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Community detection in networks without
observing edges
Till Hoffmann1, Leto Peel2, Renaud Lambiotte3*, Nick S. Jones1,4*

We develop a Bayesian hierarchical model to identify communities of time series. Fitting the model provides an
end-to-end community detection algorithm that does not extract information as a sequence of point estimates
but propagates uncertainties from the raw data to the community labels. Our approach naturally supports mul-
tiscale community detection and the selection of an optimal scale using model comparison. We study the prop-
erties of the algorithm using synthetic data and apply it to daily returns of constituents of the S&P100 index and
climate data from U.S. cities.
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INTRODUCTION
Detecting communities in networks provides a means of coarse-
graining the complex interactions or relations (represented by network
edges) between entities (represented by nodes) and offers a more inter-
pretable summary of a complex system. However, in many complex
systems, the exact relationship between entities is unknown and un-
observable. Instead, we may observe interdependent signals from the
nodes, such as time series, whichwemay use to infer these relationships.
Over the past decade, a multitude of algorithms have been developed to
group multivariate time series into communities with applications in
finance (1–4), neuroscience (5, 6), and climate research (7). For exam-
ple, identifying communities of assets whose prices vary coherently can
help investors gain a deeper understanding of the foreign exchange
market (1, 2) or manage their market risk by investing in assets
belonging to different communities (8). Classifying regions of the brain
into distinct communities allows us to predict the onset of psychosis (6)
and learn about the aging of the brain (9). Global factors affecting our
climate are reflected in the community structure derived from sea sur-
face temperatures (7).

Current methods for detecting communities when network edges
are unobservable typically involve a complicated process that is highly
sensitive to specific design decisions and parameter choices. Most
approaches consist of three steps: First, a measure is chosen to assess
the similarity of any pair of time series such as Pearson correlation
(1–3, 7, 9, 10), partial correlation (6, 11, 12), mutual information (13),
or wavelet correlation coefficients (5, 14, 15). Second, the similarity is
converted to a dense weighted network (1–3, 15) or a binary network.
For example, some authors connect the most similar time series such
as to achieve a desired network density (13), threshold the similarity
matrix at a single value (5, 7), or demand statistical significance under
a null model (6, 11, 12). Others threshold the similarity matrix at
multiple values to perform a sensitivity analysis (9, 10, 14). After the
underlying network has been inferred, community detection is applied
to uncover clusters of time series, for example, by maximizing the
modularity (1, 2, 5, 10, 14, 15) or using the map equation (7, 9, 16).
This type of approach faces a number of challenges: First, most
community detection methods rely on the assumption that the
network edges have been accurately observed (17). In addition,
Newman-Girvanmodularity (18), a popularmeasure to evaluate com-
munity structure in networks, is based on comparing the network to a
null model that does not apply to networks extracted from time series
data (8). Second, when the number of time series is large, computing
pairwise similarities is computationally expensive, and the entries of
the similarity matrix are highly susceptible to noise. For example, the
sample covariance matrix does not have full rank when the number of
observations is smaller than or equal to the number of time series (19).
Third, at each step of the three-stage process, we generally only
compute point estimates and discard any notion of uncertainty such
that it is difficult to distinguish genuine community structure from
noise, a generic problem in network science (20). Fourth, missing data
can make it difficult to compute similarity measures such that data
have to be imputed (10) or incomplete time series are dropped (3, 8).
Last and more broadly, determining an appropriate number of com-
munities is difficult (21) and often relies on the tuning of resolution
parameters without a quality measure to choose one value over an-
other (2, 22).

More broadly, this work is related to the problem of series cluster-
ing (23), whose purpose is to take a set of time series as input and to
group them according to ameasure of similarity.Most of thesemethods
are not constructed from a network perspective, but they tend to face
the same challenges outlined above. In particular, they often comprise
separate steps combined in a relatively ad hocmanner, e.g., transforma-
tions based on wavelets or piecewise approximations (24, 25). Accord-
ingly, the resulting disconnected pipelines produce point estimates at
each step and do not propagate uncertainty from the raw data to the
final output.

Our approach is motivated by the observation that inferring the
presence of edges between all pairs of nodes in a network is an un-
necessary, computationally expensive step to uncover the presence
of communities. Instead,we propose a Bayesian hierarchicalmodel for
multivariate time series data that provides an end-to-end community
detection algorithm and propagates uncertainties directly from the
raw data to the community labels. This shortcut is more than a com-
putational trick, as it naturally allows us to address the aforementioned
challenges. In particular, our approach naturally supports multiscale
community detection and the selection of an optimal scale using
model comparison. Furthermore, it enables us to extract communities
even in the case of short observation time windows. The rest of this
paper will be organized as follows. After introducing the algorithm, we
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validate and study its properties in a series of synthetic experiments.
We then apply it to daily returns of constituents of the S&P100 index
to identify salient communities of similar stocks and to climate data of
U.S. cities to identify homogeneous climate zones. For the latter, we
characterize the quality of the communities in terms of the predictive
performance provided by the model.
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MATERIALS AND METHODS
A Bayesian hierarchical model
The variability of high-dimensional time series is often the result of a
small number of common, underlying factors (26). For example, the
stock price of oil and gas companies tends to be positively affected by
rising oil prices, whereas the manufacturing industry, which con-
sumes oil and gas, is likely to suffer from rising oil prices (27). Mo-
tivated by this observation, wemodeled the multivariate time series y
using a latent factor model, i.e., the n-dimensional observations at
each time step t are generated by a linear transformation A of a lower-
dimensional, latent time series x and additive observation noise.
More formally, the conditional distribution of y is

