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In this paper, we present an algorithm for optimizing synchronizability of complex dynamical
networks. Starting with an undirected and unweighted network, we end up with an undirected and
unweighted network with the same number of nodes and edges having enhanced synchronizability.
To this end, based on some network properties, rewirings, i.e., eliminating an edge and creating a
new edge elsewhere, are performed iteratively avoiding always self-loops and multiple edges be-
tween the same nodes. We show that the method is able to enhance the synchronizability of
networks of any size and topological properties in a small number of steps that scales with the
network size. For numerical simulations, an optimization algorithm based on simulated annealing is
used. Also, the evolution of different topological properties of the network such as distribution of
node degree, node and edge betweenness centrality is tracked with the iteration steps. We use
networks such as scale-free, Strogatz–Watts and random to start with and we show that regardless
of the initial network, the final optimized network becomes homogeneous. In other words, in the
network with high synchronizability, parameters, such as, degree, shortest distance, node, and edge
betweenness centralities are almost homogeneously distributed. Also, parameters, such as, maxi-
mum node and edge betweenness centralities are small for the rewired network. Although we take
the eigenratio of the Laplacian as the target function for optimization, we show that it is also
possible to choose other appropriate target functions exhibiting almost the same performance.
Furthermore, we show that even if the network is optimized taking into account another interpre-
tation of synchronizability, i.e., synchronization cost, the optimal network has the same synchroni-
zation properties. Indeed, in networks with optimized synchronizability, different interpretations of
synchronizability coincide. The optimized networks are Ramanujan graphs, and thus, this rewiring
algorithm could be used to produce Ramanujan graphs of any size and average degree. © 2008
American Institute of Physics. �DOI: 10.1063/1.2967738�

In recent years, the concept of collective behavior has
been recognized in many branches of science and subse-
quently many studies have been initiated to investigate
various types of collective behavior. Synchronization, the
most striking form of collective behavior, has been in the
center of interest of these studies.1 Synchronization is not
defined uniquely and a particular definition is adopted
for each type of application.2 Complete (identical) syn-
chronization is the strongest type of synchronization,
which is achieved when the coupling between dynamical
systems is sufficiently strong. Some works have tried to
formalize the problem of complete synchronization and
relate it to some properties of the connection graph and
the dynamics of the individual dynamical systems.3,4 Syn-
chronizability of a dynamical network is the ease by
which the individual dynamical systems, sitting on the
nodes of the network and interacting through the edges,
can be synchronized. There are various possible interpre-
tations of synchronizability.5 For example, one may argue
that network N1 is more synchronizable than network N2,
if for a larger range of parameters, it is possible to syn-

chronize N1 compared to N2. Another interpretation
could be that N1 is more synchronizable than N2, if less
effort has to be made to achieve synchronization in N1

than in N2. Networks with a particular topological prop-
erty might have better synchronizability than networks
with another topological property. Designing networks
with high synchronizability has various potential applica-
tions. Technological networks with desirable synchroniz-
ability are typical examples where properly assigned in-
teraction between dynamical units is of high importance.
In particular, designing interaction schemes to optimize
the performance of computational tasks based on the
synchronization of processes in computer networks6 and
designing networks with optimized synchronizability for
sensor networks where synchronization is used as a
mechanism for consensus reaching.7 Neuronal networks
are other prototypic examples, where studying optimal
synchronizability may advance our understanding of
their organizing principles. Other examples could be bio-
logical and social networks. In this paper, we will intro-
duce a rewiring algorithm to enhance the synchronizabil-
ity of dynamical networks. The procedure will be
supported by various numerical simulations.
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I. INTRODUCTION

Complex networks such as Internet, World Wide Web,
engineering, social, biological, and economical networks
have been extensively studied in recent years and the publi-
cation volume is growing at a high rate.8–11 Research has
shown that many real-world networks from physics to biol-
ogy, engineering and sociology have some common struc-
tural properties.12 Watts and Strogatz in their seminal work13

observed that many real-world networks exhibit, in general,
two properties; namely, they show the Small-World property,
meaning that the average shortest path length scales logarith-
mically with the network size, a property of random net-
works. Furthermore, many real-world networks have high
clustering �or transitivity�, meaning that there is an increased
probability that two nodes will be connected directly to one
another if they have another neighboring node in common.
Many real-world networks have also a power-law node-
degree distribution, meaning that when a new node is added
to the networks, the probability of being connected to other
nodes is proportional to their degrees; the higher the degree
of a node the higher the probability of being connected.
Barabási and Albert reported this fact in their work and pro-
posed a preferential attachment algorithm to construct such
networks.14

