand side of eq. (1) tends to zero. This establishes the value QM as an

upper bound for the critical value #3.
It is perhaps instructive at this point to provide the Markov inequality com-

putations for model Qp as an example of the difference in accuracy that can
be obtained using various random models. In Qp, the probability that a truth
assignment satisfies a random formula is the probability that none of the Q)

clauses violated by the assignment are part of the formula, or (1 — p)\*\ Let us
set p = (6a)/(8n2)s, so that for large n the mean number of clauses in <j) is an.
Note that for such a choice of selection probability, it holds that if the event "</> is
satisfiable" has a vanishingly small probability in the Qp model, the probability

as an
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so asymptotically, Pr[<f> is satisfiable] < 2ne an/8. This leads to the inequality
as < 8 log 2 w 5.545, a weaker one than for Gm,m- Equations (1) and (2) provide a
simple demonstration of a frequently occurring tradeoff among the various prob-
abilistic models: accuracy of results vs. ease of handling complicated situations,
such as the computation of the probability of conjunctions of events.

The first observation that the inequality a% < 5.19 is not the best one possi-
ble came from Broder, Frieze, and Upfal [81], who pointed out that the condition
a > QM — 10~7 is sufficient to guarantee that Pr[</> is satisfiable] tends to zero.
El Maftouhi and Fernandez de la Vega [145] obtained a further improvement,
by showing that the condition can be relaxed to a > 5.08. Then Kamath et
al. [292] obtained the improved condition a > 4.758 using a numerical compu-
tation while also giving an analytical proof of the condition a > 4.87. Using a
refinement of Markov's inequality based on the definition of a restricted class of
satisfying truth assignments, Kirousis, Kranakis, and Krizanc [323] proved an up-
per bound value a > 4.667. Using the same class of satisfying truth assignments,
after more accurate but lengthier computations, Dubois and Boufkhad [130] in-
dependently obtained the upper bound 4.642. Also, Kirousis et al. [324] give the
bound 4.602 by what they call "the method of local maxima." Later, Janson,
Stamatiou, and Vamvakari [278] lowered this value to 4.596 through two different
approaches: by viewing a formula as a physical spin system and taking advantage
of techniques from statistical physics to compute an asymptotic expression for
its energy, and by obtaining an improved upper bound to the Rogers-Szego poly-
nomials. In Zito's doctoral thesis [538] the upper bound was further improved
to about 4.58 while Kaporis et al. [293] obtained the value 4.571 using a new
upper bound for the g-binomial coefficients obtained in Kirousis et al. [325]. Fi-
nally, Dubois, Boufkhad, and Mandler [132, 134] gave an upper bound of 4.506
using an approach involving formulas with a "typical" number of appearances of
signed occurrences of their variables.

For general k, Franco and Paull [167] used the first moment method and
derived an upper bound for the value of the satisfiability threshold of k-S AT equal
to 2k log 2, while the same derivation was also observed by Simon et al. [475] and
Chvatal and Szemeredi [95]. Kirousis, Kranakis, Krizanc and Stamatiou [324]
and, independently, Dubois and Boufkhad [130] gave techniques that improved
this general upper bound without, however, improving the leading term that in
both approaches is equal to 2k log 2.

On the lower bound side, Chao and Franco [88, 89] were the first to analyze
the asymptotic behavior of algorithms that apply a heuristic in order to itera-
tively assign a truth value to all the variables of a formula. If the heuristic is

of this event is also small in Gm and 6m,m for m = cm, as well as in £3,an. By
Markov's inequality in Qp we have
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sure to succeed at a given value of a, this clearly provides a lower bound on the
threshold. One of the algorithms they analyzed applied the unit clause heuristic
defined in chapter 3. Using a technique relying on differential equations in order
to model the workings of their algorithm, they showed that the algorithm suc-
ceeds with positive probability (but not necessarily with high probability) for
clause-to-variable ratio less than 2.9. Following this, the first lower bound for
3-SAT was established by Franco [166], who analyzed an algorithm that satisfies
only literals whose complements do not appear in the formula (pure literals). He
showed that for a < 1, the algorithm succeeds almost certainly—meaning with
probability approaching one in the large n limit—in finding a satisfying truth as-
signment to all the variables. Broder, Frieze and Upfal [81] then showed that the
pure literal heuristic actually succeeds almost certainly in satisfying a formula if
the ratio is smaller than 1.63. Frieze and Suen [182] improved the lower bound
to 3.003 by analyzing the generalized unit clause heuristic (GUC) with limited
backtracking and showing that it succeeds almost certainly for ratios lower than
3.003, as discussed in chapter 3. Finally, using the differential equations method
developed by Wormald [529] for approximating the evolution of discrete random
processes, Achlioptas [2] and Achlioptas and Sorkin [5] reached the values 3.143
and 3.26, respectively. They developed a framework for a special class of algo-
rithms called myopic, and showed that no algorithm in this class can succeed
almost certainly in satisfying formulas with clause-to-variable ratios larger than
3.26. Recently, Kaporis, Kirousis, and Lalas [294, 295] analyzed a simple greedy
heuristic using the methodology discussed in chapter 8, where the literal that
is selected to be satisfied at each step is the one with the maximum number of
occurrences in the formula. They obtained the lower bound of 3.42. This was the
first time that a heuristic making use of information related to the number of
appearances of literals in a random formula (degree sequence) has been analyzed.
With a little more complicated greedy heuristics that at each step satisfy a lit-
eral with a large degree but whose negation has a small degree, a lower bound
of more than 3.52 can be attained. This is currently the best value.

The best currently known general lower bound for fc-SAT, for any fixed value
of &, is given by a recent result by Achlioptas and Moore [3] who showed that
Oik > 2 f clog2/2 — c, for some constant c > 0 independent of k. This result es-
sentially bridged the asymptotic gap between the 2k log 2 general upper bound
and the 1.817(2fc/A:) previously best general lower bound obtained by Frieze and
Suen [182]. Moreover, Frieze and Wormald [183] showed that a^ is asymptotic
to 2k log 2 if A: is a function of n and k — Iog2 n —* oo. Both results are the first
successful efforts (to the best of our knowledge) in applying the second moment
method in order to prove a lower bound to the satisfiability threshold, something
that previously was feasible only through the probabilistic analysis of satisfia-
bility algorithms relying on specific heuristics for random formulas, as discussed
above. Finally, using a technique known in physics as the replica method, Monas-
son and Zecchina predicted [405] that the asymptotic (in k) expression for the
threshold is equal to 2fc log 2, although their approach was not a rigorous one.
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4 UPPER BOUND APPROACHES BASED ON THE
HARMONIC MEAN

The first moment method is simple to apply, but does not lead to the best pos-
sible upper bounds for fc-SAT. For values of the clause-to-variable ratio smaller
than OLM as defined in the previous section, the expected number of satisfy-
ing truth assignments of a random formula tends to infinity, even though the
empirical evidence suggests that most such formulas have no satisfying truth
assignment at all. This is due to the fact that there exist very rare formulas that
are satisfiable and have a large number of satisfying assignments. El Maftouhi
and Fernandez de la Vega [145] and, independently, Kamath et al. [292], stud-
ied this situation in detail. They resorted to the harmonic mean formula, first
introduced (or formalized) by Aldous [13] to address the problem.

Aldous's result. Let (Bi : i e /) be a finite family of events in a probability space.
For a permutation TT of /, call (Bi) invariant under TT if

for all a > I and ii, . . . ,ir € /. Call the family (Bi) transitive invariant if for
each i\, 1*2 € / there exists TT such that TT(II) = i% and (Bi) is invariant under TT. In
particular, transitive invariance implies that Pr[^] — p is actually independent
of i.

Let N be the random variable counting the number of B^s that occur.
Then, if (Bi : i G /) is a transitive invariant family of events (with p = Pr[Bi]
independent of i ) ,

for any j G /. The method gives a new expression for Pr[0 is satisfiable], if
one interprets Bi as the event "assignment Ai satisfies 0." (Note that \An\, the
number of truth assignments satisfying 0, is denoted by |A/toc/(^r)| in El Maftouhi
and Fernandez de la Vega [145] and #F in Kamath et al. [292].) Let T; be the
set of formulas satisfied by the ith truth assignment when these assignments
are placed in reverse lexicographic order, so that T\ consists of those formulas
satisfied by all variables set to TRUE. In that case, letting j — 1 without loss
of generality, the following is a restatement of Aldous's result in the context of
3-SAT formulas:

Notice that an expression equivalent to the equation above is the following (this is
the one proven explicitly in El Maftouhi and Fernandez de la Vega [145, eq. (1)]):
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where E0esAT[|Ai|] is the expectation of \An\ with respect to all satisfiable for-
mulas on n variables and m clauses. El Maftouhi and Fernandez de la Vega [145]
prove that it is possible to define a class of formulas 7\* C T\ of size at least
(1 — 2~<*n)|Ti|, where S is a constant, such that each formula in T-f has at least
26n satisfying truth assignments. As we will see in subsection 4.1, this implies
E0esAT[|Ai|] > 26n~\ Therefore, the probability that a random 3-SAT formula
is satisfiable is at most

The authors set a — 5.08, and using a simple random experiment they find
a class of formulas Tf satisfying the conditions above when S — 0.02137. The
satisfiability probability goes to zero asymptotically for these values, establishing
the improved bound a$ < 5.08. The different quality of the bounds derived in El
Maftouhi and Fernandez de la Vega [145] and Kamath et al. [292] is due not only
to the use of coarse upper bounds rather than exact asymptotics in El Maftouhi
and Fernandez de la Vega [145] for estimating the proportion of "interesting"
formulas with a particular structure—it can in fact be proven that the difference
between the two is vanishingly small—but also to the different experiment used
to count this proportion. In the following sections we report, briefly, the results
in the two papers. The careful reader will be able to pick up the similarities and
the differences in the two approaches.

4.1 ACCOUNTING FOR RARE FORMULAS WITH MANY SATISFYING
TRUTH ASSIGNMENTS: DISPENSABLE VARIABLES

El Maftouhi and Fernandez de la Vega [145] define the subset Tf of Ti such
that |7\*| > (1 - 2-5n)|Ti| and all formulas in Tj* have at least 28n satisfying
assignments. Notice that this can be rewritten as Pr[|Ai| > 25n | 0 € Ti] >
1 — 2~6n. Since \An\ > I for any 0 G TI, one can write:

Therefore 
In order to describe how Tj* is defined, let d = City) be the set of clauses in ̂

containing exactly i positive literals. We first estimate \Ci\ under the assumption
that ip G TI . Notice that no formula in T\ can contain a clause with only negated
variables, therefore, |Co| — 0. Furthermore, for formulas in T\ with n variables
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and an clauses, it is fairly easy to compute the asymptotic distribution of the
formulas with \Ci\ — m^ for each i G {1, 2, 3} (where an = m\ -f 7712 -I- m^):

Using Stirling's approximation for the various factorials involved and setting
71 — rrii/n, it is easy to prove that Pr[mi,m2,m3]1/'n is asymptotic to (6a/7)a/
(271 )71 (272)72 (67s)73 , assuming all ra^'s tend to infinity. Considered as a function
of 71, 72 and 73, this expression reaches its maximum (equal to one) for 71 =
72 = ^ and 73 - f . Now let Tf C TI be the set of all those formulas in TI
with 71 < 2.37, 72 < 2.37 and 73 < 0.87 (recall that a = 5.08 for all formulas
in TI). It may be shown from the asymptotic probability expression [145] that
these inequalities hold with probability greater than 1 — 2~°-02137n, implying that
\T;\ >(i-2-°-02137n)|Ti|.

To prove that 5.08 is an upper bound to the satisfiability threshold, fol-
lowing the reasoning given earlier, it remains to demonstrate that the formulas
in TI have, with sufficiently high probability, at least 2°-02137n satisfying truth
assignments. To this end, the authors introduce the notion of dispensable vari-
ables. Given a formula </>, a truth assignment A that satisfies (f> and a set D
consisting of certain variables taking the values dictated by A, we call D a set
of dispensable variables if its elements can be set in any arbitrary way and still
result in the truth assignment satisfying c/>. Let D((j>) be the set of dispensable
variables in <f> with respect to the assignment that sets all variables to TRUE.
Clearly \An(<t>)\ > 2|D((/))I, so it is then sufficient to show that for all (/> G Tf,
\D((f))\ > 0.02137n with high probability. The authors do this by analyzing the
size of the set of dispensable variables returned by the following "greedy" algo-
rithm:

1. Take all clauses in Ci, and call /i the set of all positive literals in these clauses.
These are known as isolated literals. Let n\ — \I\\.

2. Take all clauses in €2 whose two positive literals are both absent from /i, and
for each such clause select at random one of its two positive literals. Call /2 the
set of all such literals. Set J% = I\ U /2- Let n^ — |/2|, so that | J%\ — n\ -f n^-

3. Take all clauses in Cs whose three positive literals are all absent from J2, and
for each such clause select at random one literal. Call /3 the set of all such
literals. Set J% = J2 U /3. Let n3 = |/3|, so that | J$\ = n\ + n2 + n^.

One may readily verify that all variables not represented in J% form a set of
dispensable variables, so | J$\ needs to be bounded from above. For the range of
values of 7^ that defines Tf, an estimate on \J^\ is obtained by finding upper
bounds on: n\\ n% conditioned on n\\ and n% conditioned on n<2 and n\.

In order to estimate ni, the authors resort to the occupancy problem. In this
problem, one throws /m balls (IJL is a constant) uniformly at random into n boxes
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As n\ can be viewed as the number of non-empty boxes that result from the
random placement of 71/1 balls into n boxes, we have that Y = n\ and JJL = 71-
Setting e — 0.062 and exponentiating both sides of the inequality above, we
obtain for 71 < 2.37 that

Now define mf
2 as the number of clauses in C<2 (clauses with two positive

literals) identified by the greedy algorithm as having both of their positive literals
absent from I\. This is binomially distributed, with number of trials 72/1 and
success probability (1 — n\/ri)(\ — (n\ — l)/n), where success means "absent
from /i." Conditioning on n\ < 0.94800n, we can use the Chernoff bound on
the upper tail of the binomial distribution, Pr[B(ra,p) > /3mp] < (e^"1//^)™^
setting /3 = 3.84 and mp = 0.006408n to obtain for 72 < 2.37 that Pr[m2 <
0.02461n|m < 0.94800n] > 1 - e-°-01490^. Since n2 < m2,

Similarly, define 7713 as the number of clauses in C$ identified by the greedy
algorithm as having all of their literals absent from J2- Again bounding the tail
of the relevant binomial distribution, we obtain for 73 < 0.87 that Pr[ra3 <
0.00356n|ni + n2 < 0.97261n] > 1 - e-°-0153n. Since n3 < ra3,

Finally, multiplying together (3), (4) and (5) we may verify that for sufficiently
large n, Pr[m+n2 + n3 < 0.97617n] > i-e-°-01481n = i_2-°-02137^ Thus, with
probability at least 1 - 2-°-02137n, \D((f))\ > 0.02383n > 0.02137n for (j) G T\*.

4.2 SHARPER ESTIMATE OF OCCUPANCY PROBABILITIES:
INDEPENDENT VARIABLES

Kamath et al. [292] performed a similar investigation of the structure of the
typical 0 G TI . A variable x is said to cover a clause C if x occurs unnegated
in C—that is, as a positive literal. For instance, in the formula below (which
does not belong to Ti), represented by the sequence of sets of literals forming
individual clauses in it,

and asks for the distribution of the random variable Y that counts the number
of non-empty boxes. Then for any e > 0, r = r(e) = (1 + e)(l — e~^) and
s = s(t) = I — r(e), the following is established:
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A set of variables V covers a set of clauses if every one of these clauses is
covered by at least one variable in V'. Such a variable set is called a cover. Ob-
viously, a random formula 0 G T\ has a trivial cover, namely the set consisting
of all the n variables. However, it is possible that there exists a smaller cover
than the trivial one. For instance, Figure 1 shows a formula in T\ with the sets
of clauses in Ci, C<2, £3, the set X containing all variables, a set /i of variables
covering C\, a second set of variables (from the set R of remaining variables)
needed to cover the uncovered portions of C^ and €3, and the remaining inde-
pendent set I. The set X \ / in the figure is an example of a cover for all the
clauses of the formula that is smaller than the trivial one. Therefore, setting
the variables in X \ / to TRUE is sufficient to satisfy the formula. Since all the
variables in the independent set / can be set arbitrarily, if 0 has a cover of size
sthen |A*(0)1 >2™-5 .

To estimate E0 we Partition ^1 into "slices"
containing formulas with minimal cover of size s, and use:

The problem thus reduces to one of estimating, as accurately as possible, the
probability that an arbitrary formula in T\ has minimal cover size s. As in
subsection 4.1, this is done using asymptotic expressions for binomial tails and
occupancy probabilities.

the variable Xi covers the clauses:
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FIGURE 1 A set X of variables and the clauses in C\, €2, Ca that it covers. Broken
lines denote covered regions; solid lines represent some of the specific clauses covered
by variables in I\.

1. First fix the size m\ of C\, the set of clauses containing a single unnegated
variable. The probability Pr[u] that this number is within u times its mean
can be shown to be close to 1 using bounds on binomial tails.

2. Then determine the set I\ of isolated variables (X \ R in fig. 1). Conditioning
on mi being within u of its mean, the probability Pr[v\u] that the size n\ of
11 is within v times its mean is estimated using occupancy asymptotics (again
we are throwing clauses "into" variables: the empty bins correspond to the
variables in X \ /i).

3. Next, compute the number of clauses in €2 U C$ that are not covered by /i,
conditioned on HI and mi. The set of these clauses is denoted by U in figure 1.
The probability that this number is within w times its mean, Pr[w u, t>], is
again a binomial tail.

4. Finally, bound the size of the variable set needed to cover U.

The improvement in Kamath et al. [292] comes from estimating the size of
[7, and from adding to the cover only those variables needed to cover U rather
than the whole set /2 U /3 (as done in the other paper, in the second and third
selection step).
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5 SPECIAL CLASSES OF SATISFYING TRUTH
ASSIGNMENTS

The next improvements resulted from a different kind of exploitation of rare
formulas with many satisfying truth assignments.

Since the main disadvantage of Markov's inequality can be attributed to
rare formulas having a large number of satisfying truth assignments, a plausible
approach for improvement is to use in the inequality not the expected cardinality
of the set of satisfying truth assignments of a random formula, but the expected
cardinality of a smaller set. Of course one needs to prove that the expectation
of the new random set still provides an upper bound on the probability that </>
is satisfiable.

This idea was introduced by Kirousis, Kranakis, and Krizanc [323] ("single
flips") and independently by Dubois and Boufkhad [130]. In this section we de-
scribe these approaches and several others derived from them, and we report the
resulting improvements on the estimate of 0:3. With regard to the techniques
described in sections 5.1 and 5.2 in particular, we should point out in advance
the following important difference between them. The technique described in sec-
tion 5.1 approximates 0:3 by computing an upper bound on the expected car-
dinality of a special class of satisfying truth assignments, employing a simple
correlation inequality that bounds from above the probability that some depen-
dent events hold simultaneously. On the other hand, the technique described in
section 5.2 results in a slightly better approximation of 0^3 by computing exactly
the expected cardinality of the same class of satisfying truth assignments. The
former method, however, is much simpler to apply and easily generalizes to A/-
SAT random formulas for any k > 3 while the latter is complicated and cannot
be readily applied to /c-SAT in general.

The following formula

whose satisfying assignments are

A!
A2
A3

A,
A,
A6

A7

As

FALSE
FALSE

FALSE

FALSE
TRUE

TRUE

TRUE

TRUE

FALSE
FALSE

FALSE

TRUE
FALSE

FALSE

TRUE

TRUE

FALSE
FALSE

TRUE

FALSE
FALSE

FALSE

FALSE

TRUE

FALSE
TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

FALSE

will be used as an example in the next subsection, to convey a better under-
standing of the various results.

x1 x2 x3 x4
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5.1 SINGLE FLIPS

The strategy described here was introduced in Kirousis et al. [323]. In what
follows it may be convenient to identify classes of truth assignments on n variables
with sets of lexicographically ordered sequences over a two-letter alphabet (say
the numbers 0 and 1 with 0 < 1).

Given a random formula </>, the set A\ is defined as the class of truth as-
signments A such that the following two conditions hold: (1) A satisfies 0, and
(2) any assignment obtained from A by changing exactly one FALSE value to
TRUE does not satisfy 0. Such a change is called a single flip and will be denoted
by sf. The truth assignment that results from the flip will be denoted by A8?.
The class A\ contains the elements of An that are local maxima with respect
to single flips. In other words, a truth assignment belongs to A\ if it satisfies (/>
and if no other possible satisfying truth assignment can be obtained from it by
changing a single FALSE value to TRUE — by performing all possible single flips in
isolation.

In our example formula, the first truth assignment AI does not belong to
A\\ if we change the value assigned to x\ the resulting truth assignment is still
in An- However, the fourth truth assignment A± does belong to A\: changing
the value assigned to x\ produces the assignment A! £ An where all variables
except x3 are set to TRUE, and changing the value of x3 similarly leads to the
(j) not being satisfied. Since all possible transformations changing a FALSE value
result in truth assignments that do not satisfy </>, the assignment A4 is in A\. It
is easy to verify that the set A\ for 0 is formed by the assignments A3, A±, A6,
and Ag.c

Since A\ C An, E[|^|] < E[|^4n|j. Thus, to relax Markov's inequality we
need only establish that Pr[0 is satisfiable] < E[|^|]. This can easily be seen
as follows. Let /^ be the random indicator for the property "0 is satisfiable."
Clearly /^ < \A^\. If we now write

then the desired inequality follows immediately. To exploit this technique one
then needs to prove a bound on E[|*4^|], asymptotically smaller than 2n(7/8)an.

Using a correlation inequality to compute the probability that a single flip
results in an assignment not satisfying </>, it can be proven that in the ran-
dom formula model Qm,m, the expected size of class A\ is at most (7/8)an(2 —
e~3a//7+o(l))n. Therefore, the unique positive solution of the equation (7/8)a(2 —
e~3a//7) = 1 gives an upper bound for the satisfiability threshold critical value
a3. This solution is approximately 4.667.

If instead one uses the Gp ensemble, one avoids having to compute proba-
bilities of conjunctions of dependent events. Applying Markov's inequality then
leads to the solution of the equation e~a/s(2 — e~3a/7) = 1. This expression,
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however, gives an upper bound equal to 5.07—worse than the bound given for
ym,m-

5.2 THE SET OF NEGATIVELY PRIME SOLUTIONS (NPS)

Independently from Kirousis et al., Dubois and Boufkhad introduced a class of
satisfying truth assignments that they called negatively prime solutions (NPS)
[130]. This class turns out to coincide with the class A\ described in subsec-
tion 5.1.

Dubois and Boufkhad proved the following exact expression for the expected
cardinality of NPS for fc-SAT:

where 52(j, i) are the Stirling numbers of the second kind that count the number
of ways of partitioning a set of j elements into i non-empty subsets. By way of
a series of asymptotic manipulations, the authors then arrived at a closed-form
upper bound for (6), showing that it converges to 0 for values of the clause-to-
variable ratio greater than 4.642.

5.3 RESTRICTING FURTHER THE CLASS OF SATISFYING TRUTH
ASSIGNMENTS: DOUBLE FLIPS

Kirousis et al. [324] define as a double flip the change of exactly two variables Xi
and Xj, with i < j, where x^ is changed from FALSE to TRUE and Xj from TRUE to
FALSE. Notice that the restriction i < j implies that a double flip always leads to
a lexicographically "greater" assignment. Let A^J denote the truth assignment
that results from A after the application of the double flip df. Let j£$ be the set
of truth assignments A that have the following three properties: (I) A satisfies
</>, (2) for all possible single flips sf of A, ASJ does not satisfy </>, and (3) for all
possible double flips df of A, A * does not satisfy (/>.

It is proven in [324] that the following inequality holds:

Pr[</> is satisfiable]

where S is the set of all 2n possible truth assignments on the n variables. As
before, to get an upper bound on a% it suffices to find the smallest possible value
for the clause-to-variable ratio for which the right-hand side of this inequality
tends to 0. In what follows, sf(A) denotes the total number of possible single
flips of A (which is simply the number of variables assigned the value FALSE in
A) and df(A) denotes the total number of possible double flips.
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It can be proven that Pr[^4 G A\ | A G An] may be bounded from above
by an expression of the form PSJ(A\ where P depends only on the clause-to-
variable ratio a (this is in fact the expression used to derive the improved upper
bound in subsection 5.1). The hard part is computing the second probability,
involving the realization of the double flip events conditional upon the realization
of the single flip events. As it turns out, the computation of this probability
in the model Gm,m involves dependencies among events of a very complicated
nature. In Gp, on the other hand, there at least are no dependencies ensuing
from the fundamental requirement of £m,m that the size of the formula is fixed.
The remaining dependencies are those arising from the fact that some of the
double flip events involve double flips sharing a particular FALSE variable. The
computation of an upper bound to this probability was made possible by the
use of a version of Suen's correlation inequality [492] proven by Janson [277].
The bound has the form Q^A^ with Q dependent on n and a. The reader
may consult [324] for the derivation of this bound. Inequality (7) may then be
rewritten as follows:

The product on the right-hand side can be estimated by making use of hyperge-
ometric series (see also Gasper and Rahman [192]) and an inequality derived in
Kirousis [322], ultimately leading to the bound 0:3 < 4.602.

with the polynomial factor 3m1/2 arising due to the change from Qm,m to Qp (see
Bollobas [62]). To complete the derivation of the improved bound, the authors
noted the following combinatorial identity, which can be proven by induction on
n:

where [™] = L                                are ^e Q-binomial or Gaussian coeffi-
cients [192] for 0 < i < n and q ^ I . The right-hand expression in eq. (9) is
also known as the Rogers-Szego polynomial Fn;g(P), and leads to the inequality

Equation (8) thus becomes
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5.4 OCCUPANCY BOUNDS AND Q-BINOMIAL COEFFICIENTS

As we have just seen, a key step in the improvement of the upper bound to
4.602 is the derivation of an upper bound to the sum in eq. (8) through its
connection with the ^-binomial coefficients. This bound can be improved further:
two approaches have been given by Janson, Stamatiou, and Vamvakari [278].
Both result in the same value, namely a 3 < 4.596. However, these approaches are
interesting in their own right. The first approach links the problem of determining
upper bounds to the satisfiability threshold with the study of Ising spin systems
in statistical mechanics, while the second approach links the problem with the
branch of mathematics dealing with g-hypergeometric series and their generating
functions.

More specifically, in the first approach the sum in eq. (8) is written as

with the outer sum ranging over all the 2n sequences £1 , . . . ,£n of O's and 1's.
each of them coding a truth assignment A with 0 and 1 representing TRUE and
FALSE respectively. This sum is indeed equal to the sum of eq. (8) when a = log P
and b = nlogQ.

The expression in eq. (12) enables the application of an optimization tech-
nique common in statistical physics, resulting in an asymptotic expression for
the sum. This particular form of the sum is precisely the partition function
Z — Y^ei en

 exP(—/3H) for a system with n spin sites, each having a spin
value Si e {0,1} and with an energy function equal to H = —aX^Li^i —

m umts where the inverse temperature (3 = 1. The
first term in H corresponds to an external field acting on all the spins of the
system, the second to an interaction acting between arbitrary pairs of spin
sites with the left site having spin 1 and the right site having spin 0. The
energy function can easily be rewritten into a more conventional form: H =
YJi=i( - a ~ b + bn^6i + n ̂ i<j e*c^ or' substituting £i = (1 + Si)/2 to have
more traditional (and symmetric) spins with values ±1,

The value H may be interpreted in statistical physics as the energy function for a
mean-field Ising model with an inhomogeneous (linear) external field. Ultimately,
this leads to an asymptotic expression for the partition function, and an estimate
for the sum in eq. (8), resulting in a3 < 4.596.

In the second approach, a sharp upper bound is derived for the sum in
eq. (8). Recall that it is equal to the Rogers-Szego polynomial Fn,Q(P). Then,
using the Eulerian generating function and a technique described in Lemma 8.1
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where ~L\i(y) — dilog(l — y) = Polylog(2,y) = Z^>i & 'ls the dilogarithm func-
tion. By finding the value of t that optimizes this upper bound and plugging it
into eq. (8), we obtain precisely the same upper bound as in the first approach,
a3 < 4.596.

5.5 BALLS AND BINS

The calculations described in the previous sections are useful, but limited. The
idea of single flips, although leading to a good improvement of the upper bound,
only takes into account a very limited range of locality around a given satisfying
assignment. The results described in subsection 5.3 exploit wider locality ranges,
but because of the complexity of the resulting numerical expressions, the authors
were forced to use weak bounds on Pr[A G A^ \ A € An] and the overall E[|*4^|].
Finally, the two approaches in subsection 5.4 reached the limits of what can be
exploited from the upper bound shown in eq. (8). In order to obtain further
improvements, one must step back from the derivation of eq. (8) and attempt to
realize improvements on the probabilities involved.

Kaporis et al. [293] have achieved an improved bound of 4.571 using sharp
estimates for certain probabilities related to the classical occupancy problem
that we have seen in subsection 4.1. For a given satisfying assignment A, the
probability that no single flip satisfies 0 is best computed (up to polynomial
factors) by noticing the following "structural" condition imposed on </> by the
event in question: for each variable x set to FALSE in A, the formula must contain
a critical clause {x,^,^} with A(£i) = A(12) = FALSE.

If a satisfying assignment A sets j variables to FALSE, no single flip satisfies
cj) when: (1) some / > j clauses out of m — an are critical (the remaining ones
being consistent with A8*), and (2) these I clauses can be seen as a sequence
of balls that are dropped into j distinct bins (corresponding to different single
flips) in a way that leaves no bin completely empty.

Asymptotic estimates on the occupancy probability that the / critical clauses
indeed cover all possible j single flips [292], as well as a change of models from
<5m,m to Qm in order to be able to formulate our problem in the balls and bins
framework, lead to a sharper bound of Pr[A G A\ \ A G An]. Note that Zito [538]
has performed a similar analysis using coupon collector probabilities instead,
deriving a bound of about 4.58. The analysis in Kaporis et al. [293] improves
on the previous results for another reason as well: the overall bound on E[|./4^|]
is tightened by means of a more direct estimate of the g-binomial coefficient
involved. Using simple generating function inequalities (and elementary calculus)

of Odlyzko [417], the following upper bound is obtained (see Janson et al. [278])
for any t, 0 < t < min(l, 1/P):
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it is possible to bound the term [7]# directly and avoid the use of Rogers-Szego
polynomials.

Finally, to obtain their results, the authors had to establish a relationship
between the probabilities of the event, A G A^ \ A € Al^, in the models Gm,m
and Gp. Using results described in Bollobas [62, ch. II], it is easy to prove the
desired relationship for unconditional events when the average length of a random
formula constructed in the model Gp equals m. However, the conditioning here
may bias the expected length of the formula to higher values. The authors have
shown how to adjust p appropriately so as to obtain the bound above.

6 TYPICAL FORMULAS

In the last section, all the techniques have worked by placing restrictions on
the assignments (semantics, in some sense) satisfying a formula and for which
the expectation, which is required by the first moment method, is computed. As
mentioned above, the application of this technique to the kinds of assignment re-
strictions described in subsections 5.1, 5.2, and 5.3 results provably in no further
upper bound improvement.

Dubois, Boufkhad, and Mandler [132, 134] consider random formulas with
the special characteristic that the numbers of appearances of their literals fall
within certain ranges that are "typical" for randomly generated formulas. In this
way, they are able to disallow the rare formulas that seem to prevent Markov's
inequality from giving an upper bound close to the experimentally determined
value. By computing the expected number of negative prime solutions for these
formulas only, making use of the model (?37Cm, they achieve an upper bound
improvement. In contrast to the semantic methods that rely on restricting the set
of truth assignments taking part in the application of the first moment method,
this approach can be characterized as syntactic: it focuses on restricting the
form or syntax of the set of formulas participating in the first moment method
calculations. However, the approach also limits the possible truth assignments
using the restricted sets defined in Sections 5.1 and 5.2. Without going into detail,
Dubois, Boufkhad and Mandler give an expression for the expected number of
negative prime solutions for these formulas. In so doing, they obtain a$ < 4.506,
the best upper bound to date for the location of the random 3-SAT threshold.
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CHAPTER 8

Proving Conditional Randomness using
the Principle of Deferred Decisions

Alexis C. Kaporis
Lefteris M. Kirousis
Yannis C. Stamatiou

1 INTRODUCTION

In order to prove that a certain property holds asymptotically for a restricted
class of objects such as formulas or graphs, one may apply a heuristic on a
random element of the class, and then prove by probabilistic analysis that the
heuristic succeeds with high probability. This method has been used to estab-
lish lower bounds on thresholds for desirable properties such as satisfiability and
colorability: lower bounds for the 3-SAT threshold were discussed briefly in the
previous chapter. The probabilistic analysis depends on analyzing the mean tra-
jectory of the heuristic—as we have seen in chapter 3—and in parallel, showing
that in the asymptotic limit the trajectory's properties are strongly concentrated
about their mean. However, the mean trajectory analysis requires that certain
random characteristics of the heuristic's starting sample are retained throughout
the trajectory.

We propose a methodology in this chapter to determine the conditional that
should be imposed on a random object, such as a conjunctive normal form (CNF)
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formula or a graph, so that conditional randomness is retained when we run a
given algorithm. The methodology is based on the principle of deferred decisions.
The essential idea is to consider information about the object as being stored
in "small pieces," in separate registers. The contents of the registers pertaining
to the conditional are exposed, while the rest remain unexposed. Having sep-
arate registers for different types of information prevents exposing information
unnecessarily. We use this methodology to prove various randomness invariance
results, one of which answers a question posed by Molloy [402].

2 PRINCIPLE OF DEFERRED DECISIONS

Let G G Gn,m be a graph chosen uniformly at random, conditional on its number
of vertices n and number of edges m. All G with n vertices and ra edges are
thus equiprobable. Intuitively, if we delete from G a vertex v chosen uniformly
at random and also delete all edges incident on v, the new graph should be
random conditional on the new number of vertices, n — 1, and the new number
of edges ra', where m' is a random variable. In other words, given ra', the new
graph is equiprobable among all graphs with n — I vertices and ra' edges. Note
that here and in what follows, "random" will mean "uniformly random," that
is, equiprobable, on conditionals that will be either explicit or clear from the
context.

Knuth [332, Lecture 3] has introduced a method, known as the principle of
deferred decisions, by which randomness claims such as the one above can be
verified. In the specific example of vertex deletion from a Qn,m graph, it works as
follows. Consider n + m cards facing down, or more precisely, n-f ra registers with
unexposed content. The first n of them correspond to the vertices of the graph
and the remaining ra to its edges. The register of a vertex v contains pointers to
the registers of the edges incident on v. The register of an edge e contains pointers
to the registers of the two endpoints of e. That the registers are unexposed means
that the pointers can be specified randomly. To delete a random vertex, do the
following: point randomly to a vertex register; expose its contents; expose all edge
registers pointed to by this vertex register; delete the exposed vertex register and
the exposed edge registers; nullify pointers in other vertex registers that point
to deleted edge registers (without exposing these vertex registers). The registers
that have not been deleted remain unexposed and, therefore, they can be filled
in randomly. The only conditional, that is, the only exposed information about
the graph, is the new number of vertex registers and the new number of edge
registers.

