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Abstract

Disease spread in most biological populations requires the proximity of agents. In populations where the individuals

have spatial mobility, the contact graph is generated by the ‘‘collision dynamics’’ of the agents, and thus the evolution of

epidemics couples directly to the spatial dynamics of the population. We first briefly review the properties and the

methodology of an agent-based simulation (EPISIMS) to model disease spread in realistic urban dynamic contact

networks. Using the data generated by this simulation, we introduce the notion of dynamic proximity networks which

takes into account the relevant time-scales for disease spread: contact duration, infectivity period, and rate of contact

creation. This approach promises to be a good candidate for a unified treatment of epidemic types that are driven by agent

collision dynamics. In particular, using a simple model, we show that it can account for the observed qualitative differences

between the degree distributions of contact graphs of diseases with short infectivity period (such as air-transmitted

diseases) or long infectivity periods (such as HIV).

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Epidemics is the disease of the crowds. It is the process where a certain state of an individual is transferred
to other individuals by transport through a medium connecting the agents such that eventually a finite fraction
of the total population possesses that state. In particular, if that state is an infectious illness, epidemics can
have major negative consequences on a population, and thus the development of prevention and mitigation
methods gain a crucial importance. In order to develop efficient strategies for prevention and mitigation,
however, one must understand the process of disease spread for the particular population in question. There
has been considerable work devoted in the past to the so-called compartmentalized models [1–4] where the
individuals are assigned one of the finite number of compartments corresponding to their health state (such as
susceptible, infected, and recovered/removed) combined with a uniform mixing model for the disease transfer
process for the individuals within each compartment. The fate of epidemics in this framework is described
by a set of coupled ordinary differential equations. While such an approach is capable of producing reliable
e front matter r 2006 Elsevier B.V. All rights reserved.

ysa.2006.11.088

ing author. Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA.

ess: z.t@nd.edu (Z. Toroczkai).

/cnls.lanl.gov/�toro.

www.elsevier.com/locate/physa
dx.doi.org/10.1016/j.physa.2006.11.088
mailto:z.t@nd.edu
http://cnls.lanl.gov/~toro
http://cnls.lanl.gov/~toro


ARTICLE IN PRESS
Z. Toroczkai, H. Guclu / Physica A 378 (2007) 68–75 69
high-level predictions for some diseases (such as influenza) it cannot provide detailed information about non-
aggregate variables, which is crucial for developing efficient targeted vaccination and quarantine strategies.
Most recently, however, there has been considerable effort invested [5–9] in agent-based or individual-based
approaches which build in-silico microscopic models of the population along with its dynamics. After a
statistical validation with real data, the agent-based framework is then used as a test-bed for a number of
different scenarios for epidemics spread and some of the possible vaccination and quarantine strategies.
Although this can be a useful tool for aiding decision making, it is much less amenable to theoretical analysis,
the simulation itself being a complex system in its own right. Essentially, an agent-based model is a learning
system [22] whose structure and parameters are set such that it reproduces the statistics of real world data.
Through the generalizing power of this system then one hopes to gain reliable insight into data-scarce regions
of the phase space. Since the level of detail in agent-based modeling can be arbitrarily high, this approach,
however, has the promise of giving specific, high-resolution answers to questions like: ‘‘Does vaccinating
teachers and children between ages 2 and 12 have more impact on slowing disease spread than vaccinating
cashiers? Which buildings should be closed in order to stop disease spread?’’, etc. To understand the
sensitivities in an agent-system for disease spread, and perhaps draw some more general conclusions, one has
to build minimalist models for analyzing the data produced by such large-scale simulations. This paper
presents a simple framework for understanding some of the topological features of dynamic disease contact
graphs, using data produced by a particular agent-based simulation, EPISIM [5–7,10], developed at Los
Alamos National Laboratory (LANL).

In this article we shall confine ourselves to the case where disease is transferred through a contact process

between two individuals. Here contact is understood in a fairly loose sense, only requiring that the two
individuals be in the spatial proximity of each other. The proximity distance required for disease spread is
certainly disease dependent, ranging from actual physical contact (such as in the case of sexually transmitted
diseases) through a couple of feet to confinement in a building with common ventilation system (airborne
diseases).

