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4. APPLICATIONS OF THE SYSTEMS TO VARIOUS 
PROBLEMS IN INDUCTION 

The following sections will apply the foregoing induction systems to 
three specific types of problems, and discuss the "reasonableness" of the 
results obtained. 

Section 4.1 deals with the Bernoulli sequence. The predictions ob- 
tained are identical to those given by "Laplace's Rule of Succession." A 
particularly important  technique is used to code the original sequence 
into a set of integers which constitute its "descriptions" for the problems 
of Sections 4.2 and 4.3. 

Section 4.2 deals with the extrapolation of a sequence in which there 
are certain kinds of intersymbol constraints. Codes for such sequences 
are devised by defining special symbols for subsequenees whose fre- 
quencies are unusually high or low. Some properties of this coding 
method are discussed, and they are found to be intuitively reasonable. 
A preliminary computer program has been written for induction using 
this coding method. However, there are some important  simplifications 
used in the program, and it is uncertain as to whether it can make useful 
predictions. 

Section 4.3 describes the use of phrase structure grammars for induc- 
tion. A formal solution is presented and although the resultant analysis 
indicates tha t  this model conforms to some extent to intuitive expecta- 
tions, the author feels tha t  it still has at least one serious shortcoming in 

* This research was supported by AFOSR Contract No. AF 49(638)-376, Grant 
No. AF-AFOSR 62-377, and Public Health Service Grant No. GM 11021-01. 

Sections 4.1 and 4.2 are more exact presentations of much material in Zator 
Technical Bulletins 140 and 141 of April 1961 and April 1962 respectively. Part I 
of the present paper appeared in the March 1964 issue of Information and Control. 
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that it has no good means for giving definitions to subsequences that 
occur with unusually low frequency. The method of Section 4.2, how- 
ever, does have this capability though it is in general a less powerful 
extrapolation method. It  is felt that ideally, the method of 4.2 should 
be a special case of that of 4.3. 

This admittedly inadequate formal solution is then applied in an 
approximate way to the problem of finding a grammar that "best fits" 
a given set of strings. The results appear to be reasonable, but their 
plausibility is reduced by the uncertainty of the approximations used. 

Sections 4.1, 4.2, and 4.3 give methods of assigning a set of integers 
to a finite string of symbols drawn from some alphabet. These methods 
are all invertable, so that given any integer, and the alphabet being used, 
it is possible to find what string of symbols that integer corresponds to. 

The decoding instructions are of the type that can be described to a 
universal machine. This means that there exists a finite string, S, such 
that for all integers, B, expressed in binary notation, 

M I ( S B )  = ~ (15)  

will give the original string of symbols, a, for which the integer B is the 
code. 

We shall then consider B to be "a code for a." B will not be a code 
for a with respect to M1, however, but with respect to MI'. 

MJ is defined by the condition that for all possible binary sequences, 
X, 

MI'(X) = M1($2) (16) 

In each of Sections 4.1, 4.2, and 4.3, S will be somewhat different. 
Each of these sections will try to show that, with respect to its par- 

ticular machine, M~', the extrapolations obtained using Eq. (1) which 
is reproduced below) are reasonable ones. 

/ ) (a ,  T, ~rl)  ~ lira lira ~ = ~  ~ ' ~ [ ( 1  -- e)/2]N(s~c~, ~)~ 
V', .~----~- X-'~ r,'--i - - . ' , / o l N ( S r c , ~ + ~ k ) i  (1) 

Section 3.1.3 discussed machines which "summarized" certain of the 
statistical properties of a given finite corpus. MI' can be considered to 
be a machine of this type. In Section 4.1, for example, M~' "summarizes" 
certain properties of the general Bernoulli sequence, and is a "useful" 
summary of the corpus, if that corpus contains many Bernoulli 
sequences. 
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If the sequences being extrapolated are, indeed, of the types discussed 
in each section, then arguments similar to those of Section 3.1.2.3 can 
be applied to make it plausible that the results are independent of just 
what machine was used. 

4.1 INDUCTION FOR THE BERNOULLI SEQUENCE 

A Bernoulli sequence is a Markov sequence in which the probability 
of each symbol is constant throughout the sequence, and is independent 
of the subsequence preceding that symbol. 

The present section will apply Eq. (1) (which is reproduced in the 
previous section) to the problem of computing the probabilities of suc- 
cessive members of a Bernoulli sequence. This is about the simplest kind 
of induction problem that exists, and it has been the subject of much 
discussion (Keynes, 1921). 

The result, in the present case, is similar to one obtained by Laplace, 
which is called "Laplace's rule of succession." One set of assumptions 
that leads to his result is that the probabilities of the frequencies for 
each of the symbols in the Bernoulli sequence are initially uniformly 
distributed between zero and one. Then Laplace's rule gives the "ex- 
pected value" of the frequency of each type of symbol, after a certain 
initial subsequence of that entire Bernoulli sequence is known. The ratio 
of the expected frequencies of the symbols A and B in the entire sequence 
is 

C~ + 1 (17) 
C . + 1 '  

CA and C~ being the munber of occurrences of d and B, respectively, in 
the known subsequence. 

The present analysis is used to illustrate a particularly important kind 
of coding method. In Sections 4.2 and 4.3 this coding method is general- 
ized to apply to sequences in which are intersymbol constraints of 
certain kinds. 

4.1.1 A Detailed Description of the Coding Method 

For any Bernoulli sequence, we will give a method for assigning a 
set of numbers to that sequence. Each number will be a code for the 
sequence, so that given any integer, and an ordered list of the symbol 
types to be used in the sequence, the associated Bernoulli sequence 
can be uniquely determined. 
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Later, these code numbers will be used to compute a-priori probabilities 
of various sequences, and from these, in turn, an expression for con- 
ditional probabilities of successive symbols of the sequence will be ob- 
tained. 

To assign a code number to a Bernoulli sequence, we will first assign 
an ordered sequence of ordered pairs of integers to the sequence. There 
will be a pair of integers for each symbol in the originM sequence. 

Consider the Bernoulli sequence: 

a = B B A B C C A B C C B A  (18) 

The only symbols used are A, B, and C. 
We will then write the sequence of symbol types, A B C ,  followed by 

the original Bernoulli sequence. This gives: 
1 2  ~ 6 6  7 s 9 ~ 0 1 1 1 2  

[3 -~ A B C B B A B C C A B C C B A  (19) 

The first symbol of ~ in Eq. (18) is B. The integer pair assigned to 
this will be (3,2). The 3, because there are 3 symbols in ~ before the 
symbol to be coded. The 2, because the only previous occurrence of B 
is the second symbol. 

The second symbol of ~ is also B. Its integer pair can be either (4,2) 
or (4,4). The reason is that in ~, both the second and fourth symbols 
are B. 

The integer pair for A, the third symbol of a, is (5,1). 
The integer pair for B, the fourth symbol of ~, is either (6,2), (6,4) 

or (6,5). 
The integer pair for C, the fifth symbol of a, is (7,3). 
One permissible intermediate code for the first five symbols of a is 

then 

a --- (3,2), (4,2), (5,1), (6,5), (7,3) (20) 

Since there are two possible choices for the representation of the 
second symbol of a, and three possible choices for the fourth symbol of a, 
there are 2 X 3 = 6 permissible intermediate codes for the subsequenee 
consisting of the first five symbols of a. 