yti∣A; x; t∼Normal ∑
p

q¼1
xtqAiq; t

�1
i

 !
ð1Þ

where yti is the value of the ith time series at time t, xtq is the value of
the qth latent time series, and p is the number of latent time series. The
precision (inverse variance) of the additive noise for each time series is
ti, and Normal(m, s2) denotes the normal distribution with mean m
and variance s2. The entries Aiq of the n × p factor loading matrix en-
code how the observations of time series i are affected by the latent
factor q. Using our earlier example, the entry of A connecting an oil
companywith the (unobserved) oil price would be positive, whereas the
corresponding entry for an automobile company would be negative.

Variants of this model abound. For example, the mixture model
of factor analyzers (28, 29) assumes that there are not one but many
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
latent factors to account for a possibly nonlinear latent manifold
(30, 31). Huopaniemi et al. (32) and Zhao et al. (33) demanded that
most of the entries of the factor loading matrix are zero such that
each observation only depends on a subset of the latent factors.
Inoue et al. (34) modeled gene expression data and assumed that
the factor loadings of all genes belonging to the same community
are identical.

We aim to strike a balance between the restrictive assumption
that observations belonging to the same community have identical
factor loadings (34) and the more complex mixtures of factor ana-
lyzers (30): We define a community of time series as having factor
loadings drawn from a common latent distribution. Each time series i
belongs to exactly one community gi ∈ {1,…, K}, i.e., g is the vector
of community memberships and K is the number of communities.
The factor loadings are drawn from a multivariate normal
distribution conditional on the community membership of each
time series such that

Ai ∼ ∑
K

k¼1
zikNormal mk;L

�1
k

� � ð2Þ

where zik ¼ 1 if gi ¼ k
0 otherwise

�

The parameters mk and Lk are the p-dimensional mean and
precision matrix of the kth component, respectively. The intuition
behind the model is captured in Fig. 1A: We can identify commu-
nities because time series that behave similarly are close in the space
spanned by the factor loading matrix. This idea relates to latent
space models of networks in which nodes that are positioned closer
together in the latent space have a higher probability of being linked
(35). Extending the notion of communities to such a model implies
clusters of nodes within the latent space (36).

The priors for the mean and precision parameters of the different
communities require careful consideration because they can have a
ay 28, 2021
Fig. 1. A Bayesian hierarchical model for time series with community structure. Time series y are generated by a latent factor model with factor loadings A shown
as dots in (A). The factor loadings are drawn from a Gaussian mixture model with mean m and precision L. Generated time series are shown next to each factor loading
for illustration. (B) Directed acyclic graph (DAG) representing the mixture model (A and all of its parents) and the probabilistic principal components analysis (PCA) (A, its
siblings, and y). Observed nodes are shaded gray, and fixed hyperparameters are shown as black dots.
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significant impact on the outcome of the inference (37): If the priors
are too broad, then the model evidence is penalized heavily for each
additional community, and all time series are assigned to a single com-
munity. If the priors are too narrow, then the inference will fail because
it is dominated by our prior beliefs rather than being data driven. To
minimize the sensitivity of our model to prior choices, we use an
automatic relevance determination (ARD) prior, which can learn an ap-
propriate scale for the centers of the communities m (38). In particular

mkq ∼Normalð0; l�1
kq Þ

lkq ∼Gammaða ¼ 10�3; b ¼ 10�3Þ

Conjugate ARD priors are not available for the precisionmatrices of
the communities, and we used Wishart priors such that

Lk ∼Wishartðn;WÞ

where n > p − 1 and W ∈ ℝp×p are the shape and scale parameters
of the Wishart distribution, respectively. We set W to be a diagonal
matrix that scales according to the number of latent factors such that
W = pwIp, where Ip is the p-dimensional identity matrix. To obtain a
relatively broad prior (39), we let n = p such that the prior precision,
i.e., the expectation of the precision under the prior, is 〈L〉 = w−1Ip.
We perform inference for a range of prior precisions because we
cannot learn it automatically using an ARD prior.

Latent factor models as defined in Eq. 1 are not uniquely identifi-
able because we can obtain an equivalent solution by, for example,
multiplying the factor loading matrix A by an arbitrary constant and
dividing the latent factors x by the same value. We impose a zero-mean,
unit-variance Gaussian prior on the latent factors to identify the scale of
x and A (40). This approach does not identify the model with respect to
rotations and reflections, but the lack of identifiability does not affect the
detection of communities because the Gaussian mixture model defined
in Eq. 2 is invariant to orthogonal transformations.

