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S

We propose a nonparametric method for identifying parsimony and for producing a
statistically efficient estimator of a large covariance matrix. We reparameterise a covariance
matrix through the modified Cholesky decomposition of its inverse or the one-step-ahead
predictive representation of the vector of responses and reduce the nonintuitive task of
modelling covariance matrices to the familiar task of model selection and estimation for
a sequence of regression models. The Cholesky factor containing these regression
coefficients is likely to have many off-diagonal elements that are zero or close to zero.
Penalised normal likelihoods in this situation with L 1 and L 2 penalities are shown to be
closely related to Tibshirani’s (1996)  approach and to ridge regression. Adding
either penalty to the likelihood helps to produce more stable estimators by introducing
shrinkage to the elements in the Cholesky factor, while, because of its singularity, the L 1
penalty will set some elements to zero and produce interpretable models. An algorithm is
developed for computing the estimator and selecting the tuning parameter. The proposed
maximum penalised likelihood estimator is illustrated using simulation and a real dataset
involving estimation of a 102×102 covariance matrix.

Some key words: Cholesky decomposition; Crossvalidation; LASSO; L
p
penalty; Model selection; Penalised

likelihood; Shrinkage.
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86 J. Z. H, N. L, M. P  L. L

1. I

The sample covariance matrix, the most commonly used estimator of a covariance
matrix, is known to be positive-definite and unbiased, but highly unstable for large
covariance matrices (Lin & Perlman, 1985; Wong et al. 2003; Ledoit & Wolf, 2004).
Recently, structured covariance matrices, with few parameters, reflecting characteristics
such as compound symmetry and autoregression of order one, have become popular in
longitudinal studies and related areas, though using a structure far from the true covariance
structure could lead to severe bias. Between these two extremes lies a wealth of structures
that might yield data-driven methods that strike a balance between the variance and bias
of the covariance matrix estimator.
Estimation of covariance matrices is difficult because the number of unknown
elements in the covariance matrix grows quadratically with the size of the matrix and
because of the positive-definiteness constraint. Many existing methods deal directly with
the individual elements of the covariance matrix; for a review of some of these methods
see Diggle & Verbyla (1998), Diggle et al. (2002), Boik (2002) and Wong et al. (2003).
Dempster (1972) was the first to recognise the inverse covariance matrix as the canonical
parameter of a multivariate normal distribution. His covariance selection method which
identifies zeros in the inverse covariance matrix offers parsimony, but does not guarantee
positive-definiteness of the estimator. The positive-definiteness was taken care of by
Leonard & Hsu (1992) and Chiu et al. (1996), who modelled the matrix logarithm of a
covariance matrix, and by Pourahmadi (1999, 2000), who considered generalised linear
models for covariances using components of the modified Cholesky decomposition of the
inverse covariance matrix whose nonredundant entries are unconstrained and enjoy
statistical interpretation as certain regression coefficients and variances.
In this paper, we develop a nonparametric and data-driven method in the spirit of

Dempster’s covariance selection to identify parsimony in the covariance matrix through
the unit triangular factor T of its modified Cholesky decomposition. The nonredundant
entries of the rows of this matrix are the regression coefficients of one variable based on
its predecessors, so that the nonintuitive task of modelling a covariance matrix can be
reduced to that of modelling serveral regression models (Wu & Pourahmadi, 2003). Thus,
familiar regression techniques such as ridge regression and variable selection can be used
to shrink the off-diagonal elements of T , and identify any existing structural zeros. To this
end, we use a penalised normal likelihood function with an L

p
penalty for the non-

redundant entries of T . Since the matrix T , in essence, gauges the degrees of ‘dependence’
in the vector of responses, imposing such a penalty will reduce the risk of using too many
parameters to capture the dependence.
Our approach is more flexible than but is related to the recent work of Wu &

Pourahmadi (2003) and the unpublished 2004 University of Pennsylvania Ph.D. thesis
of N. Liu. They applied nonparametric smoothing, by local polynomials and splines,
respectively, to the first few subdiagonals of the Cholesky factor and set to zero the
remaining subdiagonals, thereby restricting T to be a banded lower triangular matrix. In
contrast, our approach here allows the zeros in the Cholesky factor to be irregularly
placed. This seems to be an advantage over Wu & Pourahmadi (2003) and N. Liu’s thesis;
in addition, we do not impose classical nonparametric smoothness restrictions on the
Cholesky factor. Our approach is also related to a Bayesian approach proposed by Smith
& Kohn (2002) which uses a hierarchical prior to allow zero entries in T . Ledoit & Wolf
(2004) considered shrinkage estimation of covariance matrices in a way rather different
from our approach.
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87Covariance matrix selection and estimation

