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We study the network dismantling problem, which consists of de-
termining a minimal set of vertices in which removal leaves the
network broken into connected components of subextensive size. For
a large class of random graphs, this problem is tightly connected
to the decycling problem (the removal of vertices, leaving the graph
acyclic). Exploiting this connection and recent works on epidemic
spreading, we present precise predictions for the minimal size of a
dismantling set in a large random graph with a prescribed (light-
tailed) degree distribution. Building on the statistical mechanics
perspective, we propose a three-stage Min-Sum algorithm for
efficiently dismantling networks, including heavy-tailed ones for
which the dismantling and decycling problems are not equivalent.
We also provide additional insights into the dismantling problem,
concluding that it is an intrinsically collective problem and that
optimal dismantling sets cannot be viewed as a collection of individ-
ually well-performing nodes.

graph fragmentation | message passing | percolation | random graphs |
influence maximization

Anetwork (a graph G in the discrete mathematics language) is a
set V of N entities called nodes (or vertices), along with a set E

of edges connecting some pairs of nodes. In a simplified way,
networks are used to describe numerous systems in very diverse
fields, ranging from social sciences to information technology or
biological systems (reviews are in refs. 1 and 2). Several crucial
questions in the context of network studies concern the modifi-
cations of the properties of a graph when a subset S of its nodes
is selected and treated in a specific way. For instance, how much
does the size of the largest connected component of the graph
decrease if the vertices in S (along with their adjacent edges) are
removed? Do the cycles survive this removal? What is the out-
come of the epidemic spreading if the vertices in S are initially
contaminated, constituting the seed of the epidemic? On the
contrary, what is the influence of a vaccination of nodes in S pre-
venting them from transmitting the epidemic? It is relatively easy
to answer these questions when the set S is chosen randomly, with
each vertex being selected with some probability independently.
Classical percolation theory is nothing but the study of the con-
nected components of a graph in which some vertices have been
removed in this way.
A much more interesting case is when the set S can be chosen in

some optimal way. Indeed, in all applications sketched above, it is
reasonable to assign some cost to the inclusion of a vertex in S:
vaccination has a socioeconomic price, incentives must be paid to
customers to convince them to adopt a new product in a viral
marketing campaign, and incapacitating a computer during a cyber
attack requires resources. Thus, one faces a combinatorial optimi-
zation problem: the minimization of the cost of S under a constraint
on its effect on the graph. These problems thus exhibit both static
and dynamic features, the former referring to the combinatorial
optimization aspect and the latter referring to the definition of the
cost function itself through a dynamical process.
In this paper, we focus on the existence of a giant component

in a network: that is, the largest component containing a positive
fraction of the vertices (in the N→∞ limit). On the one hand,
the existence of a giant component is often necessary for the
network to fulfill its function (e.g., to deliver electricity or

information bits or ensure possibility of transportation). An
adversary might be able to destroy a set of nodes with the goal of
destroying this functionality. It is thus important to understand
what an optimal attack strategy is, possibly as a first step in the
design of optimal defense strategies. On the other hand, a giant
component can propagate an epidemic to a large fraction of a
population of nodes. Interpreting the removal of nodes as the
vaccination of individuals who cannot transmit the epidemic
anymore, destroying the giant component can be seen as an
extreme way of organizing a vaccination campaign (3, 4) by
confining the contagion to small connected components [less
drastic strategies can be devised using specific information about
the epidemic propagation model (5, 6)]. Another related appli-
cation is influence maximization as studied in many previous
works (7–9). In particular, optimal destruction of the giant
component is equivalent to selection of the smallest set of ini-
tially informed nodes needed to spread the information into the
whole network under a special case of the commonly considered
model for information spreading (7–9).
To define the main subject of this paper more formally, fol-