An interesting phenomenon that is observed in complex
networks is collective behavior, synchronization.1,15 Due to
strong enough interaction between dynamical systems, they
can adjust their motion, i.e., they can synchronize. Synchro-
nization is often encountered in living systems, such as, cir-
cadian rhythm, phase locking respiration with mechanical
ventilator, phase locking of chicken embryo heart cells with
external stimuli, interaction of the sinus node with ectopic
pacemakers, synchronization of oscillations of human insulin
secretion and glucose infusion, locking of spiking from elec-
troreceptors of a paddlefish to weak external electromagnetic
field, synchronization of heart rate by external audio or vi-
sual stimuli and synchronization of neurons in the brain.1

Indeed, the tendency to achieve common rhythms of mutual
behavior, or in other words, the tendency to synchronization,
is an important feature in our living world. During the last
couple of decades the notion of synchronization has been
generalized to the case of interacting chaotic oscillators,16

which has led to different concepts of synchronization,
such as complete �identical�, phase, and generalized
synchronization.17 Synchronization is possible if at least two
dynamical systems interact but it also happens in ensembles
including hundreds, thousands, millions, and even more in-
dividual dynamical units. The early works on synchroniza-
tion of dynamical systems were concerned with only a small
number of coupled oscillators, but many real-world systems
where synchronization is relevant, consist of a large number
of dynamical systems interacting with a complex coupling
structure.

One important issue in studying the synchronization of
dynamical networks is their synchronizability. For many ap-
plications, it is desired to have networks with high synchro-
nizability. For examples, sensor networks with high degrees
of synchronizability have faster convergence time than net-

works with lower synchronizability.18 In general, there are
two methods for enhancing synchronizability of dynamical
networks: assigning proper connection weights5,19–23 and re-
wiring the links.24,25 In this work, we design an efficient
algorithm for performing rewirings to obtain a network with
enhanced synchronizability. Starting with an unweighted and
undirected network and by considering some properties of
the network, at each iteration step a proper rewiring is per-
formed. The proposed optimization algorithm is fast and in
relatively few steps it is able to find a network structure with
high synchronizability. Numerical simulations are performed
to support the algorithm.

II. SYNCHRONIZABILITY OF DYNAMICAL NETWORKS

Let us consider an undirected and unweighted network
with N nodes with the dynamics of motion as

ẋi = F�xi� − ��
j=1

N

LijHxj; i = 1,2, . . . ,N , �1�

where xi�Rd is a d-dimensional vector of state variables of
the ith individual dynamical system and � is the �constant�
diffusive coupling strength. F :Rd→Rd defines the individual
system’s state equation. L= �Lij� that is called Laplacian is a
symmetric matrix with vanishing row-sums and positive di-
agonal entries, i.e., Lij =Lji for all pairs of �i , j�, Lij �0 for
i� j, and � j=1

N Lij =0 for all i. The nonzero elements of the
d�d matrix H determine the coupling between the various
states of individual dynamical systems that are interacting.

The local stability of the synchronization manifold x1

=x2= ¯ =xN can be studied in the formalism of
master-stability-function.4 The variational equations of the
dynamical network �1� along a synchronized solution x1�t�
=x2�t�= ¯ =xN�t�=s�t� can be written as

�̇i = DF�s��i − ��
j=1
j�i

N

LijH� j; i = 1,2, . . . ,N , �2�

where D stands for the Jacobian operator. One can write the
symmetric matrix L as L=���T, where � is a diagonal ma-
trix of real eigenvalues of L and � is the orthogonal matrix
whose columns are the corresponding real eigenvectors of L.
Let us define �= ��1 ,�2 , . . . ,�N�=��T, where �
= ��1 ,�2 , . . . ,�N�. Then, Eq. �2� is equivalent to