The community memberships follow a categorical distribution

gi ∼ CategoricalðrÞ

where r represents the normalized sizes of communities such that
∑Kk¼1rk ¼ 1. To ensure that no community is favored a priori, we
assign a symmetric Dirichlet prior

r∼Dirichletðg1KÞ

to the community sizes, where g = 10−3 is a uniform concentration
parameter for all elements of the Dirichlet distribution and 1K is a
K-dimensional vector with all elements equal to one. We use a broad
gamma prior for the precision parameter of the idiosyncratic noise. In
particular

ti ∼Gammaða ¼ 10�3; b ¼ 10�3Þ

Figure 1B shows a graphical representation of the model as a
directed acyclic graph (DAG). Because the observations y only appear
as leaf nodes of the DAG, any missing observations can be margin-
alized analytically.
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
Inference using the variational mean field approximation
Exact inference for the hierarchical model is intractable, and we use a
variational mean field approximation of the posterior distribution to
learn the parameters (41). The basic premise of variational inference
is to approximate the posterior distribution P(Q∣y) by a simpler
distribution Q(Q), where Q is the set of all parameters of the model.
Variational inference algorithms seek the approximation Q*(Q) that
minimizes the Kullback-Leibler divergence between the approxima-
tion and the true posterior. More formally

Q*ðQÞ ¼ argmin
Q∈Q

KLðQðQÞ∥PðQ∣yÞÞ

where Q is the space of all approximations that we are willing to con-
sider. Minimizing the Kullback-Leibler divergence is equivalent to
maximizing the evidence lower bound (ELBO)

LðQÞ ¼ 〈log Pðy;QÞ � log QðQÞ〉≤ log∫dQ Pðy;QÞ ð3Þ
where 〈·〉 denotes the expectation with respect to the approximate
posterior Q and the right-hand side of Eq. 3 is the logarithm of the
model evidence (41). The maximized ELBO (henceforth, just ELBO)
serves as a proxy for the model evidence to perform model compar-
ison, and we use it to determine the number of latent factors and the
prior precision.

We further assume that the posterior approximation factorizes
with respect to the nodes of the graphical model shown in Fig. 1A.
More formally, we let Q(q) =

Q
qi∈QQqi(qi), which restricts the func-

tion spaceQ. Under this assumption, known as themean field approx-
imation, the individual factors can be optimized, in turn, until the
ELBO converges to a (local) maximum. The general update equation
is (up to an additive normalization constant)

log QqiðqiÞ→ 〈log PðQ∣yÞ〉∖qi
where 〈·〉∖qi denotes the expectation with respect to all parameters
except the parameter qi under consideration. See Blei et al. (42) for
a recent review of variational Bayesian inference and appendix B for
the update equations specific to our model.
RESULTS
Simulation study
Having developed an inference algorithm for themodel, wewould like
to assess under which conditions the algorithm fails and succeeds.We
start with a simple, illustrative example by drawing K = 5 community
means m from a two-dimensional normal distribution with zero mean
and unit variance, i.e., we consider two latent time series and a two-
dimensional space of factor loadings. The community precisionsL are
drawn from a Wishart distribution with shape parameter n = 50 and
identity scale parameter. The communities are well separated because
thewithin-community variability (1=

ffiffiffiffiffi
50

p
≈ 0:14) ismuch smaller than

the between-community variability (≈1), as shown in Fig. 2A. We as-
sign n = 50 time series to the five communities using a uniform
distribution of community sizes rk = 1/K. Last, we draw m = 100
samples of the two-dimensional latent factors x and obtain the obser-
vations y using Eq. 1, i.e., by adding Gaussian observation noise with
precision t drawn from a Gamma(100,10) distribution to the linear
transformation xAT.
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Optimizing the ELBO is usually a nonconvex problem (42), and
the results are sensitive to the initialization of the posterior factors.
Choosing a good initialization is difficult in general, but the optimiza-
tion can be aided to converge more quickly by initializing it using a
simpler algorithm (43). We run the inference algorithm in three
stages: First, we fit a standard probabilistic principal components anal-
ysis (PCA) (44) to initialize the latent factors, factor loadings, and
noise precision. Second, we perform 10 independent runs of k-means
clustering on the factor loading matrix (45) and update the commu-
nity assignments z according to the result of the best run of the clustering
algorithm, i.e., the clustering with the smallest sum of squared distances
between the factor loadings A and the corresponding cluster centers m.
Third, we optimize the posterior factors of all parameters according to
the variational update equations in appendix B until the ELBO does not
increase by more than a factor of 10−6 in successive steps. The entire
process is repeated 50 times, and we choose the model with the highest
ELBO to mitigate the optimization algorithm getting stuck in local
optima.

The number of communities and the prior precision are tightly
coupled: Suppose that we choose a large prior precision for the
Wishart distribution encoding a prior belief that each individual
community occupies a small volume in the space of factor loadings.
Consequently, the algorithm is incentivized to separate the time se-
ries into many small communities. In the limit 〈L〉 → ∞ (where
vanishing within-community variation is permitted), the algorithm
assigns each time series to its own community. In contrast, if we
choose a small prior precision, then our initial belief is that each
community occupies a large volume in the latent space, and time
series are aggregated into few, large communities. Fortunately, the
number of communities is determined automatically once the prior
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
precision has been specified: In practice, we define the inferred
cluster labels as

ĝ i ¼ argmax
k

〈zik〉Qz

and determine the number of inferred communities K̂ by counting
the number of unique elements in ĝ.

