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We have analyzed the detectability limits of network communities in the framework of the pop-
ular Girvan and Newman benchmark. By carefully taking into account the inevitable stochastic
fluctuations that affect the construction of each and every instance of the benchmark, we come to
the conclusions that the native, putative partition of the network is completely lost even before the
in-degree/out-degree ratio becomes equal to the one of a structure-less Erdös-Rényi network. We
develop a simple iterative scheme, analytically well described by an infinite branching-process, to
provide an estimate of the true detectability limit. Using various algorithms based on modularity
optimization, we show that all of them behave (semi-quantitatively) in the same way, with the same
functional form of the detectability threshold as a function of the network parameters. Because the
same behavior has also been found by further modularity-optimization methods and for methods
based on different heuristics implementations, we conclude that indeed a correct definition of the
detectability limit must take into account the stochastic fluctuations of the network construction.

In the process of introducing the most celebrated quan-
tity modularity [1], Girvan and Newman (GN) also pro-
posed a method to compare the performance of commu-
nity detection algorithms, which is still at the basis of
modern assays [2–4]. In the GN benchmark, different al-
gorithms are tested on a set of planted l-partition models
[5]. In a nutshell, a planted l-partition model is a net-
work composed of l groups of n vertices that are stochas-
tically connected with each other: the edge between any
two vertices within the same group is present with prob-
ability pin, whereas the edge between any two vertices
belonging to different groups is present with probabil-
ity pout. Accordingly, the average internal degree is
〈kin〉 = (n − 1)pin, whereas the average external degree
is 〈kout〉 = (l − 1)npout. To measure the extent of the
community structure present in the planted l-partition
model, it is customary to introduce the mixing parame-
ter µ that is defined by the relations 〈kout〉 = µ〈ktot〉 and
〈kin〉 = (1− µ)〈ktot〉, where 〈ktot〉 = 〈kin〉+ 〈kout〉 is the
average total degree. Indeed, at µ = 0 the network has l
disconnected components; as µ increases, the average in-
ternal degree decreases while the average external degree
toward one specific other cluster, 〈kout〉/(l−1), increases
until they become equal at µ = (l − 1)/l ≡ µER

c , when
the planted l-partition model is, in fact, an Erdös-Rényi
graph [6]. The performance of different algorithms is
then ranked according to the value of the mixing param-
eter beyond which they can no longer recover the native
l clusters. Thus, the GN benchmark tries to encode the
simple heuristics that communities correspond to groups
of vertices that are more connected with each other than
with the rest of the network, although of course a rigorous
unambiguous definition of “more connected” is presently
lacking.

Naively, one would expect any clustering algorithm to
be successful at most up to µER

c . However, this is not
the case because the construction of a planted l-partition

model is a stochastic process. Indeed, it might happen
even at µ < µER

c that a vertex declared as belonging
to a group has fewer connections toward its putative
community than toward a different one. According to
the fundamental heuristic definition of community, out-
lined above, this fluctuation should be interpreted as a
change of membership (a relabeling) of the vertex. Thus,
we can expect that the community structure will be
badly degraded when the difference between 〈kin〉 and
〈kout〉/(l− 1) is comparable with its own statistical fluc-
tuation, an argument that translates into the condition
〈kin〉 − 〈kout〉/(l− 1) = αl

√
〈ktot〉, where αl is a positive

real constant that may depend on l. Thus, we can argue
that the native community structure disappears when

µ > µER
c

(
1− αl√

〈ktot〉

)
(1)

and any algorithm trying to recover the native partition
based on criteria that adhere to the heuristics should con-
sequently fail to do so because, in essence, there is no
native structure to be recognized anymore.

