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Hierarchical Organization of
Modularity in Metabolic

Networks
E. Ravasz,1 A. L. Somera,2 D. A. Mongru,2 Z. N. Oltvai,2*

A.-L. Barabási1*

Spatially or chemically isolated functionalmodules composed of several cellular
components and carrying discrete functions are considered fundamental build-
ing blocks of cellular organization, but their presence in highly integrated
biochemical networks lacks quantitative support. Here, we show that the
metabolic networks of 43 distinct organisms are organized into many small,
highly connected topologic modules that combine in a hierarchical manner into
larger, less cohesive units, with their number and degree of clustering following
a power law. Within Escherichia coli, the uncovered hierarchical modularity
closely overlaps with known metabolic functions. The identified network ar-
chitecture may be generic to system-level cellular organization.

The identification and characterization of
system-level features of biological organiza-
tion is a key issue of postgenomic biology
(1–3). The concept of modularity assumes
that cellular functionality can be seamlessly
partitioned into a collection of modules. Each
module is a discrete entity of several elemen-
tary components and performs an identifiable
task, separable from the functions of other
modules (1, 4–8). Spatially and chemically
isolated molecular machines or protein com-
plexes (such as ribosomes and flagella) are
prominent examples of such functional units,
but more extended modules, such as those
achieving their isolation through the initial
binding of a signaling molecule (9), are also
apparent.

Simultaneously, it is recognized that the

thousands of components of a living cell are
dynamically interconnected, so that the cell’s
functional properties are ultimately encoded
into a complex intracellular web of molecular
interactions (2–6, 8). This is perhaps most
evident with cellular metabolism, a fully con-
nected biochemical network in which hun-
dreds of metabolic substrates are densely in-
tegrated through biochemical reactions.
Within this network, however, modular orga-
nization (i.e., clear boundaries between sub-
networks) is not immediately apparent. In-
deed, recent studies have demonstrated that
the probability that a substrate can react with
k other substrates [the degree distribution
P(k) of a metabolic network] decays as a
power law P(k) � k–� with � � 2.2 in all
organisms (10, 11), suggesting that metabolic
networks have a scale-free topology (12). A
distinguishing feature of such scale-free net-
works is the existence of a few highly con-
nected nodes (e.g., pyruvate or coenzyme
A), which participate in a very large num-
ber of metabolic reactions. With a large
number of links, these hubs integrate all
substrates into a single, integrated web in

which the existence of fully separated mod-
ules is prohibited by definition (Fig. 1A).

Yet, the dilemma of a modular versus a
highly integrated module-free metabolic net-
work organization remains. A number of ap-
proaches for analyzing the functional capa-
bilities of metabolic networks indicate the
existence of separable functional elements
(13, 14). Also, from a purely topologic
perspective, the metabolic network of Esch-
erichia coli is known to possess a high clus-
tering coefficient (11), a property that is sug-
gestive of a modular organization. In itself,
this implies that the metabolism of E. coli has
a modular topology, potentially comprising
several densely interconnected functional
modules of varying sizes that are connected
by few intermodule links (Fig. 1B). However,
such clear-cut modularity imposes severe re-
strictions on the degree distribution, implying
that most nodes have approximately the same
number of links, which contrasts with the
metabolic network’s scale-free nature (10,
11).