To change the intermediate code, 

(al, bl), (as, b2), (as, b3), "-" , (a,~, b~) 

into an integer, we use the formula 
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k = ( ( . . .  (((b,~am-~ "-t- b,,_~)a,~_~ 
(21) 

.3c b,~_~)a~_3 .-{- b~-3) . . .  )a2 -[- b2)a~ --[- b~. 

k is then the integer code number for the sequence, a. 
In  the case of intermediate code, a, this gives 

/~ - ( ( ( 3 . 6  -~ 5)-5 + 1) .4  ~- 2 ) .3  -t- 2 -- 1400 (22) 

I t  is possible to reverse this process and go from k back to the original 
intermediate code. To do this: 

Divide/~ by a~. The remainder is b~. 
Divide the quotient by a2. The remainder is b2. 
Divide the resulting quotient by a3. The remainder is b3. 
Contil~ue until no more b~'s are obtainable. 
In  the present case, all a~'s are known in advance. 

a~ - i -t- 2 (23) 

More generally 

a~ = i - t -  r - -  1 (24) 

where r is the number of symbol types in the Bernoulli sequence. 
I t  is possible to obtain a very simple approximation for the value of k. 

Expanding Eq. (21), we obtain 

l~ =. b ~ a m _ l a m - 2 . . ,  aeal 

-~ bm-la~_2 - "  a~.al 

. . .  

( 2 5 )  
b3a2al 

-t- b2al 

Since a,~_l -- m + r - 2 and m will be very large in all cases of interest, 
we will usually be able to neglect all but  the first term, and write 

k , ~  b,~am-lam_2 . . .  a2al (26) 

I t  will be noted in Eq. (25) tha t  it is possible for b~_~ to equal a~_l 
and for b~ to equal unity. In this case, it is clear tha t  the second term is 
as large as the first, though, as before, the rest of the terms are negligible 
if m is large. 
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In the applications of the approximation of (26), however, (i.e., in 
expressions (37) and (38)) a summation is taken over many k's, and 
all values of b~ between 1 and m + r are used. The result is that  the 
approximation of Eq. (26) is valid for almost all terms of the sums, and 
the cases where it is not valid contribute a negligible part  to the sums. 

~.1.2 Conditional Probabilities in the Bernoulli Sequence 

Let us now consider the problem of determining the relative prob- 
abilities of various possible continuations of the m symbol sequence, a. 
In the following discussion, we shall allow a to have only 3 different 
symbol types, A, B, and C. The discussion, however, holds equally well 
if there is any finite number of symbols in the alphabet. 

First we will rewrite Eq. (1), so it will give the relative probability 
that  A rather than B, will follow the sequence, a. 

1 lira lira ~-~:1 ~ i= i [ (  -- e)/2] N~s~ac-,p~ (27) 
o-.o .-.o Z;"--1 ~21:~[(1 ~ ) / 2 ] N ~ - , ;  ', 

r is the number of symbols in the alphabet--which is three, in the present 
case. C,,j is as in Eq. (1) (which is reproduced in Section 4), the f lh  
of the r" possible sequences of n symbols. N(z~c~,i)~. is the number of 

bits in the ith possible code of the sequence aAC,,j.  Essentially, this 
equation says that  we should consider all possible continuations of the 
sequence to a distance of n symbols into the future. 

Then the relative probability of the symbol A following the sequence 
a, rather than the symbol B following a, will be approximated by the 
total a-priori probabilities of all sequences of length m + n + 1 that  
start out with the sequence aA, divided by the corresponding expression 
for sequences that  start out with aB. 

The approximation becomes exact as n approaches infinity. 
In the present case, it will become clear that  the value of the approxi- 

mation is constant for n => 1, so we will consider only n = 1. 
For the a-priori probability of the f lh  sequence of m + 1 -}- n sym- 

bols, we will use the approximation, 

1 (28) 
• ( k ~ , j ) ~ + ~  

k¢,~ is the ith code number that  is a legal representation of that  sequence. 
is defined to be --log2 (1 -- ~), so ~ --~ 0 as e --~ 0. 
I t  will be noted that  this expression differs from that  used in Eq. (27). 
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There, the expression used was equivalent to 

(~ (1  - ~))~(~,~) (29)  
i 

Here, N(l%~) is the number of bits in the binary expression for the 
integer k~.j. We will approximate N(k~,j) by log2 k~.~-. This then gives 
for a-priori probability, 

~11°~2~'i~1 _ ~)~o~, ,j  (30)  
i 

If we set 1 -- e -=- 2 -~, we obtain 

E 211°g2ki'J * 2--~l°g2ki' j ~ E 1 ( 3 1 )  

Setting n = 1, and using ~ instead of e, we obtain the approximation 

lira -~=- 1 ~-~ 1/~(1+~) ~/,~i,j (32) 
~ l , . i , j  

for Eq, (27). Bj (j  = 1, 2 . - .  r) is the j th  symbol of the alphabet; k~,j 
t o 

is the ith code of the sequence aAfl~ ; ki,i is the corresponding expression 
for aBf~.  

The summation on i is taken over a finite number of terms, since in 
the present case there are only a finite number of codes corresponding 
to each aAf~j, and each aB[3~. 

In  order to obtain the necessary total a-priori probabilities, let us 
first consider the intermediate code expressions for aAfl~, where ~j 
may be A, B, or C. From (26), such a code will have approximately 
the number 

k = 3 • 4 • 5 . . -  ( m +  r -  1 ) ( m +  r) • b ~ + 2 - b ~ + 2 ( m +  r)!  (33) 
( r  - 1 ) !  

assigned to it, and the a-priori probability of this code will be approxi- 
mately 

1 _ ( - 1 ) !  

The value of b~+2 can be any integer from i to m + r + 1. I t  will be 
seen that  if we fix the value of b~+2 then there will be just C~ ! Cz ! Cc !. 
(C~ + 1) different possible intermediate codes that  start  out with aA. 
Here Cx,  C , ,  and Cc are the number of times that  A, B, and C, re- 
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speetively, occur in a. The reason for this particular number is that 
when the hth occurrence of A, say, is being coded as a pair of integers, 
there will be only one possible choice for ai, the first integer, but there 
will be just h possible choices for bi, the second integer. Each such 
choice of b~ results in an acceptable intermediate code for the same 
sequence. The a~ and bi are those of Eq. (21). 

The total a-priori probability of all sequences of m + 2 symbols that 
begin with aA, and have the same value of bin+2, will be 

CA !CB !Co ! (C~ + 1) \(m + r)! bm+2/ (35) 

To obtain the total a-priori probability in the numerator of Eq. (32), 
we sum over all possible values of ~j and hence over all possible values 
of bm+~ • The resultant total is 

• (c~  + 1) (36) c~  ! cB ! c~  ! -(i~ ~ ~)! ~ • 

The corresponding expression for the denominator of Eq. (32), in 
which the (m -t- 1)th symbol of the coded string must be B, is 

• ( C z  + 1) (37) 

The relative probability that a will be continued by A rather than B, 
is the ratio of (36) to (37), i.e., 

C~ + 1 (38) 
C , + I  

In the above discussion, we let n = 1. If we allow n to have a greater 
value, expressions (36) and (37) each are multiplied by the same cor- 
rection factors, leaving their ratio (expression (38)), invariant. 

