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A Scalable Strategy for the Identification of
Latent-Variable Graphical Models
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Abstract—In this article, we propose an identification
method for latent-variable graphical models associated
with autoregressive (AR) Gaussian stationary processes.
The identification procedure exploits the approximation of
AR processes through stationary reciprocal processes thus
benefiting of the numerical advantages of dealing with
block-circulant matrices. These advantages become more
and more significant as the order of the process gets large.
We show how the identification can be cast in a regularized
convex program and we present numerical examples that
compares the performances of the proposed method with
the existing ones.

Index Terms—Latent-variable graphical models, maxi-
mum entropy, maximum likelihood, reciprocal processes,
regularization, system identification.

I. INTRODUCTION

GRAPHICAL models for time-series have been introduced
in [1] and [2] and have become an important tool for the

analysis and the identification of stochastic processes: among
the first papers dealing with these issues, we mention [3], [4];
in [5], complexity criteria for selecting the best graphical model
have been introduced; a Bayesian point of view has been dis-
cussed in [6]. These models provide a graphical representation
of the conditional independence relations among the process’
components, thus highlighting the interdependence among such
components. As a consequence, graphical models may be used
to uncover the topological structure of the system generating the
observed data. Observe that the smaller is the number of edges of
a graphical model the richer is the information provided by the
model on the structure of the system (in the extreme case when
the graph is full, it does not provide any information and does not
uncover any structure). In other words, sparse graphs correspond
to parsimonious models. It may happen, however, that most
of the components of the graph are genuinely interconnected
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thus corresponding to a graph that is almost full and hence
essentially uninformative. This may be due to the fact that the
data structure is based on the presence of a few latent (i.e.,
unobserved) variables that explain most of the interdependence
among the process components. Thus, by taking into account
the presence of latent variables we may unveil a whole hidden
structure in the system. A simple example is that of the elec-
trical power consumption of each of the houses in a certain
city. It may happen that the strong correlation among all the
components is mostly explained by a common correlation with
a single unobserved variable such as the external temperature.
Graphical models containing also nodes accounting for the
effect of the latent variables are called latent-variable graphical
models [7], [8].

In this article, we consider the problem of identification
of latent-variable graphical models associated with Gaussian
autoregressive (AR) processes. This problem, first consid-
ered in [8], was effectively solved in [9] by using the al-
ternating direction methods of multipliers (ADMM). Never-
theless, that procedure involves matrix inversions and eigen-
value decompositions which do not scale well with the process
dimension.

The purpose of this article is to propose an alternative iden-
tification method addressing the numerical complexity of high-
order AR processes in latent-variable graphical models. This
is achieved by using reciprocal processes (see [10], [11] for the
general case and [12] for the stationary framework) which, under
suitable conditions, well approximate AR processes [13]. The
advantage of reciprocal approximation is that the processes are
represented by circulant matrices (see [14] and [15]) with the
consequent substantial reduction in computational complexity;
see also the extensions to the multidimensional case [16], [17],
and to the multivariate case [18], [19]. We define a latent-variable
graphical structure for reciprocal processes and propose a new
identification paradigm in this setting. We also provide a solid
argument to justify this paradigm. Some preliminary results
in the direction of the proposed paradigm have been obtained
in [20]. In that paper, we addressed the identification of graphical
models of an observed process with no latent variables. On one
hand, this case is much simpler (we just model what we observe)
and, on the other, it lacks the possibility to capture the structure
induced by the presence of hidden variables that, as previously
discussed, can provide a much more interesting model. For more
details on the importance of latent variables and their advantages
in providing useful models we refer to [21].

The main contributions of this article are the following.
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1) We establish a new identification paradigm and provide
a conceptual argument to show that it relies on both
maximum likelihood and maximum entropy principles.

2) We develop the variational analysis of the corresponding
optimization problem and prove existence and uniqueness
of the solution.

3) We derive an explicit ADMM scheme for the numerical
solution of the problem.

4) We provide numerical simulations with a comparison of
the ADMM schemes proposed in this article and in [9].
The experiments confirm the following two advantages—
expected from the fact that we are working with symmet-
ric, circulant matrices—of our scheme. a) Our algorithm
is scalable with respect to the order and the dimension of
the AR process, and thus, when such parameters increase,
it outperforms the existing one. b) Our algorithm is more
robust and stable in that, for high-dimensional instances,
the ADMM scheme in [9] fails to converge due to numer-
ical instability. On the contrary, our scheme does indeed
converge.

The remainder of the article is organized as follows. In
Section II, we set the notation and we recall the fundamental
results used throughout the article. In Section II-A, we intro-
duce reciprocal processes and we explain how they are related
to AR processes. Latent-variable graphical models associated
with reciprocal processes are defined in Section III while, in
Section IV, we propose a convex optimization problem for their
identification. Section V is devoted to the ADMM formulation
of the optimization problem then used in Section VI to validate
the proposed approach through numerical experiments. Finally,
in Section VII, we draw the conclusion.

II. NOTATION AND BACKGROUND

We denote by T := {eiθ : θ ∈ [−π, π]} the unit circle in
C. For (matrix-valued) functions defined on T, we omit the
dependence on θ when it is clear from the context. With rank(G)
we denote the rank of the matrix G or its normal rank if G is a
matrix function defined on T. Given a matrix G, G� denotes its
transpose, G∗ its transpose-conjugate and ker(G) its kernel. If
G is a square matrix, we denote by diag(G) the vector whose
entries are the diagonal elements of G, while tr(G), det(G)
and G−1 denote the trace, the determinant and the inverse of G,
respectively. G > 0 and G ≥ 0 denote that G is positive definite
and, respectively, positive semidefinite. Ip is the identity matrix
of order p. We denote by Hp the space of square integrable
coercive functions on the unit circle taking values in the space
of p× p Hermitian matrices. For any F ∈ Hp,

∫
F denotes

the integral of F over [−π, π] with respect to the normalized
Lebesgue measure on T.

Given (x1, x2) ⊂ (a, b) ⊂ R, we denote with (x1, x2)
c the

complement set of (x1, x2) in (a, b). E[·] denotes the expectation
operator. We consider AR processes and periodic reciprocal
processes: both are assumed to be zero-mean; n denotes the
order of the AR process and N the period of the reciprocal
process. It is always assumed that N > 2n and that N is an even
number (the case of N odd is similar). We define the vector

space C ⊂ R
mN×mN of the (real) symmetric, block-circulant

matrices C = circ{C0, C1, . . . , CN
2 −1, CN

2
, C�

N
2 −1

, . . . , C�
1 },

whose first block-column is composed by the m×m blocks
C0, C1, . . . , CN

2 −1, CN
2
, C�

N
2 −1

, . . . , C�
1 . The space C is en-

dowed with the inner product 〈C,D〉C := tr(C�D). The sym-
bol of C ∈ C is defined as the m×m pseudo-polynomial

Υ(ζ) :=

N−1∑
k=0

Ck ζ
−k, with ζ := ei

2π
N and Ck

= C�
N−k for k >

N

2
. (1)

We recall that circulant matrices are diagonalized by Fourier
matrices (see e.g., [22, p. 6]) i.e.,

C = F∗diag
{
Υ(ζ0), Υ(ζ1), . . . , Υ(ζN−1)

}
F (2)

where F is the (Fourier) unitary N ×N block-matrix whose
block in block-row of order h+ 1, h = 0, . . . , N − 1, and
block-column of order k + 1, k = 0, . . . , N − 1 is ζ−h·kI .

We define the subspace B ⊆ C (with the same inner product)
of symmetric, banded block-circulant mN ×mN matrices of
bandwidth n, containing the matrices of the form

B = circ{B0, B1, . . . , Bn, 0, . . . , 0, B
�
n , . . . , B

�
1 }. (3)

Note that, according to definition (1), the symbol of
B ∈ B is Ψ(ζ) =

∑n
k=−n Bk ζ

−k, with B−k = B�
k .