The principle of deferred decisions states that conditional randomness is
retained as long as no new information about the current contents of unexposed
registers can be determined, at any given update step, from information exposed
up until that step. The method can be applied in more complicated situations.
Consider a random graph conditional on (i) the number of vertices, (ii) the
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number of edges, and (iii) for each i — 0 , . . . ,n — 1, the number of vertices of
degree i (the degree sequence). We claim that upon deleting a random vertex of
degree i (for any i) and its i incident edges, the new graph is random conditional
on the same type of information. Indeed, it suffices to augment the argument of
the previous paragraph with the additional assumption that for each vertex v
there is an exposed degree register containing an integer equal to its degree. This
degree register needs to be exposed so that the algorithm may choose, at random,
a vertex of a given degree. After a deletion step, the contents of the remaining
vertices are updated. After the update, no information about the new values of
the unexposed registers can be determined from what still is, or previously was,
exposed. Therefore, the new graph is random given the number of its vertices,
the number of its edges, and its degree sequence.

Notice that keeping a register unexposed is not in itself sufficient to guarantee
that its contents stay random. Randomness is destroyed if one could even im-
plicitly infer additional information about the current contents of an unexposed
register from the combined knowledge of the current and previous contents of
exposed registers. Therefore, in all cases, a proof is necessary that no new in-
formation about the current values of unexposed registers can be implicitly re-
vealed. On the other hand, it is permissible for a given update step to implicitly
reveal information about previous contents—subsequently overwritten—of an
unexposed register. This does not destroy randomness, in that it is the updated
structure that must be proven random. Since revealing past secret information
causes no harm as long as no current secret information is revealed, it is con-
venient to imagine an omniscient "intermediary": an agent independent of the
deleting algorithm who updates all necessary registers in total confidence (see, in
this respect, the "card model" in Achlioptas [1]). Randomness is retained even if
the actions (updates) of the intermediary combined with all exposed information
implicitly yield some information about past values of unexposed registers, as
long as no information about their current contents is revealed. Of course, this
construct of "intermediary" is not a formal notion, but simply a convenient way
to describe the updating mechanism.

Notice also that one should not assume that all previously unexposed infor-
mation that is going to be overwritten is necessarily exposed at an update. Doing
so might make it possible to infer additional implicit information about the up-
dated contents of unexposed registers. In general, only part of the information
to be overwritten needs to be known in order to carry out the update, and thus
is implicitly revealed. The construct of the omniscient intermediary operating in
secrecy frees us from having to make explicit exactly what secret information
(to be overwritten) is implicitly revealed at an update. We simply need to make
sure that no updated secret information is implicitly revealed after the update.

We illustrate these points by a further example. Consider a random graph
conditional on (i) the number of vertices, (ii) the number of edges, (iii) the
number of vertices of degree 1, and (iv) the number of vertices of degree 0
(isolated vertices). We claim that upon deleting a random vertex of degree 1
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and its incident edge, the new graph is random conditional on the same type
of information. This randomness claim is an immediate consequence of a more
general theorem proven in Pittel et al. [436] (see also Broder et al. [81]), where the
degrees of the vertices to be deleted are allowed to take values up to an arbitrary
fixed integer k, assuming that the degree sequence of the graph is given up to k
(we have seen in the previous example that this is true if we allow the degrees
to range up to n — 1). The proof in Pittel et al. [436] depends upon counting
all possibilities. However, the result can also be proven using the principle of
deferred decisions. Assume that for each vertex v there is an exposed degree
register that contains a three-valued parameter, indicating whether the degree
of that vertex is 0, 1, or > 2. In contrast to the case where the whole degree
sequence was known, updating these registers after a deletion step presupposes
knowledge of unexposed information. For instance, to update the degree register
of a vertex that had degree at least 2 before the deletion, and which lost an
incoming edge because of the deletion, we need to know whether its degree
was previously exactly 2 or strictly more. However, it is easy to see that no
information about the updated value of the unexposed registers is revealed by
the combined knowledge of what currently is and previously was exposed: if an
updated degree register ends up with the value > 2, beyond this information we
still have no knowledge of its actual degree. Therefore, randomness is retained.
The omniscient intermediary secretly carries out the updating, using unexposed
information. Even though the intermediary might reveal implicit information
about the past values of registers, an observer cannot obtain any knowledge
about the current contents of any unexposed register from what is and was
unexposed.

On the other hand, the fact that additional current information is implicitly
revealed is sometimes hard to notice. The subtlety of implicit disclosure can be
illustrated by the following example. Let a B&W graph be a graph whose edges
are either black or white. Call a vertex all-white if all the edges incident on it are
white. Let the w-degree of a vertex v be the number of all-white vertices that v is
connected with (see figs. 1 through 3). Notice that a black edge incident on v does
not count towards the w-degree of i>, while a white edge incident on v may or may
not count towards the w-degree of v. Suppose we are given a random B&W graph
G conditional on the number of vertices, and for each vertex t>, the w-degree of
v as well as the number of black edges and the number of white edges incident
on v. All other characteristics of G are assumed to be random. Formally, given
a fixed integer n and a fixed array of integers dw^j where w, i, j = 0,..., n — 1,
then G is chosen with equal probability among all B&W graphs such that dw^j
is the number of vertices in the graph with w-degree w, i incident white edges
and j incident black edges. We assume that the values of the array are such that
there is at least one such graph. Suppose now that we delete from G a vertex i?,
chosen at random among all vertices with a specified w-degree (say 0). Suppose
we also delete all edges, black and white, incident on v. Is the new graph random
conditional on the same type of information?
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Prim a facie, one may think that the answer to this question is yes. Indeed,
suppose that the exposed registers give for each vertex its w-degree, as well as
the number of black edges and the number of white edges incident on it. All other
information about the graph is assumed to be unexposed, that iss, random. After
the deletion of a vertex v as previously described, and the subsequent deletion of
all edges incident on v, all registers are updated. We may be tempted to conclude
that the same type of information about the graph is known before and after the
deletion, leading to an affirmative answer to the question. Unfortunately, this
argument is erroneous. To see why, observe what happens if, after the deletion
of v, the exposed w-degree of another vertex u increases. Using the combined
knowledge of the current and previous contents of exposed registers, we can
infer that in the new graph there exists at least one vertex v' that has just
become all-white (as the result of the deletion of a black edge joining v with
vf). Additionally, we learn that u is connected with at least one of these newly-
all-white vertices. However, this last type of information is not supplied by the
currently exposed registers, which give only the w-degree of u and the number
of black and white edges incident on it. They do not specify a subset of the
all-white vertices connected with u. The fact that we have implicit access to that
information means that randomness cannot be retained in the new graph.

We now show a specific case of this. Consider the list of degree parameters (w-
degree, number of incident white edges and number of incident black edges) given
in figure l(a) for each vertex of a random B&W graph. Then, by an easy case
analysis we may verify that the only graphs having these degree parameters are
the two depicted in figure l(b) and (c). These two graphs are equiprobable, and
any information about them other than what is in the upper table is assumed to
be stored in unexposed registers. Suppose now that we delete the vertex v$ from
the random graph. Then the resulting graph, depending on which the original one
was, will have the degree parameters given either in figure 2(a) or in figure 3(a).
Suppose the resulting graph has the degree parameters of figure 2(a), so that the
original graph was the one in figure l(b)—examining this case will be sufficient
for the purposes of demonstration. Again, by an easy case analysis we can verify
that the only graphs having these degree parameters are the two depicted in
figure 2(b) and 2(c). (If the original graph was the one in fig. l(c), then the only
possible graph having the degree parameters of fig. 3(a) is the one depicted in
fig. 3(b)—we do not examine that case here.)

If deleting vertex v5 did not destroy randomness, then both graphs in fig-
ure 2(b) and 2(c) should be equiprobable. However, from the combined knowledge
of the tables in figure l(a) and figure 2(a), we can easily infer that the graph in
figure 2(c) is impossible. This is so because combining the information in the last
columns of the tables in figure l(a) and 2(a) we find that the newly all-white ver-
tex is ^e (it is the only vertex that previously had, but no longer has, an incident
black edge). Also, from the combined information in the third and fourth rows
of the second columns of these tables we see that both 173 and V4 are adjacent
to fe, as their w-degree has increased. Continuing with an easy case analysis,
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vertices
Vi

V-2

*'3

VA
vs
v6

w- degree
0
1
1
0
0
0

# of white incident edges
2
1
2
1
0
2

# of black incident edges
0
1
2
1
1
1

FIGURE 1 Original B&W graph: (a) exposed register values; (b) and (c) the two
possible graphs corresponding to these values. Solid lines represent black edges and
dashed lines represent white edges.

we conclude that the only graph that has the degree parameters of figure 2(a)
and was obtained from a graph that has the degree parameters of figure l(a) by
deleting v§ is the graph in figure 2(b). In other words, the combined knowledge of
the two tables—the one before the deletion and the one after—reveals additional
information that cannot be obtained exclusively from the current table, after the
deletion. This proves that randomness is not retained. It is instructive to note
that if no information were given about the w-degree of the vertices and we dealt
only with information about the ordinary degrees (even if they were categorized
by the number of incident white edges and the number of incident black edges)
then randomness would be retained. That is true because combined knowledge
of the two consecutive tables would not then be enough for us to infer additional
unexposed information about the resulting graph.

The execution of an algorithmic step on the graph, such as the deletion of a
vertex and the edges incident on it, can thus implicitly but subtly expose addi-
tional information about the current values of unexposed registers. In section 4,
we describe more fully the methodology that is helpful in checking whether any
implicit exposure of additional information has taken place as the result of the
application of an algorithmic step. As we have seen here, the basic idea is to
store information about the random structure in registers, in sufficiently "small
pieces." The payoff of doing so is that implicit disclosure of information can be
detected easily. Again, we do not require that updates be performed only on the
basis of exposed information: unexposed information can be made available to
the omniscient "intermediary" doing the updating. But there must be no way
for us to infer this information.

(a)

(b) (c)
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vertices
t'l
t'2

l>3

1'4

t>6

w- degree
0
1
2
1

0

# of white incident edges
2
1
2
1

2

# of black incident edges
0
1
2
1

0

FIGURE 2 B&W graph from figure l(b) with vertex v$ deleted: (a) exposed register
values; (b) and (c) the two possible graphs corresponding to these values.

vertices
Vl

V2

v*
t'4

t'6

w- degree
0
1
1
0

0

# of white incident edges
2
1
2
1

2

# of black incident edges
0
1
1
1

1

(a)

FIGURE 3 B&W graph from figure l(c) with vertex i>5 deleted: (a) exposed register
values; (b) the only possible graph corresponding to these values.

One might say that a safer way to prove conditional randomness claims is
by rigorous counting arguments, rather than through the principle of deferred
decisions. In complicated situations, however, counting arguments are practically
impossible. As we will see from specific applications, our methodology makes it
easy to specify what the a priori exposed information should be in order to
retain randomness throughout the execution of an algorithm, given the type of
operations that the algorithm allows. Such considerations have attracted much
attention lately, in view of the increased interest in the probabilistic analysis of

(a)

(b) (c)

(b)
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heuristics on random Boolean formulas and graphs. This has been discussed in
chapter 3 (see also Molloy [403] for an overview of satisfiability and colorability
thresholds). The probabilistic analysis involves analyzing the mean path of the
heuristic [529], while showing that randomness is retained throughout the course
of the heuristic. It is in situations like this where our methodology is particularly
useful. This approach can ultimately be used to obtain lower bounds on threshold
locations: indeed, the best lower bound to date on the satisfiability threshold [294,
295], mentioned in the previous chapter, has been proven using the principle of
deferred decisions.

The rest of the chapter describes specific applications of this nature. We
answer, notably, a question posed by Molloy [402] concerning a Davis-Putnam
heuristic acting on a CNF formula comprised of 3- and 2-clauses, when the literals
to be satisfied are selected on the basis of how often they appear in each of the
two types of clauses. Using the principle of deferred decisions, we show what
characteristics must be conditional in order to retain randomness throughout
the procedure (theorem 4.2 in section 4), and conjecture that this is the minimal
set of conditionals needed.

3 TERMINOLOGY AND NOTATION

Our results can be applied in various contexts related to random graphs or
formulas. However, for concreteness, we first present them in the context of
random formulas comprised only of 3- and 2-clauses. We introduce below the
related terminology and notation.

Let V be a set of variables of cardinality n. Let L be the set of literals
of V, that is, elements of V and their negations. A fc-clause is a disjunction of
exactly k literals from L. Let 0 be a Boolean formula in conjunctive normal form
(CNF), comprised of 3- and 2-clauses. Let m be the total number of clauses of
the formula. Let C% and C% denote the collections of 3-clauses and 2-clauses of
0, respectively, and let 03, C2, and / be the respective cardinalities of the sets 63,
C2, and L. Clearly 03 -f 0*2 = ra, and / = 2n. (Note that the notation used here
is slightly different from that of chapter 3: there, C% and C*2 were the numbers
of 3- and 2-clauses, and 03 and 02 were the respective densities. Note also that
Cs and C% are distinct from £3 and C^ from the previous chapter, where they
denoted the collections of clauses containing exactly 3 and 2 positive literals,
respectively.)

For i = 0,1, . . . , 3c3 + 2c2, let Di be the set of literals in L that have exactly
i occurrences in </>. The elements of Di are said to have degree i. Literals whose
negation is in D0 are called pure. Notice that according to our terminology, a
literal in L whose variable does not appear at all in the formula is pure.

Let DI and D\ be the sets of literals that have exactly one occurrence in
</>, in a 3-clause and 2-clause, respectively. D\ is then the disjoint union of D\
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and D\. Let also D\xl be the subset of D\ comprised of literals that appear in
a 2-clause whose second literal also belongs to D\.

Let di, d\, d\, and d?xl be the respective cardinalities of Di, D\, D±, and
£>ix i - Obviously,

Consider the collection of formulas comprised of 3- and 2-clauses that have
given, fixed values for the parameters /, 03, C2, do, d\, d\, and d\xl. Make this
collection into a probability space by assigning to each one of its elements the
same probability (we assume that the values of the parameters are such that
this space is not empty). An element of this space is called a random {3, 2}-CNF
formula conditional on the values of /, ca, C2, do, c/f, d\, and dfxl. One could
define random graphs similarly, conditional, for instance, on the number of edges
and vertices, as we did in the previous section. Such formulas and graphs are
called conditionally random objects.

We will consider algorithms on random {3, 2}-CNF formulas that only apply
steps of the following three types (one step may comprise several constituent sub-
steps):

• Set a pure literal. Select at random a pure literal, set it to TRUE and delete all
clauses where it appears.

• Set a degree-one literal from a 3-clause. Select at random a literal in Df, set
it to FALSE, delete it from the 3-clause where it appears and delete all clauses
where its negation appears.

• Set a degree-one literal from a 2-clause. Select at random a literal in Df, set
it to FALSE, delete it from the 2-clause where it appears and delete all clauses
where its negation appears. This can create a 1-clause. As long as there are
1-clauses, choose one at random, set its literal to TRUE, delete all clauses
where it appears and delete its negation from any clause in which it appears.
Ignore (delete) any empty and thus trivially unsatisfiable clause that may occur
during this step. This last provision is simply a technicality introduced to study
the randomness of the formula independently of its satisfiability. Of course,
when such a step is used as a subroutine of an algorithm for satisfiability, the
occurrence of an empty clause is an indication to stop immediately and report
unsatisfiability.

4 RESULTS

Theorem 4.1. Let cj) be a random {3,2}-CNF formula conditional on the values
of the parameters I, cs, C2, d$, d\, d\, and d\xl. If any algorithmic step like
the ones described above is applied to $, then the formula obtained is a random
{3,2}-CNF formula conditional on the new values of the parameters I, c3, c%,
do, d\, d\, and d^xl.
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Proof Notice that no algorithmic step differentiates between degree-one lit-
erals appearing in 2-clauses on the basis of the degree of the other literal in
the 2-clause. Still, according to the statement of the theorem, randomness
is preserved if it is conditional not only on d\ but also on d\xl. The reason
for this will become clear later in this proof.
We first introduce some general notions, in more formal terms than before.
An object such as a formula or a graph can be modeled by a data structure.
Let us think of a data structure as a collection of registers containing infor-
mation about the object. For example, a data structure modeling a graph
includes a register for each vertex, with pointers to the registers of the edges
incident on the vertex. It also includes a register for each edge, with pointers
to the registers of the vertices on which the edge is incident. A data struc-
ture modeling a formula includes a register for each literal, with pointers to
the registers of the literal appearing in the clause. It also includes a register
for each clause (more information about the registers of a formula is given
below).
Registers are partitioned into groups. The elements of each group contain
various types of information for the same part of the modeled object. For
example, for each vertex of a graph, we may have several registers in one
group: one with pointers to the edges incident on the vertex, another with
the degree of this vertex, etc. For the present purposes, we refer to the
registers belonging to the same group as sub-registers of the group. We also
imagine, for each group, a head register with pointers to its sub-registers.
When a sub-register of a group contains a pointer to another group, it is
assumed to point to the head register of that other group. Intuitively, the
reason for storing different types of information in separate sub-registers is
to avoid exposing all information about a part of the modeled object when
it is necessary to expose only a "small piece" of it.
A data structure with unexposed information is a data structure whose
(sub-)registers are partitioned into two categories, called unexposed and ex-
posed registers. The partitioning is done according to rules given in the
definition of the structure. These rules are based on the type of contents
of the registers. The head registers of the groups are always exposed. In-
tuitively, one may think of such a structure as modeling an object whose
characteristics stored in the unexposed registers are random, conditional on
the information stored in the exposed registers. The same group may con-
tain both exposed and unexposed sub-registers. For example, although the
specific edges where a vertex appears may not be exposed, its degree may
be exposed.
In general, given a conditionally random object, we associate with it a data
structure as above. An algorithmic step that deletes an element of the object
(such as the deletion of a vertex or the assignment of a variable) corresponds
to the deletion of the group of registers associated with the deleted element
of the object. After the deletion, all registers are updated.
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Definition 1. An algorithmic step is called randomness preserving if, after
the corresponding deletions and updates of registers, no information about
the contents of unexposed registers can be inferred from what currently is and
previously was exposed, beyond what can be inferred from what is currently
exposed. In other words, no additional information is implicitly revealed by
knowing both past and current exposed information.

To prove a randomness claim such as the theorem under consideration, it
suffices to find a data structure with unexposed information that models
the conditionally random object in the claim, and then to show (i) that the
algorithmic steps are randomness preserving and (ii) that the information
in the conditional is exactly the information that can be extracted from the
exposed registers of the structure.
We describe below a structure <5, with unexposed information, that models
a random {3, 2}-CNF formula conditional on the parameters /, €3, C2, do, d\,
df, and d\xl.
• For each literal t in L, the structure S contains a group of sub-registers

collectively called literal sub-registers. These contain information about
the degree of the literal, its occurrences in the formula and its negation.
The information that is assumed exposed is (i) the degree and (ii) the
position in the formula of literals with a single occurrence that happens to
be in a 2-clause. All other information is unexposed. More formally, one
of these sub-registers contains two bits of information indicating whether
t belongs to DQ (t does not appear in the formula), D\ (t has degree 1 and
appears in a 3-clause), D\ (i has degree 1 and appears in a 2-clause) or
none of these (i has degree at least 2). This sub-register is exposed. Also,
we assume that there are sub-registers containing pointers to the positions
of all occurrences of t in the formula (to the heads of all clause sub-registers
where t appears; see below). These sub-registers are exposed if t is in D\
and unexposed otherwise. The reason for exposing the position in the
formula of literals in D\ will become apparent later. Finally, we assume
that there is an unexposed sub-register pointing to the head of the literal
sub-register of the negation of t. It is important to notice that because
the pointer to the negation of a literal is unexposed, each literal is paired
with its logical negation randomly.

• For each clause in the formula, the structure S contains a group of sub-
registers collectively called clause sub-registers. These contain information
about the type of the clause (3-clause or 2-clause) and pointers to the
heads of literal sub-registers corresponding to the literals that appear in
the clause. The information about the type of the clause is exposed, while
the pointers to the literal registers are unexposed.

It is straightforward to verify that after the application of any of the algo-
rithmic steps, no information about an unexposed register can be deduced
from what is and previously was exposed. Under these circumstances, the
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randomness of the structure S is preserved under an algorithmic step. The
need for having the positions of literals in D\ exposed can be seen in the
event that under an update step, exactly one 3-clause shrinks to a 2-clause
and exactly one literal moves from D\ to D\. In that case, the information
about the type of each clause and the degree of each literal is sufficient to
allow us to infer the position of this literal.
Now the theorem follows because the information that can be extracted
from S consists only of the values of the following parameters: / (the number
of groups of literal sub-registers), c<2 (the number of groups of clause sub-
registers for 2-clauses), c% (the number of groups of clause sub-registers for
3-clauses), ofo, df, c?f, and d%xl. The value of d^xl can be obtained from
S because the positions in the formula of literals in D\ are exposed. All
other information that can be extracted from S can be expressed in terms
of the values of the parameters /, 03, 02, do, df, d\, and djxi, only. (One
can immediately see, for instance, that the number of 2-clauses where both
positions are filled with literals of degree at least 2 or the number of 2-
clauses where one position contains a literal of degree at least two and the
other a literal of degree exactly one can be expressed in terms of the values
of the parameters /, cs, C2, do, d\, d\, and df x l ) . This completes the proof
of Theorem 4.1.

We now come to the generalization of the previous result to arbitrary degrees,
where algorithms making use of the overall number of occurrences of literals in
3-clauses and 2-clauses, separately, are allowed. To preserve randomness in this
case, a conditional given by a number of integer parameters—as in the previous
theorem—is not enough. We have to assume that the positions of all literals
appearing in 2-clauses are known, regardless of their degree: this information is
revealed when a 3-clause shrinks to a 2-clause and the exposed degree information
of literals is updated. However, no information about negations of literals or
identification of literals need be revealed, nor does information on the positions
of literals appearing in 3-clauses. In other words, we have to assume that the
pattern in which literals are paired in 2-clauses is conditional, though the pattern
need not reveal the pairing of literals of opposite logical sign. This is still a severe
restriction on the randomness of the formula. Below, we formalize the notion of
pattern.

Fix an even integer 2n representing the number of literals of a formula, and
an integer cs representing the number of 3-clauses in a formula. A pattern for
2-clauses and degree sets that is transparent with respect to negations (pattern,
in short) is a set of unordered pairs C_2 °f integers from {!,..., 2n}, representing
the collection of 2-clauses of the formula, together with a collection of sets Df C
{!,..., 2n}, i = 0 , . . . , cs, such that ^i i\D^\ = 3cs, representing the collection
of sets of literals whose number of occurrences in 3-clauses is i.

Now fix a pattern P as described above. A random formula 0 conditional on
P is constructed as follows: randomly choose c% unordered triplets from 1, . . . , 2n
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so that all integers in each D^ appear in exactly i such triplets; denote this
set by C^; randomly select a one-to-one and onto mapping neg : {1,... ,n} —»
{n +1, . . . , 2n} representing the negations; in the tuples of C^ and of C2, replace
each k — 1, . . . , n with variable #/- and each neg(fc), fc = 1, . . . , n, with its negation
Xfc", and denote by 63 and 62, respectively, the sets of clauses thus obtained; let
the formula (/> be the one that has as 3-clauses and as 2-clauses the sets 63 and
C*2, respectively. Notice that since the negation function "neg" was random, a
literal and its negation may appear in the same clause. If we wish to avoid this,
"neg" may instead be a random one-to-one and onto mapping made conditional
on the fact that for no i = 1,... ,n can both i and neg(i) appear in the same
tuple of either C3 or C2. Based on the method of proof of the previous theorem,
one can obtain the following result that answers an open question posed by
Molloy [402].

Theorem 4.2. Let (j> be a random {3,2}-CNF formula conditional on a given
pattern P, as described above. For arbitrary i and j, choose at random a literal
t with i occurrences in 3-clauses and j occurrences in 2-clauses. Assign to t
the value TRUE and perform the necessary deletions and shrinking of clauses
accompanied by repeated setting to TRUE of literals in 1-clauses, as long as 1-
clauses exist. The new formula is then random, conditional on its new pattern
P'.

Proof Again, we introduce a structure S that contains groups of sub-registers
corresponding to literals and to clauses. This time, the exposed degree sub-
registers of a literal t contain two integers: one giving the number of occur-
rences of t in 3-clauses and the other giving the number of occurrences of t
in 2-clauses. Furthermore, the group of literal sub-registers of t contains in-
formation on which 3-clauses and which 2-clauses include t. The information
regarding 3-clauses is unexposed. The information regarding 2-clauses, how-
ever, must be exposed because after an algorithmic step, it can be inferred
from the knowledge of the previous and current values of the registers giving
the type of each clause (3-clause or 2-clause) and the degrees of the literals.
One may readily confirm that nothing can then be inferred about the un-
exposed registers after the application of an algorithmic step. It is also im-
mediately apparent that the information that can be extracted from such a
structure S is given by the pattern P.

Note that if the algorithm does not make use of the number of occurrences
of literals separately in 3-clauses and 2-clauses, but only needs the total number
of occurrences of a literal in the formula, then the conditional does not have
to include the pairing of literals in 2-clauses. It is sufficient in this case for the
conditional to contain the total degree sequence, the number of 3-clauses, and
the number of 2-clauses.
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Finally, as a further application, let us see what information must be placed
in the conditional for an algorithm deleting vertices of a specified w-degree from
a random BfeW graph, as discussed in section 2.

Given a B&W-graph G, let W C G be the subgraph comprised of the vertices
of G, with vertices marked according to whether or not they are all-white (in
the sense of G), and all white edges with at least one endpoint incident on an
all-white vertex. Call W the subgraph of w-degree witnesses. Without giving
details, one can again define a notion of random B&W graphs conditional on
the number of vertices, the total number of edges and the precise subgraph
of w-degree witnesses. Note that to construct the rest of the graph from this
information, one can arbitrarily place edges between vertices that are not all-
white and then arbitrarily color them black or white, taking care that at least
one black edge is incident on each vertex that is not all-white.

Then the following theorem holds. We omit its easy proof, as the notion of
B&W graphs was introduced only for illustrative purposes.

Theorem 4.3. // we delete a random vertex of a specified arbitrary w-degree from
a B&W graph that is random conditional on the number of vertices, the total
number of edges and the subgraph of w-degree witnesses, then the new graph is
random conditional on the new number of vertices, the new total number of edges
and the new subgraph of w-degree witnesses.

An analogous result holds if the deleted vertex has specified numbers of
white and black edges incident on it (the conditional in the latter case must be
augmented to contain the sequence dij giving the number of vertices with i white
and j black edges incident on them).

We conclude this chapter by the following

Informal Conjecture. The conditionals of theorems 4.1, 4.2, and 4.3 contain the
least information possible. With weaker conditionals, randomness would not be
retained.
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CHAPTER 9

The Phase Transition in the Random
HornSAT Problem

Demetrios D. Demopoulos
Moshe Y. Vardi

1 INTRODUCTION

This chapter presents a study of the satisfiability of random Horn formulas and
a search for a phase transition. In the past decade, phase transitions or sharp
thresholds, have been studied intensively in combinatorial problems. Although
the idea of thresholds in a combinatorial context was introduced as early as 1960
[147], in recent years it has been a major subject of research in the communities
of theoretical computer science, artificial intelligence, and statistical physics. As
is apparent throughout this volume, phase transitions have been observed in
numerous combinatorial problems, both for the probability that an instance of a
problem has a solution and for the computational cost of solving an instance. In
a few cases (2-SAT, 3-XORSAT, 1-in-k SAT) the existence and location of these
phase transitions have also been formally proven [7, 94, 101, 131, 156, 202].

The problem at the center of this research is that of 3-satisfiability (3-SAT).
An instance of 3-SAT consists of a conjunction of clauses, where each clause is a
disjunction of three literals. The goal is to find a truth assignment that satisfies

Computational Complexity and Statistical Physics, edited by
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all clauses. The density of a 3-S AT instance is the ratio of the number of clauses
to the number of Boolean variables. We call the number of variables the size
of the instance. Experimental studies [110, 395, 397, 466, 469] have shown that
there is a shift in the probability of satisfiability of random 3-S AT instances, from
1 to 0, located at around density 4.27 (this is also called the crossover point}.
So far, in spite of much progress in obtaining rigorous bounds on the threshold
location, highlighted in the previous chapters, there is no mathematical proof
of a phase transition taking place at that density [1, 132, 177]. Experimental
studies also show a peak of the computational complexity around the crossover
point. In Kirkpatrick and Selman [319], finite-size scaling techniques were used
to suggest a phase transition at the crossover point. Later, in Coafra et al. [96],
experiments showed that a phase transition of the running time from polynomial
in the instance size to exponential is solver-dependent, and for several different
solvers this transition occurs at a density lower than the crossover point. This
phenomenon has been further discussed in chapter 3. A restriction on all the
experimental studies is imposed by the inherent difficulty of the problem, espe-
cially around the crossover point. We can only study instances of limited size
(usually up to a few hundred) before the problems get too hard to be solved in
reasonable time using available computational resources.

A problem similar to random 3-SAT is that of the satisfiability of random
Horn formulas, also called random HornSAT. A Horn formula in conjunctive
normal form (CNF) is a conjunction of Horn clauses; each Horn clause is a dis-
junction of literals of which at most one can be positive. Unlike 3-SAT, HornSAT
is a tractable problem. The complexity of the HornSAT is linear in the size of
the formula [128]. The linear complexity of HornSAT allows us to study ex-
perimentally the satisfiability of the problem for much bigger input sizes than
those used in similar research on other problems like 3-SAT or 3-Colorability
[96, 110, 253, 469].

An additional motivation for studying random HornSAT comes from the
fact that Horn formulas are related to several other areas of computer science
and mathematics [375]. In particular, Horn formulas are connected to automata
theory, as the transition relation, the starting state, and the set of final states of
an automaton can be described using Horn clauses. For example, if we consider
automata on binary trees (see definition below), then Horn clauses of length three
can be used to describe its transition relation, while Horn clauses of length one
can describe the starting state and the set of the final states of the automaton (we
elaborate on that later). Then, the question about the emptiness of the language
of the automaton can be translated to a question about the satisfiability of the
formula. There is also a close relation between knowledge-based systems and
Horn formulas, though we do not consider that relation in this chapter. Finally,
there is a correspondence between Horn formulas and hypergraphs that we use
to show how results on random hypergraphs relate to our research on random
Horn formulas.
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The probability of satisfiability of random Horn formulas generated accord-
ing to a variable clause length model has been studied by Istrate [271], who
showed that random Horn formulas have a coarse rather than a sharp satisfi-
ability threshold, meaning that the problem does not have a phase transition.
The variable clause length distribution model used by Istrate is ideally suited to
studying Horn formulas in connection with knowledge-based systems [375].

Motivated by the connection between the automata emptiness problem and
Horn satisfiability, we study the satisfiability of two types of random Horn formu-
las in conjunctive normal form (CNF) that are generated according to a variation
of the fixed clause length distribution model mentioned in chapter 7. We consider
the 1-3-HornSAT, where formulas consist of clauses of length one and three only,
and 1-2-HornSAT, where formulas consist of clauses of length one and two only.
We are looking to identify regions in the problems' space where instances are
almost surely satisfiable or almost surely unsatisfiable. We are also interested in
finding if the problems exhibit a sharp threshold.

The random 1-2-HornSAT problem is related to the random 1-3-HornSAT
problem in the same way that random 2-SAT is related to random 3-SAT. That
is, as some algorithm searches for a satisfying truth assignment for a random
1-3-Horn formula by assigning truth values to the variables, a random 1-2-Horn
formula is created as a subformula of the original formula. This is a result of 3-
clauses being shortened to 2-clauses by a subtitution of truth values. The relation
between random 2-SAT and random 3-SAT has been exploited by Achlioptas [1]
to improve on the lower bound for the threshold of random 3-SAT. In this work,
Achlioptas uses differential equations to analyze the execution of a broad family
of SAT algorithms. In general, one can try to analyze phase transitions using
differential equations (cf. Istrate [272]). The 1-2-HornSAT problem can also be
analyzed with the help of random graphs [62]. We show how results on random
digraph connectivity, presented by Karp [300], can be used to model the satis-
fiability of random 1-2-Horn formulas. These results can be used to show that
there is no phase transition for 1-2-HornSAT and are matched by our experi-
mental data.

Our experimental investigation of 1-3-HornSAT shows that there are regions
where a random 1-3-Horn formula is almost surely satisfiable and regions where
it is almost surely unsatisfiable. Analysis of the satisfiability percentile window
and finite-size scaling methods [485] suggest that there is a sharp threshold line
between these two regions. Just as 1-2-HornSAT can be analyzed using random
digraphs, 1-3-HornSAT can be analyzed us>ing random hypergraphs. We show
that some recent results on random hypergraphs [116] fit our experimental data
well. Unlike the data analysis, however, the hypergraph-based model suggests
that the transition from the satisfiable to unsatisfiable regions is a steep function
rather than a step function. It is, therefore, not clear if the problem exhibits
a phase transition, in spite of our having made use of experimental data for
instances of large size.
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Our results here also relate to those of Kolaitis and Raffill [339], who car-
ried out a search for a phase transition in another NP-complete problem, that
of AC-matching. The similarity between their work and ours is that the experi-
mental data provide evidence that both problems have a slowly emerging phase
transition. The difference is that in our case, because of the linear complexity
of Horn satisfiability, we are able to test instances of Horn satisfiability of much
larger size than the instances of AC-matching in Kolaitis and Raffill [339], or for
that matter of most NP-complete problems such as 3-SAT and 3-COL.

2 PRELIMINARIES AND FINITE AUTOMATA

Before discussing our main results on thresholds in HornSAT, let us review some
definitions related to combinatorial phase transitions, and show explicitly the
relationship between HornSAT and finite automata. Let X be a finite set and
\X\ = n. Let A be a random subset of X constructed by a random procedure
according to the probability space Q(n, m) with measure:

The random procedure consists of selecting m* elements of X without re-
placement. A (set) property Q of X is a subset of 2X, the power set of X consisting
of all subsets of X. Q is increasing if A £ Q and A C B C X implies B G Q. Q
is non-trivial if 0 £ Q and X G Q. A property sequence Q consists of a sequence
of sets {Xn : n > 1} such that \Xn\ < \Xn+i\ and a family {Qn : n > 1} where
each Qn is a property of Xn. Q is increasing if Qn is increasing for every n > 1,
and Q is non-trivial if Qn is non-trivial for every n > 1.

Let Qn be an increasing non-trivial property sequence, and
strictly positive function. We say that 9 is a threshold for Q if for every 

where ra is an integer and

is a sharp threshold Q if for every

a
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We say that Q exhibits a phase transition if it has a sharp threshold. Our interest
is in satisfiability of Horn formulas. Thus, in our framework Xn is the set of
Horn clauses over a set with n Boolean variables. A set of Horn clauses is a Horn
formula.

Our main motivation for studying the satisfiability of Horn formulas is that,
unlike 3-SAT, this problem is tractable. Therefore, we will have numerical data
for instances of much larger size to help us answer questions similar to those
previously asked about 3-SAT.

Apart from that, it is also of interest to us that Horn formulas can be used
to describe finite automata. A finite automaton A is a 5-tuple A — (5, E, J, s, F),
where S is a finite set of states, E is an alphabet, 6 is a transition relation, s is
a starting state, and F C 5 is the set of final (accepting) states.

