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Tumour heterogeneity is increasingly recognized as a major obstacle to therapeutic success across neuro-oncology. 
Gliomas are characterized by distinct combinations of genetic and epigenetic alterations, resulting in complex inter
actions across multiple molecular pathways. Predicting disease evolution and prescribing individually optimal treat
ment requires statistical models complex enough to capture the intricate (epi)genetic structure underpinning 
oncogenesis.
Here, we formalize this task as the inference of distinct patterns of connectivity within hierarchical latent represen
tations of genetic networks. Evaluating multi-institutional clinical, genetic and outcome data from 4023 glioma pa
tients over 14 years, across 12 countries, we employ Bayesian generative stochastic block modelling to reveal a 
hierarchical network structure of tumour genetics spanning molecularly confirmed glioblastoma, IDH-wildtype; 
oligodendroglioma, IDH-mutant and 1p/19q codeleted; and astrocytoma, IDH-mutant.
Our findings illuminate the complex dependence between features across the genetic landscape of brain tumours 
and show that generative network models reveal distinct signatures of survival with better prognostic fidelity than 
current gold standard diagnostic categories.

1 Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
2 Division of Neuropathology and Department of Neurodegenerative Disease, Queen Square Institute of Neurology, 

University College London, London WC1N 3BG, UK

Correspondence to: Dr James K. Ruffle  
Institute of Neurology, UCL, London WC1N 3BG, UK  
E-mail: j.ruffle@ucl.ac.uk

Correspondence may also be addressed to: Professor Parashkev Nachev  
E-mail: p.nachev@ucl.ac.uk

Keywords: brain tumours; graph modelling; tumour genetics; survival modelling; machine learning; representation 
learning

Received February 21, 2023. Revised May 12, 2023. Accepted May 30, 2023. Advance access publication September 4, 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which per
mits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Brain tumours remain remarkably resistant to treatment, and im
pose a socioeconomic burden second amongst cancers only to 
breast and lung.1 Fewer than half of people with the commonest 
malignant type—glioblastoma, IDH-wildtype—survive a year, a 

prognosis unchanged over the past three decades in the face of 
an increase in incidence by more than a sixth.2,3 These striking 
numbers suggest fundamental obstacles to treatment success 
that may signal the need for a radical change in our approach.

One of the greatest obstacles for innovation across oncology is 
inter- and intra-tumour heterogeneity4-7: the presence of richly 
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structured diversity, either between different tumours or within 
different parts of the same one. Brain tumours typically exhibit nu
merous genetic mutations, spanning several cellular pathways, 
that open multiple avenues to oncogenesis no single intervention 
could conceivably block. It is no surprise that patients with higher 
levels of tumour heterogeneity—ranging across genetic,4,8,9 epigen
etic, cellular and imaging characteristics10,11—exhibit both poorer 
clinical outcomes and weaker responses to therapy.5,12-14

A prerequisite to overcoming heterogeneity is obtaining a struc
tured description, as comprehensive as available data allow, of the 
parameter space that encloses it. Such a description is difficult to 
derive because tumour heterogeneity is distributed across many 
potentially interacting features,4-6 inhabiting a large, high- 
dimensional parameter space. It requires highly expressive math
ematical models, capable of capturing multiple, richly interacting 
factors. The task is formally representation learning: deriving data- 
driven, succinct, signature representations of tumour genetic fea
tures that illuminate their complex interrelations.

Graph theory provides a powerful approach to such modelling, 
combining expressivity with intuitive intelligibility.15-22 It treats the 
characteristics of a system under study as the nodes of a network, 
and their relations as the connections, or edges, between nodes. In 
the context of brain tumours, the nodes correspond to clinical, radio
logical, histological or genetic features—applied to distinct tumour 
properties or to the patient as a whole—and the edges correspond 
to their pairwise relations. Represented as a graph, the heteroge
neous structure of tumours is expressed as distinct regional patterns 
of connectivity, defining blocks or communities of similarly con
nected nodes. Organized by a domain of interest—tumour genetics, 
for example—the inferred communities reveal heterogeneous inter
relations that may underpin oncogenesis and suggest avenues for 
treatment innnovation.5,18,23,24 Organized by individual patients, 
the inferred communities identify patient subpopulations with simi
lar oncological signatures that may signal decisive differences in dis
ease mechanisms, evolution or treatment response. The novelty of 
the approach resides in the ability to model complex interactions be
tween features that may illuminate mechanistic and prognostic rela
tions opaque to models of the same features taken alone or only in 
linear combination. Insights may thus be gleaned from routinely col
lected variables that are familiar individually but unexplored in their 
collective interactions.

The fidelity of any representational model is constrained by two 
interacting factors: data sampling—both density and coverage— 
and the expressivity of the model architecture. Given the manifest 
complexity of oncogenic mechanisms,23,24 data scale and range will 
always be limiting, and model architecture will be placed under 
great stress. Focusing on tumour genetics, we therefore analyse 
to our knowledge the largest fully inclusive collection of brain tu
mour data, spanning 4023 patients, acquired over 14 years, across 
12 countries. We exploit recent advances in non-parametric 
Bayesian generative models of the modular structure of graphs25,26

to derive robust hierarchical latent genetic representations, yield
ing a set of signature network patterns that illuminate potentially 
critical relations between genetic features, and enable finer patient 
stratification than current diagnostic classification systems allow. 
We demonstrate, quantitatively, the utility of our representations 
by comparing their fidelity in predicting survival against both diag
nostic labels from the latest World Health Organisation (WHO) 
brain tumour classification27 and raw genetic and epigenetic fea
tures. Our evaluation shows that a graph approach powered by 
large-scale, fully inclusive data can successfully capture tumour 
genetic heterogeneity, delivering higher fidelity prediction of 

survival than current representations, and opening the way to rich
ly multimodal generative modelling of the complex landscape of 
neuro-oncology.

Materials and methods
Data

The demographic, procedural, histopathological, tumour genetic 
and diagnostic labels of 9518 neuro-oncology patients referred to 
our national centre were recorded prospectively from 2006 to 
2020 (Fig. 1 and Supplementary Fig. 1). The distribution of countries 
of origin was, in descending order, the UK (n = 9149), Colombia (n =  
170), Sweden (n = 157), Latvia (n = 14), Hungary (n = 6), France (n = 4), 
Lithuania (n = 3), USA (n = 3), Republic of Ireland (n = 2), and 
Portugal, Bulgaria, Bermuda, Spain, Malta, Greece, South Africa, 
Poland, India and Peru (all n = 1). Of the UK-resident patients, 
3134 were managed at our institution, leaving 6384 elsewhere. 
The data included age, sex, referral date, biopsy/surgical resection 
date, histology-informed diagnosis in accordance with the current 
WHO Classification of Tumours of the CNS (WHO CNS5),27 and the 
status of tumour genetic features recorded as part of routine clinic
al care. A total of 7809 patients identified as having received a final 
diagnosis of glioma. We removed patients with partial molecular 
panel results and/or lacking WHO CNS5 diagnostic information to 
yield a cohort of n = 4023. The surveyed genetic features included 
IDH (isocitrate dehydrogenase), ATRX (ATP-dependent helicase), 
TERT (telomerase reverse transcriptase), histone, BRAF (proto- 
oncogene B-Raf) point or fusion, chromosomal 1p/19q deletions, 
MGMT (O-6-methylguanine-DNA methyltransferase) percentage 
methylation, and degree (if any) of EGFR (epidermal growth factor 
receptor) amplification. Extent of EGFR amplification (if any) were 
stratified into low (1–7 copies), medium (8–15 copies), and high (16 
copies or more), in accordance with standard practice at our centre. 
Sampling frequency, including missing data, was captured within 
the stochastic block model itself, exploiting its generative nature.