The projection operator PB : C → B is defined as
PB(C) := circ{C0, C1, . . . , Cn, 0, . . . , 0, C

�
n , . . . , C

�
1 }.

Given Ω = {(i, j) : i, j = 1, . . . ,m}, the projection operator
PΩ : C → C is defined such that PΩ(C) is a block-circulant
matrix whose blocks have support Ω.

A. AR Processes and Their Reciprocal Approximation

In this section, we recall some facts about periodic Gaussian
reciprocal processes, about their identification based on maxi-
mum entropy principle, and about their relation to AR processes.

Let {y(k), k = 1, 2, . . . , N} be an m-dimensional
Gaussian stationary stochastic process defined on
a finite interval [1, N ]. For k = 1, . . . , N , we have
y(k) := [y1(k) . . . ym(k)]� ∈ R

m, therefore the pro-
cess is completely characterized by the random vector
y := [y1(1) . . . ym(1) . . . . . . y1(N) . . . ym(N)]� ∈ R

mN .
In [13], it is proved that y is a restriction of a wide-sense
stationary periodic process of period N defined on the
whole integer line Z if and only if the mN ×mN
covariance matrix Σ of y is symmetric block-circulant: Σ =
circ{Σ0,Σ1, . . . ,ΣN

2
, . . . ,Σ�

1 }, where Σi−j := E[y(i)y(j)�],
i, j = 1, . . . , N , are the covariance lags of the process so that
Σk = Σ�

N−k for k > N/2. A particular class of stationary
periodic processes is represented by reciprocal processes.

Definition 1: y is a reciprocal process of order n on [1, N ]
if, for all t1, t2 ∈ [1, N ], the random variables of the process in
the interval (t1, t2) ⊂ [1, N ] are conditionally independent from
the random variables in (t1, t2)

c, given the 2n boundary values
y(t1 − n+ 1), . . . ,y(t1),y(t2), . . . ,y(t2 + n− 1), where the
sums t− k and t+ k are understood to be modulo N .
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The following result has been proved in [13, Th. 3.3]:
Theorem 1: A nonsingular mN ×mN -dimensional matrix

Σ is the covariance matrix of a periodic reciprocal process of
order n if and only if Σ−1 ∈ B.

As detailed in [13], given the estimates Σ̂0 . . . Σ̂n of the first
n+ 1 covariance lags of the reciprocal process, the covariance
Σy of the the maximum entropy reciprocal process with such
covariance lags is obtained by solving the dual problem

argmin
X∈B

− log detX+ 〈X, Σ̂〉C

subject to X > 0 (4)

where Σ̂ := circ{Σ̂0, Σ̂1, . . . , Σ̂n, 0, . . . , 0, Σ̂
�
n , . . . , Σ̂

�
1 } ∈ B.

The solution to (4) is Σ−1
y .

Next we recall how reciprocal processes can be seen as an
approximation of AR processes. Let y := {y(t) : t ∈ Z} be an
m-dimensional, AR, full-rank, Gaussian wide-sense stationary
process of order n

n∑
k=0

Bk y(t− k) = e(t), e(t) ∼ N(0, Im), t ∈ Z (5)

and let Rk := E[y(t)y(t− k)�], k ∈ Z, be its kth covariance
lag. The spectrum of y is

Φ(eiθ) =
∞∑

k=−∞
Rk e

−iθk, R−k = R�
k , θ ∈ [−π, π]. (6)

This spectrum is associated with an infinite block-Toeplitz co-
variance matrix whose first block-row is [R0 R1 . . . ]. Given
the estimates R̂0, . . . , R̂n of the first n+ 1 covariance lags,
Burg in [23] proposed a method to obtain the maximum en-
tropy extension of the sequence, i.e., the maximum entropy
block-Toeplitz infinite covariance matrix. This problem has been
extensively studied and generalized in the recent years: the max-
imum entropy estimator, indeed, belongs to a class of tunable
high estimators proposed in [24] and [25]; the latter has been
extended to the multivariate [26]–[28] and the multidimensional
case [16], [29]; moreover, all those estimators can be seen in a
unified way by means of the beta and tau divergence family [30],
[31]; it is also worth noting that some of those paradigms have
been also extended to the case in which cepstral matching is
needed [32], moreover, it has been proved the convergence of a
nonlinear mapping used to compute the optimal estimator [33].
We recall that, Toeplitz matrices of sufficiently large size can be
approximated arbitrarily well by circulant matrices [34, Lemma
4.2]. This means that the AR model, specified by the Toeplitz
matrix, can be approximated by the reciprocal model, specified
by the block-circulant covariance matrix, see [13] for further
details. In view of [14, Th. 3.1], for N sufficiently large, we
conclude that the reciprocal process associated with the solution
of (4) can be interpreted as an approximation of the AR process
solution of the Burg’s problem.

The reciprocal approximation has also an interesting interpre-
tation in the frequency domain. Indeed, it corresponds to sample
the spectrum (6) of the AR process y over the interval [−π, π],
with sample period 2π/N , thus obtaining the symbol of the

covariance matrix of the corresponding reciprocal process

Φ(ζ) =

N−1∑
k=0

Σk ζ
−k, Σk = Σ�

N−k for k >
N

2
.

Notice that, being an approximation, in general Σk 
= Rk. They
will match as N → ∞, see [20] for more details about the
frequency-domain interpretation of the reciprocal approxima-
tion of AR processes.

Remark 1: The estimation techniques based on matching
some covariance lags (or some moments) such as the one pro-
posed by Burg and the one in this article, may be viewed as an
alternative to the spectral methods based on the periodogram.
The advantage of the former is that, in general, they perform
much better than the latter in terms of spectral resolution.

III. LATENT-VARIABLE RECIPROCAL GRAPHICAL MODELS

The aim of this section is to define latent-variable graphical
models for Gaussian reciprocal processes and to establish the
corresponding algebraic conditions on the associated covariance
matrix. We start by recalling the concept of graphical model of
a Gaussian random vector.

The graphical model associated with a Gaussian random
vector z is an undirected graphG = (V,E) constructed by taking
V = {z1, . . . ,zm}, where zi are the components of z, and
selecting the edges E ⊂ V × V by stipulating that an edge is
not present between nodes zi and zj if and only if zi and zj

are conditionally independent given all the other zk, k 
= i, j.
By recalling that this happens if and only if the entry in position
(i, j) of the inverse of the covariance matrix Σ of z vanishes, we
have the following relations:

(zi, zj) /∈ E ⇐⇒ zi ⊥ zj | {zk}k 
=i,j ⇐⇒ (Σ−1)ij = 0.
(7)

Hence, the graph G associated with z is completely determined
by the sparsity pattern of the inverse covariance matrix Σ−1,
see [35] for further details.

