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We study random graphs with arbitrary distributions of expected degree and derive expressions for the spectra
of their adjacency and modularity matrices. We give a complete prescription for calculating the spectra that is
exact in the limit of large network size and large vertex degrees. We also study the effect on the spectra of hubs
in the network, vertices of unusually high degree, and show that these produce isolated eigenvalues outside the
main spectral band, akin to impurity states in condensed matter systems, with accompanying eigenvectors that
are strongly localized around the hubs. We give numerical results that confirm our analytic expressions.
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I. INTRODUCTION

The topology of complex networks, such as social, bio-
logical, and technological networks, can be represented in
matrix form using an adjacency matrix or any of several
other related matrices such as the graph Laplacian or the
modularity matrix [1,2]. The spectral properties of these
matrices—their eigenvalues and eigenvectors—are related to
a range of network features of scientific interest, including
optimal partitions [3,4], percolation properties [5], commu-
nity structure [6,7], and the behavior of network dynamical
processes such as random walks, current flow, diffusion, and
synchronization [8,9]. As a result, the study of network spectra
has been the subject of considerable research effort for some
years. This effort has taken a number of forms. One has been
the study of the spectra of empirically observed networks,
which can be calculated by numerical means for networks of
size up to hundreds of thousands of vertices [8,10]. Another,
which is the topic of this paper, is the study of the spectra
of model networks. A fundamental question we would like to
answer is how particular structural features of networks are
reflected in network spectra, and model networks provide an
ideal setting in which to investigate this question.

Some results in this area have been known for a long time.
For example, the very simplest of network models, the Poisson
random graph, studied as far back as the 1950s by Erdős, Rényi,
and others [11,12], has a symmetric adjacency matrix whose
elements are independent identically distributed random vari-
ables. Such matrices are known, subject to some conditions
but regardless of the precise distribution of their elements, to
have a universal spectrum obeying the Wigner semicircle law
and eigenvectors that are distributed isotropically at random,
except for the leading eigenvalue and eigenvector, whose
values are governed by the Perron-Frobenius theorem and the
average degree of the network [13–20].

As we have come to understand in the past decade, however,
the random graph is a poor model for the structure of real-world
networks. In particular, the frequency distribution of the
degrees of vertices in the random graph is Poissonian, while
the degree distribution of most real-world networks is highly
right-skewed, often having a power-law or exponential tail of
“hubs” with degree far above the mean. Luckily, it turns out
to be possible to create generalizations of the basic random
graph that incorporate arbitrary degree distributions, including

skewed distributions, the best-known such model being the so-
called configuration model [21,22]. The configuration model is
solvable exactly for many of its structural properties, including
its complete component structure [22–24] and percolation
properties [25,26], and the results have led us to a better
understanding of the profound effect the degree distribution
has on network topology.

In this paper we study the spectral properties of the
configuration model. Motivated by recent developments in
random matrix theory, we derive a simple recipe for calculating
the spectrum of the adjacency matrix of the model. We show
that the spectrum is composed of three fundamental elements,
all of which have clear correlates in the structure of the
network. The elements are (1) the leading eigenvalue, which
is dictated primarily by the average network degree; (2) a
continuous band or “bulk spectrum,” analogous to the Wigner
semicircle but taking a different shape; and (3) in some but
not all cases, additional eigenvalues outside of the continuous
band which correspond to the hubs in the network and which
have eigenvectors that are strongly localized about those hubs.

In addition to our analytic developments, we also confirm
the form and behavior of each of these elements with
numerical calculations on example networks generated using
the configuration model.

A number of previous authors have examined the spectral
properties of the configuration model. Farkas et al. [10]
performed numerical calculations on large samples generated
using the model and demonstrated that there are clear devia-
tions from the semicircle law for non-Poisson choices of the
degree distribution and especially for power-law distributions.
Dorogovtsev et al. [27] gave an analytic route to the full
spectrum, though their method is complex, involving the
solution of a nonlinear integral equation containing Bessel
functions, which at present can only be done approximately.
Kühn [28] has given a different analytic treatment that is
exact when vertex degrees are finite, which is the opposite
of the limit of large degrees that we treat in this paper. Chung
et al. [29] gave a rigorous derivation of the expected value of
the largest eigenvalue in the spectrum in the limit of a dense
network. Our calculations extend these studies by providing
a simple derivation of the full spectrum which is exact in
the limit of large vertex degrees and confirms earlier findings
while shedding new light on features of the spectrum and their
implications for network structure.
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II. THE MODEL

In this paper, we study the spectral properties of the
configuration model—or, more precisely, a slight variant of
the model, as we now describe.

The configuration model is a model of an undirected
random graph with a specified number of vertices n and a
given degree sequence. In this model one first specifies a
degree sequence, meaning one specifies the degree of each
of the n vertices. Let the degree of vertex i be denoted ki

and let us visualize the degree as ki ends or “stubs” of edges
emerging from the vertex. Then the configuration model is
defined as the ensemble of pairwise matchings of stubs in
which every matching appears with equal probability. That is,
a configuration model network with the given degree sequence
is generated by repeatedly choosing two stubs uniformly at
random from those available and joining them together to
form a complete edge. This process continues until all stubs
have been joined and no unattached stubs remain. (For this
to work, the number of stubs must be even, and hence the
model is defined only for degree sequences whose sum

∑
i ki is

even.)
The configuration model provides a way to generate

networks that have any degree sequence we desire while being
essentially random in other respects—there are no correlations
or long-range structure in the configuration model ensemble.

A crucial feature of the configuration model for our
purposes will be the expected number of edges between a
vertex pair. It is straightforward to show, given the degree
sequence, that the expected number of edges between vertices
i and j is equal to kikj /2m in the limit of large network
size, where m = 1

2

∑
i ki is the number of edges in the

network. Note that it is possible to generate networks with
multiedges—pairs of vertices connected by more than one
parallel edge. The actual number of edges between vertices i

and j is multinomially distributed with mean kikj /2m.
However, edges in the configuration model are not statisti-

cally independent. Since the degrees of vertices are fixed, the
presence of an edge from vertex i to vertex j makes it less likely
that there will be an edge from i to any other vertex, and hence
edges that share a common end are correlated. When the degree
is large, the correlations become small and the multinomial
distribution of edge number becomes approximately Poisson,
but for networks with finite average degree the correlations
will always be present and may be significant.