In a word automaton, S is a function from S x E to 25. In a binary-tree
automaton £ is a function from 5 x E to 2s"x5. Intuitively, for word automata
S provides a set of successor states, while for binary-tree automata 6 provides a
set of successor state pairs. A run of an automaton on a word a = a\a<2 • - • an
is a sequence of states SQSI • • - sn such that SQ = s and (si_i,ai,Si) £ 6. A
run is successful if sn £ F: in this case we say that A accepts the word a. A
run of an automaton on a binary tree t labeled with letters from S is a binary
tree r labeled with states from S such that root(r) = s and for a node i of £,
(r(i),t(i),r(left-child-of-2),r(right-child-of-i)) € S. Thus, each pair in 6 ( r ( i ) , t ( i ) )
is a possible labeling of the children of i. A run is successful if for all leaves / of
r, r(l) E F: in this case we say that A accepts the tree t. The language L(A) of
a word automaton A is the set of all words a for which there is a successful run
of A on a. Likewise, the language L(A) of a tree automaton A is the set of all
trees t for which there is a successful run of A on t. An important question in
automata theory that is also of great practical importance in the field of formal
verification [510] is, given an automaton A, is L(A) non-empty? We can show
how the problem of non-emptiness of automata languages translates to Horn
satisfiability.

Consider first a word automaton A = (5, E, £, SQ, F). Construct a Horn for-
mula (J>A over the set S of variables as follows:

• create a clause (SQ)
• for each Si £ F create a clause (s^
• for each element (s$, a, Sj) of S create a clause (sj, s^),

where ( s ^ , . . . , sjt) represents the clause Si V • • • V Sk and ~sj is the negation of Sj.

Theorem 2.1. Let A be a word automaton and (f>A the Horn formula constructed
as described above. Then L(A) is non-empty if and only if $A is unsatisfiable.
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Proof (=>•) Assume that L(A) is non-empty, i.e., there is a path 
in A such that Si0 = SQ and Sirn = s^ where Sk is a final state. Since Sk is a
final state, ($k) is a clause in (/>A. Also (s/T, Sim_1) is a clause in (f>A- For (J)A
to be satisfiable Sk must be TRUE, and consequently Sirn_1 must be TRUE.
By induction on the length of the path TT we can show that for <J)A to be
satisfiable SQ must be TRUE, which is a contradiction.
(4=) Assume that (J>A is unsatisfiable. It then must have positive-unit resolu-
tion refutation [239], i.e., a proof by contradiction where in each step one of
the resolvents must be a positive literal and the last resolution step is with
the clause (15"). Let (s^) be the first positive literal resolvent in the proof.
By construction, Si is a final state of A. By induction on the length of the
refutation, we can construct a path in A from SQ to s^, Therefore, L(A) is
non-empty.

Similarly to the word automata case, we can show how to construct a Horn
formula from a binary-tree automaton. Let A — (S, E, <5, s0, F) be a binary-tree
automaton. Then we can construct a Horn formula CJ>A using the construction
above with the only difference that since 6 in this case is a function from S x {a}
to S x 5, for each element (s;,a, Sj, Sk) of 6 we create a clause (sj, s/T, s^). It is
not difficult to see that also in this case we have:

Theorem 2.2. Let A be a binary-tree automaton and &A the Horn formula con-
structed as described above. Then L(A) is non-empty if and only if <J)A is unsat-
isfiable.

Motivated by the connection between tree automata and Horn formulas de-
scribed in theorem 2.2, we study the satisfiability of two types of random Horn
formulas. More precisely, let Hn'd d denote a random formula in CNF over a
set of variables X — {#1,..., xn}, containing:

• a single negative literal chosen uniformly among the n possible negative liter-
als;

• d\n positive literals that are chosen uniformly, independently and without
replacement among all n — 1 possible positive literals (the negation of the
single negative literal already chosen is not allowed); and

• d%n clauses of length two that contain one positive and one negative literal
chosen uniformly, independently and without replacement, among all n(n — 1)
possible clauses of that type.

We call the number of variables n the size of the instance.
Let also H^'dl j3 denote a random formula in CNF over the set of variables

X = {#1,... ,xn}, containing:



Demetrios D. Demopoulos and Moshe Y. Vardi 201

• a single negative literal chosen uniformly among the n possible negative
literals;

• din positive literals that are chosen uniformly, independently and without
replacement among all n — 1 possible positive literals (the negation of the
single negative literal already chosen is not allowed); and

• dan clauses of length three that contain one positive and two negative literals
chosen uniformly, independently and with replacement among all
n(n — l)(n — 2)/2 possible clauses of that type.

The sampling spaces H1^ and H1'2 are slightly different: we sample with re-
placement in the first, and without replacement in the second. Here we explain
why. Assume that we sample dn clauses out of N uniformly at random with re-
placement. Let us consider the (asymptotic) expected number of distinct clauses
we get. Each one of the N clauses will be chosen with probability 1 — (1 — l/N)dn.
The expected number of distinct chosen clauses is N(l-(l-l/N)dn). Notice that
N(l-(l-I/N)dn) ~ dn-O((dn)2/N}. In the case of a random H^fd^ formula
TV — n(n — l)(n — 2)/2 and clearly the expected number of distinct clauses we
sample is asymptotically equivalent to dn; thus we sample with replacement for
experimental ease. In the case of a random Hn'di d2 formula, we sample without
replacement to ensure that we do not have many repetitions among the chosen
clauses.

3 1-2-HORNSAT

In this section we present our results on the probability of satisfiability of ran-
dom 1-2-Horn formulas. We first present an experimental investigation of the
satisfiability on the di x d? quadrant. We then discuss the relation between ran-
dom 1-2-Horn formulas and random digraphs and show that our data agree with
analytical results on graph reachability presented in Karp [300].

To study the probability of satisfiability of Hndi d<2 random formulas in the
d\ x d<2 quadrant, we have generated and solved 1200 random instances of size
20000 per data point. Figure 1 shows the average satisfiability probability versus
the two input parameters d\ and d% (a) and the corresponding contour plot (b).

The satisfiability plot in figure 1 suggests that the problem does not have a
phase transition. This can also be observed if we fix the value of one of the input
parameters. In figure 2 we show the satisfiability plot for random 1-2-HornSAT
for various instance sizes ranging from 500 to 32000, and for fixed d\ — 0.1. We
now explain why random 1-2-HornSAT does not have a phase transition, based
on known results on random digraphs.

There are two most frequently used models of random digraphs. The first
one, Qn,m consists of all digraphs on n vertices having m edges; all digraphs have
equal probability. The second model, Qn^p with 0 < p < 1, consists of all digraphs
on n vertices in which the edges are chosen independently with probability p.
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FIGURE 1 Satisfiability probability of a random 1-2-Horn formula of size 20,000 (a)
and the corresponding contour plot (b). The contour plot contains 25 lines that separate
consecutive percentage intervals [0% - 4%), [4% - 8%) , . . . , [96% - 100%].

(b)

(a)
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FIGURE 2 Satisfiability probability of random 1-2-Horn formulas when d\ =0.1

It is known that in most investigations the two models are interchangeable,
provided certain conditions are met. In what follows, we will take advantage of
this equivalence in order to show how our experimental results relate to analytical
results on random digraphs [300].

We will first show that there is a relation between the satisfiability of a ran-

dom H^d d formula and the vertex reachability of a random digraph Gn,m=d2n-
Let (/) e H^di d2 ' (^o) ke the unique single negative literal in 0, and F be the set
of all variables that appear as single positive literals in (j>. Obviously \F\ — d\n.
Construct a graph G^ such that for every variable Xi in (f> there is a correspond-
ing node Vi in G^ and for each clause (x7, xj) of 0 there is a directed edge in G^
from Vi to Vj. G^ is a random digraph from the Gn,m=d2n model.

It is not difficult to see that (f> is unsatisfiable if and only if the node VQ in
G0 is reachable from a node Vi such that Xi G F. In other words, the probability
of unsatisfiability of a randomm
a vertex of the random digraph Qn,m=d2n is reachable from a set of vertices of
size din. (A vertex is reachable from a set of vertices if it is reachable by at least
one of the vertices of the set.)

As mentioned above, the Gn,m and Qn,p models can be used interchangeably,
when ra

satisfiability of a random H formula (/> and the vertex reachability of a
random digraph Gn,m=d2n also holds between </> and a random digraph Gn,p=d2/n-

 formula <j> is equal to the probability thatH^2dl d2

 [62]. Therefore, the relation we have established between the [62]. Therefore, the relation we have established between the ~ (^}P
n'di2d2 
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The vertex reachability of random digraphs generated according to the model
Qn^p has been studied and analyzed by Karp [300]. We use those results to study
the satisfiability of random Hn'di d2 formulas. Karp showed that as n tends to
infinity, when up < 1 — /i, where h is a fixed small positive constant, the expected
size of a connected component of the graph is bounded above by a constant C(K).
When np > 1 + ft, as n tends to infinity, the set of vertices reachable from one
vertex is either small (expected size bounded above by C(h)} or large (size close
to 6n, where 0 is the unique root of the equation 1 — x — e-(l+h)x — Q in [0, 1]).
Moreover, a giant strongly connected component emerges, of size approximately
62n.

Let us now consider the two cases, d% = 1 — h and c^ = 1 + h, where h is
a positive number. Remember that in our case p — ^f • In the analysis below
we will use the notation w.h.p. (with high probability) as shorthand for "with
probability tending to 1 in the large n limit."

In the case where d2 = 1 — h, or np < I — h, the size of the set X(vi) of
vertices reachable by a vertex Vi is w.h.p. less than or equal to 31ognft~2, and
the expected size of this set is bounded above by a constant related to h. Thus
we get that the probability that VQ is reachable by Vi w.h.p. lies in the interval
[0, 31ogn/n(l — c^)2], and its expected value is bounded above by a constant.
The expected probability that VQ is reachable by a set of din vertices should
increase with d\. The plots in figures 1 and 2 show that when d<2 < 1, the
probability of satisfiability of </> (1 minus the probability that VQ is reachable by
a set of din vertices in G0), decreases as we increase d% and/or d\.

When c?2 = 1 + ft, or np > 1 + ft, we know that the set X(vi) of vertices
reachable by a vertex Vi is w.h.p. either in the interval [0, 31ogn/(l — d^)2] or
around 0n. We also know that the probability that X(vi) is small tends to 1 — 9.
Therefore, w.h.p. at least one of the din vertices will have a large reachable set.
That is, the probability that VQ is reachable by a set of din vertices is bounded
below from 6. Notice that 6 increases with d2- Again, the plots in figures 1
and 2 show that when d% > 1, the probability of satisfiability of (/> decreases
as o?2 increases. So the experimental observations are in agreement with the
expectations based on the digraph reachability analysis.

Going back to digraphs' reachability, Karp's results show that for each vertex
the set of its reachable vertices is very small up to the point where np — I . We can
observe the same behavior in 1-2-HornSAT if we change our distribution model
by setting di — c/n for some constant c. By doing so, we are adjusting our model
to fit the reachability analysis done by Karp that is based on a single starting
vertex in the digraph. The result of this modification is that d\ is no longer a
factor on the probability of satisfiability of 0, which now depends solely on d%-
See figure 3, where we show the satisfiability plot in that case, and contrast with
the picture that emerges when di is a constant (shown in fig. 2). While before
the satisfiability probability was steadily decreasing as we increased di, now the
satisfiability probability is practically 1 until d<2 becomes larger than one. In both

204 
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FIGURE 3 Satisfiability probability of random 1-2-Horn formulas when d\ — 10/n for
sizes 100 (lower curve), 1,000, 10,000, and 50,000 (upper curve).

cases, however, the reachability analysis and the experimental data show that
the satisfiability of random 1-2-Horn formulas is a problem that lacks a phase
transition.

Remark 1. The probability of satisfiability of 1-2-Horn can in fact be calculated
exactly. Using the combinatorics of labeled trees, one can calculate exactly the
probability P(k) that a given vertex v has an out-tree of size k, not including
itself, in a random digraph with mean out-degree d^- This is

Numerical computation indicates a close fit with our experimental results.

The probability of satisfiability is then
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4 1-3-HORNSAT

In this section we present our results on the probability of satisfiability of random
1-3-Horn formulas. We first present a thorough experimental investigation of the
satisfiability on the d\ x ofa quadrant. We then show that analytic results on
vertex identifiability in random hypergraphs [116] fit well our results on the
satisfiablity of random 1-3-Horn formulas.c

To study the probability of satisfiability of H^^ d3 random formulas in the
di x ds quadrant, we have generated and solved 3,600 random instances of size
20,000 per data point. Figure 4 shows the average satisfiability probability versus
the two input parameters d\ and ^3 (a) and the corresponding contour plot (b).

From our experiments we see that there is a region where the formula is
underconstrained (small values of d\ and d^) and the probability of satisfiability
is almost 1. As the values of the two input parameters increase, the satisfiability
terrain exhibits a rapid change that we call a waterfall. As the values of d\
and d% cross certain boundaries (the projection of the waterfall shown in the
contour plots) the probability of satisfiability becomes almost 0. In other words,
the transition appears to be similar to those observed in other combinatorial
problems such as 3-SAT and 3-COL.

There is a significant difference though, between these previously studied
transitions and the one we observe in 1-3-HornSAT. In cases such as 3-SAT or 3-
COL there are two input parameters describing a random instance; the size and
the constrainedness of the instance. The constrainedness is defined as the ratio
of clauses to variables for satisfiability, and edges to vertices for graph coloring.
In random 1-3-HornSAT, there are three parameters: the size of the instance and
the two densities, namely d\ and d%. By taking a cut along the three-dimensional
surface shown in figure 4(a), we can study the problem as if it had only two input
parameters.

We have taken two straight-line cuts of the surface. For the first cut, we
fix di to be 0.1, we let d% take values in the range [1,5.5] with step 0.1, and
we choose instance sizes 500, 1,000, 2,500, 5,000, 10,000, 20,000, and 40,000.
See figure 5(a), where we plot the probability of satisfiability along this cut.
This plot reveals a quick change on the probability of satisfiability as the input
parameter ofo passes through a critical value, around 3. One technique that has
been used to support experimental evidence of a phase transition is finite-size
scaling. This is a technique coming from statistical mechanics that has been
used in studying the phase transitions of several NP-complete problems, such
as fc-SAT and AC-matching [319, 339]. The technique uses data from finite-size
instances to extrapolate to infinite-size instances. The transformation is based
on a rescaling according to a power law of the form d' = d — dc/dcnr, where d is
the density, d! is the rescaled parameter, dc is the critical value, n is the instance
size and r is a scaling exponent. As a result, a function /(d, n) is transformed to
a function f ( d ' ) . We apply finite-size scaling to our data to observe the sharpness
of the transition, following the procedure presented by Kolaitis et al. [339]. Our
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FIGURE 4 Satisfiability probability of a random 1-3-Horn formula of size 20,000 (a)
and the corresponding contour plot (b). The contour plot contains 25 lines that separate
consecutive percentage intervals [0% - 4%), [4% - 8%) , . . . , [96% - 100%].

(a)

(b)
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FIGURE 5 Satisfiability probability of a random 1-3-Horn formula along the d\ — 0.1
cut (a) and the satisfiability plot with rescaled parameter using finite-size scaling (b).

We then superimpose the curves shown in figure 5(a) rescaled according to this
transformation. The result is shown in figure 5(b). The fit appears to be very
good around zero, where curves collapse to a single universal curve, although
as we move away it gets weaker. In the plot, the universal curve seems to be
monotonic with limits lim^-^-oo f(d') — 1 and limd'_oo f(df) — 0. This evidence
would seem to suggest a phase transition near d% = 3 for d\ = 0.1.

We repeat the same experiment and analysis with the second cut, a straight
line cut along the diagonal of the di x d3 quadrant. In this case our formal
parameter is an integer i. An instance with input parameter value i corresponds

analysis yields the following finite-size scaling transformation:
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to an instance with densities d\ — z/200 and d$ — i/W -h 1. Here, by making
di and d3 dependent, we effectively reduce the number of input parameters of
the problem from three, (^1,^3,71), to two, (i,n). We let i take values in the
range [1,40] in increments of 1, and use instance sizes 500, 1,000, 2,500, 5,000,
10,000, 20,000, and 40,000. In figure 6(a) we plot the probability of satisfiability
along this cut. This plot, as the one for the previous cut, reveals a quick change
on the probability of satisfiability as the input parameter i passes through a
critical value (around 19). We again use finite-size scaling on these data, looking
for further support of a phase transition. For this cut, the analysis yields the
following transformation:

In figure 6(b) we superimpose the curves shown in the same figure (a) using
the transformation above. As with the previous cut, the fit seems quite good,
especially around zero, and the universal curve seems to have limits 1 and 0 in
the infinities.

In an attempt to find further evidence of a phase transition, we perform the
following experiment for the cut used to produce the data in figure 5 (di — 0.1).
For several instance sizes between 500 and 200,000 and for density d% taking
values in the range [2.7,3.8] in increments of 0.02, we generate and solve 1,200
instances. We record for each different instance size the values of density d% for
which the average probability of satisfiability is 0.1, 0.2, 0.8, and 0.9, respectively.
(We actually used linear regression on the two closest points to compute the
density for each satisfiability percentage.) The idea behind this experiment is
that if the problem has a sharp threshold, then as the size of the instances
increases the window between the 10th and 90th probability percentiles, as well
as that between the 20th and the 80th probability percentiles, should shrink and
become zero at the large n limit. In figure 7 we plot these windows. Indeed, they
do get smaller as the instance size increases.

Similar analysis has been performed in the past for /c-SAT. The width of the
satisfiability phase transition, namely the amount by which the number of clauses
of a random instance needs to be increased so that the probability of satisfiability
drops from 1 — e to e, is thought to grow as 0(n1"^), with the exponent v for
2 < k < 6 estimated in Kirkpatrick and Selman [319], Kirkpatrick et al. [321],
and Monasson et al. [406, 407]. Notice that the window that we estimate is equal
to the normalized width (divided by the instance size). It was also conjectured
that as k gets large, v tends to 1. However, Wilson has proven [527] that for all
k > 3, v > 2, so the transition width is at least G(n1/2). Our experiments suggest
that the window of the satisfiability transition for 1-3-HornSAT shrinks as fast
as n"1/2, thus the transition width grows as n1/2. We believe that the analysis
in Wilson [527] can be applied in the case of 1-3-HornSAT, and can complement
our experimental findings.
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(a)

FIGURE 6 Satisfiability probability of a random 1-3-Horn formula along the diagonal
cut (a) and the satisfiability plot with rescaled parameter using finite-size scaling (b).

<b)
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FIGURE 7 Windows of satisfiability probability of random 1-3-Horn formulas along
the di =0.1 cut. The outer two curves show the 10%-90% probability window, and
the inner two curves show the 20%-80% probability window.

• represent each variable Xi in (p with a node Vi in G0;
• represent each unit clause {x^} as a hyperedge in G0 over Vk (hyperedges over

vertices are also called patches [116] or loops [135]); and
• represent each clause {xj, x/T, x[} as a directed hyperedge in G^ over the set

{Vj,Vk,Vi}.

Although figure 7 shows that these windows indeed shrink as the instance
size increases, it is not at all clear whether in the limit they would go to zero. A
further curve-fitting analysis is more revealing. In figure 8 we plot the size of the
10%-90% probability of satisfiability window (a) and the 20%-80% probability
of satisfiability window (b) as a function of the instance size. Using MATLAB to
do curve fitting on our data, we find that both windows decrease almost as fast
as I/^/n. The correlation coefficient r2 is almost 0.999, giving high confidence for
the validity of the fit. This analysis suggests that, indeed, the two windows should
be zero at the limit, evidence supporting the existence of a phase transition for
1-3-HornSAT.

In the rest of this section we will discuss the connection between random
Horn formulas and random hypergraphs. We will see that recent results on ran-
dom hypergraphs provide a good fit for our experimental data on random 1-3-
HornSAT presented so far. On the other hand, these results suggest that the
transition is steep, but not the step function needed for a sharp threshold.

There is a one-to-one correspondence between random Horn formulas and
random directed hypergraphs. Let </> b d^ random formula. We cane a H^^
represent 0 with the following hypergraph G$\
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FIGURE 8 Plot of the 10%-90% satisfiability probability window (a) and of the 20%-
80% satisfiability probability window (b) as a function of the intance size n.

(b)

(a)
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Note that we omit the single negative literal appearing in 0.
In a recent development, Darling and Norris [116] proved certain results on

vertex identifiability in random undirected hypergraphs. A vertex v of a hyper-
graph is identifiable in one step if there is a hyperedge over v. A vertex v is
identifiable in n steps if there is a hyperedge over a set S, such that v £ S and
all other elements of 5 are identifiable in fewer than n steps. Finally, a vertex v
is identifiable if it is identifiable in n steps for some positive n. We now establish
the equivalence between the satisfiability of </> and the identifiability of vertex vk
of G<f>, where {x/J is the unique single negative literal clause of 0.

First, we introduce a simple algorithm for deciding whether a Horn formula
is satisfiable or not, presented by Bowling and Gallier [128] (see also Beeri and
Bernstein [41]). The algorithm runs in time O(n2) where n is the number of
variables in the formula. Bowling and Gallier actually describe in their work
how to improve this algorithm to run in linear time, though for our purposes
and for the sake of simplicity we use the simple quadratic algorithm.
Algorithm A.

begin
let (/>= {ci,...,cm}
consistent :=TRUE; change:=TRUE;
set each variable Xi to be FALSE;
for each variable xi such that {xi} is a clause in </>

set Xi to TRUE
endfor;
while (change and consistent) do

change:=FALSE;
for each clause Cj in </> do

if (cj is of the form (x\,..., x^")
and all x i , . . . , xq are set to TRUE) then

consistent :=FALSE;
else

if Cj is of the form {x\, # 2 , . . . , ~x^}
and all x 2 , . . . , xq are set to TRUE
and x\ is set to FALSE

then set x\ to TRUE; change:=TRUE; </> := <p — Cj
endif

endif
endfor

endwhile
end

If Algorithm A terminates with consistent:=TRUE, then a satisfying truth
assignment has been found. Otherwise, the formula cj> is unsatisfiable.
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Given a formula </>, its corresponding directed hypergraph G0, and a variable
Xi, we prove the following relation between the truth value that Algorithm A
assigns to Xi and the identifiability of vertex Vi of G$\

Lemma 1 . Algorithm A running on <p assigns the value TRUE to Xi if and only
if the vertex Vi of G^ is identifiable.

Proof It is easy to show the equivalence by induction on the number of steps
required to identify v k (equivalently the number of iterations of the whije
loop of Algorithm A needed to set the value of Xk to TRUE).
Base Case: If Vk is identifiable in one step, then {xk} is a clause in </> and
Algorithm A immediately assigns the value TRUE to it, and vice versa.
Inductive Hypothesis: A vertex is identifiable in n — 1 steps if and only if the
corresponding variable is set to TRUE by Algorithm A in no more than n — 1
iterations of the while loop.
Inductive Step: A vertex Vj that is identifiable in n steps corresponds to a
variable that appears in a clause of the form {vj , t^~, . . . , W^}, and since all of
xil , . . . , Xiq are already set to TRUE, A will set Xj to TRUE in the nth iteration
of the while loop. Conversely, if Xj is set to TRUE in the nth iteraton of the
while loop of Algorithm A, then we derive that it appears in a clause of the
form {xj,x77, . . . ,x^}, where all of x^, . . . ,xiq are already set to TRUE. But
this implies that all v^ , . . . , vig are identifiable in n — 1 steps; therefore Vj is
identifiable in n steps.

As an immediate result of this lemma we obtain:

Corollary 4.1 . Let (f) be a H^d d random formula and {xjf} be the unique single
negative literal clause ofc/). Let G^ be the directed hypergraph corresponding to </>.
The formula <fi is satisfiable if and only if the vertex Vk of G^ is not identifiable.

Darling and Norris [116] studied the vertex identifiability in random undi-
rected hypergraphs. Although Horn formulas correspond to directed hypergraphs,
we have decided to use the results of Darling and Norris in an effort to approxi-
mate the satisfiability of Horn formulas. The authors use the notion of a Poisson
random hypergraph. A Poisson random hypergraph on a set V of n vertices with
non-negative parameters {AJ^Lo 'ls a random hypergraph A, where the numbers
A(A) of hyperedges of A over sets A C V of vertices are independent random vari-
ables, depending only on \A\, such that A(A) has distribution Poisson (n/^/Q))
where |-A| — k. Thus, the number of hyperedges of size k is Poisson (n/3fc), dis-
tributed uniformly at random among all vertex sets of size k. (Recall that the
distribution function of Poisson(A) is /(x) = exp (— A)Ax/x!. The expectation of
Poisson(A) is A.) Note that this model allows for more than one edge over a set
A C V; for our purposes we only care whether A(A) = 0 or not.

One of the key results they proved is the following:
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Theorem 4.1 (Darling and Norris [116]). Let {3 = (/3j : j G Z) be a sequence of
non-negative parameters. Let (3(t) = EJ>O/?J^ and P'(t) the derivative of (3(t).
Let z* = mf{t € [0,1) : /3'(t) -f log(l — t) < 0}; if the infimum is not well-defined
then let z* = 1. Denote by £ the number of zeros of (3'(t) -f log(l — t) in [0, z*).

Assume £/m£ z* < 1 and £ = 0. For n G N, /e£ Fn &e a set of n vertices and
let Gn be a Poisson(/3) hypergraph on Vn. Then, as n —> oo the number Vn* of
identifiable vertices satisfies the following limit w.h.p.: Vn* /n —> z*.

If we ignore the direction of the hyperedges then the random hypergraph G</>

representing an Hn'di ds random formula corresponds to a Poisson(/3) hypergraph
Gn. To see that, notice that the hyperedges in G0 are distributed uniformly at
random among all possible 1- and 3-sets of vertices, just as in a Poisson random
hypergraph with only two non-zero parameters, (3i and fa. To find the values
of these parameters, we set equal the probabilities that a hyperedge exists in
the two hypergraphs G^ and Gn. In G^>, the probability that a variable Xi is
selected as a positive unit literal is d\. In Gn, the probability that there are
zero hyperedges on Xi is e^1. Prom this we get fa = — log(l — d\). In G^, the
probability that a 3-clause is selected (ignoring directions) is nefa/Q). In Gn,
the probability that there are zero edges on the three variables in that clause is

e-n03/(S) - 1 - n/33/G!) (as n -> oo). Prom this we get fa = d3.
Note that ignoring the direction of the hyperedges is equivalent to adding

to the formula, for each clause (x V y V z), two more clauses (x V y V z) and
xVyVz. Therefore, we expect that the probability of satisfiability we get from the
hypergraph model should be lower than the actual probability as it is measured
by our experiments. This is indeed the case, as will be apparent in figure 10.

We used MATLAB to compute z* for the hypergraph Gn on the quadrant
d\ x d% (the Darling-Norris Theorem does not provide us with an explicit result
for z*). From corollary 1, we get that the probability of satisfiability of <p is 1
minus the probability that Vk is identifiable in Gn, which, by theorem 4.1, is
1 — z*. In figure 9(a) we plot the satisfiability probability of <p against the input
parameters d\ and ^3. A contour plot is given in figure 9(b).

Comparing the results derived by this model (fig. 9) and the results obtained
by our experiments (fig. 4), we see that the results from the hypergraph analysis
provide a very good fit of the experimental data. This is also clear in figure 10
where we plot the 50 percent satisfiability line according to the model above (the
rough curve) and according to our experimental data (smoother curve).

Finally, we used our model to estimate the probability of satisfiability along
the same two cuts that we presented earlier (the d\ =0.1 and the diagonal cut).
See figure 11 for the probability estimation along the two cuts according to the
hypergraph-based model, and compare with our experimental findings shown in
figure 5(a) and figure 6(a). For both cuts, the estimated probability has a steep
drop that happens at the exact same point that the respective drop is observed
in the experimental data. In table 1 we give the raw data that correspond to the
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(a)

FIGURE 9 Satisfiability probability of a random 1-3-Horn formula according to the
vertex-identifiability model (a) and the corresponding contour plot (b).

(b)



Demetrios D. Demopoulos and Moshe Y. Vardi 217

FIGURE 10 50% satisfiability line, according to the model derived through hyper-
graphs (rough line) and according to our experimental data (smoother line).

plots in figure 11. Notice that, despite the very steep transition, the estimated
curve is not a step function as we would expect from our data and the limiting
curve under finite-size scaling analysis (figs. 5(b) and 6(b)). Should this be an
accurate model for the 1-3-HornSAT, the probability of satisfiability is not a step
function at the limit, so the threshold function is not in fact a constant function.

5 CONCLUSIONS

We have set out to investigate the existence of a phase transition for the satisfi-
ability of the random 1-3-HornSAT problem. This is a problem that is similar to
3-SAT, but its polynomial complexity allows us to collect data for much higher
instance sizes.

We first showed, through our experimental findings and an analysis based
on known results from digraphs' reachability, that the 1-2-HornSAT is a problem
lacking a phase transition.

On the other hand, our experiments provide evidence that the 1-3-HornSAT
has a phase transition. By thoroughly sampling the d\ x rf3 quadrant, solving
a large number of random instances of large size, we document a waterfall-like
probability of satisfiability surface. In addition, by taking cuts of this surface,
we are able to observe a quick transition from a satisfiable to an unsatisfiable
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FIGURE 11 Satisfiability probability of a random 1-3-Horn formula according to the
vertex-identifiability model, along the d\ — 0.1 cut (a) and the diagonal cut (b). The
solid line corresponds to the model; experimental data points are shown for comparison.

(a)

(b)
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TABLE 1 Data for the satisfiability probability of a random 1-3-Horn formula accord-
ing to the vertex-identifiability model, along the d\ = 0.1 and the diagonal cut.

di
dz
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

= 0.1 cut
sat. prob.
0.98775
0.98619
0.98455
0.98282
0.98098
0.97903
0.97694
0.9747
0.9723
0.96969
0.96685
0.96372
0.96026
0.95637
0.95194
0.94679
0.94062
0.9329
0.92244
0.90522
0.072832
0.063588
0.055745
0.049039
0.043267
0.038272
0.033928
0.030137
0.026815
0.023896
0.021324
0.019052
0.017041
0.015257
0.013672
0.012262
0.011006
0.0098849
0.0088836
0.0079881

diagonal
input parameter i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

cut
sat. prob.
0.99997
0.99988
0.9997
0.99941
0.99899
0.99841
0.99764
0.99664
0.99537
0.99376
0.99175
0.98924
0.98611
0.98217
0.97717
0.97069
0.96202
0.94968
0.9294
0.072832
0.063411
0.055476
0.048727
0.042943
0.038
0.0335
0.029856
0.026559
0.023665
0.021117
0.018868
0.016878
0.015114
0.013547
0.012153
0.01091
0.0098016
0.0088112
0.0079255
0.0071324
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region. Finite-size scaling applied along these cuts suggests that there is a phase
transition, and analysis of the transition window provides further evidence of
this.

We then used recent results on random hypergraphs to generate a model
for our experimental data. By comparing the waterfall-like probability surface
against the estimated probability according to this model, we see that the hyper-
graph-based model fits our experimental data well. This suggests that further
analysis based on hypergraphs could provide a rigorous analysis of the conjec-
tured phase transition for the 1-3-HornSAT. Such a development would be very
significant since very few phase transitions have been proven analytically (2-SAT,
3-XORSAT, 1-in-k SAT) [7, 94, 101, 131, 156, 202]. Interestingly, in spite of how
well this model fits our data, when calculating the estimated probability along
the two cuts we see that in the limit of large instance sizes, the probability of
satisfiability is a very steep function, but does not have a discontinuity. This last
result conflicts with our experimental findings and demonstrates the difficulty of
using numerics to show a phase transition, even for tractable problems such as
1-3-HornSAT.
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CHAPTER 10

Phase Transitions for Quantum Search
Algorithms

1 INTRODUCTION

Phase transitions have long been studied empirically in various combinatorial
searches and theoretically in simplified models [91, 264, 301, 490]. The analogy
with statistical physics [397], explored throughout this volume, shows how the
many local choices made during search relate to global properties such as the
resulting search cost. These studies have led to a better understanding of typical
search behaviors [514] and improved search methods [195, 247, 261, 432, 433].

Among the current research questions in this field are the range of algorithms
exhibiting the transition behavior and the algorithm-independent problem prop-
erties associated with the difficult instances concentrated near the transition.
Towards this end, the present chapter examines quantum computer [123, 126,
158, 486] algorithms for nondeterministic polynomial (NP) combinatorial search
problems [191].

As with many conventional methods, they exhibit the easy-hard-easy pat-
tern of computational cost as the degree of constraint in the problems varies. We
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describe how properties of the search space affect the algorithms and identify
an additional structural property, the energy gap, motivated by one quantum
algorithm but applicable to a variety of techniques, both quantum and classical.
Thus, the study of quantum search algorithms not only extends the range of algo-
rithms exhibiting phase transitions, but also helps identify underlying structural
properties.

Specifically, the next two sections describe a class of hard search problems
and the form of quantum search algorithms proposed to date. The remainder
of the chapter presents algorithm behaviors, relevant problem structure, arid an
approximate asymptotic analysis of their cost scaling. The final section discusses
various open issues in designing and evaluating quantum algorithms, and relating
their behavior to problem structure.

2 RANDOM SATISFIABILITY PROBLEMS

The /^-satisfiability (fc-SAT) problem, as discussed earlier in this volume, consists
of n Boolean variables and rn clauses. A clause is a logical OR of k variables,
each of which may be negated. A solution is an assignment, that is, a value for
each variable, TRUE or FALSE, satisfying all the clauses. An assignment is said
to conflict with any clause it does not satisfy. Thus, a possible 2-SAT problem
instance with 3 variables and 2 clauses might be (x\ OR #2) AND (x% OR #3),
which has 4 solutions: for example, x\ — FALSE, x% = FALSE and ^3 = TRUE is
one of them. When k > 3, /c-SAT is NP-complete [191], and so it is among the
most difficult NP problems.

Evaluating a search algorithm's average cost requires defining a problem
ensemble, meaning a class of problem instances and probabilities for their selec-
tion.

The random fc-SAT ensemble with given n and ra consists of instances whose
77i clauses are selected uniformly at random. Specifically, for each clause, a set
of k variables is selected randomly from among the (^) possibilities. Then each
selected variable is negated with probability 1/2 to produce the clause. Each of
the ra clauses is, therefore, selected, with replacement, uniformly from among
the 7Vciauses — (£) 2fc possible clauses. This ensemble (called Gm,m in ch. 7) has a
high concentration of hard instances when the clause-to-variable ratio a = m/n
is near a critical value where the fraction of solvable instances exhibits a phase
transition [91, 254, 319], dropping abruptly from near 1 to near 0. For random
3-SAT this transition is at a w 4.27.

The quantum algorithms discussed here are incomplete methods: failure to
find a solution does not guarantee no solution exists. Thus, for empirical evalua-
tion, we restrict attention to instances with at least one solution (determined via
exhaustive classical search of the randomly generated instances). This restriction
gives the random solvable /c-SAT ensemble.

224 
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3 QUANTUM SEARCH METHODS

The quantum algorithms considered in this chapter consist of a series of trials,
each operating on vectors of size 2n, whose components consist of a complex
number, or amplitude, for each assignment or search state. These vectors are
often described as superpositions of all search states. After each trial, observing
or measuring the superposition randomly produces a single assignment, with
probabilities equal to the squared magnitudes of the final amplitudes. This result
is then tested with a conventional computer, a rapid operation for NP problems.
Trials repeat until a solution is found.

A trial starts with equal amplitudes, so that the initial vector has components
ifis = 2~n/2, for s ranging over all 2n assignments. The trial consists of a
prespecified number of steps j, unlike classical algorithms which can halt as
soon as they find a solution. For step h = 0 , . . . , j we define the step fraction
f = h/j as the fraction of steps completed.

A single step performs a matrix multiplication on the superposition, giving
new values for the amplitudes. Quantum algorithms generally perform this op-
eration in two parts, corresponding to multiplying by two matrices. First, the
phases of the amplitudes are adjusted based on properties of the problem in-
stance to be solved. Typically, this adjustment to the amplitude ijjs associated
with search state s depends on the state cost c(s). In the case of A;-SAT, c(s) is
the number of the m clauses conflicting with s. The phase adjustment has the
form e~lp(f'°(s^ where the cost phase function p is a real-valued function of the
step fraction and the state cost.