2. M  

In this section, we review the role of the modified Cholesky decomposition in the
unconstrained reparametrisation of a covariance matrix and express the normal likelihood
as a quadratic function of these new parameters (Pourahmadi, 1999, 2000).
For a positive-definite covariance matrix S, its modified Cholesky decomposition can
be written as

T ST ∞=D, (1)

where T is a unit lower-triangular matrix having ones on its diagonal and D is a diagonal
matrix. The elements of T and D are uniquely defined and have interpretations as the
successive regression coefficients and prediction error variances when measurements are
regressed on their predecessors. To be more precise, let y= (y1 , . . . , yn )∞ be a time-ordered
random vector with mean zero and positive-definite covariance matrix S. For 1∏t∏n,
let y@
t
stand for the linear least-squares predictor of y

t
based on its predecessors y

t−1
, . . . , y1 ,

and let e
t
=y
t
−y@
t
be its prediction error with variance s2

t
=var (e

t
). Thus, for t=1,

y@1=E(y1 )=0, and, for 1<t∏n, there are unique scalars w
tj
such that

y
t
= ∑
t−1

j=1
w
tj
y
j
+e
t
. (2)

Let e= (e1 , . . . , en )∞ be the vector of successive prediction errors. Then (2) written in matrix
form becomes

e=T y, (3)

where T is a unit lower triangular matrix with −w
t,j
in the (t, j )th position for

2∏t∏n and j=1, 2, . . . , t−1. Note that cov(e)=diag(s2
1
, . . . , s2

n
)=D. Since the e

t
’s

are uncorrelated, (1) follows from (3); that is, the matrix T diagonalises the covariance
matrix S. The w

t,j
’s are called the generalised autoregressive parameters and the s2

t
’s are

the corresponding innovation or residual variances.
Under the multivariate normal assumption on y, the loglikelihood function l (S; y),
ignoring an irrelevant constant, satisfies

−2l(S; y)= log |S|+y∞S−1y.

Since, from (1), |S|=|D|=Xn
t=1
s2
t
and S−1=T ∞D−1T , we have

−2l(S; y)= log |D|+y∞T ∞D−1T y= ∑
n

t=1
log s2

t
+ ∑
n

t=1

e2
t
s2
t
, (4)

which is written in terms of prediction errors and their variances or the nonredundant
entries of the pair (T , D). Thus, the modified Cholesky decomposition of a covariance
matrix provides a parameterisation of the covariance matrix with unconstrained para-
meters, and transfers the difficult task of modelling a covariance matrix to that of modelling
the sequence of regressions in (2). Parsimony in the Cholesky factor corresponds to zeros
in the regression coefficients, and to identify such zeros is a familiar variable selection
problem in regression.
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88 J. Z. H, N. L, M. P  L. L

3. P 

The above regression interpretation suggests that the familiar ideas of variable
selection and regularisation for least-squares regression can be used for covariance matrix
modelling. We explore in this section two such ideas, ridge regression (Hoerl & Kennard,
1970a,b) and  (Tibshirani, 1996), using the general framework of penalised likelihood
for regression models (Fan & Li, 2001).
Suppose that we observe y

i
= (y
i1

, . . . , y
in
)∞, for i=1, . . . , m, a random sample from

N (0, S ). Consider the modified Cholesky decomposition of S as described in (1).
According to (4), the loglikelihood function l (S; y

1
, . . . , y

m
) of S based on y1 , . . . , ym , up

to an additive constant, satisfies

−2l(S; y
1
, . . . , y

m
)= ∑
n

t=1
Am log s2t+ ∑m

i=1

e2
it
s2
t
B ,

where e
i1
=y
i1
and e

it
=y
it
−Wt−1
j=1

y
ij
w
tj
, for t=2, . . . , n. For a given l>0, define the

penalised negative loglikelihood as

−2l(S; y
1
, . . . , y

m
)+lp({w

tj
}), (5)

where p ( . )�0 is a specified penalty function, and l is a tuning parameter whose selection
will be discussed in § 4·2. For fixed l, minimising (5) with respect to {w

tj
} and s2

t
leads to

a penalised likelihood estimator of T and D and hence of S. When l=0, minimisation
of (5) simply gives the maximum likelihood estimator. We consider in this paper only the
class of penalty functions that can be written as an L

p
norm of the generalised auto-

regressive parameters. For p>0, the penalised likelihood objective function with an L
p

penalty has the form

−2l(S; y
1
, . . . , y

m
)+l ∑

n

t=2
∑
t−1

j=1
|w
tj
|p. (6)