Our focus is on quantifying the potential value of graph-theoretic 
analysis of data routinely acquired during standard clinical care. 
Such an approach lowers the barriers to real-world application, 
for no change to standard investigational pathways is required, 
and enables the derivation of insights from historical data. 
Neither additional time nor economic cost is incurred, to patient 
or healthcare provider: the only necessary resource is compute. 
We therefore included all genetic features acquired as part of rou
tine neuro-oncological care in the molecular neuropathology panel 
work-up at our centre. This panel is described online,28 and aligns 
with established clinical practice providing both classification of tu
mours within the current WHO classification system27 and prog
nostic or prescriptive utility such as MGMT methylation status for 
temozolomide use.29 Since our cohort dates back to 2006, it does 
not include CDKNDA/B testing first recommended in 2018,30 and 
even now considered optional by many.27 Our centre did not rou
tinely test for the supplementary IDH mutant astrocytoma diagnos
tic marker TP53, favouring ATRX instead as recommended by the 
recent WHO classification.27 Histological grade, determined by 
microscopic rather than molecular features, was not available. 
We did not perform any prior feature selection, for we are inter
ested in the interactions between features our graph technique is 
specifically designed to illuminate, instead including all data avail
able from our neuro-oncology service. Our modelling approach can 
cope with high-dimensional data, so no selection is required on 
methodological grounds.
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Our analysis focused on four major categories of glioma: glio
blastoma, IDH-wildtype; astrocytoma, IDH-mutant; oligo
dendroglioma, IDH-mutant; and 1p/19q codeleted; and a final 
group titled ‘other glioma’ that combined rarer entities. The ra
tionale for the latter group was that we were wary of drawing in
ference from much smaller samples of rarer lesions, contrasted 
to the remaining diagnoses with significantly greater samples 
sizes, that would otherwise render the performance inequit
able31 (Table 1). Survival data were available for 1323 patients, 
constrained only by the mechanism of referral. For statistical 
modelling, we discarded samples where any graph community, 
diagnostic or genetic variable received fewer than five patients, 
and clamped days of survival at the first and 99th percentile 
to attenuate the influence of extreme outliers. A full cohort 
breakdown, including—where applicable—data missingness, 
is detailed in Table 1. A study flow chart is provided as 
Supplementary Fig. 1.

Ethical approval

The study was approved by the local ethics committee at University 
College London. We received ethical permission for the consentless 

analysis of irrevocably anonymized data collected during routine 
clinical care.

Analytic compliance

All analyses were performed and reported in accordance with inter
national TRIPOD and PROBAST-AI guidelines.32

Demographic analysis

One-way ANOVA with Tukey’s procedure was used to establish the 
relation between patient age and diagnosis, and multivariate logis
tic regression for patient sex and diagnosis. Our criterion for statis
tical significance was a family-wise error rate (FWER) adjusted P <  
0.05, and all P-values reported are corrected accordingly. Model 
coefficients were converted into odds or hazard ratios where 
appropriate.

Network genetic signature analysis

A network representation of tumour genetics can be formulated in 
two ways: with respect to genetic features, yielding signatures of 
characteristic patterns of genetic lesion co-occurrence, or with 

Figure 1 Data: distributions by geography, tumour (epi)genetics, diagnoses and demographics. (A) Geographical distribution of all neuro-oncology pa
tient data in the UK referred to our Division of Neuropathology between 2006–2020 for molecular diagnostics, in logarithmic axis per the colour bar. (B) 
Number of mutant samples across the n = 4023 glioma patient cohort. (C) Distribution of WHO CNS5 diagnoses in cohort. (D) Age kernel density esti
mators for male and female, subdivided to the diagnoses with corresponding colours, as in C.
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respect to patients, yielding distinct subpopulations exhibiting 
similar genetic signatures. The former illuminates the mechanisms 
of oncogenesis, the latter their heterogeneous manifestation across 
the population.

Stochastic block modelling of tumour genetic 
interrelations

The relations between genetic features may be naturally formu
lated in terms of Bayes’ rule33,34:

P(A|B) =
P(B|A) · P(A)

P(B)
, (1) 

where P(A) and P(B) refer to the probabilities of the states of given gen

etic features A and B, respectively. P(B|A) is the conditional 

probability of B given A, and P(A|B) is the posterior conditional prob

ability of A given B. In general P(A|B) ≠ P(B|A) so, unlike merely cor
relative indices, conditional probabilities enable us to construct a 
directed probabilistic graph of the pairwise relations between genetic 
features. The number of edges is given as the number of nodes choose 
two, multiplied by two to cover bidirectional conditional probabilities, 

2 
N
2

􏼒 􏼓

. We reviewed the weighted edge histogram of the graph ac

cording to conditional probability P(A|B), comparing it to arguably 
simpler metric approximating covariance, the probability of intersec

tion P(A > B). Conditional probability edges showed far greater weight 
variance compared to intersection weights. A reasonable assumption 
drawn from this process was that the use of directed conditional 
probability weights between genetic features may offer more sophis
ticated variation of information than simpler intersection (or 

Table 1 Data: distributions of the total cohort, with WHO CNS5 diagnosis and with tumour genetic samples

Full cohort

Sample n = 4023
Age (years) 51.72 (IQR 37.22–64.79) (100% available)
Sex 2225 male, 1643 female (96% available)
Survival (days) 979, IQR 324–2076 (33% available)

2021 WHO Classification of Tumours of the CNS

Glioblastoma, IDH-wildtype 
(n = 1713)

Astrocytoma, IDH-mutant 
(n = 1186)

Oligodendroglioma, IDH-mutant  
and 1p/19q-codeleted 
(n = 836)

Other glioma 
(n = 288)

Age (years) 60.52 (IQR 51.99–68.46) 
(100% available)

38.18 (IQR 31.20–46.51) 
(100% available)

44.36 (IQR 35.26–54.55) 
(100% available)

25.32 (IQR 13.24–43.06) 
(100% available)

Sex 1015 male, 657 female 
(98% available)

635 male, 495 female 
(95% available)

424 male, 364 female 
(94% available)

151 male, 127 female 
(97% available)

Survival (days) 365 (IQR 160–696) 
(38% available)

1778 (IQR 1159–2518) 
(32% available)

2198 (IQR 1528–3263) 
(28% available)

2195 (IQR 1195–3485) 
(21% available)

Feature Normal Anomalous Granularity of test result (where known)

IDH Wildtype 
n = 2001 (49.74%) 
(100% available)

Mutant 
n = 2022 (50.26%) 
(100% available)

IDH1 G395A (n = 360), IDH1 C394T (n = 86), IDH1 C394G (n =  
53), IDH1 C394A (n = 51), IDH1 G395T (n = 13), IDH2 G515A 
(n = 11), IDH2 A514T (n = 4), IDH2 A514G (n = 3), IDH2 G515T 
(n = 2), IDH1 G394T (n = 1) 

(29% available)
MGMT Unmethylated 

n = 2398 (59.61%) 
(100% available)

Methylated 
n = 1625 (40.39%) 
(100% available)

0–5% methylation (n = 450), 5–10% methylation (n = 536), 10– 
25% methylation (n = 192), > 25% methylation (n = 447) 

(100% available)
EGFR No amplification 

n = 2885 (71.71%) 
(100% available)

Amplification 
n = 1138 (28.29%) 
(100% available)

Low amplification (n = 409), Moderate amplification (n = 209), 
High amplification (n = 520) 

(100% available)
1p/19q No codeletion 

n = 2994 (74.42%) 
(100% available)

Codeletion 
n = 1029 (25.58%) 
(100% available)

1p/19q co-deletion (n = 838), 19q deletion (n = 191) 
(100% available)

Histone Wildtype 
n = 3962 (98.48%) 
(100% available)

Mutant 
n = 61 (1.52%) 
(100% available)

Hist K27M (n = 48), Hist G34R (n = 13) (100% available)

TERT Wildtype 
n = 2096 (52.1%) 
(100% available)

Mutant 
n = 1927 (47.9%) 
(100% available)

TERT C228T (n = 993), TERT C250T (n = 360) 
(70% available)

ATRX Retained 
n = 2009 (62.28%) 
(80% available)

Loss of expression 
n = 1217 (37.72%) 
(80% available)

–

BRAF Wildtype 
n = 3796 (94.36%) 
(100% available)

Mutant 
n = 227 (5.64%) 
(100% available)

BRAF 1799 T > A (n = 105), BRAF frameshift (n = 5), BRAF 
Exon 16–9 (n = 81), BRAF Exon 15–9 (n = 21), BRAF Exon 
16–11 (n = 15) 

(100% available)

Age and survival are both given as median with interquartile range, 25th and 75th percentiles.
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covariance-based) metrics, and thus were adopted for subsequent 
mathematical modelling between genes. In compliment, a patient 
linkage graph was modelled with multi-variately weighted edges by 
binomial linkage of individual tumour genetic characteristics (sche
matic for both approaches shown in Fig. 2). We characterized simple 
centrality measures—eigenvector, hub, authority, betweenness and 
page rank—weighted by the conditional probability assigned to the 
directed edges. We then statistically compared these centrality me
trics between genetic domains with one-way ANOVA.

