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PARTITION THEORY AND THERMODYNAMICS OF MULTI-
DIMENSIONAL OSCILLATOR ASSEMBLIES

B Y V. S. NANDA

Communicated by R. A. RANKIN

Received 3 July 1950; and in revised form 27 October 1950

1. INTRODUCTION

The close similarity between the basic problems in statistical thermodynamics and the
partition theory of numbers is now well recognized. In either case one is concerned with
partitioning a large integer, under certain restrictions, which in effect means that the
'Zustandsumme' of a thermodynamic assembly is identical with the generating func-
tion of partitions appropriate to that assembly. The thermodynamic approach to the
partition problem is of considerable interest as it has led to generalizations which so far
have not yielded to the methods of the analytic theory of numbers. An interesting
example is provided in a recent paper of Agarwala and Auluck(i) where the Hardy-
Ramanujan formula for partitions into integral powers of integers is shown to be valid
for non-integral powers as well.

The present paper is concerned with the problems in the partition theory of numbers
corresponding to the thermodynamic assemblies of two and three-dimensional oscil-
lators. Asymptotic expressions are deduced which constitute a generalization of the
Hardy-Ramanujan(2) formula for p(n) which corresponds to an assembly of linear
oscillators. Generating functions similar to those considered here were studied earlier
by MacMahon(3) in his work on combinatory analysis. It is remarkable that the
Zustandsumme of an assembly of a variable number of two-dimensional oscillators is
identical with the generating function of plane partitions. The problem, thus, becomes
one of establishing a relationship between the two seemingly different types of par-
titions. Further, it is noticed that a study of two-dimensional oscillator assembly is
connected with the partitions of bi-partite numbers.

The next two sections will be devoted to the case of the linear oscillator assembly
and MacMahon's* approach to line, plane and solid partitions. The object is to provide
an adequate background for generalizations to follow.

2. THE LINEAR OSCILLATOR ASSEBIBLY AND LINE PARTITIONS!

Consider an assembly of N identical (non-interacting) linear harmonic oscillators.
The energy levels of an oscillator in energy units are

e , = j + £ (j = 0,1,2,...).
If E denotes the total energy of the assembly, the energy actually available for dis-
tribution among the oscillators is

n = E-\N, (1)
* I am grateful to the referee for drawing my attention to MacMahon's work.
t It might be noted that partitions studied by Hardy and Ramanujan and subsequently

investigated by other authors belong to the class of line partitions.
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where %N denotes the zero point energy of the oscillators. If n^ represents the number of
oscillators in the j state n = ^jnp s n. = # . (2)

i

When the assembly obeys Bose-Einstein statistics n^ can have all integral positive
values including zero. Equation (2) represents the partitions of n into integers with the
only restriction that the total number of summands in no partition can exceed N. In
the special case N^n the second part of (2) becomes inoperative and the number of
accessible wave functions of the assembly becomes equal to p(n)—the number of un-
restricted partitions of n. It can be shown by the methods of the analytic theory of
numbers and also by well-known formulae of statistical mechanics* that

^ } . (3)

I t is usual to regard a partition as a collection of numbers whose sum is equal to the
number partitioned. There is a priori no specification of order amongst the summands
and thus any convenient order may be adopted. MacMahon has imported the idea of
descending order of magnitude amongst the summands. Accordingly a summand is
considered to have 'the attribute of position as well as of magnitude, the position being
determined by relative magnitude.' In the present case, for example, the summands
may be regarded as placed at points along a line

where the symbol ^ regulates the part magnitude at each point. We can also depict
a partition graphically. Thus for example the graph

r x • • • •
• • •

y • •

depicts the partition 4 + 3 + 2+1. The number of rows represents the number of sum-
mands and the number of dots in each row the part magnitude. The graphical repre-
sentation of a partition and the idea of order amongst the summands marks a great
step forward in partition theory. This enables us to visualize partitions in a plane and
eventually pass on to the idea of solid partitions.