These correlations make analysis of the model more
difficult and so in this paper we consider a modified model
in which the number of edges between each pair of vertices
is defined to be an independent random variable with mean
kikj /2m and value drawn from a Poisson distribution with
that mean. In this model, ki becomes the expected degree of
vertex i and m is the expected total number of edges. When
degrees become large, which is the primary regime that we
consider in this paper, the actual degrees will be narrowly
peaked about their expected values, so the properties of the
variant model and the standard configuration model, including
the spectral properties that we study, become the same. This
model (or slight variants of it) has been studied previously by
a number of authors, notably Chung and Lu [30], with whose
work it is perhaps most strongly associated.

In this paper we consider networks in the limit of large size
n with expected vertex degrees drawn from a fixed probability
density p(k), so that p(k) dk is the fraction of vertices with
expected degree in the interval from k to k + dk. (Note that the
expected degree need not be an integer, although one is free to
choose it to have integer values if one wishes.) More precisely,
we consider a sequence of networks of increasing size with
fixed expected degrees ki and additional degrees drawn from
p(k) as n becomes larger. Thus for finite n the expected degree
of any particular vertex i remains constant as n becomes large
and the empirical degree distribution converges to p(k) in the
large-n limit.

The adjacency matrix A of a network generated according to
this model is the n × n symmetric matrix with integer elements
Aij equal to the number of edges between vertices i and j . Our
primary goal in this paper is to calculate the average spectrum
of the adjacency matrix within the model ensemble, which we
do in two stages. We write the matrix as

A = 〈A〉 + B, (1)

where 〈A〉 is the ensemble average of A, which has elements
〈Aij 〉 = kikj /2m, and B is the deviation from that average.
Our approach is first to calculate the spectrum of the matrix
B, whose elements are, by definition, independent random
variables with zero mean, although crucially they are are not
identically distributed. Once we have the spectrum of B, then
the spectrum of A is calculated from it in a separate step.

The matrix B has elements

Bij = Aij − 〈Aij 〉 = Aij − kikj

2m
(2)

and is of interest in its own right. It is known as the modularity
matrix and forms the basis for one of the most widely used
methods for detecting modules or communities in networks
[6,7]. The methods described in this paper thus give us the
spectrum of both the adjacency matrix and the modularity
matrix.

Note that the elements of the modularity matrix have the
same variance as the corresponding elements of the adjacency
matrix which, since they are Poisson distributed, have variance
equal to their mean kikj /2m. Hence,

〈
B2

ij

〉 = kikj

2m
, (3)

which will be important shortly.

III. SPECTRUM OF THE MODULARITY MATRIX

As discussed in the previous section, we will first calculate
the spectrum of the modularity matrix B, defined by Eq. (2),
and then calculate the spectrum of the adjacency matrix from it
in a separate step. We begin by developing some fundamental
notions concerning random variables that will be important for
our derivations.

Suppose we have two independent random variables, x

and y, ordinary scalar variables, with probability densities
px(x) and py(y). What is the probability that their sum
x + y will have a particular value z? The answer to this
question is well known and simple. The probability density
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for z is

p(z) =
∫ ∫

px(x)py(y)δ(x + y − z) dx dy

=
∫

px(x)py(z − x) dx, (4)

which is the convolution of the two distributions. Similarly,
we can ask for the probability that the product xy has value z,
which is given by the multiplicative convolution

p(z) =
∫ ∫

px(x)py(y)δ(xy − z) dx dy

=
∫

px(x)py(z/x)
dx

x
. (5)

A scalar random variable can be thought of as the single
eigenvalue of a 1 × 1 random matrix. A 1 × 1 matrix is
diagonal by definition and its one eigenvalue is trivially equal
to its one element. A natural generalization of the convolution
results above is to ask what their equivalent is for larger random
matrices, 2 × 2, 3 × 3, and so forth, where we will confine
ourselves to symmetric matrices so the eigenvalues are real.
That is, if we know the probability density of the eigenvalues—
the so-called spectral density—of two independent symmetric
random matrices, what is the spectral density of their sum
or product? The answer is no longer a simple convolution,
because matrices do not in general commute, so what is the
appropriate generalization? Unfortunately, this question does
not have a straightforward answer because it turns out that
a knowledge of the spectral densities alone is not enough.
In general, one needs to know the distribution of the entire
matrices to calculate the spectral density of their sum or
product. There is, however, one case in which relatively simple
results apply, which is when the eigenvectors of the two
matrices are themselves random and uncorrelated.

Recall that the eigenvectors of a symmetric matrix are
orthogonal—for an n × n matrix they define a set of orthogonal
axes in an n-dimensional vector space. Thus, if we have
two random symmetric matrices, the eigenvectors of one can
always be transformed into the eigenvectors of the other by
a suitable rotation and/or reflection—in other words by a
suitable orthogonal transformation. If for different choices of
the random matrices the transformations needed to do this
are distributed isotropically—essentially if all possible such
transformations are equally likely—then the random matrices
are said to be free. Loosely, one can say that two random
matrices are free if the angle between their eigenvectors is
also random. The mathematics of free random variables has
been developed extensively since the 1990s and is known by
the name of free probability theory [31].

The crucial observation now is the following: For free
matrices the spectral density of their sum or product is a
function only of the individual spectral densities. It turns out
that one no longer needs to know the entire distribution of the
matrices themselves and well-defined generalizations of the
convolution equations, Eqs. (4) and (5), exist. For the sum of
two matrices the appropriate generalization is known as the
free convolution or free additive convolution; for the product
of matrices it is the free multiplicative convolution. Thus, if
two symmetric random matrices have spectral densities px(x)

and py(y), then the spectral density of their product is the free
multiplicative convolution

p(z) = (px � py)(z), (6)

where � denotes the convolution. Although this defines the
convolution in principle, it does not tell us how to calculate it.
We will come to that in a moment, but first let us return to the
configuration model and see why this is a useful result.