Another aspect that we will be considering is the mobility of agents. In contrast with, for example, the
spread of viruses on computer networks which can be considered as a flow process on a static structure, most
populations are composed of mobile agents. As a result, the contact network resulting from the ‘‘collision
dynamics’’ of the agents is itself a dynamic entity. This is especially an important aspect for human
populations in dense urban areas. Currently, urbanization is in an explosive stage [11]: the number of
megacities (with over ten million habitants) is estimated to increase from 14 in 1995 to 21 cities by 2015. By
2030 it is estimated [11] that over 60% of the world’s population will live in cities. For example, the population
of São Paolo (Brazil), the world’s third most populated city, has grown from a population of 265,000 to 18
million in the last 100 years. Almost half of São Paolo’s habitants were not born there [11]. Large cities act like
‘‘magnets’’ for people living in rural areas or smaller cities (especially true in Third World countries), since
over half of the gross domestic product in most countries is made of industrial and commercial activities
taking place in these cities [11], and thus they represent hopes for prosperity. A recent mathematical model of
aggregation accounting for this effect was introduced by Leyvraz and Redner [12]. Under such circumstances
the problem of disease spread, due to the dense nature of the contact fabric among people in cities, becomes of
real concern.

In the following we present a brief description of agent-based modeling using EPISIM as an example. We
recall some of the topological properties of the contact network obtained by this simulation for the case of
Portland, OR. The key observation that we will be addressing in this paper refers to the connectivity
distribution of the people–people contact graph which seems to be rather different from other measurements
of contact graphs such as the sexual contact network measured by Liljeros et al. [13,14]. We will then propose
a framework that can account for these differences in a unifying manner. We conclude by discussions on the
limitation of the model and possible extensions.

2. An agent-based approach to epidemics

The transportation analysis and simulation system (TRANSIMS) [15–19] developed at LANL is an agent-
based, cellular-automata model of traffic in a particular urban area (the first model was for Portland, OR,
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USA). TRANSIMS decomposes the transportation planning task using three different time-scales. A large
time-scale associated with land use and demographic distribution is employed to create activities for travelers
(activity categories such as work, shopping, entertainment, school, etc.). Activity information typically
consists of requests that travelers be at a certain location at a specified time, and includes information on
travel modes available to the traveler. This is achieved by creating a synthetic population and endowing it
with demographics matching the joint distributions given in the US census data. The synthetic households
are built by also using survey data from several thousands of households, which are observations made on the
daily activity patterns of each individual in the household. These activity patterns are associated with synthetic
households with similar demographics. The locations are estimated taking into account observed land
use patterns, travel times, and transportation costs. The intermediate time-scale assigns routes and trip chains
to satisfy the activity requests. This is done by feeding the estimated locations into a routing algorithm to
find minimum cost paths through the transportation infrastructure consistent with constraints on mode
choice [18,19]. The third and shortest time-scale is associated with the actual execution of trip plans in the
road network. This is done by a cellular automata simulation [16,17] through a detailed representation of the
urban transportation network. The simulation resolves the traffic induced when everyone tries to execute
their plans simultaneously resolving distances down to 7.5m and times down to 1 s. It provides an updated
estimate of time-dependent travel times for each edge in the network, including the effects of congestion,
which it feeds then to the router and location estimation algorithms, which produce new plans. This feed-
back process continues iteratively until it converges to a quasi-steady state in which no one can find a
better path in the context of everyone else’s decisions. The resulting traffic patterns compare well to observed
traffic. The entire process estimates the demand on a transportation network using census data, land usage
data, and activity surveys. More information and including availability of the software can be obtained from
Ref. [15].

EPISIM [5–7,10] is actually one of the applications of TRANSIM and it is built on top of that. Diseases
such as colds, flu, smallpox, or SARS are transmitted through air between two agents, if they spend long
enough time in the proximity of each other, or in building with closed air ventilation. This means that we can
assume that the majority of the infections will take place in locations, like offices, shopping malls,
entertainment centers, mass transit units (metros, trams, etc.). Thus, by tracking the people in our
TRANSIMS virtual city, we can generate a bi-partite contact network, or graph, formed by two types of
nodes, namely people nodes and locations nodes. In the case of Portland, there are about 1.6 million people
nodes and 181,000 location nodes and over 6 million edges between them. These are huge graphs, representing
considerable challenges for the measurement of their properties.

Let us denote by L the set of locations and by P the set of people. The people and locations are indexed by
integers, called person-id and location-id. The vertex set of a graph G will be referred to as V ðGÞ while the edge
set will be referred to as EðGÞ. The degree of a vertex v 2 V ðGÞ is the number of edges incident on v. The
activities in the EpiSIMs graphs have a time-periodic character. However, on average, people typically resume
their activity patterns after 24 h and thus graphs corresponding to different week-days are similar to one
another. The time labels to be defined below are measured time intervals for a duration of 24 h and the graphs
defined also refer to this 24 h period. The temporally resolved bi-partite graph of people and locations is
denoted as ðGPL; bÞ, where the only edges present are between individuals and the locations they visit. The
vertex set is defined as V ðGPLÞ ¼ P [ L. An edge e 2 EðGPLÞ is defined by the ordered pair ðp; lÞ where p 2 P is
the person-id of the individual and l 2 L is the location-id of the location which it visited. bðeÞ signifies a time
label associated with the edge e 2 EðGPLÞ, and it is defined as the set of non-overlapping time intervals
bðeÞ ¼ bðp; lÞ ¼ fI ð1ÞðeÞ; I ð2ÞðeÞ; . . .g, given by I ðjÞðeÞ ¼ I ðjÞðp; lÞ ¼ ½tðjÞin ðeÞ; t