3. THE GENERALIZATION TO PLANE AND SOLID PARTITIONS

In the graphical representation of a line partition the nodes can be replaced by units
without altering in any way its meaning. If, however, we replace the units by integers
so that descending order of magnitude is in evidence along the x and y axis we arrive
at what may be termed as a plane partition. Clearly, the unit graph which depicts
a line partition represents also a plane partition in which the part magnitude does not
exceed unity. The rigorous derivation of the generating function of plane partitions
is a lengthy process. It involves the idea of Diophantine inequalities and the use of

* See for example AvJuck and Kothari(4).
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lattice functions*. A short and intuitive method of arriving at the generating function
is to assume (1+1)* (1 + 2)'* (l + S)°>

( l ) s i ( 2 ) » * ( 3 ) " 3 •"• ( '

as the generating function for plane partitions in which the part magnitude does not
exceed I (symbol (TO) stands for 1 — xm). Clearly for I = 1 the generating function (4)
must reduce to the case of line partitions. This demands

sx = 1, s2 = 2, s3 = 3, ....

When there is no restriction on the part magnitude the generating function for plane
partitions becomes 1

(1) (2)2 (3f (4)*...' :
We can also depict a plane partition graphically by replacing each part by a pile of

nodes in the z direction. If we replace nodes by units the result is a solid partition in
which the part magnitude is not greater than unity. MacMahon has not given a
rigorous derivation of the generating function for solid partitions. But a simple
reasoning as in the case of plane partitions leads to the generating function

for solid partitions when there is no restriction on part magnitude.

4. TWO-DIMENSIONAL OSCILLATOR ASSEMBLY AND PLANE PARTITIONS

Here we consider the case when the number of oscillators in the assembly is not fixed.
The Schrodinger equation for a two-dimensional oscillator in plane xy separates into
x, y. The eigenfunctions are of the form

where ifrix and t]rt are the eigenfunctions for the linear case. The corresponding eigen-
values are

ei=(Jx + \) + (Jv + \) (jx or j y = 0,1,2,...),
= j+l 0' = 0,1,2,...).

Since, each value of j can be obtained by (j+1) combinations ofjx a,ndjy the state ê
has j+1 eigenfunctions corresponding to it. In other words the state of energy j is
j-fold degenerate. The role played by these degenerate states in specifying the thermo-
dynamic state of an assembly is brought out in the corresponding partition problem by
regarding the integer j as capable of occurring in j different ways, namely^, j 2 , . . . ,jj. As
the enumeration of partitions of TO is essentially the same as finding the number of states
accessible to the assembly when in the energy state n the replacement ofjj by j k in any
partition gives rise to a new partition although j i and j k have the same numerical
value j . The difference between^ and^'j. has to be understood in this sense. To illustrate
the departure from the linear case we enumerate the partitions of 3. In the one-
dimensional case the partitions are:

3, 2 + 1, 1 + 1 + 1.

* An alternative method has been given by Chaundy(7).
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In the two-dimensional case the number 3 can occur in three ways (31,32,33) the number
2 in two ways (2X, 22) so that the different partitions of 3 are:

3X> 3 2 , 3 3 , 1 + 1 + 1.

The Zustandsumme of an assembly is as usual defined by

Z = 2 o)(n) e-nf,
»=o

(6)

where /i is the inverse of temperature in energy units and a)(n) the number of states
accessible to the assembly when in the energy state n. Since in the present case the state
of energy j is j-fold degenerate we can write

Z=
r = l

This is identical with (5a) the generating function for the unrestricted plane partitions.
On the other hand, (4) (the generating function for plane partitions in which the part
magnitude does not exceed I) enumerates those 0(2) partitions* in which the suffix of
no summand exceeds I. The highest suffix that can be attached to any integer depends
upon the maximum permissible degeneracy of the level which the integer represents.
What is restricted to I in (4) is the degeneracy of levels higher than I. Degeneracy has
thus the same role in O(2), partitions as the part magnitude in plane partitions. In fact
according to the two methods of enumeration we can divide the partitions of n into
n classes such that the sth class contains those O(2) partitions which have s as the highest
suffix and plane partitions with s as the largest part magnitude. This results in an equal
number of the two types of partitions in the same class. In Table 1 a classification of
the partitions of 3 is shown. It has, however, not been possible to establish a one to
one correspondence between O(2) and plane partitions.