The second part of a step mixes amplitudes among different states, corre-
sponding to multiplication by a unitary matrix with nonzero off-diagonal terms.
Usually, the mixing matrix for step h is taken to have the form U^ — WT^W
with W and T defined as follows. W is the Walsh-transform, a 2n x 2n matrix
with elements Wrs — 2~n/2(-l)'rAs' where \r A s is the number of 1's the two
assignments have in common when viewed as bit-vectors (0 < r, s < 2n~1). For

instance, when n ~ 1, W

— e~*T(^'lsD, where |s| denotes the number of 1-bits in bit-vector s and the
mixing phase function T is another real-valued function. With these definitions,
Urs depends only on the Hamming distance d(r1 s) between the states [250],
that is, the number of variables they assign different values. Thus, the mixing
matrix has the form Urs — u^r s\ with the Ud values determined by the choice
of r.

TThe matrix T^ is diagonal with
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Combining these operations, a single step is1

with the sum over all assignments with c conflicts. In particular, Pso\n(j) —
^conf(O) 'ls ^ne probability to find a solution in a single trial. For good perfor-
mance, the choices for p and r should ensure a large value of PsoinO) after only
a modest number of steps j.

Optimization versions of the search considered in this chapter amount to
finding states with the minimum cost. This use of "cost" associated with indi-
vidual states should not be confused with the search cost^ that is, the number
of elementary computation steps required to find a solution. For the probabilis-
tic algorithms considered here, we focus on the expected value of the search
cost and usually consider its median value over an ensemble of problems rather
than its value for any single instance. This corresponds to the notion of average
complexity in chapter 3.

As a reminder concerning notation, to compare function growth rates [208],
F = O(G) indicates F grows no faster than G as a function of n when n —> oo.
Conversely, F — £)(G) means F grows at least as fast as G, and F = ©(G)
means both functions grow at the same rate.

The remainder of this section describes choices for p and r giving unstruc-
tured search and then techniques exploiting problem structure.

3.1 UNSTRUCTURED SEARCH

In thec notation introduced above, Grover's unstructured search [215] has phase
functions

lTo provide a more direct connection with the Hamiltonian formulation of this algorithm,
in section 3.4, the values of p and r used here are —TT times the values introduced previously
in the literature [250].

otherwise

otherwise

Although the vectors have exponentially many components, quantum computers
perform these operations efficiently [76, 215, 255].

Observing the final superposition gives an assignment having c conflicts with
probability
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With these choices, which are the same for all steps (i.e., independent of /), the
phase adjustment simply multiplies amplitudes for solutions by —1, leaving the
others unchanged, and the mixing is a diffusion matrix: Ud = —<5<fo + 2l~n where
Sab is one if a = b and zero otherwise.

The probability of finding a solution after j steps is [76]

where 9 = sin"1
 A/S'/2n and S is the number of solutions. For hard, solvable

random fc-SAT, 9 is exponentially small. Thus the solution probability PSoin ~ 1
when the number of steps is j « 7T/(40) « j^2n/S, that is, after exponentially
many steps for hard problems.

The corresponding unstructured classical algorithm, generate-and-test, re-
quires on average |2n/5 state tests to find a solution. The quantum method
thus achieves a square-root speedup, the best possible improvement for unstruc-
tured search [76].

In practice, the number of solutions 5 and hence the best choice for the
number of steps j are not known a priori. Moreover, since the solution proba-
bility PsoinC?) oscillates with the number of steps j, picking j too large not only
increases the search cost for each trial but can also result in a smaller value
of PSo\n and hence require more trials. One approach to this difficulty selects j
differently for each trial as follows [76]: Starting with J = 1,

• perform a single trial with j selected uniformly at random between 0 and J — 1
• if a solution is found, stop. Otherwise, set J = min(2n/2,6J/5) and repeat.

To evaluate the expected search cost, from eq. (2) the probability of obtaining a
solution is [76]

This condition and eq. (4) enable us to compute the full expected search cost,
cost(l), recursively. This technique, allowing a different number of steps j for each
trial, increases the expected search cost by at most a factor of 4 [76] compared
to having prior knowledge of 5.

When J > 2n/2, further iterations have J = 2n/2 so eq. (4) gives

which approaches 1/2 as J increases. The trial with a given J takes (J — l)/2
steps, on average. With probability 1 — Prandom(^) the trial is not successful.
Thus the expected search cost for all trials starting with J is

Prandom

Prandom
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3.2 SINGLE-STEP SEARCH

Unstructured search ignores all properties of search states except whether they
are solutions. Fortunately, many problems allow efficient evaluation of additional
useful properties. An extreme example is a problem with one solution and an
efficient method giving the distance of any state to that solution. We then take
this distance value to be the cost associated with that state.

Such problems are quite easy: classical methods can solve them with only a
linear number of state evaluations. For instance, pick a random state, compute
its distance to the solution, and then evaluate the distance for each of its n
neighboring states (assignments that differ from the original by changing a single
variable's value). Selecting the value for each variable giving the smaller distance
then directly constructs a solution.

For a corresponding quantum search [249], take cost phase p(f,c) — f c and
mixing phase r(/, b) = ^b and let a be the solution. The mixing matrix value is
then Ud — (e~17*/^/M^)nid. Since we take c(s) = d(a, s) and the initial state has
equal amplitudes, a single step gives

For r = cr, all terms in the sum are 1, that is, all contributions to the amplitude
associated with the solution add in phase, giving i/j£* — e~m7r/4 wjth absolute
value 1. The amplitudes for the remaining states are zero. Thus, this quantum
algorithm finds a solution, with probability 1, in just a single step.

This algorithm can work well even with some error in estimating the dis-
tances. As an extreme example, if the estimated solution distance has an error
of any multiple of four, the quantum algorithm's behavior is unchanged. By con-
trast, such errors would change conventional algorithms based on comparing the
distance values for neighboring states.

This scenario is not applicable to hard search problems, which lack efficient
methods to determine distance to solution from most states. Nevertheless the
single-step method illustrates how quantum computers exploit problem struc-
ture, in this case a strong correlation between easily computed measures (e.g.,
number of conflicts) and the distance to desired states. As described below, this
observation, combined with the typical properties of problem structure, gives
qualitative insight into why quantum algorithms show the phase transition be-
havior.

3.3 USING PROBLEM STRUCTURE

The previous two subsections described algorithms for two extremes: first the
case in which a solution can be recognized when it is found, but no other infor-
mation is available, and second the case of perfect information in which it is easy
to determine the distance to the solution from any state. Typical NP search prob-
lems are between these extremes. Readily computed information about search
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states gives some information on the location of solutions, but is not always accu-
rate. Using such information in the quantum algorithm of eq. (1) is conceptually
straightforward. For a problem ensemble, such as random /c-SAT, pick the phase
functions p(f, c) and r(/, 6) and number of steps j to minimize the search cost
for typical instances.

We thus have another example of a common situation with heuristics: tuning
algorithm parameters with respect to a class of problems. Generally, heuristics
are too complicated to permit a useful analytical relation between the parameter
values and algorithm search cost. Instead, numerical optimization can find good
parameter values for a sample of problem instances, in the hope such values will
also work well on other instances from the same problem ensemble.

When optimizing algorithm parameters for a sample of instances on a quan-
tum machine, each trial requires only polynomial time, provided we pick the
number of steps j to grow only polynomially with n. On the other hand, at
least for most parameter choices, the solution probability Psoin is exponentially
small, thus requiring exponentially many trials to estimate PSoin on the sample
instances because each trial gives only a single state. Hence a direct attempt to
find parameter values minimizing the median search cost would require expo-
nentially many trials on a quantum computer. One way to address this difficulty
is to identify how good parameter choices scale with n and then extrapolate
values based on optimization with smaller n. Another approach uses the shift in
amplitudes towards low-cost states, shown later in section 5: instead of maximiz-
ing PSoin> we could minimize the expected cost of the state produced by a trial,A
that is, (c) — Z]c

c^conf(c)' a Quality easily estimated with a modest number
of trials.

Currently, however, we must simulate the quantum algorithm on conven-
tional machines, so each trial requires exponential search cost and memory but
has the benefit of giving Psoin directly from evaluating a single trial.

Another approach to finding good phase functions, discussed in section 6.2,
uses an approximate analytical theory of the algorithm performance. The the-
ory allows rapid, though approximate, performance evaluation for large problem
sizes. Numerical optimization then finds phases giving high performance accord-
ing to this approximation.

Algorithms using problem structure usually take the phase functions to have
the form:

with A a parameter used to characterize how these functions scale with the
number of steps j. We also call the single-parameter functions p(f) and r(f) the
cost and mixing phase functions. The mixing matrix becomes [250]:
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which depends on the step fraction / through r(f).
Completing the algorithm requires explicit forms for the phase functions,

p(f) and r(/), and values for A and the number of steps j. Ideally, these quanti-
ties would minimize the expected search cost for the particular problem instance.
For hard problems, such optimal choices are not known a priori. We therefore
focus instead on functional forms giving good performance on average for ran-
dom fc-SAT, so depending only on the ensemble parameters n, k and ra. While
the values could vary from one trial to the next, by analogy with the procedure
described in sec. 3.1 for unstructured search when the number of solutions is not
known, for simplicity we use the same values for each trial. The expected cost of
finding a solution is then j/PSoin(j), the number of steps per trial multiplied by
the expected number of times trials must be repeated to give a solution.

3.4 HAMILTONIAN FORMULATION

An alternate formulation of the algorithm steps involves the Hamiltonians pro-
ducing the unitary operators used with eq. (1). For the phases given by eq. (6),
in matrix form the step is

Thus, for small A, the algorithm steps closely approximate the continuous evo-
lution of this Schrodinger equation with the time-dependent Hamiltonian H(f)
for 0 < / < 1.

A significant application of this correspondence is the adiabatic limit [151]:
for T sufficiently large, i/)(f) remains close to the ground state of H(f) if it
starts in the ground state of H(Q). Since the state with uniform amplitudes is the
ground state of HQ, the initial condition is achieved if H(Q) oc HQ, i.e., p(0) = 0.
If we also have r(l) — 0, then H(l) — Hc so the final state ^(1) will be close to
the ground state of Hc, namely the solution (or a linear combination of solutions
in case of multiple solutions). Thus, for a fixed problem size n, taking T —> oo

with HQ and Hc defined as follows. The mixing Hamiltonian has (#o)r,s equal
to n/2 when r = s, —1/2 when states r and s differ by exactly one bit, and 0
otherwise. The problem cost Hamiltonian Hc is diagonal with values equal to
the state costs: (Hc)r,r = c(r).

The algorithm's initial state, with all amplitudes the same, is the ground
state of HQ, with eigenvalue 0. Since Hc encodes the costs of the search states,
its ground state corresponds to having nonzero amplitudes only in solutions (or,
if there are no solutions, in states with the minimum number of conflicts).

When A is small, eq. (8) gives [503] ^ ^ exp(-z/f(/)A)^('l~1) where
H(f) = T(/)HQ + p(f)Hc. Defining the state vector i/j(f) = ^(/l) and T = jA,
eq. (1) becomes
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and A —» 0 leads to the solution probability approaching one, Psoin —> 1. An
important open question is how many steps are sufficient to achieve large values
of Psoin

: algorithms of this form cannot efficiently solve worst-case instances of
SAT [508], but it remains to be seen how effective they are on average.

By comparison, the heuristic method using eq. (6) has A = l/j so T — 1.
Hence, the adiabatic limit does not apply and, in general, the solution probability
Psoin is exponentially small in n. However, with suitable phase functions p(f) and
r(f] the expected number of steps to find a solution is significantly lower than
that of the adiabatic limit for random 3-SAT (see sec. 5.1), at least for small
n. The approximation of section 6.2 suggests this favorable scaling continues for
larger problems.

A third possibility is phase adjustments whose size is independent of the
number of steps, with A held constant instead of approaching zero as j in-
creases. We can take the constant to be A — 1, since any other value amounts to
rescaling p and r. In this case eq. (1) does not closely approximate the continu-
ous evolution of eq. (9). Nevertheless, when p(0) — 0 = r(l), a discrete version
of the adiabatic theorem applies: the state vector starts in an eigenstate of the
initial mixing operator, and is then multiplied by a series of slowly changing
unitary matrices. When the changes are sufficiently small, that is, with a large
number of steps j, the state vector remains close to an eigenstate of the matrices.
In particular, the final state will be close to an eigenstate of the final operator,
corresponding to states with a particular cost. Unlike the continuous adiabatic
method, this final eigenstate need not correspond to solutions [246]. Ensuring
the final eigenstate does correspond to solutions requires that the phase func-
tions, and hence A, not exceed a threshold value that depends on the problem
instance. Above this threshold, the changing eigenvectors take the initial ground
state to an eigenvector of Hc other than its ground state. Thus, applying the
discrete adiabatic limit requires identifying a suitable threshold value for the
problem ensemble and so requires some parameter tuning but, since any values
below the threshold will give Psoin —> 1 as j increases, identifying suitable val-
ues need not be as accurate as for the heuristic method. On the other hand,
exceeding this threshold slightly can sometimes be beneficial by giving high so-
lution probabilities for intermediate numbers of steps j, even though Psoin —> 0
as j -> oo [246].

Table 1 summarizes the various approaches to incorporating problem struc-
ture in quantum algorithms. For good performance, it is not necessary that the
solution probability Psoin be very close to one: somewhat smaller values give
lower expected costs j/Pso\nj an observation that applies to a variety of quan-
tum [76, 151, 383] and classical methods [368].
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TABLE 1 Summary of quantum search algorithms using problem structure. The single-
step and heuristic methods require rinding appropriate choices for the phase functions
to give good performance. Here A characterizes the scaling of the phase functions with
number of steps, and T = j A characterizes the total phase changes applied over the
course of a trial.

algorithm
single-step
heuristic
adiabatic: continuous
adiabatic: discrete

parameters
T
T
T
T

= 1,
-j•*- j

-» 00,

— > OO,

A =
A->
A-»
A =

1
0
0
1

phase functions
with suitable p, r
with suitable p, r
p (0)=0 = r(l)
p(0) = 0 = T(l),

values for other / not too large

4 MAXIMALLY CONSTRAINED 1-SAT

For a simple illustration of quantum search behavior, consider 1-SAT problems
with a single solution. In this case, the number of conflicts c(s) in state 5 equals
its distance to the solution. Thus, from eq. (1), the amplitudes for step h have
the form i^s oc (Zh}c^ with Zh a complex number. Initially, all amplitudes are
the same, so ZQ — 1. Including the overall normalization, the solution probability
corresponding to Z is

with v = tan(rA/2), and the phase functions p and r can depend on / — h/j.
If pA = rA = 7T/2 then Z\ — 0, so all amplitude is in the solution after

a single step, providing an example of the discussion of section 3.2. While this
problem is simple enough to solve in a single step, it is also instructive to consider
its behavior with other phase choices. The remainder of this section examines
the limit A — > 0 as the number of steps increases. In this case, eq. (9) gives

with Z(0) - 1.
We first consider A = 1/j so T — 1. For suitable choices of the phase

functions, eq. (12) gives Z(l) = 0. One such choice is p = r = 7T/V2, independent
of /, in which case

so \Z\ <C l/\/n gives Psoin —* 1. How Z changes in one step is determined by
eq (1), giving:
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FIGURE 1 Solution probability, Psoin(:/), vs. number of steps j used in the trial, for
a maximally constrained 1-SAT problem with n = 100 using A = l/\/7j P — 7/»
r = 7(1 - /) with 7 = 0.828 selected to give P80in(10) = 1. Solid: exact (from eq. (11)),
dashed: continuous approximation (eq. (12)). For comparison, the gray curve is for
n = 1000.

The exact discrete map, eq. (11), for these parameters, gives Zj ~ 0(l/j) so
Psoin ~ exP(~O(l)n/j2). Hence, when the number of steps is j ^> ^/n, the
solution probability approaches one, giving considerably lower search cost than
the 6(2n/2) value for unstructured search.

Second, consider the limit T —> oo using l / j <C A <C 1. The adiabatic
theorem applies if p(Q) = 0 = r(l). A simple choice is linear variation: p = /,
r = 1 — /. In this limit eq. (12) gives Z(f) close to the ground state of H(f),
which is proportional to A(/)c with

and A(l) = 0. Evaluating eq. (11) with A — !/>/? shows Z(l) rapidly approaches
the value from eq. (12) and this solution, in turn, approaches 0 as 1/T. Thus the
solution probability scales as Psoin ~ exp( —G(l)n/T2).

Figure 1 gives an example of this limit, showing Psoin —> 1 as the number
of steps j increases. Furthermore, the probability oscillates, reaching values very
close to 1 for relatively few steps, T = 0(1). Exploiting these oscillations for
rapid search requires identifying appropriate parameter values and ensuring that
any implementation errors in these values are sufficiently small. If the parameter
values vary by O(e) from the ideal values giving Z(l) =0, the value of Z at the
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final step will be O(e) so the solution probability scales as Psoin ~ exp(—n(9(e2)).
Hence, the required precision for the parameters to achieve Psoin ~ 1 is e <C
1/A/n. Significantly, these techniques do not require exponentially precise values
of the phase parameters.

To summarize the behavior for this 1-SAT problem, the one-step and T — 1
algorithms give good performance with appropriate phase choices, and indicate
the required precision on those choices. The adiabatic limit, T —> oo with phase
functions satisfying p(0) = 0 = r(l), ensures the solution probability approaches
one without any need for tuning the phase functions. These results also apply to
highly constrained solvable A>SAT instances [249].

A significant generalization of this discussion is to single-solution problems
in which the state cost c(s) depends only on the distance between s and the
solution: the number of variables assigned different values in the two states.
Unlike the 1-SAT case, this dependence need not be linear or even monotonic.
For such Hamming-weight problems, eq. (1) ensures the amplitudes depend only
on the costs. This simplification allows studying the performance of quantum
algorithms with a variety of cost structures [508], though classical algorithms
can efficiently solve such problems by using the cost symmetry.

5 RANDOM X-SAT

On average, for fc-SAT, the solution probability Psoin decreases exponentially
with n for most phase function choices. Section 4 showed particular parameter
choices leading to much better performance for 1-SAT with a single solution.
As described in this section, the same options apply to hard random fc-SAT
problems, but, not surprisingly, do not perform as well.

5.1 SEARCH COST SCALING

For trials consisting of a single step or, more generally, a constant number of steps
independent of n, the expected value of the solution probability PSoin always
decreases exponentially when ra oc n [251]: no choices are as good as those for
the 1-SAT example of section 4. Nevertheless, selecting the best parameters for
each value of the clause-to-variable ratio a = m/n exhibits the easy-hard-easy
pattern as a function of a [251].

Better performance requires the number of steps in a trial, j, to increase
with problem size. The approximate analysis of section 6.2 suggests choices for
p and r that appear to work well with j ^> ^/n. One example, with a = 4.25
(close to the critical threshold), j = n and A — l / j is the phase functions [250]

p(f) = 7r(4.86376 - 4.18118(1 - /)) (15)

r(/) = 7r(1.2 +3.1(1-/)).
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FIGURE 2 Log plot of median search cost vs. number of variables n for solvable
random 3-SAT for the parameters of eq. (15) (diamond), unstructured search (box),
GSAT with restarts after 2n steps (circle) and adiabatic search with j = n2 (triangle).
The error bars show the 95% confidence intervals [480, p. 124] of the medians estimated
from the random 3-SAT instances with m = 4.25n (when n is not divisible by 4, half
the samples have m = [4.25nJ and half have m = [4.25n~|). The same instances were
solved with each method. We use 1000 instances for each n up to 20, and 500 for larger
n. The lines are exponential fits to unstructured search (dashed) and the adiabatic
method (solid).

The adiabatic limit gives solution probability Psoin —» 1 as T —> oo. Empiri-
cally it appears to give good average performance for hard search problems [151]
but the question of how rapidly T must grow to achieve this limit remains open.
An example of the adiabatic limit is A — I /^ /] and phase functions p(f) — /,
r(f) — 1 — /. This gives good cost scaling with the number of steps j — Q(n2).

Figure 2 compares the median search costs of these algorithms as a func-
tion of the number of variables n. The figure also shows Grover's unstructured
search [215] (without prior knowledge of number of solutions [76]) and the con-
ventional heuristic GSAT [467].

The unstructured search cost grows as exp(0.32n). The exponential fit to
the adiabatic method is exp(0.13n). The growth rate is about the same as that
of GSAT. The phase functions of eq. (15) give the lowest median costs.

The discrete adiabatic method, using A — 1 and number of steps j = n, gives
costs similar to the heuristic. For both algorithms, using nonlinear variation of
the phase functions with step fraction / gives significantly better performance
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FIGURE 3 Median search costs for solvable random 3-SAT problems with n — 28
(dashed), n — 24 (black), and n — 20 (gray) as a function of clause-to-variable ratio
m/n, using at least 100 instances for each point. Error bars show the 95% confidence
intervals. The search uses the same algorithm parameters for each problem instance,
namely A = 1, number of steps j; = n, and linear varation of the phase functions
matching the requirements of the adiabatic theorem, namely p(f) — /, r(f) — 1 — /.

than for the linear functions shown here [246], a property also seen with the
Hamming-weight problems [508].

As with the j = O(l) case, the number of steps j increasing with n also
shows the easy-hard-easy pattern, as illustrated in figure 3 for one choice of
algorithm. In this example, the phase choices are the same for each value of
a. The cost peak is quite wide for these small problems. This peak also appears
with quantum algorithms including partial assignments [248], as arise in classical
backtracking searches.

Figure 4 illustrates several properties of the algorithm using eq. (15) for one
problem instance. At each step, probability concentrates in states with a fairly
small range of costs. Each step shifts 'the peak in the probability distribution
to assignments with fewer conflicts, until a large probability builds up in the
solutions. This shift is also seen for other problem instances (with differing final
probabilities) and when averaged over many instances.

The variation of amplitudes among states with the same cost is relatively
large only in the last few steps of the algorithm and then primarily for higher-
cost states for which the amplitudes are small. The shading in figure 4 shows this
behavior, indicating the relative deviation of the amplitudes (ratio of standard
deviation to mean) for states with the each cost, ranging from white for zero
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FIGURE 4 Solving a randomly generated 3-SAT problem with n = 30 and ra — 127
clauses using eq. (15). For each step /i, the figure shows the probability -Pccjf(c) in
assignments with each number of conflicts. Shading shows the relative deviations of
the amplitudes, as described in the text. The small contributions for assignments with
c > 20 are not included. This instance has 19 solutions.

deviation to black for relative deviations greater than 3. These observations
motivate the approximate analysis of section 6.2.

5.2 PROBLEM STRUCTURE AND SEARCH COST

Each step of the algorithm, given in eq. (1), adjusts amplitudes based on the
costs associated with the states and mixes them based on their Hamming dis-
tances. When cost and solution distance are perfectly correlated, as with the
1-S AT example of section 4, the quantum algorithm performs well. Thus we can
expect a structural property of problem instances, namely the correlation be-
tween distance between states and their cost difference, to characterize search
difficulty: high correlations should correspond to lower costs, on average.

As one example, figure 5 shows the relation between the search cost for the
heuristic quantum algorithm (using eq. (15)) and the correlation between cost
and distance to the nearest solution for all assignments. GSAT shows a similar
relationship.

The adiabatic method provides another structural property relevant for
search cost: the minimum energy gap g. The energy gap for step fraction /
is the difference between the ground-state energy of H(/) and the energy of the
(S -h l)th state, where S is the number of solutions. The minimum gap is the
smallest gap over the range 0 < / < 1. The adiabatic limit requires T ^> l/#2.
With multiple solutions, the distribution and sizes of gaps between successive



238 Phase Transitions for Quantum Search Algorithms

FIGURE 5 Expected search cost for the heuristic quantum method vs. correlation
between state cost and distance to nearest solution for 1000 3-SAT instances with
n = 20 variables and clause-to-variable ratio a — 4.25. The large gray points are
instances with a single solution.

states up to the (S + l)th can also affect performance. Except for simple, highly
symmetric problems such as the 1-SAT example of section 4, the scaling behavior
of the gap is not known.

Of broader interest for understanding phase transitions in combinatorial
search, the minimum energy gap provides an algorithm-independent character-
ization of search problems. Although directly related to the performance of the
adiabatic method [151], the minimum gap g is also relevant for other algorithms.
For instance, figure 6 shows high costs for the heuristic (using T = 1 and based
on eq. (15)) generally correspond to small gaps. GSAT gives a similar plot. These
observations suggest the minimum gap is a global property characterizing hard
instances for a variety of algorithms. It thus may offer useful insights as an
alternative to other such properties, such as the backbone, consisting of those
variables with the same assigned values in all solutions [477]. Both the minimum
gap and backbone are computationally expensive to determine, so they are most
significant as theoretical constructs relating problem structure to search cost.

5.3 LONGER RANGE INTERACTIONS FOR AMPLITUDE MIXING

The algorithms discussed so far in this chapter incorporate information about
the specific instance to solve only in the cost phase function p. As a further
application of problem structure to designing quantum algorithms, this section
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FIGURE 6 Expected search cost for the heuristic quantum method vs. l/g for 500
3-SAT instances with n — 16 variables and clause-to-variable ratio a — 4.25. The large
gray points are instances with a single solution.

briefly examines one approach to adjusting the mixing phase function r to match
the mixing operator to the problem instance.

The mixing matrix in eq. (7) has the phase id associated with the mixing
matrix elements Ud for all choices of r. Thus, increasing r increases the magnitude
of the contribution from more distant states, but does not change the variation
in phase of the Ud values.

Section 3.2 showed that good performance is possible if distances to the so-
lution can be estimated well. On the other hand, errors in such estimates will
make contributions from various distances tend to cancel, leading to less shift
of amplitude towards lower-cost states during each step. For example, the phase
factor id in Ud means an error in estimating distance to the solution by 2, 6,10,...
changes the sign of the contribution to the new amplitude in eq. (1). Unfortu-
nately, for problems such as 3-SAT, state costs are not perfectly correlated with
solution distance (see fig. 5), so such phase errors in the mixing are inevitable
for these algorithms.

One approach to this difficulty is using many steps, each with a small value
of A, as described in section 3.3. This can be effective, but means that the mixing
matrix for each step is close to the identity and that contributions to the am-
plitude of a state are concentrated among nearby states, which can lead to low
performance in cases where solutions tend to be surrounded by high cost states.
An alternative is using a mixing matrix in which the phases associated with suc-
cessive Ud values vary more slowly than id. An extreme example is the diffusion
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matrix of section 3.1, in which all phases are the same. In this case, however,
the magnitude of the mixing matrix elements, |i^|, is exponentially small for
d > 0, again resulting in small shifts in amplitude for each step. Maintaining
unitarity with less phase variation in the u^ values requires smaller magnitudes,
leading to a tradeoff between smoother phase variation of the u^ values, giving
less cancellation due to errors in estimating solution distance from costs, and
larger magnitudes giving more contribution from states at larger distances.

Thus, mixing matrices with values between those of diffusion and the form
of eq. (7) may be useful. One approach to constructing such mixing matrices
is via the Hamiltonian formulation of section 3.4. For instance, instead of just
nearest-neighbor interactions in HQ, we can take (#o)r,s oc SrtS — (l+a}~nad(r^
with the parameter a, between 0 and 1, characterizing the range of interaction.
If 0 < a <C 1/n, this matches the nearest-neighbor HQ of section 3.4, while a = 1
corresponds to unstructured search with mixing independent of d for d > 0.

As an example, for a 3-SAT instance with n = 16 and a — 4.25 with a
particularly small minimum gap (about 0.002, compared to the median minimum
gap of about 0.5 for such problems), allowing the mixing to depend on a longer-
range Hamiltonian with j — 16 steps increased the solution probability PSoin
from 0.0006 to 0.12. Improvement is also seen with other instances with especially
small gaps.

While difficult to provide definitive conclusions from these small instances,
this additional flexibility in matching the mixing matrix to characteristics of the
problem may improve performance. In particular, studies of how state costs vary
through the search space to give local minima or plateaus [168, 254, 258] could
suggest appropriate choices for the interaction range. Such information may help
evaluate other types of quantum algorithms that rely on properties of the cost
function throughout the space, such as those using partial assignments [86, 149,
248].

6 APPROXIMATE SCALING BEHAVIOR

As seen in the previous section, simulations for small problems show proper
phase choices can give costs comparable to a good conventional heuristic. Unfor-
tunately, these small problem sizes do not adequately address scaling of the cost
behavior, particularly whether the quantum algorithms can perform significantly
better than classical methods for hard random SAT problems, on average.

Approximate analytical techniques provide a complementary approach. The
average properties of random fc-SAT successfully help us to understand and im-
prove search methods, both classical [91,138, 195, 247] and quantum [250]. Quan-
tum algorithms operate with the entire search space at each step, so performance
depends on averaged properties of the search states. For simple ensembles, such
as random /c-SAT, such averages are readily computable.
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This section discusses how the properties of random /c-SAT provide a qual-
itative understanding of the phase transition behavior seen with the quantum
methods and estimate the algorithm's behavior for large n.

6.1 PROBLEM STRUCTURE

The algorithms in this chapter adjust amplitudes based on the state costs and
Hamming distances between them. Thus the selection of appropriate phase func-
tions, and the resulting algorithm performance, depends on the relationship
between these quantities for typical problem instances. This section describes
this relationship for random /c-SAT, and summarizes how its dependence on the
number of clauses qualitatively explains the peak in search cost seen with the
quantum algorithms.

For random /c-SAT with ra clauses, the probability an assignment has cost C
is a binomial distribution: P(C) = (™)pc(l -p)m~c where p = 2~k is the prob-
ability a single clause conflicts with a given assignment. The expected number of
states with cost C is v(C) — 2nP(C). As one application, if the amplitudes after
step h satisfy ips oc Zc^ for some constant Z, then the probability of obtaining

a state with c conflicts 

In particular, Pso\n(h) — -PCOnf (0) 'ls the probability of obtaining a solution.
To relate distances and costs, the probability that two states separated by

distance d have costs C and c, respectively, is given by a sum of multinomials
depending on the number of clauses conflicting with both states [250]. The cor-
responding conditional probability P(c\C,d) is peaked for c values close to C
when the two states have the same assignments for most variables, that is, when
d <C n. This arises from the local nature of the constraints in /c-SAT: two states
that differ in assignments to only a few variables are very likely to violate many
of the same clauses and hence have similar costs. Quantitatively, when n is large,
the average cost c for a state at distance d from another state with cost C is

with 5 = d/n, the fraction of variables with different values in the two states,
and x = C/rn, the fraction of conflicting clauses in the first state. The variance
of the distribution for c has a similar expression, proportional to m(l — (l — 5 ) k ) .

Figure 7 is an example of how cost varies with distance from a state with
given cost, and gives a qualitative understanding of the underlying cause of
the easy-hard-easy behavior for the quantum algorithms. Specifically, since the
relative deviation of c/ra decreases as 1/y^rn, the figure shows the distribution
of costs c from the conditional probability P(c\C, d) is narrow for either small
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FIGURE 7 Expected fraction of conflicting clauses, (c) /ra, vs. the fraction of variables
with different assignments, d/n, for the conditional distribution P(c\C,d) when n =
100, k = 3, ra = 4n and C = 3. The gray region shows the extent of the deviation of
the distribution: one standard deviation above and below the mean, multiplied by

distances d or large numbers of clauses ra. The smaller variance gives a stronger
correlation between costs and distance, leading to an increased ability to pick
phase adjustments to move amplitudes to desired states (as seen in sec. 4).

Underconstrained problems have many solutions, so distance to the nearest
solution is typically fairly small. Hence amplitudes need only be shifted a small
distance, so steps can mainly mix amplitudes of nearby states (i.e., use relatively
small values of the mixing phase function r, as is also suitable for the single-step
method with underconstrained problems [251]). These small distances have high
correlations between cost and distance, allowing fairly precise shifts of amplitude
towards the lower-cost states and, hence, low overall search costs.

Conversely, overconstrained but solvable problems tend to have just a few
solutions and long distances to them from most states. In this case, the increasing
number of clauses results in small variance even for large distances, due to the
1/v/ra decrease in relative deviation of the conditional probability distribution
P(c|C,d). Thus, we can expect a good ability to shift amplitudes to lower-cost
states for overconstrained problems.

Between these extremes we can expect larger search costs because, as shown
in figure 7, the deviation grows rapidly with distance when the fraction of vari-
ables with different assignments, 5, is small, but more slowly as 6 increases. Thus,
when the clause-to-variable ratio a is small, we can expect the growth in variance
due to increasing distance to outweigh the decrease due to the \j\[OL factor. As
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a increases, 6 — > 1/2 when only one solution remains and hence the variance
increases slowly due to changes in distance, and the l/>/a factor dominates to
give an overall decrease. These observations give a qualitative understanding of
the cost peak for typical problems with an intermediate number of clauses: rela-
tively long distances to solutions combined with higher variance in the relation
between cost and distance. These factors reduce the ability to shift amplitudes
reliably towards lower-cost states, giving higher overall search costs.

Using the expression for the relative deviation and estimating typical dis-
tances from the expected number of solutions, (5) = 2n(l — 2~ /c)m, matches
this qualitative description with a peak in relative deviations for 3-SAT around
a clause-to- variable ratio of a = 3. Thus, while by no means a quantitatively
accurate identification of the cost peak, the behavior of the conditional proba-
bility a state has cost c, given it is at distance d from another state with cost
C, P(c\C, d), provides a qualitative understanding of why the easy- hard-easy
pattern arises in these quantum search algorithms. This also illustrates the use-
fulness of structurally simple ensembles such as random k-SAT: since each clause
is selected independently at random, the state cost distributions are analytically
simple to describe.

6.2 MEAN-FIELD APPROXIMATION

Evaluations of algorithm behavior, such as that of figure 4, show that amplitudes
for states with the same number of conflicts are generally quite similar. This
observation motivates an analysis based on the behavior of the average amplitude
for states with each cost [250]. The resulting approximation corresponds to a
mean-field approach in statistical physics.

Consider the average amplitude Ac = (tfs V with the average taken first

over all states s with cost c(s) — C in a problem instance, and then over all
random /c-SAT instances with given numbers of variables n and clauses m. Sim-
ulations show that the probability concentrates in a small range of cost values, as
illustrated schematically in figure 8. Let us assume amplitudes for states with the
same cost are the same, at least for states whose cost is near the dominant cost
value at each step, that is, the peak in PCOnf °^ figure 4. Then eq. (1) becomes

where Vd(C,c) — Q)P(d|C, d} is the expected number of states with c conflicts
at distance d from a state with C conflicts. The dominant costs are close to
the average cost associated with the amplitudes, (C) = ^c C v(C}\Ac\^- We
thus expand Ac « AcZc~c around the average cost, with Z a complex number
depending on the step fraction / — h/j. This expansion is the same form as
the exact expression for the amplitudes given in section 4 for the simple 1-SAT
problem.
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FIGURE 8 Schematic behavior of average amplitudes, on a logarithmic scale, as a
function of number of conflicts c. The average number of states with c conflicts, v(c), is
sharply peaked around the average number of conflicts m/2k. When the magnitude of
the amplitudes decreases rapidly with c, as shown here, the probability in states with
c conflicts is also sharply peaked, but at a somewhat lower value, corresponding to
the shift towards lower-cost states seen in figure 4. Quantitatively, the values decrease
exponentially with n, so the logarithms, shown here, are proportional to n and the
relative width of each peak is O(\j\fn}.