If z is a random process defined on the interval [1, N ] (hence,
in particular, if z is a reciprocal process) the corresponding
graphical model is defined similarly by taking again V =
{z1, . . . , zm}, where zi := [zi(1) . . . zi(N)]�, i = 1, . . . ,m,
are the components of z, and defining E ⊂ V × V by the rule

(zi, zj) /∈ E ⇐⇒ ∀t1, t2 = 1, . . . , N, zi(t1) ⊥ zj(t2) |
{zk}k 
=i,j . (8)

The aim of this section is to establish the counterpart of the
last equivalence in (7) for latent-variable graphical models in
the reciprocal processes setting. This will be crucial for the
mathematical formulation of our identification problem. To this
end let

z := [y� x�]� (9)

be a Gaussian, periodic, reciprocal process of order n defined on
the interval [1, N ], where y plays the role of the m-dimensional
observed process and x is the l-dimensional latent process,
respectively. The covariance matrix Σz of z and its inverse can
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be partitioned as

Σz =

[
Σy Σyx

Σ�
yx Σx

]
, Σ−1

z =

[
S A
A� R

]
(10)

where Σy ∈ C and Σx ∈ Cl are the covariance matrices of
y and x, respectively. Here, Cl denotes the vector space of
block-circulant, symmetric matrices as C, except that the blocks
have dimension l × l. By considering the Schur complement,
we obtain the relation

Σ−1
y = S− L (11)

where S > 0 and L ≥ 0 is defined as L := AR−1 A�. In order
to ensure that, according to Theorem 1, Σ−1

y ∈ B we assume
both S ∈ B and L ∈ B, e.g.,

S = circ{S0, S1, . . . , Sn, 0, . . . , 0, S
�
n , . . . , S

�
1 }. (12)

By construction, the matrix L has rank equal to the num-
ber of latent variables l, therefore under the assumption that
l � m, it is a low-rank matrix. It remains to show that an
appropriate sparsity pattern of S reflects that the dependence
relations among observed variables are mostly through the few
latent variables. For this purpose, let yi := [yi(1) . . .yi(N)]�,
i = 1, . . . ,m, be the ith component of the process y and let
xj := [xj(1) . . .xj(N)]�, j = 1, . . . , l, be the jth component
of the process x. Although the components of the reciprocal
processes are defined for any k ∈ Z, by periodicity it is sufficient
to impose conditional independence only for k ∈ [1, N ]. Let
Ω ⊆ {(i, j) : i, j = 1, . . . , m} be the common support of the
blocks S0, S1, . . . , Sn of S, namely

Ωc := {(i, j) : (Sk)ij = (Sk)ji = 0, ∀k = 0, . . . , n}.
(13)

Notice thatΩ contains all the pairs (i, i), i = 1, . . . ,m, because
of the positivity of S.

The following crucial result establishes the equivalence be-
tween the sparsity pattern of S, intended as in (13), and the
conditional independence relations among observed and latent
variables. It may be viewed as the equivalent, in the latent-
variable reciprocal setting, of the last equivalence in (7).

Proposition 1: Let E be the set of edges of the graphical
model associated with the process z defined in (9). Then

(yi,yj) 
∈ E ⇐⇒ (i, j) ∈ Ωc (14)

with Ωc defined in (13).
Proof: By the conditional independence characterization (7),

(i, j) ∈ Ωc if and only if

∀t1, t2 ∈ [1, N ],yi(t1)⊥yj(t2) | {x,yh,yi(s1),yj(s2) : h 
= i, j

s1 
= t1, s2 
= t2, }.
(15)

We need to show that this is equivalent to

∀t1, t2 ∈ [1, N ], yi(t1) ⊥ yj(t2) | {x,yh : h 
= i, j}. (16)

The proof exploits basic results of the theory of Hilbert spaces
of second-order random variables, see for instance [36, Ch. 2].

First of all,

ε :=

[
εi

εj

]
=

[
yi

yj

]

− E

[[
yi

yj

] ∣∣∣∣ yh(s), h 
= i, j, s = 1, . . . , N,x

]

be the error affecting the projection of [y�
i y�

j ]
� onto the sub-

space generated by {yh(s), h 
= i, j, s = 1, . . . , N,x}, for any
t1, t2 ∈ [1, N ] and for any (i, j) ∈ Ωc. It can be showed that ε
is a zero-mean, Gaussian, random vector. Accordingly, proving
(16) is equivalent to prove that

E
[
εi ε

�
j

]
= 0 ⇐⇒ εi(t1) ⊥ εj(t2) (17)

for any t1, t2 ∈ [1, N ] and for any (i, j) ∈ Ωc, [36]. Let now Π
be a permutation matrix that permutes the rows of z = [y� x�]�

in order to obtain

z̄ := Π z =

⎡
⎢⎢⎣

yi

yj

yh 
=i,j

x

⎤
⎥⎥⎦ =

[
z̄1
z̄2

]

where yh 
=i,j is the vector containing the random variables
yh(s), h 
= i, j, s = 1, . . . , N . We partition the covariance ma-
trix Σz̄ of z̄ as

Σz̄ =

[
Σz̄1

Σz̄1z̄2

Σz̄2z̄1
Σz̄2

]
where Σz̄1

and Σz̄2
are the covariance matrices of z̄1 and z̄2,

respectively. It is well known that its inverse can be partitioned
conformably as

Σ−1
z̄ = ΠΣ−1

z Π� =

[
S̄ ∗
∗ ∗

]

where S̄ := (Σz̄1
−Σz̄1z̄2

Σ−1
z̄2
Σz̄2z̄1

)−1 is a permuted version
of matrix S, according to the permutation matrix Π. By con-
struction, the Schur complement formula applied on Σz̄ gives

Σε = Σz̄1
−Σz̄1z̄2

Σ−1
z̄2
Σz̄2z̄1

= S̄−1 (18)

that relates the covariance matrix Σε of the projection error ε to
the covariance matrix Σz̄ of z̄. Condition (13) is equivalent to
say that S̄, and therefore S̄−1, is block-diagonal. Accordingly,
by (18), Σε is block-diagonal, i.e., εi and εj are independent,
which is equivalent to (17) as we wanted to prove.

We refer to (11), together with the group-sparsity (13) and
rank(L) � m, as sparse plus low-rank decomposition of Σ−1

y .
The latter is the reciprocal-processes analogous of the inverse
spectrum decomposition that holds for AR processes: a sum-
mary of the classical results on latent-variable graphical models
describing AR Gaussian processes can be found in Appendix A.

Thanks to Proposition 1, we can conclude that Σ−1
z in (10)

together with (13) define an undirected graph for the Gaussian
random vector z which admits a two-layer structure.

1) The nodes in the upper-layer represent the l variables
of the latent-process x1, . . . ,xl while the nodes in the
bottom-layer represent the m variables of the observed
process y1, . . . ,ym.
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Fig. 1. Example of a latent-variable graphical model: x1, x2 are the
latent-variables and y1,y2, . . . ,y7 are the manifest variables.

2) The edges are given by the entries of the concentration
matrix Σ−1

z . In particular, the edge (i, j), between two
vectors yi and yj , i 
= j, is described by

[(S0)ij (S1)ij . . . (Sn)ij 0 . . . 0 (Sn)ji . . . (S1)ji] .

Example 1: Consider the case in whichN = 2,m = 7, l = 2,
and suppose that the graphical model associated with the vector
z is the one depicted in Fig. 1 . In this case, the concentration
matrix of vector z has the structure (10) with

S =

[
S0 S�

1

S1 S0

]
, S0, S1 ∈ R

7×7

and R is a 2× 2 matrix. The presence of an edge between y2

and y4 implies that at least one of the two elements (S0)24 and
(S1)24 is different from zero. Similar arguments hold for the
edge between y5 and y6. Thus, Ω = {(i, i) : i = 1, . . . , 7} ∪
{(2, 4), (5, 6)}.

IV. IDENTIFICATION OF LATENT-VARIABLE RECIPROCAL

GRAPHICAL MODELS

In this section, we propose a procedure for the identification of
latent-variable reciprocal graphical models from data generated
by latent-variable AR graphical models. Therefore, the identified
model must be understood as an approximation of the true
generating model. The idea is to consider a regularized version
of Problem (4). The regularization term, which is derived by
leveraging on condition (11) and Proposition 1, induces the
solution with a structure of a latent-variable reciprocal graphical
model. Although the regularized problem provides a solution
with the desired properties, there may exist several such models,
each being a solution corresponding to a different cost function.
The selection of a particular solution is, so far, mainly based on
heuristic arguments. In Section IV-A, we show that maximum
entropy and maximum likelihood principles are actually in-
grained in the chosen selection rule, thus providing foundations
for our choice.

