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Intra-layer synchronization in multiplex networks
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We study synchronization of N oscillators indirectly coupled through a medium which is inhomo-
geneous and has its own dynamics. The system is formalized in terms of a multilayer network, where
the top layer is made of disconnected oscillators and the bottom one, modeling the medium, consists
of oscillators coupled according to a given topology. The different dynamics of the medium and the
top layer is accounted by including a frequency mismatch between them. We show a novel regime
of synchronization as intra-layer coherence does not necessarily require inter-layer coherence. This
regime appears under mild conditions on the bottom layer: arbitrary topologies may be considered,
provided that they support synchronization of the oscillators of the medium. The existence of a
density-dependent threshold as in quorum-sensing phenomena is also demonstrated.

PACS numbers: 89.65.-s, 89.75.Fb, 89.75.Hc

Synchronization is one of the most ubiquitous collec-
tive phenomena appearing in natural and artificial sys-
tems ﬂ, E] Singing crickets, fireflies emitting sequences
of light flashes, cardiac pacemakers, circadian rhythms
in mammals, firing neurons, chemical systems exhibiting
oscillatory variation of the concentration of reagents, ap-
plauding audiences, or electrical and electronic devices
are all common examples of systems operating in syn-
chrony B] In general, all of these examples can be de-
scribed as systems composed of many units that adjust
a particular dynamical properties to behave in unison.
The interaction among the units is at the core of syn-
chronization since, when isolated, they behave according
to their individual rhythms. In the recent years the way
units interact and its influence to the onset of synchrony
have been the subject of intense research, where com-
plex networks have been used to account for a variety
of interaction patterns M, B] These patterns include the
modeling of heterogeneity of links, delays in signal inter-
change, and time-dependent connections.

The main hypothesis underlying the network approach
is that the units of a system (modeled as the nodes of a
network) are directly coupled through interactions rep-
resented by the network edges ﬂa, B] However, in many
physical systems the units interact in an indirect way. For
instance, in the Huygens’s experiment, historically con-
sidered the first report on synchronization B], the two
pendulum clocks interact through the wooden beam on
which they are both mounted. Similarly, communica-
tion between cellular populations occurs thanks to small
molecules diffused in the medium MQ], and chemical oscil-
lators interact through a stirred solution m, ] Even
in the excessive wobbling observed in the opening of the
Millennium Bridge in London, the synchronous pacing
of the crowd derives from the interaction of the pedes-
trians with the bridge ﬂﬂ] Synchrony in this case only
occurs for a population density greater than a threshold,
a phenomenon which is called as crowd synchrony.

Synchronization of indirectly coupled units has been
studied in several works. The first evidences of synchro-
nization through indirect coupling were observed in the
context of quorum-sensing studies , , ] For in-
stance, yeast cells, which show a density-dependent tran-
sition to synchronous oscillations, only interact by ex-
changing signaling molecules in the extracellular solution
M] The studies about the synchronization of periodic
oscillators coupled through a common medium have been
recently extended to chaotic systems. In this latter case,
when two chaotic units are considered, both in-phase and
anti-phase synchronization have been numerically
[17] and experimentally [18, [19] observed. When more
than two chaotic units are taken into account, phenom-
ena such as phase synchronization, periodic collective be-
havior and quorum-sensing transition show up @, ]

The general model for the study of N dynamical units
coupled through a common medium is described by:

b= () + M- 2) "

=% j:l(xj —z)—Jz
where z; is the state vector of the j—th dynamical unit
and z is that of the common medium. The dynamics
of each unit is regulated by the function f(z), that de-
scribes the internal dynamics of each unit when isolated,
and the linear coupling with the medium, whose strength
is A1. In its turn, the dynamics of the medium is acti-
vated by the coupling with the units (weighted by A2)
and incorporates a decay term with coefficient J.