The L
p
penalty class has been considered for regression problems by Frank & Friedman

(1993) and Fu (1998).
We focus here on two important members of the L

p
penalty class, the L 2 penalty

p({w
tj
})=Wn

t=2
Wt−1
j=1
w2
tj
and the L 1 penalty p({w

tj
})=Wn

t=2
Wt−1
j=1
|w
tj
|. As in ridge regression

and , using these two penalties will introduce shrinkage estimators of the generalised
autoregressive parameters w

tj
and hence the covariance matrix. The L 1 penalty also

implements selection by setting some generalised autoregressive parameter estimates to
be exactly zero. As in least-squares regression, shrinkage and selection trade off bias
against variance.
The penalised likelihood estimator based on the L 2 penalty can be derived as the Bayes

posterior mode under independent diffuse priors for the innovation standard deviations s
t

and independent normal priors for the generalised autoregressive parameters w
tj
’s, with

densities f (w
tj
)={l/(2p)}D exp(−lw2

tj
). Similarly, the penalised likelihood estimator based

on the L 1 penalty is the Bayes posterior mode under independent diffuse priors for
the innovation standard deviations and independent double-exponential priors for the
generalised autoregressive parameters w

tj
, with densities f (w

tj
)= (l/2) exp (−l|w

tj
|).
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89Covariance matrix selection and estimation

4. C    

4·1. T he algorithm

The algorithm amounts to applying a similar regression algorithm repeatedly to the
rows of the Cholesky factor T .
For the L

p
penalty, the penalised negative loglikelihood (6) becomes

∑
n

t=1
Am log s2t+ ∑m

i=1

e2
it
s2
t
B+l ∑n

t=2
∑
t−1

j=1
|w
tj
|p

=Am log s21+ ∑m
i=1

e2
i1
s2
1
B+ ∑n
t=2
Am log s2t+ ∑m

i=1

e2
it
s2
t
+l ∑
t−1

j=1
|w
tj
|pB .

To minimise it, we need only to minimise

m log s2
1
+ ∑
m

i=1

e2
i1
s2
1
, (7)

m log s2
t
+ ∑
m

i=1

e2
it
s2
t
+l ∑
t−1

j=1
|w
tj
|p (t=2, . . . , n). (8)

The minimiser of (7) is given by s2
1
=Wm
i=1

y2
i1

/m. For t=2, . . . , n, the expression in (8)
can be minimised by alternate minimisation over s

t
and w

tj
( j=1, . . . , t−1): for fixed w

tj
( j=1, . . . , t−1), (8) is minimised with respect to s

t
by

s2
t
=

1

m
∑
m

i=1
e2
it
=

1

m
∑
m

i=1
Ayit− ∑t−1

j=1
y
ij
w
tjB2 ; (9)

for fixed s
t
, (8), as a function of w

tj
( j=1, . . . , t−1), is minimised by the minimiser of

∑
m

i=1

(y
it
−Wt−1
j=1

y
ij
w
tj
)2

s2
t

+l ∑
t−1

j=1
|w
tj
|p. (10)

An iterative procedure for minimising (8) starts by first initialising s
t
, using for example

the innovation standard error estimated without the penalty. We then minimise (10) to
obtain w

tj
( j=1, . . . , t−1) and revise s2

t
as in (9). We iterate the process until convergence

for each t (t=2, . . . , n). For details about minimisation of (10) with fixed s
t
, see the

Appendix.