In order to gauge the extent to which stochastic fluc-
tuations skew network realizations away from the na-
tive one, we have analyzed the planted l-partition mod-
els of the original GN benchmark (l = 4, n = 32, and
〈ktot〉 = 16). Nodes with more connections to an outer
group than to their putative one were relabeled, and the
procedure was iteratively repeated until no more nodes
had to change their membership. For each realization,
we measured the similarity between the relabeled parti-
tion R and the native partition N using the normalized
mutual information In(R,N ) [7]. In(R,N ) is defined as

In(R,N ) ≡ I(R,N )

H(R) +H(N )
,
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where

In(R,N ) =
∑

r∈R

∑

n∈N
p(r, n) log

(
p(r, n)

p(r)p(n)

)
,

is the mutual information of R and N , H(R) =
−∑r∈R p(r) log p(r) is the entropy of R, and H(N ) =
−∑n∈N p(n) log p(n) is the entropy of N . p(r) is the
probability that a node belongs to the community r
within the relabeled partition R, p(n) is the probabil-
ity that a node belongs to the community n within the
native partition N , and p(r, n) is the probability that
a node is simultaneously assigned to the community r
within the native partition R and to the community n
within the relabeled partition N .

The outcome is shown in Fig. 1: because In(R,N ) de-
creases as µ increases and because it goes to zero well
before µER

c = 3/4, a labeling closer to what a zero order
heuristics would suggest is already different enough from
the native partition that the latter could not be detected
anymore. As modularity was conceived with the same
simple heuristics in mind, we have applied three different
clustering algorithms based on its maximization to the
networks of Fig. 1: simulated annealing [8], that looks for
the absolute maximum, and two greedy algorithms, fast-
greedy [9] and Louvain method [10]. Both are agglom-
erative algorithms, but the former acts globally at each
step, whereas the latter works locally and in a multistep
hierarchical fashion. Interestingly, the modularity of the
relabeled partition, Q(R), can be larger than the mod-
ularity of the native one, Q(N ), in a significant region
of µ values. Even more intriguingly, there the modular-
ity found by simulated annealing roughly coincides with
the modularity of the relabeled partition, Q(R), and the
similarity between the retrieved partition and the rela-
beled partition is larger than the similarity between the
retrieved partition and the putative partition, signaling
that modularity optimization and relabeling agree on the
detected deviations from the native partition. Greedy
methods do not follow the same trend, likely because of
the roughness of the modularity landscape, that hampers
these algorithms for small values of the total degree [8];
nonetheless they stop agreeing with the native partition
in the same region as relabeling and simulated annealing.

We then moved to larger networks, for various values
of the total average degrees and for different number of
putative communities (l = 2, 4, 8). Once again our goal
was to use relabeling to discern when stochastic fluctua-
tions completely distort the native partition. We applied
then the iterative relabeling procedure outlined above,
expectedly finding that the similarity between the re-
labeled partition and the native one decreased as µER

c

was approached. The similarity threshold, defined as the
value µRc of the mixing parameter where In(R,N ) falls
below 0.01, was very well described by Eq. (1), up to cor-
rections of order 1/〈ktot〉. Furthermore, αl approaches 1

FIG. 1. Similarity (upper panel) along with the modularity
difference (lower panel) between the relabeled partition (�),
the partitions retrieved by simulated annealing (◦ in red),
by fastgreedy (♦ in green), and by the Louvain method (4 in
blue) with the native partition for the original GN benchmark
(n = 32, l = 4, 〈ktot〉 = 16). Each point is averaged over
500 realizations, the error is smaller than the marker size.
Further, five networks at different µ are depicted to visualize
how relabeled vertices slowly invade other putative clusters.

from above as l increases (Fig. 2, �), therefore recovering
the detectability threshold

µ̂c ≡ µER
c

(
1− 1√

〈ktot〉

)
(2)

recently derived with random matrix theory approach to
modularity maximization [11] and consistent with a pre-
vious result obtained from a message passing approach to
community detection over block models (solved using the
the cavity method) [12, 13], which is not based on modu-
larity. These results confirm thus that the stochastic fluc-
tuations affecting the network construction are so strong
to make the native structure disappear before µER

c , and
consistently with Eq. (1).