In Eq. (I) a homogeneous distribution of the medium
is assumed. While this assumption is reasonable for
chemical systems under the hypothesis of well-stirred so-
lutions or biological systems under the hypothesis of fast
diffusion of the small molecules, in other contexts (such
as genetic oscillators E]) the interactions may be medi-
ated by one agent in the medium for each dynamical unit.
Thus, a model in which units are not directly coupled,
while the agents in the medium interact, is needed.
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FIG. 1: Representation of the multiplex network consisting
of two layers with one-to-one coupling between the layers. In
the top layer, called x, the nodes only interact which those in
the bottom one whereas in the bottom layer z the nodes also
interact with other members of the same layer.

In this work, we consider this latter scenario and pro-
pose a dynamical model similar to Eq. () incorporat-
ing a microscopic description of the interactions of the
agents in the medium. In particular, we account for the
assumption of inhomogeneous and not passive environ-
ment by investigating a system made of two layers, one
representing the medium, called layer z, and the other,
called z, the dynamical units. The interaction between
layers (medium and units) is as schematically shown in
Fig.l Each unit interacts directly with one agent in the
medium. Therefore, in terms of the recently developed
theory of multilayer networks ﬂﬂ] , our system is termed
as a multiplex network of two layers.

Multiplexes have recently attracted a lot of attention
as they are the kind substrates representing better the
interaction patterns occurring in many dynamical pro-
cesses such as diffusion ﬂﬁ, @, congestion and traffic
[25], evolutionary dynamics Nﬁ] or epidemics [27]. To
extend this knowledge to the realm of synchronization
we assume that each node of the multiplex is a Stuart-
Landau oscillator with different natural frequency. In
this way the multiplex is formed by N Stuart-Landau os-
cillators coupled according to the adjacency matrix A7; in
the layer z, and NV Stuart-Landau oscillators in the layer
z that are not directly coupled. Thus, the evolution of
the state, uf € C, of oscillator j in layer a(= z,z), is
given by:
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where y/a and wj are respectively the amplitude and the
frequency of oscillator j when uncoupled, and A, and
A, are the coupling between the agents in the medium
and the inter-layer coupling respectively. The natural
frequencies, w§', of the nodes are uniformly distributed
in [0.95 - w*, 1.05 - w®], being w” = 1 and w?® = 2.5. Let
us note that the Stuart-Landau model considered here
contains the Kuramoto model [28] (the usual benchmark
for the study of synchronization in networks) as a limiting
case when the amplitude dynamics, which occurs when

| 2

a is large. Networks of Stuart-Landau oscillators with
a heterogeneous distribution of the natural frequencies
have been also studied in networks [29, 3(].

We now investigate the existence of phase synchroniza-
tion in the multiplex. Our aim is to show that, besides
global synchronization, i.e., the regime in which all the
network nodes are synchronized each other, a state char-
acterized by intra-layer coherence and inter-layer inco-
herence is possible. We refer to this regime as intra-layer
coherence (ILC), implicitly assuming that there is no co-
herence between the two layers (otherwise global synchro-
nization is obtained). Note that the regime showing ILC
is rather counterintuitive since all the oscillators in each
layer oscillate in synchrony with a shared frequency Q¢
which is different from one layer to the other. Moreover,
as the are no intra-layer connections in layer x, the syn-
chronization of this layer is possible due to the indirect
coupling through layer z. Therefore, in the ILC regime,
the nodes in layer z are mediating for synchronization of
layer x nodes, without being synchronized with them.

We first analytically show the existence of ILC regime

(0%

by rewriting the system (2)) in polar coordinates (u§ =

p§ expify') and focusing on the equations for the phases:

07 = w? + )\Z—; sin(0% — 07) ,
0 = wf + Aot sin(0F — 07) + A Y, A5 5 sin(607 — 05)
(3)

We look for solutions of the type 07 = 05 = ... = 0%
and 67 = 05 = ... = 0%, i.e., solutions where all the
oscillators within each layer are synchronized (this con-
dition includes both the regimes of ILC and global syn-
chronization). Under this hypothesis, we consider two
generic nodes j and [ in Egs. (@3], and we also assume
that the frequency of the two nodes are similar to derive:
_ PLygin(0% — 0%

o )sin(65 —67) , @
2 ) sin (65 — 65) .