4·2. Selection of the tuning parameter

We used crossvalidation and generalised crossvalidation to choose l.
For fast computation of a value of l, we prefer K-fold crossvalidation to leave-one-out
crossvalidation, with K=5 or 10 in practice. We randomly split the full dataset S into K
subsets of about the same size, denoted by Sn (n=1, . . . , K ). For each n, we use the data
in S−Sn to estimate the parameters and Sn to validate. The loglikelihood is used as the
performance measure. For each l, the K-fold crossvalidated loglikelihood criterion is

(l)=
1

K
∑
K

n=1
Asn log |SC−n |+ ∑

iµI
n

y∞
i
SC−1
−n

y
iB ,

where I
n
is the index set of the data in Sn, s

n
is the size of I

n
, and SC

−n
is the covariance

matrix estimated using the training data set S−Sn. Note that, for data in Sn, the expected
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90 J. Z. H, N. L, M. P  L. L

loglikelihood for covariance matrix S is given by

EAsn log |S|+ ∑
iµI
n

y∞
i
S−1y

iB .
We choose l=l@ to minimise  (l). Our final estimate of S is based on l@ and the full
dataset.
Following Craven & Wahba (1979), we derive the generalised crossvalidation criterion

as an approximation to the leave-one-out crossvalidation criterion,

1

mn
∑
m

i=1
∑
n

t=1
(y
it
−y@ (−i)
it

)2=
1

mn
∑
n

t=1
∑
m

i=1
(y
it
−y@ (−i)
it

)2,

where y@ (−i)
it
are fitted values when the ith vector of observations y

i
is removed from the

sample. For t=1, . . . , n, let y
i(t)
= (y
i1

, . . . , y
i,t−1
)∞, H
t
= (Wm

i=1
y
i(t)

y∞
i(t)

)/s2
t
and

X
t
=

1

s
tAy∞1(t)ey∞
m(t)
B= 1

s
tAy11 y

12
… y

1,t−1
y
21

y
22

… y
2,t−1

e e e e

y
m1

y
m2

… y
m,t−1
B .

Consider first the L 2 penalty and let y@
it
denote the fitted values of y

it
. Then, similarly to

ridge regression, it is easily seen that

Ay@1tey@
mt
B=X

t
(H
t
+lI
t
)−1X∞

tAy1tey
mt
B=S

tAy1tey
mt
B , y

it
−y@ (−i)
it
=Ayit−y@

it
1−S

t,ii
B2,

where S
t
=X
t
(H
t
+lI
t
)−1X

t
with its (i, i ) element being S

t,ii
. We approximate S

t,ii
by

Wm
i=1

S
t,ii

/m=tr (S
t
)/m in the leave-one-out crossvalidation criterion to obtain the

generalised crossvalidation criterion

(l)=
1

mn
∑
n

t=1
∑
m

i=1
q y

it
−y@
it

1−tr (S
t
)/mr2 .

In the calculation of  (l), the s
t
’s should be replaced by their estimated values. For

the L 1 penalty, an iterative algorithm is needed for minimising (10) and there is no closed-
form expression that links ( y

1t
, . . . , y

mt
) to their predicted values ( y@

1t
, . . . , y@

mt
). Using

outcomes from the last iteration of the minimisation of (10), we have approximately that

Ay@1tey@
mt
B=X

t
(H
t
+lL (k)

t
)−1X∞

tAy1tey
mt
B ,

where L (k)
t
is defined as in (A1). We thus define (l) for the case of the L 1 penalty using

the same formula as for the L 2 penalty case except that, in the definition of St , we replace
I
t
by the matrix L (k)

t
.
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91Covariance matrix selection and estimation

5. P

In this section, we evaluate by simulations the two tuning-parameter selection methods
and we compare the performance of the maximum penalised likelihood estimator using
the L 1 penalty to that using the L 2 penalty. We also consider three other methods of
estimating a covariance matrix, the sample covariance matrix and two minimax estimators
(Muirhead, 1982, § 4.3). Robustness of the proposed method to the normality assumption
is investigated by applying it to data from a multivariate t distribution.
The iterative algorithm described in § 4 is implemented using Compaq Visual Fortran 6.

The IMSL Fortran subroutine UVMIF is used for the optimisation required to select the
tuning parameter.
To gauge performance, we consider two loss functions, namely

D
1
(S, G)=tr(S−1G)− log |S−1G|−n, D

2
(S, G)=tr(S−1G−I )2,

where S is the true covariance matrix and G is a positive-definite matrix. The first loss is
usually called the entropy loss, while the second is typically called the quadratic loss. Each
of these losses is 0 when G=S and is positive when GNS. Both loss functions are
invariant with respect to transformations G*=CGC∞ and S*=CSC∞ for a nonsingular
matrix C (Anderson, 2003, § 7.8). The corresponding risk functions are defined by

R
i
(S, G)=E

S
{D
i
(S, G)} (i=1, 2).

