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A model for clustering

By DAVID J. STRAUSS
Department of Statistics, Unsversity of California, Riverside

SUMMARY

A number of tests are available for the null hypothesis that a set of points in a region are
scattered randomly, but relatively little is known about forms for the alternative. It is
shown that under certain assumptions, the most severe of which is of Markov type, the
probability density of the points must be of a simple explicit form depending on a
single clustering parameter. The estimation of the parameter is studied and illustrated
with an example.

Some key words : Clustering ; Hammersley—Clifford theorem; Markov random field ; Multidimensional
point process; Persistence; Poisson process.

1. INTRODUCTION

In recent years the problem of generalizing the discrete Markov chain to higher dimen-
sions has attracted considerable attention. For the two-state nearest-neighbour system on
a Euclidean lattice, the so-called Markov random field, it has been proved by Spitzer (1971)
and others that the probability density is necessarily of the explicit form of the Gibbs
random field. The distribution, under the null hypothesis of randomness, of certain statistics
measuring clustering or diversity has been studied by David (1970, 1971), who considers
both the multistate and the multiple occupancy generalizations. A very general theorem,
specifying the probability structure under an alternative hypothesis of clustering, has been
given by Grimmett (1973).

Suppose that, given a set of points in Euclidean space, we wish to test for clustering and
measure its intensity if it exists. This might be appropriate if, for example, the points
represent incidence of a disease on a map of a city. An alternative to partitioning the space
by a lattice framework is to seek a continuous model for the probability density of the points
themselves. This leads to the idea of defining the point density to be some function of all the
interpoint distances. Such a density will be invariant under translation and rotation of the
data points, a property which will in many practical situations be a natural and desirable
one. However, the general model of this type seems to be intractable.

This paper is concerned with the special case when the distance between two points is
replaced by an indicator variable showing whether or not the points are ‘close’. In addition
we will require that the joint density is a symmetrical function of the data points. Otherwise

our probability density would be inconsistent, in the sense of being dependent on the .

labelling of the data points. It is then an easy consequence of Euler’s theorem on homogeneous
functions that our joint density must be a function of the sum of the indicator variables.
That is, the density depends only on the number of pairs of points which are close. Provided
our space is large enough, the number of close pairs, Y, may range from 0 to 4n(n—1);
the density may be assigned arbitrary values at each Y value, subject to their sum being
unity.
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Clearly some further restriction will be necessary if we want a reasonable model for
clustering. The approach adopted here is to make an additional assumption of Markov type,
and prove that it holds if and only if the joint density is of a simple geometric form,
depending on & single clustering parameter. The form is similar to that of the discrete
Gibbs random field, and the equivalence lemma may be regarded as a continuous analogue
of Spitzer’s theorem.

2. A CHARACTERIZATION LEMMA

Let D be a bounded, not necessarily connected, subset of v-dimensional Euclidean space.
The data are represented by » points 2, ..., 2, in D. Let r be a fixed positive number, and
Y, be the number of pairs of points whose Euclidean distance apart is less than r. Thus

Yo=Y\, ... %) = Ty, (1)
i<j
where

= 1 (|zg—=y < 1),
9710 otherwise.

Denote by T, the number of points in the set {z,, ..., z,_;} which are within distance r of z,,;
that is,
T, =To(y,....2,) =Y, - Yy, (2)

We take, without loss of generality, the hypervolume of D to be unity. Consider the two
following assumptions.

(¢) The joint density of (z,, ..., z,) is a function of y, alone; that is, f(x,, ..., %,) = @,(¥,.)
for all (x4, ...,2,) in D*. This assumption was suggested in §1; it holds under randomness,
with @,(y) = 1 for all possible y values.

(b) The density of X,, conditional on z,, ..., z,_, is a function of ¢, alone;

f(xalxl’ AR xn—l) = gn(tn)r (3)

say. A rough interpretation of (b) is that z, is only affected by what happens within a
range r of it, and further that only the number of points within the range is relevant. This
restricted range of influence is analogous to the nearest-neighbour condition for a discrete
Markov random field; see, for example, Spitzer (1971).