lowing ref. 10, we call S a C-dismantling set if its removal yields a
graph with the largest component that has size (in terms of its
number of nodes) at most C. The C-dismantling number of a graph
is the minimal size of such a set. When the value of C is either clear
from the context or not important for the given claim, we will
simply talk about dismantling. Typically, the size of the largest
component is a finite fraction of the total number of nodes N. To
formalize the notion of destroying the giant component, we will
consider the bound C on the size of the connected components of
the dismantled network to be such that 1 � C � N. It should be
noted that we defined dismantling in terms of node removal; it
could be rephrased in terms of edge removal (11), which turns out
to be a much easier problem. The dismantling problem is also
referred to as fragmentability of graphs in graph theory literature
(12–14) and optimal percolation in ref. 15.
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Determining whether the C-dismantling number of a graph is
smaller than some constant is nondeterministic polynomial (NP)-
complete decision problem (a proof is in SI Appendix). The
concept of NP completeness concerns the worst case difficulty of
the problem. The questions that we address in this paper are
instead the following. What is the dismantling number on some
representative class of graphs (in our case, random graphs)?
What are the best heuristic algorithms, how does their perfor-
mance compare with the optimum, and how do they perform on
benchmarks of real world graphs? Simple heuristic algorithms
for the dismantling problem were considered in previous works
(16–18), where the choice of the nodes to be included in the
dismantling set was based on their degrees (favoring the in-
clusion of the most connected vertices) or some measure of their
centrality. More recently, a heuristic for the dismantling problem
has been presented in ref. 15 under the name “collective” in-
fluence (CI), in which the inclusion of a node is decided
according to a combination of its degree and the degrees of the
nodes in a local neighborhood around it. Ref. 15 also attempts to
estimate the dismantling number on random graphs.

Our Main Contribution
In this paper, we provide a detailed study of the dismantling
problem, with both analytical and algorithmic outcomes. We
present very accurate estimates of the dismantling number for
large random networks, building on a connection with the
decycling problem [in which one seeks a subset of nodes with
removal that leaves the graph acyclic; also an NP-complete
problem (19)] and recent studies of optimal spreading (20–23).
Our results are the one-step replica symmetry broken estimate of
the ground state of the corresponding optimization problem.
On the computational side, we introduce a very efficient al-

gorithm that outperforms considerably state of the art algorithms
for solving the dismantling problem. We show its efficiency and
closeness to optimality on both random graphs and real world
networks. The goal of our paper is closely related to the one of
ref. 15; we present an assessment of the results reported therein
on random as well as real world networks.
Our dismantling algorithm, which has been inspired by the theo-

retical insight gained on random graphs, is composed of three stages.

i) Min-Sum message passing for decycling. This part is the core
of the algorithm, using a variant of a message-passing algo-
rithm developed in refs. 20 and 21. A related but different
message-passing algorithm was developed for decycling in
ref. 22 and later applied to dismantling in ref. 24; it performs
comparably with ours.

ii) Tree breaking. After all cycles are broken, some of the tree
components may still be larger than the desired threshold C.
We break them into small components, removing a fraction of
nodes that vanishes in the large size limit. This operation can
be done in time OðN logNÞ by an efficient greedy procedure
(detailed in SI Appendix).

iii) Greedy reintroduction of cycles. As explained below, the strat-
egy of first decycling a graph before dismantling it is the opti-
mal one for graphs that contain few short cycles (a typical
property of light-tailed random graphs). For graphs with many
short cycles, we improve considerably the efficiency of our
algorithm by reinserting greedily some nodes that close cycles
without increasing too much the size of the largest component.

The dismantling problem, as is often the case in combinatorial
optimization, exhibits a very large number of (quasi)optimal solu-
tions. We characterize the diversity of these degenerate minimal
dismantling sets by a detailed statistical analysis, computing in
particular the frequency of appearance of each node in the qua-
sioptimal solutions, and conclude that dismantling is an intrinsically
collective phenomenon that results from a correlated choice of a
finite fraction of nodes. It thus makes much more sense to think in
terms of good dismantling sets as a whole and not about individual
nodes as the optimal influencers/spreaders (15). We further study

the correlation between the degree of a node and its importance
for dismantling, exploiting a natural variant of our algorithm, in
which the dismantling set is required to avoid some marked
nodes. This study allows us to show that each of the low-degree
nodes can be replaced by other nodes without increasing sig-
nificantly the size of the dismantling set. Contrary to claims in
ref. 15, we do not confirm any particular importance of weak
nodes, apart from the obvious fact that the set of highest-degree
nodes is not a good dismantling set.
To give a quantitative idea of our algorithmic contribution, we state

two representative examples of the kind of improvement that we ob-
tain with the above algorithm with respect to the state of the art (15).