Pl

[~

07 =) = Xea (5
(05 = 07) = Asa(

]

ey

Slufer

P

From these equations we notice that a solution corre-
sponding to global synchronization of the multiplex, 67 =

o=05 =67 = ... = 0%, is always possible. However,

the solution corresponding to ILC, 07 = ... = 0% = 67

and 67 = ... = 9}”\,2: Hmzwith 0% — 209” # const., is only

possible provided 2L = 22 = || = £ j ¢ the nodes in
P1 P32 PN

the same layer must have the same amplitude. Thus, by
fixing p3 = p* Vj and pj = p* Vj, and by looking at the
equations of the amplitudes, it is possible to show that
the ILC solution cannot be achieved with a stationary
amplitude, p* =0 (o = z, 2), i.e., it cannot be observed
in a multiplex composed of Kuramoto oscillators. Under
this hypothesis, the equations for the amplitude are:
5= a0 = (7 N7 o0 =07 7]
§* = ap” — () + Aux [p" - cos(07 — 0%) — p] .
From above it becomes clear that a stationary solution
(p* = p* = 0) of Egs. (@) implies that p™ = p?, i.e., all
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FIG. 2: (Color online). The ILC regime in a multilayer net-
work with N = 10 nodes and all-to-all coupling in the bot-
tom layer z. (a) Kuramoto order parameters r® and r** vs.

A=A = % Continuous lines refer to a multilayer network

of Stuart-Landau oscillators with a = 1, whereas dashed ones
to purely phase oscillators (a — o), for which ILC does not
exist. (b) Waveforms of state variables Reuj for A = 0.7. (c)
Phase plane Reuj —Rewu3. (d) Phase plane Reu —Reuj. (e)
Phase plane Reuj — Reuf. In (b)-(e) nodes in each layer are
mutually synchronized with the nodes of the same layers, but
not with their corresponding counterpart in the other layer.

the nodes having the same amplitude, and

o Azz + (pI)Q —a

cos(6” — 07) 3 ,

(6)
i.e., the difference 6% — 0% is constant, contrary to the
initial hypothesis. This result points out that the so-
lution cannot be stationary (as it requires time-varying
amplitudes) and thus can be only obtained when the am-
plitude is a free parameter. This condition is met in
Stuart-Landau oscillators, but not in Kuramoto ones.

We now provide numerical evidences of the existence of
ILC solutions in a small network and, then, examine the
case of larger systems. Phase synchronization between
any pair of oscillators of the multiplex, namely oscillator
j of layer v and oscillator [ of layer 3, can be measured
by the Kuramoto order parameter

rof = (MO0l | (7)

To get some insight on the behavior of the layers we mon-
itor the intra-layer coherence by defining the Kuramoto
order parameter of layer o as

1 N
rt = — ot (8)
N(N —1) ,7-,12::1 gt

and the inter-layer coherence as
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FIG. 3: (Color online). Bifurcation diagram of Ar vs. A
and A, for multiplex networks with N = 100 and several
interaction topologies for the bottom layer z: (a) all-to-all
network; (b) lattice; (c) SF network; (d) ER network.
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i.e., by averaging the degree of synchronization between
all the pairs of nodes connected by the inter-layer links.

In Fig. 2 we show the results obtained with a mul-
tiplex of NV = 10 units in each layer, where the nodes
in layer z are globally connected (A% = 1 Vi,l). The
network behavior depends on the coupling coefficients A,
and \,,. In this first example the analysis was carried out
by simultaneously varying them and keeping their ratio
constant, i.e., we varied \ defined as A = \,, = )\TZ (the
more general case of independent coupling coefficients is
considered below). The Kuramoto order parameters r*
and r** vs. A [see Fig. (a)] show that r* grows faster
than r**, and consequently there is a range of A val-
ues for which the top layer reaches synchronization (r,
close to unit), even if each node of the top layer is not
synchronized to its corresponding in the bottom layer
(rze small). When purely phase (Kuramoto) oscillators
are considered, this latter regime is not observed as the
curves of r, and r., coincide [dashed lines in Fig. Bl(a)].
The waveforms obtained for A = 0.7 [see Fig. [2(b)] con-
firm that the ILC regime is only attainable together with
non-stationary amplitudes. Fig.[2(b) also shows that the
nodes in each layer are synchronized with a frequency
different from one layer to the other. Intra-layer syn-
chronization without inter-layer coherence is also clear
from the phase planes of Figs. Rl(c)-(e).