A stochastic block model is a generative model of the community 
structure of a graph composed of N nodes, divided into B blocks with 
edges ers between blocks r and s.35 The model can be framed hier
archically, where edge counts ers form block multigraphs with nodes 
corresponding to individual blocks and edge counts arising as edge 
multiplicities between block pairs, including self-loops. We seek to 
infer the most plausible partition {bi} of the nodes, where {bi} [ 

[1, B]N identifies the block membership of node i in observed net
work G, with maximization of the posterior likelihood P(G|{bi}). The 
result is a hierarchically organized community structure of nodes as
signed into blocks that yields the most compact representation of 
the graph, as indexed by its minimum description length,36 ∑. The 
general approach is described in further detail elsewhere.35

We can use a layered formulation26 of the model to distinguish 
between two potentially conflicting effects: associations between 
features driven by clinically-directed sampling versus by 
biologically-driven conditional probability. Key here is formal com
parison between models that encode these effects separately, with
in their own layers, versus those where the distinction is not 
respected. In a Bayesian setting,26 the procedure for model selec
tion amounts to finding the model parameters, {u}, that maximize 
the posterior likelihood as

P({u}|{Gl}) =
P({Gl}|{u})P({u})

P({Gl})
, (2) 

In our case, {u} = {{bi}, {el
rs}}, where N nodes are divided into B blocks via 

the membership vector {bi} [ [1, B]N, and the distribution of covari
ates in edges in groups r and s is given by the edge counts ers, with 

el
rs corresponding to the former at a given layer. P({u}) is the prior prob

ability of these parameters, with P({Gl}) corresponding to the normal
ization constant. The approach is further detailed by Peixoto,26

formulating the most succinct representation of the data as 
one with the minimum description length,36 ∑. Since the prior prob
abilities are non-parametric, the procedure also becomes 
parameter-free.

Choosing the model with the smallest description length ∑ is 
the means of balancing model complexity and goodness-of-fit.36

We consider two candidate models throughout our experimental 
design: model Ha, where layers are true descriptors corresponding 
to the conditional-probability weighted edges of links in genetic 
features in one layer and the frequency of sampling in another 
layer, and a null model Hb where both sets of edges are randomly 
interspersed across layers. Edge weights of both conditional prob
ability and sampling frequency were resampled into the range 
space 0–1 and histograms reviewed to ensure comparable distribu
tions for model fitting. The comparative magnitude of the descrip
tion length of each model yields the following posterior odds ratio:

L =
P({u}a|{Gl}, Ha)P(Ha)
P({u}b|{Gl}, Hb)P(Hb)

, (3) 

simplifying to 

L = exp −D
􏽘􏼐 􏼑P(Ha)

P(Hb)
. (4) 

In this instance, P({u}|{Gl} , H) is the posterior according to a given 

hypothesis H, i.e. the true or null formulation. P(H) is then the prior 
belief for hypothesis H, and D

􏽐
=
􏽐

a −
􏽐

b the difference in the 

model description length for these hypotheses. The description 
length of the true and null models can thus be formally compared. 
Where the description length of the true model (i.e. where sampling 
co-occurrence and conditional probability weights are correctly 
segregated by layer properties) is less than that of the null, then 
the model encoding sampling and conditional probability separate
ly is preferred. Conversely, where the description length of the null 
is smaller, the layered formulation is shown to be superfluous, in
dicating the simpler, non-layered formulation should instead be 
preferred.21,26

Next, we interrogated the structure of the graph with a non- 
parametric Bayesian stochastic block modelling approach. The re
sult is a hierarchically organized community structure of nodes 
assigned into blocks that yields the most compact representation 
of the graph, as indexed by its minimum description length,36 ∑. 
Stochastic block models are described in extensive detail else
where25,35,37; their utility in neuroscience has been demonstrated 
and validated by multiple groups.21,22,25,37,38 An evaluation of 275 
empirical networks spanning a range of domains, including social, 
transport, information technological and biological (including brain 
connectome data) has shown that networks whose diameter, ⊘, is 
not large and random walk mixing times, τ, are not slow are well sui
ted to such modelling.37 Z-scored with respect to the 275 surveyed 
networks, the parameters of our network were ⊘ = −0.092 and τ =  
−0.11, well within the interval of well modelled systems.

Having established the suitability of our approach, we pro
ceeded to fit a stochastic block model to the genetic data, employing 
Markov Chain Monte Carlo (MCMC) to sample from the posterior of 
the estimated distribution. The MCMC procedure employed eviden
tial equilibration by model entropy, the state of negative 
log-likelihood of the microcanonical stochastic block model, using 
Metropolis-Hasting acceptance-rejection sampling.21,22,39,40

Following recommended practice,25,41,42 the chain was run with a 
stopping criterion of 100 iterations for a record-breaking event 
(i.e. an interval decrease to the description length), to ensure that 
equilibration was driven by changes in the entropy criterion. No 
burn-in is required since the MCMC proceeds from the initialized 
state generated by the stochastic block model itself. Bayesian mod
el comparison based on minimum description length, in nats, was 
used to optimize correction by degree, nesting and the choice of dis
tribution (Gaussian or exponential) of the conditional probability 
edge weights. The centrality metrics of the inferred community 
structure were compared with one-way ANOVA.

Stochastic block modelling of patient genetic 
signatures

The foregoing models reveal the community structure of the rela
tions between genetic features, conditioning against linkages 
merely driven by sampling panel frequencies. We now proceed to 
model the community structure of the relations between individual 
patients shaped by their shared tumour genetic characteristics. 
The inferred structure is interpretable as a patient-level represen
tation based on characteristic, signature genetic patterns. We hy
pothesized that this network representation would yield higher 
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quality stratification of survival than either diagnostic labels or lin
ear representations of genetic factors, demonstrating successful 
capture of tumour heterogeneity. We used a Sankey chart to visual
ize the links between known genetic mutations and the current 
best-practice diagnostic nomenclature,27 illustrating the diagnostic 
heterogeneity a stochastic block model representation could theor
etically capture.

We created a dense graph with each patient, defined as a node, 
connected to every other by an undirected edge. Each edge was 
then independently weighted by the count of each genetic feature 
shared by the connected pair, resulting in a dense, fully connected 
graph with multiple binomial edge covariates spanning the full set 
of modelled tests. The number of edges is given as the number of 

nodes (patients) choose 2, N
2

􏼒 􏼓

. We visualized the graph as a min

imum spanning tree labelled by WHO CNS5 diagnosis or survival, 
enabling a qualitative impression of its expressive power in com
parison with a non-graph linear model of the low-dimensional 
structure of the data based on principal component analysis (PCA).

We proceeded to fit and optimize a stochastic block model as 
outlined in the previous section, yielding a hierarchical community 
structure of patients. The z-scored ⊘ and τ parameters of our net
work were −0.067 and −0.098, respectively, again within the inter
val of well modelled graphs. We then used Bayesian multinomial 
regression43 to quantify the contribution of each genetic feature 
to each community. The multinomial regression was estimated 

Figure 2 Method: graph modelling of brain tumours. (A) Rich genetic feature sets are extracted from patient histopathology report data (y-axis) and 
fractionated into individual genetic lesions (x-axis). The approach yields patient feature ‘barcodes’ corresponding to the complete molecular data avail
able for a given patient’s tumour. Note only a subset of features is labelled owing to visualization constraints. (B) Heat map of the conditional probability 
of one genetic feature given the presence of another, [P(A|B)], derived across the feature space, yielding an asymmetric adjacency matrix to be modelled 
as a directed Bayesian graph. In A and B, only a subset of features are labelled on the axes for visualization purposes. (C) Histogram of edges in the 
Bayesian genetic network, with the number of edges present (y-axis, logged), and the corresponding probability assigned to the weighted edge 
(x-axis). The conditional weighted graph (blue bars) exhibits greater variation in interrelatedness compared with the intersection between features 
(orange bars). (D) Schematic illustrating the application of graph modelling for two purposes: (i) graph feature genetic mapping, where tumour genetics 
are modelled as nodes and their relations as probabilistically weighted, directed edges; and (ii) graph patient genetic mapping, where individual pa
tients are nodes and edges are weighted by individual genetic features.

Brain tumour genetic network signatures of survival                                                          BRAIN 2023: 146; 4736–4754 | 4741

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/146/11/4736/7259844 by SuU

B Brem
en user on 24 M

arch 2024



with MCMC, employing a single chain running to 100 000 samples, a 
burn-in of 100 000 and thinning of five, reporting the regression co
efficient estimated with 95% Bayesian credibility interval.