We wish to calculate the spectral density of the modularity
matrix B, which for an undirected network is a symmetric
random matrix whose elements have zero mean but different
variances, equal to kikj /2m—see Eq. (3). Let us define a
normalized modularity matrix B̃ by

B̃ = D−1/2BD−1/2, (7)

where D is the diagonal matrix with elements ki . B̃ has
elements B̃ij = Bij/

√
kikj , so each is divided by a factor

proportional to its standard deviation and hence, though
not identically distributed, all elements now have the same
variance, equal to 1/2m. So long as the vertex degrees are large,
matrices with this property are known to have an eigenvector
basis oriented isotropically at random and to have spectral
density obeying the Wigner semicircle law [13–20], which,
for our particular matrix, takes the form

ρc(z) = 1

2π

√
4c − c2z2, (8)

where c = 2m/n is the average degree in the network. The
requirement that vertex degrees be large is necessary because
deviations from the semicircle law are known to arise for very
sparse matrices [32]. For small degrees, therefore, the results
given here will only be approximate.

Now consider an eigenvalue z of the modularity matrix
B itself, satisfying Bb = zb, where b is the corresponding
eigenvector. Multiplying by D1/2, writing B = D1/2B̃D1/2, and
defining v = D1/2b, this can also be written

DB̃v = zv. (9)

In other words, the modularity matrix has the same eigenvalues
as the matrix DB̃, which is the product of the diagonal matrix D,
which, by definition, has spectral density equal to the degree
distribution p(k) and the symmetric matrix B̃, with spectral
density ρc(z) given by Eq. (8).

But it is precisely to the products of such random matrices
that Eq. (6) relates, and, hence, applying that equation, we
arrive at the principal result of this paper: The spectral density
of the modularity matrix for a network with arbitrary expected
degrees is equal to the free multiplicative convolution of the
degree distribution with the Wigner semicircle. That is, the
spectral density ρ(z) is given by

ρ(z) = (p � ρc)(z), (10)

where p(k) is the distribution of expected degrees and ρc(z) is
given by Eq. (8).

This result is of immediate practical utility. Numerical
methods exist for computing free multiplicative convolutions
efficiently [33,34], which means we can use existing numerical
packages to compute spectral densities easily and rapidly for
a wide range of degree distributions.
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For the purposes of the present paper, however, we would
like to know more. In particular, we would like explicit
formulas for calculating the spectral density in the general
case. Unfortunately, the free multiplicative convolution has no
simple expression for matrices of finite size, but in the limit of
large size—which is also the limit of a large network—suitable
expressions do exist. Specifically, for a spectral density ρ we
can define a function

�ρ(z) =
∫

x ρ(x) dx

z − x
, (11)

which is called the Cauchy transform of xρ(x). Then, if ρ is
the free multiplicative convolution of two other distributions
p and ρc as in Eq. (10), it can be shown that

�−1
ρ (u) = u

u + 1
�−1

p (u)�−1
ρc

(u), (12)

where �−1 denotes the functional inverse of �, and �p and �ρc

are defined by analogy with (11),

�p(z) =
∫

k p(k) dk

z − k
, �ρc

(z) =
∫

x ρc(x) dx

z − x
. (13)

Substituting Eq. (8) into the second of these, we have

�ρc
(z) = 1

2π

∫ 2/
√

c

−2/
√

c

x
√

4c − c2x2

z − x
dx

= 1

2
cz(z ±

√
z2 − 4/c) − 1. (14)

The ambiguity in the sign of the square root arises because of a
branch cut in the evaluation of the integral, but it can be shown
that the final result for the free convolution never depends on
the choice of sign [35]. In the present case, we can take either
sign and rearrange for z as a function of �ρc

and we find that
the functional inverse is given by

�−1
ρc

(u) = u + 1√
cu

. (15)

Substituting this expression into (12) we get

�−1
ρ (u) =

√
u

c
�−1

p (u), (16)

and evaluating this equation at the point u = �ρ(z) gives z =√
�ρ(z)/c �−1

p (�ρ(z)), which can be rearranged to read

�ρ(z) = �p(z
√

c/�ρ(z)). (17)

For convenience, we define h(z) = √
�ρ(z)/c and Eq. (17)

becomes

ch2(z) = �p(z/h(z)) =
∫ ∞

0

k p(k) dk

z/h(z) − k
, (18)

or, more simply,

h(z) = 1

c

∫ ∞

0

k p(k) dk

z − kh(z)
. (19)

If we can solve this equation for h(z), then the Cauchy
transform of xρ(x), Eq. (11), is given by �ρ(z) = ch2(z). To
recover ρ itself from the Cauchy transform, we note that for
real x and η

− 1

π
Im

1

x + iη
= η/π

x2 + η2
, (20)

which is a Lorentzian of width η and area 1 and hence in the
limit as η → 0+ becomes equal to a δ function,

− 1

π
lim

η→0+
Im

1

x + iη
= δ(x). (21)

Thus,

zρ(z) =
∫

xρ(x)δ(z − x) dx,

= − 1

π
lim

η→0+
Im

∫
xρ(x)

z − x + iη
dx, (22)

= − 1

π
lim

η→0+
Im �ρ(z + iη).

This is the Stieltjes-Perron inversion formula. Setting �ρ(z) =
ch2(z) tells us that the spectral density of the configuration
model is given by

ρ(z) = − c

πz
Im h2(z), (23)

where the imaginary part is taken in the limit as z tends to the
real line from above.

Equations (19) and (23) give us a complete recipe for
calculating the spectrum of the modularity matrix. We note
that equations equivalent to these have been derived in other
contexts in the literature on random matrices. See, for example,
the results on band matrices in Refs. [36–40].

A. Example solutions

The solution of Eqs. (19) and (23) relies on our being able to
compute the integral in Eq. (19), whose difficulty depends on
the particular choice of degree distribution. To give an example
where the calculation is straightforward, consider the standard
Poisson random graph, for which all vertices have the same
expected degree c and hence p(k) = δ(k − c). Substituting
into (19) and solving the resulting quadratic equation gives

h(z) = z − √
z2 − 4c

2c
, (24)

so the spectral density is

ρ(z) =
√

4c − z2

2πc
, (25)

which recovers the standard semicircle distribution for the
random graph.