�̇i = DF�s��i − ��iH�i; i = 1,2, . . . ,N , �3�

where �i, i=1, . . .N, are the eigenvalues of L, ordered as 0
=�1��2� ¯ ��N, in which �1=0 is associated with the
synchronization manifold. The largest Lyapunov exponent of
Eq. �3�, ����i�, called master-stability-function,4 yields a
necessary condition for the local stability of the synchroni-
zation manifold. If the synchronization manifold is stable,
we must have ����i��0, ∀ i	2. Synchronizability of a
dynamical network is the ease by which synchronization can
be achieved. There is no single interpretation of synchroniz-
ability and a particular choice is adopted for each study.5 For
a number of systems, such as, x-coupled Rössler systems, the
master-stability-function is negative only within a bounded
interval �a1 ,a2�.4 Requiring all coupling strengths to lie
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within such an interval, i.e., a1���2� ¯ ���N�a2, one
concludes that the synchronization manifold can only be lo-
cally stable if

�N

�2
�

a2

a1
. �4�

As it can be seen in Eq. �4� the left-hand side of the inequal-
ity depends solely on the structure of the network, while the
right-hand side depends on the dynamics of the individual
systems and the coupling configuration. One of the interpre-
tations of synchronizability points out that the larger the
range of connection strength stabilizing the synchronization
manifold, the better the synchronizability of the network.5

Therefore, Eq. �4� relates the synchronizability to the eigen-
ratio �N /�2, and concludes that the smaller the eigenratio
�N /�2 of a network the better its synchronizability. This in-
terpretation of synchronizability has been extensively used in
the literature,19,22,25–27 even though it is linked to the situa-
tion where the master-stability-function is negative only in a
finite interval, which is by far not always the case. However,
other measures of synchronizability often go hand in hand
with �N /�2.

III. REWIRING AS A MECHANISM TO OPTIMIZE �N /�2

Our aim is to build networks with predetermined size
and average degree having optimal synchronization proper-
ties, i.e., minimal �N /�2. Let us first give an overview over
the synchronizability of some well-known networks. In gen-
eral, random networks have better synchronizability than
regular networks, which is mainly due to the shorter average
distance. Strogatz–Watts networks have, in general, better
synchronization properties than scale-free networks.28–31 Al-
though average distance is an important factor determining
the synchronizability of dynamical networks, it might hap-
pen that networks with higher average distance have better
synchronization properties than those with shorter distance.27

It has been shown that the synchronizability is enhanced by
decreasing the heterogeneity in the distribution of between-
ness centrality.32 In general, heterogeneity of the network is
one of the most influential factors determining its synchroni-
zability, the less heterogeneous the network the better its
synchronizability.26

Considering an undirected and unweighted network with
N nodes and average degree �k�, we would like to obtain an
undirected and unweighted network with the same number of
nodes and average degree, and thus the same number of
edges, and with enhanced synchronizability, i.e., minimized
eigenratio �N /�2. Donetti et al. proposed a simulated anneal-
ing based optimization algorithm to minimize �N /�2.24,25,33

In their proposed algorithm, at each step, a number of rewir-
ing trials is randomly extracted from an exponential distribu-
tion. Each of them consists in removing a randomly selected
link, and introducing a new one joining two random nodes.
Then, the attempted rewiring is �i� rejected if the updated
network is disconnected, or has a self-loop or multiple edges
between the same nodes, otherwise, �ii� accepted if eigenra-
tio �N /�2 of the new network is less than the previous one or,
�iii� accepted according to a probability measure. The pro-

cess is iterated until there is no change during some succes-
sive steps, assuming that a relatively good local minimum of
�N /�2 has been found. Although this method is powerful in
finding a network topology with high synchronizability it is
very expensive to perform and the completely random rewir-
ing strategy limits its application to relatively small net-
works.