Lenma. For assumptions (a) and (b) to hold, st 18 necessary and sufficient that the joint density
be of the form
f(@y, ..., 2,) = e[ My (v). (4)

Here My (.) is the moment generating function of ¥, under the randomness hypothesis.
- The parameter v measures the clustering tendency, and is independent of =.

Proof. Assume (4). Then (a) is true, and the left-hand side of (3) becomes e™a—¥a—1) times
a function of » and v. Equation (3) now follows from (2).

Next, assume (a) and (b); (3) gives that, for all (z,, ..., 2,) in D% $,(U)/fn1(¥n_1) = Falta):
Set ¢, = 0. It will always be possible to pick a set (z;, ..., z,) such that ¢, = 0, except in the
trivial case when D is a subset of every hypersphere of radius r with centre in D. Then for
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0 < Yoy < $n—1) (0 —2), Go(¥n_1)/Bn_1Un_1) = ga(0). The lower bound for y,, will be
larger if D is ‘crowded’. Hence
¢n(yn-—-l +tn) = gn(tu)
¢n(yn~1) gn(O) ’
for all possible values of y,,_; and ¢,,.
If now we set v = log {g,(1)/g,,(0)}, then

¢n(yn—l + t) = ¢u(yn—1 + 1) ¢ﬂ(yn—1 + t) = et
¢n(yn—1) ¢n(yn—1) o ¢n(yn-1 + t— 1) '

Thus ¢, (y) cc %, for all possible y values. The constant of proportionality in (4) is obtained
by noting that f(z,,...,z,) is a probability density. Finally, v must be independent of n.
Forif v, + v,_, then (4) will not reduce (3) to & function of ¢, alone.

There follow some remarks on the result.

(i) This paper deals with the case when the region of influence is & hypersphere of radius 7,
i.e. an interval, circle or sphere. The lemma holds for other shapes, such as a hyperinterval,
with trivial modifications.

(it) A physical interpretation of the parameter v is that given a set of data with two
isolated points, the likelihood is increased by a factor ev if one of the points is moved to
within a distance r of the other. Negative values of v correspond to repulsion between the
points, and v = 0 gives randomness.

(i) According to (4), the density of Y for a given value of v, f,(y) is related to the density

of y under randomness by
Joy) = foly) €[ My (v).

Thus if, for example, the null density of Y is approximately N(u,o?), then the nonnull
density is approximately N(u+ vo?, o%).

(iv) The lemma shows how, with assumptions (a) and (b), the problem of estimating the
degree of clustering reduces to the problem of the distribution of ¥ under randomness.
Because visindependent of n, it is possible to compare the clustering of different sets of data,
particularly if r is the same in each case.

3. SOME GENERAL PROPERTIES

Let K(.) be the cumulant generating function under the randomness hypothesis, and let
&, be the sth null cumulant of Y. Let «,(v) be the sth cumulant under the alternative hypo-
thesis, when the clustering parameter is v, and let K (f) be the corresponding cumulant
generating function, with argument ¢. The «,(v) are related to the null cumulants «, in the
usual way in the exponential family, namely

k(o) = 2 (K(v)) ®)
Thus,
vz
E(YIU)=K1+‘UK3+2—IK3+..., (6)
and so on.
Both maximum likelihood and the method of moments lead to
)
o KO} =y )

for the estimator #. Equation (7) involves all the null cumulants, but it does not seem
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possible to compute them all. To get an approximation for 9, two possibilities are to truncate
(7) after, say, the fourth cumulant, which would give a cubic equation in 9, or to approxi-
mate the cumulants by those of & convenient fitted distribution, such as a linearly trans-
formed y2.

For a y? approximation, set Y = a+bX, where X is distributed as y? on s degrees of
freedom. The quantities a, b and s can be estimated from the cumulants of ¥ by

a = Ky —2k3[ky, b= }Ky/Ky, 8= 8k3[kE.
The cumulant generating function of Y is easily obtained, and (7) reduces to

1 8

k> ST

(8)
Thus, for example, ¥ = 0 if ¥ = «;, a8 expected.

Large-sample significanoe tests and confidence intervals for v are easily obtained from the
asymptotic variance of v. The information statistic, from (4), is K;(v). The chi-squared

approximation for Y leads to
var (v) = (1— 2bv)?[(2b%).