An estimator SC1 is considered better than an estimator SC2 for Di if its risk function
is smaller, that is R

i
(S, SC1 )<R

i
(S, SC2 ). For more information about simulation-based

comparison of covariance matrix estimators, see Lin & Perlman (1985).
The risk function of the proposed penalised likelihood estimator is approximated by

Monte Carlo simulation. For the results presented below, N=100 simulation runs were
used. The risks of the sample covariance matrix and of the minimax estimators, corre-
sponding to the entropy loss and the quadratic loss respectively, have closed-form
expressions; see § 4.3 of Muirhead (1982). Note that the minimax estimator depends on
the risk function used.
We considered the following four covariance matrices.

Case 1. Matrix S1=I, the identity matrix.

Case 2. Matrix S2=diag(n, n−1, n−2, . . . , 1).

Case 3. Matrix S−1
3
=T ∞D−1T , where D=0·01×I and T= (−w

t,s
), with w

t,t
=1,

w
t+1,t
=0·8, and w

t,s
=0 otherwise: the  (1) model.

Case 4. Matrix S−1
4
=T ∞D−1T , where D=diag(s2

1
, . . . , s2

n
) with

s2
t
=s2q1− (t−1)r2

1+ (t−1)rr (t�1)

and T= (−w
t,s
) with w

t,t
=1, w

t,j
=r{1+ (t−1)r}−1, for t�2, j=1, . . . , t−1, s=1 and

r=0·5: the compound symmetry model.

We calculated the risk of various estimators for each S from the above list for different
combinations of m and n where the data are multivariate normal. The results for m=100
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92 J. Z. H, N. L, M. P  L. L

Table 1: Risk comparison for m=100 and n=30. T he risks of the sample and
minimax estimators are obtained using the formula in Muirhead (1982, § 4.3),

and the others are based on average losses in 100 simulation runs

L 2 penalty L 1 penalty
Sample Minimax  5-fold   5-fold 

Entropy loss S1 5·268 4·801 0 380 0·378 1·572 0·315
S2 5·268 4·801 0·785 0·785 2·089 0·303
S3 5·268 4·801 3·619 3·691 1·892 1·215
S4 5·268 4·801 1·571 1·423 2·475 2·388

Quadratic loss S1 11·228 7·627 0 720 0·716 2·750 0·623
S2 11·228 7·627 1·382 1·382 3·563 0·601
S3 11·228 7·627 6·570 7·059 3·311 2·176
S4 11·228 7·627 2·729 2·435 4·592 4·465

Sample, sample covariance matrix estimator; minimax, minimax estimator; L 2 and L 1
penalty, covariance matrix estimator based on the penalised likelihood with L 2 and L 1 penalties,
respectively; methods used for selecting tuning parameters in the penalised likelihood are
denoted by , generalised crossvalidation, and 5-fold , five-fold crossvalidation.

and n=30 are given in Table 1. These results and those from different choices of m and
n yield the following conclusions.
(i) For the L 2 penalty, performance of the estimator using generalised crossvalidation
to select the tuning parameter is similar to that of using five-fold crossvalidation. Thus
either method can be used in practice for tuning parameter selection for the L 2 penalty.
(ii) For the L 1 penalty, performance of the penalised likelihood estimator using five-
fold crossvalidation is better than that of using generalised crossvalidation when the T
factor of the modified Cholesky decomposition of the covariance matrix is sparse, contain-
ing many zeros. This suggests that the approximation involved in deriving the formula
for  (l) for the L 1 penalty case may be too crude. The five-fold crossvalidation method
should be the recommended method for tuning-parameter selection for the L 1 penalty.
(iii) When there are many zeros in the T matrix, the L 1 penalty with five-fold cross-
validation does better than the L 2 penalty, because the L 1 penalty can effectively identify
the sparsity of the T matrix while the L 2 penalty cannot. That generalised crossvalidation
does not do as well as five-fold crossvalidation for the L 1 penalty can also be seen by its
ineffectiveness in identifying zeros in the T matrix; see Table 2.
(iv) When there are many small values in the T matrix, as with S4 , the L 2 penalty does
better than the L 1 penalty.
(v) The penalised likelihood estimators almost always outperform the sample covariance

matrix and the minimax estimator and in most cases the improvements are substantial,
especially when n is large, n�10.