To determine whether such a dichotomy is
indeed a generic property of all metabolic
networks, we first calculated the average
clustering coefficient for 43 different organ-
isms (10, 15, 16) as a function of the number
of distinct substrates N present in their me-
tabolism. The clustering coefficient, defined
as Ci � 2n/ki(ki – 1), where n denotes the
number of direct links connecting the ki near-
est neighbors of node i (17), is equal to 1 for
a node at the center of a fully interlinked
cluster, and it is 0 for a metabolite that is part
of a loosely connected group (Fig. 2A).
Therefore, Ci averaged over all nodes i of a
metabolic network is a measure of the net-
work’s potential modularity. We found that,
for all 43 organisms, the average clustering
coefficient is about an order of magnitude
larger than that expected for a scale-free net-
work of similar size (Fig. 2B), suggesting that
metabolic networks in all organisms are char-
acterized by a high intrinsic potential modu-
larity. We also observed that, in contrast with
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N�0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent � �
1 � (ln 4)/(ln 3) � 2.26, in agreement with
� � 2.2 observed in metabolic networks. Its
clustering coefficient C � 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) � k�1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C � 3/4, those
at the center of a 16-node module have k �
13 and C � 2/13, and those at the center of
the 64-node modules have k � 40 and C �
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) � k�1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N � 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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of highly integrated modules have a high
topological overlap with their neighbors, and
we found that the larger the overlap between
two substrates within the E. coli metabolic
network, the more likely it is that they belong
to the same functional class.

As the topological overlap matrix is ex-
pected to encode the comprehensive en-
zyme catalyzed functional relatedness of
the substrates forming the metabolic net-
work, we investigated whether potential
functional modules encoded in the network
topology can be uncovered automatically.
Initial application of an average-linkage hi-
erarchical clustering algorithm (22) to the
overlap matrix of the small hypothetical
network shown in Fig. 3A placed those
nodes that have a high topological overlap
close to each other (Fig. 3B). Also, the
method identified the three distinct mod-
ules built into the model of Fig. 3A, as
illustrated by the fact that the EFG and
HIJK modules are closer to each other in a
topological sense, with the ABC module
being farther from both (Fig. 3B). Applica-
tion of the same technique on the E. coli
overlap matrix OT(i, j) provides a global
topologic representation of E. coli metabo-
lism (Fig. 4A). Groups of metabolites form-
ing tightly interconnected clusters are visual-
ly apparent, and on closer inspection, the
hierarchy of nested topologic modules of in-
creasing sizes and decreasing interconnected-
ness is also evident. To visualize the relation
between topological modules and the known
functional properties of the metabolites, we
color-coded the branches of the derived hier-
archical tree according to the predominant
biochemical class of the substrates it produc-
es, using the classification of metabolism
based on standard, small molecule biochem-
istry (15). As shown in Fig. 4A, and in the
three-dimensional representation in Fig. 4B,
most substrates of a given small molecule
class are distributed on the same branch of
the tree (Fig. 4A) and correspond to relatively
well delimited regions of the metabolic net-
work (Fig. 4B). Therefore, there are strong
correlations between shared biochemical
classification of metabolites and the global
topological organization of E. coli metabo-
lism (Fig. 4A, bottom) (16).

To correlate the putative modules ob-
tained from our graph theory– based analy-
sis to actual biochemical pathways, we con-
centrated on the pathways involving the
pyrimidine metabolites. Our method divid-
ed these pathways into four putative mod-
ules (Fig. 4C), which represent a topologi-
cally well-limited area of E. coli metabo-
lism (Fig. 4B, blue-shaded region). As
shown in Fig. 4D, all highly connected
metabolites (Fig. 4D, red-outlined boxes)
correspond to their respective biochemical
reactions within pyrimidine metabolism,

together with those substrates that were
removed during the original network reduc-
tion procedure, and then added again (Fig.
4D, green-outlined boxes). However, it is

also apparent that putative module bound-
aries do not always overlap with intuitive
“biochemistry-based” boundaries. For in-
stance, the synthesis of uridine 5�-mono-