Alternatively the fourth cumulant truncation of K can be used, giving
var (v) = (ky+ kgv + $£,0%) 1.

The question arises of the adequacy of the 2 approximation. Of course an exact answer
would require knowledge of all the null cumulants of Y, which seems unobtainable. Instead,
one might have reasonable confidence if the ¥ approximation and truncation of (7) at the
fourth cumulant gave closely similar results. For the former assumes all the null cumulants
of Y to be positive whilst the latter assumes all cumulants beyond the fourth to be zero.
Unfortunately it is scarcely possible to compare the two approximations systematically
since there are evidently too many variables to consider, namely the number of dimensions,
thenumber of data points, the value of , and the observed value of Y. However, the following
comments may be useful.

(i) If the observed y is sufficiently close to its null mean «,, both approximations are
satisfactory in the sense that the difference between the true 9 and the computed
approximation tends to zero as ¥ tends to zero. This is clear from (7) and (8). Indeed if y =«
and so 9 = 0, the right answer would be obtained either from (8), or by truncation of (7) even
after the second cumulant, a normal approximation to the distribution of Y.

(ii) As a rule of thumb, it seems from examples that even the normal approximation will
suffice if y is so close to «; that we are primarily interested in a test of the hypothesis of no
clustering, v = 0. However, for practical problems showing a moderate degree of clustering
truncation after only two or three cumulants is not recommended.

(iii) Another rough rule of thumb is that when | Y —«,| is less than about ten standard
deviations the approximations from y2? and from fourth cumulant truncation are ‘tolerably
close’; it seems that they usually differ by less than 5 %,. An example is given in § 5. The
approximations breakdown for very extreme cases of clustering or segregation, and there
is then no satisfactory estimator for 9. In any event, the assumptions of the present model
would scarcely apply to, for example, the pattern of fruit trees in a commercial orchard.
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4. THE MODEL IN ONE, TWO AND THREE DIMENSIONS

4-1. General
This section gives some formulae and results necessary for application of the model. The
derivations are elementary, but in many cases rather lengthy; we give a few details below,
in order to indicate the method. We use the notation of (1). Factorial powers and moments
are denoted by round and square brackets respectively.

4-2. One dimension
The domain D here is the unit interval, on which are the »n data points z,,...,z,. The
‘sphere of influence’ of the lemma becomes, for each n, the interval {(x—r,z+7)n (0, 1)}.
We give the first four cumulants of the statistic Y for the case when the distance r does not
exceed }. This case is probably the most useful in practice. Results for r values greater than
} can be obtained similarly. We have

p=E(Y)= (’;)E(am) - (:){(1—2r)(2r)+2 0'(x+r)dx}

= (g)r(2 —r).

For higher cumulants it is simplest to use factorial moments. Thus

g = E(Y®) = }n® E(a;g0y,) + 79 E(ay305)
= }r3(2—7)2n@® 4 §rin®(6 — br).

The third factorial moment involves five types of term, obtained by the Vandermonde
expansion of Y@, gsee Table 1. Here yyq is the sum of products from the last two columns.

For the fourth factorial moment, Table 2 gives eleven distinct cases. For example,
E(a,3a5304,0,,) i8 best obtained by first fixing z,, and then integrating over z4 the square of
the probability of obtaining a point within a distance r of both z; and z;. This requires
separate calculations according to whether z, lies within r of an end-point, between r and 2r,
or neither.

The third and fourth cumulants may be obtained from Tables 1 and 2. It can be shown
that, for each value of r, a8 n - 0

Kofci = O(n72), 3[xd = O(n™),

suggesting a limiting normal form for Y. It is not apparent how the exact distribution of
Y might be obtained.