Consider an m-dimensional AR Gaussian process y. Assume
that T observations y(1), . . . , y(T ) are available, and let

R̂k =
1

T

T∑
t=k

y(t)y(t− k)�, k = 0, 1, . . . , n. (19)

We assume that

Σ̂y := circ{R̂0, R̂1, . . . , R̂n, 0, . . . , 0, R̂
�
n , . . . , R̂

�
1 } (20)

is positive definite. In the case that Σ̂y is not positive definite,
we can consider a positive definite banded block-circulant ma-
trix sufficiently close to Σ̂y obtained by solving a structured
covariance estimation problem, see [37], [38].

Recalling that a latent-variable graphical model of a reciprocal
process is characterized by (11), we can formulate the following
identification problem.

Problem 1: Set Σk := R̂k, k = 0, 1, . . . , n, with R̂k

given by (19). Compute the blocks Σn+1, . . . ,ΣN
2

of the block-circulant covariance matrix Σy =
circ{Σ0,Σ1, . . . ,ΣN

2 −1,ΣN
2
,Σ�

N
2 −1

, . . . ,Σ�
1 } such that

Σ−1
y = S− L, where S > 0 and L ≥ 0 belong to B with

S0, . . . , Sn having the smallest possible common support Ω, as
in (13), and the rank of L is as small as possible.

We stress the fact that only samples of the observed processes
are available. Clearly, the matrix Σy solving Problem 1 is the
covariance of the reciprocal process y approximating the ob-
served process y. The solution of Problem 1 actually requires the
identification of a reciprocal process which could be achieved,
in principle, by solving the maximum entropy dual problem (4)
recalled in Section II-A. However, the support Ω is not known
in advance, thus it has to be estimated from the data. In order to
do that, we consider the following regularizer proposed in [39]:

h∞(S) =
∑
k>h

max

{
|(S0)hk|, 2 max

j=1,...,n
|(Sj)hk|, 2 max

j=1,...,n
|(Sj)kh|

}
.

In [39], the function h∞(·) was applied to the coefficients of the
power spectral density, while here we apply the same function
to the blocks of S. The reason why this regularizer is expected
to induce the group desired sparsity on S is the same of that
discussed in [39]. The numerical simulations at the end of
the paper confirm this fact. The trace (as a tractable proxy of
the nuclear norm) is used instead for inducing low-rank of L.
Therefore, the paradigm for the estimation of the sparse plus
low-rank decomposition of the concentration matrix Σ−1

y now
directly follows from (4) by setting X = S− L, with L ≥ 0,
and by adding the regularizers just introduced:

argmin
S,L∈B

− log det(S− L) + 〈Σ̂y, S− L〉C

+ λS h∞(S) + λLtr(L)

subject to S− L > 0, L ≥ 0 (21)

where λL, λS > 0 are the two regularization parameters and
Σ̂y is given by (20). Notice that Problem (21) is precisely the
optimization-program form of Problem 1 we want to solve. The
next proposition ensures that Problem 1 does actually admit a
solution. In what follows, we will express Problem (21) in terms
of X := S− L and L.

Proposition 2: The dual of Problem (21) is the constrained
optimization problem

argminZ∈C − log det(Σ̂y + Z)−mN

subject to Σ̂y + Z > 0 (22a)
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λLImN + PB(Z) ≥ 0 (22b)

diag(Zj) = 0, j = 0, . . . , n (22c)

2|(Z0)kh|+
n∑

j=1

|(Zj)kh|+ |(Zj)hk| ≤ λS

N
, k > h.

(22d)

Moreover, if Σ̂y ∈ B and Σ̂y > 0 hold, Problem (21) admits a
solution (So,Lo) where Xo = So − Lo is unique.

Proof: The proof leverages on strong duality between (21)
and its dual. We first prove that the latter has a unique solution
exploiting Lagrange-multipliers theory and then conclude by
establishing the existence of a solution for (21).

More formally, note that Problem (21) is a strictly feasible
convex optimization problem (for instance, pick S = ImN and
L = 0) therefore Slater’s condition, hence strong duality be-
tween (21) and its dual, holds. We start the derivation of the
dual problem by adding an auxiliary variable Y to Problem (21)

argmin
X∈C

Y,L∈B
−log det(X) + tr(Σ̂y X) + λS h∞(Y) + λLtr(L)

subject to X > 0, L ≥ 0

Y = X+ L.
(23)

The Lagrangian function for this problem is

L(X,Y,L,V,Z) = − log det(X) + 〈Σ̂y, X〉C + λS h∞(Y)

+λLtr(L)−〈V, L〉C+〈Z,X+ L−Y〉C
(24)

where V ∈ B, because L ∈ B, and V ≥ 0, while Z ∈ C. After
simple computations we have

L(X,Y,L,V,Z) = − log det(X) + 〈Σ̂y + Z, X〉C
+ 〈λLImN −V + Z, L〉C + λS h∞(Y)− 〈Z, Y〉C.

The dual objective function is the infimum over X, Y, and L
of the Lagrangian. The unique term in L that depends on Y
is λS h∞(Y)− 〈Z, Y〉C. The latter is bounded below if and
only if (22c) and (22d) hold, in which case the infimum is zero.
Accordingly

inf
Y

L=

⎧⎪⎪⎨
⎪⎪⎩

−log det(X)+〈Σ̂y+Z, X〉C+〈λLImN −V + Z, L〉C
if (22c), (22d) hold

−∞ otherwise.

The only term that depends on L is 〈λLImN −V + Z, L〉C.
Recalling that L,V ∈ B, by using the linearity of the projection
operator PB, we have that

〈λLImN −V + Z, L〉C = 〈λLImN −V + PB(Z), L〉C
(25)

which is linear in L, and therefore it is bounded below if and
only if

λLImN −V + PB(Z) = 0. (26)

In this case, the minimum of (25) is zero. Accordingly

inf
Y,L

L =

⎧⎪⎪⎨
⎪⎪⎩

− log det(X) + 〈Σ̂y + Z, X〉C
if (22c), (22d), (26) hold

−∞ otherwise.

If (22c), (22d), (26) hold, it remains to minimize the strictly
convex function

L̄(X) := inf
Y,L

L = − log det(X) + 〈Σ̂y + Z, X〉C
over the cone of the symmetric, positive definite, banded block-
circulant matrices. Observe that, for any Z ∈ C, any Σ̂y ∈ B,
and for any sequence Xk > 0 converging to a singular matrix

lim
k→∞

L̄(Xk) = ∞.

Accordingly, we can assume that the solution lies in the interior
of the cone. A necessary and sufficient condition for Xo to be a
minimum point for L̄ is therefore that its first Gateaux derivative
computed at X = Xo is equal to zero in every direction δX,
namely

δL̄(Xo; δX)=tr
[(

−X−1
o + Σ̂y + Z

)
δX

]
=0 ∀ δX ∈ C.

(27)
Notice that L̄ is bounded below if and only if (22a) holds, there-
fore condition (27) is satisfied if and only if Xo = (Σ̂y + Z)−1.
Hence

inf
Y,L,X

L =

⎧⎪⎪⎨
⎪⎪⎩

log det(Σ̂y + Z) +mN
if (22c), (22d), (26), (22a) hold

−∞ otherwise.

Therefore, the dual problem of (21) is

argminV∈B,Z∈C − log det(Σ̂y + Z)−mN

subject to V ≥ 0, (22c), (22d), (26), (22a). (28)

Notice that we can remove the variable V. Indeed, recalling that
V ≥ 0, the constraint (26) becomes λLImN + PB(Z) = V ≥
0, and the dual problem takes precisely the form (22) as we
wanted to show.