For the synthetic data discussed above, we set themaximumnumber
of communities to 10 and run the inference for a varying number of
latent factors and prior precisions. Increasing the maximum number
of communities would not have any effect because the algorithm iden-
tifies, at most, eight communities. The ELBO of the best model for each
parameter pair is shown in Fig. 2C. The model with the highest ELBO
correctly identifies the number of factors and the number of commu-
nities; the inferred parameters are shown in Fig. 2B. As mentioned in
the previous section, the model is not identifiable with respect to ro-
tations and reflections, and consequently, the factor loadings in Fig. 2
(A and B) differ. However, the precise values do not affect the commu-
nity assignments, and the difference is immaterial. Figure 2D shows the
difference between the inferred and actual number of communities. As
expected, choosing too small or large a prior precision leads to the
algorithm inferring too few or too many communities, respectively.

Choosing the hyperparameters, such as the number of factors and
the prior precision, to maximize the ELBO is known as empirical Bayes
(41). In theory, it is preferable to introduce hyperpriors and treat the
number of factors and the prior precision as proper model parameters
similar to the ARD prior. However, dealing with the variable dimen-
sionality of the latent space is difficult in practice, and computationally
convenient conjugate priors for the scale parameter ofWishart distribu-
tions do not exist.
Fig. 2. The algorithm successfully identifies synthetic communities of time series. (A) Entries of a synthetic factor loading matrix A as a scatter plot. (B) Inferred
factor loading matrix together with the community centers as black crosses and the community covariances as ellipses; error bars correspond to 3 SDs of the posterior.
(C) ELBO as a function of the number of latent factors and the prior precision. (D) Difference between the estimated number of communities K̂ and the true number of
communities K. The model with the highest ELBO is marked with a black dot in (C) and (D); it recovers two latent factors and five communities.
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http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://advances.scie
D

ow
nloaded from

 

Multiscale community detection
Treating the dimensionality p of the latent space and the extent L of
communities in the latent space as input parameters not only lets us
avoid complicated inference but also provides us with a natural ap-
proach to multiscale community detection. We create nine commu-
nities arranged in a hierarchical fashion in the factor loading space
similar to a truncated Sierpiński triangle and assign n = 50 time series
to the communities, as shown in Fig. 3B. As in the previous section, we
generate T = 100 observations of the time series with noise precision
drawn from a Gamma(100,10) distribution.

In this example, we assume that the number of latent factors is
known, set the maximum number of communities to 20, and vary the
prior precision over several orders of magnitude. Figure 3A shows the
ELBO as a function of the prior precision exhibiting two local maxima:
The larger of the two corresponds to a large prior precision and iden-
tifies the nine communities used to generate the data, as shown in
Fig. 3B. The smaller maximum occurs at a smaller prior precision,
and the algorithm aggregates time series intomesoscopic communities,
as shown in Fig. 3D. Decreasing the prior precision further forces the
algorithm to assign all time series to a single community, and increasing
the prior precision beyond its optimal value results in communities be-
ing fragmented into smaller components, as can be seen in Fig. 3C. Our
algorithm not only is able to select an appropriate scale automatically
but also allows the user to select a particular scale of interest if desired.

Testing the limits
In both of the examples we have considered so far, the communities
were well separated from one another, which made it easier to assign
time series to communities. Similarly, the number of observations T
was twice as large as the number of time series n such that the
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020

nc
algorithm could constrain the factor loading matrix well. In this sec-
tion, we consider how the performance of the algorithm changes as we
change the separation between communities and the number of ob-
servations. We define the community separation

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈L〉var½m�

p
which measures the relative between-community and within-
community scales such that communities are well separated in
the factor loading space if h ≫ 1 and are overlapping if h ≪ 1. The
expectation and variance in the definition of h are taken with respect
to the generative model for the synthetic data.

For each combination of the number of observations and the
separation h, we run 100 independent simulations withK = 5 commu-
nities, prior precision L = 10I2 for each community, and p = 2 latent
factors. For the inference, we assume that the number of latent factors
is known and impose a limit of, at most, 10 communities. The prior
precision is varied logarithmically from 0.625 to 20, and we retain the
model with the highest ELBO. We use two criteria to measure the
performance of the algorithm.