Table 1

Partitions

0(2)

Plane

Class I

3^ 2 ^ 1 , 1 + 1 + 1

1 1 1, 1 1, 1
1. 1

1

Class II

32> 22+l

21, 2
1

Class III

33

3

We next proceed with the evaluation of the asymptotic formula. The expression for
Z can be used to determine the various thermodynamic functions of the assembly.
In particular

( | ) (8)n = — •*-

and s = /m + logZ. (9)

* Ow partitions signifies partitions appropriate to an assembly of ^-dimensional oscillators.
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Here s denotes the entropy of the assembly. An application of the Mellin-Burkill
inversion formula to (6) gives

which is known as Bethe's theorem.
If p®\n) denotes the number of partitions appropriate to the present assembly

u)(ri)
Equations (7) and (8) give

To evaluate the sum, we replace the summation by integration by the help of Euler-
Maclaurin formula and have, for ft-*-Q,

where £(s) is the Riemann zeta-function. Integrating (116) with respect to /i, we obtain

logZ = ^ + ±log/i + c + O(fi*), (12)

where c is the constant of integration.
To evaluate the constant we write equation (7) in the form

A T - l CD

logZ= 2 log(l-e-/"-)~r+ S log(l-e-'"-)~r, (13)
r=l r=N

where N is a very large number. Now
N N

g ( )

= -$N(N+l)log/i- S rlogr + O(/i). (14)
r = l

It might be noted that £(s) can be written in the form*

««) = lim S ™-"-\ \N- + &N—i\, (15)

for cr > — 3 (cr is real part of s). A formal differentiation of (15) yields

N N1-*loeN
S m-glogw °

m=l l—B
1 log JV = g'(«) + o(l), (16)

a result which can be verified by a procedure similar to that used by Hardy (5) for
Stirling's formula. The term o(l) here and later refers to the process N->-co. Putting

* This formula is not applicable in the neighbourhood of the pole at a = 1.
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N
s = — 1 in (16) we obtain the value of 2 rlogr. Thus equation (14) can now be written

l
in the form

N
21og(l —e~'"i)~r = — jrN(N+ 1) log/i —^N2 log N + £N2 — ̂ N log N
l

—^logN—-£2+ £,'( —l) + O(/i) + o(l). (17)
rN

Also, —I log(l — e~Px)~xdx = $N2 log fi + $N2 log N — \N2 + O({i). (18)
Jo

Therefore
N—l rN
2 log(l-e-")-'- log(l-e-x*)-*dx
1 Jo

= %N (log/i + logN) — ̂ logN—TZ + £'(— l) + O(/i) + o(l). (19)

For the second part in (13), using Euler-Maclaurin formula we have

2 log (1 - e~'tr)-r - I log (1 - e--"*)-* dx
N J N

= — %N(logju, + logN)+j-2{logfi + logN+ l + O(/i)} + O(l/N). (20)

Adding (19) and (20) and letting N->co, we obtain
00 / * 00

2 log(l — e~fr)-r—\ log(l — e~'ix)~xdx = ̂ logfi + C'(—l) + O{llN). (21)
r=i Jo

A comparison of (12) and (21) gives the value of the constant as £'( — 1). Now the
entropy

s = n/i + log Z
= 3£(3)//t2 — j^+ - ^ log fi + c + O(/i2). (22)

Differentiating ( l la) with respect to /i and evaluating the sums, we obtain

(23)

