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The stochastic block model is a powerful tool for inferring community structure from network topol-
ogy. However, it predicts a Poisson degree distribution within each community, while most real-world
networks have a heavy-tailed degree distribution. The degree-corrected (DC) block model can accommo-
date arbitrary degree distributions within communities. But since it takes the vertex degrees as parameters
rather than generating them, it cannot use them to help it classify the vertices, and its natural generaliza-
tion to directed graphs cannot even use the orientations of the edges. In this paper, we present variants
of the block model with the best of both worlds: they can use vertex degrees and edge orientations in the
classification process, while tolerating heavy-tailed degree distributions within communities. We show
that for some networks, including synthetic networks and networks of word adjacencies in English text,
these new block models achieve a higher accuracy than either standard or DC block models.

Keywords: complex networks; community detection; generative model; stochastic block model; degree
distribution.

1. Introduction

In many real-world networks, vertices can be divided into communities based on their connections.
Social networks can be forged by daily interactions such as karate training [1], the blogosphere contains
groups of linked blogs with similar political views [2], words can be tagged as different parts of speech
based on their adjacencies in large texts [3], and so on. Communities range from assortative clumps,
where vertices preferentially attach to others of the same type, to functional communities of vertices that
connect to the rest of the network in similar ways, such as groups of predators in a food web that feed
on similar prey [4,5]. Understanding various community structures, and their relations to the functional
roles of vertices and edges, is crucial to understanding network data.

The stochastic block model (SBM) [6–9] is a popular and highly flexible generative model for
community detection. It partitions the vertices into communities or blocks, where vertices belonging
to the same block are stochastically equivalent [10] in the sense that the probabilities of a connection
with all other vertices are the same for all vertices in the same block. With this rather general definition
of community, block models can capture many types of community structure, including assortative,
disassortative and satellite communities and mixtures of them [5,11–15].

c© The authors 2013. Published by Oxford University Press. All rights reserved.
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2 Y. ZHU ET AL.

The SBM assumes that each edge is generated independently conditioned on the block memberships.
Each entry Auv of the adjacency matrix is then Bernoulli-distributed, where the probability that Auv = 1
depends solely on the block memberships gu and gv of its endpoints. Since every pair of vertices in a
given pair of blocks are connected with the same probability, for large n the degree distribution within
each block is Poisson. As a consequence, vertices with very different degrees are unlikely to be in the
same block. This leads to problems with modelling real networks, which often have heavy-tailed degree
distributions within each community. For instance, both liberal and conservative political blogs range
from high-degree ‘leaders’ to low-degree ‘followers’ [2].

To avoid this effect, and allow degree inhomogeneity within blocks, there is a long history of gen-
erative models where the probability of an edge depends on vertex attributes θu as well as their block
memberships (e.g. [13,16]). A particularly elegant variant is the degree-corrected (DC) block model
of Karrer and Newman [17]. They consider random multigraphs, where Auv is Poisson-distributed with
mean θuθvωgu,gv . The most-likely value of θu is the observed degree du, and this model can thus generate
graphs with arbitrary (expected) degree distributions within each community.

On the other hand, the DC model cannot use the vertex degrees to help it classify the vertices,
precisely because it takes the degrees as parameters rather than as data that need to be explained. For
this reason, the DC model may actually fail to recognize communities that differ significantly in their
degree distributions. Thus, we have two extremes: the SBM separates vertices by degree even when it
should not, and the DC model fails to do so even when it should.

We have a similar problem for directed graphs. The natural generalization of the DC model, the
directed degree-corrected (DDC) block model, has two parameters for each vertex: the expected in-
degree and out-degree. But this model cannot even take advantage of edge orientations. For instance, in
English, adjectives usually precede nouns but rarely vice versa. Thus the ratio of each vertex’s in- and
out-degree is strongly indicative of its block membership. But the DDC model takes these degrees as
parameters, so it is unable to use this part of the data to classify words according to their parts of speech.

In this paper, we propose two new types of block model, which combine the strengths of the DC
and uncorrected block models. The oriented degree-corrected (ODC) block model is able to utilize
the edge orientations for community detection by only correcting the total degrees. We show that for
networks with strongly asymmetric behaviour between communities, including synthetic networks and
some real-world networks, ODC achieves a higher accuracy than SBM or DDC.

We also propose the degree-generated (DG) block model, which treats the expected degree of each
vertex as generated from a prior distribution in each block, such as a power law whose exponent varies
from one community to another. By including the probability of these degrees in the likelihood of a
given block assignment, the DG model captures the interaction between the degree distribution and
the community structure. In particular, it automatically strikes a balance between allowing vertices
of different degrees to coexist in the same community on the one hand, and using vertex degrees to
separate vertices into communities on the other. Our experiments show that DG works especially well
in networks where communities have highly inhomogeneous degree distributions, but where the degree
distributions differ significantly between communities. In some cases, DG has a further advantage in
faster convergence as it reshapes the parameter space, providing the algorithm a shortcut to the correct
community structure.

These new variants of the block model give us the best of both worlds. They can not only tolerate
heavy-tailed degree distributions within communities, but can also use degrees and edge orientations to
help classify the vertices. In addition to their performance on real and synthetic networks, our models
illustrate a valuable point about generative models and statistical inference: when inferring the structure
of a network, you can only use the information that you try to generate.
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ORIENTED AND DEGREE-GENERATED BLOCK MODELS 3

2. The models

2.1 Background: degree-corrected block models

Throughout, we use n and m to denote the number of vertices and edges, respectively, and k to denote
the number of blocks. The problem of determining k is a crucial model selection problem. In some
cases, we can use prior domain knowledge, such as the number of different parts of speech, or the
number of different factions into which a network splits over time. In the absence of such knowledge,
a variety of methods have been proposed; in particular, we could compute the likelihood of our various
models with different values of k, and apply a suitable penalty term as in the Akaike information
criterion (AIC) [18] or Bayesian information criterion (BIC) [19] to discourage overfitting. However,
in this paper, we assume that k is given.