i) In an Erd}os–Rényi (ER) random graph of average degree 3.5
and size N = 57, we found C= 1,000 dismantling sets removing
17.8% of the nodes, whereas the best known method (adaptive
eigenvalue centrality for this case) removes 20.2% of the nodes,
and the adaptive CI method of ref. 15 removes 20.6% of the
nodes. Hence, we provide a 13% improvement over the state of
the art. Our theoretical analysis estimates the optimum disman-
tling number to be around 17.5% of the nodes; thus, the algo-
rithm is extremely close to optimal in this case.

ii) Our algorithm managed to dismantle the Twitter network
studied in ref. 15 (with 532,000 nodes) into components
smaller than C= 1,000 using only 3.4% of the nodes, whereas
the CI heuristics of ref. 15 needs 5.6% of the nodes. Here, we
thus provide a 60% improvement over the state of the art.

Not only does our algorithm show beyond state of the art
performance, but it is also computationally efficient. Its core part
runs in linear time over the number of edges, allowing us to
easily dismantle networks with tens of millions of nodes.

Relation Between Dismantling and Decycling
We begin our discussion by clarifying the relation between the
dismantling and decycling problems. Although the argument below
can be found in ref. 10, we reproduce it here in a simplified fashion.
The decycling number (or more precisely, fraction) θdecðGÞ of G is
the minimal fraction of vertices that have to be removed to make
the graph acyclic. We define similarly the dismantling number
θdisðG,CÞ of a graphG as the minimal fraction of vertices that have
to be removed to make the size of the largest component of the
remaining graph smaller than a constant C.
For random graphs with degree distribution q= fqkgk≥0, in

the large size limit, the parameters θdec and θdis will enjoy con-
centration (self-averaging) properties; we shall thus write their
typical values as

θdecðqÞ= lim
N→∞

E½θdecðGÞ�, [1]

θdisðqÞ= lim
C→∞

lim
N→∞

E½θdisðG,CÞ�, [2]

where E½•� denotes an average over the random graph ensemble.
For the dismantling number, we allow the connected compo-
nents after the removal of a dismantling set to be large but sub-
extensive because of the order of limits. It was proven in ref. 10
that, for some families of random graphs, an equivalent definition
is lime→0limN→∞E½θdisðG, eNÞ� (i.e., connected components are
allowed to be extensive but with a vanishing intensive size).
The crucial point for the relation between dismantling and decy-

cling is that trees (or more generically, forests) can be efficiently
dismantled. It was proven in ref. 10 that θdisðG,CÞ≤ 1=ðC+ 1Þ
whenever G is a forest. This inequality means that the fraction of
vertices to be removed from a forest to dismantle it into components
of size C goes to zero when C grows.
This observation brings us to the following two claims

concerning the dismantling and decycling numbers for random
graphs with degree distribution q: (i) for any degree distribution,
θdisðqÞ≤ θdecðqÞ; and (ii) if q also admits a second moment (we
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shall call q light tailed when this is the case), then there is ac-
tually an equality between these two parameters, θdisðqÞ= θdecðqÞ.
The first claim follows directly from the above observation on

the decycling number of forests. After a decycling set S of G has
been found, one can add to S additional vertices to turn it into
a C-dismantling set, the additional cost being bounded as
θdisðG,CÞ≤ θdecðGÞ+ 1=ðC+ 1Þ. Taking averages of this bound
and the limit C→∞ after N→∞ yields directly i.
To justify our second claim, we consider a C-dismantling set S

of a graph G. To turn S into a decycling set, we need to add
additional vertices to break the cycles that might exist in G∖S.
The lengths of these cycles are certainly smaller than C, and
removing at most one vertex per cycle is enough to break them.
We can thus write θdecðGÞ≤ θdisðG,CÞ+ nCðGÞ=N, with nCðGÞ
denoting the number of cycles of G of length at most C. We
recall that the existence of a second moment of q implies that
nCðGÞ remains bounded when N→∞ with C fixed. Considering
the limit N→∞ and property i, property ii follows.

Network Decycling
In this section, we shall explain the results on the decycling
number of random graphs that we obtained via statistical me-
chanics methods and how they can be exploited to build an ef-
ficient heuristic algorithm for decycling arbitrary graphs.