Wang et al. proposed a method using a heuristic memory
based on tabu search to maximize network resilience.34 Si-
multaneously, the eigenratio �N /�2 of the network has also
been studied. By iterative random rewirings and a prescribed
stop condition, they have tried to optimize the network. Fal-
lat and Kirkland have proposed a graph-theoretical approach
to maximize �2 over the set of trees of fixed diameter.35

Ghosh and Boyd36 have proposed a convex optimization
method for growing well-connected networks. They pro-
posed a heuristic greedy perturbation algorithm for adding
proper edges to a base network that has maximum effect on
increasing �2. If u2 is the eigenvector with unit norm corre-
sponding to �2, then u2u2

T is a supergradient of �2 at the
Laplacian matrix L, i.e., for any symmetric matrix Y we
have36

�2�L + Y� � �2�L� + trace�Yu2u2
T� . �5�

If �2 is isolated, i.e., �1��2��3, then �2�L� is an analytic
function of L. In this case, the super-gradient is the gradient,
i.e.,

�2�L + Y� − �2�L� � trace�Yeij
u2u2

T� = �u2i − u2j�2, �6�

where u2 is the unique normalized eigenvector �up to a sign
flip� corresponding to �2, eij is the added edge and Yeij

is the
Laplacian matrix of a symmetric adjacency matrix with 1 in
the elements corresponding to eij and zero elsewhere. In
other words, when �2�L� is isolated, �u2i−u2j�2 gives the
first-order approximation of the increase in �2�L� if edge eij

is added to the network. Then, they concluded that adding a
nonexisting edge that maximizes �u2i−u2j�2 seems to be a
good strategy to increase �2 effectively.36

In spectral graph theory, �N is often related to the maxi-
mum degree of the graph, i.e., �N� �kmax,2kmax�. Anderson
and Morley showed that �N�max	ki+kj
, where the ith and
the jth nodes are adjacent.37 Intuitively, one might try to
decrease kmax or max	ki+kj
 to decrease �N.

Here we propose a rewiring algorithm, which takes ad-
vantages of graph structural properties to decide which edges
are to be disconnected and which are the new connections.
Considering a network with N nodes and average degree �k�,
the algorithm consists of the following steps:

1. The eigenratio �N /�2 of the network is calculated and in
the first iteration step ��N /�2�min=�N /�2.

2. For each edge eij �connecting the ith and jth nodes� of
the network, the quantity Ecut,ij = �ki+kj� is calculated,
where ki is the degree of the ith node. Ecut is used to
choose one edge for disconnecting, i.e., the probability
of choosing an edge for disconnection is proportional to
exp�Ecut�.

3. For each pair of nonadjacent nodes i and j, the quantity
Econnect,ij = �u2i−u2j�2 is calculated, which is used for
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choosing a pair of nonadjacent nodes to connect an edge
between them. The probability of creating an edge be-
tween the ith and the jth �nonadjacent� node is propor-
tional to exp�Econnect,ij�.

4. After rewiring, the cost function �N /�2 of the new net-
work is calculated. Then,

�i� if the network is disconnected, the rewiring is re-
jected, otherwise;

�ii� if the eigenratio of the new network ��N /�2�new is less
than the eigenratio of the old network ��N /�2�old, the
rewiring is accepted and ��N /�2�min= ��N /�2�new;

�iii� if ��N /�2�new
 ��N /�2�old, the rewiring is accepted
with the probability of min�1,max	0,THR
− ���N /�2�new− ��N /�2�min�
�. THR is a threshold vari-
able which is initially set to zero and in each step
when the rewiring is rejected, it is increased by
dTHR / log�T+1�, where dTHR is a constant and T is the
number of iterations performed. When the rewiring is
accepted, THR is reset to zero. This procedure, which
indeed is an extension to the simulated annealing ap-
proach, helps the algorithm avoid getting trapped by a
local minimum.

5. The algorithm is stopped after a predetermined number
of iterations.

Next we will support this procedure by numerical simu-
lations on some sample networks.

IV. SIMULATION RESULTS

We give numerical simulations of optimization of the
eigenratio �N /�2 for different classes of networks. To this
end, scale-free and Strogatz–Watts networks are considered.
Scale-free networks are constructed by the following
algorithm.19 Starting with a network of m+1 all-to-all con-
nected nodes, at each step a new node is added to the net-
work and is connected to m other nodes. Such an edge con-
nects to old node i with probability Pi= �ki+B� /� j�kj +B�,
where ki is the degree of the node i and B is a tunable real
parameter controlling the heterogeneity of the network.19

Strogatz–Watts networks are constructed using the following
algorithm.13 Considering a ring network with N nodes, each
connected to its m-nearest neighbors by undirected edges, the
edges of each node are randomly rewired to other nodes of
the network with a probability P, avoiding duplications of
edges. Note that for the case with P=1, a fully random net-
work is obtained.