In the original SBM, the entries Auv of the adjacency matrix are independent and Bernoulli-
distributed, with Pr[Auv = 1] = pgu,gv . Here, gu is the block to which u belongs, where p is a k × k
matrix. In the DC block model of Karrer and Newman [17] we consider random multigraphs where
the Auv are independent and Poisson-distributed, Auv ∼ Poi(θuθvωgu,gv). Here, ω replaces p, and θu is
an overall propensity for u to connect to other vertices. Note that since the Auv are independent, the
degrees du will vary somewhat around their expectations; however, the resulting model is much simpler
to analyse than the one that controls the degree of each vertex exactly.

Ignoring self-loops, the likelihood with which the DC model generates an undirected multigraph G
is then

P(G | θ ,ω, g)=
∏
u<v

(θuθvωgugv)
Auv

Auv!
exp(−θuθvωgugv). (2.1)

To remove the obvious symmetry where we multiply the θ ’s by a constant C and divide ω by C2, we can
impose a normalization constraint

∑
u:gu=r θu = κr for each block r, where κr =∑u:gu=r du is the total

degree of the vertices in block r. Under these constraints, the maximum likelihood estimates (MLEs)
for the θ parameters are θ̂u = du. For each pair of blocks r, s, the MLE for ωrs is

ω̂rs = mrs

κrκs
, (2.2)

where mrs is the number of edges connecting block r to block s (and edges within blocks are counted
twice). Substituting these MLEs for θ and ω then gives the profile log-likelihood [20]

log P(G | g)= 1

2

k∑
r,s=1

mrs log
mrs

κrκs
. (2.3)

Here we ignore constants that are independent of g, namely
∑

u du log du,
∑

uv log Auv!, and −m/2.

2.2 Directed and oriented degree-corrected block models

The natural extension of DC to directed networks, which we call the DDC block model, has two param-
eters θout

u and θ in
u for each vertex. The number of directed edges from u to v is again Poisson-distributed,

Auv ∼ Poi(θout
u θ in

v ωgu,gv). We impose the constraints
∑

u:gu=r θ
out
u = κout

r and
∑

u:gu=r θ
in
u = κ in

r for each
block r, where κout

r =∑u:gu=r dout
u and κ in

r =∑u:gu=r d in
u denote the total out- and in-degree of block r.
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4 Y. ZHU ET AL.

As before, let mrs denote the number of directed edges from block r to block s. Then the likelihood is

P(G | θ ,ω, g)=
∏
uv

(θout
u θ in

v ωgugv)
Auv

Auv!
exp(−θout

u θ in
v ωgugv)

=
∏

u(θ
out
u )d

out
u (θ in

u )
d in

u
∏

rs ω
mrs
rs exp(−κout

r κ in
s ωrs)∏

uv Auv!
. (2.4)

Ignoring the constant
∑

uv log Auv!, the log-likelihood is

log P(G | θ ,ω, g)=
∑

u

(dout
u log θout

u + d in
u log θ in

u )+
∑

rs

(mrs logωrs − κout
r κ in

s ωrs). (2.5)

The MLEs for the parameters (see Appendix A) are

θ̂out
u = dout

u , θ̂ in
u = d in

u , ω̂rs = mrs

κout
r κ in

s

. (2.6)

Ignoring constants again and substituting these MLEs gives

log P(G | g)=
k∑

r,s=1

mrs log
mrs

κout
r κ in

s

. (2.7)

In the DDC model, the expected in- and out-degrees of each vertex are completely specified by the
θ parameters. Thus DDC allows vertices with arbitrary degrees to fit comfortably together in the same
block. On the other hand, since the degrees are given as parameters, rather than as data that the model
must generate and explain, DDC cannot use them to infer vertex labels. Indeed, it cannot even take
advantage of the orientations of the edges, as shown below by its poor performance on networks with
strongly asymmetric community structure.

To deal with this, we present a partially DC block model capable of taking advantage of edge orien-
tations, which we call the ODC block model. Following the maxim that we can only use the information
that we try to generate, we correct only for the total degrees of the vertices, and generate the edges’ ori-
entations.

Let Ḡ denote the undirected version of a directed graph G, i.e., the multigraph resulting from erasing
the arrows for each edge. Its adjacency matrix is Āuv = Auv + Avu, so, for instance, Ḡ has two edges
between u and v if G had one pointing in each direction. The ODC model can be thought of as generating
Ḡ according to the undirected DC model, and then choosing the orientation of each edge according to
another matrix ρrs, where an edge (u, v) is oriented from u to v with probability ρgu,gv . Thus the total
log-likelihood is

log P(G | θ ,ω, ρ, g)= log P(Ḡ | θ ,ω, g)+ log P(G | Ḡ, ρ, g). (2.8)

Writing m̄rs = mrs + msr and κr = κ in
r + κout

r , we can set θu and ωrs for the undirected model to their
MLEs as in Section 2.1, giving

log P(Ḡ | g)= 1

2

k∑
r,s=1

m̄rs log
m̄rs

κrκs
. (2.9)
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ORIENTED AND DEGREE-GENERATED BLOCK MODELS 5

The orientation term is

log P(G | Ḡ, ρ, g)=
∑

rs

mrs log ρrs. (2.10)

For each r and s, we have ρrs + ρsr = 1, and the MLEs for ρ are

ρ̂rs = mrs/m̄rs. (2.11)

Note that ρ̂rr = 1
2 for any r. Substituting the MLEs for ρ and combining (2.9) with (2.10) gives the

profile log-likelihood for the ODC model as follows:

log P(G | g)=
k∑

r,s=1

mrs log
mrs

κrκs
. (2.12)

In order to understand ODC better, we analyse the edge orientation term (2.10) more carefully. Substi-
tuting the MLEs for ρ in (2.10) gives

log P(G|Ḡ, g)= 1

2

∑
rs

(mrs log ρ̂rs + msr log ρ̂sr)

= 1

2

∑
r |= s

m̄rs(ρ̂rs log ρ̂rs + ρ̂sr log ρ̂sr)+
∑

r

mrr log ρ̂rr

= −
∑
r<s

m̄rsτ(ρ̂rs)− (log 2)
∑

r

mrr. (2.13)

Here τ(x)= −x log(x)− (1 − x) log(1 − x) is the entropy function. The total number of inter-block
edges is

∑
r<s m̄rs, and the total number of intra-block edges is

∑
r mrr.