For the case of A — l/j and j ^> 1, using this expansion in eq. (9) gives [250]

where p — 2~k is the probability that a clause conflicts with a given assignment,
X — \Z\2p/l — p(l — \Z\2) is the expected fraction of conflicting clauses, (C) /ra,
with this approximation for the amplitudes, and

Initially all amplitudes are equal so Z(G) = 1.
For k — 1 this reduces to the 1-SAT example, eq. (12) with T = 1, except

for a factor of F due to the random choice of clauses of the ensemble, compared
with the situation of section 4, where each clause must involve a distinct variable
since the choices are required to give one solution.

With suitable choices for p and r, such as those in eq. (15) for k — 3, a — 4.25,
eq. (19) gives Z(l) = 0 thereby predicting that most of the amplitude concen-
trates in states with the fewest conflicts, that is, solutions if the problem instance
is solvable. More precisely, this predicts the solution probability PSoin(J) is, at
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worst, only polynomially small with proper phase choices. This approximation
relies on the decreasing size of the relative variance of the conditional probability
P(c\C, d) discussed in section 6.1 and, hence, the number of steps must satisfy
j ^> \fn. Combining these scaling behaviors, the mean-field approximation pre-
dicts that the average cost j/Pso\n grows only polynomially with n for typical
random fc-SAT instances, with suitable choices of the phase functions depending
on the clause-to-variable ratio a. Evaluating the error in this approximate result
via simulation is difficult due to the requirements of many states with each cost
and small relative deviation in problem structure among states with each cost
value, that is, ^/n ^> 1.

The functions of eq. (15) do not have p(Q) = 0 — r(l). Choices for phase
functions p and r do exist that both satisfy these conditions for the adiabatic
method and give Z(l) = 0 from eq. (19). However, empirically they require more
steps than the choices of eq. (15).

7 DISCUSSION

This chapter has reviewed several approaches to quantum search. First, unstruc-
tured search is the quantum analog of generate-and-test. The probability of find-
ing a solution is close to one after exponentially many steps for hard search
problems. Second, the adiabatic method can also guarantee solution probability
Psoin ~ 1 after sufficiently many steps, with the required number of steps related
to an aspect of problem structure, the energy gap, not previously examined in
the context of phase transitions. Third, for problems with a strong correlation
between cost and distance to solution (such as 1-SAT or highly constrained k-
SAT), appropriate phase choices allow solving the problem in 0(1) steps for
any number of variables. Finally, the heuristic method gives good average per-
formance for hard &-SAT problems based on empirical evaluation, but lacks an
exact analysis of performance scaling. An approximate theory modeled on the
behavior of the algorithm for 1-SAT suggests the possibility of polynomial scal-
ing of average cost, but the accuracy of this prediction remains an open question.
Moreover, even if the algorithm performs well on average, it has no guarantee
for specific instances. At any rate, the approximation provides reasonably good
choices for the phases, as seen in figure 2.

A number of extensions are possible. First, the amplitude shift of figure
4 means that even if a solution is not found after a trial, the result probably
has low cost. Thus, like local classical search methods such as GSAT but un-
like unstructured search, the heuristic and adiabatic methods apply directly to
combinatorial optimization, that is, finding a minimal conflict state [174]. For
example, the shift in amplitudes towards low-cost states is seen in satisfiabil-
ity problems with no solutions, the traveling salesman problem [252] and graph
coloring [149].
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Second, the mean-field analysis also applies to other search problem ensem-
bles, provided the probabilities relating problem properties can be determined.
This is possible for a variety of commonly studied ensembles such as coloring
random graphs. Ensembles of real-world problems lack analytically known prob-
ability distributions, but sampling representative instances allows estimating
P(c\C,d). Such estimates may even be useful for analytically simple ensembles,
allowing some tuning of phase parameters for a particular problem instance.

Third, in common with amplitude amplification [76] and some classical meth-
ods [369], the growth of solution probability Pso\n(h) with step h during a trial,
as seen in figure 4, means stopping a bit before the largest Psoin value reduces
the expected search cost. More generally, a portfolio [205, 265] of trials with
somewhat different parameter values can improve trade-offs between expected
costs and their variation among different instances [383].

Fourth, the heuristic can readily incorporate other computationally-efficient
properties of the search states as additional arguments to the phase function p.
One such property, used by conventional heuristics such as GSAT, is how the
number of conflicts in a state compares to those of its neighbors. Moreover, in
an analogy with quadratically improving conventional heuristics with amplitude
amplification [77], we could also evaluate a conventional heuristic, such as GSAT,
for a fixed number of steps and use the cost of the resulting state to adjust phases
(either instead of or in addition to the cost of the original state). In this case, we
would be searching not for a solution state directly but rather for a "good" initial
state, from which the conventional heuristic rapidly finds a solution. In fact,
using just a few steps of GSAT with random SAT instances shows the same shift
towards low-cost states as seen in figure 4, and the resulting solution probability,
Psoin, is larger. However, for problem sizes amenable to simulation, Psoin of the
original algorithm is sufficiently large that even if using a few steps of GSAT
were able to make Psoin = 1, it would not reduce the overall trial cost due to the
additional steps involved in evaluating GSAT. Nevertheless, this approach may
be useful for larger problem sizes and illustrates the potential trade-off between
the cost of the procedure evaluating search state properties and the resulting
probability for a solution, which determines the expected number of trials.

An interesting open question is whether the heuristic can benefit from using
different parameters and numbers of steps for each trial, as used for amplitude
amplification when the number of solutions is not known. The simulations in-
dicate a wide range of performance among different instances with the same
numbers of variables and clauses, n and m, even if they have the same number
of solutions. This approach would rely on the variation among problem instances
not addressed by ensemble averages. Furthermore, the series of low-cost states
returned by the unsuccessful trial may also be useful indications of problem
structure as another example to apply dynamic adjustments based on algorithm
behavior during search [304]. Finally, implementations of structured quantum
searches [489] will allow a comparison of how the various algorithms respond to
uniquely quantum mechanical sources of error, such as decoherence.
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A quantum machine with even a modest number of bits could help address
these issues by evaluating algorithm performance beyond the range of classi-
cal simulation. This will be particularly useful for more complicated heuristics,
using additional problem properties, whose theoretical analysis is likely to be
more difficult. Exploring their behavior will identify opportunities for quantum
computers to use information available in combinatorial searches to improve per-
formance significantly.

ACKNOWLEDGMENTS

I have benefited from discussions with Wim van Dam. I thank Miles Deegan and
the HP High Performance Computing Expertise Center for providing computa-
tional resources for the simulations.

247



This page intentionally left blank 



CHAPTER 11

Scalability, Random Surfaces, and
Synchronized Computing Networks

Zoltan Toroczkai
Gyorgy Korniss
Mark A. Novotny
Hasan Guclu

1 INTRODUCTION

In most cases, it is impossible to describe and understand complex system dy-
namics via analytical methods. The density of problems that are rigorously solv-
able with analytic tools is vanishingly small in the set of all problems, and of-
ten the only way one can reliably obtain a system-level understanding of such
problems is through direct simulation. This chapter broadens the discussion on
the relationship between complexity and statistical physics by exploring how
the computational scalability of parallelized simulation can be analyzed using
a physical model of surface growth. Specifically, the systems considered here
are made up of a large number of interacting individual elements with a finite
number of attributes, or local state variables, each assuming a countable num-
ber (typically finite) of values. The dynamics of the local state variables are
discrete events occurring in continuous time. Between two consecutive updates,
the local variables stay unchanged. Another important assumption we make is
that the interactions in the underlying system to be simulated have finite range.
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Examples of such systems include: magnetic systems (spin states and spin flip
dynamics); surface growth via molecular beam epitaxy (height of the surface,
molecular deposition, and diffusion dynamics); epidemiology (health of an indi-
vidual, the dynamics of infection and recovery); financial markets (wealth state,
buy/sell dynamics); and wireless communications or queueing systems (number
of jobs, job arrival dynamics).

Often—as in the case we study here—the dynamics of such systems are
inherently stochastic and asynchronous. The simulation of such systems is non-
trivial, and in most cases the complexity of the problem requires simulations on
distributed architectures, defining the field of parallel discrete-event simulations
(PDES) [186, 367, 416]. Conceptually, the computational task is divided among
n processing elements (PEs), where each processor evolves the dynamics of the
allocated piece. Due to the interactions among the individual elements of the sim-
ulated system (spins, atoms, packets, calls, etc.) the PEs must coordinate with a
subset of other PEs during the simulation. For example, the state of a spin can
only be updated if the state of the neighbors is known. However, some neighbors
might belong to the computational domain of another PE, thus, message passing
will be required in order to preserve causality. In the PDES schemes we analyze,
update attempts are self-initiated [155] and are independent of the configuration
of the underlying system [365, 366]. Although these properties simplify the anal-
ysis of the corresponding PDES schemes, they can be highly efficient [342] and
are readily applicable to a large number of problems in science and engineering.
Further, the performance and scalability of these PDES schemes become inde-
pendent of the specific underlying system, that is, we learn the generic behavior
of these complex computational schemes.

The update dynamics, together with the information sharing among PEs,
make the parallel discrete event simulation process a complex dynamical system
in itself. In fact, it perfectly fits the type of complex systems we are considering
here: the individual elements are the PEs, and their states (local simulated time)
evolve according to update events which are dependent on the states of the
neighboring PEs.

With the number and size of parallel computers on the rise, the problem of
designing efficient parallel algorithms or update schemes becomes increasingly
important. In passing, we can mention a few examples of large parallel com-
puters: the 9472-node ASCII Red at Sandia, the 12288-node QCDSP Teraflop
Machine at Brookhaven, and the 8192-node IBM ASCII White with 12.3 Ter-
aflops. The 65536-node IBM Blue Gene/L with 360 Teraflops is due for delivery
at Livermore as this volume goes to press. And the largest supercomputer ever
built is by Nature itself: the brain, which does an immense parallel computing
task to sustain the individual. In particular the human brain has 1011 PEs (neu-
rons) each with an average of 104 synaptic connections, creating a bundle on the
order of 1015 "wires" jammed into a volume of approximately 1400 cm3.

The fact that the dynamics of the simulation scheme form a complex system,
with properties hard to deduce using classical methods of algorithmic analysis,
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makes the design of efficient parallel update schemes a challenging problem. In
this chapter we present a new approach to analyzing efficiency and scalability
for the class of massively parallel conservative PDES schemes [87] by mapping
the parallel computational process itself onto a non-equilibrium surface growth
model [343]. This allows us to formulate questions of efficiency and scalability
in terms of certain topological properties of this non-equilibrium surface. Then,
using methods from statistical mechanics, developed some time ago to study
the dynamics of such surfaces in a completely different context, we solve the
scalability problem of the computational PDES scheme [343, 346]. Similar con-
nections between computational schemes and complex systems behavior have
recently been made [457, 478] for rollback-based PDES algorithms [280] and
self-organized criticality [24].

The chapter is organized as follows. In the following section we present the
problem of scalability in conservative PDES schemes. In section 3 we discuss
the scalability of the computational phase and the failure of scalability of the
measurement phase of the basic conservative scheme, for regular topologies. We
then show how a simple modification of the communication topology (from a
regular lattice to a small-world structure) leads to a fully scalable PDES scheme.
In section 4 we study the scalability problem on scale-free network topologies,
presenting numerical results for Barabasi-Albert networks. Section 5 is devoted
to conclusions.

2 SCALABILITY OF MASSIVELY PARALLEL
DISCRETE-EVENT SIMULATIONS

Since one is interested in the dynamics of an underlying complex system, the par-
allel discrete-event simulation scheme must simulate the "physical time" variable
of the complex system. When simulations are performed on a single-processor
machine, a single (global) time stream is sufficient to label or time-stamp the up-
dates of the local configurations, regardless of whether the dynamics of the under-
lying system are synchronous or asynchronous. When simulating asynchronous
dynamics on distributed architectures, however, each PE generates its own phys-
ical, or virtual time, which is the physical time variable of the particular com-
putational domain handled by that PE. Due to the varying complexity of the
computation at different PEs, at a given wall-clock instant the simulated, virtual
times of the PEs can differ—a phenomenon called time horizon roughening. We
denote the simulated, or virtual time at PE i measured at wall-clock time t by
Ti(t). For noninteracting subsystems the wall-clock time t is directly proportional
to the (discrete) number of parallel steps simultaneously performed on each PE,
also called the number of Monte Carlo steps (MCS) in dynamic Monte Carlo
simulations. Without altering the meaning, t will from now on be taken to de-
note the number of discrete steps performed in the parallel simulation. The set
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FIGURE 1 A simple diagram to illustrate the conservative PDES scheme for a one-
dimensional system with nearest-neighbor interactions.

of virtual times {i~i(i}}™=l forms the virtual time horizon of the PDES scheme
after t parallel updates.

In conservative PDES schemes [87], a PE can only perform its next update
if it can obtain the correct information to evolve the local configuration (local
state) of the underlying physical system it simulates, without violating causality.
Otherwise, it idles. Specifically, when the underlying system has nearest-neighbor
interactions, each PE must check with its "neighboring" PEs (mimicking the
interaction topology of the underlying system) to see if those have progressed at
least up to the point in virtual time where the PE itself has [365, 366]. Based on
the fundamental notion of discrete-event systems that the value of a local state
variable remains unchanged between two successive update attempts, the rule
above guarantees the causality of the simulated dynamics [365, 366]. A simple
illustration of this is given in figure 1. One may consider, for example, a magnetic
system as the underlying physical system, where the spins are arranged on the
sites of a one-dimensional lattice, and a single spin is handled by a single PE
(for more realistic and efficient implementations see Korniss et al. [342], and
Lubachevsky [365, 366]). In figure 1, showing the distribution of the virtual
simulated times at a given wall-clock instant t, the only PE that can update
from the set {i — l,i, i 4- 1} is in site i since the states of the neighboring spins
at sites i ± 1 are already known. However, PEs i ± 1 cannot update their spin
states at wall clock instant t, because the state of the neighboring spin i at their
simulated times (at r^_i and Ti+\) is not yet known. In other words PE i can only
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update at wall-clock instant t if Ti(i) < min{r^_i(£), T^+I(£)}, that is, its virtual
time is a local minimum among the virtual times of its neighboring PEs. It is
easy to see that the same conclusion holds for arbitrary PE topologies. Let the
topology for the communication among the processing elements be symbolized
by a graph G(V, £"), where V is the vertex set of n nodes and E is the edge set
of G. Given a node i £ V(G), we denote by Ni the set of z's nearest neighbors
on G. Then, node (PE) i can update its state in the conservative PDES scheme
if and only if:

In the following, the set of (active) nodes obeying condition (1) at time t will be
denoted by A(t).

Now we are in a position to formulate the scalability problem of PDES
schemes for systems with asynchronous dynamics. For the PDES scheme to be
fully scalable, the following two criteria must be met: (i) the virtual time horizon
must progress on average at a nonzero rate, and (ii) the typical spread of the
time horizon must be finite, as the number of PEs n goes to infinity. When the
first criterion is ensured for large enough times t, the simulation is said to be
computationally scalable. This simply means that when increasing the size of the
computation to infinity, while keeping the average computational domain/load
constant on a single PE, the simulation will progress at a nonzero rate. However,
as we will show below, increasing the system size can cause the spread in the time
horizon to diverge, severely hindering frequent data collection about the state of
the simulated system. Specifically, when one needs to take a measurement of some
physical property of the simulated system at (virtual or simulated) physical time
T, we have to wait, in wall-clock time, until all the virtual simulated times at all
the PEs reach the value r. Thus in order to collect system-wide measurements
from the simulation, we incur a waiting time proportional to the spread, or
width of the fluctuating time horizon. When condition (ii) is fulfilled for large
enough times £, we say that the PDES scheme is measurement scalable. For PDES
schemes for which the spread diverges with system size, however, the waiting
time for the measurements will also diverge, and the scheme is not measurement
scalable.

The scalability criteria above can be formalized in terms of the properties
of the virtual time horizon, {TV (t)}™-i. The average of the time horizon after
t parallel steps is:

At a given wall-clock time t the only PEs that can make progress, that is, are
not idle, are those with virtual times obeying condition (I). Thus, the rate of
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progress of the time horizon average becomes:

The measurement scalability of the PDES scheme is characterized by the spread
of the virtual time horizon. Instead of dealing with the actual spread (differ-
ence between the maximum and minimum values) we shall consider the average
"width" (or variance) of the time horizon defined as:

A PDES scheme is measurement scalable if there exists a constant M > 0
such that:

The difference in the square brackets on the right-hand side of eq. (3) is the
physical time elapsed between two consecutive events in the physical domain
simulated by the /th PE, and it is determined by the physical process responsible
for the stochastic dynamics of the simulated complex system. If we replace the
time intervals in square brackets in eq. (3) with their (clearly finite) average
value A, we obtain that the average progress rate of the time horizon, or average
utilization (u^(t)) = (f^G\t + 1) — r^G\t)) is proportional to the number of
non-idling, or active PEs. The average (• • •) is taken over the stochastic event
dynamics, assumed to be the same at all sites. For many cases, the A factor
is independent of n due to the finite range of the interaction in the complex
system, so the computational efficiency or average utilization of the simulation
can simply be identified with the average density of the active PEs:

where |A^(t)| denotes the number of elements of the set A^G\t). Thus, the
PDES scheme is computationally scalable if there exists a constant c > 0, such
that:

In reality, the number n of PEs or the simulation time t can never be taken
to infinity, so for practical purposes, the scalability is deduced from the scaling
behavior of the quantities for long times and for a large number of PEs. The
setup presented above is perfectly suited to establishing a mapping between
non-equilibrium surface growth models [29] and conservative PDES schemes.
We discuss this mapping extensively in the next section.
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3 SCALABILITY OF CONSERVATIVE PDES SCHEMES ON
REGULAR AND SMALL-WORLD TOPOLOGIES

In many large complex systems the stochastic event dynamics can be character-
ized by a Poisson-distributed stream. To give one example, in an Ising magnet
with single spin-flip Glauber dynamics [342] the spin-flip attempts are Poisson-
distributed events. To give another example, in wireless cellular communications
the call arrivals obey Poisson statistics [209]. In the following, we restrict our-
selves to such Poisson distributed stochastic processes for event dynamics. How-
ever, numerical simulations show that our conclusions for scalability hold for a
large class of other stochastic distributions as well. The evolution of the virtual
time horizon incorporating condition (1) for Poisson asynchrony is given by the
equation:

Here, 9(x) is the Heaviside step function and rji(t) is the Poisson-distributed vir-
tual time increment at PE i and time t. These increments are drawn at random,
independently of i and £, and independently of the existing time horizon.

3.1 THE BASIC CONSERVATIVE SCHEME ON REGULAR TOPOLOGIES

Next, we consider the basic conservative scheme, which is denned on regular,
cubic lattice communication topologies, in d dimensions, so that n = Ld. For
brevity we drop the superscript (G) in the notation for Ti(t). In particular, we
first illustrate our analysis on the simplest regular topology, that of a regular
one-dimensional lattice with periodic boundary conditions, so that G is a ring.
Later, we discuss the general, d- dimensional case. The evolution equation on the
ring is simply:

with the boundary conditions rn+i = rn = TO. The total number of active
sites/PEs is thus given by \A(t)\ = £?=i*fa-i(*) - Ti(t))0(Ti+i(t) - n(t)) so
the average utilization (4) becomes:

The average (• • •) is performed over the random variables {rji(t')}i=i,...,L, which
tf=i,..,t

have an exponential distribution, Pr[x < rj < x -f Sx] — f* x dye~y. In spite
of the simple appearance of the dynamics (9), and the exponential (or Poisson)
stochastic dynamics at nodes, calculating the average utilization (10) is very
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FIGURE 2 A simple surface growth model on a l-d substrate corresponding to the
basic conservative PDES scheme.

difficult. A rigorous proof even for the existence of the lower bound (5) using
direct methods is still an open problem.

Here we present a different approach, first mapping the problem to a non-
equilibrium surface grown via a molecular beam epitaxy model, where atoms or
molecules are deposited from vapors or beams onto the surface. The analogies
for the various quantities are as follows: the ith PE is the site i in the substrate;
the number of parallel updates t is the number of deposited monolayers; Ti(i) is
the height hi(t) at site i and time t] and a virtual time increment of rji(f) at PE
i in the tth step corresponds to a material "rod" of length rji(t) deposited onto
the surface (see fig. 2). The length of the rod is a Poisson-distributed random
variable. During the tth update, the rods are deposited only into local minima
of the surface. The utilization of the PDES scheme corresponds to the density
of local minima of the growing surface. Even though the lengths of the rods are
independent random variables, the fact that they can only be deposited in local
minima will generate lateral correlations into the surface fluctuations, and makes
the problem hard to solve exactly. The rods are deposited onto the surface in a
parallel update scheme: after all local minima are updated (deposited onto), the
time t is incremented by unity. We call the surface growth analog of our basic
conservative PDES scheme the massively parallel exponential update (MPEU)
model.
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with the constraint ^i=l fa = 0 generated by the periodic boundary condi-
tions in the r variables. In terms of the local slope variables, the expression
for the average density of minima or average utilization becomes: ( u ( L , t ) } —

i; Z]f=i {^("^(OW^H-iW)}- Translational invariance (no node is statistically
special) implies (u(L, t)) = (9(—<^(£))#(<^+i(t))) for any i = 1 , . . . , L. From eq.
(9) it follows that (ri(t -f 1)) — (r^(t)} = ( u ( L , t ) ) . Therefore, the average rate
of propagation of the MPEU surface is identical to the average utilization of the
PDES scheme. It is also easy to see that in terms of the slope variables it is
identical to the average current in the ring.

Next, we perform a naive coarse graining by using the representation 9(4)} —
lim^-^o \ [1 + tanh(0/ft)], and keeping only the terms up to first-order in (/>/K.
This leads to:

Strictly speaking, all of the ((/)/K)J, j = 1 , 2 , . . . terms are divergent. But by
taking the proper continuum limit and introducing an appropriately scaled bias,
one can show that the only relevant terms are those appearing in eq. (12). In the
continuum limit, one thus obtains for the coarse-grained field:

where A is a parameter related to the coarse-graining procedure. The nonlinear
partial differential equation (13) is known as nonlinear biased diffusion, or the
Burgers equation [83]. Returning to the coarse-grained equivalent of the height,
or virtual times, f, we obtain via 0 — dr/dx the Kardar-Parisi-Zhang (KPZ)
equation [296]:

Both the utilization (density of minima) and the width of the time horizon
are quantities characterizing the fluctuations of the growing surface. The type of
fluctuations can be classified into universality classes, each class having distinct
statistical properties. Studying the PDES scheme as a surface growth model, we
can describe its fluctuations and identify the surface growth universality class
to which it belongs. In order to do this, we first introduce the slope variables,
<pi = TI — TJ_I . Provided Ti(t) is a local minimum, depositing a rod of length
rji corresponds to taking an amount of rji from <^+i and adding it to ^, since
&(* + !) = Ti(*)-Ti-i(*) + 77i(0 and ^+1(^4-1) - r,+ 1(0 ~r,(t)-r?,(t). Thus, in
the surface of slopes {(f)i}^=l, the dynamics are those of biased surface diffusion,
given by the equation:
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To capture the fluctuations, one typically adds a delta-correlated noise term
£(#,£), to the right-hand side, conserved for eq. (13), that is, J £dx = 0, and
non-conserved for eq. (14). It is important to note that we obtained the KPZ
equation as a result of a coarse-graining procedure. While this results in the loss
of some of the microscopic details for the original growth model on the lattice,
eq. (14) with noise added describes the long-wavelength behavior of the MPEU
model. Thus, we claim that virtual time horizon for the basic conservative PDES
scheme exhibits kinetic roughening and it belongs to the KPZ universality class.
Identifying the universality class of a model is one of the main objectives of
surface science, and is used extensively to classify fluctuation statistics. Our
procedure above indicates that the long- wavelength statistics of the fluctuations
of the time horizon for the basic conservative PDES scheme are in fact captured
by the nonlinear KPZ equation.

In one dimension a steady state for the surface fluctuations is reached (in
the long time limit) for any finite system size, and it is governed by the Edwards-
Wilkinson (EW) Hamiltonian HEW ot f dx (|^) (see, e.g., Barabasi and Stan-
ley [29]). The corresponding surface is a simple random- walk surface, where
the slopes are independent random variables in the steady state. This means
that of the four local configurations of slopes around a point (down-up, down-
down, up-up, up-down), only one contributes on average to a minimum (down-
up), and since they are all equally likely, we conclude that (UEW(L — > oo,t — >
oo)} — 1/4 = 0.25. (Zero slopes are statistically irrelevant, since the probabil-
ity that two virtual times are exactly equal is zero, given that the updates are
drawn from a continuous probability distribution.) Our numerical simulations
for the MPEU model (see fig. 3(a)) indicate a value of (u(L — * oo,t — > oo)) =
0.24641 ± (7 x 10~6), a value close but not identical to that for the simple ran-
dom walk surface. The reason for the obvious difference is that the coarse-grained
version and the original microscopic model are not identical over the whole spec-
trum of wavelengths of the fluctuations. The coarse-graining procedure preserves
the statistics of the long- wavelength modes, but it loses some information on the
short- wavelength ones. In particular, the density of minima is heavily influenced
by the short wavelengths (by how "fuzzy" the interface is). However, the density
of minima cannot vanish in the thermodynamic limit (large ra, large t): a zero
density of local minima would imply that it is zero on all length scales, which
would contradict the fact that it belongs to the EW universality class. The fact
that the steady state of the MPEU model belongs to the EW universality class
guarantees that the local slopes are short-range correlated (fig. 3(c)), and that
the finite-size corrections for the density of local minima (average propagation
rate of the surface) follow a universal scaling form [350] :

Here a is the roughness exponent (equal to 1/2 for the EW universality class),
characterizing the macroscopic surface-height fluctuations, as described in detail
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FIGURE 3 (a) Steady state average utilization as a function of the number of PEs L
in a one-dimensional ring geometry; (b) The full distribution for the rescaled utilization
in the steady state u = (u(L) — (W(L)))/CTL, collapsed onto the normal distribution;
(c) Slope-slope correlation function.

in the next paragraph. Figure 3 confirms this scaling behavior. Further, calcu-
lating the variance in the average utilization in the steady state as a function of
system size, o\ — (w2(L,oo)) — (u(L, oc)}2, we obtain crL oc L"1/2. These find-
ings suggest that the utilization is a self-averaging macroscopic quantity: its full
distribution PL(U) for large L is a Gaussian (fig. 3(b)).

In the following we show numerical results supporting our claim that the
MPEU model belongs to the KPZ universality class. One of the fundamental
characteristic quantities strongly influenced by the long-wavelength modes is the
average width of the height fluctuations, as given in eq. (6). As the surface grows
due to deposition, after an initial transient the width will grow as a power law
(w2(L,t)) ~ t2j3 along with the lateral surface correlations £ \ \ ( L , t ) ~ t1/2, until
the correlations reach the system size (£|| = L) at a crossover time tx [29].
After the crossover time tx (for any finite system L) the surface fluctuations are
governed by a steady-state distribution and the width scales as

The exponent /? is called the growth exponent, a is the called roughness exponent,
and z is called the dynamic exponent in the surface growth literature [29]. It
is easy to show that the three exponents are not all independent, and in fact
a — z/3 [29]. Also, these scaling forms allow one to collapse all the different
curves for the width onto a single function in the scaling regime, expressing
the dynamic scaling property of the width: (w2(L,t)) = L2af(t/Lz) (f is easy
to read off, after comparing it to the scaling behavior). For the KPZ interface,
the exact values obtained analytically for the exponents are: /3 — 1/3, a —
1/2 and z == 3/2. Figure 4 shows the scaling properties for the width of the
MPEU model, measured numerically. For large system sizes (L — 105), the values
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obtained numerically for the exponents, (3 — 0.326 ± 0.005 and a = 0.49 ±
0.01, confirm the KPZ behavior including the dynamical scaling property (inset).
Another confirmation for the EW universality class in the steady state comes
from measuring the full width distribution P(w2). For systems belonging to the
EW universality class and having the same type of boundary conditions imposed,
the width distribution has a universal scaling form [162] P(w2} — T^T$ ( T^T )
with

for the case of periodic boundary conditions. Figure 4(b) is a confirmation that
the MPEU indeed belongs to the steady state of the EW class, implying that the
average utilization (density of local minima) approaches a non-zero, finite value
in the thermodynamic limit (5) as reflected by eq. (15). Therefore, the basic
conservative scheme is computationally scalable. For an in-depth and systematic
analytical calculation of the density of minima (utilization) for a number of
surface growth models (including the EW class) see Toroczkai et al. [501]. The
measurement phase of the basic conservative scheme, however, is not scalable, as
indicated by the power-law divergence of the width in the long-time large L limit
(eq. (16)). For higher-dimensional topologies, using universality arguments, the

FIGURE 4 (a) The width of the time horizon fluctuations shows dynamical scaling
and indicates KPZ universality; (b) The scaling function for the steady-state width
distribution follows the scaling function for the EW (one-dimensional KPZ) universality
class.
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conclusion remains the same: the basic conservative PDES is computationally
scalable, but the measurement phase may not be, depending on what is known
as the upper critical dimension [29] of the surface (see Korniss et al. [344, 345]).

3.2 THE CONSERVATIVE SCHEME ON SMALL WORLD NETWORKS

Prom the previous section it follows that the average width of the fluctuations
scales in the steady state as (w2(L,t = oo)) ~ L2a — L , and thus grows linearly
with the system size. This means that the basic conservative PDES scheme is not
measurement scalable. Standard methods to control the width of the virtual time
horizon in a PDES scheme employ windowing techniques [186]. That is, the local
simulated time at any PE cannot progress beyond an appropriately chosen and
regularly updated "cap," measured from the global minimum of the time horizon
[340]. Thus, a PDES scheme with a moving window relies on frequent global
synchronizations or communications, which, depending on the architecture, can
get costly for large number of PEs. Here we show how to modify the original
conservative scheme such that the scheme is also measurement scalable without
global "intervention" [346].

The divergence of the width of the surface fluctuations is closely related to
the fact that the lateral surface correlations also grow with the system size. In
particular, for the one-dimensional EW surface in the steady state, for large L
(and fixed 0

where TI are the coarse-grained height fluctuations measured from the mean and
£,,(L,oo) ~ L. Thus, (™2(L,oc)) - (r?) oc £| ((L,oo) ~ L. The "height-height"
correlations can be characterized by introducing the structure factor for the
heights:

where k — 27ra/L, a —- 0,1, 2 , . . . , L — I is the wave-vector, and fk = Y^ •=$ e ^
(TJ — r) is the discrete spatial Fourier transform of the fluctuations of the virtual
time horizon. Then

and

Since the universality class for the time horizon evolution is EW, it follows
that the expected behavior for the steady-state structure factor for small wave-
numbers is

(see, e.g., eq. (11) in Toroczkai et al. [501]). Indeed, this is also confirmed by

261



262 Scalability, Random Surfaces, and Synchronized Computing Networks

FIGURE 5 Steady-state structure factors for the virtual time horizon for the (a) basic
conservative scheme on a regular one-dimensional lattice (p = 0) and (b) small-world
scheme with p — 0.1.

our direct simulation results, shown in figure 5(a). This form of the structure
factor implies that there are no length scales other than the lattice constant and
the system size, and thus the correlation length and the width diverge in the
thermodynamic limit, as can also be seen by evaluating eq. (21) directly.

To de-correlate the surface fluctuations, we modify the communication topol-
ogy in the following way [346]: for every node i, at the onset of the simulation,
we introduce one extra quenched (fixed for a given network realization) random
communication link r(i). Together with the existing regular topology, these ex-
tra communication links will form a small-world graph [326, 415, 519]. Note that
in our specific construction of the small-world network, each node has exactly
one random connection and r(r(i)) = i, so that there are exactly L/2 random
links distributed. The updating on PE i will obey the following probabilistically
chosen condition:

The PE performs the update (generates the virtual time of the next update or
deposits the rod at i in the MPEU surface) only if condition (23) is fulfilled.
This means that for sites that would normally be updated within the basic
conservative scheme, that is, TI < min{r^_i,r^i}, the PE will make an extra
check for the condition TI < rr^ with probability p. The parameter p allows
us to tune the scalability properties of the corresponding PDES scheme on the
quenched small-world network continuously from the pure basic conservative
scheme (p = 0) to the "fully" small-world conservative scheme (p = 1). These
occasional extra checks through the quenched random links are not necessary

with Probility p
with Probility 1-p



Zoltan Toroczkai et al.

for the faithfulness of the simulation. Rather, they are used to synchronize the
PEs in such a way that the fluctuations of the time horizon remain bounded in
the limit of infinite system size. Most importantly, as the width is reduced from
"infinity" (or some large number proportional to L for a finite number of PEs) to
a finite, controlled value, the utilization still remains bounded away from zero.

To support this statement, we first use the same coarse-graining procedure
used to derive the KPZ equations, as the continuum counterpart of the MPEU
model. For the small- world topology we obtain

with 7(p) — 0 for p = 0, and 7(p) > 0 for 0 < p < 1. This implies that the
extra checking along the random links introduces a strong relaxation (first term
on the right-hand side of eq. (24)) for the long-wavelength modes of the surface
fluctuations, resulting in a finite width. A more transparent picture is gained if
we look at the steady-state structure factor (19). Restricting our attention to
the linear terms in eq. (24) we obtain

Both terms above yield short-range correlations (delta function for the first term
and exponential decay for the second one), thus the slopes remain short-range
correlated, resulting in a non-zero density of local minima. Figure 6 shows two
snapshots of the virtual time horizons for the basic conservative scheme p — 0,
and the small- world scheme with p = 0.1. Figure 7(a) shows the scaling of the
steady-state width with the system size for various p values and figure 7(b) shows
the scaling of the average, steady-state utilization with the system size for the
same set of p values. Notice that when increasing p (from p = 0 to p = 0.01),

In this approximation, the lateral correlation length £j| scales as l/>/7, and
remains finite (and independent of system size) in the thermodynamic limit for
all p > 0, that is, for an arbitrary small probability of using the random links.
Figure 5(b) shows the structure factor for the small-world network with p — 0.1,
confirming the prediction of eq. (25) for small wave numbers. Consequently, the
height-height correlations decay exponentially

and the width remains finite, (u>2(L, oo)) ~ £||, where £ j j is independent of the
system size for all p > 0. Further, for the structure factors of the local slopes
(the Fourier transform of the slope-slope correlations) one obtains
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FIGURE 6 Steady-state virtual time horizon snapshots with L = 10000 after t = 106

parallel algorithmic steps (Monte-Carlo sweeps) for the (a) basic conservative scheme
(p — 0) and (b) small-world scheme p — 0.1. Note that the vertical scales are the same
in (a) and (b) (plotted in arbitrary simulated time units).

the width instantaneously drops from a linear divergence to a saturated value,
while at the same time, the utilization hardly changes. In fact, an infinitesimally
small p will make the width bounded, and only at an infinitesimal expense to
the utilization. For example, for a hypothetical infinite system, taking p — 0.01,
the width is reduced from infinity to about 40, while the utilization only from
0.2464 to about 0.246; for p = 0.1, the width is further reduced to about 5, while
the utilization only to 0.242. By further increasing p, the width further reduces,
and at p = 1 it is about 1.46, whereas the utilization decreases to 0.141, still
clearly bounded away from zero in the t her mo dynamic limit.