First, we measure the normalized mutual information (NMI) be-
tween the inferred community labels ĝ and the true community labels
g. The NMI is equal to one if the inferred and true community labels
match exactly and is equal to zero if the community labels are
independent. The NMI is defined as (46)

NMIðg; ĝÞ ¼ Iðg; ĝÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðgÞHðĝp Þ
 on M
ay 28, 2021
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Fig. 3. The prior precision Lof the communities affects the number of detected communities. (A) ELBO of the model as a function of the prior expectation of the
precision matrices 〈L〉. The ELBO has two distinct peaks corresponding to the community assignments shown in panels (B) and (D), respectively. (C) Number of
identified communities as a function of the prior precision; data points with arrows represent a lower bound on the number of inferred communities.
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where Iðg; ĝÞ is the mutual information between the true and inferred
community assignments and H(g) is the entropy of g. The NMI
displayed in Fig. 4A shows a clear and expected pattern: The larger
the separation and the larger the number of observations, the better
the inference. The separation poses a fundamental limit to how well
we can infer the community labels. Even if we could estimate the factor
loadings perfectly, we could not determine the community member-
ships if the communities are overlapping. This observation is analo-
gous to the detectability limit for community detection on fully
observed networks: The ability to recover community assignments
diminishes as the difference of within-community and between-
community connections decreases (47). However, provided that the
communities are well separated, we can estimate the community labels
well with a relatively small number of observations. We only require
that the estimation errors of the factor loadings are small compared to
the separation between communities. Of course, the community sep-
aration is not under our control, in practice, so we should ensure that
we collect enough data to estimate the factor loadings well.

Second, we compare the inferred number of communities K̂ with
the true number of planted communities, as shown in Fig. 4B. When
the communities are overlapping, the algorithm infers a smaller
number of communities because aggregating time series into fewer
communities with more constituents provides a more parsimonious
explanation of the data. Similarly, when the number of observations is
too small, the factor loadings are not estimatedwell, and the algorithm
chooses fewer communities because the data do not provide sufficient
evidence to split the set of time series into smaller communities.

To assess the effect of fitting a hierarchical Bayesian model com-
pared with a simpler approach using point estimates at each stage of
the process, we also infer community labels for each simulation as
follows. First, we compute the correlation matrix and obtain an em-
bedding for each time series by evaluating the two leading eigenvectors
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
of the correlation matrix. Second, we apply k-means clustering with
K = 5 clusters to the embeddings to recover community assignments.
While the NMI, shown in Fig. 4C, displays a similar pattern to our
hierarchical model, the difference between the NMIs of the two algo-
rithms exhibits three types of behavior, as shown in Fig. 4D. When
the separation between communities is small [labeled (i) in Fig. 4D],
the hierarchical model has a lower NMI than the simpler model. The
hierarchical model recovers fewer communities because there is not
enough evidence to support multiple clusters, whereas the simpler
model only performs better because it has access to additional in-
formation, the number of planted partitions. When we provide the
hierarchical model with this additional information (see appendix C),
the simpler model no longer outperforms the hierarchical one. For
intermediate separation between clusters [labeled (ii)], the hierarchical
model achieves a higher NMI because it does not discard information
at each stage, especially when the number of observations is small.
When the clusters are well separated [labeled (iii)], both approaches
recover the communities well and there is little difference.

Application to financial time series
Having studied the behavior of the algorithm on synthetic data, we
apply it to daily returns of constituents of the S&P100 index compris-
ing 102 stocks of 100 large companies in the United States. Google and
21st Century Fox have two classes of shares, and we discard FOXA
and GOOG in favor of FOX and GOOGL, respectively, because the
latter have voting rights. We obtained 252 daily closing prices for all
stocks from 4 January to 30 December 2016 from Yahoo! finance.
Before feeding the data to our algorithm, we compute the daily loga-
rithmic returns for each time series and standardize them by subtract-
ing the mean and dividing by the SD.

In contrast to performing a grid search over the number of latent
factors and the prior precision jointly as in the previous section for
 on M
ay 28, 2021

ag.org/
Fig. 4. Communities can be recovered even from very short time series. (A) Median NMI between the true and inferred community assignments obtained using
our hierarchical model for n = 100 time series and K = 5 groups as a function of the number of observations T and the community separation h. (B) Median difference
between the number of inferred communities and the true number of communities. (C) Median NMI obtained using PCA followed by k-means clustering. (D) Difference
in NMI between the two algorithms [see the main text for description of regions (i) to (iii)].
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the simulation study, we run the inference in two steps. First, we fit a stan-
dard probabilistic PCAmodel (44) and use the ELBO to choose the num-
ber of latent factors, as shown in Fig. 5A. Having identified the optimal
number of factors as p̂ ¼ 10, we perform a grid search over the prior
precision to select an appropriate scale for the communities. The algorithm
selects K̂ ¼ 11 communities, as shown in Fig. 5 (B and C). Among an
ensemble of 50 independently fitted models for each prior precision,
the model with the highest ELBO tends to have the smallest number of
communities: The algorithm tries to find a parsimonious description of
the data, and representations with too many communities are penalized.