Survival modelling

To quantify the stratifying power of our network representation, we 
examined the prediction of survival, in days from the date of biopsy, 
for patients surveyed over at least 3 years. Date of biopsy was used as 
the index of onset in keeping with established practice in the field.44,45

We sought to compare survival models based on (i) our network 
genetic signatures; (ii) patient diagnosis; and (iii) the raw tumour 
genetic information used to fit the stochastic block model. We first 
constructed Cox’s proportional hazard models, employing graph 
representational signatures, diagnosis or raw tumour genetics 
across different models, with age and gender as nuisance covari
ates. We used a penalizer term of 0.1, and the Breslow baseline es
timation method.46 Model performance was evaluated by 5-fold 
cross-validation, relying on the median out-of-sample concord
ance index.46,47 We extracted the survival function and hazard ra
tios of graph communities, diagnoses and individual genetic 
domains for downstream comparison.

We augmented this analysis with a series of Bayesian logistic re
gression models,48,49 predicting survival at 12, 24 and 36 months, 
motivated by the widespread use of annual survival-based me
trics.50,51 These classification models replicated the inputs of 
the survival models, and were estimated with MCMC, employing 
100 000 samples, a burn-in of 100 000 and thinning of five. A series 
of prior shrinkage schemes were evaluated, including g, horseshoe, 
horseshoe+, ridge, lasso, and logt.48 Model performance and 
goodness-of-fit were determined by pseudo-R2 and the widely ap
plicable information criterion (WAIC),52 respectively.

The decision to evaluate the performance of network signatures 
against models of diagnosis or raw genetic features was driven by 
two factors: data requirements and favourable parameterization. 
First, a systematic review of brain tumour survival models under
taken revealed that no previously published model incorporated 
the range of molecular data we had curated, studied different cohorts 
of the glioma landscape (e.g. just glioblastoma alone), and/or man
dated additional data either not acquired during routine clinical 
care (e.g. full genome sequencing or proteomics), and/or necessitated 
multi-modal combination with medical imaging.53-70 While these 
areas are undoubtedly interesting and add value to the field, our focus 
was to provide a means of forecasting survival with genetic data ac
quired in routine clinical care across the range of diagnoses available 
to us. Therefore, it was deemed appropriate to derive comparator 
models that would be tested against the graph-representations criter
ion on the original genetic data, and the WHO CNS5 diagnosis.27

Second, it was important that our comparator models were compar
able architecturally, so that any differences in model fidelity could be 
plausibly attributed to the quality of the representations, and not the 
hyperparameters/architectures that fit them. For this reason, it was 
judged appropriate to fit univariate models of diagnosis and linear 
multivariate models of genetics, but not non-linear multivariate 
models of genetics. With all possible feature interactions here, the 
model parameter space rises to 3 628 800, which is clearly too large 
a space for a discriminative model supported by only 1323 patients. 
A non-linear model is therefore likely to overfit.

Null models

We evaluated a series of nulls of the preceding models, created by 
randomly permuting edge features before following exactly the 

same modelling steps. Model comparison to the corresponding 
null by description length allows us to infer that the structure of a 
target model does not arise by chance. We additionally quantified 
the difference in the predictive performance of survival models 
based on the inferred community structure.

Software

Analyses were predominantly performed within a Python (version 
3.6.9) environment with the following software packages: graph- 
tool,42 GeoPy,71 gravis,72 hdbscan,73 lifeline,46 Matplotlib,74

NumPy,75 pandas,76 SciPy,77 seaborn,78 scikit-learn,47 statsmodels79

and UMAP.80 Bayesian logistic survival models were performed 
using MATLAB (version R2019a) with software package 
BayesReg,48 and multinomial logistic regression in R (version 
4.1.3) using software package UPG.43

Compute

Analyses were performed on a 32-core Linux workstation with 
128 Gb of RAM and an NVIDIA 2080Ti GPU.

Results
Cohort

The 2021 WHO CNS5 diagnoses across 4023 eligible patients in
cluded glioblastoma, IDH-wildtype [n = 1713, 1015 male, 657 female, 
median age 60.52 years, interquartile range (IQR) 16.55 (51.99– 
68.46)]; astrocytoma, IDH-mutant [n = 1186, 635 male, 495 female, 
median age 38.18 years, IQR 15.31 (31.20–46.51)]; oligodendrogli
oma, IDH-mutant and 1p/19q codeleted [n = 836, 424 male, 364 
female, median age 44.36 years, IQR 19.29 (35.26–54.55)]; and 
‘other glioma’ tumour diagnoses [n = 288, 151 male, 127 female, 
median age 25.32 years, IQR 29.82 (13.24–43.06)] (Table 1 and 
Supplementary Fig. 1).

In line with prior expectations, there were significant differ
ences in age between all diagnoses (ANOVA P < 0.0001, post hoc 
Tukey honest significance tests all P < 0.001), yielding an oldest to 
youngest order from (i) glioblastoma, IDH-wildtype; (ii) oligo
dendroglioma, IDH-mutant, and 1p/19q-codeleted; (iii) astrocyto
ma, IDH-mutant; to (iv) other glioma. There was an overall 
preponderance of males (P < 0.0001), with modulation by specific 
diagnosis: more males were diagnosed with glioblastoma, 
IDH-wildtype [odds ratio 1.20, 95% confidence interval (CI) 1.067 to 
1.35, P = 0.002], but fewer with oligodendroglioma, IDH-mutant 
and 1p/19q-codeleted relative to the overall gender imbalance 
(odds ratio 0.85, 95% CI 0.73 to 0.98, P = 0.03). Overall median patient 
survival, in days from the date of surgery and tumour tissue sam
pling, was 979 days, IQR 1753 (324–2076).

Graph models of tumour genetic interrelations

We used all available genetic data to create a comprehensive graph 
model with 37 tumour genetic features as nodes and 1332 non-zero 
directed edges weighted by Bayesian conditional probability of co- 
occurrence (Fig. 2 and Supplementary Fig. 2). A one-way ANOVA of 
network centrality of tumour genetic features illustrated a signifi
cant difference in both conditional-probability weighted 
hub centrality (P < 0.0001) and betweenness centrality (P = 0.026) 
across features, indicating differing extents of interrelatedness. 
Nodes with the greatest hub centrality—features linking to many 
others—were, in descending order, TERT, IDH, MGMT, 1p/19q, 
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Histone, EGFR, ATRX and BRAF (Supplementary Fig. 2). Of note, for 
some features, the specific genetic change—preservation of 1p/19q 
versus codeletion, for example—varied in hub centrality to a great
er extent than changes across features. Genetic domains with the 
greatest betweenness centrality—features lying on the shortest 
path between others—were, in descending order, BRAF, EGFR, 
MGMT, IDH, Histone, ATRX, 1p/19q and TERT. A BRAF exon 16–11 
mutation received the highest betweenness centrality within the 
BRAF category, the IDH1 G394T mutation received a far higher be
tweenness centrality than the remainder of the IDH features (des
pite being a relatively uncommon IDH mutant in our sample). 
Histone wildtype had a much lower betweenness centrality than 
anomalous histone features. The remaining centrality metrics did 
not vary significantly.

We fitted a layered, nested stochastic block model of all genetic 
features, with a multigraph of edges weighted, in separate layers,26

by conditional probability, and by sampling frequency. This ap
proach allowed us to disentangle essential interrelations between 
genetic features from the incidental effects of varied sampling. 
The model produced a structured graph representation, grouping 
features into hierarchically arranged ‘communities’ with similar 
contributions to the overall graph structure. It should be stressed 
that communities can include mutually exclusive nodes: indeed, 
the presence of two mutually exclusive features within a commu
nity would plausibly signify that the two features have similar ef
fects on the remaining graph.