As a more general example, consider any distribution where
the degrees take a set of � discrete values dr , as they do for
any integer-valued degree distribution of the type commonly
considered for network models. Then p(k) = ∑�

r=1 prδ(k −
dr ), where the coefficients pr satisfy

∑
r pr = 1. Then, from

Eq. (19),

h(z) =
∑�

r=1 prdr/[z − drh(z)]∑�
r=1 prdr

, (26)

where we have used c = ∑
r prdr . Thus, h(z) is the root of

a polynomial of degree � + 1. For instance, if there are two
discrete values of the expected degree, then

h(z) = 1

p1d1 + p2d2

[
p1d1

z − d1h(z)
+ p2d2

z − d2h(z)

]
, (27)
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FIG. 1. (Color online) The spectral density ρ(z) for the degree
distribution described in the text, in which vertices have expected
degree d1 = 50 with probability p1 = 1

4 and d2 = 100 with proba-
bility p2 = 3

4 . The curve gives the analytic solution, derived from
Eqs. (23) and (28); the histogram shows the results of numerical
calculations for actual networks with n = 10 000 vertices, averaged
over 100 different networks.

which can be rearranged to give the cubic equation

d1d2h
3 − (d1 + d2)zh2 +

[
d1d2

p1d1 + p2d2
+ z2

]
h − z = 0.

(28)

Of the three solutions to this equation, one is always real, and
hence [in light of Eq. (23)] cannot give the spectral density.
The remaining two are complex conjugates and so give results
that differ only in sign, the positive sign being the one we are
looking for.

Figure 1 shows a plot of the resulting spectral density,
Eq. (23), as a function of z for the case d1 = 50, d2 = 100, and
p1 = 1 − p2 = 1

4 . The figure shows strong departure from the
semicircle law. Also shown are the results of direct numerical
calculations of the spectra of simulated networks with the same
degree distribution and the agreement between the analytic and
numerical results is good.

B. Features of the spectral density

We can invoke additional properties of the free convolution
to better understand the spectrum of the modularity matrix.
Consider, for instance, the case where the expected degree
distribution p(k) has compact support, meaning that there are
hard upper and lower limits to the expected degree a vertex
may have. (The lower limit is trivial, since degrees must be
non-negative, but the upper limit is not.) Since the semicircle
distribution, Eq. (8), also has compact support, the spectral
density of the modularity matrix is then a convolution of two
compact distributions. In this scenario it can be shown that the
bulk spectrum of the modularity matrix will also have compact
support [40]. Furthermore, given this observation, we can show
that the spectrum will generically exhibit a sharp square-root
decay at its edges. To see this, note that the central function
h(z) in our theory is the solution for h of an equation of the

form f (h,z) = 0, where z is given and

f (h,z) = 1

c

∫ ∞

0

k p(k) dk

z − kh
− h. (29)

[See Eq. (19).] From Eq. (23) we know that h is complex
within the spectral band and real outside it and, hence, the
edge of the band is the point at which complex solutions to
f (h,z) = 0 disappear. For analytic f (h,z) such a disappear-
ance corresponds to the point at which an extremum of f

with respect to h crosses the zero line. Denoting this point by
(h,z) = (a,b) and performing an expansion about it to leading
order in both h and z, we then have

f (h,z) = ∂f

∂z
(z − b) + ∂2f

∂h2
(h − a)2 + · · · , (30)

the terms in f (a,b) and ∂f/∂h vanishing at the extremum. In
the limit as we approach the band edge, therefore, the equation
f (h,z) = 0 takes the form

∂f

∂z
(z − b) + ∂2f

∂h2
(h − a)2 = 0, (31)

and hence within the band, we have h(z) = a + iB
√

b − z for
some real constant B. Then the spectral density, Eq. (23), is

ρ(z) = C

√
b − z

z
, (32)

where C is another real constant. A similar argument implies
square-root behavior at the lower edge of the spectrum as well.
The square-root form can be seen, for example, in the vertical
sides of the spectrum in Fig. 1.

We can also calculate the behavior of h(z) as z → b from
above, for which Eq. (31) implies

h(z) = a + B
√

z − b, (33)

with the same real constant B as before. Note that this
implies that the limiting value of h(z) at the band edge is
generically finite but that the slope dh/dz diverges. This
has important consequences for “hub” vertices—those with
unusually high degree—whose effect on the spectrum displays
a phase transition behavior that depends crucially on the
functional form of h(z). We discuss hub vertices in detail in
Sec. VI.

These results apply for the case where the expected degree
distribution is bounded. In cases where it is not we expect
the spectral density of the modularity matrix to be similarly
unbounded, having no band edge and generically inheriting
the worst-case tail behavior of p(k). Similar observations have
been made previously by Chung et al. [29] for a different
matrix, the graph Laplacian. They note that a normalized
version of the Laplacian, akin to our normalized modularity
matrix B̃, should display a semicircle distribution but that the
Laplacian itself should have a spectrum that inherits the tail
behavior of the degree distribution.

IV. THE RESOLVENT AND THE STIELTJES TRANSFORM

In the previous section we calculated the spectral density
of the modularity matrix for the configuration model. It is
possible to calculate many other properties of the spectrum as
well, as we now show. Our starting point for these calculations
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is the so-called resolvent matrix, which is the matrix function
R(z) = (zI − B)−1, where I is the identity. As we will see, a
knowledge of the ensemble average of the resolvent allows
us to calculate many things, including the spectral density of
the adjacency matrix, the leading eigenvalue of the adjacency
matrix, and the effect on the spectrum of network hubs.

It also gives us an alternative, though perhaps less elegant,
derivation of the results for the modularity matrix in the
previous section. The spectral density ρ(z) of the modularity
matrix can be defined as

ρ(z) = 1

n

n∑
i=1

δ(z − λi), (34)

where λi are the eigenvalues of the matrix. Substituting for
the δ function from Eq. (21), we get the so-called Plemelj-
Sokhotski formula,

ρ(z) = − 1

nπ
lim

η→0+
Im

n∑
i=1

1

z − λi + iη
. (35)

Via a change of basis, the sum on the right-hand side is equal to
the trace of the matrix [(z + iη)I − B]−1, and hence ρ(z) is the
limit where z goes to the real line of −(1/nπ )Im Tr(zI − B)−1.
In other words, the spectral density depends on the trace of the
resolvent, and its average over the ensemble of model networks
is given by the average of this quantity,

ρ(z) = − 1

nπ
Im Tr〈(zI − B)−1〉. (36)

The normalized trace Tr(zI − B)−1/n is called the Stieltjes
transform of B.

The two most common ways to calculate the Stieltjes
transform are either to expand the matrix (zI − B)−1 in powers
of B and take the trace term by term or to write the trace in
terms of a derivative of a Fresnel integral and then employ the
replica trick [41]. Here, however, we take a different approach
inspired by work of Bai and Silverstein [16,42] that allows us
to calculate the average of the full resolvent.