We now prove that Problem (22) admits indeed a unique
solution provided that Σ̂y ∈ B and Σ̂y > 0. To this end, define
f(Z) := log det(Σ̂y + Z) and let

Q := {Z ∈ C | (22c), (22d), (22a) and λLImN + PB(Z)

≥ 0 hold}
be the set of constraints of Problem (22). First of all, notice that
constraints (22c) and (22d) ensure that Q is a bounded subset of
C. Indeed, the entries of any Z ∈ Q are bounded by λS/N so
that ‖Z‖C < ∞ for any Z ∈ Q. Let now (Z(k))k∈N be a generic
sequence of elements of Q converging to some Z̄ ∈ C, such that
Σ̂y + Z̄ ≥ 0 is singular. Then

lim
k→∞

− log det(Σ̂y + Z(k)) = +∞

and therefore Z(k) is not an infimizing sequence. Hence, we can
restrict the research of the minimum to the closed subset of Q
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defined by

Q̄ := {Z ∈ C | Σ̂y + Z ≥ εImN , (22c), (22d)

and λLImN + PB(Z) ≥ 0 hold}
with ε > 0 small enough. By what we have showed till now, the
function f is continuous on the compact set Q̄ and therefore it
admits at least one minimum point. Since f is strictly convex,
the minimum is also unique.

The strong duality between problems (21) and (22) and
the existence of a unique optimum Zo for the dual problem
(22), imply that there exists a unique Xo ∈ B so that Xo =
(Σ̂y + Zo)

−1 which solves the primal problem (21). It remains
to show that there exists an Lo ∈ B that solves the optimization
problem

argmin
L∈B

λS h∞(Xo + L) + λLtr(L)

subject to L ≥ 0. (29)

The objective function in (29) is continuous and since L = 0 is
a feasible point, the problem is equivalent to find L ∈ B that
minimizes λS h∞(Xo + L) + λLtr(L) over the set

K :=

{
L ∈ B

∣∣∣∣L ≥ 0, λS h∞(Xo + L) + λLtr(L)

≤ λS h∞(Xo)} .
It is easy to see that K is a closed and bounded (thus compact)
subset of B. Hence, by Weierstrass’ Theorem, Problem (29)
admits a solution Lo. At this point, we can conclude that the
primal problem (21) admits a solution (So, Lo).

As a concluding remark, observe that the regularized problem
used to identify a latent-variable AR graphical model relies on
the sparse plus low-rank decomposition of the inverse of the
observed process’ spectrum (see Appendix A)

argmin
Γ,Λ∈Qm,n

∫
− log det(Γ− Λ) + 〈Γ− Λ, Φ̂y〉

+ γS φ1(Γ) + γL φ∗(Λ)

subject to Γ− Λ > 0

Λ ≥ 0. (30)

Here, the domain of the optimization is the family of ma-
trix pseudo-polynomials Qm,n := {∑n

k=−n Qk e
iθk, Q−k =

Q�
k ∈ R

m×m} while γS , γL > 0 are the regularization param-
eters that balance the effects of the two regularizers φ1 and
φ∗ inducing sparsity and low-rank of Γ and Λ, respectively.
Being

Φ̂(eiθ) =
n∑

k=−n

R̂k e
−iθk, R̂−k = R̂�

k (31)

the truncated periodogram of the observed process y, we con-
clude that Problem (21) is the reciprocal counterpart of Problem
(30) considered in [8].

A. Foundations of Problem (21)

Next, we show how Problem (21) can be viewed both as
a regularized maximum-likelihood problem and as a relaxed
version of a maximum entropy paradigm.

1) Maximum Likelihood: In the following, we show that the
fitting function in (21), i.e.,

− log det(S− L) + tr
(
Σ̂y (S− L)

)
(32)

is the approximation, in the sense explained in Section II-A,
of the (conditional) negative log-likelihood of the AR pro-
cess (5). Following [3], consider the observed AR process y
whose spectrum is denoted by Φy, and suppose that T ob-
servations y(1), . . . , y(T ) of the process are available. The
conditional likelihood of the process y is defined as the like-
lihood function associated with the conditional distribution
of y(n+ 1), y(n+ 2), . . . , y(n+ T ) given y(1), . . . , y(n). Let
Tn := Toepl{R̂0, R̂1 , . . . , R̂n} be the block-Toeplitz matrix
having in the first block-row the estimates of the first n+ 1
covariance lags of the process R̂0, R̂1, . . . , R̂n computed as in
(19). ForT large enough, the conditional negative log-likelihood
function of the AR process can be well approximated by

	(B) := −(T − n) log detB0 +
T − n

2
tr(BTn B

�)

whereB := [B0 B1 · · · Bn] is the (n+ 1)m-dimensional vec-
tor containing the coefficients of the process. Applying Jensen’s
formula, it turns out that

log detB0 =
1

2

∫
log detΦy(e

iθ)

moreover, given the truncated periodogram Φ̂y(e
iθ) defined in

(31), it is easy to see that∫
Φ̂y(e

iθ) eiθk = R̂−k = R̂�
k .

Accordingly, the approximated conditional negative log-
likelihood can be rewritten as

	(B) =
T − n

2

∫
log detΦy(e

iθ) + tr
[
Φ̂y(e

iθ) Φy(e
iθ)−1

]
.

(33)
A natural way to approximate (33) is to approximate the integral
with a finite sum, i.e., to discretize the interval [−π, π]. This
is the frequency interpretation of the reciprocal approximation
explained in Section II-A that consists in sampling the spectrum
of the process to obtain the corresponding symbol. In fact,
considering as sample frequency Δθ = 2π/N , the backward
Euler approximation leads to the discrete approximation

	(B)� T − n

2

Δθ

2π

N−1∑
k=0

log detΦy(e
iθk)

+tr
[
Φ̂y(e

iθk)Φy(e
iθk)−1

]
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where θk = kΔθ − π. The conditional log-likelihood can now
be rewritten in terms of symbols as

	(B)� T − n

2˜N

[
N−1∑
k=0

log detΦy(ζ
k)+tr

N−1∑
k=0

Φ̂y(ζ
k)Φy(ζ

k)−1

]
.

Observe now that Φy(ζ) is precisely the symbol of the block-
circulant covariance matrix Σy of the reciprocal process y

approximating the process y and Φ̂y(ζ) is the symbol of the
block-circulant matrix Σ̂y in Problem (21). Accordingly, from
(2), it follows that

	(B) � T − n

2˜N

[
− log detΣ−1

y + tr
(
Σ̂y Σ

−1
y

)]
.

Since Σ−1
y = S− L, this is precisely (up to a scaling factor)

equal to (32).
2) Maximum Entropy: We now show that Problem (21)

can be interpreted as a relaxed version of a maximum en-
tropy problem for latent-variable reciprocal graphical models.
Consider the regularized solution (So, Lo) of (21) and let
Ω be the support of So, i.e., So satisfies (13). Since Lo ∈
B is so that Lo ≥ 0 and rankLo = lN � mN , there exists
G = circ{G0, G1, . . . , Gn, 0, . . . , 0} such that Gk ∈ R

m×l and
Lo = G�G. Accordingly, we can consider a modified version
of Problem (21) where the regularizers are replaced by the
corresponding hard-constraints S ∈ VΩ and L ∈ VG, where
VΩ := {S ∈ C : PΩc(S) = 0} and VG := {G�(IN ⊗H)G :
H ∈ R

l×l, H = H�} is such that VG ⊆ B. The resulting prob-
lem is

argmin
S,L∈B

− log det(S− L) + 〈Σ̂y, S− L〉C

subject to S− L > 0, L ≥ 0

S ∈ VΩ, L ∈ VG. (34)

The next proposition proves that the primal formulation of
the sharp-constrained version of Problem (21) stated in (34)
is indeed a maximimum entropy problem for latent variable
reciprocal graphical models.