The factor loading matrix A has a nontrivial structure, as can be
seen in Fig. 5D: The columns of the factor loading matrix are ordered
descendingly according to the column-wise L2 norm. The first column
explainsmost of the variance of the data, and the corresponding factor
is often referred to as the market mode, which captures the overall
sentiment of investors (8, 48). Additional factors capture ever more
refined structure. Because visualizing the 10-dimensional factor
loading matrix is difficult, we obtain a lower-dimensional embedding
using t-distributed stochastic neighbor embedding (t-SNE) (49)
shown in Fig. 5E. The shaded regions are the convex hulls of time se-
ries belonging to the same community.
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
The community assignments capture salient structure in the data.
For example, the three smallest communities that have only two
members consist of Mastercard (MA) and Visa (V), both credit card
companies; Lockheed Martin (LMT) and Raytheon (RTN), both de-
fense companies; and DuPont (DD) and Dow Chemical (DOW),
both chemical companies. Dow Chemical and DuPont merged to
form the conglomerate DowDuPont (DWDP) in August 2017. The
algorithm also identifies a large community of companies from di-
verse industry sectors. More specialized communities consist of bio-
technology and pharmaceutical companies [e.g., Merck (MRK) and
Gilead Sciences (GILD)], financial services companies [e.g., Citigroup
(C) and Goldman Sachs (GS)], and manufacturing and shipping
companies [e.g., Boeing (BA), Caterpillar (CAT), FedEx (FDX), and
United Parcel Service (UPS)].

Some of the community assignments appear to be less intuitive.
For instance, the nuclear energy company Exelon (EXC) is assigned
to a community of telecommunications companies rather than to a
community of other energy companies as we might expect. This re-
sult does not necessarily indicate an error in community assignment,
as the “true” communities in real data are not known (50). See Table 1
for a full list of companies and community assignments.
 on M
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Fig. 5. The algorithm identifies 11 communities of stocks in a 10-dimensional factor loading space. (A) ELBO as a function of the number of latent factors of the
model peaking at p = 10 factors. The ELBO of the best of an ensemble of 50 independently fitted models is shown in blue. (B) ELBO as a function of the prior precision.
(C) Number of communities identified by the algorithm. The shaded region corresponds to the range of the number of detected communities in the model ensemble.
(D) Factor loadings inferred from 1 year of daily log returns of constituents of the S&P100 index as a heat map. Each row corresponds to a stock, and each column
corresponds to a factor. The last column of the loading matrix serves as a color key for different communities. (E) Two-dimensional embedding of the factor loading
matrix using t-SNE together with cluster labels including credit card (CC) and fast-moving consumer goods (FMCG) companies.
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Application to climate data
We now apply our method to climate data from 1429 U.S. cities. Each
“node” represents a city, and the signals that we observe at each of the
nodes are monthly values (averaged over 20 years) for the high and
low temperatures and the amount of precipitation received, so instead
of T observations of a time series, we have T attributes of the nodes, in
this case T = 36 (three times 12months). In this context, communities
represent climate zones in which the temperature and precipitation
vary similarly. In climatology, locales are classified into climate zones
according to man-made climate classification schemes. One of the
most popular climate classification schemes is the Köppen-Geiger cli-
mate classification system (51), first developed in 1884 by Wladimir
Köppen (52) but has since received a number of modifications. The
system divides climates into groups on the basis of seasonal tempera-
ture and precipitation patterns. Figure 6A shows the Köppen-Geiger
classification of the U.S. cities we studied.

We infer the parameters of our model and community assign-
ments using a similar approach to the previous section except for
two notable differences. First, we found that the ELBO increased
monotonically with increasing number of latent factors when fitting
the standard probabilistic PCA, which is likely the result of the data
having significant skewness of 0.70: The more complex the data, the
more latent factors are required to fit the distribution. While the
model is able to fit arbitrary data distributions by adding more latent
factors, similar to a Gaussian mixture model (53), it may be advanta-
geous to limit the number of factors for performance reasons. In this
case, we decided to use six latent factors as the rate of increase of the
ELBO drops when we increase the number of factors further. Second,
instead of choosing the number of communities by maximizing the
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
ELBO, we set the number of communities to the number of Köppen-
Geiger climate zones to allow for a more direct comparison. Figure 6B
shows the communities inferred by our model. Both sets of climate
zones display similar qualitative features such as the division between
the humid East and the aridWest along the 100thmeridian.However, a
direct quantitative comparison of the two climate partitions is not nec-
essarily meaningful, as we do not expect that there is only a single good
way to partition the nodes. For reference, we find that the NMI between
the two community assignments is ≈0.4. The low correlation between
our inferred communities and the manually labeled Köppen-Geiger
zones does not imply poor performance of our model (50), nor does
it validate it.

Instead of trying to recover man-made labels, in the next section,
we consider the predictive performance of ourmodel onheld-out, pre-
viously unseen data.