ðjÞ
outðeÞ� between the ‘‘in-time’’ t

ðjÞ
in and

‘‘out-time’’ t
ðjÞ
out to and from l of p. The reason for a number of different time intervals is that the same person

can visit several times the same location during a day (such as office–lunch–office, etc.). If two intervals IðeÞ

and Iðe0Þ are non-overlapping, then we define IðeÞoIðe0Þ, iff toutðeÞptinðe
0Þ. We consider two other types of

contact networks: the people– people graph, denoted by ðGP;pÞ, and the location– location graph, ðGL; lÞ. In
GP, an individual u 2 P is represented by one vertex. There is an edge e ¼ ðu; vÞ 2 EðGPÞ if the individuals
u; v 2 P have come into contact, i.e., if 9 eu; ev 2 EðGPLÞ and l 2 L, such that eu ¼ ðu; lÞ, ev ¼ ðv; lÞ and
bðeuÞ \ bðevÞa0. The time label associated with this edge therefore is calculated by pðeÞ ¼

S
l2LbðeuÞ \ bðevÞ,

composed of intervals of time when they have shared the same location (any) during a day.
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The location–location graph ðGL; lÞ is a directed graph, where every vertex represents a location from L, and
a directed edge e 2 EðGLÞ is defined by the ordered pair e ¼ ðk; lÞ, k; l 2 L, if there is at least one person p 2 P

going from k to l anytime during the day, see for an example Fig. 1. Naturally, since a person can be in a single
location at a given time instant, bðp; kÞ \ bðp; lÞ ¼ 0 (kal). Thus e ¼ ðk; lÞ is an edge from k to l, if 9 I ðjÞðp; kÞ 2
bðp; kÞ and I ðmÞðp; lÞ 2 bðp; lÞ such that I ðjÞðp; kÞoI ðmÞðp; lÞ and for 8Iðp; nÞ 2 bðp; nÞ with 8n 2 Lnfk; lg, either
Iðp; nÞoI ðjÞðp; kÞ or I ðmÞðp; lÞoIðp; nÞ. An entrance time of p at l coming from k is obviously t

ðmÞ
in ðp; lÞ. Since this

is a continuous time, discrete event process, these entrance times into location l of people coming directly from
location k during a day, can be ordered into a set lðk; lÞ ¼ lðeÞ, which forms the weight label of edge e in
EðGLÞ. We are interested in entrance times to a location because this way we are able to record when an
infection enters a location and thus the time after which possible infections can occur for people visiting that
location. Fig. 2 shows the measured degree distribution of the people–people contact graph Gp keeping only
those edges which come from time-stamp overlaps of at least 1 h. As one can see, the degree distribution has an
exponential cut-off (at about k ¼ 700) and a peak, not reminiscent of pure power-law (scale-free) networks.
Although the curve seems to have power-law behavior portions of it, nothing really can be concluded based on
this data, since this behavior is only about over one decade. The exponential cut-off is a must, because an
individual cannot be in contact with OðNÞ other people during a day. The graph integration interpretation that
we will present in the next section, however, identifies some key ingredients that might be responsible for the
shape of this distribution.
k

l

6 pm8 am

Fig. 1. An example for how directed edges are defined in the location–location graph: k and l denote two locations, k is an office while l is

a nearby cafe. The horizontal axis is time and the thick lines denote the presence of a person p at that location. This diagram could stand

for: p was at k during mid-morning hours, then it went to l for lunch, then back to k and then somewhere else (to doctor’s appointment)

then back to k then somewhere else, etc.
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Fig. 2. Degree distribution of the people–people contact network GP (see text for definition) in EPISIM Oregon data. The measurement of

the degree distribution is done on a single instance of the GP (and thus GPL) graph. The contact time threshold used was 1 h. There are

5788 points in the data set and kmax ¼ 8368. The slopes of the straight lines are 1.13 and �0:58, respectively.
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3. Proximity networks

Some of the most difficult questions in epidemics concern the spatio-temporal dynamics, as opposed to
looking at disease spread as a percolation process on fixed structures. Ref. [20] is a most recent attempt
studying epidemics as a branching process building effective contact graphs with scale-free and small-world
behavior. This paper illustrates that the details of the dynamics can have drastic effects on disease spread by
creating contact graphs with heterogeneous structures.