Testing the Presence of Cycles in a Graph. The 2-core of a graph G is
its largest subgraph of minimal degree 2; it can be constructed by
iteratively removing isolated nodes and leaves (vertices of degree
1) until either all vertices have been removed or all remaining
vertices have degree at least 2. It is easy to see that a graph
contains cycles if and only if its 2-core is nonempty. To decide if a
subset S is decycling, we remove the nodes in S and perform this
leaf removal on the reduced graph. To formalize this procedure,
we introduce binary variables xtiðSÞ∈ f0,1g on each vertex i∈V of
the graph, t being a discrete time index. At the starting time t= 0,
one marks the initially removed vertices by setting x0i ðSÞ= 1 if i∈ S
and 0 otherwise, and let the x variables evolve in time according to

xt+1i ðSÞ=

8<
:

1 if   xtiðSÞ= 1,

I   

"X
j∈∂i

�
1− xtjðSÞ

�
≤ 1

#
if   xtiðSÞ= 0, [3]

where ∂i= fj : ðijÞ∈Eg denotes the local neighborhood of vertex I,
and I denotes the indicator function (that is, one if its argument is
true and zero otherwise). One can check that the xi s are monoto-
nous in time (they can only switch from zero to one); hence, they
admit a limit xpi ðSÞ when t→∞. At this fixed point, xpi ðSÞ= 0 if and
only if i is in the 2-core of G∖S; hence, the sufficient and necessary
condition for S to be a decycling set ofG is xpi ðSÞ= 1 for all vertices i.
Note that the leaf removal procedure can be equivalently

viewed as a particular case of the linear threshold model of epi-
demic propagation or information spreading. By calling a re-
moved vertex infected (or informed), one sees that the infection
(or information) of node i occurs whenever the number of its
infected (or informed) neighbors reaches its degree minus one.
This equivalence, which was already exploited in refs. 15 and 23,

allows us to build on previous works on minimal contagious sets
(20, 21, 23) and influence maximization (7–9).

Optimizing the Size of Decycling Sets. From the point of view of
statistical mechanics, it is natural to introduce the following
probability distribution over the subsets S to find the optimal
decycling sets of a given graph

η̂ðSÞ= 1
ZðμÞ e

μjSj Y
i∈V

I
�
xpi ðSÞ= 1

�
, [4]

where jSj denotes the number of vertices in S, μ is a real param-
eter to be interpreted as a chemical potential (or an inverse
temperature), and the partition function ZðμÞ normalizes this
probability distribution. From the preceding discussion, this mea-
sure gives a positive probability only to decycling sets, and their
minimal size can be obtained as the ground-state energy in the
zero-temperature limit:

θdecðGÞ= 1
N

lim
μ→−∞

1
μ
ln  ZðμÞ. [5]

The computation of this partition function remains at this point a
difficult problem; in particular, the variables xpi depend on the
choice of S in a nonlocal way. One can get around this difficulty
in the following way: because the evolution of xti is monotonous
in time, it can be completely described by a single integer,
tiðSÞ=minft : xtiðSÞ= 1g, the time at which i is removed in the
parallel evolution described above. Note that tiðSÞ= 0 if and only
if i∈ S and tiðSÞ> 0 otherwise. We use the natural convention
min 0==∞; hence, the nodes i in the 2-core of G∖S are precisely
those with an infinite removal time tiðSÞ=∞. The crucial advan-
tage of this equivalent representation in terms of the activation
times is its locality along the graph. Indeed, the dynamical evo-
lution rule (Eq. 3) can be rephrased as static equations linking
the times ti on neighboring vertices:

tiðSÞ=
(
0 if     i∈ S,
ϕi

��
tj
�
j∈∂i

�
if     i∈V ∖S, [6]

with    ϕi

��
tj
�
j∈∂i

�
= 1+max2

��
tjðSÞ

�
j∈∂i

�
, [7]

where we denote max2 the second largest of the arguments [reor-
dering them as t1 ≥ t2 ≥ . . . ≥ tn, one defines max2ðt1, . . . , tnÞ= t2].
In the leaf removal procedure, one vertex is removed in the first
step after the time at which all but one of its neighbors has been