Table 2: Percentages of zeros identified among the zeros in the subdiagonal of the T
matrix. Calculated based on 100 simulation runs

Generalised crossvalidation 5-fold crossvalidation
Lower quartile Median Upper quartile Lower quartile Median Upper quartile

S1 28·3% 29·9% 31·0% 77·7% 87·4% 94·7%
S2 22·5% 24·4% 25·5% 75·5% 87·6% 89·7%
S3 30·5% 32·5% 34·2% 51·2% 52·7% 54·2%
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93Covariance matrix selection and estimation

To explore the robustness of the proposed methods to the normality assumption, we
generated data from the multivariate t distribution, by taking data from Y=X/√(Z/n),
where X~N (0, V), Z~x2 (n) and X and Z are independent. Since the t distribution has
fat tails, the quadratic loss has a large variance and thus its mean is not a stable measure
of performance. We focused on the entropy loss and observed results that are consistent
with those for normal data; that is, the penalised likelihood methods substantially improve
over the sample covariance matrix and the minimax estimator associated with the entropy
loss. Table 3 gives results for m=100, n=30 and n=5.

Table 3: Risk comparison for multivariate t distribution using
the entropy loss. T he risks are calculated using average losses
over 100 simulation runs, with m=100, n=30 and n=5

L 2 penalty L 1 penalty
Sample Minimax  5-fold   5-fold 

S1 9·128 8·042 2·713 0·858 4·359 0·791
S2 9·262 8·006 3·920 1·753 5·202 0·911
S3 9·257 7·814 6·620 5·983 5·125 2·586
S4 9·192 7·934 4·109 2·362 5·204 3·895

Sample, sample covariance matrix; minimax, minimax estimator; L 2
and L 1 penalty, covariance matrix estimator based on the penalised
likelihood with L 2 and L 1 penalties, respectively; methods used for
selecting tuning parameters in the penalised likelihood are denoted by
, generalised crossvalidation, and 5-fold , five-fold crossvalidation.

6. T   

In this section we illustrate our method for estimating a large covariance matrix with
an application in forecasting the call arrival pattern of calls to a telephone call centre.
The data come from one call centre in a major northeastern U.S. financial organisation,
containing the information about the time every call arrives at the service queue. For each
day in 2002, except for six days when the data-collecting equipment was out of order,
phone calls are recorded from 7:00am until midnight. We divided the 17-hour period into
102 10-minute intervals, and counted the number of calls arriving at the service queue
during each interval. Here the interval length of 10 minutes is chosen rather subjectively
as a way of smoothing the data and for illustration. Since the arrival patterns of weekdays
and weekends differ, we focus on weekdays here. Using the singular value decomposition
to screen out outliers that include holidays and days when the recording equipment was
faulty (Shen & Huang, 2005), we obtain observations for 239 days.
Denote the data for day i by N

i
= (N

i1
, . . . , N

i,102
)∞, for i=1, . . . , 239, where N

it
is the

number of calls arriving at the call centre for the tth 10-minute interval on day i. Let
y
it
=√(N

it
+1/4), for i=1, . . . , 239 and t=1, . . . , 102. The square root transformation is

used to make the data distribution close to normal (Brown et al., 2005). We apply our
proposed penalised likelihood method to estimate the 102×102 covariance matrix based
on the residuals from a fit of the saturated mean model. The L 1 penalty is preferred to
the L 2 penalty based on five-fold crossvalidation, see Table 4, and has helped to identify
a parsimonious structure of the T matrix in the modified Cholesky decomposition. Of the
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94 J. Z. H, N. L, M. P  L. L

Table 4: Call centre data. Selection of tuning
parameters using five-fold crossvalidation

l 5-fold 

L 1 penalty 76·25 3316·83
L 2 penalty 451·60 5288·38

L 1 and L 2 penalty, covariance matrix estimator based
on the penalised likelihood with L 1 and L 2 penalties,
respectively.

5151 elements below the main diagonal of the estimated T matrix, 4144 are essentially
zero, with absolute values less than 0·01. Several different random partitions of the data
for five-fold crossvalidation have been tried and similar results were obtained. With a
Pentium III PC running our Fortran code, the computing time for calculating the penalised
likelihood estimate, including tuning parameter selection using five-fold crossvalidation,
is about 20 minutes.
The estimated covariance matrix can be used for forecasting the number of arrivals

later in the day using arrival patterns at earlier times of the day. Write y
i
= (y
i1

, . . . , y
i,102
)∞.