I t  will be noted that expression (38) is identical to that obtained 
through "Laplaee's rule of succession." 

I t  may seem unreasonable to go through this rather arduous process 
to obtain such a simple result-one that could be otherwise obtained 
from far simpler assumptions. However, the present demonstration is 
an illustration of the application of a very useful coding method. It  is 
important that this coding method should give reasonable results in 
this particular case, since it is later used as the basis for more complex 
coding methods• In Section 4.2, we shall generalize it, so that it may 
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deal with descriptions that utilize definitions of subsequences that occur 
with significant frequencies. 

For large values of m, it is easy to obtain another interesting property 
of Eq. (36). If we take the log,. of (36), and divide by m + 1, we ob- 
tain for large m and small 3, using Sterling's approximation for X i, 

( C A +  1)log2(CA + 1) + C~ ~ Cc Cc 
m + 1 m -{- 1 ~ log2 .- . 1 + ~ log2 m -}-----1 

This is proportional to Shannon's expression for the entropy of the 
sequence, and has its minimum value when 

I+C~ = CB = Co. 

It is clear, then, that the a-priori probability (36) is minimal when 
the frequencies of all of the symbols are identical, but that the a-priori 
probability increases when there is any deviation from this. We may 
view the case in which 1 + CA = CB = Cc as the "purely random" 
situation, and any deviation from this as being a "regularity" in the 
sequence. Any "regularity" of this sort will then increase the a-priori 
probability of the sequence. 

The demonstration in this section uses two important approxima- 
t ions - tha t  of Eq. 26, and the approximation of N(/~.~-) by logs k~,j. 
Since these approximations have not been shown to be rigorously ap- 
plicable to the present problem, the results obtained must, in turn, be 
regarded as being of not absolutely certain validity. 

4.2 INDUCTION FOR SEQUENCES W I T H  CERTAIN INTERSYMBOL 
CONSTRAINTS 

The present section deals with sequences of symbols such as Markov 
chains, in which the probability of a particular symbol occurring at a 
particular point depends on the nature of symbols in the sequence that 
are close to it. If the entire sequence is very short, only very local inter- 
actions are considered. For longer sequences, more distant interactions 
are automatically considered. 

Basically the coding method consists of defining certain sequences of 
two symbols--such as A B  or D B  or A E - - t o  be represented by special 
single symbols, such as a, ~, or 7. Using these newly defined symbols, 
the original sequence can be rewritten more compactly. However, the 
gain in compactness may be offset by the amount of information needed 
to write the definitions of the sequences defined. 
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The coding method of hlductive inference gives a unified measure to 
the "increase in compactness" brought about by the introduction of a 
particular definition, and includes the cost of defining the new symbol. 

The method to be described begins by considering all possible pairs of 
symbols. The pair for which the total decrease in "coding cost" is 
maximum is then assigned a special symbol, and the original sequences 
is rewritten using this special symbol. At the next stage all pairs of 
symbols (including the newly defined special symbol) are examined, 
and the pair for which decrease in coding cost is maximum is assigned a 
new special symbol. The sequence that is the result of the last rewriting 
is again rewritten using the new symbol. 

This process is repeated again and again until it is no longer possible 
to find a new definition that results in a further reduction of "coding 
COSt." 

From the compact code that results we are able to find the a-priori 
probability of the original sequence. This a-priori probability can then 
be used to find the conditional probability of a symbol occurring at a 
particular point, in view of the nature of the symbols occurring near 
it in the sequence. 

Section 4.2.1 describes an "intermediate code" in which new symbols 
are defined. Each of these new symbols represents a sub-string of sym- 
bols of the original sequence. 

Section 4.2.2 shows how a-priori probabilities are to be assigned to 
these intermediate codes. 

Section 4.2.3 discusses the use of these codes for computing approxi- 
mate probabilities. A "hill-climbing" method is described by which 
codes of high a-priori probability may be found. 

Section 4.2.4 discusses several approximation formulas for the in- 
crease in a-priori probability associated with each possible step on the 
"hill." 

Section 4.2.5 discusses a computer program that was written to 
implement the hill climbing routine of Section 4.2.3. 

4.2.1 An Intermediate Code Employing Definitions of Subsequences 

In the present paper we shall consider only definitions that involve 
the concatenation of two symbols. Since either or both of the symbols 
may in turn represent a concatenation of two symbols it is clear that 
we can in this way define sequences containing any desired number of 
symbols of the type used in the original uncoded sequence. 
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Suppose we have the sequence 

C A B C B A B B A B A B A A B  (39) 

Clearly, if we define the symbol a to represent the subsequence A B  we 
can write (39) more compactly as 

CaCBaBaaA c~ (40) 

However, in order to include all the information in our intermediate 
code, we must include the definition in our description of (39). A more 
complete code would then be 

A B  , CaCBaBac~Aa (41) 

Here the comma is a special symbol. I t  occurs in every intermediate 
code once, and only once. There are an even number of symbols be- 
fore the comma, and adjacent pairs of these symbols are the defini- 
tions of the respective Greek letters. 

The intermediate code 

A B ~ A  , C[3Aaa (42) 

would represent the fact that  a is defined to be AB,  and ~ is defined to 
be aA in the sequence 

C~Aaa 

I t  is clear, then, that  the sequence represented by (42) is 

C A B A A A B A B  (43) 

4.2.2 Assignment of A-Priori Probabilities to Intermediate Codes 

To obtain the a-priori probability of the sequence (43) we will repre- 
sent its intermediate code (42) by a (usually large) positive integer in a 
manner that  is similar to the coding method described in Section 4.1.1. 

Let us first number the symbols of (42) so that  we may more easily 
discuss them. 

S y m b o l  I~os. 1 2 3 4 5 6 7 8 9 10 

A B C  , A B a A  , C~Aaa (44) 

The symbols "ABC,"  have been written before the sequence proper 
as we have done in Section 4.1.1. 

In coding the first symbol of (44), we assign an a-priori probability 
of ~ to the symbol A. This is because there are four previous legal possi- 
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bilities for that symbol, and only one of them is "A." The symbol "," 
in this position would indicate that no definitions were to be made in 
this intermediate code. 

In coding the second symbol "," is not a possibility since there must 
be an even number of symbols in the "definitions" section of our code. 
The legal symbol choices occurring before the second symbol are four 
in number: A, B, C, and A. Of these, only one is B so we assign an 
a-priori probability of ¼ to B. 

Since our first definition is now completed--the definition of a--we 
have a new symbol that is now possible. So (44) must be rewritten as 

Symbol Nos. I 2 3 4 5 6 7 8 9 I0 

a A B C  , A B a A  , C~Aa a (45) 

In  coding the third symbol ","  and "a"  are both legal, so we have seven 
legal possibilities, of which only one is a, so we obtain the a-priori 
probability 1 ~-. 

To code the fourth symbol we have seven legal possibilities (since 
","  is not legal here). Of these, two are A's, so we obtain the a-priori 
probability ~. 