The functional form of Eq. (1) for µ̃Rc can be for-
mally derived from the topology of the planted l-partition
model and from the aforementioned definition of mem-
bership by requiring that each relabeled vertex leaves in
its wake further vertices to be relabeled, thus trigger-
ing an infinite avalanche. We defined P l

1(µ, 〈ktot〉) as
the probability that a node has an internal degree that
is larger or equal than its number of connections with
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FIG. 2. Comparison between the similarity thresholds µ̂c (Eq. 2, dashed line), µ̃R
c (Eq. 3, ×), µR

c (In(A,R) ≈ 0.01 , �), µf
c

(In(A,N ) ≈ 0.01 for fastgreedy, ♦), and µL
c (In(A,N ) ≈ 0.01 for the Louvain method, 4) for l = 2 (left panel), 4 (central

panel), and 8 (right panel). In the last case, the results for fastgreedy are not available because the network sizes required to

exit the “glassy phase” are out of its reach. The solid lines are fits of the form µc = µER
c

(
1− α/

√
〈ktot〉+ β/〈ktot〉

)
. Errors

are smaller than markers and to improve the visualization everything is divided by µER
c .

nodes of another given group. Assuming that the net-
work is tree-like in the same mean-field spirit of [11–13],
in the limit 〈ktot〉 → ∞ an avalanche is infinite if

((1− µ)〈ktot〉 − 1)
(
1− P l

1(µ, 〈ktot〉)
)

= 1 , (3)

as in this limit the probability that a node with a rela-
beled neighbor maintains its membership converges (ex-
ponentially fast) to P l

1(µ, 〈ktot〉). For an infinite planted
l-partition model

P l
1(µ, 〈ktot〉) = e−〈ktot〉

∞∑

i=0

1

i!
((1− µ)〈ktot〉)i




i∑

j=0

1

j!

(
µ〈ktot〉
(l − 1)

)j



l−1

;

(4)
further, it is possible, although cumbersome, to prove an-
alytically that P2

1 (µ, 〈ktot〉) depends only on the rescaled
mixing parameter (µ− µER

c )
√
〈ktot〉 up to corrections of

the form (a+ b/〈ktot〉) when 〈ktot〉 → ∞. Therefore, we

made the ansatz P l
1(µ, 〈ktot〉) = F l

(
(µ− µER

c )
√
〈ktot〉

)
,

where F l(·) : R → [0, 1] is a scaling function, which is
also numerically confirmed for l > 2 (Fig. 3 for l = 4).

Taking these results together, the (numerical) solution
of Eq. (3) yields µ̃Rc as a function of 〈ktot〉 and it indeed
shows that Eq. (1) is valid up to corrections of order
1/〈ktot〉 (Fig. 2, ×). We can again confirm that it is a
general feature of the relabeled community structure to
be appreciably different from the “native” one at some
µ < µER

c (and scaling as in Eq. (1)).
Armed with this new view of the resilience to fluctua-

tions of the GN benchmark, we also reanalyzed the per-
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FIG. 3. Magnification of the data collapse of P l
1(µ, 〈ktot〉) for

l = 4 and for different values of 〈ktot〉 (different colors). The
inset displays the original data.

formance of modularity optimization methods fastgreedy
and Louvain (we could not test simulated annealing for
the sizes under scrutiny here) [4]. In spite of their differ-
ences, their behavior is qualitatively similar at low 〈ktot〉,
when the modularity landscape is rough, giving rise to a
glassy phase [8]: at low values of µ the two algorithms,
that just look for local modularity maxima, are not able
to find partitions with a modularity as high as the native
one, which on average follows the expected mean-field
value (Fig. (4), upper panel; we only show the results for
the Louvain method, which allows for better statistics on
larger networks)

QMF (µ) = µER
c − µ . (5)

In that region, though, the native partition still fairly
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FIG. 4. Modularity (upper panel) of the partition A retrieved
by the Louvain method and its similarity index In(A,N )
with the native partition N (middle panel) for the planted
4-partition models with n = 32768 and various 〈ktot〉. Each
data point is averaged over 100 realizations; only some errors
are shown for clarity.