4 SCALABILITY OF THE CONSERVATIVE PDES SCHEME ON
SCALE-FREE NETWORK TOPOLOGIES

The internet is a spontaneously grown collection of connected computers. The
number of webservers by February 2003 reached over 35 million [414]. The num-
ber of PCs in use (internet users) surpassed 660 million in 2002, and it is projected
to surpass one billion by 2007 [105]. The idea for using it as a giant supercom-
puter is rather natural: many computers are in an idle state, running at best
some kind of screen-saver software, and the "wasted" computational time is sim-
ply immense. Projects such as SETI@home [473] or the GRID consortium [198]
are aiming to harness the power lost to screen-savers.
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FIGURE 7 (a) The average steady-state width and (b) the utilization for various p
values. In addition to ensemble averages over 10 realizations of the random links (solid
symbols) a single realization is also shown (open symbols). The solid straight line has a
slope of 1/2 and represents the asymptotic one-dimensional KPZ power-law divergence
of the width for the basic conservative scheme (p — 0).

Most of the problems solved currently with distributed computation on the
internet are "embarrassingly parallel" [318], in that the computed tasks have
little or no connection to each other: for example, starting the same run with
a number of different random seeds, and at the end collecting data to perform
statistical averages. However, before more large-scale, complex problems can be
solved in real time on the internet, a number of challenges have to be solved,
such as the task allocation problem that is complex in itself [457].

Here we ask the following question. Assuming that task allocation is resolved
and the PE communication topology on the internet is a scale-free network, what
are the scalability properties of a PDES scheme on such networks? We present
numerical results, for the PDES update scheme, as measured on the Barabasi-
Albert (BA) model [28, 30] of scale-free networks. The network is created through
the stochastic process of preferential attachment: to the existing network of n
nodes at time t, the (n -\- l)th node with ra links ("stubs") attaches at time
t -f 1, such that each stub attaches to a node with probability proportional to
the existing degree (at t) of the node. We restrict ourselves here to the ra = 1
case, where the network is a scale-free tree. We have repeated the simulations
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FIGURE 8 Steady-state utilization for the scale-free BA model.

with different m values (up to m — 10) and found no significant deviations from
our conclusions below—numerical factors are different, but the generic behavior
is the same. Once we reach a given number of nodes in the network, we stop
the process and use the random network instance to run the MPEU model on
top of it, using the evolution (eq. (8)) for the time horizon. While in case of
regular topologies, the degree of a node is constant, such as, P^L ) ( fc ) = 2d6k,2d
for ^-dimensional "square" lattices, for the BA network it is a power law in the
asymptotic (n —» oo) limit: PBA(k) ~ 2m2k~3. The condition (1) for a site to
be updated, namely that its virtual time is a local minimum, is a local property.
Thus, we expect that the utilization itself will be correlated with local structural
properties of the graph, such as the degree distribution.

To get a more detailed picture, we define two more quantities. The first is
the connectivity utilization

which is the fraction of active nodes of degree fc, and the second is the relative
connectivity utilization
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FIGURE 9 Behavior of the time horizon width for the scale-free BA network. The
inset shows the scaling of the steady-state width as a function of the system size n.
Notice the log-linear scale in the inset.

which is the fraction of nodes that are active and have degree k among the
set of all nodes of degree k. Prom the definitions above, we find the following
relations: ^,kuk(n,t) = u(n,t) and ̂ 2krk(n,t)nk/n = ^k rk(n,i)PBA(k) =
52kuk(n,t) = u(n,t) = (rk(n,t))network at all times, where (••-)networks is an
average over network realizations. Figure 8 shows the steady-state (t —» oo, in the
MPEU model on a fixed BA network of n nodes) values of the average utilization
as a function of the network size n. The inset in figure 8 is analogous to figure 3(a)
which showed the same quantity on a ring. Notice that strictly speaking, the
PDES scheme is computationally non-scalable. However, an empirical fit suggests
that u*(ri) = (u(n,t = oo)) ~ [log (anb)]~l with a w 3.322 and b = 0.902, that
is, the computation is only logarithmically (or marginally) non-scalable. For a
system of n — 103 nodes we have found a steady-state utilization (for the worst
case scenario) of it*(103) = 0.1328 (13.3% efficiency), while for a system of
n = 106 nodes, the utilization drops only to u*(106) = 0.073 (7.3% efficiency),
by less than half of its value! For practical purposes the PDES scheme can be
considered computationally scalable, and we will call this type of non-scalability
logarithmic (or marginal) non-scalability.
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FIGURE 10 Connectivity utilization Uk and relative connectivity utilization (denned
in the text) rk as function of degree. Each data set is obtained after averaging over 200
independent runs.

Figure 9 shows the scaling of the width of the fluctuations for the time
horizon as a function of time, and the scaling of its value in the steady state
as a function of system size (inset). Notice that while the steady-state width
diverges to infinity, it does so only logarithmically, (w2(n,t = oo)) ~ [log (cnd)]
with c w 1.25 and d ~ 0.401. Some specific values are (w2(IQ3,t = oo)) w 3.01,
{io2(105,t = oo)) w 4.78. This means that the measurement phase of the PDES
scheme on a scale-free network is also non-scalable, but only logarithmically,
and so for practical purposes the scheme can be considered scalable. Overall, the
PDES update scheme has logarithmic (or marginal) non-scalability on scale-free
networks. If one examines the connectivity utilization and relative connectivity
utilization in the steady state, as shown in figure 10, one finds that to a good
approximation u^(n) ~ fc~3, and r£(n) = const. ~ u*(ri) for fc < kx and r£(n) ~
fc~3 for k > fcx, with kx ~ l/u*(n) = log (an6) ~ logn being the crossover
degree.

5 CONCLUSIONS

We have studied the fundamental scalability problem of conservative PDES
schemes where events are self-initiated and have identical distributions on each
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PE. First, we considered the scalability of the basic conservative scheme for sys-
tems with short-range interactions on regular lattices. By exploiting a mapping
between the progress of the simulation and kinetic roughening in non-equilibrium
surfaces, we found that while the average progress rate of the PEs (u(oo, oo)} is
a finite non-zero value, the spread of the progress of the PEs about the mean
(u>2(oo, oo)) diverges. This divergence makes the measurement phase of the al-
gorithm non-scalable. In order to make the measurement part of the simulation
scalable as well, we have introduced a small number of quenched random con-
nections between PEs so that the resulting random links on top of the regular
short-range connections form a small-world connection topology. Invoking the
same conservative protocol used at an arbitrarily small (but strictly positive)
rate through the random links is sufficient to achieve full scalability: the PEs
progress at a non-zero, near-uniform rate without requiring global synchroniza-
tion. This construction of a fully scalable algorithm for simulating large sys-
tems with asynchronous dynamics and short-range interactions is an example
of the enormous "computational power and synchronizability" [519] that can
be achieved by small-world couplings. The suppression of critical fluctuations of
the virtual time horizon is also closely related to the emergence of mean-field-
like phase transitions and phase ordering in non-frustrated interacting systems
[34, 197, 256, 257, 316]. In particular, the fluctuations exhibited by the virtual
time horizon with small-world synchronization should exhibit very similar char-
acteristics to the fluctuations of the order parameter in the XY spin model on a
small-world network [316].

Second, we have studied the scalability properties for a causally constrained
PDES scheme hosted by a network of computers where the network is scale-free
following a "preferential attachment" construction [28, 30]. Here the PEs simply
have to satisfy the general criterion eq. (1) in order to advance their local time.
Despite some nodes in the network having abnormally high degrees, as a result
of the scale-free nature of the degree distribution, we find that the computa-
tional phase of the algorithm is only marginally non-scalable. The utilization
exhibits slow logarithmic decay as a function of the number of PEs. At the same
time, the width of the time horizon diverges logarithmically slowly, rendering
the measurement phase of the simulations marginally non-scalable as well. An
intriguing question to pursue is how the logarithmic divergence of the surface
fluctuations observed here can be related to the collective behavior (in particu-
lar, the finite-size effects of the magnetic susceptibility) of Ising ferromagnets on
scale-free networks [15, 51, 127, 359] with the same degree distribution.
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CHAPTER 12

Combinatorics of Genotype-Phenotype
Maps: An RNA Case Study

Christian M. Reidys

 INTRODUCTION

The fundamental mechanisms of biological evolution have fascinated generations
of researchers and remain popular to this day. The formulation of such a theory
goes back to Darwin (1859), who in the The Origin of Species presented two
fundamental principles: genetic variability caused by mutation, and natural se-
lection. The first principle leads to diversity and the second one to the concept
of survival of the fittest, where fitness is an inherited characteristic property of
an individual and can basically be identified with its reproduction rate. Wright
[530, 531] first recognized the importance of genetic drift in evolution in im-
proving the evolutionary search capacity of the whole population. He viewed
genetic drift merely as a process that could improve evolutionary search. About
a decade later, Kimura proposed [317] that the majority of changes that are
observed in evolution at the molecular level are the results of random drift of
genotypes. The neutral theory of Kimura does not deny that selection plays a
role, but claims that no appreciable fraction of observable molecular change can
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be caused by selective forces: mutations are either a disadvantage or, at best,
neutral in present day organisms. Only negative selection plays a major role
in the neutral evolution, in that deleterious mutants die out due to their lower
fitness.

Over the last few decades, there has been a shift of emphasis in the study of
evolution. Instead of focusing on the differences in the selective value of mutants
and on population genetics, interest has moved to evolution through natural
selection as an abstract optimization problem. Given the tremendous opportu-
nities that computer science and the physical sciences now have for contributing
to the study of biological phenomena, it is fitting to study the evolutionary opti-
mization problem in the present volume. In this chapter, we adopt the following
framework: assuming that selection acts exclusively upon isolated phenotypes,
we introduce the following compositum of mappings

Genotypes —> Phenotypes —> Fitness . (1)

We will refer to the first map as to the genotype-phenotype map and call the
preimage of a given phenotype its neutral network. Clearly, the main ingredients
here are the phenotypes and genotypes and their respective organization. In
the following we will study various combinatorial properties of phenotypes and
genotypes for RNA folding maps.

In the context of the RNA toy-world pioneered by Peter Schuster et al. [160,
443, 462, 463, 464], the phenotypes are secondary structures that allow for
a mathematical modeling of their corresponding neutral networks as random
graphs. Many significant properties of these neutral networks, such as connec-
tivity, density, and path-connectivity are monotonic: they are maintained after
adding any number of edges. One may then ask whether the montonic property
in question displays a sharp threshold or phase transition—as, for instance, in the
classical random graph ensemble Gn^p where every monotonic property satisfies
a 0-1 law. The application of random graph theory to biology and particularly
computational biology is not new. Bollobas and Rasmussen have used directed
random graphs [63] to study the evolution of autocatalytic networks. Lynch has
analyzed phase transitions [371, 372] in Kauffmann's random Boolean networks
used for the modeling of gene regulatory networks. Finally, Frieze et al. have
studied optimal sequencing [181, 184] and the ordering of clone libraries [136]
using methods and theory of random graphs.

The mapping of RNA sequences to their secondary structures plays an im-
portant role in the understanding of evolutionary optimization, as the generic
properties of this mapping dictate to a large extent the dynamics of the opti-
mization process itself. Populations of sequences subject to selective pressures,
such as virus populations pressured by immune systems, constantly search for
new fitter structures and try to realize them. During this search, however, the
current "best" phenotype must necessarily be preserved while new mutants si-
multaneously emerge. In most cases the search process is essentially a "white
noise computation," such as point mutations in single stranded RNA, where
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there is no rational design according to which the mutations occur. Accordingly,
the generic structure of folding maps must allow for effective random search. In
the case of folding maps from RNA sequences to their secondary structures, we
will show that the key feature for enabling effective search by point mutations is
a specific type of redundancy. The sequences folding into one specific secondary
structure form networks with giant components. As a consequence, some frac-
tion of random point mutations will have virtually no effect on the phenotype;
that is, the RNA folds into the same secondary structure and, complimentarily,
some fraction of point mutants will fold into new structures. Additionally, we will
show that the combinatorics of secondary structures itself guarantees that any
two structures can have neutral nets that are close in sequence space. Kimura's
neutral theory fits smoothly into the genotype-phenotype map framework, since
it reflects the relation between genotypes and phenotypes. Our main goal consists
of providing insight into folding maps exhibiting the type of redundancy above
and how generic such maps are, as well as investigating additional properties of
these maps that are of key relevance to evolutionary optimization.

In the following section we introduce some basic facts about RNA sequences
and RNA secondary structures. In section 3 we introduce the notion of compat-
ible sequences with respect to a secondary structure and prove that for any two
secondary structures there exists some RNA sequence that is compatible with
both of them. This result guarantees the closeness of the corresponding neutral
nets. In section 4 we address the actual modeling of preimages. Our approach
consists of employing a certain random graph model for the preimages of a sec-
ondary structure. As we are interested in the question of how generic certain
properties of these preimages are, a random graph model and its 0-1 laws are
of particular relevance. We will state and discuss a suite of generic connectivity
and path-connectivity results.

2 DEFINITIONS

2.1 RNA

In the following we will consider single-stranded RNA molecules. In viruses and
cells RNA acts as a messenger (mRNA), carrying the genetic information from
the DNA to the translation apparatus. As transfer RNA (tRNA), it plays the role
of an adapter for the synthesis of proteins. Finally, as ribosomal RNA (rRNA),
it is an integral part of the ribosome and exhibits catalytic activities in natu-
ral polypeptide synthesis [84, 85, 526]. RNA is thus able to serve two purposes:
(i) storage of genetic information based on a one-dimensional template that
can be read and copied on request, and (ii) catalytic properties as ribozymes
that require three-dimensional structures in order to gain efficiency and speci-
ficity in processing specific substrates. As demonstrated by Spiegelman, in vitro
evolution experiments can be applied to selection of RNA molecules that are
capable of fast replication [399]. Indeed, replication rates are optimized in serial
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transfer experiments [144, 284, 452]. In case one wants to optimize properties
other than replication, intervention is required making use of special techniques
that interfere with natural selection. A well-known example is represented by
the SELEX method—standing for systematic evolution of ligands by exponen-
tial enrichment—which allows the creation of molecules with optimal binding
constants [507]. The SELEX procedure is a protocol that isolates high-affinity
nucleic acid ligands for a target, such as a protein, from a pool of variant se-
quences. Multiple rounds of replication and selection exponentially enrich the
population of species that exhibits the highest affinity, that is, that fulfills the
required task. This procedure thus permits simultaneous screening of highly di-
verse pools of nucleic acid molecules for different functionalities (for a review,
see Ellington [143] and Klug and Famulok [331]). Results from those experiments
clearly demonstrate the essential property of RNA molecules: genotype, meaning
the RNA sequence, and phenotype, associated with the structure, are combined
in one molecule.

Here we will consider RNA sequences of constant length, represented by
n-tuples, (x\,... ,xn), with Xi £ A, A being a finite alphabet formed by the
nucleotides. The basic mutational mechanism is made up of random point mu-
tations that occur with independent probability. This motivates calling two se-
quences adjacent if they differ by exactly one nucleotide. The sequence space
with this adjacency relation is referred to as Q™ (the generalized n-cube), where
a — \A\. In Q™ each sequence has (a — l)n neighbors and the maximal (Ham-
ming) distance between two sequences is n.

2.2 SECONDARY STRUCTURES

A secondary structure is a graph whose vertices are the nucleotides of its un-
derlying sequence, and whose edges are base pairs formed among them. For
biophysical reasons, one nucleotide can only establish exactly one Watson-Crick
bond with another nucleotide. As we will see below, the fact that the edges of a
secondary structure are Watson-Crick base pairs implies a number of additional
graph properties. Following Waterman [518] we will consider RNA secondary
structures over n vertices {1,..., n}, which we denote by sn.

A secondary structure is a vertex-labeled graph with an adjacency matrix
A(sn) = (ai,k)i<i,k<n such that

• aiji+i = 1 for 1 < i < n — 1;
• for each i there is at most a single k ̂  i — 1, i -f 1 such that a^jt = 1; and
• if dij = dk,i — 1 and i < k < j then i < I < j.

We call an edge {i,k}, \i — k\ ^ 1 a base pair. A vertex i connected only to i — I
and i + 1 is called unpaired.

The enumeration of secondary structures has been studied in detail in a series
of excellent papers by Waterman et al. [263, 456]. A particular result from asymp-
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totic combinatorics on secondary structures—with certain restrictions, such as
minimum helix length—is that their number asymptotically becomes O(an) with
a < 2 [241]. This result immediately implies that there are structures having
preimages of exponential size. The RNA model allows, moreover, several generic
choices for the fitness assignment, for example using the thermodynamic stability
and the degradation constant of the corresponding secondary structure.

3 SECONDARY STRUCTURES AND COMPATIBLE
SEQUENCES

In this section we introduce the notion of compatible sequences with respect to a
secondary structure. While Waterman et al. have extensively studied the combi-
natorics of secondary structures, their compatible sequences play a central role in
the understanding of the mapping between RNA sequences and their structures.
Theorem 3.1 below is central for evolutionary optimization as it guarantees the
existence of at least one sequence that is compatible with any two given sec-
ondary structures. This fundamental property of secondary structures has been
used, for example, in the Science publication "One Sequence Two Ribozymes,"
[461] in which the authors construct a sequence that can assume either of two
ribozyme folds and catalyze the two respective reactions.

Let us now introduce compatible sequences. We call a sequence (xi) com-
patible with respect to a secondary structure, sn, if and only if for all a^k with
a^k — 1 and k ^ i — l,i -f 1, the nucleotides Xi and Xk can in principle form a
Watson-Crick base pair.

In terms of combinatorics, the uniqueness property of the Watson-Crick base
pairs of an RNA secondary structure corresponds to an involution (an operator of
period 2), viewing the base pairs as transpositions within the symmetric group Sn

[442, 443]. Now, any two involutions form a dihedral group that, in our situation,
acts upon the nucleotides regularly and whose orbits are either even-length cycles
or lines, as illustrated in figure 1.

Theorem 3.1 (Reidys et al. [443]). Let s^,s^ be two secondary structures with
the sets of compatible sequences C(s*), C(s^). Then

Accordingly, for any two secondary structures there exists at least one se-
quence that could, in principle, realize both. We will call such a sequence bi-
compatible with respect to the pair of structures. From this we can conclude that
their corresponding neutral networks come relatively close in sequence space.

At this point we may speculate that populations performing evolutionary
search by point mutations are capable of switching between any two networks.
This speculation turns out to be not entirely correct but has, however, led to some
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FIGURE 1 The key idea in theorem 3.1: any two involutions yield either non-closed
paths or loops of even length. The two secondary structures SA and SB are decomposed
into their paired and unpaired regions (see also fig. 2) yielding two graphs of identical
order, A and B. Finally, the edge sets of these graphs are joined, resulting in the graph
shown at the bottom. One will always find a sequence that is compatible with this
graph. We may then conclude—for instance, by taking a segment composed of pairs
of complementary nucleotides—that for any two secondary structures there exists at
least one sequence compatible with both structures.

understanding of the transition phenomenon [165, 465, 520]. In fact, the group
action above suggests the definition of a distance measure between secondary
structures [442] from which the probability of a transition can be computed.
Structural similarity thus plays an important role in the transition phenomenon.

4 NEUTRAL NETWORKS

4.1 MODELLING NEUTRAL NETWORKS VIA RANDOM GRAPHS

In the following we will model the preimage of a given structure as a random
graph. The main motivation is that folding maps will always vary as a function
of their underlying biophysical parameters. Hence "generic properties" of classes
of maps are of particular interest. We will restrict ourselves to RNA secondary



Christian M. Reidys

structures as phenotypes but, in principle, an analogous construction can be
obtained for random structures, a more general class of phenotypes. The random
graph model is constructed in the following two steps:

1. Creating two new cubes. One first determines the set of sequences C(sn) that
are compatible with the given structure sn. Each compatible sequence is
decomposed into an unpaired and a paired segment, consisting of all un-
paired and paired nucleotides respectively, as shown in figure 2. While the
unpaired segment (of length nu) is simply again a sequence of a sequence
space of reduced dimensionality, the paired segment (of length np) is in-
terpreted as a sequence over the alphabet of base pairs. For example, a
paired segment in the case of the biophysical { A, [7, G, C}-alphabet would
have {(A -U),(U -A), (G-C),(C- G),(G -U),(U -G)} as its new alpha-
bet, that is, an alphabet of size 6. Accordingly, the set C[sn] of compatible
sequences can be written as

2. Randomization. We now proceed by selecting the unpaired and paired seg-
ments with independent probabilities Xu and Xp. Accordingly, each compat-
ible sequence is selected with probability A = \u Xp. Interestingly, it is not
difficult to determine \u and Xp for RNA folding maps by introducing the
corresponding mutations systematically and then folding the mutants.

From the biophysical point of view, there is a significant difference between
Xu and Xp: in the case of a {G, C}-alphabet a point mutant is produced with
probability p and a base pair mutation occurs with probability p2. From the
combinatorial perspective, however, up to an isomorphism there is none. The
selection processes of the unpaired and paired segments both take place in gen
eralized n-cubes, and accordingly, we may formulate our results only for general-
ized n-cubes. It is worth pointing out that the random graph model above does
not aim a priori to construct particular neutral networks, but to identify generic
properties of the probability space formed by all neutral networks. In this sense,
the present model follows an approach that is very natural in statistical physics.

In the following, we will denote a probability measure by \in where n refers to
some index of the corresponding probability space fin (here: a random graph).
A random variable is a mapping X : fi —> Z. Let Pn be some property or
event in £7n. We then write that Pn holds asymptotically almost surely (a.a.s.) if
limn_>oo//n{Pn} = 1.

The random graph model. Let Q™ be a generalized n-cube over an alphabet of
length a. Let Tn be a subgraph of Q£ and //n{rn} = Alrn|(l - An)a n~ l r r i 1 . Then
we call Q™ A the random induced subgraph model.
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FIGURE 2 Decomposing a compatible sequence into the unpaired and paired seg-
ments. Note that the resulting alphabet over which the paired segment is considered
is, in general, different from the alphabet of the unpaired nucleotides. In the case of
Watson-Crick base pairing rules we obtain for the biophysical {A, U, G, C}-alphabet of
size 4 the alphabet {(A - U), (U - A), (G-C},(C- G), (G - U), (U - G)} of size 6.

4.2 GIANT COMPONENTS AND CONNECTIVITY

In the following, we will analyze generic properties of Q«,An ' an °f which deal
with connectivity. The idea will be to let the picking probability, A, gradually
increase. Let us start our investigations with the probability A = O(logn/n).

It is beyond the scope of this chapter to present full proofs of our results.
Instead we will discuss and outline the proofs, and present the main ideas. For
details, the reader is referred to the papers by Reidys and Stadler [441] and
Reidys [440]. The proof of theorem 4.1 in [441] is inspired by the paper of Ajtai,
Komlos, and Szemeredi [11] but differs significantly in the estimation of the
respective vertex boundaries. While Ajtai et al. rely on Harper's isoperimetric
inequality [225] for estimating the edge boundary, a completely new method ha
to be employed in order to estimate the vertex boundary. The proof of theorem
4.2 in Reidys and Stadler [441] is completely different from the proof of the
classical result for Q^p? which localizes the connectivity threshold at p — 1/2.
Our proof is entirely constructive and additionally allows for the development of
algorithms connecting two sequences on a neutral network above the threshold.
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Theorem 4.1. Let C^ be the largest component of a Q™-subgraph Tn. Then
there exists a constant c > 0 such that for 

 a.a.s.

The existence of this giant component is proven indirectly in two steps.

1. One shows that a.a.s. any vertex of a random graph is contained in a compo-
nent of at least size nh , for some natural number h. That is, given a picking
probability An = O(logn/n), the random graph is composed almost entirely
of connected components of polynomial size, where the degree of the polyno-
mial is arbitrarily high. The idea to prove this involves estimating the vertex-
boundary of subsets of n-cube vertices and computing the mean of all such
components. Step 1 can be proven exclusively using the fact that n-cubes are
Cayley graphs over Z^, Za being the cyclic group of order a.

2. From step 1 we know that the random graph is composed almost exclusively
of connected components of at least polynomial size, and potentially many of
these. Clearly, if there exist at least two such components, then there must
be a bipartition of the set of all components such that no edge connects the
two parts. We show that the probability of such a bipartition existing, formed
by two sets of vertices of the same order, tends to 0. Thus, the size of the
second-largest component can be at most subpolynomial in n.

It is important to note that our argument proves the existence of a giant
component indirectly. The proof of theorem 4.1 gives no clue as to how to con-
struct a path between two vertices, and, moreover, as to how long such a path
might be. The explicit construction of (short) paths between vertices of neutral
networks would, therefore, be of particular interest and would lead to a deeper
understanding of how likely such a path would be realized in an evolutionary
search. We address this question by studying paths and distances in generalized
n-cubes in theorem 4.3 below.

Let us next analyze connectivity of generalized n-cubes. We now assume a
constant probability A > 0.

Theorem 4.2. In the random graph Q™ A the probability A* = 1 — a~\/a~l is the
threshold value for connectivity. That is, a.a.s. no random graph is connected for
A < A* and a.a.s. every random graph is connected for A > A*.

Let P, Q be arbitrary vertices of the random graph. As will be seen for
theorem 4.3, we can reduce the case to P, Q having finite Hamming distance.
For A > A*, one then shows that any vertex has an arbitrary finite number of
neighbors in the random graph. Using these neighboring vertices one proceeds
analogously to the proof of theorem 4.3 below. To prove that A* is a threshold
value, we show that there exist isolated vertices when A < A*. This can be prove
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by considering the random variable counting the isolated vertices, Y. It is clear
that Y has mean ^ — A an (I — X)(a~l">n and for finite \JL one can show that Y
becomes Poisson-distributed in the limit of large n. From this we can conclude
that a.a.s. for A < A* and arbitrary natural number (, there are at least i isolated
vertices in the random graph.

4.3 DISTANCES

As we have seen, theorem 4.1 does not provide insight into the path structure of
the giant component. Theorem 4.2 on the other hand is proven constructively,
but only works for constant A. In this section we present a framework that
allows us to bound the length of shortest paths between two Q™ vertices for the
probability An > n~a with 0 < a < 1/2.

In the following, we write F instead of Fn. Intuitively, our result guarantees
the a.a.s. existence of very short paths between any two F-vertices. Technically
this fact is a little delicate to express in probabilistic language, since it is im-
possible to have terms like a.a.s. as a predicate of a property in a probability
space. Our strategy will be to use conditional probabilities in the statement of
the result. The main question is how the distance dr(P, Q) between two vertices
P, Q in a random graph F relates to the distance dgn (P, Q) between P, Q in Q™,
which is known to be very small. Let us denote the least integer greater or equal
to c by |"c~|.

Theorem 4.3. Let 0 < a < 1/2, k = [j^l and pn = n~a. Then for any two
vertices P, Q G Q™ we have dr(P,Q) < [2/c H-3]dQn(P, Q) a.a.s. conditional on
P, Q G F, and for any constant p > 0 we have dr(P, Q) < 7c?Qn(P, Q)} = 1.

Essentially, theorem 4.3 means that for probabilities larger than 1/y/n and
in the limit of large sequence length, the distance between almost all pairs of
vertices is, up to a constant factor, equal to their distance in the n-cube itself. One
consequence of this result is that the distances between sequences on a neutral
network are surprisingly small. The diffusion process, performed by the error-
prone relication of haploid RNA sequences in the course of their evolutionary
optimization, enables visiting every region of the neutral network.

The main idea for the proof of theorem 4.3 is as follows: from two different
Q™-vertices (sequences) one tries to branch simultaneously, that is, by performing
successively identical point-mutations on the sequences in positions where P and
Q do not differ, into some kth sphere centered at P and Q, respectively. The trick
with respect to the simulaneous mutations consists of being able to guarantee
that the resulting pairs of sequences have the same distance as P and Q. We
then have to show that there are sufficiently "many" of these pairs in the kth
sphere and that the collection of their associated paths connecting them is vertex
disjoint. This is illustrated in figure 3.
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FIGURE 3 The branching process with initial vertex P in an (n — m)-cube can be
considered by lifting as a simultaneous branching process in an n-cube initialized at the
two vertices PI, PI. By concatenation, any point U of the branching process yields two
points C/i, t/2 in the n-cube. The key feature of this construction is that any two points
reached by the simultaneous branching have constant distance ra, and for increasingly
high Hamming distances, more and more such pairs are constructed.

4.4 AN ALGORITHM

Let sn be a secondary structure. The proof of theorem 4.3 motivates the algo-
rithm PATH, which tries to determine short paths on the neutral network of sn.
The algorithm works in C[sn] ^ Q£u(Sn) x Q^P(SII). The input of PATH consists of
(i) a secondary structure, sn, and (ii) two Q™-vertices ̂  Q tnat maP into sn- Its
output is the length of a C[sn]-path connecting P and Q on the neutral network
of sn if the algorithm finds one of length < 11 dc[Snj(P, Q), and "— " otherwise.
PATH can be sketched as follows:

1. Write P,<2 in the form (cf. eq. (3))

where & < &+i, / G N n u_i , ^ < rj'^ i £ Nnp and ̂  < r?j+i, j e Nn p_i
2. Construct a C[sn]-path, 7r(P, Q) = (P, Vi, . . . , Vg, Q), from P to Q successively

replacing £f by ̂  and then (77^, 77^ ) by (77^, 77^ ) according to the ordering
given in step 1

3. For 1 < i < t, try to find a vertex Gi G 63 (Vi) which maps to sn and store
the family (P,d, . . . ,G€, Q)

4. Try to connect the pairs of vertices (P, GI), (Gt,Q) and (Gi,Gi+i), 1 <
z < £ — 1. This is done using (a) the branching process shown in figure 3
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TABLE 1 Results of the PATH algorithm.

(i) des((7?6,46) dC(a*K](<r76,<T%) PATH
1
2
3
4
5
6
7
8
9
10

34
39
37
74
37
34
39
35
34
39

28
28
25
28
34
27
24
21
18
29

131
98
62
73
121
144
43
35
94
43

with concentric sphere fc < 3, and (b) families of independent paths that are
employed in the proof of theorem 4.3.

We finally present some results of PATH [171]. As the underlying map from
sequence to structure, we use the bio-physical folding algorithm RNAfold [242].
As the input secondary structure we select the tRNA

where "(" and ")" represent paired bases and "." represents an unpaired base.
We take the natural RNA-sequence <7y6:

GCGGAUUUAGCUCAGttGGGAGAGCtCCAGACUGAAt
KUCUGGAG\UCCUGUG\\CGAUCCACAGAAUUCGCACCA,

where "|" denotes a special base that is kept fixed. Using the algorithm RNAin-
verse [242] we determine a set of sequences, crf6', i = 1 , . . . , 10 of the neutral
network of s76. We then use s^g, cr?6 and <77g as input for PATH. Preliminary
data indicate that the success rate of PATH for n = 76 is approximately 50%.
We present some data in table 1.

5 CONCLUSION

We have investigated folding maps from RNA sequences to their secondary struc-
tures. We have first shown that the combinatorics of the structures themselves
allows for sequences that are compatible with two given structures. This inter-
section result for the corresponding sets of compatible sequences indicates that
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secondary structures as phenotypes can be searched effectively by point muta-
tions. We have then modeled the preimage (neutral network) of a secondary
structure via random subgraphs of (generalized) n-cubes, proving that there ex-
ists a 0-1 law for connectivity and establishing probabilities above which giant
components in these neutral networks exist.

Random graph theory not only provides insight into the structure of neutral
nets of RNA secondary structures but also contributes on a conceptual level to
the understanding of evolutionary optimization. We have studied short paths
in neutral networks, which are of key importance for the dynamics of the opti-
mization process. We have shown that the shortest path between two sequences
on a neutral network is longer only by a constant factor than the shortest path
between these sequences in the n-cube itself. Finally, we have presented an al-
gorithm that computes the length of these paths in the neutral network of the
tRNA structure.

In this context, it is of interest to note that Griiner et al. have performed
[217, 218] an exhaustive folding of GC sequences of lengths 30, according to
a minimum free energy folding algorithm, into their corresponding secondary
structures. This study allows the comparison of the probabilistic results on the
structure of neutral networks with those of biophysical folding maps. One par-
ticular finding is that the existence of certain structural motifs (at this sequence
length) can cause a multi-partition of the corresponding neutral network into dis-
tinct components, since the preservation of these motifs induces a certain bias in
the sequences of the corresponding neutral network. As the probabilistic model
is based on a uniform picking probability, the findings above were anticipated.
However, at this point it is not obvious whether or not this phenomenon will
persist for significantly longer sequences, as the dimensionality of the n-cube
increases.
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CHAPTER 13

Towards a Predictive Computational
Complexity Theory for Periodically Specified
Problems: A Survey

Harry B. Hunt III
Madhav V. Marathe
Daniel J. Rosenkrantz
Richard E. Stearns

The preceding chapters in this volume have documented the substantial recent
progress towards understanding the complexity of randomly specified combina-
torial problems. This improved understanding has been obtained by combining
concepts and ideas from theoretical computer science and discrete mathemat-
ics with those developed in statistical mechanics. Techniques such as the cavity
method and the replica method, primarily developed by the statistical mechanics
community to understand physical phenomena, have yielded important insights
into the intrinsic difficulty of solving combinatorial problems when instances
are chosen randomly. These insights have ultimately led to the development of
efficient algorithms for some of the problems.

A potential weakness of these results is their reliance on random instances.
Although the typical probability distributions used on the set of instances make
the mathematical results tractable, such instances do not, in general, capture the
realistic instances that arise in practice. This is because practical applications of
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graph theory and combinatorial optimization in CAD systems, mechanical engi-
neering, VLSI design, transportation networks, and software engineering involve
processing large but regular objects constructed in a systematic manner from
smaller and more manageable components. Consequently, the resulting graphs
or logical formulas have a regular structure, and are defined systematically in
terms of smaller graphs or formulas. It is not unusual for computer scientists and
physicists interested in worst-case complexity to study problem instances with
regular structure, such as lattice-like or tree-like instances. Motivated by this,
we discuss periodic specifications as a method for specifying regular instances.
Extensions of the basic formalism that give rise to locally random but globally
structured instances are also discussed. These instances provide one method of
producing random instances that might capture the structured aspect of practical
instances. The specifications also yield methods for constructing hard instances
of satisfiability and various graph theoretic problems, important for testing the
computational efficiency of algorithms that solve such problems.

Periodic specifications are a mechanism for succinctly specifying combinato-
rial objects with highly regular repetitive substructure. In the past, researchers
have also used the term dynamic to refer to such objects specified using pe-
riodic specifications (see, for example, Orlin [419], Cohen and Megiddo [103],
Kosaraju and Sullivan [347], and Hoppe and Tardos [260]). However, since "dy-
namic" has also been used by researchers to mean other things, we have elected
to use periodic specifications in the rest of the chapter to avoid ambiguity.
The kinds of objects considered here include graphs, logical formulas, and sys-
tems of equations/constraints. These specifications arise naturally in engineer-
ing and VLSI designs, as well as in scheduling and routing models for air-
line industry. They have been studied for over 40 years, since the work of
Ford and Fulkerson on dynamic network flows [163, 164] and extensively there-
after [103, 104, 245, 260, 274, 276, 347, 379, 380, 419, 420, 421]. In this chapter,
we survey a number of results on the complexity and efficient approximability
of problems, for periodically specified objects. We also propose several new ex-
tensions of the basic formalism that may be of interest to researchers studying
phase transition phenomena for combinatorial problems.