Examining (2.13), we see that the edge orientation term prefers highly directed inter-block connec-
tions, i.e., such that ρ̂rs are near 0 or 1, so that τ(ρ̂rs) is minimized. However, as τ(ρ̂rs)� log 2, it also
prefers disassortative structures, in which the number of intra-block edges mrr is as small as possible; it
has no basis on which to orient these edges, so they contribute a negative term to the log-likelihood.

Thus, while ODC can detect assortative structures due to the undirected term (2.9), and may do
better than DC or DDC if the connections between blocks are highly directed (for instance, if there are
three blocks, and all inter-block connections are oriented from the ‘lower’ block to the ‘higher’ one),
it performs best in disassortative networks with highly directed connections between blocks, so that
the orientation of most edges is determined by the block assignment of their endpoints. We will see an
example of this in a real-world network in Section 4.1.

We note that we could reduce ODC’s preference for disassortative structure by simply ignoring
the second term in (2.13). This would correspond to a generative model where inter-block edges are
directed, but intra-block edges are undirected. We have not pursued this.

We can also view ODC as a special case of DDC, where we add the constraint θ in
u = θout

u for all
vertices u (see Appendix B). Moreover, if we set θu = 1 for all u, we obtain the original block model,
or rather its Poisson multigraph version where each Auv is Poisson-distributed with mean ωgu,gv . Thus,
SBM � ODC � DDC, where A � B means that model A is a special case of model B, or that B is an
elaboration of A. We will see below that since it is forced to explain edge orientations, ODC performs
better on some networks than either SBM or DDC.
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6 Y. ZHU ET AL.

2.3 Degree-generated block models

Another way to utilize vertex degrees for community detection is to require the model to generate
them, according to some prior degree distribution derived from domain knowledge. For instance, many
real-world networks have a power-law degree distribution, but with parameters (such as the exponent,
minimum degree or leading constant) that vary from community to community. In that case, the degree
of a vertex gives us a clue as to its block membership. This yields our proposed DG block models. They
can tolerate heavy-tailed degree distributions within communities, but can also use degrees and edge
orientations to help classify the vertices.

In a DG model, we first generate the θ parameters of one of the DC block models discussed above,
i.e., the expected vertex degrees, and then use them to generate a random multigraph. Specifically, each
θu is generated independently according to some distribution whose parameters ψ depend on the block
gu to which u belongs. Thus DG is a hierarchical model, which extends the previous DC block models
by adding a degree generation stage on top, treating the θ ’s as generated by the block assignment g and
the parameters ψ rather than as parameters.

We can apply this approach to the undirected, directed, or oriented versions of the DC model; at the
risk of drowning the reader in acronyms, we denote these DG-DC, DG-DDC and DG-ODC. In each
case, the total log-likelihood of a graph G is

log P(G |ψ ,ω, g)= log
∫

dθP(G | θ ,ω, g)P(θ |ψ , g), (2.14)

where
P(θ |ψ , g)=

∏
u

P(θu |ψgu). (2.15)

For the directed models, we use θu as a shorthand for θ in
u and θout

u .
As in many hierarchical models, computing this integral appears to be difficult, except when P(θ |ψ)

has the form of a conjugate prior such as the Gamma distribution (see Appendix C). We approximate it
with a point estimate by assuming that it is dominated by the most-likely value of θ ,

log P(G |ψ ,ω, g)≈ log P(G | θ̂ ,ω, g)+ log P(θ̂ |ψ , g). (2.16)

However, even determining θ̂ is challenging when P(θ |ψ) is, say, a power law with a minimum-
degree cutoff. Thus we make a further approximation, setting θ̂ just by maximizing the block model
term log P(G | θ̂ ,ω, g) as we did before, using (2.6) or the analogous equations for the DC or ODC.
In essence, these approximations treat P(θ̂ |ψ , g) as a penalty term, imposing a prior on the degree
distribution of each community with hyperparameters ψ . This leads to community structures that might
not be as good a fit to the edges, but compensate with a much better fit to the degrees.

We can either treat the degree-generating parameters ψ as fixed—say, as predicted by a theoreti-
cal model of network growth [21–23]—or infer them by finding the ψ̂ that maximizes P(θ̂ |ψ). For
instance, suppose the θu in block gu = r are distributed as a continuous power law with a lower cutoff
θmin,r. Specifically, let the parameters in each block r be ψr = (αr,βr, θmin,r), and let

P(θu |ψr)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
βr θu = 0,

0 0< θu < θmin,r,
(1 − βr)(α − 1)

θmin,r

(
θu

θmin,r

)−αr

θu � θmin,r.

(2.17)
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ORIENTED AND DEGREE-GENERATED BLOCK MODELS 7

In the directed case, we have ψ in
r = (αin

r ,β in
r , θ in

min,r) and ψout
r = (αout

r ,βout
r , θout

min,r). Allowing βout
r to be

non-zero, for instance, lets us directly include vertices with no outgoing neighbours; we find this useful
in some networks. Alternately, we can choose (θ in

u , θout
u ) from some joint distribution, allowing in- and

out-degrees to be correlated in various ways.
We fix θmin,r = 1. Given the degrees and the block assignment, let Yr = {u : gu = r and θu |= 0}, and

let yr = |Yr|. The MLE for αr is [24]

α̂r = 1 + yr∑
u∈Yr

ln θu
. (2.18)

The MLE for β̂r is simply the fraction of vertices in block r with degree zero.

3. Experiments on synthetic networks

In order to understand under what circumstances our models out-perform previous variants of the block
model, we performed experiments on synthetic networks, varying the degree distributions in communi-
ties, the degree of directedness between communities, and so on.