Form the partition y
i
= (y(1)∞
i

, y(2)∞
i

)∞, where y(1)
i
and y(2)

i
measure the arrival patterns in

the early and later times of day i. For example, we can take y(1)
i
= (y
i1

, . . . , y
i,51

)∞ and
y(2)
i
= (y
i,52

, . . . , y
i,102

)∞, which measure respectively the arrival patterns in the early and
later halves of a day. The corresponding partition of the mean and covariance matrix is
denoted by

m=Am1m
2
B , S=AS11 , S12S

21
, S
22
B .

If we assume multivariate normality, the best mean squared error forecast of y(2)
i
using

y(1)
i
is

E(y(2)
i
|y(1)
i

)=m
2
+S
21
S−1
11

(y(1)
i
−m
1
). (11)

Without the normality assumption, this formula gives the best mean squared error linear
forecast. In practice, we need to plug in estimates of m and S. We can fit a saturated mean
model for m and use either the sample covariance matrix or the penalised likelihood
covariance matrix estimate for S.
To compare the forecast performance using different covariance matrix estimates, we

split the 239 days into training and test datasets. The data from the first 205 days, corre-
sponding to January to October, form the training dataset that is used to estimate the
mean and covariance structure. The estimates are then applied for forecasting using
formula (11) for the 34 days in the test set, corresponding to November and December.
We used the 51 square-root-transformed arrival counts in the early half of a day to forecast
the square-root-transformed arrival counts in the later half of the day. For each time
interval t=52, . . . , 102, define the average absolute forecast error by


t
=

1

34
∑
239

i=206
|y@
it
−y
it
|,
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Fig. 1: Call centre data. (a) Plot of 
t
for the forecasts using the sample

covariance matrix, solid, and the penalised likelihood covariance matrix
estimate, dashed. (b) Percentage of times, among 34 days in the test
dataset, on which the penalised-likelihood-based forecast has smaller

absolute forecast error.

where y
it
and y@

it
are the observed and forecast values respectively. In Fig. 1(a), we plot

the 
t
for the forecast using the sample covariance matrix and the penalised likelihood

covariance matrix estimate. In Fig. 1(b) we plot the percentage of times, among 34 days
in the test dataset, on which the forecast based on penalised likelihood has smaller absolute
forecast error. It shows clearly that the forecast based on penalised likelihood covariance
matrix estimates outperforms that based on the sample covariance matrix. Based on 

t
,

the former does better in 50 out of the 51 time intervals. Also, the percentage of days in
34 test days on which the former has smaller absolute forecast error exceeds 50% at 46
out of the 51 forecast points.

7. D

Use of the L 1 or L 2 penalty introduces regularisation into the estimation of a covariance
matrix. An alternative way of regularisation is through smoothing the T matrix in the
modified Cholesky decomposition of the covariance matrix; see Wu & Pourahmadi (2003)
and N. Liu’s thesis. The two methods complement each other. The smoothing method is
better if T is indeed smooth. This has been confirmed in our simulation study, results not
shown. When T is not smooth, but is sparse or contains many small elements, the penalised
likelihood method proposed in this paper would be better. To illustrate the latter point,
Table 5 reports the risks of various methods for estimating the matrix S−1=T ∞DT
with m=40 and n=15, where D=I and T= (−w

i,j
) with w

i+1,j
=0·8 for odd i and

w
i,j
=0 otherwise. Clearly the smoothing method yields worse results than the proposed

penalisation method.
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96 J. Z. H, N. L, M. P  L. L

Table 5: Risks for estimating a covariance matrix with a non-
smooth T . T he risks of the first two estimators are obtained
using the formula in Muirhead (1982, § 4.3), and the others are

based on average losses in 100 simulation runs

L 1 penalty
Loss Sample Minimax Smooth  5-fold 

Entropy loss 3·582 3·226 3·275 1·621 1·317
Quadratic loss 7·627 4·947 10·690 2·817 2·676

Sample, sample covariance matrix; minimax, minimax estimator; smooth,
spline-smoothing method developed in N. Liu’s thesis; L 1 penalty,
covariance matrix estimator based on the penalised likelihood with L 1
penalty; methods used for selecting tuning parameters in the penalised
likelihood are denoted by , generalised crossvalidation, and 5-fold ,
five-fold crossvalidation.
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A

Minimisation of expression (10)