Fig. 2. Evidence of hierarchical modularity
in metabolic networks. (A) The clustering
coefficient offers a measure of the degree
of interconnectivity in the neighborhood of
a node (17). For example, a node whose neighbors are all connected to each other has C � 1 (left),
whereas a node with no links between its neighbors has C � 0 (right). (B) The average clustering
coefficient C(N) for 43 organisms (10) is shown as a function of the number of substrates N present
in each of them. Species belonging to archaea (purple), bacteria (green), and eukaryotes (blue) are
shown. The dashed line indicates the dependence of the clustering coefficient on the network size
for a module-free scale-free network, and the diamonds denote C for a scale-free network with the
same parameters (N and number of links) as observed in the 43 organisms. (C through E) The
dependence of the clustering coefficient on the node’s degree in three organisms: Aquidex aeolicus
(archaea) (C), Escherichia coli (bacterium) (D), and Saccharomyces cerevisiae (eukaryote) (E). (F) The
C(k) curves averaged over all 43 organisms is shown, and the inset displays all 43 species together.
The data points are color coded as in Fig. 2B. In (C through F), the dashed lines correspond to C(k) �
k�1, and in (C through E), the diamonds represent the C(k) value expected for a scale-free network
(Fig. 1A) of similar size, indicating the absence of scaling. The wide fluctuations are due to the small
size of the network.
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Fig. 3. Uncovering the underlying
modularity of a complex network.
(A) Topological overlap illustrated
on a small hypothetical network. For
each pair of nodes, i and j, we define
the topological overlap OT(i, j) �
Jn(i, j)/[min (ki, kj)], where Jn(i, j)
denotes the number of nodes to which both i and j are linked (plus 1 if there is a direct link between
i and j) and [min (ki, kj)] is the smaller of the ki and kj degrees. On each link, we indicate the
topological overlap for the connected nodes, and in parentheses next to each node, we indicate the
node’s clustering coefficient. (B) The topological overlap matrix corresponding to the small network
shown in (A). The rows and columns of the matrix were reordered by the application of an average
linkage clustering method (22) to its elements, allowing us to identify and place close to each other
those nodes that have high topological overlap. The color code denotes the degree of topological
overlap between the nodes. The associated tree reflects the three distinct modules built into the
model of Fig. 3A, as well as the fact that the EFG and HIJK modules are closer to each other in the
topological sense than to the ABC module.
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phosphate (UMP) from L-glutamine is ex-
pected to fall within a single module based
on a linear set of biochemical reactions,
whereas the synthesis of uridine 5�-diphos-
phate from UMP leaps putative module
boundaries. Thus, further experimental and
theoretical analyses will be needed to un-
derstand the relation between the decompo-
sition of E. coli metabolism offered by our
topology-based approach and the biologi-
cally relevant subnetworks.

The organization of metabolic networks
is likely to combine a capacity for rapid
flux reorganization with a dynamic integra-
tion with all other cellular function (11).
Here we show that the system-level struc-
ture of cellular metabolism is best approx-
imated by a hierarchical network organiza-
tion with seamlessly embedded modularity.
In contrast to current, intuitive views of
modularity (Fig. 1B), which assume the
existence of a set of modules with a non-
uniform size potentially separated from
other modules, we find that the metabolic
network has an inherent self-similar prop-
erty: There are many highly integrated
small modules, which group into a few
larger modules, which in turn can be inte-
grated into even larger modules. This is
supported by visual inspection of the de-
rived hierarchical tree (Fig. 4A), which
offers a natural breakdown of metabolism
into several large modules, which are fur-
ther partitioned into smaller, but more in-
tegrated submodules.

The mathematical framework proposed
here to uncover the presence or absence of
such hierarchical modularity and to delineate
the modules based on the network topology
could apply to other cellular and complex
networks as well. As scale-free topology has
been found at many different organizational
levels, ranging from genetic (23) to protein
interaction and protein domain (24) net-
works, it is possible that biological networks
are always accompanied by a hierarchical
modularity. Some nonbiological networks,
ranging from the World Wide Web to the
Internet, often combine a scale-free topology
with a community structure (i.e., modularity)
(25–27); therefore, these networks are also
potential candidates for hierarchical modular-
ity. For biological systems, hierarchical mod-
ularity is consistent with the notion that evo-
lution may act at many organizational levels
simultaneously: The accumulation of many
local changes, which affect the small, highly
integrated modules, could slowly impact the
properties of the larger, less integrated mod-
ules. The emergence of the hierarchical to-
pology through copying and reusing existing
modules (1) and motifs (8), a process remi-
niscent of the results of gene duplication (28,
29), offers a special role to the modules that
appeared first in the network. Although the