The resolvent is the inverse of a matrix whose off-diagonal
elements are zero-mean random variables. Consider a general
such matrix X and let us write it in terms of its first n − 1 rows
and columns, plus the last row and column, thus,

X =

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

Xn a

aT xnn

. (37)

Thus, Xn is the matrix X with the nth row and column removed,
and a is the nth column minus its last element xnn.

Now consider the vector v = X−1u, where u =
(0, . . . ,0,1). Let us break v into its first n − 1 elements and
its last element v = (v1|vn), where clearly vn = [X−1]nn. Then
we have Xv = u and, hence,

Xnv1 + vna = 0, aT v1 + xnnvn = 1. (38)

The first equation tells us that

v1 = −vnX−1
n a, (39)

and substituting this result into the second gives

[X−1]nn = vn = 1

xnn − aT X−1
n a

. (40)

To make further progress, we assume that vn is narrowly
peaked about its average value in the limit of large system size,
meaning its variance about that value vanishes as n becomes
large. We will for the moment take this assumption as given,
but it can be justified using results for concentration of measure
of random quadratic forms [43], provided vertex degrees are
large (so our results, like those of Sec. III, will be exact only
for large degrees).

If vn is narrowly peaked, then the average of the reciprocal
on the right-hand side of (40) is equal to the reciprocal of the
average and

〈[X−1]nn〉 = 1

〈xnn〉 − 〈
aT X−1

n a
〉 . (41)

Furthermore, if vn is narrowly peaked, then the average of
Eq. (39) is 〈v1〉 = −vn〈Xn〉〈a〉 = 0 since a is independent of
Xn and 〈a〉 = 0. But the elements of v1 are equal to [X−1]in
and, hence,

〈[X−1]in〉 = 0 (42)

for i �= n. By the same method, we can derive expressions for
the inverse of X with any row and column removed and hence
show that

〈[X−1]ii〉 = 1

〈xii〉 − 〈
aT X−1

i a
〉 (43)

and

〈[X−1]ij 〉 = 0 for i �= j . (44)

In other words, 〈X−1〉 is a diagonal matrix when n is large,
with diagonal elements given by Eq. (43).

But if this is true of X−1, then by the same argument it must
also be true of X−1

i . Hence, noting that a is independent of Xi ,
we have〈

aT X−1
i a

〉 =
∑
jk

〈[
X−1

i

]
jk

〉〈ajak〉 =
∑

j

〈[
X−1

i

]
jj

〉〈
a2

j

〉
. (45)

Returning now to Eq. (36), the role of the matrix X in our
problem is played by zI − B. As we noted earlier, the elements
of the modularity matrix B (and, hence, also the elements of
the vector a) have mean zero and variance kikj /2m. Hence,
〈a2

j 〉 = kikj /2m in Eq. (45) and

〈
aT X−1

i a
〉 =

∑
j

〈[(zI − Bi)
−1]jj 〉kikj

2m

= ki

2m
Tr[Di〈(zI − Bi)

−1〉], (46)

where D is the diagonal matrix with elements ki as previously
and Di is the same matrix with the ith row and column
removed.
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However, if Tr[Di〈(zI − Bi)−1〉]/2m tends to a well-defined
limit as the network becomes large, then in this limit it must
equal Tr[D〈(zI − B)−1〉]/2m—the omission, or not, of the ith
row and column makes a vanishing difference for large n.
Hence, (43) becomes

〈[(zI − B)−1]ii〉 = 1

z − kiTr[D〈(zI − B)−1〉]/2m
, (47)

where we have made use of the fact that 〈Bii〉 = 0. At the
same time, the off-diagonal elements of 〈(zI − B)−1〉 are zero
by Eq. (44), so the average of the resolvent matrix is diagonal,
a result that will be crucial for several following developments.

Without loss of generality, we now label the vertices of
our network in order of increasing expected degree, and
for convenience we define functions γz(x) and k(x) of the
continuous variable x thus:

γz(i/n) = 〈[(zI − B)−1]ii〉, k(i/n) = ki. (48)

Then, for large n, Eq. (47) becomes

γz(x) = 1

z − [k(x)/c]
∫ 1

0 k(y)γz(y) dy
, (49)

where c = 2m/n is the average degree, as previously.
The spectral density, Eq. (36), is related to γz(x) by

ρ(z) = − 1

π
Im g(z), (50)

where

g(z) = 1

n
Tr〈(zI − B)−1〉 =

∫ 1

0
γz(x) dx, (51)

which is just the ensemble average of the Stieltjes transform.
To calculate g(z), we define the additional quantity

h(z) = 1

2m
Tr[D〈(zI − B)−1〉] = 1

c

∫ 1

0
k(x)γz(x) dx

= 1

c

∫ 1

0

k(x) dx

z − k(x)h(z)
, (52)

where we have used Eq. (49). Since we have labeled our
vertices in order of increasing degree, k(x) is by definition
the (nx)th-lowest degree in the network, or, equivalently, it is
the functional inverse of the cumulative distribution function
P (k) defined by

P (k) =
∫ k

0
p(k′) dk′, (53)

where p(k) is the expected degree distribution. Thus, changing
variables from x to k, Eq. (52) can be written

h(z) = 1

c

∫ ∞

0

k dP (k)

z − kh(z)
(54)

or as either of the equivalent forms

h(z) = 1

c

∫ ∞

0

k p(k) dk

z − kh(z)
=

∫ ∞

0

q(k) dk

z − kh(z)
, (55)

where the (correctly normalized) probability distribution

q(k) = k p(k)

c
(56)

is known as the excess degree distribution in the networks
literature. This distribution, which arises often in the theory
of networks, is the probability that the network vertex reached
by following an edge has an expected number k of edges
attached to it other than the one we followed to reach the
vertex. (The distribution looks slightly different from the form
usually given [24] because it is expressed in terms of expected
degree rather than actual degree.)

If we can solve Eq. (55) for h(z), then we can calculate
g(z) by substituting Eq. (49) into Eq. (51) and again changing
variables from x to k to get

g(z) =
∫ ∞

0

p(k) dk

z − kh(z)
. (57)

This equation is similar in form to Eq. (55), but note that it
is the ordinary degree distribution p(k) that appears in the
numerator, not the excess degree distribution.

Alternatively, and more directly, we can calculate g(z) by
multiplying both sides of (49) by the right-hand denominator,
integrating, and rearranging to get

g(z) = 1 + ch2(z)

z
. (58)

Combining this result with Eq. (50) now gives us the spectral
density

ρ(z) = − c

πz
Im h2(z), (59)

where the imaginary part is, if necessary, calculated as the
limit where z tends to the real line from above.