In coding the fifth symbol we must rewrite (45) since we have com- 
pleted the definition of fl, and so/3 is now a possible choice. 

Symbol  Nos. I 2 3 4 5 6 7 8 9 10 

~ a A B C  , A B a A  , C f ~ A ~  (46) 

For the fifth symbol there are just ten legal previous possibilities. 
Only one of them is " ,"  so its probability is ~v. 

For the sixth symbol, and all subsequent symbols, "," is no longer 
legal since it can occur only once in the code. Therefore, the probability 
for the sixth symbol is ~. 

The probabilities of the seventh and eighth symbols are obtained 
straightforwardly--they are ~v and ~ ,  respectively. 

The ninth symbol brings up an interesting and very important point. 
If we have made the definition ~ -- A B ,  then in our subsequent code, 
the symbol B should never follow A, since it would be more economical 
to rewrite the pair as a. In general, every definition that  we make im- 
poses some constraints on which symbols may follow which in the subse- 
quent code. 

In the present case, the ninth symbol cannot be B or ",". The re- 
sultant probability is then ~ .  

The tenth symbol cannot be A since it follows a, and f~ -- aA has 
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been defined. The probability assigned to the tenth symbol is therefore 
9"  

The final a-priori probability of the sequence is the product of the 
individual probabilities that were described, i.e., 

~ ' ~ ' v ' v ' ~ ' ~ ' ~ ' ~ ' ~ ' ~  

$2.3 Use of She Codes for Prediction 

Suppose we have a string of symbols which we will denote by Z and 
we want to know the relative probability of the symbol A rather than 
B, being the symbol that follows ~. 

Equation (I) computes this probability ratio by considering all 
codings of all possible continuations of the sequences XA and ZB. In 
general, a given sequence can be coded in many ways. Various sets of 
definitions can be used, and they can be defined in different orders--e.g., 
AB can be defined before BC, or vice versa. Also, with a fixed set of 
definitions, it is often possible to code a sequence in several different 
ways. As an example, suppose we have defined ~ ~ AB and fl ~ BC. 
Then the sequence ABC can be coded as either aC or A~. 

An approximation to the desired probability ratio can be obtained 
by considering only a few codings of only a few possible continuations 
of these two sequences. Greater accuracy will, of course, be obtained if 
more codings and more possible continuations are considered, and if 
the coding methods used are of relatively high a-priori probability. 

A computer program has been written for prediction in which only 
the sequences ZA and ZB are coded and only one method of coding is 
used for each of them. Possible future continuations are not considered. 

The input data consists of a sequence of alphabetic symbols. The out- 
put consists of (1) an ordered set of definitions of ordered symbol pairs, 
(2) the intermediate code of the original sequence, using these defini- 
tions, and (3) the a-priori probability of that code sequence. 

We need only the third of these outputs to make probability estimates. 
Suppose that for the string of input symbols designated by Z the ma- 
chine gives us a code whose a-priori probability is P(Z).  If the symbols 
used in the original sequence are A, B, and C, then an approximation 
to the probability that A will be the next symbol to follow the sequence 
E is given by 

F(EA) 

P(EA) + P(EB) + P(EC) 
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Here ~A is the concatenation of Z and A. An attempt is made to find 
codes of very high a-priori probability by a process of "hill climbing"-- 
i.e., the original sequence is used as an initial code and improvements 
are made in this code so as to increase the a-priori probability. This 
results in a new code which is in turn improved. This process of fin- 
provement continues until no new improvements can be found within 
the set of improvement types being considered. 

In the particular computer program that was used, each "improve- 
ment" consists of devising a new binary definition and rewriting the 
previous intermediate code using this new definition. If there are r 
symbol types in the original sequence, and c definitions have been in- 
troduced thus far, then (r + c) 2 possible definitions are considered. 
The definition that results in the largest increase of a-priori probability 
of the intermediate code is used for recoding. Next, (r + c + 1) 2 defi- 
nitions are considered and the optimum one is selected. 

The process of determining how much the introduction of a given 
definition will increase the a-priori probability of a code has been 
studied at length. Several approximate formulas have been obtained 
for the resultant change in a-priori probability. The approximations are 
easily implemented by a digital computer, so that with an initial symbol 
string of about 1000 symbols it takes only about two minutes for the 
IBM 7090 to find as many as 100 new optimum definitions. 

The advantage of the present method of prediction over conventional 
methods using the frequencies of n-gm of fixed length, is that the present 
method is able to propose rather complex definitions and evaluate their 
sigrSficance on the basis of a relatively smaller amount of data. Using 
the same amount of data, the new method should be able to make better 
predictions than more conventional methods. 

~.2.~ Approximation Formulas for Hill Climbing 

In general, there are two situations in which it is useful to define the 
subsequenee AB. 

In the first kind of situation, we have a long uncoded sequence in 
which the subsequence AB never (or very infrequently) occurs. De- 
fining the pair AB will then increase the a-priori probability of the 
resultant intermediate code. This is because of increased knowledge of 
symbols following A's due to the fact the B's are impossible there. This 
knowledge results in greater probabilities being assigned to the symbols 
that actually do follow A in the intermediate code. 



238 SOLOMONOFF 

In the other possible situation, B almost always follows A whenever 
A occurs. We can then increase the a-priori probability of our inter- 
mediate code by defining A B ,  because the symbol a will have a greater 
probability than the product of the probabilities of the symbols A and 
B. 

If f~ and f~ are the respective relative frequencies with which the 
symbols A and B occur in a long, uncoded sequence, and fA~ is the rela- 
tive frequency of the subsequence, A B  (relative frequency is in all three 
cases measured with respect to the total number of single symbols in 
the sequence), then the ratio of total increase in a-priori probability of 
the intermediate code resulting from our formulating the definition 
a ~ A B ,  is roughly approximated by 

1)] 
Here, m is the number of symbols in the original sequence and so mfAB 

is the number of times A B  has occurred. 
We will want to consider defining a --- A B ,  if this definition gives us 

an intermediate code of higher a-priori probability--i.e., if expression 
(47) is greater than unity. 

It  is of value to regard expression (47) as composed of two factors. 
First the factor f ~ . f z ,  which is the cost (in probability) of writing the 
definition a =- A B .  Next, the factor 

exp \TA--B I/~A (48) 

which tells us how much benefit is obtained from the definition increasing 
the probabilities of various symbols. 

In (48) note the presence of the expression 

( ~  1) ~ 
\ lab 

This indicates that if there is any constraint between the symbols A 
and B, so that fA~ ~ f~'JB (i.e., A and B are not " independent") ,  then, 
if our sequence is long enough, (i,e., m is large enough) expression (48) 
will become very l a r g e ~ o  that we will save more than we lose by de- 
fining a =- AB .  

We may write (48) as 
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Here it becomes clear that  no matter  how much A and B appear to 
be dependent (i.e., that  f~B differs very much from f a ' f , ) ,  it  will not 
be wor th  while to define a = A B  unless the sequence is long enough to 
give us an adequate "sample size" (i.e., m is large enough). Conversely~ 
even if A and B are only very slightly dependent, it will be worth while 
to define a ~- A B  if m is large enough. 