The representation exhibited a hierarchical structure with five 
levels (L0 to L4) (Fig. 3), organized into 37 (L0), eight (L1), three (L2), 
two (L3) communities at each respective level, converging to a sin
gle block at L4. Each level, L0 to L4, refers to a branch of the agglom
erative hierarchical tree. The L1 level revealed seven communities 
driven by genetic interrelations as follows: (i) EGFR amplification  
± MGMT methylation ± 1p/19q deletion ± TERT C228T mutants; (ii) 
IDH1 G395A mutants ± EGFR amplification; (iii) IDH1 C394T ± IDH1 
C394G ± IDH1 C394A mutants; (iv) IDH2 G515A ± IDH1 G395T ±  
Histone G34R mutants; (v) BRAF 1799 T > A ± BRAF exon 16–9 ±  
Histone K27M mutants; (vi) IDH2 G515T ± IDH1 G394T ± IDH2 
A514G ± BRAF frameshifts ± IDH2 A514T mutants; and (vii) BRAF 
exon 15–9 and 16–11 mutants (Fig. 3). The remaining community, 
primarily driven by sampling frequency, incorporated ATRX 
changes, IDH wildtype, unmethylated MGMT, BRAF, TERT, 1p/19q 
and histone wildtypes, and absence of EGFR amplification.

Bayesian model comparison ranging across hyperparameters 
identified the most plausible fit to be the layered, nested, degree- 
corrected model, with exponential weighting to the directional 
conditional probability edges (−1066.064 nats, with a posterior odds 
ratio of e1508.3) favouring this fit incorporating conditional probability 
and sampling frequency separately over the random distribution null 
(Supplementary Fig. 3). A non-layered stochastic block model with 
the sampling frequency layer ablated yielded a very similar structure, 
suggesting the absence of material sampling-related bias in the in
ferred patterns (Supplementary Fig. 4). In contrast, the randomized 
null models both failed to derive a meaningful community structure 
and yielded far larger description lengths indicative of poor fit: rando
mized layered model = 1202.971 nats; randomized null model =  
1522.296 nats (Supplementary Fig. 5). ANOVA of centrality metrics 
of the features within these communities identified a statistically sig
nificant difference in eigenvector centrality (P < 0.0001), authority 
centrality (P < 0.0001), hub centrality (P < 0.0001), page rank (P <  
0.0001) and betweenness centrality (P = 0.01) (Fig. 3).

Visualization of these inferred genetic interrelations repro
duced our current understanding of tumour genetics,27,81-87 but 

offered further insights into the interactions between genetic do
mains in generating the overall tumour genetic profile. We provide 
a downloadable and fully interactive graph representation of this 
molecular pathology landscape as Supplementary Figs 6 and 7
and encourage readers to use these interactive tools to guide fur
ther hypothesis testing in their research. A static image of coarse 
genetic domains is also shown in Supplementary Fig. 2. We provide 
a breakdown below of the genetic interrelations identified here that 
both affirm known findings and illuminate new relations, with 
quantitative metrics of the interrelations directly retrievable from 
the Supplementary material.

IDH

We confirm the association of IDH wildtype status with ATRX 
retention,81 often with TERT mutants (C228T and C250T in our 
dataset). In the presence of IDH wildtype, ATRX retention and 
TERT mutation, a lesion was always 1p/19q wildtype. We 
demonstrate the propensity for at least low-level EGFR amplifica
tion in these IDH wildtype lesions.87,88 We replicate the associ
ation of IDH mutants with ATRX loss in astrocytoma, and of 
TERT mutations, ATRX retention, and 1p/19q codeletions with 
oligodendrogliomas.83-86,88-90 Within the finer IDH-mutant land
scape, we demonstrate a strong association between IDH1 C394A 
mutants, TERT wildtype, no EGFR amplification, and ATRX loss in 
astrocytoma. IDH1 G394T and IDH2 A514G mutants exhibited the 
same characteristics, except that they were differentiated from 
each other by the presence of MGMT methylation in the 5–10% 
region in the former and not the latter.89,91,92 IDH2 G515T mutants 
exhibited the previously reported93 association with 1p/19q codele
tions, as well as ATRX retention, no EGFR amplification, and un
methylated MGMT, in oligodendroglioma. The diversity of IDH 
mutations, interacting with other features, highlights the potential 
value of modelling tumour genetic data at a fine granularity.

ATRX

Retained ATRX is confirmed to be associated with IDH wildtype in 
glioblastoma, as well as with the presence of IDH-mutants, TERT 
mutants and 1p/19q codeletions, in oligodendroglioma. ATRX loss 
is also associated with IDH mutants in astrocytoma.81-83,94-97 We re
veal a heterogeneity in the association of ATRX with different IDH 
mutants (see ‘IDH’ section above). ATRX loss was indicative of non- 
amplified EGFR, largely in astrocytoma. Lastly, while ATRX loss was 
confirmed to be associated with preservation of 1p/19q, isolated 
19q deletion was found to occasionally exist with ATRX loss in 
19q-deleted astrocytoma.98 Both histone G34R and K27M mutants 
could manifest ATRX loss or retention.

EGFR

Non-amplified EGFR showed the expected association with IDH 
mutants (refer to the ‘IDH’ section), BRAF mutants, 1p/19q codele
tions, and histone mutants (the latter largely in paediatric lesions). 
Any degree of EGFR amplification was associated with IDH wild
type, ATRX retention, variable TERT mutation status, and absence 
of a 1p/19q deletion, typically in glioblastomas.27,99 We reveal the 
propensity for at least moderate, if not high-level, EGFR amplifica
tion to manifest with IDH wildtype glioblastoma.

MGMT

Unmethylated or low-level (0–5%) methylated MGMT was asso
ciated with preservation of 1p/19q. 5–10% MGMT methylation, 
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specifically, was found more in IDH1 G394T mutants. MGMT 
methylation levels were heterogenous across glioblastoma. 
Higher levels of MGMT methylation (>25%) indicated a lesion 
more likely to be ATRX-retained and histone wildtype.

TERT

We confirm the known association of TERT wildtype with pre
served 1p/19q and IDH mutants in astrocytoma, and of its mutants 
with IDH wildtype in glioblastoma, and IDH mutants in oligo
dendroglioma.100,101 TERT wildtype was non-specific for both 

BRAF and histone wildtype and its mutants. Both TERT C228T and 
C250T promoter mutants were associated with IDH wildtype, pre
served 1p/19q, histone wildtypes, and ATRX retention in glioblast
oma cases. The mutually exclusive relationship between ATRX and 
TERT is confirmed.81,83 Both TERT C228T and C250T mutants were 
also seen with IDH-mutants and 1p/19q codeletions.

1p/19q

We replicate the known exclusivity between 1p/19q codeletions 
and ATRX loss, where 1p/19q codeletion/ATRX retention is found 

Figure 3 Graph feature genetic mapping identifies characteristic genetic interrelations. (A) Radial graph of layered, nested, degree-corrected and ex
ponentially weighted stochastic block model revealing the community structure of tumour genetics and their influence upon overall network topology. 
Communities are colour-coded by the first level community of the hierarchical community structure. Edges are sized according to their conditional 
probability. Nodes are sized according to their weighted-eigenvector centrality. Hierarchical levels are annotated from level 0 (L0) to level 4 (L4). (B) 
Fits in accordance with link probability by conditional probability, measured frequency and the comparative null illustrate the description length of 
the layered model lower than the null, evidencing it a more suitable structure. Shown below is the visualization of the first level hierarchy (L1) with 
node colour as per that of A. Edge size and colour is proportional to the incidence of edges linking mutations both between and within a given com
munity. Node size is proportional to the degree of the corresponding community. (C) There is a significant difference in weighted eigenvector centrality 
of tumour genetic factors (P < 0.0001), page rank (P < 0.0001) and hub centrality of tumour genetic factors when organized by stochastic block model 
community (P < 0.0001). In C, block colour as per that of A, points are labelled by their corresponding abbreviation: A = ATRX; B = BRAF, E = EGFR; 
H = Histone; I = IDH; M = MGMT; O = 1p/19q; T = TERT. Supplementary Figs 3–7 also accompany this plot with additional results.
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Figure 4 Tumour heterogeneity. (A) Sankey plot illustrating the variety of genetic features, under both coarse and finely granular descriptors, aligned to 
patient diagnosis. Only the most frequent links in our dataset are shown for readability. (B) Principal component analysis (PCA) of all tumour genetic 
data, which clusters individuals into patient groups reproducible of the diagnostic labels, colour-coded as per the key. (C) Principal component analysis 
of all tumour genetic data with patient survival projected onto the plot illustrates a qualitatively poor representation of clusters of individuals with 
systematically better or worse survival. (D) Minimum spanning tree of patients with edges weighted by the similarity between individual genetic tests 
appears to create a more richly structured representation of a tumour-genetic landscape, colour-coded as in the key in A. (E) Minimum spanning tree of 
patients with edges weighted by the similarity between individual genetic tests with survival projected onto the plot illustrates a clearly superior seg
regation of individuals with better or worse prognosis, colour-coded by survival as per C.
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in oligodendroglioma, but preserved 1p/19q and ATRX loss occurs 
in astrocytoma.81,95 A 19q deletion alone was also associated with 
TERT wildtype and, interestingly, could also be seen with ATRX 
loss in astrocytomas.98 We additionally reproduce the association 
of 1p/19q codeletion with EGFR amplification.102

Histone

Histone (K27M or G34R) altered tumours (typically diffuse hemi
spheric gliomas of paediatric/teenage and young adult demograph
ic) were associated with IDH wildtype,27 as expected. But we also 
found that where either histone mutant was present, 1p/19q, 
BRAF, and TERT were wildtype, typically with no EGFR amplifica
tion. Histone K27M mutants were also less likely to exhibit MGMT 
methylation. Both K27M and G34R altered tumours could exhibit 
ATRX loss or retention, though ATRX loss was more likely in our 
histone G34R altered samples.