From (116), ^ p i T - ' l _ ^ j _ . (24)

Substituting (22), (23) and (24) in equation (10), we have after some simplification*

p®>(n) ~ (12TT-£(3))-* (n')-25/36 exp {3^(3) »'* + £( - 1)}, (25)

where n' =

5. THE TWO-DIMENSIONAL OSCILLATOR ASSEMBLY AND

PARTITIONS OF BIPARTITE NUMBERS

Here we consider the case when the number of oscillators in the assembly is a fixed
number N. If E denotes the energy of the assembly, the actual energy available for
sharing among the oscillators is n = E — N. (26)

* This result has also been proved by Wright(8) who gives additional terms of smaller order
inside the exponential. I t has been thought worth while to give another proof as the method used
is applied later when we consider solid partitions. See also Brigham(9).
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Equation (2) as before describes the partitions of n where each j now is assumed to be
capable of occurring in j + 1 different ways. Denote the number of partitions of n into
N or less parts by I$$(n). Then for N 5s n the second part of (2) becomes inoperative
and we have K$(n) = Ef®(n) the number of unrestricted partitions of n. Thus the
Zustandsumme

= 2 &2)(n) e-"/' = fl (1 - e-^J-^+w (for N ^ n), (27)

or log Z = S log (1 - e-'>)-r + II log (1 - e-'f)-1.

The first part on the right has already been evaluated in the previous section; for the
second part we employ the functional relation

0

where f(/i) = n ( l - e - ^ ) " 1 and/t' = 4TTS//M.

Adding (29) and (306), we get

FinaUy, log Z =

+ {£(2)//t + *log/t-ilog2»r + O(/0}. (29)

As before, differentiating log Z with respect to ji, we find

which on simplification gives

/m = - ^ + — - ^ + 0(/i). (306)

From (30a)
= —i—H C/l —~ I. (31)

Inverting (306), we obtain

-*, (32)

(33)

Substitution of (31), (32) and (33) in (10) gives

where A = £'( — 1)

The expression for Hf®(ri) is of interest from the point of view of partitions of bipartite
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numbers* known also as compound denumeration. If p[(lm)] denotes the partition of
a bipartite ((3), loc. cit.)

The problem of evaluating the coefficients in the general case bristles with difficulties.
If we are interested in the total number of partitions of all bipartites satisfying I + m = n
we have merely to pick the coefficient of xn in (35) after putting x — y. Hence,

71 00

2 2 p[(n — m,m)]xn = Yl (l-zr)-<r+1K (36)
n m=0 r= l

The right-hand side is identical with the Zustandsumme of the assembly under con-
sideration. Therefore

^ p[(n-m,m)'\ = R-i\n). (37)
m=0

6. THREE-DIMENSIONAL OSCILLATOR ASSEMBLY

We shall now give an asymptotic expression for IP\n) the number of unrestricted
partitions appropriate to an assembly of a fixed number of three-dimensional oscillators.
No restriction upon the number of summands requires that the number of oscillators
N be greater than n the energy actually available for distribution among the oscillators.
The Schrodinger equation gives the eigenvalues

e* =.? + ! 0' = 0,1,2,...) (38)

and to each value of j there correspond £(J+1)0 + 2) independent wave functions.
Therefore, the integer j in any partition has to be regarded as capable of occurring in
i(j + 1) (j' + 2) different ways. If E is the total energy of the assembly

n = E-§N. (39)
The Zustandsumme

Z = 2.R<3>(tt) e-n" = f[(l-e-r>i)-«r+W<r+2» (N^n). (40)

Define two quantities Zx and Z2 by the relations

Z = TT (1—t>-r/i\—ir(r+D (4.1\

>, (42)
r= l

where log Z = log Z1 + log Z2. (43)

Since Z2 has been evaluated in the previous section we have merely to evaluate Zx.
Incidentally, this will lead us very close to the asymptotic formula for solid partitions
as Zx is identical with (56).