Also note tha t  i f  A and B are rather uncommon symbols (i.e., fA 
and f .  are small) the cost of defining A B  is very important  (i.e., fA "f~ 
is much smaller than unity) ,  so that  the other factor, (48), has more 
"work" to do. 

In  general, in the "coding method of inductive inference," it will 
often be possible to divide the coding effects of a supposed "regulari ty" 
in a body of data into a part  tha t  corresponds to the cost of defining the 
regularity, and a part  tha t  tells how much we increase the a-priori 
probability of the code by using this regularity in recoding the data. 
In Eq. (47) these parts are exemplified byfA "fB and by expression (48), 
respectively. 

I t  should be noted that  the approximation expression (47) does not 
work well for very small values of fA. ,  and no conclusions should be 
drawn about  this Case from this particular approximation. 

Expressions (49) and (50) are more exact expressions for the ratio 
of increase: of a-priori probability of an intermediate code that  results 
from defining a ~ AB.  These expressions were the ones used in the 
computer program. Expression (49) is for the case A # B, and (50) 
is for the case A --- B--i .e. ,  a ----- A A .  Although both expressions are 
approximations, they work very well, even when NAB = 0 or N ~  = 0. 

(Na - NAB + 1 ) ! ( N .  -- N ; .  + 1)! 
• (m + r + c -- 1)!NAB !(r + 3c) 

Na !NB !(m + r + c -- NaB + 2)! (49) 

(~ +r + c -  N~. +3) N~-~ 
" % ~ - r ~ - ~ - - ~ ; g  

(Na - 2NaA + 2 ) !Nan  !(m + r + c -- 1)!N~a !(r + 3c)! 
N a ! ( m + r +  c -  Nxa + 2 )  i 

(50) 

• - ~ 7 + ~ _ ~ - ~  

m is the total number of symbols in the original sequence, r is the num- 
ber of different symbol types in the original sequence, c is the number of 
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definitions that have been already introduced. N¢. is the number of 
times "A" occurs in the code sequence (or original sequence) being 
recoded. NB is the corresponding number for "B". NAB is the corre- 
sponding number for the subsequence "AB." NAA is the corresponding 
number for the subsequence "AA." 

Here NAA is defined to be the largest number of nonoverlapping 
"AA's" that can be found in the sequence of interest. 

In expression (49), the factor 

m 

gives the amount of increase in a-priori probability due to symbols 
following A having somewhat greater probability than before~ince it 
is now known that B cannot follow A. This factor is but an approxima- 
tion, and assumes that this increase in probability is the same for each 
of the NA -- NAg occurrences of "A" in the new code. The rest of ex- 
pression (49) is exact, however. Corresponding remarks are true of 
expression (50). 

4.3 THE USE OF PHR.~SE STRUCTURE GRAYf~ARS IN CODING FOR IN- 
DUCTION 

The present section deals with the extrapolation of sets of strings in 
which the constraints among the symbols are somewhat like those that 
exist among the words of sentences in European languages. 

More specifically, suppose we are given an unordered set of strings, 
[ai], (i = 1, 2 . . .  n), and we want the relative probability that the 
new string/~1, rather than the new string ~s "belongs" to the set. 

The method that will be used is equivalent to finding a PSL (context 
free phrase structure language, Chomsky (1956)) that in some sense 
best "fits" the set [al]. The measure of goodness of fit will be the product 
of the a-priori probability of the language selected and the probability 
that the language selected would produce [a~] as a set of acceptable 
sentences. 

The a-priori probability of a PSL will be obtained by writing its 
grammar as a string of symbols, and using any of the induction tech- 
niques of Section 3 on this string. The probability that a given PSL 
produced [a~], is a concept that is less deafly defined. 

Solomonoff (1959) discusses the concept of "stochastic languages," 
i.e., languages that assign a probability to every conceivable string 
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rather than the acceptance or rejection which is assigned by ordinary 
formal languages. 

As an example, consider the PSL described by Solomonoff (1959, 
Appendix I I )  using a somewhat modified notation. The initial symbol 
is ~ and the permissable substitutions are: 

Y~ "~ aS a ~ aY~C ~ ~ Ca 

Y_, ~ flD a ---> Cfl f ~ B (52) 

a - - > A  

Here we read "Y, ---> aft" as "Y., may be replaced by a~." A permissable 
derivation of an acceptable sentence is: 

1. ~ 5. C C C f f  

2. a f  6. CCCB~ 

3. C f f  7. CCCBCa  

4. CCafl 8. C C C B C A  

The last string of symbols, C C C B C A ,  is an acceptable sentence, since 
we can make no further substitutions in it. 

I t  will be noted tha t  for each of the symbols ~, a, and f ,  there is more 
than one substitution possible. By assigning probabilities to each of 
these substitutions, we describe a stochastic phrase structure grammar. 

A possible assignment of probabilities in the previous grammar is 

--> aft, 0.1 a --> aZC,  0.2 f ~ Ca, 0.3 

Z --~ flD, 0.9 a -~ C~, 0.2 fi -~ B, 0.7 (53) 

a --> A ,  0.6 

The number written after each substitution rule is the probability 
value assigned to tha t  substitution. In the derivation of the sentence 
C C C B C A  the substitutions Z -~ aft, a ----> Cfl, fl ---> Ca, a --~ C f ,  f ----> B,  
f ---> Ca, and a --* A were used in tha t  order. These substitutions have 
the respective probabilities of 0.1, 0.2, 0.3, 0.2, 0.7, 0.3, and 0.6. The 
resultant probability of this particular derivation of the sentence 
C C C B C A  is: 

0.1 X 0.2 X 0.3 X 0.2 X 0.7 X 0.3 X 0.6 = 0.0001512 
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One way to assign an a-priori probability to a stochastic phrase 
structure language is to first assign an a-priori probability to the cor- 
responding ordinary phrase structure language. Associated with each 
such ordinary language is a continuous multidimensional space of 
stochastic languages, each point of which corresponds to a set of possible 
values of the substitution probabilities. We may assume a uniform 
a-priori probability distribution over this space. 

The problem of assigning an a-priori probability to a stochastic phrase 
structure language thereby becomes one of assigning an a-priori prob- 
ability to the corresponding ordinary phrase structure language. 

Solomonoff (1959) did not propose any particularly good methods for 
assigning a-priori probabilities for PSG's. The methods to be described 
in the present section can, however, be used to find these a-priori prob- 
abilities. If these a-priori probabilities were used with the techniques 
described by Solomonoff (1959, Appendix II),  the resultant induction 
probabilities would be identical to those obtained in the present section. 