Table 1. The (1RSB) cavity predictions for the decycling number
of ER random graphs of average degree d and the decycling
number reached by the Min-Sum algorithm on graphs of size
N= 107 nodes

d θdecðdÞ θMS
decðdÞ

1.5 0.0125 0.0135
2.5 0.0912 0.0936
3.5 0.1753 0.1782
5 0.2789 0.2823
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Fig. 1. Fraction of nodes in the largest component as a function of the fraction
of removed nodes for an ER random graph of average degree d= 3.5 and size
N= 78,125. We compare the result of our Min-Sum algorithm (MS) with random
(RND), adaptive largest degree (DEG), adaptive EC, adaptive CI centrality, and SA.
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removed, making it a leaf. Eq. 6 admits a unique solution for
each S; hence, the partition function can be rewritten as

ZðμÞ=
X
ftig

e
μ
P
i

ψ iðtiÞ Y
i∈V

I½ti <∞�
Y
i∈V

Φ
�
ti,
�
tj
�
j∈∂i

�
, [8]

with ψ iðtiÞ= I½ti = 0�, and Φðti,ftjgj∈∂iÞ= I ½ti = 0�+ I ½ti =ϕiðftjgj∈∂iÞ�.
We have thus obtained an exact representation of the generat-
ing function counting the number of decycling sets according to
their size as a statistical mechanics model of variables (the ti s)
interacting locally along the graph G. We transformed the non-
equilibrium problem of leaf removal into an equilibrium prob-
lem, where the times of removal play the role of the static
variables. Note that ref. 22, which also estimates the decycling
number, uses a simpler but approximate representation, where
one cycle may remain in every connected component, and the
correspondence between microscopic configurations and sets of re-
moved vertices is many to one. The domain of the variables ti
should include all integers between zero and the diameter of G
and the additional∞ value. For practical reasons, in the rest of this
paper, we restrict this set to f0,1, . . . ,T,∞g, where T is a fixed
parameter, and project all ti s greater than T to ∞. This restriction
means not only that we require G∖S to be acyclic but that its con-
nected components are trees of diameter at most T. For large-
enough values of T, this additional restriction is inconsequential.
The exact computation of the partition function (Eq. 8) for an

arbitrary graph remains an NP-hard problem. However, if G is a
sparse random graph, the large size limit of its free energy
density lnZðμÞ=ðNμÞ can be computed by the cavity method (25,
26). The latter has been developed for statistical mechanics
models on locally tree-like graphs, such as light-tailed random
graphs, for which the exactness of the cavity method has been
proven mathematically on several problems. The starting point
of the method is based on the fact that light-tailed random
graphs converge locally to trees in their large size limit; hence,
models defined on them can be treated with belief propagation
(BP; also called Bethe Peierls approximation in statistical me-
chanics). In BP, a partition function akin to Eq. 8 is computed via
the exchange of messages between neighboring nodes. In this
case, where an interaction in Eq. 8 includes node i and all of its
neighbors j∈∂i, we obtain a tree-like representation if we let pairs
of variables ti, tj live on the edges and add consistency constraints
on the nodes. The BP message ηijðti, tjÞ from i to j∈∂i is then a
function of both the activation times ti and tj. This message is

interpreted as the marginal probability law of the local variables ti
and tj in an amputated (cavity) graph, in which the interaction
between i and j has been removed. Thanks to the locally tree-like
character of the graph, some correlation decay properties are
verified and allow a node’s incoming messages to be treated as
independent. Under this assumption, the iterative BP equations
(20, 21, 23) for decycling are written as

ηij
�
ti, tj

	
∝

X
ftkgk∈∂i j

eμψ iðtiÞΦðti, ftkgk∈∂iÞ
Y
k∈∂i∖ j

ηkiðtk, tiÞ, [9]

where the ∝ symbol includes a multiplicative normalization constant.
The free energy can then be computed as a sum of local contributions
depending on the messages solution of the BP equations.
Better parametrizations with a number of real values per

message that scale linearly with T (rather than quadratically) can
be devised (21, 23). A parametrization with 2T real values per
message was introduced in ref. 23 and used to obtain improved
results for the minimum decycling set on regular random graphs
by extending the cavity method to the so-called first level of the
replica symmetry breaking (1RSB) scheme. The extension of this
calculation to random graphs with arbitrary light-tailed degree
distributions is reported in SI Appendix (along with expansions
close to the percolation threshold and at large degrees and a
lower bound on θdec valid for all graphs). The 1RSB predictions
for the decycling fraction θdecðdÞ of ER random graphs with
average degree d, obtained by solving numerically the corre-
sponding equations and extrapolating the results in the large T
limit, are presented for a few values of d in Table 1.