The optimization algorithm was applied to scale-free and
Strogatz–Watts networks with N=200 and �k�=6. For the
optimization algorithm we fixed dTHR=0.5 and the results
were averaged over 10 realizations. Figure 1 shows the
eigenratio �N /�2 as a function of iteration steps. It shows
that the eigenratio is exponentially decreased as the algo-
rithm proceeds and a dramatic decrease is obtained by intro-
ducing only a few rewirings. Our experience showed that
about 2N iteration steps is enough to reach an asymptotic
behavior. It is worth mentioning that the optimized network
is largely independent of the initial network and no matter

what the initial network is, the final networks with optimized
synchronizability have the same properties. For networks of
small size, where the optimal network topology is known,
our algorithm always finds the optimal network. An example
of an optimized network where the initial network was a
Strogatz–Watts network with N=50 and �k�=4 is depicted in
Fig. 2.

We also performed a more systematic analysis on the
contribution of �N and �2 on the optimization process. Figure
3 shows the profile of �2 and �N as a function of the eigen-
ratio �N /�2 during the optimization process for different net-
works with N=200 and �k�=6. As it is seen, in scale-free
networks, in general, the optimization process influences �N

more than �2. On the contrary, in Strogatz–Watts and random
networks maximizing �2 plays the main role in the optimi-
zation of the eigenratio �N /�2. Indeed, since �N has large
values for heterogeneous networks,27 such as, scale-free net-
works with small values of B, the optimization algorithm
should first put more effort to change the topology in such a
manner as to reduce �N than to try to maximize �2.

Figure 4 shows an evolution of different parameters of
the networks during the optimization process. It can be seen
that the networks belong to a class of homogenous networks
where the optimized network becomes homogenous in the

FIG. 1. �Color online� The eigenratio �N /�2 as a function of iteration steps
for scale-free �SF� and Strogatz–Watts �SW� network with N=200 and �k�
=6. The optimization target is to minimize the eigenratio �N /�2. Data are
averaged over 10 realizations.

FIG. 2. �Color online� The picture shows a Strogatz–Watts network with
N=50, �k�=4, and P=0.2 on the left and the resulting optimized network on
the right. The colors of nodes in each picture are proportional to their de-
gree, i.e., in each of the pictures; the nodes with same color have the same
degree. For the original network in the left �N /�2=15.501, whereas for the
optimized network in the right �N /�2=4.948.
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sense that parameters, such as, degree, node, and edge be-
tweenness centralities vary little over the network. In other
words, networks with optimized synchronizability belong to
a class of random homogenous network with almost zero
variance of degree, node, and edge betweenness centralities.
Additionally, the maximum node and edge betweenness cen-
tralities is distinctly lower than for other types of homog-
enous networks, such as, ring or lattice.

We also investigated the efficiency of the rewirings. As
mentioned, a drawback of the method proposed by Donetti et
al.24 is that the rewirings are done in a blind way that makes
the convergence of the optimization algorithm very slow.
This problem is overcome in our proposed rewiring algo-
rithm. Figure 5 shows the percentage of the rewiring candi-
dates that makes the target function decrease, and hence are
accepted. The results show the average percentage over in-
tervals of iteration steps for different networks with N=200
and �k�=6. It shows that in the first 50 steps, a vast majority
of rewirings are accepted, which indeed indicates that the
algorithm decreases the eigenratio dramatically in the first
few steps. Essentially, as the iterations proceed and a mini-
mum of the target function is approached, less and less can-
didate rewirings are accepted. These results reveal the effec-
tiveness of the proposed rewirings in optimizing the
synchronizability.

The proposed rewiring algorithm is rather fast and can
be applied to optimize large networks. Figures 6�a� and 6�b�
show the performance of the algorithm for different networks
with �k�=6 and N=500 and N=1000, respectively. As men-
tioned, the rewiring algorithm is able to optimize the net-
work to reach reasonable synchronizability in only 2N steps.
Note that if random rewiring strategy24 is used, the optimi-
zation process, if it works, takes a very long time for large

FIG. 3. �Color online� Behavior of �a� �2 and �b� �N as a function of the
eigenratio �N /�2 during the optimization process for different networks with
N=200 and �k�=6. Data are averaged over 10 realizations.