Generally speaking, periodic specifications are extensions of the standard
specifications used to represent combinatorial objects. An example of a standard
specification for satisfiability problems on Boolean formulas is the conjunctive
normal form, where the formula is represented as a set of clauses, with each
clause being a set of literals. For problems in graph theory, a standard specifi-
cation of the graph is the adjacency list representation or the adjacency matrix
representation of the edges in the graph. Periodic specifications can represent
succinctly—and in a space-efficient way—certain kinds of objects with highly
regular structure. For example, consider a graph Gn consisting of a simple path
with n vertices. At best, the standard specification represents Gn by each of its
vertices and edges separately, and is thus of size Q(n). In contrast, Gn can be
specified succinctly by a one-dimensional periodic finite graph specification with
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O(logn) symbols, by replicating a single edge (u,v) n times, and specifying that
for I < i < (n — 1), the zth copy of v is connected to the (i + l)th copy of u.
Thus, the periodic specification of Gn results in exponential savings in space as
compared to the standard specification of Gn. The simple example shows that,
for all n > 1, periodic specifications of size 0(n) can represent certain objects
of size 2^n\ any of whose standard specifications are also of size 2^n\ Typi-
cally, the complexity of solving a problem is measured in terms of the size of
the specifications of the problem's instances. This suggests that complexity of
problems can be different depending on whether the instances are specified peri-
odically, or are specified standardly. That is indeed true. For example, assuming
NP^PSPACE, the 3-coloring problem for graphs, is NP-complete when graphs
are specified by standard specifications such as adjacency matrices or adjacency
lists [191]. On the other hand, it is PSPACE-complete when graphs are specified
by the one-dimensional infinite periodic specifications of Orlin [419]. In contrast,
however, the 2-coloring problem for graphs is solvable in polynomial time, even
when instances are specified by one-dimensional infinite periodic specifications.
Such results lead us to investigate the complexity and efficient approximability of
solving graph theoretic, combinatorial, and algebraic problems, when instances
are periodically specified.

In this chapter, for demonstration purposes, we focus mainly on periodi-
cally specified constraint satisfaction problems. Previously, constraint satisfac-
tion problems with instances specified using standard specifications have been
used to model a number of problems in such areas as automated reasoning,
computer-aided design [219], computer-aided manufacturing [220], machine vi-
sion [220], database, robotics, integrated circuit design [219, 220], computer ar-
chitecture, and computer network design. See Gu et al. [220] for a recent survey.
In addition, constraint satisfaction problems have served as a rich collection of
base problems, for proving NP-hardness, #P-hardness, APX-hardness, and a
number of similar properties for numerous combinatorial problems (see Garey
and Johnson [191], Schaefer [455], and Papadimitriou [423]). Here we outline how,
analogously, periodically specified constraint satisfaction problems are useful in
modeling problems arising in practical applications and serve as base problems
for proving both easiness and hardness results for periodically specified com-
binatorial, logical, and algebraic problems. The results outlined here enable the
development of a predictive complexity theory for periodically specified problems
(section 7).

There are two main reasons why a discussion of periodically specified prob-
lems is of interest in the context of the relationship between computational com-
plexity and statistical physics. First, periodically specified problems are an alge-
braic generalization of tiling problems (see section 8) and thus provide a natural
parametric class of lattice-like structured problem instances. Lattice-like struc-
tured problems have been a topic of active research by physicists and computer
scientists in the context of designing "hard" instances for heuristics solving satis-
fiability and graph problems [6]. Second, as we discuss in section 9, it is possible
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to define random periodically specified graphs and formulas. Such instances are
locally random but globally structured, and provide parametrized classes of ran-
dom finite and infinite satisfiability and graph problems. Random graph and
satisfiability problems and questions related to their phase transitions have been
an active topic of recent research, as seen throughout this volume. Random pe-
riodically specified satisfiability and graph problems are introduced here in the
hope that their study will provide interesting insights into the phase transitions
associated with combinatorial problems.

The rest of the chapter is organized as follows. Section 2 consists of examples
illustrating how periodic specifications can naturally model a number of realistic
problems. Section 3 outlines the basic definitions of periodically specified graphs
and formulas, as well as simple variants of the main formalism. Section 4 consists
of several broader extensions of the basic formalism of periodic specifications and
the objects they specify. We also illustrate several situations where these exten-
sions are likely to occur. Section 5 contains a brief description of the techniques
developed for obtaining both easiness and hardness results for periodically spec-
ified problems. We also argue how these techniques form the basis for developing
a predictive complexity theory for periodically specified problems: informally, we
illustrate that many reductions between standardly specified problem instances
can be translated mechanically into efficient reductions for the corresponding
periodically specified problems. Section 7 outlines the complexity theoretic im-
plications of the general results for periodically specified problems. Section 8
argues that periodically specified constraint satisfaction problems can be used
as alternatives to tiling problems for proving bounds on complexity. Finally,
section 9 presents concluding remarks and directions for future work.

2 MOTIVATION

Formally, a one-dimensional finite periodic graph specification T(G(V,E),M)
consists of (1) a finite directed labeled graph G(V,E] called the static graph of
the specification, each of whose edges is labeled by a non-negative integer, to-
gether with (2) a non-negative integer M. The finite directed graph GM(VM, EM)
specified by r(G(V,jE),M) is defined as follows. VM consists of M 4-1 distinct
copies of each vertex v € V, denoted VQ, ... ,VM, respectively. EM consists of
M — I + 1 distinct copies of each edge (u, v) £ E labeled with / < M, namely
(ur, vr+i) for all 0 < r < M — 1. M is called the range or the span of the speci-
fication. A k-dimensional periodic graph specification is defined analogously for
k > 2, except now all edges are labeled by k-tuples of non-negative integers, M
is a fc-tuple of non-negative integers. Examples of a one- and a two-dimensional
periodic graph specification and the graphs they specify are given in figures 1 and
2. These concepts can be extended to define 1-, 2- and /c-dimensional periodic
graph specifications that are infinite in some of their k-dimensions. They can
also be extended quite naturally to define one-, two- and fc-dimensional period-
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ically specified formulas and systems of equations/constraints. See section 3 for
formal definitions.

Periodically specified graphs and logical formulas occur naturally when mod-
eling practical problems in VLSI design, transportation science, and program
optimization. We discuss four examples that illustrate the range of applications.
Many others can be found [104, 244, 260, 302, 358, 377, 379, 380, 419, 420, 421,
423, 437].

• Routing. The tramp steamer problem is discussed by Orlin [420]. Consider a
steamer that visits n distinct ports. Traveling from port u to port v takes
tuv days and earns a profit of puv dollars, and both the transit time and
the profit are independent of the starting time for the trip. The objective is to
determine an infinite-horizon tour that maximizes the average daily profit. The
static graph has n nodes, one for each port, and for each pair u, v of distinct
nodes there is an arc with transit time tuv and unit cost — puv. The upper
and lower bounds on arc flows are 1 and 0, respectively, and the throughput
is restricted to 1, representing the steamer. Formulating the problem with
this static network, Dantzig, Blattner, and Rao [115] observed that each basic
solution to the tramp steamer problem is a flow around a circuit, which is a
simple directed cycle. Each circuit induces an infinite-horizon tour. Ports are
traveled in the order that they appear on the circuit and the average daily
cost is the ratio of the cost of traveling the circuit to the transit time. Thus,
an optimal circuit has the minimum cost-to-time ratio and induces an optimal
tour.

• Network scheduling and dynamic network flows. Applications of dynamic net-
work flow problems arise when one wishes to model transit time on edges. The
following example is from Hoppe and Tardos [260]. We are given a directed
graph G(V, E) with sources, sinks, non-negative edge capacities cuv and transit
times tuv for each edge (u, v) G E. Time is assumed discrete here. In a feasible
dynamic flow, at most cuv units of flow can enter edge (w, v) at each integer
time step. The flow leaving u along edge (u, v) at time 6 reaches the other
endpoint v at time 0 -f tuv. For example, an edge with capacity 2 and transit
time 3 can accept 2 units of flow at any given time step, for a total of up to
6 units of flow on the edge at any time. The quickest transshipment problem
is defined by a dynamic network with a set of sources and sinks; each source
has a specified supply of flow and each sink has a specified demand, with the
standard assumption that total supply equals total demand. The problem is to
find a way to schedule the flow so that each source and sink sends and receives
the specified amount of flow in a minimum amount of time.

The problem of finding a feasible and quickest dynamic flow in dynamic net-
works reduces to finding "usual static flow" in time-expanded graphs, following
the periodic specification above. Formally, for a given time horizon T, we con-
struct a time expanded network G(T) = (V(T), E(T)) as follows: Each vertex
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v G V has T + 1 copies in V(T), denoted by v(i), 0 < i < T. Each edge
(u, v) £ E has T — £uv + 1 copies in E(T), each with capacity cuv and denoted
by (u(9), v(0 + tuv)) with the provision that such edges exist if both end points
are within the time horizon bounds, that is, 0 < 0 < T — tuv. In addition, we
add holdover edges (u(0), v(0+1)) with infinite capacity, representing flow that
remains at a given node over a time step. An infinite-horizon dynamic flow
is a static flow in the infinite time-expanded dynamic network. Note that the
time-expanded dynamic network is essentially a periodically specified graph
with additional holdover edges, and the infinite version corresponds similarly
to an infinite periodically specified graph. The single-source and single-sink
version of the problem was originally defined by Ford and Fulkerson [164]; the
work of Hoppe and Tardos extends it to the multi-source and multi-sink case.
Note that as specified, since the numbers are given in binary, we have infinite
graphs in which the end points of an edge can be exponentially far apart in
time. Recently, Fleischer [161] gave a faster algorithm for the quickest trans-
shipment problem when the transit times are zero. Periodic specifications that
allow us to specify such "long edges" are called wide specifications.

The quickest transshipment problem and its variants have a number of applica-
tions. One such application is to find the quickest way to evacuate a building in
emergencies. Another application arises in network scheduling problems where
there is a transit cost for moving jobs from one processor to another: the goal
is to minimize the make-span of the schedule. See Hoppe and Tardos [260] for
a detailed discussion of these applications. A related problem that can be cast
in much the same terms is to find the quickest path in a temporal network]
that is, the fastest way to reach a destination from a source when travel times
on edges change over time.
Phase space properties of discrete dynamical systems. One-dimensional cellu-
lar automata consist of a sets of vertices placed on a one-dimensional grid.
Each vertex has an associated Boolean function that depends on the Boolean
values associated with adjacent vertices. The system evolves synchronously:
at each time step, the automata corresponding to nodes synchronously up-
date their state using the Boolean transition function that takes as input the
values stored at the vertex and at its neighbors. A two-dimensional periodic
specification can easily be seen to represent the dynamic changes in the con-
figuration of finite one-dimensional cellular automata over time, where the
second dimension represents time [528]. Using this representation, the con-
figuration reachability problem for a finite one-dimensional cellular automata
is simply the circuit value problem for periodically specified circuits. Thus,
periodic specifications provide a succinct method for representing the phase
spaces of cellular automata and finite discrete dynamical systems.
Parallel programming. The following problem was introduced in Iwano and
Steiglitz [276]; more efficient algorithms were given by Kosaraju and Sullivan
[347], and by Cohen and Megiddo [104]. An essentially similar problem was



Harry B. Hunt III et al. 291

first considered by Karp, Miller, and Winograd [302]. The problem arises in
the implementation of regular iterative algorithms on systolic arrays. We are
given n functions F\,F2, . . . , Fn, on the fc-dimensional integer lattice defined
recursively as follows:

Here, the wuv's are integer vectors. In order for the functions to be well-
defined it is necessary and sufficient that no cycle have a total vector weight
that is non-negative. This fundamental problem also arises while implementing
simulations on parallel computers. A closely related problem arises in the
context of the design of memory-efficient simulations of iterative programs
consisting of for loops [243, 244, 358]. We can model the problem as follows.
We have a static graph consisting of n vertices, one corresponding to each
function. Each directed edge (u, v) has an integer weight wuv on it, denoting
the dependency of Fu(z) on Fv(z — wuv). The expanded graph is constructed
by placing a copy of each vertex in the static graph at the lattice point in Nfc.
The vertex corresponding to Fu at lattice point z is connected by a directed
edge to the vertex corresponding to Fv at lattice point (z — wuv). The problem
is to find if the expanded infinite graph has a directed cycle. Note that we seek
to find a cycle in the expanded graph as opposed to the static graph. Cohen
and Megiddo give a strongly polynomial algorithm for detecting cycles in such
expanded infinite graphs. Note also that wuv is given in binary: this makes the
problem substantially harder, since as in the dynamic network flow problem,
the vertices of a cycle can now span time periods that are exponentially apart.

3 PRELIMINARY DEFINITIONS

Basic definitions are used in algebra, graph theory, computational complexity,
dynamical systems, and approximation algorithms [23, 54, 373, 423, 447, 525,
528]. We have already defined one-dimensional finite periodic graph specifications
and the finite graphs they specify. Here we discuss related concepts that yield
variant periodic specifications.

3.1 PERIODICALLY SPECIFIED GRAPHS

Definition 1 . Let the static graph G(V, E) be a finite undirected graph such that
each edge (u, v) has an associated non-negative integer weight tuv. The two-way
infinite graph GZ(VZ, £?z) is defined as follows. Vz and Ez are multiple copies
of the vertex and edge set:
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FIGURE 1 (a) The static graph with one-dimensional integer vectors associated with
each edge, (b) Part of the one-way infinite graph it represents.

FIGURE 2 (a) The static graph with two-dimensional integer vectors associated with
each edge, (b) The graph G*2'1 specified by T(G, 10,01).

2. Ez — {(u(i),v(i + tuv)) | (u,v) € E , tuv is the weight associated with the
edge (u, v) and i E Z}

A one-dimensional two-way infinite periodic specification, or (Z) W-specification,
is given by T(G(V,E)) and specifies the graph GZ(FZ,£Z).

F is said to be a narrow specification, or (Z)N-specification, if\
tuv £ {0,1}. This implies that 

Note that if we replace Z by N in definition 1, we obtain one-way infinite
periodic specifications and the graphs they define. It may be useful to imagine
a narrow periodically specified graph Gz as being obtained by placing a copy of
the vertex set V at each lattice point on the x-axis (or the timeline), and joining
vertices placed on neighboring lattice (time) points in the manner specified by
the edges in E.
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Definition 2. Let G(V,E) denote a static graph. Let GZ(VZ,EZ) denote the two-
way infinite (Z)N- specified graph as in definition 1. Let M > 0 be an integer spec-
ified using binary numerals. Let GM(VM ,EM] be the subgraph of GZ(FZ, £z)
induced by the vertices VM — {v(i)\v G V and 0 < i < M}. A one- dimensional
finite periodic specification, or (B)N- specification, is given by T(G(V, E], M) and
specifies the graph GM.

It is important to observe that M is specified using binary notation. If we
use unary notation, then we denote such specifications as (U)N-specifications.
The size of the (B)N-specification T(G(V,E),M) is given by size(F) = \V\ +
\E\ 4- bits(M), where bits(M) is the number of bits in the numeral M (Note
that in the rest of the chapter we use M to denote both integer and binary
representation; its intended meaning will be clear from context.) An example of
a periodic specification and the associated graph appears in figure 1.

It is easy to extend the definition above to define two-dimensional periodic
specifications and associated graphs. As before we have a static graph, but now
for each edge (u,v) we have a two-dimensional label ( l , b ) . The two-dimensional
four-way infinite periodically specified graph Q^^fy1^^^ ]?%>&} js defined as fol-
lows: Vz'z = {v(i,j) | v G V and i, j G Z}, and EZ'Z = {(u(i,j),v(i + /, j +
b) \(u,v) G E(i,j) and i,j G Z}. For narrow periodic specifications this is called
the (Z,Z)N-specification. For a non-negative integer vector (M, TV), the two-
dimensional finite periodically specified graph QM,N (yM,N ^ E M ^ N ) is the sub-
graph of GZ'Z(VZ'Z,£Z'Z) induced by the vertices FM'N = { v ( i , j ) \ v G V
and 0 < i < M, 0 < j < N}. As mentioned previously, the method of rep-
resentation used to specify M and TV yields various kinds of specifications:
when they are binary numerals, this results in the (B,B)N-specification. An
example of such a periodic specification and its associated graph appears in
figure 2. It is easy to extend the definitions above to obtain <7N'Z(FN'Z,£N'Z),
Gz,N (yz,N?£Z,N)? and GN,N ( yN,N? ^N.N) as well Similarly, one can define vari-
ants where one of the dimensions is finite while the other dimension is infinite.
For example QM^(yM^^ EM'Z), is a graph in which the x-dimension has a span
represented by M while the graph is infinite in both directions along the 7/-axis.

Periodically specified logical formulas can be defined in a similar manner.
An example of periodically specified Boolean formulas is as follows.

Example 1 . Let U = {z(t),z(t + l),y(*),^(t + l ) ,z( t ) ,2( t + l)} 6e a set of static
variables. Let C be a set of static clauses given by [x(t) V y(i] V z(t)} A \x(t +
1) V z(t)] A [z(t 4- 1) V 2/(t)]. Let F = (f/,C,3) 6e a (B)N-specification. Then F
specifies the 3-CNF formula F3([/3, C3) gzven by



294 Towards a Predictive Computational Complexity Theory

It is easy to see that the basic formalism is quite rich: one can define many
different combinatorial objects, including graphs, logical formulas, systems of
equations, and inequalities.

3.2 TYPES OF PERIODIC SPECIFICATIONS

Different kinds of periodic specifications can be obtained either by changing
the basic definition of the specifications or the algorithm used to construct the
expanded object. We discuss this briefly.

• Dimension. The number of dimensions in which the expansion is carried out
can be varied, e.g., 1-, 2-, or /c-dimensions.

• Finite vs. infinite object. For finite objects, we can specify the bounds either
in unary (U) or binary (B) notation for specifying the range M and N. For
infinite objects we have two options: one-way infinite objects, represented by
natural numbers N, or two-way infinite objects, represented by integers Z.
Note that one dimension can be finite while another is infinite. If an object is
infinite, it can be infinite in any of its dimensions.

• Narrow vs. wide specification. Most generally, in the case of narrow specifica-
tions, the weights on the edges of the static graph (or the difference between
the indices of the static variables) are specified in unary. For wide specifica-
tions, they are specified in binary. We denote narrow specifications with the
letter N, and wide specifications with the letter W. When we have more than
one dimension, edges for certain dimensions may be specified in unary and
for others in binary. In the case of narrow specifications, intuitively, vertices
having an edge are not too far apart (in terms of the distance in index space).
For wide specifications, two vertices that are exponentially far apart can have
an edge between them.

• Boundary conditions. We can allow initial or final boundary conditions —
explicit assignments to the variables at the beginning or at the end. In case we
have more than 1-dimension, we could allow boundary conditions for a sub-
set of the dimensions. We use the suffix (BC) to denote a specification with
boundary conditions. As described here, the concept only applies to Boolean
formulas: an extension to graphs is possible, but more problem-dependent.

In the interest of simplifying notation, we specify the dimension and the
finite vs. infinite nature implicitly. Note that in the computational complexity
literature, these are often specified explicitly with a prefix such as 1-, 2-, to
indicate dimension followed by an F or I to indicate finite or infinite. A letter
P often appears as well to indicate that the specification is periodic. Thus, for
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example, the (Z,Z)N-specification is more fully written out as 2-I(Z,Z)PN, and
the (B)N-specification as 1-F(B)PN.

Technically, some of the variants discussed above refer to specifications while
others refer to the algorithms used to construct the expanded object. In other
words, we are talking about both the specification (syntax) and the specified
object (semantics). This distinction is important, although for the most part,
it can be understood from the context. We omit the formal definitions of these
extensions.

Let II be a problem whose instances are specified using one of the stan-
dard specifications in the literature. For example, instances of CNF satisfiability
problems are specified by CNF formulas and by sets of clauses, each clause being
a set of literals. Let a be one of the periodic specifications. Then we use a-H
to denote the problem H when instances are specified using periodic specifica-
tion a. For example, one-dimensional finite narrow periodic 3-SAT (denoted by
(B)N-3-SAT, or more fully as l-F(B)PN-S-SAT) is the problem of determin-
ing if a one-dimensional finite narrow periodically specified 3-CNF formula is
satisfiable.

4 EXTENSION OF THE BASIC FORMALISM

The extensions outlined in section 3.2 are straightforward. We now discuss four
other extensions that are somewhat less straightforward. The first extension con-
cerns periodically specified constraint satisfaction problems, the second describes
a different algorithm for constructing the expanded graph, the third concerns
how to define satisfiable formulas, and the fourth describes how to define quan-
tified formulas using periodic specifications. Note that these extensions change
one or more of the basic elements used to define periodic specifications and the
associated graphs, formulas or system of equations.

4.1 PERIODICALLY SPECIFIED CONSTRAINT SATISFACTION
PROBLEMS

Let D be an arbitrary nonempty set (not necessarily finite); C a finite set of
constant symbols denoting elements of D; and 5 an arbitrary finite set of finite-
arity relations on D. An S-clause is a relation in S applied to variables on
elements in D. An S-formula is a finite nonempty conjunction of S-clauses. We
denote the problem of determining the satisfiability of finite conjunctions of S-
clauses by SAT(S). The corresponding problems including (B)N-SAT(S) and
(B,B)N-SAT(5) are defined analogously. We give a simple example to illustrate
the one-dimensional case.

Example 2. LetD = {0,1}, i.e., we have a Boolean domain. Let S = {XOR(a,/3),
XNOR(a,7)}7 be the set of relations onD, where XNOR(a,/3) = NOTXOR(a,/3).
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Let V = {w,x,y, z} be the set of variables and the S-clauses be given by P =
XOR(x,y),XOR(w,y) andXNOR(y,z). LetF(V,P) be an instance of the SAT (S)
problem given by

Then F is TRUE with x — 0,y = 1, z — Q,w = 1. Now let U = {w,x,y,z} be a
set of static variables and H — ([/, C, 2) an instance of (B)N-SAT(S) lyztt the
set S above, where C is given as

T/ien H2(U2,C2) is the expanded SAT(S) formula given by

4.2 RULES FOR CONSTRUCTING EXPANDED GRAPHS

Our original definition of time expanded graphs used certain specific semantics
for interpreting the meaning of edge weights. There are other ways to construct
expanded networks. We illustrate this via an example in epidemiology.

The contact graph is constructed as follows. Let V be a set representing a
population; consider a complete graph G on V. Each edge e E E of G consist
of a list of time intervals Lf,L| , . . . . Each L\ — [af ,&f] , where a^ and bi are
integers and we assume that a\ > fcf.j. The semantics of the lists are simple:
they give the time ranges when the two people were in contact. These graphs can
model certain time-varying phenomena. Let us first consider a simple version of
this [305].

Definition 3. A temporal network is an undirected graph G(V,E) in which each
edge has a time label A(e) representing the time when the two end nodes of the
edge come in contact (or communicate). In general, each edge can have multiple
labels capturing the fact that the nodes can come in contact more than once. A
path P in G is time respecting if the labels on the edges of the path are non-
decreasing.

A time-expanded temporal network is constructed as follows. Assume for the
present purposes that we have only one label per edge, with Am;n(e) being the
minimum value and Amax(e) the maximum value. A copy of the vertices in G
are placed at each discrete time step t between Am^n(e) and Amax. A copy of the
node v(t) is joined to v(t -h 1) by a directed edge. An edge (u, v) in G with label
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A is replaced by directed edges between the copies of the vertices at time A, that
is, between (v(X),w(X)) and (w(X),v(X)). Finding a critical path from v(t) to
w(t -f x) is merely rinding a path in this time-expanded network between these
two nodes. This representation can also be extended easily to the case in which
edges have multiple labels. A more interesting situation arises when a person is
infected by a communicable disease at time t and then becomes non-contagious
at some other time t + x. This can also be represented quite easily using the
formalism discussed above.

Note the difference between how an edge is added to time-expanded temporal
networks and to expanded periodic graphs. The representation above is used
commonly for routing in networks with time-dependent edge delay functions.
The basic idea is quite general: it allows us to define rules for specifying how
to add edges in the temporal networks on the basis of the static network. Also
note that the procedure for constructing time-expanded temporal networks can
be combined with the procedure for constructing expanded periodic networks.

4.3 SEMANTICS OF SATISFACTION

Recall that a periodically specified CNF formula was said to be satisfiable if and
only if all the clauses in the expanded formula can be made TRUE. In other words,
FM(UM, CM) is said to be satisfiable iff Mi, 0 < i < M, C(i) is satisfiable. This
suggests a generalization allowing us to write a quantified formula consisting of
i and basic integer inequalities. For instance, we could say that FM(UM,CM} is
satisfiable iff

is satisfiable.

Such an extension lets us, in a natural way, relate periodic satisfiability problems
to satisfiability problems for temporal logics [19, 476] and, in general, to reasoning
about any temporal phenomenon, such as questions in epidemic modeling and
ad hoc wireless networks.

4.4 PERIODICALLY SPECIFIED QUANTIFIED FORMULAS

As a final extension, let us consider periodic Boolean formulas where not all
the variables necessarily are existentially quantified. Quantified formulas have
been well studied in the literature. We consider periodically specified quantified
formulas. We have a static formula as before, but now each variable template
used in the static clause is either existentially or universally quantified. The
semantics we use in our expanded formula are that all copies of the variable
have the same associated quantifier. For example, let F be a static formula given
by

Then the expanded formula FH(t/N,C'N) is given by:
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5 TECHNIQUES: HARDNESS AND EASINESS RESULTS

We now discuss how to combine four concepts: (i) local transformations (possibly
augmented with fixed size enforcers), (ii) relational representability, (iii) simul-
taneous reductions based on local transformation, and (iv) lifting of simultane-
ous reductions based on local transformation to characterize relative complex-
ities, or efficient approximability of various periodically specified problems. In
conjunction with certain translation results (algorithms to transform periodic
specifications of logical formulas into other succinct specifications of the same
logical formula, up to a renaming), discussed in Hunt et al. [266] and Marathe et
al. [378, 377], we also get as a corollary unified complexity results for problems
specified using other succinct specifications. We discuss each of these techniques
in some detail below. The ideas form a first step towards building a predictive
complexity theory of periodically specified problems. We explain this further
in subsequent sections. The theory is similar in spirit to very general results
presented by Balcazar, Lozano, and Toran [26] on the complexity of problems
when they are encoded using circuits. However, the circuit model is a complex-
ity theoretic model. The approach does not naturally model real-life problems,
and the corresponding results do not hold for problems specified using periodic
specifications. See Marathe et al. [378, 379, 380] for additional discussion on this
topic.

5.1 LOCAL TRANSFORMATIONS

Reductions by local transformation have been used extensively in the literature
(see Garey and Johnson [191]). The first step in formalizing this concept is to
separate the concept of replacement from that of reduction. Transformation using
local replacement constructs target instances from source instances by replacing
each object (clause/variable in a formula) by a collection of objects (conjunction
of clauses) in the target instance. A schematic diagram of this is shown in figure 3.

For the purposes of this chapter, it suffices to observe that the local trans-
formations from a problem SAT(S) to a problem SAT(T) used here are of the
following two kinds:

1. Simple-local (SL) transformations. Let F = C\ A . . . A Cn where the d are
S-clauses. Then, the T-formula F' = U(F) equals C{ A . . . A C'n, such that
the following holds:
(a) Each C( is a fixed conjunction of T-clauses depending only upon the

relation d.
(b) The variables of C( are the variables of d plus new variables local to the

clauses of C(.
2. Simple-local-enforcer (SLE) transformations. Let F be defined as in 1 imme-

diately above. Then, the T-formula F1 = U(F) equals CQ AC( A . . . A C'n, such
that the following holds:
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FIGURE 3 A schematic diagram illustrating the concept of local transformation.

(a) CQ is a fixed T-formula, called the enforcer, the variables of which are
called the enforcer variables.

(b) The clauses C( satisfy la and Ib, except that their variables can include
enforcer variables.

For a simple demonstration of a local transformation, we first define the fol-
lowing problems. 1IN3-SAT is the problem of determining whether a 3-CNF for-
mula has a satisfying assignment where exactly one literal in each clause is satis-
fied. 1EX3-SAT is the same problem but on a CNF formula in which each clause
contains exactly 3 literals. We now give an example of an SL-transformation of
3-SAT to 1EX3-SAT.

Example 3. Consider a transformation of an instance F of 3-SAT to an instance
F' 0/1EX3-SAT. Each clause Cj — (zpV zqV zr) of F is transformed into a set
of clauses C'j of F' given by: C'j = E.0(zp,u

j,vj) AEO(z^,^',^)A E0(vj,wj,tj) A
EO(z r,v

J, x-7). E0(x,y,z) is a logical relation that takes the value of TRUE when
exactly one of x, y, z is TRUE, and takes the value of FALSE otherwise. Here
u^, yi, vji, V and x-7 are new variables local to Cj. It is easy to see that this is an
SL-transformation. The transformation is shown in figure 4-

Note that the definitions of SL- and SLE- transformations are fully syntactic
in nature, since they do not require such transformations to be reductions. Essen-
tially all the reductions discussed here are by SL- or SLE-transformations. Local
replacements have a number of desirable properties. First, it is straightforward
to show the following:
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FIGURE 4 Figure showing how to replace a single clause in an instance of 3-SAT by
a set of clauses to obtain an instance of 1IN3-SAT.

Proposition 5.1. SL- and SLE-trans formations are ultra-efficient, in the sense
that they are reductions on multiple tape deterministic Turing machines that are
simultaneously O(n\ogri) time-, linear size-, and O(logn) intermediate space-
bounded.

Second, they simultaneously preserve a number of both semantic and struc-
tural properties of instances. By structure of instances we mean the graph-
theoretic structure as well as the structure of its specification. Third, they are
extremely efficient in terms of the resources used, and preserve power and poly-
nomial indices [487, 488].

5.2 RELATIONAL REPRESENTABILITY

For local replacement based transformations to be useful as reductions, we need
the notion of relational representability. Let 5 and T be sets of relations/algebraic
constraints on a common domain D. Relational representability formalizes the
intuitive concept that the relations in 5 are expressible (or, extending the termi-
nology from Schaefer [455], representable) by finite conjunctions of the relations
in T. This is formalized in Definition 4 below:

Definition 4.

1. We denote by Rep(S) the set of all finite-arity relations on a non-empty set
D logically equivalent to finite existentially quantified conjunctions of rela-
tions/algebraic constraints in S applied to variables.

2. We say that a set of relations S is representable by a set of relations/algebraic
constraints T if and only if S C Rep(T).
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Example4. LetS = (XOR(a,/3)} andT = (XNOR(a,/3)}. Clearly, XOR(x,y) =
XNOR(x, z)AXNOR(y, z) Thus each S-clause can be represented by a conjunction
of T-clauses. The same holds for S-formulas. For example,

Variants of the concepts of definition 4 on the relative represent ability of
ordered-pairs (5, T) of sets of relations, henceforth denoted collectively by re-
lational represent ability, are well known, especially in mathematical logic. Pre-
viously in complexity theory, relational representability as used here and the
individual constraint satisfaction problems studied have usually been restricted
to finite sets 5 of finite-arity relations on finite sets D, generally the set {0, 1}.
In contrast, the results discussed here apply to both finite and infinite domains
and sets of relations/constraints.

Transformations that preserve a semantic property of interest are called re-
ductions. To show this usually requires one to use some form of relational repre-
sentability. For example, reductions that preserve decision complexity are simply
called "reductions" in the literature. Reductions that preserve the number of so-
lutions are known as parsimonious reductions. Several approximation-preserving
reductions have been studied in the literature, including L-reductions that pre-
serve polynomial time approximation schemes and A-reductions that preserve
the approximation ratio. Given the concepts above, it is intuitively clear how to
go about constructing reductions based on local transformations. The concept
of relational representability must be modified when we wish to construct lo-
cal transformations that also preserve other semantic properties. For example,
number-preserving relational representability is a special form of relational repre-
sentability that also preserves the number of solutions. The variants of relational
representability used to construct A-reductions and L-reductions are a bit more
subtle and do not necessarily have to be a decision-preserving transformation.
Approximation-preserving versions of relational representability are also called
implementations in Creignou [111] and Creignou et al. [113]. We will have more
to say about this in the next section.

5.3 SIMULTANEOUS REDUCTIONS BASED ON LOCAL
TRANSFORMATIONS

In general, it is easy to see that a local transformation preserving one type
of semantic property does not necessarily preserve another type of semantic
property. In fact, under standard complexity theoretic assumptions, designing
a (local) transformation that simultaneously preserves more than one semantic
property is not always possible. For example, consider the two widely stud-
ied problems 3-SAT and 2-SAT. The problem 3-SAT is NP-hard and 2-SAT
is polynomial time solvable [191]. On the other hand, both MAX-3-SAT and



302 Towards a Predictive Computational Complexity Theory

MAX-2-SAT are APX-hard, that is, unless P = NP they cannot have a poly-
nomial time approximation scheme. Therefore, a natural question to ask in this
context is: when can we design single transformations that are simultaneously
decision-preserving, number-preserving, and approximation-preserving? We have
found that for a large class of algebraic problems, it is indeed possible to devise
such transformations: we call them simultaneous reductions [113, 267, 268, 310].
Moreover, most of these are based on local transformations. For example, a
(parsimonious + A -f L)-reduction is a reduction that is simultaneously a parsi-
monious reduction, an A-reduction and an L-reduction. Simultaneous reductions
have the advantage that they simultaneously preserve a variety of semantics and
the structure of instances. By structure of instances we usually mean the variable-
clause interaction graph structure and the structure of the specification used to
specify the problem. The existence for a wide class of natural algebraic problems
of simultaneous reductions based on local transformations is a bit surprising.

For example, we can show that there is a local transformation from the
problem 3-SAT to the problem 1IN3-SAT that is simultaneously a (decision 4-
parsimonious -f A + L)-reduction. Consequently, using the known results on the
complexity of 3-SAT and its variants, we simultaneously obtain the follow-
ing: 1IN3-SAT is NP-hard, #-HN3-SAT is #P-complete, MAX-1IN3-SAT
is APX-complete and MAX-DONES-1IN3-SAT is MAX-I^-complete (MAX-
DONES-1IN3-SAT is the problem of finding a satisfying 1IN3-SAT assignment
maximizing the total number of variables set to TRUE). These constitute results
on the complexity of 1IN3-SAT for standardly specified instances. As discussed
in the next section, the transformation can be translated to obtain the rela-
tive hardness of the periodically specified 1IN3-SAT problem and its variants,
showing notably that one-dimensional finite narrow periodic 1IN3-SAT ((B)N-
1IN3-SAT) is PSPACE-hard.

Simultaneous reductions based on local transformations induce natural equiv-
alence classes of combinatorial problems. Obtaining general techniques showing
when two problems are in the same equivalence class is an interesting direction
for future research.

5.4 PUTTING IT ALL TOGETHER: LIFTING OF SIMULTANEOUS
REDUCTIONS BASED ON LOCAL TRANSFORMATIONS

How does one prove complexity bounds for periodically specified problems? Our
approach consists of two natural steps and builds on the concept of simultaneous
reductions based on local replacement, as laid out in preceding sections.

First, by direct reductions from Turing machines, we characterize the com-
plexity of a number of basic CNF satisfiability problems when specified peri-
odically. The proof technique used is fairly generic; results characterizing the
complexity of these satisfiability problems when the underlying periodic spec-
ifications change can thus be obtained directly. For example, we prove that
two-dimensional finite narrow periodic 3-SAT with explicit boundary condi-
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tions for both dimensions ((B,B)N(BC)-3-SAT) is NEXPTIME-complete. This
proof together with a few simple observations shows that one-dimensional fi-
nite narrow periodic 3-SAT ((B)N-3-SAT) is PSPACE-complete, and that two-
dimensional narrow periodic 3-SAT with one dimension finite and specified in
binary and the other dimension two-way infinite in one direction ((B,Z)N-3-
SAT) is EXPSPACE-complete. A summary of our results for 3-SAT as well as
for the two problems 3-HornSAT and CLIQUE appears later in table 2.