Proposition 3: The primal of Problem (34) is

argmax
Σy∈C

log detΣy

subject to PΩPB(Σy − Σ̂y) = 0

E∗ G(Σy − Σ̂y)G
�E ≥ 0 (35)

where E∗ := 1√
N
[Il 0 · · · 0].

Proof: We derive the dual of Problem (35). Observing that
E = F∗1 where 1 := 1√

N
[Il Il · · · Il]

�, the Lagrangian of
Problem (35) writes as

L(Σy,W, H) = log detΣy + 〈PΩ∪B(Σ̂y −Σy), W〉C
+ 〈1�FG(Σy − Σ̂y)G

�F∗1, H〉C

where W ∈ C, H ∈ R
l×l is a positive semidefinite symmetric

matrix, and PΩ∪B(S) = PΩPB(S). The last term of the La-
grangian can be rewritten as

tr
[
F(Σy − Σ̂y)F

∗ FG�F∗1H1� FGF∗
]

= tr
[
F(Σy − Σ̂y)F

∗ FG�F∗(IN ⊗H) FGF∗
]

= tr
[
(Σy − Σ̂y) G

�(IN ⊗H)G
]

where we have exploited the fact that F(Σy − Σ̂y)F
∗ and

FGF∗ are block-diagonal matrices and the fact that F∗(IN ⊗
H)F = IN ⊗H . Accordingly

L(Σy,W, H) = log detΣy + 〈Σ̂y −Σy, PΩ∪B(W)〉C
+ 〈Σy − Σ̂y, G�(IN ⊗H)G〉C

= log detΣy + 〈Σ̂y −Σy, S− L〉C
where S := PΩ∪B(W) belongs to VΩ and L := G�(IN ⊗
H)G ≥ 0 belongs to VG ⊆ B, i.e., they satisfy all the con-
straints in (34).

Similar arguments as the one used to prove formula (27), allow
us to assert that a necessary and sufficient condition for Σo to
be a minimum point for L is that its first Gateaux derivative
computed at Σy = Σo is equal to zero in every direction δΣ,
namely

δL(Σo; δΣ) = tr
[(
Σ−1

o − S+ L
)
δΣ

]
= 0 ∀ δΣ ∈ C.

By assumption S− L > 0 thus the substitution of the optimum
Σo = (S− L)−1 in the Lagrangian L leads precisely to the
objective function in (34).

Some observations on the two constraints of (35) are in
order. The first constraint PΩPB(Σy − Σ̂y) = 0fixes the entries
corresponding to the indexes in Ω of the first n+ 1 lags of the
reciprocal process. For the second constraint, letΨ(ζ) andΦy(ζ)
be the symbols of G and Σy, respectively. By (2), we have that

E∗ GΣy G
�E =

1

N

N−1∑
k=0

Ψ(ζk) Φy(ζ
k)Ψ(ζk)∗ (36)

which is the covariance of the output of the l ×m filter Ψ(ζ) =∑n
k=0 Gk ζ

−k fed with the reciprocal process y. Accordingly,
the second constraint in (35) states that the covariance matrix
of the process at the output of the filter is lower bounded by
E∗ GΣ̂y G

�E. We conclude that Problem (35) can be seen
as the reciprocal counterpart of the maximum entropy problem
considered in [8]

argmaxΦy∈Sm

∫
log detΦy

subject to

(∫
eiθk Φy − R̂k

)
pq

= 0, k=0,1,...,n
(p,q)∈Ω

∫
Ψ(Φy − Φ̂y)Ψ

∗ ≥ 0 (37)
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where Ψ(eiθ) =
∑n

k=0 Gk e
−iθk and Sm = {F ∈ Hp : F −

α Ip ≥ 0 a.e. on T, for some α > 0}. Indeed, the second con-
straint in (37) can be approximated with the backward Euler
approximation with sample frequency Δθ = 2π/N obtaining
(36).

V. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

In this section, we address the numerical solution of Problem
(22) through an ADMM algorithm [40]. We outline the deriva-
tion of the ADMM updates for the solution of (22) referring to
Appendix B for further details.

The joint enforcement of the constraints (22c), (22d), and
λL ImN + PB(Z) ≥ 0 in solving Problem (22), might be a diffi-
cult requirement. In the following, we show how such constraints
can be decoupled and enforced in an alternating way. First of all
observe that, by defining the variable P := λLImN + PB(Z),
Problem (22) rewrites as

argmin
Z,P∈C

− log det(Σ̂y + Z)−mN

subject to (22c), (22d)

P = λLImN + PB(Z)

P ≥ 0 (38)

where the domain Σ̂y + Z > 0of the objective function has been
omitted, since it is checked in the stepsize-choice stage of the
algorithm. Notice that Problem (38) is convex by construction,
being the (minimization form of the) dual of Problem (21). The
augmented Lagrangian for the problem is

Lρ(Z,P,M) = − log det
(
Σ̂y + Z

)
− 〈M, P− λLImN − PB(Z)〉C
+

ρ

2
‖P− λLImN − PB(Z)‖2C

where ρ > 0 is the penalty term andM ∈ C is the Lagrange mul-
tiplier associated with the equality constraint onP. Accordingly,
the ADMM updates are the following.

1) The Z-minimization step

Zk+1 = argmin
Z∈C

Lρ(Z,P
k,Mk)

subject to Z ∈ Z. (39)

2) The P-minimization step

Pk+1 = argmin
P∈C

Lρ(Z
k+1,P,Mk)

subject to P ≥ 0. (40)

3) Dual variable update

Mk+1 = Mk − ρ
(
Pk+1 − λLImN − PB(Zk+1)

)
(41)

where Z := {Z ∈ C : (22c), (22d)} and we have considered
a constant value of ρ in order simplify the notation. Updates 1)
and 2) are not in an implementable format. The Z-update step

(39) is indeed equivalent to the minimization of

I(Z) := − log det(Σ̂y + Z) +
ρ

2
‖PB(Z)‖2C

+ 〈Mk − ρ (Pk − λLImN ), PB(Z)〉C
over the set Z, which has no closed-form solution as noticed
in [39]. We approximate it with a projective-gradient step:
additional details on the gradient-iteration step can be found
in Appendix B. As for the P-minimization step, we notice that
(40) is equivalent to minimize the functional

J(P) :=
ρ

2
‖P‖2C − 〈P, Mk + ρ

(
λLImN + PB(Zk+1)

)〉C
over all P ≥ 0. Being J a quadratic functional of P, the mini-
mization of J over the whole vector space C admits the closed
form solution

Po =
1

ρ
Mk + λLImN + PB(Zk+1)

which, however, is not going to be positive semidefinite in
general. Accordingly, in order to find an appropriate solution,
we search for the positive semidefinite block-circulant matrix
that better approximates Po in the norm induced by the scalar
product on C (i.e., the Frobenius norm on C). The details of the
derivation of the P-update step are reported in Appendix B.

We conclude that the ADMM for Problem (22) consists in the
following updates:

Zk+1 = PZ

[
Zk − tk ∇I(Zk)

]
Pk+1 = PC+

[
1

ρk
Mk + λLImN + PB(Zk+1)

]

Mk+1 = Mk − ρk
[
Pk+1 − λLImN − PB(Zk+1)

]
(42)

where ∇I(Zk) is the gradient of the cost-function I computed in
Zk, tk is the stepsize founded by the Armijo condition, and PZ

is the projection operator onto the constraints space Z. A typical
update for ρ is ρk+1 = αρk, with α > 1 being a certain growth
coefficient that needs to be properly tuned.