4.3.1 Generation of the Codes and Their Use for Probability Evaluation 

Consider the PSG of Section 4.3. 
A permissable derivation of the acceptable sentence, CCCBCA was 

given in Section 4.3. We can also show this derivation by means of the 
tree: 

f 
a~ 

/ \  
C~ Ca 

I I (54) 
Ca A 

I 

I 
B 

We can write the complete grammar more compactly in the form of 
the string 

a~,/~D; aZC, C/~, A; Ca, B; (55) 

The two groups of symbols before the first ";" are possible substitu- 
tions for ~. The groups up to the next ";" are the possible substitutions 
for a, and the next group are possible substitutions fo r~ .  
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Given the grammar of (55), let us now write a code string for the 
set of two sentences, CCCBCA and CABDCD. The derivation of the 
first of these is given by (54). The second is given by the tree: 

1 
riD 
1 

Ca 
$ (58) 

aZC 
/ l  

A flD 

B 

The first symbol in the code for CCCBCA, using derivation (54), is 
El. This indicates that the first substitution for Z was used. From the 
notation ~1 alone, we know that the sentence must be out of the form 

aS. 
The next symbol tells which substitution to make in the leftmost 

substitutable symbol of the sequence, aS. The notation a2 indicates 
that the second substitution for a (i.e., a --~ CS) is to be made. 

The code sequence ~la2 indicates that the sentence is of the form 
CS~. 

Zla2~l is the intermediate code for CCaS. Again, the newest symbol, 
S1, gives the substitution for the leftmost substitutable symbol in C~fl 
(whose code is Zla2). 

Continuing, we have the following set of intermediate codes and 
partially coded strings: 

21a2~1a2 ; CCCS~ 

Y4a2;~l a2S2 ; CCCBS 

Zla2Sla2S2fll ; CCCBCa 

Z 1 a2S1 a2S2S1 a3; CCCBCA 

After CCCBCA has been entirely coded, it is clear that any further 
symbols in the code will be for the code of the next sentence. Proceeding 
as before, to code both CCCBCA and CABDCD using for the derivation 
of CABDCD the tree of 56. 

2:1~2f11~2f12flla3Z1 ; CCCBCA, SD 
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Zla2~la2~2~la3Zl~l 

Zla2~la2/Y2~la3~l~lal 

Zla2~la2~2~la3~lfllala3 

Zla2flla2fl2~la3Zl~lala3Z2 ; 

Z1a2~1a2~2flla3Z1fllala3Z2~2; 

CCCBCA, CaD 

CCCBCA, Co~Y, CD 

CCCBCA, CAZCD 

CCCBCA, CA~DCD 

CCCBCA, CABDCD 

Our intermediate code for the pair of sentences CCCBCA and 
CABDCD is then: 

~,~D;azC,C~,A ;Co~,B ;Z1a2~l,~2~2~la3Z1~lala3~2~2 (57) 

To compute the a-priori probability of (57) we will use techniques 
similar to those of Sections 4.1.!, 4.1.2, 4.2.1, and 4.2.2. 

To code (57), first write the alphabet symbols, preceded by aZ and 
followed by ";". 

a~ABCD; (58) 

The symbols of (58) are the 0nly legal initial symbols of an inter- 
mediate code. The symbol ";" at the beginning would indicate that 
no definitions were to be used in the code--that the code was for a 
Bernoulli sequence as in the sections following (4.1). 

The first symbol of a more final code for (57) is the integer "1," 
indicating the first symbol of (58). The probability of this symbol is 
~, since 6 other choices are also legal. 

We now rewrite (58) as: 

~o~ZABCD, ; a (59) 

Now, /~, "," and ";" are all legal possibilities. The code for /~, the 
second symbol of (57) is the integer 1, since ~ is the first symbol of (59), 
and its probability is ~ since there are 9 other legal choices. 

We now rewrite (59) as: 

.),[3aZABCD, ; aft (60) 

The third symbol of (57), i.e., "," is coded by the integer 9, and is 
given the probability ~4z. 

We now rewrite (60) as: 

.y~o~F, ABCDa[3, (61) 
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The "," and ";" are omitted here, since neither "," nor ";" can fol- 
low "," immediately. Also, neither "," nor ";" can follow ";" immedi- 
ately. These are the only constraints that we will use in coding the first 
20 symbols of (57), i.e., the "grammar part" of (56). 

For fl, the fourth symbol of (57), either 2 or 10 may be used, so the 
probability of ~ is ~T. 

Using the above methods, we can code up to the rightmost ";" of (57) 
to obtain the a-priori probability of the pure grammar string (55). By 
inspection of the string (55), it is clear that the only symbols that can 
follow are: 

~1, E2, al, a2, ~3,/~1 and ~2. (62) 

String (55) could not be followed by more grammar symbols since 
any new grammar symbols could only serve to define the possible sub- 
stitution of 7. This would be pointless since 7 is not referred to in any of 
the previous substitutions so there would never be any need to know 
what its permissable substitutions are. Another way to look at this is 
to note that there is no chain of conceivable substitutions by which one 
could start with the symbol Z and eventually get to a string containing 
the symbol 7. 

To code the part of (57) that follows the grammar description (55) we 
start by listing the legal symbols, i.e., 

l~2ala2a3fllfl2 (63) 

The subsequence Z1 is to be regarded as a single symbol, as are E2, 
al, etc. 

The code for ~l--the first symbol to follow the (56) subsequence of 
(57)--is i, since E1 is the first symbol of (63). Its probability is then ½, 
since El and E2 are the only possible symbols at that point. So we write 
(63) followed by El. 

Index NO. I 

~l~2ala2a3~l~2~1 (64) 
Code No. i 

The 1 above the terminal symbol of (64) indicates that this ~1 is the 
first symbol of the latter part of (57). 

To code a2, the next symbol of (57), we use the symbol 2 since a2 is 
the second of the three legal possibilities--i.e., al ,  a2 and a3. Its prob- 
ability is ½. 
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I n d e x  N(,s. 1 2 

~1~2ala2a3fll~2~1a2 (65) 
Code  Nos.  1 2 

In expression (66) we have written the nongrammar part of (57), 
preceded by (63). The numbers above the latter terms of (66) are 
simply to be used to refer to the various symbols. The number or num- 
bers below each such term give the code representation or representa- 
tions. Above the index number of each symbol is written its probability: 

Probabi l i ty½~ ½ ~ ½ ~  ~ ~ ~ ¼ ~- 
Index Nos. 12 3 4 5 8 7 8 9 lo 11 12 13 (66) 

ZlY.2ala2a3~lf12~la2~la2~2~l~3Zl~l~1~3~2~2 
1 2 1 2 2 1 3 1 1 1 3 2 2 

Code  Nos .  4 3 3 3 6 4 
5 

For an example, let us take the eleventh term, a3. The only possible 
legal symbols at  that  point, are a substitutions, so al ,  a2 and a3 are 
the only possibilities. The previous set of a substitutions listed are: 

I n d e x  N o s .  2 4 7 10 

ala2a3a2a2a3al (67) 

The third of sequence (67) and the sixth of that  sequence are both 
a3, so 3 and 6 are both ]egal codes for a3 at this point. 

There are 7 symbols in the sequence (67) so the probability of a3 is 
just 2 out of 7 or ~. 

The other probabilities in (66) are computed similarly. The final 
probability to be associated with expression (57) is the product of the 
probabilities obtained in (66) and the probabilities previously obtained 
in coding the pure grammar string (55). 

If it is desired, the methods just discussed can be used to assign large 
integers to each possible code representation. This process would follow 
the techniques discussed in Section 4.1.1. 