First, we generated undirected networks according to the DG-DC model, with two blocks or com-
munities of equal size n/2. In order to confound the block model as much as possible, we deliberately
designed these networks so that the two blocks have the same average degree. The degree distribution in
block 1 is a power law with exponent α = 1.7, with an upper bound of 1850, so that the average degree
is 20. The degree distribution in block 2 is Poisson, also with mean 20. As described in Appendix D, the
upper bound on the power law is larger than any degree actually appearing in the network; it just changes
the normalizing constant of the power law, and the MLE for α can still be calculated using (2.18). We
assume the algorithm knows that one block has a power-law degree distribution and the other is Poisson,
but we force it to infer the parameters of these distributions.

As in [17], we use a parameter λ to interpolate linearly between a fully random network with no
community structure and a ‘planted’ one where the communities are completely separated. Thus,

ωrs = λωplanted
rs + (1 − λ)ωrandom

rs , (3.1)

where

ωrandom
rs = κrκs

2m
, ωplanted =

(
κ1 0
0 κ2

)
. (3.2)

We inferred the community structure with various models. We ran the Kernighan–Lin (KL) heuristic
first to find a local optimum [17], and then ran the heat-bath Markov Chain Monte Carlo (MCMC)
algorithm with a fixed number of iterations to further refine it if possible. We initialized each run with
a random block assignment; to test the stability of the models, we also tried initializing them with the
correct block assignment. Since isolated vertices do not participate in the community structure, giving
us little or no basis on which we can classify them, we remove them and focus on the giant component.
For λ= 1, where the community structure is purely the ‘planted’ one, we kept two giant components,
one in each community.

We measured accuracy by the normalized mutual information (NMI) [25] between the most-likely
block assignment found by the model and the correct assignment. To make this more concrete, if there
are two blocks of equal size and 95% of the vertices in each block are labelled correctly, the NMI is
0.714. If 90% in each group are labelled correctly, the NMI is 0.531. For groups of unequal size, the
NMI is a better measure of accuracy than the fraction of vertices labelled correctly, since one can make
this fraction fairly large simply by assigning every vertex to the larger group.
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8 Y. ZHU ET AL.

λ

Fig. 1. Tests on synthetic networks generated by the DG-DC model. Each point is based on 30 randomly generated networks with
n = 2400. For each network and each model, we choose the best result from 10 independent runs, initialized either with random
assignments (the suffix R) or the true block assignment (the suffix T). Each run consisted of the KL heuristic followed by 106

Markov Chain Monte Carlo (MCMC) steps. Our DG block model performs much better on these networks than the DC model.
The non-DC (SBM) model does not work at all.

As shown in Fig. 1, DG-DC works very well even for small λ. This is because it can classify most of
the vertices simply based on their degrees; if du is far from 20, for instance, then u is probably in block 1.
As λ increases, it uses the connections between communities as well, giving near-perfect accuracy for
λ� 0.6. It does equally well whether its initial assignment is correct or random.

The DC model, in contrast, is unable to use the vertex degrees, and has accuracy near zero (i.e., not
much better than a random block assignment) for λ� 0.2. Like the SBM [11,12], it may have a phase
transition at a critical value of λ below which the community structure is undetectable. Initializing it with
the correct assignment helps somewhat at these values of λ, but even then it settles on an assignment
far from the correct one.

The original SBM, as discussed above, separates vertices with high degrees from vertices with
low degrees. Thus it cannot find the correct group structure even for large λ. Our synthetic tests are
designed to have a broad degree distribution in block 1, and thus make SBM fail. Note that if the degree
distribution in block 1 is a power law with a larger exponent α, then most of the degrees will be much
lower than 20, in which case SBM works reasonably well.

Next, we generated directed networks according to the DG-DDC model. We again have two blocks
of equal size, with degree distributions similar to the undirected networks tested above. In block 1, both
out- and in-degrees are power-law distributed with α = 1.7, with an upper bound of 1850 so that the
expected degree is 20. In block 2, both out- and in-degrees are Poisson-distributed with mean 20. To
test our oriented and directed models, we interpolate between a random network ωrandom

rs = κrκs/4m and
a planted network with completely asymmetric connections between the blocks,

ωplanted =
(
(κ1 − ω12)/2 ω12

0 (κ2 − ω12)/2

)
, (3.3)

where ω12 � min(κ1, κ2). We choose ω12 = 1
2 min(κ1, κ2).

As Fig. 2 shows, DG-ODC and DG-DDC have very similar performance at the extremes where
λ= 0 and 1. However, DG-ODC works better than DG-DDC for other values of λ, and both of them
achieve much better accuracy than the ODC or DDC models. As in Fig. 1, the DG models can achieve a
high accuracy based simply on the vertex degrees, and as λ grows they leverage this information further
to achieve near-perfect accuracy for λ� 0.8.
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ORIENTED AND DEGREE-GENERATED BLOCK MODELS 9

λλ

Fig. 2. Tests on synthetic directed networks with n = 2400. Left, DG-ODC and DG-DDC; right, ODC and DDC. The DG models
again perform very well even for small λ, since they can use in- and out-degrees to classify the vertices. ODC performs signifi-
cantly better than DDC for λ�0.4, since it can use the edge orientations to distinguish the two blocks. The number of networks,
runs, and MCMC steps per run are as in Fig. 1.

Table 1 Basic statistics of the three word adjacency networks. S and M denote the simple and
multigraph versions, respectively

Network No. of words No. of adjectives No. of nouns No. of edges (S) No. of edges (M)

David 112 57 55 569 1494
News 376 91 285 1389 2411
Brown 23258 6235 17023 66734 88930

Among the non-DC models, ODC performs significantly better than DDC for λ� 0.4. Edges are
more likely to point from block 1 to block 2 than vice versa, and ODC can take advantage of this
information while DDC cannot. As we will see in the next section, ODC performs well on some real-
world networks precisely for this reason.