model of Fig. 1C reproduces the large-scale
features of the metabolism, understanding the
evolutionary mechanism that explains the si-
multaneous emergence of the observed hier-
archical and scale-free topology of the me-
tabolism, as well as its generality to cellular
organization, is now a prime challenge.
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Fig. 4. Identifying the topological modules in E.
coli metabolism. (A) The topologic overlap ma-
trix corresponding to E. coli metabolism, to-
gether with the corresponding hierarchical tree
(top) that quantifies the relation between the
different modules. The branches of the tree are
color coded to reflect the predominant bio-
chemical classification of their substrates. The
biochemical classes that we used to group the
metabolites represent carbohydrate metabo-
lism (blue); nucleotide and nucleic acid metab-
olism (red); protein, peptide, and amino acid
metabolism (green); lipid metabolism (cyan);
aromatic compound metabolism (dark pink);
monocarbon compound metabolism (yellow);
and coenzyme metabolism (light orange) (15).
The color code of the matrix denotes the de-
gree of topological overlap shown in the matrix.
The large-scale functional map of the metabo-
lism, as suggested by the hierarchical tree, is
also shown (bottom). (B) Three-dimensional
representation of the reduced E. coli metabolic
network. Each node is color coded by the pre-
dominant biochemical class to which it belongs
and is identical to the color code applied to the
branches of the tree shown in (A). The different
functional classes are visibly segregated into
topologically distinct regions of metabolism.
The blue-shaded region denotes the nodes be-
longing to pyrimidine metabolism. (C) Enlarged
view of the substrate module of pyrimidine
metabolism. The colored boxes denote the first
two levels of the three levels of nested modu-
larity suggested by the hierarchical tree. CDP,
cytidine 5�-diphosphate; CMP, cytidine 5�-
monophosphate; CTP, cytidine 5�-triphosphate;
dCDP, deoxycytidine 5�-diphosphate; dCMP,
deoxycytidine 5�-monophosphate; dCTP, de-
oxycytidine 5�-triphosphate; dUDP, deoxyuri-
dine 5�-diphosphate; dUMP, deoxyuridine 5�-
monophosphate; dUTP, deoxyuridine 5�-
triphosphate; UTP, uridine 5�-triphosphate. (D)
A detailed diagram of the metabolic reactions
that surround and incorporate the pyrimidine
metabolic module. Red-outlined boxes denote
the substrates directly appearing in the reduced
metabolism and the tree shown in (C). Sub-
strates in green-outlined boxes are internal to
pyrimidine metabolism but represent members
of nonbranching pathways or end pathways
branching from a metabolite with multiple con-
nections (16). Blue- and black-outlined boxes
show the connections of pyrimidine metabo-
lites to other parts of the metabolic network.
Black-outlined boxes denote core substrates
belonging to other branches of the metabolic
tree (A), and blue-outlined boxes denote non-
branching pathways (if present) leading to
those substrates. With the exception of car-
bamoyl phosphate and S-dihydroorotate, all
pyrimidine metabolites are connected with a
single biochemical reaction. The shaded box-
es around the reactions highlight the mod-
ules suggested by the hierarchical tree. The
shaded blue boxes along the links display the
enzymes catalyzing the corresponding reac-
tions, and the arrows show the direction of
the reactions according to theWIT metabolic
maps (15). cCMP, cyclic cytidine 5�-monophos-
phate; cUMP, cyclic uridine 5�-monophosphate;
dTDP, deoxythymidine 5�-diphosphate; dTMP,
deoxythymidine 5�-monophosphate; dTTP,
deoxythymidine 5�-triphosphate; TDP, thymi-
dine diphosphate; TMP, thymidine monophos-
phate; TTP, thymidine triphosphate.
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