Network signatures of tumour genetic heterogeneity

A Sankey chart visualizing the links between common genetic 
characteristics and diagnosis illustrates the marked genetic 
heterogeneity underlying established diagnostic categories 
(Fig. 4). To determine if this structure can be revealed by graph 
models, we created a graph of the relations between patients 
defined by the similarities and differences of their tumour gen
etics. We began by creating a fully connected graph with 4023 
patients as nodes and 8 090 253 edges. Each edge was weighted 
by 50 binary covariates indicating the status of all available 
genetic features at the finest available granularity. Visualizing 
the graph as a minimum spanning tree labelled by WHO 
CNS5 diagnosis or survival showed distinct network patterns 
suggestive of greater differentiability between patients with 
systematically different outcomes than a PCA representation 
of the same data.

Indeed, a stochastic block model of the graph yielded a hierarch
ical community structure composed of eight levels (L0 to L7), orga
nized into 217 (L0), 85 (L1), 39 (L2), 18 (L3), nine (L4), four (L5) and 
two (L6) communities at each level, respectively, converging to a 
single block at L7 (Fig. 5). As before, each level, L0 to L7, refers to a 
branch of the agglomerative hierarchical tree. There was clear evi
dence of MCMC model convergence, with a final model description 
length of 19 732 150 nats (Supplementary Fig. 3). Each community 
exhibited characteristic patterns of demographic and genetic fea
tures, at the upper hierarchical levels reflecting the WHO CNS5 
diagnosis (Supplementary Fig. 8), but offering finer granularity be
low them. Examining median survival across these communities 
showed marked variation between communities with the same 
WHO CNS5 diagnosis (Supplementary Fig. 9). For example, survival 
varied by 33.42%, from 324 to 454 days, across different clusters of 
patients with glioblastoma, IDH-wildtype. In contrast, the rando
mized null models both failed to derive a community structure, 
which bore no resemblance to diagnosis and yielded a far larger de
scription length indicative of poor fit (157 868 200 nats, i.e. an 
∼8-fold increase) (Supplementary Fig. 10).

Tumour genetic signatures of survival

To quantify the comparative prognostic power of the stochastic 
block model representation, we created separate survival mod
els based on (i) network signatures from the stochastic block 
model; (ii) diagnosis; or (iii) the raw tumour genetic and epigen
etic data. Robust longitudinal survival data with >3 years follow- 

up was available for 1323 patients. Survival modelling with the 
network signatures revealed finer patient survival stratification, 
all modelled communities exhibiting statistically significant 
hazard ratios for either farer or poorer prognoses. Survival func
tion curves based on these representations offered more closely 
individuated survival predictions, with specific hazard ratios for 
a given specific set of tumour genetic features (Fig. 6 and 
Supplementary Fig. 9). For example, two distinct communities, 
Blocks 1 and 6, with the same diagnosis—glioblastoma, 
IDH-wildtype—yielded rather different hazard ratios: 2.76 versus 
2.27, the former more likely to exhibit MGMT methylation and 
high EGFR amplification than the latter (Fig. 6 and 
Supplementary Fig. 9).

Survival models based on WHO CNS5 diagnosis achieved 
much cruder stratification, only distinguishing glioblastoma, 
IDH-wildtype [hazard ratio (HR) of 3.00 (median survival 365 
days, IQR 536 (160–696)] from all others: astrocytoma, 
IDH-mutant [HR 0.55, median survival 1778 days, IQR 1358 
(1159–2518)], oligodendroglioma, IDH-mutant and 1p/19q code
leted [HR 0.43, median survival 2198 days, IQR 1735 (1528–3263)] 
and the other gliomas [HR 0.63, median survival 2195 days, IQR 
2290 (1195–3485)] (Fig. 6 and Table 1). Survival models based on 
the source tumour genetic data revealed comparatively few sig
nificant predictive features: the 95% confidence intervals of his
tone, ATRX and MGMT methylation HR all crossed 1, EGFR 
amplification and TERT mutants were significantly associated 
with poorer prognosis (HR 1.64 and 1.23, respectively). 1p/19q de
letion and IDH mutations were both significantly associated with 
a better prognosis (HRs 0.54, and 0.39, respectively) (Fig. 6 and 
Supplementary Fig. 9).

We conducted formal model comparison to determine whether 
network signatures, diagnosis or raw (epi)genetic data [both inher
ently diagnostic (e.g. IDH status) and supplementary variables (e.g. 
MGMT methylation array)] offered superior fidelity in forecasting 
survival. In keeping with established practice, models were statistic
ally compared with R2 and the WAIC, inferring the best model to be 
the one with the lowest WAIC. We did so with all plausibly expres
sive levels of the graph hierarchy (L1 to L4 agglomerative community 
blocks; Fig. 5), and with both continuous regression models (Cox’s 
proportional hazard), and Bayesian logits for 12-, 24- and 36-month 
survival (Fig. 7).

Network signatures achieved the best out-of-sample pre
dictive performance on Cox’s proportional hazard modelling. 
Median cross-validated concordance, in decreasing order of 
performance, was 0.753 with L2 graph blocks, 0.749 with L1 

graph blocks, 0.748 with L3 graph blocks, 0.741 with diagnosis, 
0.741 with L4 graph blocks, and 0.740 with raw tumour (epi) 
genetics.

Network signatures also achieved the best out-of-sample pre
dictive performance on Bayesian year-discretized survival predic
tions. For 12-month survival, where 72.0% of the cohort remained 
alive, the best performing models in descending order of R2 were: 
L1 blocks (R2 0.277, WAIC 617), L2 blocks (R2 0.250, WAIC 610), L3 

blocks (R2 0.239, WAIC 611), raw tumour (epi)genetics (R2 0.232, 
WAIC 612), L4 blocks (R2 0.230, WAIC 614) and diagnosis (R2 0.221, 
WAIC 617).

For 24-month survival, where 55.8% of the cohort remained 
alive, the best performing models in descending order of R2 were: 
L1 blocks (R2 0.405, WAIC 587), L2 blocks (R2 0.364, WAIC 594), L3 

blocks (R2 0.351, WAIC 601), raw tumour (epi)genetics (R2 0.345, 
WAIC 604), L4 blocks (R2 0.344, WAIC 602) and diagnosis (R2 0.333, 
WAIC 611).
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For 36-month survival, where 51.7% of the cohort remained 
alive, the best performing models in descending order of R2 were: 
L1 blocks (R2 0.423, WAIC 577), L2 blocks (R2 0.400, WAIC 571), L3 

blocks (R2 0.382, WAIC 581), L4 blocks (R2 0.375, WAIC 583), raw 

tumour (epi)genetics (R2 0.368, WAIC 589), and diagnosis (R2 0.357, 
WAIC 595).