4. Experiments on real networks

We studied three word adjacency networks, where vertices are separated into two blocks: adjectives and
nouns. The first consists of common words in Dickens’ novel David Copperfield [26]. The other two are
built from the Brown corpus, which is a tagged corpus of present-day edited American English across
various categories, including news, novels, documents and many others [27]. The smaller one contains
words in the News category (45 archives) that appeared at least 10 times; the larger one contains all the
adjectives and nouns in the giant component of the entire corpus.

We considered both the simple version of these networks where Auv = 1 if u and v ever occur adja-
cently in that order, and the multigraph version where Auv � 0 is the number of adjacent cooccurrences.
The sizes, block sizes and number of edges of these networks are shown in Table 1. In ‘News’ and
‘Brown’, the block sizes are quite different, with more nouns than adjectives. As discussed above, the
NMI is a better measure of accuracy than the fraction of vertices labelled correctly, since we could make
the latter fairly large by labelling everything a noun.

In each network, both blocks have heavy-tailed in- and out-degree distributions (Fig. 3). The con-
nections between them are disassortative and highly asymmetric: since in English adjectives precede
nouns more often than they follow them, and more often than adjectives precede adjectives or nouns
precede nouns, ω12 is roughly 10 times larger than ω21, and ω12 is larger than either ω11 or ω22. The

 at Staats- und U
niversitaetsbibliothek B

rem
en on M

arch 10, 2014
http://com

net.oxfordjournals.org/
D

ow
nloaded from

 

http://comnet.oxfordjournals.org/
http://comnet.oxfordjournals.org/


10 Y. ZHU ET AL.

Fig. 3. Degree distributions in the Brown network.

Table 2 The matrices ωrs = mrs/(nrns) for the most-likely block assignment according to the
stochastic block model

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

ω11 0.039 0.080 0.010 0.012 9.1e−05 1.1e−04
ω12 0.118 0.358 0.015 0.028 3.4e−04 4.4e−04
ω21 0.018 0.025 0.002 0.003 2.0e−05 2.4e−05
ω22 0.006 0.011 0.010 0.019 8.8e−05 1.2e−04

ω for each network corresponding to the correct block assignment (according to the SBM) is shown
in Table 2.

4.1 Performance of oriented and degree-corrected models

Table 3 compares the performance of non-DG block models, including SBM, DC, ODC, and DDC.
(Under DC, we ignore the edge orientations, and treat the graph as undirected. Note that the resulting
network may contain multi-edges even though the directed one does not.)

In our experiments, we started with a random initial block assignment, ran the KL heuristic to find a
local optimum, and then ran the heat-bath MCMC algorithm. We also tested a naive heuristic NH which
simply labels a vertex v as an adjective if dout

v > d in
v , and a noun if d in

v > dout
v . If dout

v = d in
v , NH labels v

randomly with equal probabilities.
For ‘David’, DC and ODC work fairly well, and both are better than the naive heuristic NH. More-

over, the mistakes they make are instructive. There are three adjectives with out-degree zero: ‘full’,
‘glad’ and ‘alone’. ODC mislabels these since it expects edges to point away from adjectives, while DC
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ORIENTED AND DEGREE-GENERATED BLOCK MODELS 11

Table 3 For each model and each network, we pick the block assignment with highest likelihood
and compute its NMI with the correct block assignment. Each run consisted of the KL heuristic,
starting with a random block assignment, followed by 106 Markov Chain Monte Carlo (MCMC)
steps. The results for ‘David’ and ‘News’ are based on 100 independent runs; for ‘Brown’, 50 runs
are executed. The best NMI for each network is shown in bold

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM 0.423 0.051 0.006 0.018 0.001 7e−04
DC 0.566 0.568 0.084 0.083 0.020 0.015
ODC 0.462 0.470 0.084 0.029 0.311 0.318
DDC 0.128 8e−04 0.084 0.091 0.016 0.012
NH 0.395 0.449 0.215 0.233 0.309 0.314

Table 4 Results using the naive NH assignment as the initial condition, again followed by 106

MCMC steps. This hint now lets ODC outperform the other models on ‘News’. The best NMI for
each network is shown in bold

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM 0.423 0.051 0.006 0.021 0.001 7e−04
DC 0.566 0.568 0.084 0.015 0.160 0.155
ODC 0.462 0.470 0.247 0.270 0.311 0.318
DDC 0.015 0.060 0.084 0.005 0.005 0.070
NH 0.395 0.449 0.215 0.233 0.309 0.314

labels them correctly by using the fact that edges are disassortative, tending to cross from one block to
the other.

The standard SBM works well on ‘David(S)’ but fails on ‘David(M)’ because the degrees in the
multigraph are more skewed than those in the simple one. Finally, DDC performs the worst; by correct-
ing for in- and out-degrees separately, it loses any information that the edge orientations could provide,
and even fails to notice the disassortative structure that DC uses. Thus full degree-correction in the
directed case can make things worse, even when the degrees in each community are broadly distributed.

For ‘Brown’, all these models fail except ODC, although it does only slightly better than the naive
NH. For ‘News’, all these models fail, even ODC. Despite the degree correction, the most-likely block
assignment is highly assortative, with high-degree vertices connecting each other. However, we found
that in most runs on ‘News’, ODC used the edge orientations successfully to find a block assignment
close to the correct one; it found the assortative structure only occasionally. This suggests that, even
though the ‘wrong’ structure has a higher likelihood, we can do much better if we know what kind of
community structure to look for; in this case, disassortative and directed.