Second, we show that efficient reductions involving local replacement (pos-
sibly augmented with fixed-size enforcers) [191] including the problems 3-SAT,
1IN3-SAT, NAE3-SAT, to a problem II can be extended to obtain efficient
reductions from the problems a-3-SAT, a-HN3-SAT, a-NAE3-SAT, to the
problem a-IL These problems include most of the basic problems in Karp [299],
Garey and Johnson [191], as well as several basic P-complete problems [283].
An important property of our reductions is that they preserve the underlying
specifications. We note that the same reduction works when the specification a
is changed, thus avoiding the need for devising a new reduction for each result.

The idea, in fact, applies to simultaneous reductions based on local replace-
ment. In other words, given a simultaneous reduction K from HX to n2 that
is based on local transformations, there is an efficient algorithm that takes as
input 7£ and an instance of the problems a-IIi and a-n2 (recall that a denotes
a periodic specification), and constructs a transformation K'a such that K'a is
an efficient reduction between a-IIi and a-E^. We call this lifting the reduction:
transforming the static formulas into another static graph so as to obtain the
needed correspondence between the expanded formulas. Lifting can be thought
of as a compiler. It takes a known local transformation between two standardly
specified problems and constructs a new transformation between their periodic
counterparts in such a way that the semantics of transformation are preserved.
Our idea, then, is to lift the known reduction from 3-SAT to problem II when
the instance is specified using standard specifications, and thus obtain a suitable
reduction from a-3-SAT to the problem a-H. In algebraic terms, the process
can be seen in the form of the following commutative diagram:

Transformation #

Expand Expand

Transformation a;,

An example of this general technique of lifting is given below.

E(FE(F

Fi F,
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Theorem 5.1. Let S and T be finite sets of finite-arity relations on a (possibly
infinite) nonempty set D. Let a be one of the following periodic specifications:
(B)N, (Z)N, (B,B)N, (B)W, . . .} Then, ifScRep(T), the problem SAT (S)
is reducible by a local replacement 72, to the problem SAT(T). Moreover, the
transformation 72 can be extended to transformations 724 °f the problems a-
SAT(S) to a-SAT(T) such that the following hold:

1. Both transformations 72 and 72^ are O(nlogn) time-, O(logn) space-, and
O(ri) size-bounded.

2. Both transformations 72 and 72^ are decidable in parallel logarithmic time
using only O(n) processors.

3. Both transformations 72 and 724 preserve bandwidth, treewidth, and pathwidth
of instances.

4- If the transformation 72, is a parsimonious reduction, then so is the transfor-
mation 72^.

5. If the transformation 72 is an A- or L- reduction, then so is the transformation
K'a.

6. If the transformation 72, is a metric reduction, then so is the transformation
n'a.

7. If the transformation 72 preserves strong planarity, then so does the transfor-
mation 72^.

As one example of theorem 5.1, we can show the following very general result.
The theorem shows that as long as SAT(5), is NP-complete when instances
are specified using standard specifications, it becomes hard for the appropriate
complexity class when instances are specified using periodic specifications.

Theorem 5.2. Let D be a finite nonempty set. Let S be a finite set of finite-
arity relations on D such that Rep(S) = Boolean Relations. Then, the problems
(B)N-SAT(S), (Z)N-SAT(S), (B,B)N-SAT(S), (B)W-SAT(S) and(N,N)N-
SAT(S) are, respectively, PS PACE-complete, P SPACE-complete, NEXPTIME-
complete, EXPSPACE-complete and undecidable.

As an aside, in many cases it is possible to extend the theorem above to
obtain dichotomy theorems for SAT(5) and related problems of equational sat-
isfiability over a given algebraic structure when specified by variant periodic
specifications [376, 377]. The discovery of such dichotomy theorems, for stan-
dardly specified formulas, has received significant recent attention in the litera-
ture [113, 310, 455].

Finally, we note that using the complexity theoretic results for periodic con-
straint satisfaction problems, we can characterize the complexity of a number of
combinatorial problems when specified using periodic specifications.
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6 TECHNIQUES: EASINESS RESULTS

Next, we discuss various methods by which easiness results can be obtained
for periodically specified problems. We first consider methods by which exact
polynomial time algorithms can be obtained for such problems. We then discuss
how this idea can be extended to obtain approximation algorithms for "hard"
problems.

6.1 POLYNOMIAL TIME ALGORITHMS

Almost all the polynomial time algorithms for periodically specified problems
use the idea of periodic certificates. The basic idea is that if the given problem
has a solution, then it has a periodic solution with a small period. Once this is
established, the problem reduces to finding a solution on a polynomially sized
instance that is a function of the periodicity of the solution. We explain the idea
in the case of a specific kind of satisfiability problem.

A logical relation R is said to be weakly negative if R(x i ,x 2 , . . . ) is logically
equivalent to some CNF formula having at most one unnegated variable in each
conjunct. A weakly negative formula F is one in which each conjunct is weakly
negative. The problem of deciding if a weakly negative formula is satisfiable is
called Horn satisfiability or HornS AT: this problem has been discussed in chapter
9. The problem 3-HornSAT is the restriction of HornSAT to clauses containing
no more than three literals. The problem (Z)N-HornSAT is the problem of
deciding whether a one-dimensional two-way infinite periodically specified weakly
negative formula is satisfiable. Here is a simple algorithm for solving the problem.

The algorithm works on the static formula F representing Fz and is based
on the following two observations. The first observation is that if there is a clause
with only one literal, all copies of the corresponding variable must have the same
value. For instance, if there is a clause consisting of the single literal xi(t -f 1),
then all copies of variable Xi have to be set to FALSE. The second observation
is that after simplifying the set of clauses as much as possible on the basis of
the first observation, every remaining clause has either no literals or more than
one literal. Weak negativity implies that each clause with more than one literal
contains at least one negative literal, so setting all remaining variables to FALSE
will satisfy all such clauses. Since each simplification of the set of clauses based
on the first observation assigns a value to a variable in the static formula that has
not previously been assigned a value, the algorithm will terminate in polynomial
time. When the algorithm terminates, either we are left with no clauses (in
which case the formula is satisfiable by the discussion above) or we obtain a
contradiction.

Note that if the expanded formula Fz for the given instance F of (Z)N-
HornSAT is satisfiable, then there exists a satisfying assignment assigning the
same value to all copies of a given variable in the static formula.
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Other researchers [103, 104, 243, 244, 260, 275, 276, 302, 338, 420, 421] have
given efficient algorithms for solving problems such a,s determining strongly con-
nected components, testing for existence of cycles, finding minimum cost paths
between a pair of vertices, bipartiteness, planarity, quickest transshipment, and
minimum cost spanning forests for periodically specified graphs. One particular
problem that has received a lot of attention is that of detecting cycles in periodic
graphs [104, 276, 302, 347]. Currently, the best known algorithm for this problem
is by Cohen and Megiddo [104] and works even in the case of wide specifications.
In Marathe et al. [377, 378], we gave polynomial time algorithms for various sat-
isfiability problems when instances are specified using variant one-dimensional
narrow periodic specifications. Interestingly, most of the results above are for
one-dimensional periodically specified graphs. Hofting and Wanke [243, 244]
and Wanke [516] have considered (finite/infinite) periodically specified (toroidal)
graphs when the dimension in which the graph is replicated is given as part of
the instance. In general, their results show that very simple problems become
computationally intractable. On the other hand, certain problems are still solv-
able in polynomial time. As an example [243], polynomial time algorithms are
obtained for solving path problems when the static graph is strongly connected
or has a constant number of strongly connected components. The results rely
crucially on the polynomial time solvability of solving linear Diophantine equa-
tions (integer linear equations with integral solutions). Finding polynomial time
algorithms for two-dimensional narrow and one-dimensional wide periodically
specified problems is an interesting direction for future research.

We finally discuss the notion of real-time certificates proposed by Orlin [419].
Here, instead of finding the solution for the complete expanded instance, we seek
to find the solution for the first i periods in time that is polynomial in i and
the instance representation. Unfortunately, as shown in Orlin [419], this does
not make the problem any easier: all the problems for which he shows PSPACE-
hardriess results continue to be PSPACE-hard even when we wish to find a
real-time solution.

6.2 APPROXIMATION ALGORITHMS

As we have seen, problems tend to become harder when specified succinctly us-
ing periodic specifications. Given the hardness results for solving the problems
exactly when periodically specified, we investigate the existence of polynomial
time approximation algorithms for these problems. We present a uniform ap-
proach for developing efficient approximation algorithms, as well as schemes for
a number of optimization problems when specified using one- or two-dimensional
finite, narrow, periodically specified problems. For the rest of the section, let a
be one of the periodic specifications:

• (B)N: one-dimensional finite narrow periodic specifications,
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• (B)N(BC): one-dimensional finite narrow periodic specifications with explicit
boundary conditions,

• (B,B)N: two-dimensional finite narrow periodic specifications, and
• (B,B)N(BC): two-dimensional finite narrow periodic specifications with ex-

plicit boundary conditions in both dimensions.

It is important to understand what is meant by a polynomial time approx-
imation algorithm for a problem II, when IPs instances are specified by one of
the periodic specifications a. We illustrate this by an example:

Example 5. Consider the maximum independent set problem, when graphs are
specified by (B,B)N-specifications. We provide efficient algorithms for the fol-
lowing versions of the approximate maximum independent set problem:

L Approximation problem: compute the size of a near-maximum independent
set in G.

2. Query problem: given any vertex v ofG, determine whether v belongs to the
approximate independent set so computed.

3. Construction problem: output a (B,B)N-specification of the set of vertices in
the approximate independent set.

4- Output problem: output the approximate independent set computed.

We require that algorithms for versions 1, 2, and 3 above run in time poly-
nomial in the size of the (B,B)N-specification rather than in the size of the graph
obtained by expanding the specification. The algorithm for version 4 should run
in time polynomial (ideally linear) in the size of the expanded graph but use space
which is polynomial (ideally linear) in the size of the periodic specification.

The requirements above are a natural extension of the requirements imposed
on approximation algorithms when instances are specified using standard specifi-
cations. This can be seen as follows for graph problems, and a similar argument
holds for satisfiability problems. When instances are specified using standard
specifications, the number of vertices is polynomial in the size of the description.
Given this, any polynomial time algorithm to determine if a vertex v of G is in
the approximate maximum independent set can be modified easily into a polyno-
mial time algorithm that lists all the vertices of G in the approximate maximum
independent set. For an optimization problem or a query problem, our algorithms
use space and time that are low-level polynomials in the size (rj) of the periodic
specification and thus O(polylog?7) in the size of the graph. Moreover, when we
need to output, for example, the subset of vertices, or the subset of edges, cor-
responding to a vertex cover, or maximal matching, in the expanded graph, our
algorithms take essentially the same time but substantially less (often exponen-
tially less) space than algorithms that work directly on the expanded graph. It is
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important to design algorithms that work directly on the periodic specifications
by exploiting the regular structure of the underlying graphs, because graphs re-
sulting from expansions of given periodic descriptions are frequently too large to
fit into the main memory of a computer. Hence, standard algorithms designed
for flat graphs are impractical for periodically specified graphs.

We outline how to obtain approximation algorithms satisfying the perfor-
mance requirements above for a number of problems, including problems II in ta-
ble 1, when instances are given by (B)N-, (B)N(BC)-, (B,B)N-, (B,B)N(BC)-
specifications.

The basic technique consists of two main steps. First, by an extension of
ideas in Baker [25] we show that for each fixed finite set S there is a poly-
nomial time approximation algorithm as well as a scheme for planar instances
(corresponding bipartite graphs are planar), for the problems MAX-SAT(S)
specified periodically using one of the specifications mentioned earlier in the
section. Next, we show that a number of important classes of problems, when
specified periodically, can be reduced in an approximation-preserving way to
appropriate problems MAX-SAT(5) specified using the same type of periodic
specifications. We call these structure preserving L-reductions. This step uses the
concept of simultaneous reductions outlined earlier.

Let us elaborate a bit more on the first step. The idea behind our approx-
imation algorithms involves the conversion of solutions obtained from a local
algorithm on small sub-grids to a solution of the global problem. The method of
partial expansion involves the application of a divide and conquer algorithm it-
eratively by considering different subsets of the given graph, solving each subset
with a local algorithm, constructing a global solution and finally choosing the
best solution among these iterations as the solution to II. The method can be
seen as an extension of the shifting strategy devised by Baker [25] for finding
efficient approximation algorithms to several combinatorial problems.

We illustrate the idea by discussing our polynomial time approximation
scheme (PTAS) for the maximum independent set problem. Recall that an ap-
proximation algorithm for an optimization problem II provides a performance
guarantee of p if, for every instance / of II, the value returned by the approx-
imation algorithm is within a factor p of the optimal value for /. A PTAS for
problem II is a family of algorithms f such that for any fixed e > 0 there is a
polynomial time algorithm A £ f that for all / E II returns a solution within a
factor (1 4- e) of the optimal value for /.

Consider a (B,B)N-specification of a graph G, and an integer / > 1. To begin
with, for each i, 0 < i < I, partition the graph G into k disjoint sets GI, . . . , G?/c

by removing vertices with horizontal coordinates congruent to i mod (/ + !). For
each subgraph Gp, 1 < p < fc, we find an independent set of size at least I/I + 1
times the optimal value of the independent set in Gp. The independent set for
this partition is simply the union of independent sets for each of Gp. By an
averaging argument, it follows that the partition yielding the largest solution
value contains at least (/// -f 1)2OPT(G) nodes, where OPT(G) denotes the
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value of the maximum independent set in G. (For simplicity, we use a symbol to
denote a set as well as its cardinality: the intended meaning will be clear from
context.)

It is important to note that the size of the graph we are dealing with is, in
general, exponential in the size of the specification. Hence, a naive application
of the idea above will lead to algorithms that take an exponential amount of
time. However, the regular structure of the graph allows us to solve the prob-
lems considered here in time polynomial in the size of the specification. The key
observation is that for each iteration, although the total number of subprob-
lems to be considered is exponential, they can be divided into a small number
of equivalence classes. Moreover, it is easy to compute in polynomial time the
number of elements in each equivalence class. Combining these two observations
immediately yields the desired results.

Theorem 6.1. For each fixed I > 1, and for each of the problems H listed in
table 1, the problem a-H, has a polynomial time approximation algorithm with
performance guarantee (I +1//)2 • FBESTu and running time O(RTu(l2\G\)).
Here, FBESTu denotes the best-known performance guarantee of an algorithm
for the problem H for non-succinctly specified instances, RTu(n) denotes the
running time of the algorithm with input size n guarantees the performance of
FBESTu for the problem H and \G\ denotes the size of the specification.

In fact, we can show that the theorem holds for most problems a-H such
that H is in syntactic MAX-SNP.

As an example, using recent results in Goemans and Williamson [199], we
find that for all e > 0, the problems (B,B)N-, (B,B)N(BC)-, (B,B)N- and
(B)N-MAX-2-SAT have a PTAS that outputs solutions within a factor of (1 +
6)1.137 of an optimal solution. As a corollary of theorem 6.1, using recent non-
approximability results [21] we get the following:

Theorem 6.2. For all the problems H listed in table 1, the problems a-H have a
PTAS if and only if P = NP.

A second result following from the proof of theorem 6.1 is as follows.

Theorem 6.3. For all the problems H listed in table 1, the problems a-H have a
PTAS when restricted to planar instances.

We can show that many of these problems remain NEXPTIME-complete, even
when restricted to planar instances.

The general approximation algorithms and schemes for the problems MAX-
SAT (5) are an attempt to answer the fundamental question: which "hard" pe-
riodically specified optimization problems have efficient approximations? In this
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TABLE 1 Performance guarantee results for optimization problems corresponding to
problems specified using (B,B)N-specifications. All these problems can be shown to be
NEXPTIME-hard using the method outlined in this chapter. Similar results hold for
problems specified using (B,B)N(BC)-specifications. The symbol b denotes the degree
bound and the symbol p denotes the maximum arity of a relation in S. Approximation
results for the standard case for arbitrary and planar instances can be found in Ausiello
et al. [23].

direction, the general theory developed here and discussed above provides a suf-
ficient condition:

Periodically specified graph and other optimization problems have an e-
approximation algorithm (or PTAS) when the semantics of the problem
can be described by a SAT(S) formula in such a way that the formula
interaction graph inherits the structure of the graph.

In recent years there has been significant interest [23, 113, 269, 309] in p
viding syntactic characterizations of optimization problems in an attempt to
provide a uniform framework for solving such problems. Our results provide a
syntactic (algebraic) class of problems, namely, MAX-SAT(5) whose closure
under L-reductions and other appropriate approximation-preserving reductions
define one such characterization for problems that have an e-approximation (or
PTAS). The algebraic model (characterization) is general enough to express the
optimization version of: (i) the generalized satisfiability problems of Schaefer
[455]; (ii) feasibility of systems of linear equations over a variety of algebraic
structures; (iii) a class of nonlinear optimization problems; and (iv) several well-

Problem
MAX-3-SAT
MAX-SAT(S)
MIN-VERTEX-COVER
MAX-INDEPENDENT-

SET
MIN-DOMINATING-

SET
MAX-EDGE-DOMINATING-

SET
MAX-PARTITION-

INTO-TRIANGLES
MAX-H-MATCHING
MAX-CUT

(B,B)N
Specifications

Planar Arbitrary

Standard
Specifications

Planar Arbitrary

polynomial
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known graph theoretic problems. We refer the reader to Hunt et al. [269] and
Khanna and Motwani [309] for more details.

The approximation algorithms have three desirable features: they are con-
ceptually simple, they apply to large classes of problems IT and they apply to
problems specified using any of the periodic specifications considered here. The
polynomial time approximation algorithms for natural (as opposed to specifi-
cally constructed) NEXPTIME-hard problems yield a large class of problems
for which there is a proven exponential—and possibly doubly exponential—gap
between the time complexities of finding exact and approximate solutions. Previ-
ous non-approximability results have show that many optimization problems are
NP-hard or PSPACE-hard to approximate beyond a certain factor. While those
hardness results point out that it is unlikely in general to find "good" polynomial
time approximation algorithms, the possibility is not ruled out. The results pre-
sented here, on the other hand, show a provable gap between approximation and
decision versions of the problem. To see this, note that the decision problems are
NEXPTIME-complete, and hence require at least 2cn steps—and possibly 22Cn

steps—to solve, assuming NEXPTIME ^ DEXPTIME.
The study of approximation algorithms for NP-hard optimization problems

has received a great deal of attention [23]. In contrast, efficient approximability of
PSPACE-, NEXPTIME-hard problems has been considered only very recently.
We refer the reader to Condon [106], Feigenbaum [154], and Marathe [376] for sur-
vey articles and Agarwal and Condon [10], Condon [107, 108], Hunt et al. [266],
and Marathe et al. [379, 380] for related results. The NEXPTIME-hardness re-
sults for periodically specified problems show that the very regular structure
of problem instances does not suffice to make problems easy. But the efficient
approximation algorithms and schemes developed here show the following:

The very regular structures of problem instances specified by the periodic
specifications does make many of the basic problems approximable.

Interestingly, approximating many of the optimization problems considered
here when instances are specified using small circuit specifications [26, 426] can
be shown to be NEXPTIME-hard by extensions of the arguments in Arora et
al. [21]. Thus, our results highlight an important difference between problems
specified using multiple-dimension finite periodic specifications and small circuit
specifications.

7 COMPLEXITY THEORETIC INSIGHTS

We briefly discuss certain complexity theoretic implications of the results sum-
marized in the preceding sections. Additional discussion can be found in Hunt
et al. [267, 268] and Marathe et al. [376, 380].
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7.1 PREDICTIVE COMPLEXITY THEORY

Simultaneous local reductions and their lifts allow us to relate the computa-
tional complexities of variant combinatorial problems in a very strong sense. For
example, we can show the following.

Theorem 7.1. The problem 3-SAT is (decision4-parsimonious + A + L)-reducible
by local replacement to EM-SAT, the restriction of 1EX3-SAT to formulas
having no negated literals. This together with the known results about 3-SAT
and its periodically specified variants directly implies that:

1. EM-SAT is NP-complete
2. MAX-EM-SAT is APX-complete
3. #-EM-SAT is #P-complete
4. It is NP-hard to approximate MAX-DONES-EM-SAT beyond a factor n€

5. (B)N-EM-SAT is PSPACE-complete, (B)W-EM-SAT is EXPSPACE-
complete and (B,B)N-EM-SAT is NEXPTIME-complete

6. (B)N-MAX-EM-SAT does not have a PTAS unless P = NP
7. It is PSPACE-hard to approximate (B)N-MAX-DONES-EM-SAT beyond

a factor ne

This is a step towards developing a predictive complexity theory for peri-
odically specified problems. The predictive aspect implies that the relationship
between problems specified using standard specifications and the way it was
derived is sufficient to deduce the relationship between the corresponding pe-
riodically specified problems. In other words, (i) a single transformation can
serve to simultaneously relate the complexity of several variants of a standard
problem (e.g., decision, counting, optimization), and (ii) sufficient conditions
on the reductions between standardly specified problems can be used to predict
the relationships between the corresponding periodically specified problems. The
general technique presented here simultaneously applies to a large collection of
problems a-SAT(5) when one varies (i) the periodic specification, (ii) the set
5, and (iii) the objective function. Moreover, it applies for obtaining easiness as
well as hardness results.

7.2 NATURAL MORPHISMS FOR COMPUTATIONAL COMPLEXITY

The results discussed in this chapter show in a number of cases—and strongly
suggest in others—that strongly-local reducibility degrees for constraint satis-
faction problems are preserved, when problems in P or in NP are generalized
to periodically specified and to infinite recursive versions of these problems. In
contrast, this is not true for polynomial time reducibility degrees. (Following Lad-
ner [352], polynomial degrees are equivalence classes of languages or sets induced
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TABLE 2 Table summarizing how the complexity of three basic problems changes
when the periodic specification is changed. Note that the complexity of 3-SAT and 3-
HornSATc changes drastically while the complexity of CLIQUE remains unchanged.

Problems Flat Specifications
(boundary conditions)
(U,U)N-specifications

2-D Periodic Specifications
(boundary conditions)
(N,N)N-specifications

3-SAT
3-HornSATc
CLIQUE

NP-complete
P

NP-complete

undecidable
undecidable

NP-complete

by polynomial time reducibility.) Indeed, Marathe et al. [380] have shown that
the problems 3-SAT and 3-HornSATc' (weakly negative SAT when clauses can
contain variables as well as constants) are polynomial time inter-reducible, when
specified by several different kinds of succinct specifications. For example, they
are both PSPACE-complete, both EXSPACE-complete, and even both undecid-
able, for certain specifications. In contrast, for other kinds of succinct specifi-
cations, such as two-dimensional periodic narrow finite specifications, 3-SAT is
NEXPTIME-hard but 3-HornSATc is DEXPTIME-hard. Interestingly, for each
of these specifications the problem CLIQUE remains in NP. These results are
summarized in table 2.

Thus, the results show that the specific method of constructing infinitary
versions of standardly specified problems considered in Freedman [173] cannot
be used to resolve the P versus NP question. In fact, our results suggest that
many other infinitary extensions of combinatorial problems cannot be used to
resolve the P versus NP question either, since they also fail to distinguish ver-
sions of certain basic NP- and P-complete problems. In other words, equivalence
classes (degrees) induced by polynomial time or Turing reducibility are not in-
variant, across variant periodic specifications. In contrast, the results in Marathe
et al. [380] and Hunt et al. [267, 268] show that local transformation-based (si-
multaneous) reductions and the degrees induced by such reductions may be the
natural morphisms for complexity theory.

In addition, none of the very general structural extension properties dis-
cussed here for strongly-local reductions, hold for simultaneous linear time-, lin-
ear size-, and O(logn) space- bounded reductions. (To see this, just observe that
a suitably 0(n2)-padded version of 3-SAT is simultaneously linear time-, linear
size-, and O(logn)-space-bounded reducible to the problem CLIQUE, which
remains NP-complete for various periodic specifications.)

Additional evidence for this is provided by the fact [267] that the strongly-
local reductions as defined here are actually algebraic morphisms, or crypto-
morphisms as defined in Birkhoff [54]. Given the central importance of the proper
definition of morphisms in many areas of modern mathematics including topol-
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ogy, algebra, and dynamical systems, it seems reasonable to conjecture that a
successful relation of the P versus NP question to other areas of mathematics—as
alluded to in Freedman [172, 173]—will require appropriate definitions of mor-
phism possessing good preservation properties with respect to various classes of
instance specifications. This may turn out to be an important implication of the
results discussed here and in Hunt et al. [267, 268] and Marathe et al. [376, 380].

Interestingly, constructing infinitary versions of standardly specified prob-
lems has been used successfully for showing that certain optimization problems
do not belong to the class syntactic MAX-SNP: a class defined syntactically us-
ing an existential second-order formula [240]. The elegant results of Hirst and
Harel [240] use an idea very similar to the one proposed in Freedman [172] to
achieve this.

8 PERIODIC SATISFIABILITY FOREVER

The title of this section is influenced by papers of Savelsberg and van Emde
Boas [454], van Emde Boas [509], and Harel [224]. They, as well as other au-
thors [48, 82, 206], have elegantly articulated the use of tiling or domino problems
for obtaining lower bounds, especially for decision problems for various logical
theories. Here, we present several advantages of using periodically specified sat-
isfiability problems over the use of domino problems in proving both hardness
and easiness results.

Domino problems were introduced by Wang [515] and Biichi [82] and have
been studied extensively in the literature [224, 454, 509]. Usually a domino sys-
tem is described as a finite set of tiles or dominoes, each tile being of a fixed
shape (e.g., unit square) with a fixed orientation and colored edges. We have an
unlimited supply of copies of every tile. Technically, if one arbitrarily shapes tiles,
then one does not need colors and vice-versa. A domino problem asks whether it
is possible to tile a prescribed subset of the Cartesian plane with elements of a
given domino system, such that adjacent tiles have matching colors on their com-
mon edges. There may also be certain constraints on the tiles that are allowed
at specific places, such as the origin.

1. Quoting Harel [224]: "Since all domino problems owe their complexity to the
correspondence with Turing machine computations and since this correspon-
dence applies to non-deterministic models as well, domino problems can ap-
parently not distinguish between deterministic and non-deterministic classes."
In contrast, the hardness results for periodically specified generalized CNF
satisfiability problems include complete problems for the deterministic classes
P, DSPACE(n), DEXPTIME, DEXPSPACE(n), etc. For example, when in-
stances are specified periodically with explicit boundary conditions, the hard-
ness results for 3-HornSATc imply that exactly analogous hardness results
hold for the monotone circuit value problem, when instances are periodically
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specified with boundary conditions. The last result can be used to prove that
a number of P-complete problems become DSPACE(n)-, DEXPTIME-, or
DEXPSPACE-complete when periodically specified. One such problem is lin-
ear programming feasibility.

2. It is natural to consider periodically specified formulas with clauses contain-
ing variables defined at times t, t + c\, t 4- C2, etc, where c\ and c2 are integers
specified using binary numerals. Following Orlin [419], we say that such pe-
riodic specifications are wide. As stated earlier, periodic specifications only
containing clauses in which all the variables are defined at times t, t 4- 1 and
t — l are called narrow. In contrast, domino problems are based on adjacency,
and thus, are intrinsically narrow. (It is, of course, possible to define con-
sistency relationships between tiles that are far apart, but in general, this is
not natural.) The hardness results for wide, periodically specified satisfiability
problems imply exactly analogous results for a number of problems specified
using wide periodic specifications. Furthermore, these results show that there
can be a significant difference between the complexities of the narrow and
wide periodically specified versions of the same problem.

3. As mentioned earlier, efficient local simultaneous reductions to/from the prob-
lems 3-SAT, NAE3-SAT, 2-SAT can be extended to efficient approximation
preserving reductions to/from 3-SAT, NAE3-SAT, 2-SAT, when instances
are specified by various kinds of periodic specifications considered here. These
reductions, taken together with the easiness/hardness results, imply analogous
easiness/hardness results for a number of variant problems for periodically
specified problems in graph theory and logic. Developing analogous theory
using tiling problems, although plausible, appears to be much more cumber-
some.

This is not to say that tiling problems are not useful starting points, nor
does it imply that they are not interesting. The simplicity of tiling problems
certainly makes them a natural starting point for proving lower bounds.

9 CONCLUSIONS AND FUTURE WORK

We have discussed instances of graph and satisfiability problems created in nat-
ural and simple ways: namely, by repeating a single graph or formula in a mul-
tidimensional grid and then connecting vertices placed at given grid points to
vertices placed at neighboring grid points. The size of large objects created in this
way can be exponential, or even infinite, in the size of the object being replicated.
In spite of the simple repetitive nature of the constructed object, the difficulty
in solving certain NP-complete problems blows up with the size of the object be-
ing specified. Thus, several of these problems are NEXPTIME-complete or even
undecidable when complexity is measured in the size of the original (periodic)
description. However, at the same time, the simple repetitive nature enables us
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to design efficient polynomial time approximation algorithms with good perfor-
mance guarantees even when complexity is measured in the size of the periodic
specification. The complexity of approximation algorithms remains polynomial
in the size of the description. Thus we have a striking contrast: problems that
are NEXPTIME-complete to solve exactly can be efficiently approximated in
polynomial time.

The fact that there is an exponential gap between solving the problem ex-
actly and approximately for such succinctly specified objects may prove to be
useful in trying to tackle other questions in complexity theory. For example, the
results obtained in this chapter raise the possibility of proving the recent non-
approximability results without using the machinery of interactive proof systems
[21, 23]. Obtaining formal proofs that this is not possible is an equally interesting
direction for future research.

The simplicity of the graph or formula obtained in the proof of theorem 5.2
makes it a good candidate for being specified using other kinds of succinct and
recursive descriptions. In particular, it can be specified using graph construction
representation (GCR) specifications [189, 190] and by the recursive specifications
of Beigel and Gasarch [42]. This shows that natural problems specified using the
GCR model are NEXPTIME-hard to solve and problems specified by very simple
recursive graphs are undecidable. The GCR model is generally acknowledged as
a natural and useful way of describing large real-world objects such as circuits
and VLSI designs.

We have outlined a collection of techniques that are a step towards devel-
oping a predictive complexity theory for periodically specified problems. These
ideas are in fact much more general; we believe that they can be used to de-
velop a predictive complexity theory of succinctly specified problems. We refer
the reader to Hunt et al. [267, 268] and Marathe [376] for additional details.
Further general results for characterizing the approximability of PSPACE-hard
and NEXPTIME-hard periodically specified problems is an interesting direction
for future research. As an example, it is an open question if a dichotomy the-
orem such as the one for MAX-SAT(5) exists for the one-dimensional, finite,
wide, periodically specified MAX-SAT(5) problem. We conclude with a brief
discussion of two topics currently under investigation.

9.1 PERIODICALLY SPECIFIED RANDOM CONSTRAINT SATISFACTION
PROBLEMS

Recently there has been substantial interest in understanding the phenomenon
of phase transitions in satisfiability problems. See Istrate [270], Kirkpatrick and
Selman [319], and Monasson et al. [406] for more details on the subject. Here
we propose a method to construct random instances of periodic constraint satis-
faction problems. Similar models can be given for periodically specified random
graphs and other combinatorial objects. The model presented here is proposed
in the hope that it will provide a hierarchy of locally random but globally struc-
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tured instances of constraint satisfaction problems whose worst-case complexity
is, for example, NP-hard, PSPACE-hard, or NEXPTIME-hard.

Recall that a periodic specification of a constraint satisfaction problem con-
sists of two different parts: the static formula and the rule used to expand
it. A natural way to construct a random instance is to construct a random
instance of the static formula. For this, we have the four literals xl(t},xi(i},
Xi(t+1),Xi(t -f- 1) for each variable o^. Call this the set X. We can now construct
a random static 3-CNF formula as is done for standardly specified instances:
namely, for each clause the three literals appearing in it are chosen uniformly at
random from X (we ignore the technicalities of whether these literals are cho-
sen with or without replacement). Note that as constructed, the static formulas
can yield finite as well as infinite formulas depending on the particular periodic
specification. It would be of interest to investigate the similarities (and differ-
ences) between the phase transition behavior of such finite and infinite formulas.
The formalism is very rich and can be extended to construct other constraint
satisfaction problems. It can also be applied to periodic specifications of higher
dimensional objects. Defining wide specifications is more subtle. In such a case,
we might decide to choose the index of difference at random.

We reiterate that an interesting aspect of such formulas is that they are lo-
cally random but globally structured] that is, the set of clauses in two consecutive
grid points is chosen randomly, but this random set is repeated by a simple repli-
cation rule. Furthermore, note that we do not have to study exponentially large
instances: specifying the range in unary yields a polynomially sized formula. By
observing the proof given by Cook [191], it is easy to see that even such formu-
las are NP-hard to decide in the worst case. Investigating the phase transition
behavior of such formulas is an interesting direction for further research.

9.2 LATTICE-LIKE INSTANCES FOR SATISFIABILITY PROBLEMS

There has been substantial interest in generating structured and random in-
stances of satisfiability to test the efficacy of the SAT solvers proposed in the
literature [6, 303]. In this context, physicists have long studied and developed
methods inspired by statistical mechanics for understanding physical phenom-
ena on lattice-like structures. Recently, methods inspired by statistical mechanics
have also been proposed to solve constraint satisfaction problems, as has been
seen in chapter 4. Periodically specified random constraint satisfaction prob-
lems, graph problems, and feasibility of system of linear/nonlinear inequalities
are in a parametrized class of lattice structured problems and thus might serve
as test cases for physics-inspired methods for solving such problems. The value
of the formalism lies in the fact that one can construct a large number of vari-
ant problems by specifying a simple set of parameters. In addition, work done
on quasi-group completion and related Latin square completion methods can be
viewed as special instances of periodic satisfiability problems. One way to see this
is that a Latin square completion method often starts with a consistent tiling of
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the grid and then randomly punches holes or, stated alternatively, removes some
of the tiles. It then presents this satisfiable instance to SAT solvers. In view of
the discussion on tiling and its relationship to periodic satisfiability problems,
it is clear that periodic satisfiability problems offer a rich parameterized class of
such instances. More interestingly, the method yields hard instances of higher
complexity classes such as PSPACE and NEXPTIME. Such instances might be
significant, given the close correspondence of periodically specified satisfiability
problems to problems in temporal logics.

To see the close similarity of periodically specified formulas to Latin square
completion methods for specifying satisfiable formulas, consider an alternate def-
inition of periodically specified formulas proposed by Freedman [172, 173]. As an
example, the infinite version of 3-SAT in Freedman [172] is obtained as follows:
take a finitely generated group Q and a subgroup H of Q, of finite index. The
elements of Q are our alphabet and a literal is a symbol g or ~g E G- An instance
of 3-SAT is specified as a conjunction of clauses of the form (g( \/g'2 V#3), where
9i, 1 < i < 3 denotes either a negated or an unnegated literal. Thus a 3-CNF
formula will be given as F = AjLi(#i,j v#2,j v#3,.?)- The infinite instance is now
created as follows:

Freedman considers the special cases Q = Z and Q — Z 0 Z. In the latter case,
he effectively considers four-way, infinite, wide formulas with periods (p\,pi)
and thus 7~i = {(nipi.n^p^) \ ni, n<2 £ Z}. Assuming natural representations of
integers, it is easy to see that these special cases are simply one-dimensional, two-
way, infinite, wide periodic specifications and two-dimensional four-way infinite,
wide, periodic wide specifications, denoted as (Z)W and (Z,Z)W-specifications
respectively. The (Z,Z)N-specifications considered here can be easily seen to be
special cases with p\ — p? = 1. Using the close correspondence between tilings
and periodic formulas, it is now possible to generate satisfiable formulas with pe-
riodic solutions as well as satisfiable formulas that do not have periodic solutions.
See Freedman [172] and Grunbaum and Shephard [216] for more details.
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