FIG. 4. �Color online� Profile of �a� variance of node degree �VARk�, �b�
variance of node betweenness centrality �VARc�, �c� variance of edge be-
tweenness centrality �VARl�, �d� average distance �d�, �e� maximum node
betweenness centrality �cmax�, and �f� maximum edge betweenness centrality
�lmax�, as a function of iteration steps for different networks with N=200 and
�k�=6. The optimization target is to minimize the eigenratio �N /�2. Graphs
show the averages over 10 realizations with the corresponding error bars for
the standard deviation.

FIG. 5. �Color online� Percentage of the rewirings which are accepted. The
acceptance rates are obtained by averaging over intervals of iteration steps.
The networks are with N=200 and �k�=6, and data refer to averaging over
10 realizations.

FIG. 6. �Color online� The eigenratio �N /�2 as the iteration steps for differ-
ent networks with �k�=6 and �a� N=500, �b� N=1000. Data refer to aver-
ages over 10 realizations.
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networks. It is worth mentioning that the proposed method is
not sensitive to the network size and average degree, and the
general behavior of the algorithm remains the same regard-
less of these properties.

We investigated also the correlation of some network
properties, such as, node degree �number of links connecting
to a node�, node betweenness centrality �number of shortest
paths making use of a node�, and edge betweenness central-
ity �number of shortest paths passing through an edge�, with
the eigenratio during the optimization period. Table I shows
the average correlations for networks with N=200 and
�k�=6. For scale-free networks the parameter B varied from
0 to 10 and for Strogatz–Watts networks P varied in the
range �0.1–1�. One can see that the variance of node degree
�VARk�, the variance of node betweenness centrality
�VARc�, the variance of edge betweenness centrality �VARl�,
the maximum degree �kmax�, the maximum node betweenness
centrality �cmax�, and the maximum edge betweenness cen-
trality �lmax� are highly correlated with �N /�2. In other
words, by minimizing the eigenratio �N /�2, some network
properties are also minimized. This fact lets us employ other
optimization targets. For example, we investigated two other
optimization goals: minimizing 1 /�2 and minimizing
cmax�VARc+1� and the performance is shown in Fig. 7. As it
can be seen, the general behavior is the same as the case with
�N /�2 as an optimization target �Fig. 1�. This indicates that
for optimizing the eigenratio �N /�2, one can take a target
function, such as, cmax�VARc+1� that avoids computing the
eigenvalues at each step. It further indicates that in networks
with high synchronizability, different interpretations of
synchronizability,5 such as, �N /�2 and 1 /�2 are almost
equivalent.

We compare the performance of the proposed efficient
rewiring algorithm with that of the random rewiring pro-
posed in Ref. 24. The results are shown in Fig. 8 for scale-
free �B=0� and Strogatz–Watts �P=0.2� networks with N
=200 and �k�=6. It is seen that the efficient rewiring algo-
rithm could make the eigenratio to reach the steady-state in
only 400 iterations, whereas random rewiring algorithm pro-
vides the steady-state behavior after 4000 iterations. Thus,
the efficient rewiring outperforms in speeding up the optimi-
zation task compared to the blind random rewiring strategy.
Furthermore, although the optimization is iterated for a long-
period �100 000 iterations�, the network optimized using ran-
dom rewiring has still larger eigenratio compared to the one
optimized using our proposed efficient rewiring. However, it
is not excluded that using random rewiring, one might obtain
networks with a lower eigenratio �comparable with those of
the ones obtained using efficient rewiring�, but probably at
the price of a large number of repetitions of the optimization
process.