We now consider a larger multiplex networks with lay-
ers of N = 100 nodes and analyze different types of inter-
action topologies for layer z. We have investigated four
kinds of undirected, unweighted networks: all-to-all cou-
pling, regular lattices, scale-free (SF) and Erdos-Rényi
(ER) networks. For these four networks we have moni-



tored the difference between the Kuramoto order param-
eters in Eqs. ) and (@), i.e., Ar = r*—r**, as a function
of the two coupling coefficients A, and \,,. Large values
of Ar indicate the appearance of the ILC regime in a re-
gion of the parameter space. With the exception of the
all-to-all topology, the networks have the same average
degree, (k) = 8. As can be observed in Fig. Bl the ILC
regime appears in all the cases. The only difference is
that the region of the parameter space characterized by
ILC differs from network to network, being the largest
area in the case of all-to-all coupling. This finding points
out the generality of the ILC regime in multiplex net-
works.

Finally, given the biological/chemical examples in
which the model proposed applies, we have studied the
influence that the density of agents in the media has on
the onset of ILC. Our aim is to find the onset of a density-
dependent threshold, in a similar fashion to those quorum
sensing-like transitions to synchronization, that is typi-
cally induced by the indirect coupling provided by the
medium. In particular, we have considered a multiplex
network in which the topology of layer z is defined by a
random geometric graph, i.e., a spatial graph in which
the nodes are randomly distributed in a planar space of
size L x L with a density given by n = % and each pair
of nodes is connected only if their Euclidean distance is
less or equal than a threshold r [see Fig. dla)].

To monitor the onset of a fully developed regime of
ILC as function of the density of the particles in the
medium, 7, we have run simulations at a fixed value of
A, while varying ., and defined the following param-
eter. Starting from the typical scenario of ILC shown
in Fig. Bla), we observe that r* reaches values close to
one before r**, and that a measure of the existence of
ILC is given by the large difference in the values of A,
for which r* and r** approach one. We have thus de-
fined A\, as AL, = min{\.; : 7.2(\.x) > 0.95} and
A2, as A2, = min{\.; : r2(X\sz) > 0.95}, and moni-
tor the difference between these two values, indicated as
Ao = X2, — A\l . Fig. B(b) reports the trend of A. as a
function of the density 7, clearly showing the existence of
a density-dependent threshold, 7., for the appearance of
ILC. Below the 7. ~ 6.6 no ILC is observed, while above
this threshold ILC develops after a very sharp transition.

In summary, we have analyzed synchronization in a
system of NV oscillators indirectly coupled through a in-
homogeneous medium. In addition, the medium has its
own dynamics, which is of the same type of the oscillators
(periodic, when uncoupled), but with a different natural
oscillation frequency. The system has been modeled as
a multiplex network formed by two layers with the same
number of nodes, whereas the nodes of a layer are con-
nected in a one-to-one correspondence with those of the
other layer. We have shown the onset of intra-layer syn-
chronization without inter-layer coherence. This regime
is commonly observed independently from the topology

(a) (b)

FIG. 4: (Color online). (a) An example of a multilayer net-
work where the bottom layer is a random geometric graph.
For the sake of visualization a network with only N = 50
nodes is displayed. (b) Behavior of the parameter A. as a
function of the density n for a multilayer network where the
bottom topology is defined by a random geometric graph.
The network has N = 100 nodes and the coupling coefficient
in the bottom layer is fixed to A\, = 2.

of the layer corresponding to the medium, although the
exact region in the parameter space in which it appears
depends on it. We have shown that the presence of an
amplitude dynamics is fundamental as the regime if intra-
layer synchrony is not observed in purely phase oscil-
lators. Finally, we have shown the onset of a density-
dependent threshold, characteristic of crowd synchrony
phenomenon, when the topology of the indirect coupling
is inherited by a random geometric graph, thus recovering
the spatial nature of a medium in chemical and biological
systems.
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