To test this hypothesis, we tried giving the models a hint about the community structure by using
NH to determine the initial block assignment. We then performed the KL heuristic and the MCMC
algorithm as before. As Table 4 shows, this hint improves ODC’s performance on ‘News’ significantly;
it is able to take the initial naive classification, based solely on degrees, and refine it using the network’s
structure. Note that this more accurate assignment actually has lower likelihood than the one found in
Table 3 using a random initial condition—so NH helps the model stay in a more accurate, but less likely,
local optimum. Starting with NH improves DC’s performance on ‘Brown’ somewhat, but DC still ends
up with an assignment less accurate than the naive one.
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Table 5 MLEs for the degree generation parameters in the Brown network, given the correct assign-
ment

Brown(S) Brown(M)

Block α̂in α̂out β̂in β̂out α̂in α̂out β̂in β̂out

Adjective 2.329 2.629 0.161 0.527 2.136 2.326 0.161 0.527
Noun 2.721 2.248 0.716 0.021 2.576 2.134 0.716 0.021

Table 6 Performance of degree-generated models. KL indicates that we applied
the KL heuristic before 106 MCMC steps. DG indicates degree generation. Each
number gives the NMI for the most-likely assignment found in 50 independent runs.
The best model is DG-ODC. Moreover, degree generation helps ODC converge,
providing much of the benefit of the KL heuristic while avoiding its long running
time (see bold numbers)

Brown(S) Brown(M)

DC ODC DDC DC ODC DDC

– – 0.010 0.188 0.008 0.007 0.203 0.011
KL – 0.020 0.311 0.016 0.015 0.318 0.012
– DG 0.267 0.302 0.213 0.278 0.310 0.149
KL DG 0.271 0.312 0.225 0.284 0.320 0.195

4.2 Performance of degree-generated models

In this section, we measure the performance of DG models on the Brown network, and compare them to
their non-DG counterparts. According to Fig. 3, the in- and out-degree distributions in each block have
heavy tails close to a power-law. Moreover, the out-degrees of the adjectives have a heavier tail than
those of the nouns, and vice versa for the in-degrees. This is exactly the kind of difference in the degree
distributions between communities that our DG block models are designed to take advantage of.

Setting θmin = 1, we can estimate the parameters α and β for these distributions as discussed
in Section 2.3. We show the most likely values of these parameters, given the correct assignment,
in Table 5.

As Table 6 shows, degree generation improves DC and DDC significantly, letting them find a good
assignment as opposed to one with NMI near zero. For ODC, the slight performance improvement
makes DG-ODC the best model overall. We compare performance starting with the KL heuristic to
performance using MCMC alone. We see that degree generation gives ODC almost as much benefit as
the KL heuristic does. In other words, it speeds up the MCMC optimization process, letting ODC find a
good assignment without the initial help of the computationally expensive KL heuristic.

5. Conclusions

DC SBMs are powerful tools for dealing with networks with inhomogeneous degree distributions. How-
ever, since DC models are given the vertex degrees as parameters and are under no obligation to explain
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ORIENTED AND DEGREE-GENERATED BLOCK MODELS 13

them, they cannot use degrees to help them classify vertices. A generative model can only learn from
the data that it is required to generate.

We have introduced two new kinds of block models that allow for broad or heavy-tailed degree
distributions, while still being able to take vertex degrees into account when inferring communities.
First, the ODC model is forced to generate edge orientations. Unlike the DDC block model, which takes
both in- and out-degrees as parameters, ODC is able to capture certain correlations between the in- and
out-degrees. Simply put, for ODC, two vertices are unlikely to be in the same community if one has
high in-degree and low out-degree while another has high out-degree and low in-degree. If the network
is highly directed or asymmetric, the edge orientations can help ODC find community structures that
DDC fails to perceive.

Second, we consider DG models. These use DC block models as a subroutine, but they first generate
the expected degree of each vertex from a prior distribution in each community. DG models can achieve
high accuracy even when the density of connections within or between communities is close to uniform,
as we illustrated in synthetic networks for small λ. Augmenting block models, such as ODC, with degree
generation also appears to speed up their convergence in some cases, helping simple algorithms such
as MCMC handle large networks without the benefit of expensive preprocessing steps like the KL
heuristic. However, the effectiveness of DG depends heavily on knowing the correct form of the degree
distribution in each community.

With all these variants of the block model, ranging from the ‘classic’ version to DC and DG variants,
we now have a wide variety of tools for inferring structure in network data. Each model will perform
better on some networks and worse on others. A better understanding of the strengths and weaknesses
of each one—which kinds of structure they can see and which they are blind to—will help us select the
right algorithm each time we meet a new network.

Acknowledgement

We are grateful to Terran Lane, Ben Edwards, Aaron Clauset, and Mark Newman for helpful conversa-
tions. This work was supported by the McDonnell Foundation, and by AFOSR and DARPA under grant
FA9550-12-1-0432.

References

1. Zachary, W. W. (1977) An information flow model for conflict and fission in small groups. J. Anthropol.
Res., 33, 452–473.

2. Adamic, L. & Glance, N. (2005) The political blogosphere and the 2004 US election: divided they blog.
Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43.

3. Newman, M. & Leicht, E. (2007) Mixture models and exploratory analysis in networks. Proc. Natl Acad.
Sci. USA, 104, 9564–9569.

4. Allesina, S. & Pascual, M. (2009) Food web models: a plea for groups. Ecol. Lett., 12, 652–662.
5. Moore, C., Yan, X., Zhu, Y., Rouquier, J.-B. & Lane, T. (2011) Active learning for node classification in

assortative and disassortative networks. Proc. 17th KDD, pp. 841–849.
6. Airoldi, E., Blei, D., Fienberg, S. & Xing, E. (2008) Mixed membership stochastic blockmodels. J. Mach.

Learn. Res., 9, 1981–2014.
7. Fienberg, S. & Wasserman, S. (1981) Categorical data analysis of single sociometric relations. Sociol.

Methodol., pp. 156–192.
8. Holland, P., Laskey, K. & Leinhardt, S. (1983) Stochastic blockmodels: first steps. Social Networks, 5,

109–137.

 at Staats- und U
niversitaetsbibliothek B

rem
en on M

arch 10, 2014
http://com

net.oxfordjournals.org/
D

ow
nloaded from

 

http://comnet.oxfordjournals.org/
http://comnet.oxfordjournals.org/


14 Y. ZHU ET AL.

9. Snijders, T. & Nowicki, K. (1997) Estimation and prediction for stochastic blockmodels for graphs with
latent block structure. J. Classif., 14, 75–100.