We first give some implementation details of the minimisation of (10) for p=2, because it is an
important component of our proposed iterative procedure when p=1. If w

t(t)
= (w
t1

, w
t2

, . . . , w
t,t−1
)∞

and y
i(t)
= (y
i1

, y
i2

, . . . , y
i,t−1
)∞, the first term of (10) can be written as

1

s2
t
∑
m

i=1
(y
it
−y∞
i(t)
w
t(t)

)2=c
t
−2g∞

t
w
t(t)
+w∞
t(t)

H
t
w
t(t)

,

where c
t
= (Wm

i=1
y2
it
)/s2
t
, g
t
= (Wm

i=1
y
it
y
i(t)

)/s2
t
and H

t
= (Wm

i=1
y
i(t)

y∞
i(t)

)/s2
t
. Thus, for the L 2 penalty,

minimisation of (10) leads to a closed-form solution. Indeed,

∑
m

i=1

(y
it
−Wt−1
j=1

y
ij
w
tj
)2

s2
t

+l ∑
t−1

j=1
w2
tj
=c
t
−2g∞

t
w
t(t)
+w∞
t(t)

(H
t
+lI
t
)w
t(t)

,

which is minimised by w
t(t)
= (H

t
+lI
t
)−1g
t
for fixed s

t
, where I

t
is the (t−1)× (t−1) identity

matrix.
For the L 1 penalty, minimisation of (10) does not have a closed-form solution and an iterative
algorithm is necessary. For each t the problem is equivalent to the minimisation of

∑
m

i=1

(y
it
−Wt−1
j=1

y
ij
w
tj
)2

s2
t

subject to Wt−1
j=1
|w
tj
|∏u, which is the same optimisation problem as in . This can be thought

of as a quadratic programming problem with linear inequality constraints, so standard numerical
techniques could be applied; see Tibshirani (1996). However, we use an iterative algorithm that
can be coded directly. It worked well in our simulation study and data analysis. The main idea of
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97Covariance matrix selection and estimation

the algorithm is an iterative local quadratic approximation of Wt−1
j=1
|w
tj
| (Fan & Li, 2001; Öjelund

et al., 2001). The initial value of the iteration is taken to be the minimiser of (10) without the
penalty term; that is, w(0)

t(t)
=H−1
t

g
t
or, when H

t
is singular, w(0)

t(t)
is the minimiser of (10) with an L 2

penalty. Denote the value of w
t(t)
at step k of the iteration by w(k)

t(t)
= (w(k)
t1

, w(k)
t2

, . . . , w(k)
t,t−1

)∞. Since |w
tj
|

can be approximated by the quadratic function (Fan & Li, 2001, § 3.3)

|w(k)
tj
|

2
+
w2
tj

2|w(k)
tj
|

in the neighbourhood of w(k)
tj

, then Wt−1
j=1
|w
tj
| can be approximated by

∑
t−1

j=1

|w(k)
tj
|

2
+ ∑
t−1

j=1

w2
tj

2|w(k)
tj
|
=ck
t
+w∞
t(t)

L (k)
t
w
t(t)

in the neighbourhood of w(k)
t(t)
= (w(k)
t1

, w(k)
t2

, . . . , w(k)
t,t−1

)∞, where ck
t
=Wt−1
j=1
|w(k)
tj
|/2 is a constant and

L (k)
t
=diagA 12|w(k)

t1
|

1

2|w(k)
t2
|
…

1

2|w(k)
t,t−1
|B (A1)

is a (t−1)× (t−1) diagonal matrix. Note that |w(k)
i,j
| appears in the denominator; when any of the

|w(k)
i,j
| falls below a preset threshold, such as 10−10, replace it by the threshold value. Thus, for the

L 1 penalty, (10) can be approximated by

1

s2
t
∑
m

i=1
(y
it
−y∞
i(t)
w
t(t)

)2=l ∑
t−1

j=1
|w
tj
|=c
t
−2g∞

t
w
t(t)
+w∞
t(t)

H
t
w
t(t)
+lck

t
+lw∞

t(t)
L (k)
t
w
t(t)

=c
t
+lck

t
−2g∞

t
w
t(t)
+w∞
t(t)

(H
t
+lL (k)

t
)w
t(t)

.

Hence, at step (k+1), the minimiser of (10) for p=1 is w(k+1)
t(t)
= (H

t
+lL (k)

t
)−1g
t
. Repeat this process

until convergence. The iterative procedure described above can be viewed as an application of the
so-called minorise-maximise algorithms, the convergence of which has been studied in Hunter &
Li (2005).
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