I t  must be noted that  the probability obtained in this way will be 
that  associated with a particular grammar and a particular pair of deriva- 
tions for the two sentences of interest. To obtain the total probability 
of these sentences with respect to a particular grammar, it is necessary 
to sum the probabilities of all possible pairs of derivations for them. 

To obtain the total probability of the two sentences with respect to all 
possible grammars, it is necessary to sum the probabilities over all 
possible grammars and sets of derivations. 

I t  is probably possible, however, to make satisfactory predictions by 
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using only the "best" grammar and its derivations. This corresponds to 
predicting using the single "best fitting" model or hypothesis, as is 
very often done. An example is that of fitting curves to empirical data, 
in which the single "best fitting" curve is used to make predictions. 

The use of string (57) to code the two strings 

CCCBCA, CABDCD (68) 

and thereby obtain the probability as described would seem to be a rather 
long way to go about it. Would it not be far easier to code the two strings 
of (68) as a Bernoulli sequence, and would not the resultant code be 
shorter and have a higher probability associated with it? 

The answer to both of these questions is "yes." 
The two strings of (68) would not best be coded using the complex 

PSG of (55). The particular example of strings and grammar used to 
code them were taken to illustrate the coding method and the method of 
probability assignment. The problem of finding a grammar that can best 
be used to describe a set of strings (i.e., that results in a description 
having highest possible a-priori probability) will be discussed in the 
next section. 

4.8.2 A Criterion for "Goodness of Fit" of a P S G  to a Particular Set 
of Strings 

In general, the problem of finding the PSG that "best fits" a given set 
of "acceptable sentences" is not a well defined problem. There are at 
least two grammars that will always "fit" the sentences in question. The 
first grammar, which we will call the "promiscuous grammar", is one in 
which all sequences of symbols drawn from the alphabet are acceptable. 
For the alphabet of symbols 0, 1, one such grammar is the PSG 

E --~ Za a --~ O 
(69) 

Z - - ~ a  ~ - - ~ 1  

In more compact notation it is: 

Za, a; 0, 1; (70) 

The second type of grammar which we will call the "ad hoc grammar" 
is the one in which only the given symbol sequences are acceptable 
sentences and no others. A PSG of this sort for the acceptable sentences 

10110 and 001111 (71) 
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is 

--~ 10110 
(72) 

--. 001111 

In more compact form, the description of the two strings is 

10110, 001111; ~1~2 (73) 

These two kinds of grammars are both incapable of making any useful 
extrapolations. The formal reasons for their inacceptability are, how- 
ever, different. If there is a large number of strings that we want to fit 
the grammar to, then using the promiscuous grammar (70) to help 
describe this set will result in a grammar string of high a-priori prob- 
ability (i.e., the grammar is "simple"), followed by a descriptive string 
that is quite long and is of low a-priori probability. The product of these 
two probabilities is ordinarily much lower than the probability obtained 
by using the "optimum" grammar for description. 

On the other hand, the ad hoe grammar of (72) is rather "complex"-- 
it has a low a-priori probability--while the rest of the descriptive string 
of (73), i.e., S1S2, is short and has high a-priori probability. The product 
of these two probabilities is again usually much lower than would be 
the corresponding quantity, using a more "optimum" grammar for 
description. 

We will use the product of these two probabilities (i.e., the a-priori 
probability of the resultant description) as an approximate criterion of 
"goodness of fit" of the PSG in question to the given set of strings. A 
more exact criterion would sum over the probabilities of all possible 
sets of derivations with respect to the given PSG. 

In the following examples, the coleus will only have one set of deriva- 
tions with respect to the grammars being considered, thus simplifying 
the discussion somewhat. It  should be noted that this situation will not 
occur when more complex PSG's are considered. 

Consider the grammar 

2~ -~ 02~1 
(74) 

~ --~ 01 

All acceptable sentences will be of the form 0(~l(~--which is a se- 
quence of n0's followed by a sequence of nl's. Consider the set of strings: 

01, 0011, 00001111, 0000011111 (75) 
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We will use three different grammars to describe (75). First the 
promiscous grammar (70), then an ad hoc grammar like (72), then 
its "proper" grammer (74). I t  will be seen that  the description via (74) 
is of much higher a-priori probability than those corresponding to the 
other two descriptions. Furthermore, the "degree of betterness" of this 
description would increase if more strings were added to (75). 

Consider first the description via the promiscuous grammar. 
Our intermediate code starts with the grammar string of (70). 

This is followed by E1E2ala2 which describes 01. Next comes 
Y.lY.lY.lE2alala2a2 which describes 0011. Next comes (El)  (7) E2(~1) (4) 
(a2) (4) which describes 0(4)1 (~). Finally comes (~l)(9)E2(al)(~)(a2) (5), 
which describes 0(5)1 (5). 

The probability assigned to the grammar string of (70) is 

} • ~ • ~ • ½ • ~ • ~ • ~ .  ~ • + (76) 

In (77) we have written the probability below each of the correspond- 
ing grammar symbols. 

1 2 3 4 5 6 7 8 9  

a~01,  ; E a , a ; 0 , 1  ; (77) 

The rest of the description consists of a sequence of ~l's, Z2's, al's, 
and a2's. The a-priori probability of this part is the same as that which 
would be obtained by considering it to be two Bernoulli sequences--one 
containing only the symbols E1 and E2, the other containing only al 
and a2. 

The first Bernoulli sequence contains 20 El's and 4 E2's. Its prob- 
ability is: 

(2 -- 1)! 20! 4! 
( 7 8 )  

(2 -- 1 

The second Bernoulli sequence 
is: 

(2- 
(2 - 1 

+ 20 + 4)~ 

has 12 a l ' s  and 12 a2's. I ts  probability 

1)! 12! 12! 
~- 12 -t- 12)! 

(79) 

Expressions (78) and (79) are similar to expressions (35) and (66) 
and are obtained using similar reasoning. The final probability obtained 
for the description of (75) using the promiscuous grammar is the 
product of the probabilities (76), (78), and (79)--which is approxi- 
mately 2.3 X 10 -21. 
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Let us now describe (75) using an ad hoc grammar, i.e., 

01, 0011, 00001111, 0000011111; ~1~2~3~4 (80) 

The first part of the description of (80) is obtained by first writing the 
legal symbol string, ; ~a01, followed by (75). 

I n d e x  nos .  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

, ;~a0101,0011,00 0 0  1 1 1 1 , 0 0  0 0 0  1 1 1 1 1 ; (81) 

In giving probabilities to the first 28 symbols of expression (80), 
the process is identical to that used in coding a Bernoulli sequence 
with the 6 symbol alphabet 

, ; ~a01 

except that the 4th, 9th, and 18th factors have denominators that are 
two smaller than in the Bernoulli sequences and the first factor has a 
denominator that is one smaller. This is because the symbol "," is not 
legal in all four of those positions and ";" is not legal in three of them. 

The resultant probability is: 

(6 - 1)! 3! 1! 0! 0! 12! 12! 1 + 6 
(6-- 1 + 3 + 1 + 0 + 0 + 1 2 + 1 2 ) ~ 1 + 6 - -  1 

(82) 
4 + 6  9 + 6  1 8 + 6  

4+6--29+6--218+6--2 

The last four factors of (82) are corrections due to the constraints 
existing in the coding of the first, fourth, ninth and eighteenth symbols. 