10. Wasserman, S. & Anderson, C. (1987) Stochastic a posteriori blockmodels: construction and assessment.
Social Networks, 9, 1–36.

11. Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. (2011a) Asymptotic analysis of the stochastic
block model for modular networks and its algorithmic applications. Phys. Rev. E, 84.

12. Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. (2011b) Inference and phase transitions in the
detection of modules in sparse networks. Phys. Rev. Lett., 107.

13. Mørup, M. & Hansen, L. (2009) Learning latent structure in complex networks. NIPS Workshop on Ana-
lyzing Networks and Learning with Graphs.

14. Newman, M. (2002) Assortative mixing in networks. Phys. Rev. Lett., 89, 208701.
15. Newman, M. (2003) Mixing patterns in networks. Phys. Rev. E, 67, 026126.
16. Reichardt, J., Alamino, R. & Saad, D. (2011) The interplay between microscopic and mesoscopic struc-

tures in complex networks. PloS One, 6, e21282.
17. Karrer, B. & Newman, M. (2011) Stochastic blockmodels and community structure in networks. Phys.

Rev. E, 83.
18. Akaike, H. (1974) A new look at the statistical model identification. Autom. Control IEEE Trans., 19,

716–723.
19. Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461–464.
20. Bickel, P. J. & Chen, A. (2009) A nonparametric view of network models and Newman–Girvan and other

modularities. Proc. Natl Acad. Sci., 106, 21068–21073.
21. Albert, R. & Barabási, A.-L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys., 74,

47–97.
22. Bauke, H., Moore, C., Rouquier, J.-B. & Sherrington, D. (2011) Topological phase transition in a

network model with preferential attachment and node removal. Eur. Phys. J. B, 83, 519–524.
23. Moore, C., Ghoshal, G. & Newman, M. E. J. (2006) Exact solutions for models of evolving networks

with addition and deletion of nodes. Phys. Rev. E, 74, 036121.
24. Clauset, A., Shalizi, C. & Newman, M. (2009) Power-law distributions in empirical data. SIAM Rev., 51,

661–703.
25. Danon, L., Díaz-Guilera, A., Duch, J. & Arenas, A. (2005) Comparing community structure identifica-

tion. J. Statist. Mech.: Theory Experiment, 2005, P09008.
26. Newman, M. (2006) Finding community structure in networks using the eigenvectors of matrices. Phys.

Rev. E, 74, 036104.
27. Francis, W. & Kucera, H. (1979) Brown Corpus Manual. Technical Report, Department of Linguistics,

Brown University, Providence, Rhode Island, US.

Appendix A. Maximum Likelihood Estimators for the directed degree-corrected (DDC) block
model

We maximize the log-likelihood function (2.5),

log P(G | θ ,ω, g)=
∑

u

(dout
u log θout

u + d in
u log θ in

u )

+
∑

rs

(mrs logωrs − κout
r κ in

s ωrs), (A.1)
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where we have imposed the constraints on the θ parameters∑
u:gu=r

θout
u = κout

r and
∑

u:gu=r

θ in
u = κ in

r . (A.2)

For each block r, we associate Lagrange multipliers λout
r and λin

r with these constraints. For each vertex
u, taking the partial derivative of the log-likelihood with respect to θout

u and θ in
u gives

dout
u

θout
u

= λout
gu

and
d in

u

θ in
u

= λin
gu

. (A.3)

To satisfy the constraints (A.2), we take λout
r = λin

r = 1 for all r, so that

θ̂out
u = dout

u and θ̂ in
u = d in

u , (A.4)

ω̂rs = mrs

κout
r κ in

s

. (A.5)

Appendix B. Another view of the ODC model

Here we show that the ODC model is a special case of the DDC model. Recall that the ODC model first
generates an undirected graph according to the DC model with parameters θu and ωrs, and then orients
each edge (u, v) from u to v with probability ρgu,gv . The number of directed edges from u to v is then
Poisson-distributed as

Auv ∼ Poi(θuθvωgu,gvρgu,gv). (B.1)

But if we write
ω′

rs =ωrsρrs, (B.2)

then
Auv ∼ Poi(θuθvω

′
gu,gv

). (B.3)

Thus ODC is the special case of DDC where θ in
u = θout

u = θu for all vertices u.
For completeness, we check that the two models correspond when we set these parameters equal to

their MLEs. We impose the constraint
∑

u:gu=r θu = κr = κout
r + κ in

r for all blocks r. Ignoring constants,
the log-likelihood is then

log P(G | θ ,ω′, g)=
∑

u

du log θu +
∑

rs

(mrs logω′
rs − κrκsω

′
rs), (B.4)

where du = dout
u + d in

u . The MLEs for θu and ω′
rs are then

θ̂u = du, ω̂′
rs = mrs

κrκs
. (B.5)

Thus ω̂′
rs = ω̂rsρ̂rs where

ω̂rs = m̄rs

κrκs
and ρ̂rs = mrs

m̄rs
, (B.6)

recovering (2.12).
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Appendix C. Bayesian estimation for DG models

Bayesian inference focuses on posterior distributions of parameters rather than on point estimates. In
hierarchical models such as DG-DDC, the full Bayesian posterior of the θ parameters (omitting the
other parameters g and ω) is

P(θ | G)=
∫

P(θ | G,ψ)P(ψ | G) dψ . (C.1)

Here we employ the Empirical Bayesian method, and use point estimates for the hyperparameters ψ ,
namely their MLEs ψ̂ ,

ψ̂ = argmax
ψ

P(G |ψ)

= argmax
ψ

∫
P(G | θ ,ψ)P(θ |ψ) dθ . (C.2)

With this approximation, we have

P(θ | G)≈ P(θ | G, ψ̂)

= P(G | θ)P(θ | ψ̂)
P(G | ψ̂)

= P(G | θ)P(θ | ψ̂)∫
P(G | θ , ψ̂)P(θ | ψ̂) dθ

, (C.3)

where we used Bayes’ rule in the second line.
Computing the posterior P(θ | G) is usually difficult, as the integral in the denominator of (C.3) is

often intractable. However, with a clever choice of the prior distribution P(θ |ψ), we can work out an
analytic solution. It is called the conjugate prior of the likelihood term. We focus here on DG-DDC; the
calculations for other DG models are similar.