Min-Sum Algorithm for the Decycling Problem. We turn now to the
description of our heuristic algorithm for finding decycling sets
of the smallest possible size. The above analysis shows the
equivalence of this problem with the minimization of the cost
function

P
iψ iðtiÞ over the feasible configurations of the activa-

tion times ftig∈ f0, . . . ,TgV , where feasible means that, for all
vertices i, either ti = 0 (then i is included in the decycling set S) or
if ti > 0, it obeys the constraint ti = 1+max2ðftjgj∈∂iÞ. Because this
minimization is NP hard, we formulate a heuristic strategy in the
following manner. We first consider a slightly modified cost
function with ψ iðtiÞ= I½ti = 0�+ «iðtiÞ, where «iðtiÞ is a randomly
chosen infinitesimally small cost associated with the removal of
node i at time ti. The minimum ftpi g of this cost function is now
unique with probability one and can be constructed as
tpi = argmin  hiðtiÞ, where the field hiðtiÞ is the minimum cost among
the feasible configurations with a prescribed value for the removal
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Min-Sum (MS) algorithm. We ordered the vertices by this frequency and depict
their ordering divided by N on the x axis. The different curves correspond to all
vertices, vertices appearing in one randomly chosen decycling set found by the
MS algorithm, and one found by the CI algorithm.
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time ti of site i. From the solution of this combinatorial optimization
problem, we construct one of the minimal decycling sets S by in-
cluding vertex i in S if and only if ti*= 0. It remains now to find a
good approximation for hi; we compute it by the Min-Sum algo-
rithm, which corresponds to the μ→ −∞ limit of BP and is similarly
based on the exchange of messages hijðti, tjÞ between neighboring
vertices, an analog of ηijðti, tjÞ, but interpreted as a minimal cost
instead of a probability. We defer to SI Appendix for a full derivation
and implementation details, stating here the final equations.

hiðtiÞ=ψ iðtiÞ+
X
k∈∂i

LkiðtiÞ+MiðtiÞ, [10a]

hið0Þ=ψ ið0Þ+
X
k∈∂i

Rkið0Þ, [10b]

MiðtiÞ=min


0, min

k∈∂i
fRkiðtiÞ−LkiðtiÞg

�
, [11]

for T ≥ ti > 0, where Lij, Rij, Mij, h0ij, and h1ij form a solution of the
following system of fixed point equations for messages defined
on each directed edge i→ j of the graph:

LkiðtiÞ= min
tk<ti

h0kiðtkÞ , [12a]

RkiðtiÞ=min


h0kiðtiÞ, min

tk>ti
h1kiðtkÞ

�
, [12b]

MijðtiÞ=min


0, min

k∈∂i∖ j
fRkiðtiÞ−LkiðtiÞg

�
, [12c]

h0ijðtiÞ∝ψ iðtiÞ+
X
k∈∂i∖ j

LkiðtiÞ  , [12d]

h1ijðtiÞ∝ψ iðtiÞ+
X
k∈∂i∖ j

LkiðtiÞ+MijðtiÞ, [12e]

h0ijð0Þ∝ψ ið0Þ+
X
k∈∂i∖ j

Rkið0Þ, [12f]

where ∝ includes now an additive normalization constant. An
intuitive interpretation of all of these quantities and equations is pro-
vided in SI Appendix; let us only mention at this point that the
message h0ijðtiÞ [respectively h1ijðtiÞ] is the minimum feasible cost on
the connected component of i in G∖j under the condition that i is
removed at time ti in the original graph, assuming that j is not re-
moved yet (respectively assuming that j is already removed from G).
This system can be solved efficiently by iteration. The com-

putation of one iteration takes OðjEjTÞ elementary (+, −, ×, min)
operations, where jEj denotes the number of edges of the graph,
and a relatively small number of iterations is usually sufficient to
reach convergence. In principle, one should take the cutoff T on
the removal times to be greater than N to solve the decycling
problem. We found, however, that using large but finite values of
T (i.e., constraining the diameter of the tree components after
the node removal) did not increase extensively the size of the
decycling set; in the simulations presented below, we used T = 35.
Note that our algorithm is very flexible, and many variations can be
implemented by appropriate modifications of the cost function. For
example, we exploited the possibility to forbid the removal of cer-
tain marked nodes i by setting ψ iðti = 0Þ=∞ for them.