Treating the sequence EiE2E3E4 as a Bernoulli sequence, we obtain 
for it the probability 

1 1 1 1 (83) ~" ~ ' ~ ' ~  

The final probability of the description of (75) using the grammar 

01, 0011, 00001111, 0000011111; 

is the product of expressions (82) and (83), which is approximately 
3.8 X 10 -23. 

Let us now describe (75) using the grammar of (74). The entire 
description is 

0El, 01; Z2~IE2E1E1E1E2E1E12:I~IE2 (84) 
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The probability of 

0Z1, 01; (85) 

is obtained by first writing it as 
1 2 3 4 5 6 7  

a~, ; 010Z1,01 ; (86) 

The product of the probabilities for the various symbols give the 
probability 

1 11 1~ ~ 1 ( 8 7 )  5 - ~ - 8  9 8 1 1 ~  

for (85). 
The sequence Z 2 Z l ~ 2 ~ l ~ l ~ l ~ 2 ~ l ~ l ~ l ~ l ~ 2  contains 8~1's and 

4Z2's. I ts  probability is therefore 

( 2 -  1 ) ! 8 ~ 4 !  
(2 - 1 + 8 + 4)~ (88) 

The final probability of the description of (75) using the correct 
grammar, (74), is then the product of expressions (87) and (88), which 
is approximately 9 X 10 -11. 

Let  us compare the probabilities obtained via the three grammar 
types: 

1. The promiscuous grammar: 2.3 X 10 -21 
2. The ad hoc grammar: 3.8 X 10 -23 
3. The "correct"  grammar: 9 X 10 -11 

I t  is seen that  the probability via the "correct" grammar is much 
greater than the probabilities via the other two. In particular, the 
probabilities via the first two grammars are very roughly the square 
of that  of the third. This is to a large extent due to the fact that  the first 
two grammars each require about twice as many decisions to be made 
in their description, as are made in the third grammar. 

If  we were to forsake PSG's entirely in describing (75) and were to 
describe it as a Bernoulli sequence with the constraint tha t  the first, 
fourth, ninth, and eighteenth symbols cannot be ",", the probability 
assignment would be roughly 4.5 X 10 -13. About as many decisions 
have to be made as in either of the first two grammars, but  each decision 
is given a higher probability since there are usually not as many alterna- 
tive choices. 
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4.3.3 How to Find a PSG That Best "Fits" a Given Set of Strings 

In the previous section we had shown how to obtain a probability 
from a given set of strings, a PSG that could have produced these 
strings, and a set of legal derivations of the strings from the grammar 
rules. 

From a formal point of view, this solves the problem of obtaining a 
PSG of optimum fit (i.e., highest probability), since we can order all 
PSG's and their derivations (if any) of the set of strings. We can then 
find the probability of each PSG, by summing over the probabilities 
of each of its possible derivations of the set of strings. The PSG of 
maximum probability may be then selected and used for extrapolation. 
More exact extrapolations can be obtained by considering all PSG's 
whose fit is close to that of the "best" PSG. A weighted average of the 
extrapolations associated with each possible grammar must be used. 
The weight of a PSG is proportional to the "goodness of fit" of that 
grammar to the known corpus. 

This is not, however, a practical solution. The problem of finding a 
set of PSG's that "fits well" cannot be solved in any reasonable length 
of time by ordering all PSG's and sets of derivations, and testing each 
PSG in turn. 

A method that appears to hold some promise of finding a well fitting 
grammar utilizes a method of digital "Hill climbing" not unlike that 
used in Section 4.2.3. 

We start out with a particular PSG description of the set of sentences 
-- in the cases that have been investigated, the ad hoc grammar was 
used. A probability is assigned to this description using the methods of 
Section 4.3.2. 

Next, a set of possible "mutations" of the description are considered 
that leave the set of strings described invariant. Such possible modifi- 
cations involve the defining of new intermediate symbols in the gram- 
mar, the modification or elimination of various grammar rules, etc. 
Of the set of mutations considered, one is selected that increases the 
entire description probability most (i.e., it most simplifies the descrip- 
tion), and the corresponding modification is made in the description. 

From this new description, a new set of mutations are tried and the 
"best" one is retained. This process of successive mutation and selection 
is continued until a maximum is reached--at which point the resultant 
grammar is retained. 

For an example of a "mutation," consider the set of strings (75), as 



FORMAL THEORY OF INDUCTIVE INFERENCE. II 253 

described by the ad hoe grammar, i.e., expression (80). We can make a 
mutation by "factoring out" the symbol 0 from the lefthand side of 
each of the strings to obtain the description : 

0a; 1,011, 0001111, 000011111; E l a l~ l a2~ l a3~ l a4  (89) 

This description must be evaluated to see if it has a higher probability 
than that of (80). (It should be noted that each occurrence of Z1 in 
(89) is of probability 1 and so these ~l 's may be considered redundant.) 

Other mutations can be devised, utilizing various of the "factoring" 
and "inclusion" rules discussed by Solomonoff (1960). 

The effectiveness of such a "Hill climbing" technique rests largely 
upon what kinds of mutations are considered in each step. Selection of 
suitable mutations will also prevent, to some extent, one's getting stuck 
at "local maxima" rather than reaching the highest point of the "hill." 

Another technique of dealing with local maxima is to select the 10 
(say) best mutations at each step and proceed with the next set of 
nmtations, ahvays retaining the 10 best descriptions thus far and using 
them as bases for mutations. 

At the present time, a set of nmtation types has been devised that 
makes it possible to discover certain grammar types, but the effective- 
ness of these mutation types for more general kinds of grammars is as 
yet uncertain. 

4.3.4 A Criticism of the PSG Coding Method 

In the coding method of Section 4.2, subsequences of Unusually low 
frequency are recognized, and given definitions, thereby increasing the 
probability of the resultant code. This is accomplished by the equivalent 
of certain "parsing constraints" so if ~ ~ AB has been defined, the 
sequence AN can only occur as a ease of a. 

In the PSG coding method that has been described, there are no such 
"parsing constraints," and as a result, there is no good way to take ad- 
vantage of the fact that a certain subsequenee occurs with an unusually 
low frequency. 

It  is hoped that further investigation will make it possible to remove 
this apparent deficiency from the present PSG coding method. 

5. USE OF T H E  T H E O R Y  F O R  D E C I S I O N  M A K I N G  

It is possible to use the probability values obtained through the 
present theory to make decisions in a variety of ways (Luee and Raiffa, 
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1957). Van Heerden (1963) has devised a theory of decision making 
using many heuristic arguments that are applicable to the presently 
described induction theory. He makes decisions as though the prediction 
given by "the best prediction operator" would indeed occur. "The 
best prediction operator" is defined to be the one for which the number 
of bits in the operator's description plus the number of bits in its past 
errors of prediction is minimum. 

In the terms of the present paper, this is equivalent to making predic- 
tions on the basis of the shortest description of a corpus and disregarding 
all other descriptions. 

The essential arbitraryness in his theory arises through the arbitrary 
choice of a language to describe operators. In the present induction 
theory this corresponds to the arbitrary choice of a universal machine. 

RECEIVED: May 24, 1962 
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