Let us say some words on the complexity of the algo-
rithm. Since the method is based on the calculation of the
eigenvalues and eigenvectors of the Laplacian of the connec-
tion network, its computational complexity is O�N3�. How-
ever, if the network is sparse, which is the case for many
applications, there are some methods that calculate only
some smallest and largest eigenvalues and the corresponding

TABLE I. Pearson correlation coefficients of the eigenratio �N /�2 with variance of node degree �VARk�,
variance of node betweenness centrality �VARc�, variance of edge betweenness centrality �VARl�, maximum
degree �kmax�, maximum node betweenness centrality �cmax�, and maximum edge betweenness centrality �lmax�.
The networks are scale-free and Strogatz–Watts networks with N=200 and �k�=6 and the results are averaged
over 10 different networks of each type each with 30 realizations.

kmax VARk cmax VARc lmax VARl

Scale-free networks 0.97�0.005 0.99�0.003 0.99�0.003 0.99�0.002 0.98�0.01 0.99�0.002
Strogatz-Watts networks 0.91�0.051 0.95�0.023 0.96�0.027 0.95�0.014 0.93�0.028 0.95�0.027

FIG. 7. �Color online� The eigenratio �N /�2 as a function of iteration steps
for different networks with N=200 and �k�=6. The target functions for
optimization are minimization of �a� 1 /�2 and �b� cmax�VARc+1�. Graphs
show averaging over 10 realizations.

FIG. 8. �Color online� The eigenratio �N /�2 as a function of iteration steps
for scale-free and Strogatz–Watts network with N=200 and �k�=6. The
optimization target is to minimize the eigenratio �N /�2 and two rewiring
algorithms, i.e., random rewiring �RR� and efficient rewiring �ER�, are used.
Data are averaged over 10 realizations.
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eigenvectors.38 A possible extension of the algorithm is to
construct it based on only information obtained from node
and edge betweenness centrality distributions, which has the
computational complexity of O�NE�,39 where E is the num-
ber of edges of the network. In this was, for sparse networks,
the complexity becomes approximately O�N2� and makes it
suitable for applying to very large networks. By choosing the
rewiring criteria as Econnect,ij =Cij �Cij is the sum of the be-
tweenness centrality of the nodes belonging to the shortest
path of the ith and jth node� and Ecut,ij = �ki+kj�, and the
target function as cmax�VARc+1�, the obtained eigenratio
�N /�2 of the optimized network is very close to the one
obtained through the eigenvalue based approach �not re-
ported here�.

V. CONCLUSIONS AND DISCUSSION

By choosing the eigenratio �N /�2 as a synchronizability
measure, we proposed a rewiring algorithm for optimizing
the synchronizability of dynamical networks. The algorithm
employs rules based on the properties of the network for
rewiring, i.e., a rule based on the eigenvector corresponding
to the second smallest eigenvalue of the Laplacian matrix of
the network for adding edges and a rule based on node de-
gree for disconnecting the edges. We utilized a modified ver-
sion of the simulated annealing approach to perform the op-
timization task. Since the rewirings are performed in an
intelligent fashion, it is much faster compared to the other
methods with random rewiring strategy.24,25 Our experience
showed that roughly 2N of rewiring steps is enough to obtain
a network with near-optimal synchronizability. We also
showed that the algorithm is not sensitive to the specific
target function, i.e., �N /�2, and some other quantities such as
1 /�2 can also be used equivalently as the target function to
optimize the synchronizability. Indeed, in the optimized net-
works, different interpretations of synchronizability, such as
“the smaller the �N /�2 the more synchronizable the network”
and “the larger the �2 the more synchronizable the network,”
coincide.

Starting from any initial network and by employing the
proposed rewiring algorithm we end up with a class of ho-
mogenous random networks. The optimized networks are ho-
mogenous in their degree, node and edge betweenness cen-
trality distribution. Their maximum node and edge
betweenness centrality is low and the shortest loop �girth� is
large. Also, the possible transitivity and modular structure of
the networks vanished during the optimization process.

Since the computation of eigenvalues and the corre-
sponding eigenvectors are rather expensive, one can con-
struct the algorithm based on the node betweenness central-
ity that is simpler to compute, especially for sparse networks.
The betweenness centrality based rewiring algorithms ob-
tains close results compared to the original eigenvalue based
approach.

As a consequence of maximizing �2 and perfect homo-
geneity, the optimized networks belong to a family of net-
works called Ramanujan networks. A k-regular network with
the property �2	 �k�−2��k�−1 is called Ramanujan
network.40 Therefore, our proposed rewiring algorithm can

be applied to construct Ramanujan networks of any size and
average degree.
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