Table 1. Third factorial moment of Y

Typical term Number Expectation
in expansion of terms of term
Xyg Xy Xgg In® r}2—r)
Qg &y3 Ay n® #(2—r)(6—5r)
T STIo AT n® r3(8—11r)
LTSt 3n@ (8 —%2r)
Qg Qey Ay n® r3(3—2r)

n\®
Total number of terms, ( 2)
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Table 2. Fourth factorial moment of Y

Typical term Number of terms Expectation
(i) yg Xy Apg gy T5n® ri(2—r)
(ii) Uy X3 XysAgy In? §4(2—r)?(6—5r)
(iii) Oyg g3 Uyy sy 2n®. r(2—1)(8-3r)
(iv) Qyy Oy Opy Ay 6n® (2 —7) (8 —2tr)
(v) Uy Xy AygAgg 3n® 4ri(6 —5r)t
(v1) Qg oy g Ay 12n® (16 —21-4r)
(vii) [ Y TN A n® r4(16 — 19-6r)
(viii) Oyg Qlgy Uy Ays 2n® r(2—r)(3—2r)
(ix) L. S - P 12n® (16 —%4r)
(x) Xyg gy Xyq Xygy 3n® 12 (1 —7)
(xi) Oy3 Cyg Ogy O 12n® r3(8—3]r)

n\@
Total number of terms, ( 2)

4-3. Two dymensions

The region of influence of a point x becomes a circle of radius r and centre z. The domain D,
which may represent a forest or a city, may have any shape, and has unit area. We write
A = 7r3. The case when an elliptical shape for the region is regarded as preferable may be
handled simply by scaling it along one dimension. Other shapes for the region, such as a
rectangle, would require separate calculation. In practice, to compute the cumulants we
require an additional assumption that 4 is small enough for boundary effects to be neglected.
Alternatively, the results below may be regarded as exact for the case when D is a closed
surface, such as that of a sphere.

Clearly

K, = B(Y) = (;‘) A4, ky=var(Y)= (;‘) A(1—A).
It can be shown that

Ky = (;‘)A(1_A)(1—2A)+n®( —%-/;_A) 4.

In Table 2 for the fourth factorial moment, all expectations are 44 except for (viii) and (xi),
each of which is 431 —$./3/n) and (x), which simplifies to A3{1 — 16/(37%)}.

This last formula, for example, is obtained by noting that the distance between x, and ;3
has probability density 2nd, and that for each d the required probability is the square of the
area common to two circles of radius r with centres z, and ;. The fourth cumulant reduces to

Ky = (Z’)A(l—A){I—BA(I—A)}+n(3)A2{A(l—%—A) +6(1—3T‘/7?— )(1-2,4)}.

For the limiting distribution, we have that
Ki[kg = P = (1-FJ@)fm— 4P 4[(1-A4)+0(n7),
3+ Kyfkt =By =3+ A{18[n2—3,/3)/m+T(1—A)}/(1—-A)2+ O(n ),

which do not converge to the normal form as n — oo unless the fixed value of 4 can be

regarded as negligible.
4-4. Three dimensions

Asin §4-3, we need to assume that ¥, the volume of a sphere of radius r, is small compared
with the unit volume of D. Calculations are comparable to those of §4-3; we again find

Ky = (;‘) V, Kky= (’;) v(1-7),
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whilst:
Ky = (’2‘) V(1—V)(1—27)+n®(15/32— V) V2.

For the fourth cumulant, (viii) and (xi) of Table 2 have expectation 157332, and (x) has
expectation 1654 ¥3/105. Hence, after simplification,

K= (';‘) V(1— V) {1-6V(1— V) +n@VE{VASEL — V) + 6(% — V) (1—2V)}.

For large values of n
_8Vag-V)

b= —a-vp O(n71),

whilst 3 = 34+ 0(n—1). Thus in three dimensions the kurtosis always converges to zero,
whilst the skewness does so only if V can be regarded as negligible here.

5. TEE CHOICE OF r

The range of influence, r, may set at any value which seems physically reasonable for the
given problem. Usually it will be sensible to try more than one value of r. It might be argued
loosely that the r giving the greatest absolute value for 9 is the most sensitive. Two further
considerations are as follows.

(@) To test the hypothesis v = 0 against the alternative v > 0 the uniformly most
powerful critical region is given by {y: y > c}. If r is to be selected so that the test based on it
is optimal, one is led to seek the value of r that yields a test with maximal asymptotic
efficiency. 1t follows from (3) that the appropriate value of r is that which maximizes the null
variance k,. However, it turns out that this is obtained whenr = 4, 4 = $and V = }inone,
two and three dimensions, and such values will normally be regarded as unacceptably large.