Say that a random variable X is Gamma-distributed with parameters α and β, and write X ∼
Γ (α,β), if its probability distribution is

f (x;α,β)= βα

Γ (α)
xα−1 e−βx. (C.4)

In DG-DDC, the likelihood (2.4) can be written (where we have plugged in the MLEs for ω, and
substituted κout

r =∑u:gu=r dout
u )

P(G | θout)=
∏

u(θ
in)d

in
u
∏

rs ω
mrs
rs∏

uv Auv!

∏
u

(θout
u )d

out
u exp(−θout

u ). (C.5)

If we assume that the θ in and θout for each u are independent, this is proportional to a product of
Gamma distributions with parameters α = dout

u + 1 and β = 1 for each θout
u .
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A natural conjugate prior for Gamma distributions is the Gamma distribution itself. Let the hyper-
parameters ψout

r for each block r consist of a pair (αout
r ,βout

r ), and consider the prior

θout
u ∼ Γ (αout

gu
,βout

gu
). (C.6)

That is,

P(θout
u |ψout

gu
)= (βout

gu
)α

out
gu

Γ (αout
gu
)
(θout

u )α
out
gu −1 exp(−βout

gu
θout

u ). (C.7)

Multiplying this prior by the likelihood (C.5) stays within the family of Gamma distributions, and simply
updates the parameters:

P(θout
u | G)∝ P(θout

u |ψout
gu
)P(G | θout)

∝ (θout
u )α

out
gu +dout

u −1 exp(−θout
u (βout

gu
+ 1)). (C.8)

Thus, the posterior distribution is

θout
u ∼ Γ (αout

gu
+ dout

u ,βout
gu

+ 1). (C.9)

Note that if we use a uninformative prior, i.e., in the limit αout
gu

= 1 and βout
gu

= 0, the Gamma prior
reduces to a uniform prior. The maximum a posteriori (MAP) estimate of θout

u is

θ̂out
u = dout

u , (C.10)

and similarly for θ in
u , just as we obtained for the MLEs in (2.6).

However, our goal is to integrate over θ , not focus on its MAP estimate. So let us continue the
Bayesian analysis. Assuming the θ parameters are independent, then their joint posterior is simply a
product of their individual posteriors

P(θ |G)=
∏

u

P(θout
u |G)P(θ in

u |G)

=
∏

u

f (θout
u ;αout

gu
+ dout

u ,βout
gu

+ 1)f (θ in
u ;αin

gu
+ d in

u ,β in
gu

+ 1). (C.11)

Then we can calculate the integral in (C.2) and (C.3) by the simple algebra:∫
P(G | θ ,ψ)P(θ |ψ) dθ

= P(G | θ)P(θ |ψ)
P(θ | G)

=
∏

u f (θout
u ; dout

u + 1, 1)f (θ in
u ; d in

u + 1, 1)f (θout
u ;αout

gu
,βout

gu
)f (θ in

u ;αin
gu

,β in
gu
)∏

u f (θout
u ;αout

gu
+ dout

u ,βout
gu

+ 1)f (θ in
u ;αin

gu
+ d in

u ,β in
gu

+ 1)

=
∏

u β
out
gu

αout
gu β in

gu

αin
guΓ (αout

gu
+ dout

u )Γ (αin
gu

+ d in
u )∏

u(β
out
gu

+ 1)α
out
gu +dout

u (β in
gu

+ 1)α
in
gu +d in

u Γ (dout
u + 1)Γ (d in

u + 1)Γ (αout
gu
)Γ (αin

gu
)
. (C.12)
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Now that the dependence of the numerator and denominator on θ has cancelled out, the integral is a
function only of the hyperparameters ψ , making it possible to do the point estimate of ψ in (C.2). In
our case, optimizing for ψ̂ requires some numeric techniques, but it is nonetheless doable.

Empirical Bayesian solution not only gives better approximation to the original problem, it also
makes it possible to integrate prior knowledge if available. On top of that, because the posterior is now
a direct function of the hyperparameters ψ , we no longer have to worry about the Poisson noise when
estimating ψ indirectly from degrees.

On a final note, the above result only holds for Gamma priors. With any other prior, the integral may
not be this simple.

Appendix D. Power-law distribution with upper bound

In this section, we show that imposing an upper bound on our power-law distributions in order to ensure
a certain average degree does not appreciably change the procedure of [24] for estimating the exponent.
Suppose x is distributed as a power-law lower bound xmin, upper bound xmax, and exponent α > 0. Then

p(x)= α − 1

x1−α
min − x1−α

max

x−α , xmin � x � xmax. (D.1)

Given a random sample x = {x1, . . . , xn} drawn from this distribution independently, the likelihood func-
tion is

p(x)=
n∏

i=1

α − 1

x1−α
min − x1−α

max

x−α
i =

(
α − 1

x1−α
min − x1−α

max

)n n∏
i=1

x−α
i . (D.2)

Thus, the log-likelihood is

log p(x)= n(log(α − 1)− log(x1−α
min − x1−α

max ))− α

n∑
i=1

log xi. (D.3)

Taking the derivative with respect to α gives

∂ log p(x)
∂α

= n

(
1

α − 1
+ x1−α

min log xmin − x1−α
max log xmax

x1−α
min − x1−α

max

)
−

n∑
i=1

log xi. (D.4)

Setting (D.4) to zero, we obtain

1

α − 1
+ x1−α

min log xmin − x1−α
max log xmax

x1−α
min − x1−α

max

=
∑n

i=1 log xi

n
. (D.5)

If xmin = 1 and xmax → ∞, then solving (D.5) gives the MLE for α just as in (2.18).
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