In contrast, survival models using randomized null 
graph models failed to derive any meaningful survival prediction, 

Figure 5 Graph patient genetic mapping enables richer, more informative phenotyping. Radial graph of nested, degree-corrected and multivariate bi
nomially weighted stochastic block model revealing the community structure of patients and the genetics of their brain tumour. Hierarchical levels are 
annotated from level 0 (L0) to level 7 (L7). For visualization purposes, communities are colour-coded by the second level blocks (L2) of the hierarchical 
community structure. Around the radial graph are the breakdown of median survival and box and whisker plots for the coefficients and 95% credible 
intervals of genetic loadings, where the coloured border of the plots depicts the corresponding community. All box plots where the error-bar does not 
cross the vertical zero-line are significant, with features left of the vertical zero-line favouring the wildtype, and right of the zero-line favouring mu
tation. Supplementary Figs 3 and 8–10 accompany this plot with additional results.
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Figure 6 Graph patient genetic mapping offers higher fidelity prognosis. (A) Radial graph of a nested, degree-corrected and binomially weighted sto
chastic block model revealing the community structure of patients based on tumour genetics (as also shown in Fig. 5 and Supplementary Figs 8 and 9). 
Communities are colour-coded by the hazard ratio of the survival model of the second level blocks (L2). Note only the minimum spanning tree of the 
graph is shown, owing to visualization constraints. (B) Pie chart of brain tumour diagnoses colour-coded by the hazard ratio of the survival model with 
the diagnostic label. In A and B, darker colours convey a poorer prognosis (hazard ratio > 1), and conversely lighter colours a more favourable one (haz
ard ratio < 1). (C) Box and whisker plot illustrating the hazard ratios with 95% confidence interval (CI) of the second level blocks of the stochastic block 
model community structure. (D) Box and whisker plot illustrating the hazard ratios with 95% confidence interval of the tumour diagnoses, illustrating 
only a crude discrimination of glioblastoma, IDH-wildtype from the remainder. Also shown is a box and whisker plot of hazard ratios with 95% con
fidence interval of the raw tumour genetics. (E) Survival plot of the second level blocks of the stochastic block model community structure illustrates a 
rich variation in survival, colour-coded by the blocks in both A and C and in Fig. 5. (F) Survival plot of the tumour diagnoses shows coarser forecasting of 
patient prognosis, colour-coded by the diagnoses of B. In C and D, all points where the whiskers do not cross the vertical line at 1 are statistically sig
nificant. Supplementary Figs 9–11 also accompanies this plot with additional results.
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nor with any community segregation (Supplementary Fig. 10), of
fering chance accuracy: CPH c-index 0.534; 12-, 24- and 36-month 
survival R2 0.008 or lower (Supplementary Fig. 11).

Discussion
We have developed a comprehensive framework, founded on 
Bayesian non-parametric models of the community structure of 
graphs, for extracting interactive biological patterns from routinely 
acquired high-dimensional brain tumour genetic data, modelling 
relations not only between individual genetic features, but also be
tween individual patients, with large-scale, representative, fully in
clusive international data acquired prospectively over a 14-year 
period. Our framework has two aims: first, to reveal systematic gen
etic interrelations potentially material to the pathogenesis of brain 
tumours over and above individual genetic contributions, thereby 
catalysing mechanistic hypothesis generation and therapeutic in
novation, and second, to enable higher fidelity, more closely indi
viduated patient stratification, with potential prognostic and 
prescriptive utility. Our approach not only successfully identifies 
known genetic interrelations but reveals new ones, and not only re
plicates the WHO CNS5 diagnosis but provides a hierarchical pa
tient stratification capable of predicting survival with higher 
individual-level fidelity than either diagnosis or simple linear mod
els of the raw genetic and epigenetic features. Overall, these find
ings overwhelmingly support the value of applied network 
science in neuro-oncology.18

The demographic structure of brain tumour genetics

We identify striking heterogeneities in the demographics of genet
ically defined brain tumours and their subtypes in our dataset of 

operable patients. In line with the literature,3,27 patients with glio
blastoma, IDH-wildtype were the oldest, followed in descending or
der of age by oligodendroglioma, IDH-mutant and 1p/19q 
codeleted, astrocytoma, IDH-mutant, and the remaining other gli
omas (including BRAF mutant lesions characteristic of children 
and young adults). Overall, males were more prevalent than fe
males in this large multi-site glioma sample, but significantly 
more so in glioblastoma, IDH wildtype, than the other tumours. 
Conversely, females were significantly more likely to be diagnosed 
with an oligodendroglioma, IDH-mutant and 1p/19q codeleted, 
when explicitly controlling for the cohort gender imbalance.

The value of a network approach

Our analysis attests to the value of a graph modelling15- 

18,22,25,26,37,41,103 in eliciting rich phenotypic information underpin
ning the genetic heterogeneity of brain tumours. We have shown 
that graph analysis can reveal hierarchical communities of tumour 
genetic features sharing similar patterns of interrelatedness and 
influence upon an overall tumour genetic structure that plausibly 
have mechanistic implications for the manifestation of brain tu
mours. Such communities are potential targets for more detailed 
examination and should be investigated across future research.

Moreover, we illustrate how graph analysis provides not only a 
representation35 of tumour genetics, but also of patients them
selves across the tumour genetics landscape. Such a process auto
matically recovers the diagnostic labels with ease yet offers a finer 
granularity of patient subpopulations determined by specific, sig
nature constellations of interrelated tumour genetics. The hier
archical nature of the representation provides a flexible means of 
parameterizing tumour genetics at a granularity optimized for the 
downstream task—e.g. predicting survival—and volume of 

Figure 7 Network signatures forecast survival better than WHO CNS5 diagnosis or raw genetic and epigenetic features. (A) Model predictive perform
ance evaluated by cross-validated concordance index of Cox’s proportional hazard model shows network signatures outperform both models of diag
nosis and the original genetic information in forecasting survival. (B–D) Model predictive performance evaluated by pseudo-R2 and widely applicable 
information criterion (WAIC) of Bayesian logistic regression survival models for 12-month (B), 24-month (C) and 36-month (D) survival shows network 
signatures outperform both models of diagnosis and the original genetic information in forecasting survival, and with more favourable fits by WAIC 
(lower is better). Supplementary Fig. 11 accompanies this plot with additional results.
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available data. Where the volume of data is low, a coarse represen
tation derived from upper levels of the hierarchical structure would 
be appropriate; where it is high, a finer representation becomes 
statistically tractable. Generative stochastic block models provide 
formal support for these representations, relying on a formal 
equivalence between compression and inference in the specific 
setting.104

Critically, there is no theoretical constraint on the size of the 
models, only the impact of practical constraints such as data and 
compute that need be examined empirically. Future modelling 
could include other feature sets, such as more comprehensive gen
omics, exomics, or with features of intra-tumoural heterogeneity 
such as variant allele frequencies, sample error or purity. The algo
rithmic approach has been successfully applied to graphs of 3.38 
million nodes (>840 times more than ours),37 leaving plenty of 
room for expansion. Note that such community structure as is dis
cernible in the current models suggests the domain is eminently 
suited to stochastic block modelling, moreover allied research sug
gests biological networks (as is the case here) are especially well 
suited to the methodological approach.37

Graph feature genetic mapping

Stochastic block models of the probabilities of one genetic feature 
conditioned on another yield a comprehensive hierarchical re
presentation of tumour genetics shaped by the conditional relations 
between genetic features. This representation inevitably reflects 
well known relations such as the mutual exclusivity of 1p/19q code
letion and ATRX loss, captured within large communities. But it also 
reveals hitherto unrecognized patterns within smaller, more specif
ic communities, such as clustering of IDH1 G395A with moderate de
grees of EGFR amplification, histone G34R with IDH1 G395T and 
IDH2 G515A mutants, and BRAF frameshifts with several IDH2 mu
tants (G515T, G394T, A514G), into community groupings that yield 
similar effects on the remaining graph genetic landscape, in spite 
of how many of these aforementioned mutations are mutually ex
clusive (including IDH mutants with EGFR amplification; 
histone-altered with IDH mutants). Explaining these, amongst 
other newly identified patterns, is the task of future research.

The genetic communities we have revealed demonstrate varying 
magnitudes of network centrality. For eigenvector and page-rank cen
trality—both approximate measures of a node’s ‘influence’ in a net
work—those communities most ‘influential’, in descending order 
were: (i) IDH ± BRAF ± TERT ± MGMT ± EGFR ± Hist ± 1p/19q wild
types, non-specific ATRX loss/ret; (ii) EGFR amplifications ± MGM 
methylation ± TERT C250T mutants ± 1p/19q deletions; (iii) IDH mu
tants ± EGFR amplifications; (iv) BRAF ± hist mutants; (v) IDH mu
tants; (vi) BRAF mutants; (vii) IDH ± histone mutants; and (vii) IDH1  
± IDH2 ± BRAF mutants. This would make plausible biological sense, 
given TERT mutation status can be mutant or wildtype across the glio
blastomas, mutant in oligodendroglioma and typically wildtype in as
trocytoma, therefore the range of possible TERT alterations cover a 
large proportion of tumour diagnoses.27,83,84,100,101 In addition, BRAF 
alterations are essentially indicative of a set of specific tumour diag
noses,27,81,105-110 with relatively little scope for mutation amongst 
other diagnoses. Some of these patterns are expected—for instance, 
the presence of an IDH wildtype raises the probability for a glioblast
oma with accompanying molecular pathology panel to fol
low27,84,111—but relations particular to the specific type of genetic 
lesion are not. We should note the marked variations in the hub- 
centrality of genetic features: whereas BRAF, followed by histone 
and IDH mutants demonstrated greater hub-ness, i.e. those features 

that link to many other possible features. This finding exemplifies 
the problem of tumour heterogeneity5,8-10,112-115: some features can 
link to a vast array of alternative molecular features,6 and might 
only be understood through a graph.