As we have seen from the EpiSim example above, the true contact graph is a dynamic structure with
temporal behavior that can be encoded as time-stamps associated with edges. If one neglects the time-stamps,
the graph obtained is the maximum contact graph, showing which individuals came in contact at all, during a
day. On the other hand, at every instant, the graph of contacts is a set of disconnected small graph clusters
showing which individuals are in contact right at that moment. Naturally, the maximum contact graph is much
denser than the instantaneous contact graphs. Due to the mobility of the individuals, the contacts are
changing, and if one would like to know who was in contact with whom over a period of time, we need to
integrate or collapse the instantaneous contact graphs in that time period. If our goal is to produce an effective

contact graph for a particular disease, so that the disease spread can be treated as a flow process on this
effective graph, we need to collapse the instantaneous contact graphs over the typical infectivity period of an
individual. For the sake of brevity, we shall refer to the effective integrated contact graph as the proximity

network of the disease. In case of aerial-born diseases like SARS and smallpox, the infectivity period is on the
order of several days, while for some sexually transmitted diseases, like HIV, it is much longer, and can be on
the order of years. In the former case, the maximum degree of a node is relatively small (constant compared to
the system size) bounded by the number of contacts an agent can possibly make in a short period of time
(days), whereas in the latter case the number of accumulated contacts (and thus the number of possibly
infected people) can be very large. In this latter case is when we expect to have scale-free behavior for the
degree distribution of the contact graph. Indeed, several measurements on the distribution of sexual
interactions in human populations [13,14] seem to confirm this expectation. In the remainder of this article we
show a very simple model for proximity networks which can capture some of these observations, in particular
the scale-free character.

Let us denote the instantaneous contact graph at instant t by GðtÞ. The time-integrated graph or proximity

graph GðTÞ is given by the union of all edges of the instantaneous graphs from time 0 to time T. In other
words, if AðtÞ ¼ faijðtÞg is the adjacency matrix of GðtÞ, the adjacency matrix AðTÞ of GðTÞ is given by

aijðTÞ ¼
_t¼T

t¼0

aijðtÞ, (1)

where a _ b ¼ 0 if and only if a ¼ 0 and b ¼ 0, otherwise a _ b ¼ 1, a; b 2 f0; 1g. The dynamics of the
integrated network is determined by the dynamics of the contact making process between pairs of agents i and
j. Depending on the nature of the potentially disease-transmitting contacts, the matrix elements aijðtÞ might be
subject to ‘‘exclusion constraints’’. For example, in the case of sexual contacts, the instantaneous graphs are
made of a collection of dimers and/or isolated nodes. This induces the constraint

P
j;jaiaijp1; i ¼ 1; . . . ;N on

the matrix elements of GðtÞ. For diseases spread by air, the transmission usually happens in locations which
have a limited capacity. Assuming that all agents within a location can be infected if at least one of them is
infectious (for example, due to shared ventilation system), the contact graph within a location is a clique. The
constraints imposed on the instantaneous adjacency matrix AðtÞ can be thus be formulated as

ð1� aikÞaijajk ¼ 0 for all i; j; k 2 1; . . . ;N, (2)

X

j;jai

aijpK for all i 2 1; . . . ;N, (3)

where K is the maximum clique size (maximum location capacity). The first of these equations is a necessary
and sufficient condition for a graph to be the disjoint union of cliques and the second limits the size of the
cliques to K. Eq. (2) expresses the fact that all connected triplets must form a triangle (if i and j are connected



ARTICLE IN PRESS
Z. Toroczkai, H. Guclu / Physica A 378 (2007) 68–75 73
and j and k are connected, then i and k are connected as well—transitivity). In the physics network literature,
the alternative formulation of the same condition is that the clustering coefficient of GðtÞ is unitary.

Here we will not consider a full theory of dynamic proximity networks, that will be developed elsewhere.
Instead, we introduce the most simplistic model of network growth which still reproduces the qualitative
features of the observations in the beginning of this section.