Remark 2: Notice that the matrices involved in (42) are all
symmetric and block-circulant. Accordingly, as mentioned in
Section I, the reciprocal approximation allows to obtain a robust
identification procedure even in the case whenn is large. Indeed,
as detailed, e.g., in [34], we can compute inverse matrices and
eigenvalues in a robust way. Moreover, in view of (2), the di-
mensions of the matrices, whose eigenvalues must be computed
in the optimization procedure, depend only on m. Hence, the
identification algorithm we are proposing scales with respect to
n, gaining robustness in the results even if the order of the AR
process is large.

Following [40], the basic stopping criterium for the algorithm
is based on the primal and dual residuals of the optimality condi-
tions that respectively measure the satisfaction of the inequality
constraint P ≥ 0 and the distance between two successive it-
erates of the variable P. More precisely, the primal residual at
iteration k + 1 is defined as

rk+1 := Pk+1 − λLImN − PB(Zk+1)
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while the dual residual turns out to be

sk+1 := PBc(Mk)− ρk
[
Pk+1 − PB(Pk)

]
.

It is reasonable that the primal and dual residual must be small,
that is

‖rk‖C ≤ εp and ‖sk‖C ≤ εd

where εp > 0 and εd > 0 are feasibility tolerances for the primal
and dual feasibility conditions. The latter are defined as

εp := mN εabs + εrel max
{

λL

√
mN, ‖Zk‖C, ‖Pk‖C

}
εd := mN εabs + εrel ‖Mk‖C.

The intuition behind such definitions goes as follows. The εabs

part of the tolerances is accounting for the dimension of the
problem while the εrel part wants to take into consideration
possible scalings of the constraints. One can employ different
norms in the tolerances by slightly adjusting the definitions of
εp and εd [41]. Here, εabs and εrel are predefined absolute and
relative tolerances for the problem. Accordingly, the algorithm
converges if all the conditions

‖rk‖C ≤ εp, ‖sk‖C ≤ εd, ρk = ρmax (43)

hold true, where ρmax > 0 is the maximum value allowed for the
penalty parameter ρk, selected by the user.

VI. NUMERICAL EXAMPLES

In this section, we compare the performances of our method
to which we will refer to as approximated algorithm with the
method proposed in [8] and [9] for the solution of Problem (30),
which will be referred to as exact algorithm. In particular, we
analyze how the two algorithms behave considering both the
case in which the observed process has low dimension and the
case in which we have a high dimensional observed process. We
remark that [8] and [9] consider the same identification problem
and propose the same solution. The difference is that [9] presents
an ADMM technique to address the numerical implementation
(while the simulations in [8] are implemented in CVX). There-
fore, for the comparison to be fair we compare our method with
the ADMM algorithm and refer just to [9] when speaking about
the exact algorithm.

1) Low-Dimensional Case: Synthetic data are generated
from the AR latent-variable model of order n = 8

y(t) =
n∑

k=1

Ak y(t− k) + η(t) (44)

withm = 20observed variables and l = 1 latent variables. Here,
η(t) is white Gaussian noise with variance E[η(t)�η(t)] =
21.14 and T = 1000 samples have been used to compute the
estimated covariance lags R̂k, k = 0, . . . , n. Fig. 2 (center)
reports the sparsity pattern of the underlying model, randomly
generated so that the nonzero elements represents the 5% of the
total elements.

For the approximated algorithm we have considered N = 30
samples of the spectrum. In both the ADMM implementations,

Fig. 2. Sparsity pattern estimated by the approximated algorithm with
α = 1.007, λS = 95, λL = 5.4 (left), true sparsity pattern (center), spar-
sity pattern estimated by the exact algorithm with α = 1.002, γS =
2.6, γL = 2.95 (right). The red squares indicate the conditional depen-
dent pairs while the white squares indicates the conditional independent
pairs. l̂a, l, and l̂e denote the number of latent variables.

Fig. 3. Supports and ranks estimated by the approximated algorithm
for λS ∈ [60130] and λL ∈ [3, 7.8]. The growth coefficient is set to α =
1.007.

we have set εabs = 10−5, εrel = 10−4 and ρmax = 104. In or-
der to tune the update of the penalty term ρ in the ADMM,
we have ran both the algorithms for different values of the
growth coefficient α ∈ [1.001, 1.1]. More precisely, for each
value of α, a 5× 5 grid of candidate estimated models has been
produced, corresponding to five linearly spaced values of the
regularization parameters λS ∈ [60 130] and λL ∈ [3, 7.8] for
the approximated algorithm, and five linearly spaced values of
γS ∈ [1.42, 2.6] and γL ∈ [2.425, 2.95] for the exact algorithm.
The values of the regularization parameters that identify the grids
have been selected so that the estimated models capture a range
of features as complete as possible: from a very sparse model
with a relatively high rank, to a quasi-full model with the lowest
rank possible. Fig. 3 shows the supports and the ranks estimated
by the approximated algorithm corresponding to the different
values of λS and λL.
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Fig. 4. Logarithm of the average dual residual for the approximated
method (left) and for the exact method (right). The dashed lines corre-
spond to the logarithm of the associated average feasibility tolerances.

For both methods the value of α that gives the better perfor-
mances, i.e., that guarantees the minimum gap between εp / εd

and the primal/dual residual at the final iteration, respectively,
has been selected. Accordingly, we have chosen α = 1.007 for
the approximated algorithm while α = 1.002 has been chosen
for the exact algorithm.

Let s(h) and ε(h) denote the vectors containing the dual
residual and its feasibility tolerance for the model h = 1, . . . , 25
respectively. Fig. 4 displays the (logarithm of the) averages

μs =
1

25

25∑
h=1

s(h), με =
1

25

25∑
h=1

ε(h)

obtained by our method with α = 1.007 (left) and by the exact
method for α = 1.002 (right). For both algorithms, the primal
residual always satisfies the condition in the stopping criterium
(43) therefore there is no need to display it. We observe that the
exact algorithm does not converge for any value of α we have
considered. Indeed, the plot in Fig. 4 (right) clearly shows that
the mean dual-residualμs stays significantly above the threshold
με. The optimal values of the regularization parameters have
then been selected by cross-validation, using a test data set of
500 samples.

Fig. 2 compares the optimal sparsity pattern provided by the
approximated algorithm Ω̂a (left), corresponding to λS = 95
and λL = 5.4, and the optimal sparsity pattern estimated by
the exact algorithm Ω̂e (right) corresponding to γS = 2.6 and
γL = 2.95, together with the estimates of the number of latent
variables, l̂a and l̂e, respectively. Notice that both algorithms
estimates the correct number of latent variables but only the
approximated one produces an estimate of the sparsity pattern
comparable with the true one. Let Φ̂e and Φ̂a be the estimates
of the spectrum Φy (of the observed process) obtained by the
solutions of problems (30) and (21), respectively. The squared-
estimation errors for the two algorithms are depicted in Fig. 5;
the corresponding mean values over [−π, π] are

Ea :=
‖Φy − Φ̂a‖2F

‖Φy‖2F
Ēa :=

∫
Ea(e

iθ) = 0.0358

Ee :=
‖Φy − Φ̂e‖2F

‖Φy‖2F
Ēe :=

∫
Ee(e

iθ) = 0.0443.

Fig. 5. Relative errors in the estimated spectra—approximated algo-
rithm (left), exact algorithm (right).

TABLE I
SUMMARY OF THE PERFORMANCES OF THE TWO ALGORITHMS FOR

λS = 100, 146.25, 350 AND γS = 0.7, 0.826, 1.7

The Values of the Low-Rank Regularization Parameters are λL = 8.6875 for the
Approximated Algorithm (left) and γL = 2.3 for the Exact Algorithm (right). These
Results Have Been Obtained on a 2014 1.4 GHz MacBook Air.

The approximated algorithm performs better both in terms of
the mean value and in terms of the height of the peaks of the
relative error.