Imputing missing data
Often when dealing with real data, some values may be missing, e.g.,
because of measurement or human errors. We may also wish to arti-
ficially hold out a subset of values during the inference and attempt to
impute these values to assess the goodness of fit of the model. Either
way, imputing missing values consists of two steps. First, fit the model
to the available data (all observed or not held-out values) using the
inference procedure as described earlier. Second, use estimates of the
factor loadingsA and inferred latent time series x to impute the missing
signal values as

ŷ i ¼ AT
i x ð4Þ
Table 1. Constituents of the S&P100 grouped by inferred community assignment.
Group
 Constituents
Mixed A
pple (AAPL), Abbott Laboratories (ABT), Accenture (ACN), Amazon (AMZN), American Express (AXP), Cisco (CSCO), Danaher (DHR),
Walt Disney (DIS), Facebook (FB), 21st Century Fox (FOX), Google (GOOGL), Home Depot (HD), Intel (INTC), Lowe’s (LOW), Medtronic
(MDT), Monsanto (MON), Microsoft (MSFT), Nike (NKE), Oracle (ORCL), Priceline.com (PCLN), Paypal (PYPL), Qualcomm (QCOM),

Starbucks (SBUX), Time Warner (TWX), Texas Instruments (TXN), Walgreen (WBA)
Biotech A
bbVie (ABBV), Actavis (AGN), Amgen (AMGN), Biogen (BIIB), Bristol-Myers Squibb (BMY), Celgene (CELG), Costco (COST), CVS (CVS),
Gilead (GILD), Johnson & Johnson (JNJ), Eli Lilly (LLY), McDonald’s (MCD), Merck (MRK), Pfizer (PFE), Target (TGT), UnitedHealth (UNH),

Walmart (WMT)
Financials
 American International Group (AIG), Bank of America (BAC), BNY Mellon (BK), BlackRock (BLK), Citigroup (C), Capital One (COF),
Goldman Sachs (GS), JPMorgan Chase (JPM), MetLife (MET), Morgan Stanley (MS), US Bancorp (USB), Wells Fargo (WFC)
Manufacturing and
shipping
Allstate (ALL), Barnes Group (B), Boeing (BA), Caterpillar (CAT), Comcast (CMCSA), Emerson Electric (EMR), Ford (F), FedEx (FDX),
General Dynamics (GD), General Electric (GE), General Motors (GM), Honeywell (HON), International Business Machines (IBM), 3M

(MMM), Union Pacific (UNP), United Parcel Service (UPS), United Technologies (UTX)
Fast-moving consumer
goods
Colgate-Palmolive (CL), Kraft Heinz (KHC), Coca Cola (KO), Mondelez International (MDLZ), Altria (MO), PepsiCo (PEP), Procter &
Gamble (PG), Philip Morris International (PM)
Oil and gas
 ConocoPhillips (COP), Chevron (CVX), Halliburton (HAL), Kinder Morgan (KMI), Occidental Petroleum (OXY), Schlumberger (SLB),
ExxonMobil (XOM)
Chemicals
 DuPont (DD), Dow Chemical (DOW)
Utilities
 Duke Energy (DUK), Nextera (NEE), Southern Company (SO)
Telecoms
 Exelon (EXC), Simon Property Group (SPG), AT&T (T), Verizon (VZ)
Defense
 Lockheed Martin (LMT), Raytheon (RTN)
Credit cards
 MasterCard (MA), Visa (V)
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We demonstrate the performance of imputing missing data on the
financial and climate data in a cross-validation experiment. We first fit
the model to the complete series of about half of the nodes (50 com-
panies and 760 cities) selected uniformly at random, which acts as a
training set to learn the latent factors x, community means m, and
community precisions L. Second, we perform a 10-fold cross valida-
tion on the remaining nodes by holding out a tenth of the data,
inferring their factor loadings A and their community assignment,
and predicting the missing signal values according to Eq. 4.

For comparison, we infer community assignments using a typical
network-based method for clustering time series used by Fenn et al.
(2). In particular, we apply the Louvain algorithm (54) with resolu-
tion parameter set such that we get approximately the same number
of communities as the hierarchical model (g = 0.953 for the financial
time series and g = 0.95 for the climate data) to the weighted adja-
cency matrix M

Mij ¼
rij þ 1

2
� dij

where rij is the Pearson correlation between series i and j and the
Kronecker delta dij removes self-edges (2). This approach does not
make node-specific predictions but instead predicts the community
mean. Therefore, to provide amore direct comparison with the com-
munities found by ourmethod, we also compare the predictions using
the communitymeans of the hierarchical model, i.e., ŷ i ¼ mTgi x. For the
climate data, we also impute the missing values using the mean value
of each signal type, i.e., themean temperature or precipitation for each
month, within each Köppen-Geiger climate zone (51).

Table 2 shows the rootmean square error for each approach on the
financial and climate data, respectively. Our method outperforms the
others in terms of predictive ability. While this observation provides
some validation of our approach, it should not come as a surprise that
our data-drivenmethod, which is trained on the same type of data that
we are trying to predict, outperforms the hand-crafted zones of
Köppen and Geiger. However, the approach detecting commu-
nities using the method of Fenn et al. (2) performs worse than
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
the Köppen-Geiger climate zones despite being trained on the same
data: The method may identify spurious communities, at least with
respect to those that have good predictive performance.