The probability pijðTÞ that nodes i and j are connected in the proximity graph at time T increases for larger
values of T. Assuming a uniform link generation picture, the probability that in the next step a potentially
disease-spreading connection/contact takes place between agents i and j is written as rgigj where the weight gi

quantifies the ‘‘gregariousness’’ of agent i, its propensity to generate new links. Note that this model does not
explicitly resolve the exclusion constraints (2)–(3). One can think of the parameter r effectively incorporating
the spatial information, which should be resolved in spatial models for contact dynamics. The probability that
after T steps nodes i and j are connected is given by

pijðTÞ ¼ 1� ð1� rgigjÞ
T; TX1. (4)

The parenthesis in (4) represents the probability of nodes i and j not connecting in one step, and its Tth power
is for non-connection during all steps. One minus this probability is obviously the connection probability
during any of the steps 1; 2; . . . ;T . According to this, highly gregarious people will more likely be connected to
each other than less gregarious. They will also get connected earlier than others. r is a parameter which makes
rgigjp1, but at this point is a free parameter. If we want to stay close to the claim that in one step a node does
not accumulate more links than it is allowed by the exclusion conditions, we need to consider r to be a small
number. If all nodes have the same gregariousness parameter g then we recover a growing binomial random
graph model and the degree distribution of the proximity graph will always stay a Poisson distribution with a
parameter that grows exponentially with time until the graph becomes a complete graph. This is certainly
expected, given that there is no heterogeneity in the mixing among agents.

There are certainly many possible, more realistic extensions to our model, in particular making the
gregariousness coefficients time dependent and taking into account more explicitly the exclusion constraints.
Time-dependent gregariousness coefficients would correspond to cases where, for example, there is an
increasing cost of adding a link (because it involves traveling further away) or the health state of the agent
(e.g., infected or not) can modify their ability to generate new links. Here we will only study the case where
these coefficients are time-independent.

Under what conditions for the gregariousness distribution of a population will we observe power-law (scale-
free) degree distributions for its proximity network? One expects that populations where all individuals have
similar gregariousness values, no power law should be observed for the degree distribution of GðTÞ, whereas
heterogeneous distributions for gi would likely generate distributions with a power-law regime in them. The
expected degree of node i in GðTÞ is

diðTÞ ¼
XN

j¼1

pijðTÞ ¼
XN

j¼1

½1� ð1� rgigjÞ
T
�. (5)

For small r, rT51, this is simply diðTÞ ’ rTð
P

j gjÞgi, i.e., it is directly proportional to its gregariousness
coefficient. This certainly makes sense in a social context since more gregarious people will have on average
more contacts than others. In this limit (small r, and not too large T values, such that rT51), our model is
similar to the Chung Lu model [21] of random power-law graphs with expected degree sequences. The
difference is that in our case the gi’s are random variables drawn independently from a given distribution,
while in the Chung Lu model the node weights are prescribed functions of their index. In the small r limit
initially the graph will form disconnected clusters, but it does not strictly obey the exclusion conditions. As
time goes on the links accumulate on the proximity network and one can obtain a regime where, depending on
the gregariousness distribution, scale-free contact networks emerge. If the agents are not removed from the
system, but keep accumulating contacts, eventually a finite network will reach the complete graph limit and
stop there. If the infectivity period is finite, however, the network will reach a steady-state structure
characteristic to the population dynamics and the disease. This might be scale-free, homogeneous, or anything
in between.
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Fig. 3. Degree distributions of the proximity network for various distributions of the gregariousness: (a) constant g; (b) exponential

distribution for g; (c) and (d) power-law g. All networks have N ¼ 104 nodes.
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Going back to the EPISIM contact network data we notice that this simplistic model reproduces (see Fig. 3)
qualitatively some of the key features shown in Fig. 2. Although the EPISIM distribution has a sharp,
exponential cut-off, it shows a tendency of forming a power-law tail before the cut-off just as in our model. In
addition, it seems that the low-k tail shows a similar power-law tendency, also in qualitative accordance with
the data generated by our simplistic model, see Fig. 3d. With this model one can also generate distributions
(not shown) with small (including sub-unitary) exponents for the power-law regime followed by a sharp cut-
off, matching closer the case of Fig. 2.
4. Conclusions

We presented the basis of a framework to account for the dynamics of contacts in epidemic processes,
through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which
is the period of infectivity, one can give a simple account for some of the differences in the observed
contact networks for different diseases, such as smallpox or AIDS. Our simplistic model also seems to shed



ARTICLE IN PRESS
Z. Toroczkai, H. Guclu / Physica A 378 (2007) 68–75 75
some light on the shape of the degree distribution of the measured people–people contact network from the
EPISIM data.

We certainly do not claim that the simplistic graph integration model (4) above is a good model for dynamic
contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement
with some observations. We expect that further refinements and extensions to this picture, in particular
deriving the link probabilities in the dynamic proximity graph from more realistic contact dynamics should
improve the agreement between models and data.
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