Graph patient genetic mapping

Generating a stochastic block model of tumours defined by their 
genetic features reveals a complex hierarchical community struc
ture reflecting patterns of genetic interrelations varying systemat
ically across patients. The model not only recovers the tumour 
diagnosis but provides a multi-level stratification of patients exhi
biting different tumour genetic signatures.

We have shown that a finer description based on the more distal 
levels of the graph yields better predictive performance to their indi
vidual survival than WHO CNS5 diagnoses. The subcommunities of 
patients diagnosed with glioblastoma, IDH-wildtype provide a strik
ing example. Here median prognosis systematically varies from 324 
to 454 days. Specifically, the glioblastoma, IDH-wildtype cohort segre
gated into communities of progressively poorer prognoses, as follows: 
(i) high EGFR amplification with 10–25+% MGMT methylation (HR 
2.76); (ii) high EGFR amplification with 1–10% MGMT methylation 
(HR 2.32); (iii) high EGFR amplification with a TERT (C228T) mutation 
(HR 2.64); (iv) TERT mutations (usually C228T, less commonly 
C250T), but non-amplified EGFR and unmethylated MGMT (HR 2.64); 
(v) EGFR amplification, MGMT methylation (but with variable extent) 
and TERT mutations (HR 2.32); and (iv) variable MGMT methylation 
with TERT C250T mutations (HR 2.27). That prognostication is 
part-explained by the presence or absence of genetic features in the 
tumour landscape has been raised elsewhere,81,84,116-118 but is par
ticularly amplified in our findings where a detailed set of interrelating 
features conveys greater survival fidelity over singular molecular pro
files. We stress that while a median survival difference of 130 days 
might not seem substantial at the population level, it may be of great 
significance at the individual level, especially given how poor survival 
in glioblastoma is: one in four surviving beyond 2 years.119

It should be noted that the utility of the patient-level representa
tions we have derived here is likely to be closer to the floor than the 
ceiling of possibility. The traditional small data regimes that domin
ate the field typically enforce the use of univariate or low- 
dimensional linear multivariate models constitutionally blind to 
complex interactive effects. Such models yield comparatively few 
significant features, necessarily selected on their linear effects, 
that filter through to clinical use. The large—inevitably clinical— 
corpora as then accumulate are enriched in linear (though not 
necessarily purely linear) effects. A more expressive modelling 
framework, capable of capturing complex interactions, justifies cast
ing the net more widely—in terms of case and feature numbers—but 
needs large-scale data of the right kind to substantiate. In developing 
such a framework, based on expressive mathematical models well- 
grounded in Bayesian inference and graph theory,35-37,104 we hope to 
stimulate wider recognition of the possibility of identifying poten
tially valuable factors concealed by their non-linearities.

Highlighting genetic interactions

The vast majority of the genetic features studied here have been as
sociated with a specific diagnosis and/or a particular prognosis,115

explaining their inclusion in routine clinical investigation. 
Nonetheless, the striking multiplicity of features demonstrates 
the natural complexity of oncogenesis.23,24 It is from this premise 
that we argue for the value of the graph approach presented 
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here15,16,18—which definitionally incorporates interactions be
tween multiple features—as a means of illuminating disease pro
cesses, on which future treatment innovation inevitably depends.

Survival prediction illustrates the potential value of our ap
proach. Take the following genetic features, all familiar in isolation: 
(i) IDH, its wildtype form now signifies a tumour to be a glioblast
oma27,115 and associated with a poorer prognosis; (ii) MGMT, greater 
degrees of methylation are associated with altered responsiveness 
to temozolomide, and a fairer prognosis (although likely in part due 
to treatment allocation) 29,119-122; (iii) EGFR, greater amplification is 
associated with poorer outcomes123; and (iv) TERT promotor mu
tants, telomere extension is thought essential to key neoplastic me
chanisms.115,124 All these features are individually prognostic to 
some degree, but their interactions cast further light, segregating 
patients into intersectional subpopulations whose prognosis varies 
substantially and systematically with the specific pattern of inter
action (Figs 5 and 6 and Supplementary Figs 8 and 9). It is not the 
case that simply more mutations equate to poorer prognosis, but 
rather specific sets of interactions dictate them, supporting the 
notion that sets of features are prognostic,81 rather than single fac
tors taken in isolation. For instance, although isolated TERT mu
tants carry a poor prognosis (see Fig. 6 and other studies116,118), a 
TERT wildtype paired with EGFR amplification and MGMT methyla
tion yielded poorer prognoses than many other tumour genetic 
communities, including many of those exhibiting TERT promotor 
mutants.

Enhancing individual-level prognosis

Network signatures of patient brain tumour genetic communities 
predict survival with greater fidelity than coarse diagnostic labels.27

Predictive performance appeared competitive with comparable, 
dedicated genetic analyses performed by others.65,125,126 For ex
ample, Chen et al.65 reported a survival model with c-index fidelity 
of 0.818, slightly higher than what we detail here, though is applic
able to low grade gliomas only, whereas our evaluation places no 
such inclusion criteria. Similarly, Yousefi et al.126 provide deep sur
vival models for low- and high-grade lesions, reporting a c-index 
between 0.75–0.84, but these models require comprehensive gen
omic data rarely available as part of routine clinical care. We sug
gest that the inclusivity of our framework, and its dependence 
only on routinely acquired genetic data, allows us to cast the net 
more widely in pursuing associations with potential clinical value. 
Moreover, we show here that whereas survival modelling by diag
nosis is primarily driven by the distinction between IDH wildtype 
glioblastoma and other diagnoses, the graph community structure 
offers a far more finely stratified result. Glioblastoma subpopula
tions faring better or worse hinged on specific genetic traits, with 
similarly varied survivability across more favourable diagnoses 
(Fig. 6). It is intriguing that linear survival models constructed 
with the same tumour genetic data used to fit the graph community 
structure performed no better than diagnosis-based models. That 
the graph representation provides greater predictive power illus
trates the potential value of harnessing the complex high- 
dimensional interrelationships between tumour genetic features, 
and ought to stimulate further investigation.

Note that the superiority of network signatures was evident not 
only in Cox’s proportional hazard modelling, but also in annually 
discretized classification within a Bayesian inferential framework. 
These models demonstrated more favourable goodness-of-fit by 
WAIC, indicating the superiority is not trivially explained by model 
overparameterization but by a better representation.

Study limitations

We sought to reveal the nature and prognostic value of modelling 
the interrelationships between tumour genetic features acquired 
in the context of routine clinical care. The computational complex
ity of the task mandates the assembly of a large-scale, fully inclu
sive set of data. Such a set inevitably requires accumulation of 
data over long periods, covering substantial changes in investiga
tional and diagnostic practice.27 We therefore adopted a careful, 
multi-step approach for appropriate handling of data missingness 
that rendered 4023 of 9518 patients prospectively curated from 
2006 to 2020 eligible for inclusion. Our objective, however, is not 
to provide a definitive representation of tumour genetics, but to 
demonstrate a suitable approach to drawing intelligence from tu
mour genetic data in a manner sensitive to its complex interac
tions. For survival modelling, while we included the demographic 
features of age and sex, we could not include performance index 
or other clinical characteristics owing to their lack of availability. 
Naturally, where such data are available it ought to be modelled, 
and its value quantified through the kind of model comparison 
we perform here.

Conclusion
Graph models of brain tumour genetics illuminate the landscape of 
tumour heterogeneity and enable better prognosis of survival than 
either diagnosis or models of individual genetic features. They offer 
a principled means of deriving rich phenotypic representations, 
with the finer descriptive granularity on which greater personaliza
tion of care inevitably depends. Translation of such an approach to 
the clinical frontline may offer opportunity for better and more 
patient-focused care.
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