• It may be noted that (lin) is a symbolic representation of complex quantity l + im. The
problem of partitions of complex numbers will be taken up in detail in another paper to be
published elsewhere.
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Differentiating (41) with respect to JA, and after evaluating the sums, we have

Integrating, we obtain

logZ1 = ^ + ^ + 21
¥log/i + c' + 0(/i). (45)

The constant of integration c' is found to be £{£'( — 1) + £'( - 2)} by the procedure of
the previous section. Thus, finally

2 II2 ' IJ ' s~~ot~ 2 *WS —• ' " ' " ' ~\t~/ V*"j

^ = ^ + ^ + ^ - f + W (47)

Therefore

^ ? ^ ^ (48)

Inverting (47), we obtain

/i-1 = a^i+^ + y^-i + S^-i + Oinri), (49)

where «i = {3^(4)}"*, h = - i £ ( 3 ) « i

Also _ ^ = 1®) + O(l). (50)

Substituting (48), (49) and (50) in (10), we find

'• + K(3) "̂* + («2) - ^ - ) n'* + 5,}, (51)

where B1 = ^ ^ - ^ ^ > + | g ' (_ l) + K ' ( - 2 ) , n" = n/3g(4).

On the other hand if we start with (41) the generating function for MacMahon's solid
partitions (whose number we denote by pi3\n)) and follow the procedure, the details
of which have been given twice, we get

(bfej?e x p P» n"1 +x{ 3 ) n'ri -
where

7. COMPARISON OF CALCULATED AND ENUMERATED VALUES

In Table 2 the calculated and the enumerated values of p®(n) and#(3)(?i) are given for
n up to 25 (at intervals of 5). The enumerations can be carried out by the help of
recurrence relations given below.
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Replacing e~'t by a; in equation (7), we find

logZ = - S rlog(l-a;r) = log
lr = l

Differentiating with respect to x, we obtain

»=0

On comparing the coefficients of a;71 on both sides of (54), the relation

np<®(n) = £ o®\m)pV\n-m),
m = l

follows immediately. Similarly, it can be shown that

m = l

(53)

(54)

(55)

(56)

where cr<r'(m) denotes the sum of the rth powers of the divisors of m.

Table 2

n

5
10
15
20
25

2>«>(w)

Calculated

27
526
7124

77827
716468

Enumerated

24
500
6879
75278

696033

p«i(n)

Calculated

62
3167

110355
2979182

66964233

Enumerated

59
3162

110445
2992892
67405569

We now break the partitions into classes such that partitions having a particular
integer as the smallest summand* are placed in the same class. Thus, if p^n, m)
denotes the number of partitions of n having m as the smallest summand we notice
at once that

" - 1),

p(2){n, m) = 0 for \n < m < n,
plS)(n, m) = n for n = m.

In fact, for a general m it can be shown from elementary considerations that

,m)=
r=l

V®(n-rm,m), (57)

where

and

s(m) = m for s = 2, s(m) = 1) for s = 3,

t=n

The values of p^\n) and p®\n) obtahied from (57) serve as a check on the values
obtained from (55) and (56).

* The value of the summand here refers to the 0(J> partitions and is not to be confused with
part magnitude in MacMahon's plane and solid partitions.
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For the calculation of p®\ri) andp(3)(w) from the asymptotic formulae (25) and (52)
we require the numerical value of £'( — 1) and £'( — 2). Dwight(6) has tabulated the
values of £'(s)/£(s). Since £( — 2) = 0 we cannot obtain £'( — 2) from these tables. But,
from the functional relation

£(1 -«) = {2/(2TT)S} COS \TTS T{S) £(«) (58)

we have, by differentiation, for s = 3

My thanks are due to Prof. D. S. Kothari and Dr F. C. Auluck for their interest and
guidance during the course of this work. I am also thankful to Dr B. K. Agarwala for
many friendly discussions.
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