Equations (55) and (59) are precisely the equations (19) and
(23) that we derived previously using the free convolution.

V. SPECTRUM OF THE ADJACENCY MATRIX

In the previous sections we have derived the spectral density
of the modularity matrix. To calculate the corresponding
quantity for the adjacency matrix we make use of an argument
of [44,45] as follows. The adjacency matrix can be written
in terms of the modularity matrix as A = B + kkT /2m,
where k is the n-element vector with elements ki . Hence any
eigenvalue-vector pair z,v of the adjacency matrix satisfies(

B + kkT

2m

)
v = zv, (60)

which can be rearranged to read

kT v
2m

(zI − B)−1k = v. (61)

Multiplying by kT , we then find that

1

2m
kT (zI − B)−1k = 1. (62)

Expanding k as a linear combination of the eigenvectors bi of
B, this result can be written

1

2m

n∑
i=1

(kT bi)2

z − βi

= 1, (63)

where βi are the eigenvalues of the modularity matrix.
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FIG. 2. (Color online) The solutions λi to Eq. (63) correspond
to the points where the left-hand side of the equation (solid curves)
equals 1 (dashed horizontal line). This implies that the values of the λi

are interleaved between the eigenvalues βi of the modularity matrix.

The solutions of this equation can be visualized as in Fig. 2.
The solid curves represent the left-hand side of the equation,
which has poles as shown at z = βi for all i. The dashed
horizontal line represents the 1 on the right-hand side and
the points at which it intercepts the curves are the solutions
for z of (63), which are the eigenvalues λi of the adjacency
matrix. If we number the eigenvalues of both A and B in
order from largest to smallest, the geometry of Fig. 2 implies
that the eigenvalues must satisfy an interleaving condition of
the form λ1 � β1 � λ2 � β2 � · · · � λn � βn. In the limit of
large n, where the spectral density of the modularity matrix
becomes a smooth function and the eigenvalues are arbitrarily
closely spaced, this implies that λi → βi , so asymptotically
the spectral density of the adjacency matrix is the same as that
of the modularity matrix.

The only exception is the highest eigenvalue of the
adjacency matrix λ1, which is bounded below by β1, but
unbounded above. To calculate this value we average (62)
over the ensemble and recall, as demonstrated in Sec. IV, that
〈(zI − B)−1〉 is diagonal and, hence,

1

2m
kT 〈(zI − B)−1〉k = 1

2m

∑
i

k2
i 〈[(zI − B)−1]ii〉. (64)

Combining this result with (62) and using Eq. (48), we then
have

1

c

∫ 1

0
k2(x)γz(x) dx = 1. (65)

Taking Eq. (49), multiplying by the right-hand denominator
and a further factor of k(x), and then integrating over x, we
get

czh(z) − h(z)
∫ 1

0
k2(x)γz(x) dx =

∫ 1

0
k(x) dx. (66)

And combining this result with Eq. (65) and noting that∫ 1
0 k(x) dx = ∫ ∞

0 k p(k) dk = c, we have

(z − 1)h(z) = 1. (67)

The solution of this equation for z gives us the leading
eigenvalue λ1 of the adjacency matrix.

For the Poisson random graph, for example, this result, in
combination with Eq. (24), tells us that the leading eigenvalue

takes the value c + 1. This is not a new result—it is well known
in the literature—but it is comforting to see that the formalism
works.

For the two-degree model of Eq. (27), we can use (67) to
eliminate h(z) from (27) and get

p1d1 + p2d2

(z − 1)2
= p1d1

z(z − 1) − d1
+ p2d2

z(z − 1) − d2
, (68)

which gives us a cubic equation for z. For the parameter values
used in Fig. 1, for example, d1 = 50, d2 = 100, and p1 = 1 −
p2 = 1

4 , we find that the leading eigenvalue of the adjacency
matrix is z = 93.893 . . .. A numerical calculation for the same
parameters is in good agreement, giving z = 93.896 ± 0.017
for an average over 100 systems of size n = 10 000.

For the case of general degree distribution, we can use (67)
to eliminate h(z) in Eq. (55) to get

z

z − 1
=

∫ ∞

0

q(k) dk

1 − k/(z2 − z)
. (69)

An exact solution to this equation requires us to perform
the integral, but one can derive an approximate solution by
expanding the denominator of the integrand,

z

z − 1
= 1 +

∫ ∞

0

∞∑
r=1

kr

(z2 − z)r
q(k) dk (70)

or

1

z − 1
=

∞∑
r=1

〈kr〉q
(z2 − z)r

, (71)

where 〈· · ·〉q denotes an average over the excess degree
distribution of Eq. (56). If z2 − z 	 kmax, where kmax is the
largest degree in the network, and noting that 〈kr〉q � kr

max,
we have

1

z − 1
= 〈k〉q

z2 − z
+ O[kmax/(z2 − z)]2 (72)

or

z 
 〈k2〉
〈k〉 (73)

to leading order, where we have made use of 〈k〉q = 〈k2〉/〈k〉.
This result was derived previously by other means by Chung
et al. [29].

Taking the example of the two degree model above again,
this approximation gives

z 
 p1d
2
1 + p2d

2
2

p1d1 + p2d2
, (74)

and for the parameter values of Fig. 1 we find that z 
 92.86,
which differs by about 1% from the true value of 93.89 given
by Eq. (68).

VI. NETWORK HUBS

The picture developed in the previous sections is one in
which the spectrum of the adjacency matrix has two primary
components: a single leading eigenvalue plus a continuous
band of lower eigenvalues, which it shares with the modularity
matrix.
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Let us examine more closely the continuous band and
concentrate on the case of the modularity matrix, which is
simpler since it has only the band and no separate leading
eigenvalue. Consider the eigenvalues that lie at the topmost
edge of the band, which are the highest eigenvalues of the
modularity matrix. These eigenvalues are normally associated
with good bisections of the network into “communities”—if
a good bisection exists, then there will be a corresponding
high-lying eigenvalue whose eigenvector’s elements describe
the split [6].