Similar results have been obtained by comparing the two
algorithms in the case l = 2.

1) High-Dimensional Case: We consider now an AR
latent-variable model as in (44) where we havem = 80 observed
variables and l = 1 latent variable, n = 24 and the variance of
the noise is E[η(t)�η(t)] = 87.1. The number of samples used
to estimate the covariance lags Rk is T = 15 000. The number
of conditionally dependent pairs in the true model is 158 so
that the cardinality of the true support is |Ω| = 396. Table I
compares the performances of our approximated algorithm with
the exact algorithm proposed in [9] for different values of the
sparsity regularization parameters λS and γS . These parameters
have been chosen for both algorithms in order to sweep the
various possible degrees of sparsity (from almost totally sparse
to almost full) while keeping the same numbers of estimated
latent variables. The notation |Ω− Ω̂| indicates the error on the
sparsity pattern in terms of number of misclassified entries.

The numerical evidence empirically highlights the improve-
ment in scalability obtained from the introduced approximation.
From a more theoretical point of view, a comparison with the
ADMM implementation of the algorithm in [9] goes as follows:
the analogous gradient computation for theZ-update step (which
is the computational bottleneck of the algorithm) has complex-
ity O(m3n3). The circulant approximation allows instead for
a computational complexity of O(mN log(mN)), which is a
drastic improvement especially if we account for the fact that
the period N of the reciprocal process is typically much smaller
than the order n of the corresponding AR process.
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Both algorithms estimate the correct number of latent vari-
ables. While the approximated algorithm gives a result very
close to the true one (highlighted in red in Table I), the exact
algorithm makes a pretty high error in the reconstruction of the
sparsity pattern, even if the cardinality of the true support has
been correctly estimated. This is due to the fact that the higher the
order of the process n is, the lower the accuracy in the computa-
tion of eigenvalues and inverse matrices by the exact algorithm.
Table I shows that such an issue is avoided in the approximated
version, thanks to the availability of closed-form formulas for
the computation of the eigenvalues of block-circulant matrices.
Moreover, we see that the run time of the exact algorithm is
about twice the run time of the approximated one. This confirms
the fact that the approximated algorithm scales with the order
n of the AR process we are approximating, as suggested in
Section IV. This kind of scenario agrees with what we have
discussed in Section IV: high-order AR process are quite chal-
lenging instances for the exact procedure proposed in [9]; in this
case, the reciprocal approximation leads to remarkable benefits
in the performances of the identification procedure.

VII. CONCLUSION

In this article, an identification paradigm for latent-variable
graphical models associated with reciprocal processes has been
presented. It has been showed that the proposed paradigm is
theoretically strongly sustained, being an approximation of the
corresponding problem for AR processes both in a maximum
likelihood and in a maximum entropy sense. The performances
of the proposed method have been compared with the ap-
proach proposed in [9] where no approximation is introduced.
The numerical examples have showed that for high-order AR
processes reciprocal approximation gives substantial improve-
ments in terms of robustness and scalability of the identification
procedure.

APPENDIX A

A. Graphical Models for Gaussian Processes

This Appendix is devoted to recall the basic concepts related
to graphical models and latent-variable graphical models as-
sociated with Gaussian processes, [8]. Let z := {z(t), t ∈ Z},
assumed to be of the form z = [y� x�]� where y is the R

m-
valued process containing the observed variables while x is the
R

l-valued process containing the l latent variables. We assume
z to be a purely nondeterministic, Gaussian, stationary process.
Let Φy denote the spectral density of y. Provided that l � m,
Φ−1

y admits the decomposition

Φy(e
iθ)−1 = Γ(eiθ)− Λ(eiθ) (45)

where Λ ≥ 0 is low-rank with rank equal to the number l of
latent-variables and Γ > 0, whose support reflects the con-
ditional dependencies among the observed variables. More
precisely, let V = {1 . . .m}. For I ⊂ V we define VI :=
span{x(t), yj(t) : j ∈ I, t ∈ Z} as the closure of the set con-
taining all the finite linear combinations of the variables in x(t)

and yj(t), j ∈ I . Thus, for any i 
= j, the notation

V{i} ⊥ V{j} |VV \{i,j}

means that yi(t1) and yj(t2) are conditionally independent
given the space linearly generated by {x(t), yk(t) : k ∈ V \
{ i, j}, t ∈ Z}, for all t1, t2. Then, we have

V{i} ⊥ V{j} |VV \{i,j} ⇐⇒ [Γ(eiθ)]ij = 0. (46)

The sparse plus low-rank decomposition in (45) corresponds
to a two-layer graphical model: the nodes in the upper layer
stand for the (few) latent variables in x; the nodes in the bottom
layer represent the observed variables in y whose conditional
dependence relations are few.

B. ADMM Formulation

In this Appendix, we want to provide some additional details
about the ADMM implementation. This serves as a justification
for the update equations which are only reported in the Section V.

The Z-update step (39) is equivalent to the minimization of

I(Z) := − log det(Σ̂y + Z) +
ρ

2
‖PB(Z)‖2C

+ 〈Mk − ρ (Pk − λLImN ), PB(Z)〉C
over the set Z, which has no closed-form solution. As noticed
in [39], the solution can be approximated by a projective-
gradient step. Following the same lines, the new Z-update step
starts from a known feasible point Z0 = Z̄ and continue the
iterations following the update rule:

Zk+1 = PZ

(
Zk − tk ∇I(Zk)

)
(47)

where

∇I(Zk) = − (Σ̂y + Zk)−1 + PB(Mk)

+ ρPB

(
Zk −Pk + λLImN

)
which is precisely the Z-update step in (42).

The P-update step (40) involves an optimization problem
which is equivalent to minimize the functional

J(P) :=
ρ

2
‖P‖2C − 〈P, Mk + ρ

(
λLImN + PB(Zk+1)

)〉C
over all P ≥ 0. As mentioned in Section V, the solution

Po =
1

ρ
Mk + λLImN + PB(Zk+1)

of the minimization of J over C is not, in general, positive
semidefinite. The following proposition ensures that the pro-
jection of a symmetric, block-circulant matrix onto the cone of
positive semidefinite matrices is still block-circulant.

Proposition 4: Let C be a symmetric, block-circulant matrix

C = F∗diag
{
C(ζ0), C(ζ1), . . . , C(ζN−1)

}
F

and let C(ζk) = VkΛkV
∗
k with V ∗

k Vk = VkV
∗
k = Im and

Λk = diag{λk1, . . . , λkm}, being the eigen-decomposition
of the (Hermitian) block C(ζk), for k = 0, . . . , N − 1.
Then the eigen-decomposition of C can be written as
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C = W∗ΛW, W = V∗F, where V = diag{V0, . . . , VN−1}
and Λ = diag{Λ0, . . . ,ΛN−1}. Then

PC+(C) :=argminX≥0‖X−C‖C=W∗ diag{Γ0, . . . ,ΓN−1}W
where Γk = diag{γk1, . . . , γkm} and

γki =

{
λki, if λki ≥ 0
0, if λki < 0

for k = 0, . . . , N − 1.
Proof: It is well known that the best positive semidefinite

approximation in Frobenious norm of an Hermitian matrix
A ∈ C

n×n, is the matrix obtained by setting the negative eigen-
values of A to zero in its eigenvalue decomposition. More-
over, PC+(C) = F∗diag{V0Γ0V

∗
0 , . . . , VN−1ΓN−1V

∗
N−1}F is a

block-circulant matrix because it is block-diagonalized by the
Fourier-block matrix.

According to Proposition 4, the positive semidefinite block-
circulant matrix that better approximates Po in the C-norm is
the projection of Po onto the cone of the symmetric, positive
semidefinite, block-circulant matrices C+, from which follows
the P-update step in (42).
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