Results for Dismantling
Results on Random Graphs. The outcome of our algorithm applied
to an ER random graph of average degree 3.5 is presented in Fig. 1.

Here, the red circle corresponds to the output of its first stage
(decycling with Min-Sum), which yields, after the removal of a
fraction 0.1781 of the nodes, an acyclic graph in which the largest
components contain a fraction 0.032 of the vertices. The red line
corresponds to the second stage, which further reduces the size of
the largest component by greedily breaking the remaining trees.
We compare with simulated annealing (SA; black circle) as well as
several incremental algorithms that successively remove the nodes
with the highest scores, where the score of a vertex is a measure of
its centrality. Other than a trivial function that gives the same
score to all vertices [hence removing the vertices in random order
(RND)] and the score of a vertex equal to its degree, we used the
eigenvector centrality (EC) measure and the recently proposed CI
measure (15). We used all of these heuristics in an adaptive way,
recomputing the scores after each removal. Additional details on
all of these algorithms can be found in SI Appendix.
We see from Fig. 1 that the Min-Sum algorithm outperforms

the others by a considerable margin: it dismantles the graph
using 13% fewer nodes than the CI method. The Monte Carlo-
based SA algorithm performs rather well but is considerably
slower than all of the others.
In Fig. 2, we zoom in on the results of the second stage of our

algorithm and perform a finite size scaling analysis, increasing the
size of the dismantled graphs up to N = 108. In this way, we
identify a threshold for decycling (and thus, for dismantling) by the
Min-Sum algorithm that converges toward the value θMS

dec ≈ 0.1782,
which is close but not equal to the theoretical prediction of the
1RSB calculation θ1RSBdec ≈ 0.1753 (vertical arrow in Fig. 2). Fig. 2,
Inset shows a remarkable scaling that indicates that the size of the
largest component after dismantling by removing a given fraction
of nodes does not depend on the graph size.
Combinatorial optimization problems typically exhibit a very

large degeneracy of their (quasi)optimal solutions. We performed
a detailed statistical analysis of the quasioptimal dismantling sets
constructed by our algorithm, exploiting the fact that the Min-Sum
algorithm finds different decycling sets for different realizations of
the random tie-breaking noise «iðtiÞ.
For a given ER random graph of average degree 3.5 and size

N = 78,125, we ran the algorithm for 1,000 different realizations
of the tie-breaking noise «iðtiÞ and obtained 1,000 different
decycling sets, all of which had sizes within 40 nodes of one
another. Randomly chosen pairs among these 1,000 decycling
sets coincided, on average, on 82% of their nodes. For each
node, we computed its frequency of appearance among the 1,000
decycling sets that we obtained. We then ordered nodes by
this frequency and plotted the frequency as a function of this
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Fig. 4. Fraction C=N taken by the largest component in the Twitter network
achieved after removing a fraction S=N of nodes using the Min-Sum (MS)
algorithm and the adaptive versions of CI and EC measures. The red circle
marks the result obtained by decycling using MS (followed by the curve from
the optimal tree-breaking process). The branches at lower values of S=N are
obtained after the application of the RG strategy from the graph obtained
when the largest component has C = 100 nodes. The black circle denotes the
dismantling fraction obtained by SA.
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ordering in Fig. 3. We see that some nodes appear in almost all
found sets, that about 60% of nodes do not appear in any sets,
and that a large portion of nodes appears only in a fraction of the
decycling sets. We compare the frequencies of nodes belonging
to one typical set found by Min-Sum and the CI heuristics.
An important question to ask about dismantling sets is whether