As we now argue, however, there is another mechanism that
generates high-lying eigenvalues, namely the presence of hubs
in the network—vertices of unusually high degree—and the
highest eigenvalues in the spectrum of the modularity matrix,
and also the lowest, are often due to these hubs, while those
corresponding to communities are somewhat smaller. As we
will see, for hubs of sufficiently high degree, these eigenvalues
can split off from the continuous band in a manner reminiscent
of impurity states in condensed matter physics. In effect, the
hub acts as an impurity in the network.

To see how the addition of a hub to a network produces a
high-lying eigenvalue, let the hub be vertex n and let Bn once
again be the modularity matrix without the nth vertex (i.e.,
with the nth row and column removed), so the full modularity
matrix looks like this:

B =

⎜
⎜
⎜
⎜
⎜

Bn a

aT bnn

. (75)

Now, in an argument analogous to that of the previous
section, consider an eigenvector of this matrix v = (v1|vn).
Then the eigenvector equation Bv = zv can be multiplied out
to give the equations

Bnv1 + vna = zv1, (76)

aT v1 + bnnvn = zvn. (77)

The first of these can be rearranged to give

v1 = vn(zI − Bn)−1a. (78)

Multiplying by aT and using the second equation then gives

aT (zI − Bn)−1a = z − bnn. (79)

Now we note that the ith element of a is an independent
random variable with variance knki/2m and we can average
over the ensemble and apply Eq. (45) to rewrite the left-hand
side, giving

kn

2m
Tr[Dn〈(zI − Bn)−1〉] = z, (80)

where D is the diagonal matrix with elements ki as before,
Dn is the same matrix with the nth row and column removed,
and we have made use of the fact that 〈bnn〉 = 0. We note, as
previously, that if the quantity Tr(Dn〈(zI − Bn)−1〉)/2m tends
to a limit as the network becomes large, then that limit is equal
to the function h(z) defined in Eq. (52). Thus, the eigenvalue

z satisfies

h(z) = z

kn

. (81)

Substituting this expression into Eq. (55) and rearranging, we
get an explicit expression for the eigenvalue:

z2 = k2
n

c

∫ ∞

0

k p(k) dk

kn − k
. (82)

This calculation also extends to the case where there is more
than one hub in the network. Because the hub is treated no
differently from any other network vertex, the same arguments
apply if we add a second hub, or more, after the first. Equation
(82) will give the correct eigenvalue for each hub separately.

Once again, our ability to actually solve for the value of
z will depend on whether we can do the integral in Eq. (82)
(although one could also evaluate the integral numerically).
In the special case where the hub degree kn is much larger
than the expected degree of any of the other vertices, so
that kn − k 
 kn in the denominator of the integrand, the
expression simplifies to

z2 = kn

c

∫ ∞

0
k p(k) dk = kn, (83)

and, hence, z = √
kn.

The solutions of Eq. (81) can be represented graphically
as in Fig. 3. The curves in the figure represent the function
h(z) and the diagonal lines represent z/kn. The point where
the two cross give the eigenvalues. As the figure shows, when
the expected degree kn of the nth vertex is large enough, the
equation has two solutions, one for low z and one for high and
both given by Eq. (82), that are separate from the continuous
spectrum of eigenvalues we calculated in Sec. III.

z

h(z)

Spectral band

(a)

(b)

FIG. 3. (Color online) Graphical solution of Eq. (81). The solid
curves represent the value of h(z) as a function of z, above and below
the spectral band, and the hub eigenvalues, which are solutions of
Eq. (81), fall at the points where this curve intersects the straight
line z/kn, represented by the dashed diagonal line. The slope of this
line is 1/kn, and hence when kn is large enough, the lines intersect—
case (a)—and we have two hub eigenvalues, one above and one below
the band (marked by dots). Case (b) is the borderline case. If kn is
any less than this value, then there is no intersection and the highest
and lowest eigenvalues will be those at the band edges.
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How high a degree does a hub have to have to generate
eigenvalues of this kind? The answer can be seen from
Fig. 3—kn must be large enough for the line z/kn to intercept
the curve of h(z). Thus, there is a critical value of kn,
represented by the steeper diagonal in the figure, below which
the hub eigenvalues vanish. Below this point, the highest
eigenvalue will fall at the edge of the continuous band as
normal and there will be no special hub eigenvalue. We can
derive an expression for the transition point by observing that,
as shown in Sec. III B, the slope of h(z) diverges at the band
edge, which implies that dz/dkn = 0. Differentiating Eq. (82)
and setting the result to zero, we find that the critical value of
kn is the solution of∫ ∞

0

k p(k) dk

kn − k
=

∫ ∞

0

k2 p(k) dk

(kn − k)2
. (84)

For example, in the case of the Poisson random graph, this
implies that the transition takes place at the point where
c/(kn − c) = c2/(kn − c)2, i.e., when kn = 2c. Thus, we must
have kn > 2c for the hub to have an effect on the spectrum.

This gives us a working definition of what we mean by a
“hub” in a network. It depends, not surprisingly, on the degree
distribution of the rest of the network—what it takes to stand
out in a crowd depends on the rest of the crowd. But in the
Poisson random graph, for instance, a hub is a hub, in spectral
terms, if its degree is greater than twice the average in the
rest of the network. This is an unexpected result, given that
vertices of high degree are easily spotted long before this point
is reached, at least for large c. Since the standard deviation of
the degree distribution is

√
c, a vertex with degree twice the

mean is
√

c standard deviations above the mean, which is a
large number for large c.

Nonetheless, the result does appear to be correct. Figure 4
shows the results of numerical calculations of the largest
eigenvalue of the modularity matrix for a Poisson random
graph with a single additional hub of expected degree kn, as
a function of kn. As the figure shows, the eigenvalue obeys
Eq. (82) quite closely until kn falls below 2c (the vertical
dashed line). Past this point, the leading eigenvalue assumes
the same value 2

√
c as in a standard Poisson random graph

with no hub (the horizontal line), even though the hub may
still be present.

Outlying eigenvalues reminiscent of those generated by hub
vertices have also been observed in other circumstances. For
instance, in networks with modular structure, where vertices
break into tightly connected groups with only sparse intergroup
connections, eigenvectors are observed outside the continu-
ous spectral band when communities are sufficiently strong
[46–49]. The mechanism by which these eigenvalues are
generated, however, is distinct from the hub-based mechanism
discussed in this section.

Putting together our principal observations, we have now
developed quite a complete picture of the spectrum of the
configuration model. We expect the spectrum to have two
main parts plus a third when the degree distribution implies
the presence of hubs:

(1) There is a single eigenvalue given by the solution of
Eq. (67), which will normally be the leading eigenvalue.