well corresponds to the heuristics, because there the re-
labeling procedure involves just a very limited number of
nodes, if any (data not shown). Also the similarity index
In(A,N ) between the retrieved partition A and the na-
tive partition N drops to zero (in a rather erratic way)
(Fig. (4), lower panel), confirming the significant differ-
ence between the partition retrieved by the algorithms
and the native one. Thus, low values of 〈ktot〉 (sparse net-
works) do indeed cause detectability problems much more
serious than a simple shift of the threshold value of µ, be-
cause of the presence of multiple competing modularity
maxima. In order to corroborate this interpretation, we
initialized the Louvain method with the native planted
l-partition, finding that the modularity of the retrieved
partition never fell below Eq (5) (data not shown).

The behavior of the two algorithms differs instead out-
side of the glassy-phase (Fig. 5). The community struc-
ture detected by fastgreedy departs from the native par-
tition earlier than the relabeled one, implying that the al-
gorithms does not recover the native partition even when
no nodes need to be relabeled. The Louvain method
finds clusters that are instead almost identical to the ones
found upon relabeling, indicating that the performance
of the Louvain method is optimal.

Nevertheless, in the narrow interval defined by the dra-
matic drop of all similarities, the one between the rela-
beled partitions and the native partition, In(R,N ) de-
creases more rapidly and reaches zero earlier than the
ones of both greedy algorithms (Fig. 5), and we quan-
tified this difference by investigating in more detail the
similarity thresholds µf

c and µL
c (now defined as the value
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FIG. 5. Comparison close to the phase transition point among
In(A,R) (solid red line), In(A,N ) (dotted blue line), and
In(R,N ) (dashed green line) for fastgreedy (left panel) and
for the Louvain method (right panel) on a 2-planted partition
with n = 4096, 〈ktot〉 = 2048. For clarity, only the largest
standard deviation is shown.

of the mixing parameter at which In(A,N ) drops below
0.01). We found that both µf

c and µL
c are also well fitted

by Eq. (1) with corrections of the order 1/〈ktot〉 (Fig. 2, ♦
and 4, respectively). Moreover µRc < µf

c < µ̂c ≤ µL
c and

they approach each other as l increases . The differences
are likely due to the different ability of each procedure to
take into account higher order correlations, beyond the
simple one taken into account by the relabeling proce-
dure.

Taking together these observations, we conclude that
deciding whether community detection algorithms really
fail is trickier than previously believed. Indeed, in order
to quantify the degree of success of a clustering method,
some sort of ground truth should be known about the
network under scrutiny. Since this is in general not avail-
able, various benchmarks have been developed, the sim-
plest and more widely used being the GN one, with the
naive expectation that, at least for such artificial cases,
the exact solution should be known. Unfortunately, their
construction is itself affected by random fluctuations that
blur their structure, making it different from the putative
one. Carefully considering such statistical variations, we
have shown that it is possible to change the definition
of detectable region, recognizing that fluctuations disrupt
the putative partition for values of µ < µ̂c and well de-
scribed by Eq. (1), so that one should expect all com-
munity detection algorithms to be affected, qualitatively,
in the same way, with differences likely to be imputed
to different ways to implement mathematically the fun-
damental heuristics behind the GN benchmark. Indeed,
the finding that algorithms based on completely differ-
ent principles (modularity-based vs. statistical inference)
show the same threshold beyond which a network struc-
ture becomes undetectable, must be reinterpreted in the
light of our results: beyond such threshold the real com-
munity structure simply bears no resemblance anymore
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with the putative one.

The present results also call for a complete reconsider-
ation of benchmarks, from the minimal GN to ones richer
in structure [2–4], so that after the construction step a
postprocessing procedure should be implemented to cor-
rect any skewness introduced by fluctuations. On a more
philosophical note, we might even relax the stringency
of benchmarking protocols, and resign to the fact that
clustering is, at the end of the day, an ill posed problem
[14].
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