they can be thought of as a collection of nodes that are in some
sense good spreaders or whether they are a result of highly cor-
related optimization. We use the result of the previous experiment
and remove the nodes that appeared most often (i.e., have the
highest frequencies in Fig. 3). If the nature of dismantling was
additive rather than collective, then such a choice should further
decrease the size of the discovered dismantling set. This scenario
is not what happens; with this strategy, we need to remove 20.1%
of nodes to dismantle the graph compared with the 17.8% of
nodes found systematically by the Min-Sum algorithm. From this
observation, we conclude that dismantling is an intrinsically col-
lective phenomenon, and one should always speak of the full set
rather than a collection of influential spreaders.
We also studied the degree histogram of nodes that the Min-

Sum algorithm includes in the dismantling sets and saw that, as
expected, most of the high-degree nodes belong to most of the
dismantling sets. Each of the dismantling sets also included some
nodes of relatively low degrees; for instance, for an ER random
graph of average degree d= 6 and size 57, a typical decycling set
found by the Min-Sum algorithm has around 460 (i.e., around
17%of the decycling set) nodes of degree 4 or lower. To assess the
importance of low-degree nodes for dismantling, we ran the Min-
Sum algorithm under the constraint that only nodes of degree at
least 5 can be removed, and we find decycling sets almost as small
(only about 50 nodes; i.e., 0.2% larger) as without this constraint.
From this observation, we conclude that none of the low-degree
nodes (even those with high CI centrality) are indispensable for
dismantling, going against a highlight claim of ref. 15.

More General Graphs. Up to this point, our study of dismantling
relies crucially on the relation to decycling. For light-tailed random
graphs, these two problems are essentially asymptotically equivalent.
However, for arbitrary graphs that contain many small cycles, the
decycling number can be much larger than the dismantling one. We
argue that, from the algorithmic point of view, decycling still provides
a very good basis for dismantling. For instance, consider a portion of
N = 532,000 nodes of the Twitter network already analyzed in ref.
15. The decycling solution found by Min-Sum improves considerably
the results obtained with the CI and EC heuristics (Fig. 4).
In a network that contains many short cycles, decycling removes a

large proportion of nodes expressly to destroy these short cycles.

Many of these nodes can be put back without increasing the size of
the largest component. For this reason, we introduce a reverse greedy
(RG) procedure, in which starting from a dismantled graph with
dismantling set S, maximum component size C, and a chosen target
value C′>C for the maximum allowed component size, removed
nodes are iteratively reinserted. At each step, among all removed
nodes, the one that ends up in the smallest connected component is
chosen for reinsertion (details are in SI Appendix). The computa-
tional cost of this operation is bounded by kmaxC′ logðkmaxC′Þ, where
kmax is the maximal degree of the graph; the update cost is thus
typically sublinear in N.
In graphs where decycling is an optimal strategy for dis-

mantling, such as the random graphs, a vanishing fraction of
nodes can be reinserted by the RG procedure before the size
of the largest component starts to grow steeply. For real
world networks, the RG procedure reinserts a considerable
number of nodes, negligibly altering the size of the largest
component. For the Twitter network in Fig. 4, the improve-
ment obtained by applying the RG procedure is impressive:
32% fewer nodes for the CI method and 20% fewer nodes for
the Min-Sum algorithm, which ends up being the best solu-
tion that we found, removing only 3.4% of nodes to dismantle
into components smaller than C= 1,000 nodes. RG makes it
possible to reach, and even improve, the best result obtained
with SA that solves the dismantling problem directly and is
not affected by the presence of short loops (SI Appendix has
details on SA). Qualitatively similar results are achieved on
other real networks [e.g., on the YouTube network with 1.13
million nodes (27), the best dismantling set that we found
with Min-Sum + RG included 4.0% of nodes; this result is a
22% improvement with respect to the CI heuristics].
The RG procedure is introduced as a heuristic that provides

a considerable improvement for the examples that we treated.
The theoretical results of this paper are valid only for classes of
graphs that do not contain many small cycles, and hence, our
theory does not provide a principled derivation or analysis of
the RG procedure. This point is an interesting open direction
for future work. More detailed study (both theoretical and al-
gorithmic) of dismantling of networks for which decycling is
not a reasonable starting point is an important direction of
future work.
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