Note that because ground-truth communities are not available, we
cannot determine which algorithm provides “better” community as-
signments (50), but we believe that the community assignments
inferred by our algorithm are more intuitive than the community as-
signments inferred using the method of Fenn et al. (2) (e.g., for the
financial data, compare the community assignments of our method
shown in Table 1 with those of Fenn et al. shown in table S1).
DISCUSSION
We have developed a model for community detection for networks in
which the edges are not observed directly. Using a series of inter-
dependent signals observed for each of the nodes, our model detects
communities using a combination of a latent factormodel, which pro-
vides a lower-dimensional latent space embedding, and a Gaussian
mixture model, which captures the community structure. We fit the
model using a Bayesian variational mean field approximation, which
allows us to determine the number of latent factors and an appropriate
number of communities using the ELBO for model comparison. The
method is able to recover meaningful communities from daily returns
of constituents of the S&P100 index and climate data inU.S. cities. The
code to run the inference is publicly available.

Our proposedmethod presents an important advancement over cur-
rent methods for detecting communities without observing network
edges. Recall that these methods typically consist of three steps: calculate
pairwise similarity, threshold similarity to create a network, and apply
community detection to the network. In contrast, our approach is end
to end, i.e., the method propagates uncertainties from the raw data to
the community labels instead of relying on a sequence of point esti-
mates. As a result, the model is able to recover community structure
even when the number of observationsT is possiblymuch smaller than
the number of n. Current methods for detecting communities when
network edges are unobservable struggle in this setting because of
the uncertainty in the estimate of the similarity matrix. The asymptotic
Fig. 6. Climate zones of U.S. cities. (A) City locations colored according to the Köppen-Geiger climate classification system (51). (B) Inferred climate zones based on
the monthly average high and low temperatures and precipitation amounts. We observe qualitative similarities between the two sets of climate zones, but a quan-
titative comparison reveals a relatively low correlation (NMI ≈ 0.4).
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complexity of algorithms that rely on pairwise similarities scales (at
least) quadratically with the number of nodes, whereas each iteration
of our algorithm scales linearly. We report the empirical run times of
performing the inference on various synthetic networks in appendix E.

There are several avenues for future work. For example, using the
same prior precision for all communities reflects our prior belief that
all communities should occupy roughly similar volumes in the factor
loading space. In analogy, in the case of standard community detec-
tion with modularity optimization, balanced sizes between commu-
nities are induced by the so-called diversity index in the quality
function (55). Whether this assumption holds in practice is unclear,
and we may be able to find communities of heterogeneous sizes in
the factor loading space by lifting this assumption. Furthermore,
Gaussian distributions are a standard choice for mixture models,
but mixtures of other distributions such as Student’s t distributions
may provide better clustering results. Similarly, we modeled the
community assignments as categorical variables such that each node
belongs to exactly one community. Our approach could be extended
to a mixed-membership model by allowing the community assign-
ments to encode a weight of belonging to different communities (56).

Despite being motivated by time series, our algorithm does not
model the dynamics of the data explicitly. Using a dynamical model
such as a linear state space model may capture additional information
in the data to help infer better community labels and allow us to pre-
dict future values of the time series.

As shown in the previous section, our algorithm can recover com-
munities from observations of different attributes. While this use of
the model violates the assumption that node observations are identi-
cally distributed, it does not prevent us from identifying meaningful
communities. However, it may perform poorly in a posterior predic-
tive check that compares statistics of the posterior distribution P(y′∣y)
with the observed data. Promoting the observations y and factor load-
ingsA to three-dimensional tensors would allow us tomodel different
attributes in a principled fashion. In particular, the lth attribute of
node i at time t would have distribution

ytil∣A; x; t∼Normal ∑
p

q¼1
xtqAilq; t

�1
il

 !

where Ailq controls the effect of the qth latent factor on attribute l of
node i. While increasing the number of independent observations T
can only help us constrain the factor loadings A, collecting data about
additional attributes provides fundamentally new information.
Provided that the community assignments for the Gaussian mixture
model are shared across the factor loadings of different attributes, we
would be able to assign nodes to the correct community even if the
Hoffmann et al., Sci. Adv. 2020;6 : eaav1478 24 January 2020
components are not resolvable independently, i.e., h≪ 1, as discussed
in the simulation study, similar to the enhanced detectability of fixed
communities in temporal (57) and multilayer (58) networks.

Here, we have considered the setting in which the community
structure of the network is assumed to be constant over time. Another
avenue for future workmay be adapting themodel to investigate if and
when changes occur in the underlying community structure (59).

Last, this work provides a new perspective on how to perform
network-based measurements in empirical systems where edges are
not observed. This opens the way to other end-to-end methods for,
e.g., estimating centrality measures or motifs in complex dynamical
systems.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/4/eaav1478/DC1
Appendix A. Exponential family distributions
Appendix B. Update rules for variational inference
Appendix C. Comparison against PCA and k-means with known K
Appendix D. Community assignments using the method of Fenn et al.
Appendix E. Empirical run times
Fig. S1. Recovering communities when the number of communities is known.
Fig. S2. Mean run time for inferring communities from synthetic data with varying number of
latent factors p.
Fig. S3. Mean run time for inferring communities from synthetic data with varying number of
observations T.
Fig. S4. Mean run time for inferring communities from synthetic data with varying number of
network nodes n.
Table S1. Constituents of the S&P100 grouped by inferred community assignment using the
Louvain algorithm applied to a correlation matrix.
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