(b) Provided that it is physically realistic, a good choice of ¥ might be one that makes the
fourth cumulant of the fitted y? distribution close to the true fourth cumulant of Y. This will
depend on the value of n. It does not seem worthwhile to construct charts of the fourth
cumulants. Here we only remark that the standardized fourth cumulants converge to zero
in one and three dimensions. In two dimensions the limit is of the order of 4, assumed
negligible. Thus the closeness to the fitted y? fourth cumulant should become unimportant
as n gets large. Also it seems that for 2 less than 100 and r less than 0-15 in one, two or three
dimensions, the fitted x? cumulant almost always lies between £ and % of the true fourth
cumulant.

6. AN EXAMPLE

Figure 1 shows the distribution of 199 redwood seedlings found on a square experimental
plot. It was felt that the seedlings would be scattered fairly randomly, except that a number
of tight clusters would form around some of the redwood tree stumps present in the plot.
A discontinuity in the soil, very roughly demarked by the diagonal line in the figure, was
expected to cause a difference in clustering behaviour between regions I and II. Moreover,
almost all the redwood stumps were situated in region IT.

We compare the two regions by fitting the model. Possibly the Markov assumption (3) is
reasonably appropriate here. Naturally neither assumption of §2 will be strictly valid,
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perhaps the most likely difficulty being variations in fertility within each region. The
difference in mean density of seedlings between the two regions is no problem because the
parameter v is independent of the number of points. As will usually be the case, the choice
of r has to be somewhat arbitrary. Initially the value r, indicated in the figure, was selected.
It corresponds to about six feet on the ground, which was thought to be very roughly the
range at which a pair of seedlings could ‘interact’.

-

)

Fig. 1. 199 redwood seedlings in an experimental plot.

Using the notation and formulae of §3, we have for region I, the lower right portion in
the figure, y = 37, n = 77, 4 = 0-012223. The cumulants are x, = 35-7644, x, = 35-3273,
Ky = 72-1205, k; = 253-572. The closeness of y to «; confirms the visual impression that
there can be little clustering in region I. We obtain $ = 0-034, with a standard error of 0-16,
both with the y? approximation to Ky (v) and with the truncation of K at the fourth
cumulant. Obviously region II shows clustering. Here y = 275, whilst x; = 60-919, etc.
Fourth camulant truncation yields $ = 1-03, with a standard error of 0-048. For such strong
clustering the 2 approximation is unsatisfactory. Indeed, according to (8), the maximum
value possible, when y = co, is § = 0-94. Naturally the approximation to 9 obtained from
truncation at x4 is also open to question, and unfortunately there seems to be no way of
getting the exact value. As a very crude and ad hoc check, it turns out that if we set
x, = bk,_, for r > b5, quite arbitrarily, but hopefully fairly generously, we still obtain
9 = 0-93; whilst if some of the higher cumulants, or 9, are negative the error in truncation
should be greatly reduced.
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Although testing the hypothesis of no clustering, v = 0, is not our main concern here,
a remark may be in order. Instead of the standard normal test based on (y—«,)/|/ks, the
fitted x2 test should be more accurate. By ignoring the skewness in the distribution of ¥,
the normal test in each situation considered in this example underestimates the critical
point. However, for a two-tailed test at the 59, level, the discrepancy in the two critical
points is in each case only about 1 9, and is probably of little practical importance.

It might well be that still larger values of v could be obtained with different choices of r.
For comparison we give the analysis based on ry; this distance is twice r;, and probably too
large to be appropriate. For region I, y = 142, x; = 143-052, etc. Either method gives
9 = —0-008 with standard error of 0-09, confirming the impression of no clustering.

For region II, fourth cumulant truncation gives # = 0-359. The greatly reduced value of
9 obtained with r, instead of r; would be misleading if viewed by itself. Finally, even here y is
about 20 standard deviations above its null mean, see §3, and the x* fit gives the rather
different value of 0-287.

I am grateful to a referee for comments on an earlier draft of this paper.
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