(2) There is a continuous band, given by Eq. (23). For
bounded degree distributions the band will also be bounded,
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FIG. 4. (Color online) The largest eigenvalue of the modularity
matrix for a Poisson random graph of mean degree c = 100 plus a
single additional hub of expected degree kn. Points are numerical
results, averaged over 1000 networks of n = 10 000 vertices each.
Statistical errors on the measurements are smaller than the points in
all cases. The solid curve is Eq. (82), which gives z = kn/

√
kn − c

in this case, and the horizontal dashed line represents the value z =
2
√

c = 20, which is the lower limit on the eigenvalue set by the edge
of the continuous spectral band. The vertical dashed line represents
the critical value kn = 200 of the hub degree, set by Eq. (84).

both above and below, and have edges that decay to zero as a
square root.

(3) If there are hubs in the network, then there will be
additional eigenvalues outside the band at both ends, given
by Eq. (82). Each hub contributes two eigenvalues, one at each
end of the band.

A. Localization around hubs

One can also look at the eigenvector corresponding to a hub
eigenvalue, which turns out to be heavily localized around the
hub vertex. All the elements of the eigenvector, except for the
element vn corresponding to the hub itself, are given in terms
of vn by Eq. (78). For given a, the expected value of the ith
component is

vi = vn[〈(zI − Bn)−1〉a]i = vn[〈(zI − Bn)−1〉]iiai, (85)

where we have once again made use of the fact that 〈(zI −
Bn)−1〉 is diagonal [see Eq. (44)].

The ith element of the vector a takes the value ai =
1 − kikn/2m for vertices i that are connected to the hub and
−kikn/2m for those that are not. Hence, in the limit of large
n, eigenvector elements corresponding to neighbors of the hub
will be of order a constant, with expected value

vi = vnγz(i/n) = vn

z − kih(z)
= vn

z(1 − ki/kn)
, (86)

with z given by Eq. (82), while the remaining elements will be
of order 1/n.

The value of vn can be determined by insisting that the
complete eigenvector be normalized. Using Eq. (78) we can
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write the normalization condition in the form

1 = |v|2 = v2
n + |v1|2 = v2

n[1 + aT (zI − B)−2a]

= v2
n

[
1 − d

dz
aT (zI − B)−1a

]
. (87)

When we average over the ensemble we have, by analogy with
Eq. (46),

〈aT (zI − B)−1a〉 = kn

2m
Tr〈D(zI − B)−1〉 = knh(z), (88)

and, hence, (87) implies that

v2
n = 1

1 − knh′(z)
, (89)

where h′(z) denotes the first derivative of h(z), and we are
assuming once again that the vector element vn is narrowly
peaked about its expected value. Note that h′(z) is negative at
both the positive and negative band edges and diverges to −∞
as we approach the band edge. Thus vn → 0 as we approach
the transition at the which the hub eigenvalue disappears.

The results above apply to the hub eigenvectors at both ends
of the spectral band, there being two eigenvalues for each hub
vertex, one at either end, as shown in the previous section.
Both eigenvectors will have a single element of order 1 in the
position corresponding to the hub itself, elements of order 1/z

in the positions corresponding the neighbors of the hub [see
Eq. (86)], and all other elements of order 1/n. In other words,
both eigenvectors are strongly localized in the neighborhood
of the hub. The only qualitative difference between the two
eigenvectors is in the sign of the elements corresponding to
the neighbors which, because of Eq. (86), will have the same
sign as vn for the positive eigenvalue and the opposite sign for
the negative one. Localization around hubs has been observed
numerically in the past for a different class of network models,
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FIG. 5. (Color online) Values of elements of the leading eigen-
vector of the modularity matrix for a Poisson random graph with n =
10 000 vertices and mean degree c = 100, with a single added hub of
degree kn. Main figure: value of the vector element corresponding to
the hub itself. Inset: average value of the elements corresponding to
the hub’s immediate network neighbors. Points are numerical results,
averaged over 100 networks each; curves are the analytic prediction,
Eq. (90). Statistical errors are smaller than the data points in all
cases.

the preferential attachment models, by Goh et al. [50], but
has not to our knowledge been demonstrated analytically or
studied in the configuration model.

As an example of the above results, consider again the
Poisson random graph, for which h(z) is given by Eq. (24) and
z is given by Eq. (82) to be ±kn/

√
kn − c, so h′(z) = −1/(kn −

2c) and the expected values of the eigenvector elements at both
ends of the spectrum satisfy

v2
i =

⎧⎪⎨
⎪⎩

(
1
2kn − c

)
/
(
kn − c

)
for i = n,(

1
2kn − c

)
/
(
kn − c

)2
for i a neighbor of n,

0 otherwise,

(90)

in the limit of large network size. Figure 5 shows a comparison
of these predictions with numerical results for actual networks.
As the figure shows, the agreement is once again good,
although, as with some of the other calculations, there are small
disparities close to the transition at which the hub eigenvalue
meets the band edge (which is at kn = 200 in this case).

VII. CONCLUSIONS

In this paper we have studied the spectra of the adjacency
and modularity matrices of random networks with given
expected degrees. Our principal findings are that the spectral
densities of the adjacency and modularity matrices are the
same in the limit of large system size, except that the adjacency
matrix has an additional highest eigenvalue and that the spec-
tral densities are given by the free multiplicative convolution of
the degree distribution with a Wigner semicircle distribution.
We have confirmed these results with numerical studies of
actual networks generated according to the model. The spectra
show strong departures from the classical semicircle law, in
agreement with numerical studies by previous authors.

We have also studied the effect of network hubs, vertices
of unusually high degree, and find that when their degree
is sufficiently large these give rise to eigenvalues outside
the main band of the spectrum, akin to impurity states
in condensed matter systems. We have derived an explicit
formula for these hub eigenvalues and we show that the
corresponding eigenvectors are strongly localized around the
hubs themselves.

In addition to their relevance to partitioning, community
structure, and dynamical systems on networks, the techniques
developed here could form a starting point for spectral calcu-
lations in more elaborate networks. There has, for instance,
been recent interest in the spectral properties of community
structured networks [46,49], but calculations have been limited
to models with Poisson degree distribution. Applications of
the methods presented here to such networks could lead to
new results for structured networks with nontrivial degree
distributions.
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