
 

An Introduction to 
Computational Learning Theory 

Copyrighted Material 



An Introduction to 
Computational Learning Theory 

Michael J. Kearns 

Umesh V. Vazirani 

The MIT Press 

Cambridge, Massachusetts 

London, England 

Copyrighted Material 



@1994 Massachusetts Institute of Technology 

All rights reserved. No part of this book may be reproduced in any 
form by any electronic or mechanical means (including photocopying, 
recording, or information storage and retrieval) without permission in 
writing from the publisher. 

This book was typeset by the authors and was printed and bound in 
the United States of America. 

Library of Congress Cataloging-in-Publication Data 

Kearns, Michael J. 
An introduction to computational learning theory / Michael J. 

Kearns, Umesh V. Vazira.ni. 

p. cm. 
Includes bibHographical references and index. 
ISDN 0-262-11193-4 
1. Machine learning. 2. Artificial intelligence. 3. Algorithms. 

4. Neura.l networks. I. Vaziral1i, Umesh Virkuma.r. II. Title. 
Q325.5.K44 1994 
006.3-dc20 94-16588 

CIP 

109876 

Copyrighted Material 



Contents 

Preface xi 

1 The Probably Approximately Correct Learning Model 1 

1.1 A Rectangle Learning Game 1 

1.2 A General Model 6 

1 .2 . 1 Definition of the PAC Model 7 

1.2.2 Representation Size and Instance Dimension 12 

1.3 Learning Boolean Conjunctions 16 

1.4 Intractability of Learning 3-Term DNF Formulae 18 

1.5 Using 3-CNF Formulae to A void Intractability 22 

1.6 Exercises 26 

1.7 Bibliographic Notes 28 

2 Occam '8 Razor 31 

2.1 Occam Learning and Succinctness 33 

Copyrighted Material 



vi Contents 

2.2 Improving the Sample Size for Learning Conjunctions 37 

2.3 Learning Conjunctions with Few Relevant Variables 38 

2.4 Learning Decision Lists 42 

2.5 Exercises 44 

2.6 Bibliographic Notes 46 

3 The Vapnik-Chervonenkis Dimension 49 

3.1 When Can Infinite Classes Be Learned with a Finite Sample? 49 

3.2 The Vapnik-Chervonenkis Dimension 50 

3.3 Examples of the VC Dimension 5 1  

3.4 A Polynomial Bound on l11c(8)1 54 

3.5 A Polynomial Bound on the Sample Size for PAC Learning 57 

3.5.1 The Importance of f-Nets 57 

3.5.2 A Small f-Net from Random Sampling 59 

3.6 Sample Size Lower Bounds 62 

3.7 An Application to Neural Networks 64 

3.8 Exercises 67 

3.9 Bibliographic Notes 70 

4 Weak and Strong Learning 13 

4.1 A Relaxed Definition of Learning? 73 

4.2 Boosting the Confidence 76 

Copyrighted Material 



Contents vii 

4.3 Boosting the Accuracy 78 

4.3.1 A Modest Accuracy Boosting Procedure 79 

4.3.2 Error Analysis for the Modest Procedure 81 

4.3.3 A Recursive Accuracy Boosting Algorithm 85 

4.3.4 Bounding the Depth of the Recursion 88 

4.3.5 Analysis of Filtering Efficiency 89 

4.3.6 Finishing Up 96 

4.4 Exercises 101 

4.5 Bibliographic Notes 102 

5 Learning in the Presence of Noise 103 

5.1 The Classification Noise Model 104 

5.2 An Algorithm for Learning Conjunctions from Statistics 106 

5.3 The Statistical Query Learning Model 108 

5.4 Simulating Statistical Queries in the Presence of Noise 111 

5.4.1 A Nice Decomposition of Px. 112 

5.4.2 Solving for an Estimate of Px. 114 

5.4.3 Guessing and Verifying the Noise Rate 115 

5.4.4 Description of the Simulation Algorithm 117 

5.5 Exercises 119 

5.6 Bibliographic Notes 121 

Copyrighted Material 



viii Contents 

6 Inherent Unpredictability 123 

6.1 Representation Dependent and Independent Hardness 123 

6.2 The Discrete Cube Root Problem 124 

6.2.1 The Difficulty of Discrete Cube Roots 126 

6.2.2 Discrete Cube Roots as a Learning Problem 128 

6.3 Small Boolean Circuits Are Inherently Unpredictable 131 

6.4 Reducing the Depth of Inherently Unpredictable Circuits 133 

6.4.1 Expanding the Input 135 

6.5 A General Method and Its Application to Neural Networks 139 

6.6 Exercises 140 

6.7 Bibliographic Notes 141 

7 Reducibility in PAC Learning 143 

7.1 Reducing DNF to Monotone DNF 144 

7.2 A General Method for Reducibility 147 

7.3 Reducing Boolean Formulae to Finite Automata 149 

7.4 Exercises 153 

7.5 Bibliographic Notes 154 

8 Learning Finite Automata by Experimentation 155 

8.1 Active and Passive Learning 155 

8.2 Exact Learning Using Queries 158 

Copyrighted Material 



Contents ix 

8.3 Exact Learning of Finite Automata 160 

8.3.1 Access Strings and Distinguishing Strings 160 

8.3.2 An Efficiently Computable State Partition 162 

8.3.3 The Tentative Hypothesis it 164 

8.3.4 Using a Counterexample 166 

8.3.5 The Algorithm for Learning Finite Automata 169 

8.3.6 Running Time Analysis 171 

8.4 Learning without a Reset 174 

8.4.1 Using a Homing Sequence to Learn 176 

8.4.2 Building a Homing Sequence Using Oversized Gen-
eralized Classification Trees 178 

8.4.3 The No-Reset Algorithm 181 

8.4.4 Making Sure L(1 Builds Generalized Classification 
Trees 182 

8.5 Exercises 185 

8.6 Bibliographic Notes 186 

9 Appendix: Some Tools for Probabilistic Analysis 189 

9.1 The Union Bound 189 

9.2 Markov's Inequality 189 

9.3 Chernoff Bounds 190 

Copyrighted Material 



x 

Bibliography 

Index 

Copyrighted Material 

Contents 

193 

205 



Preface 

In the Fall term of 1990, we jointly taught a graduate seminar in com­
putational learning theory in the computer science department of the 
University of California at Berkeley. The material that is presented here 
has its origins in that course, both in content and exposition. Rather 
than attempt to give an exhaustive overview of this rapidly expanding 
and changing area of research, we have tried to carefully select fundamen­
tal topics that demonstrate important principles that may be applicable 
in a wider setting than the one examined here. In the technical sec­
tions, we have tried to emphasize intuition whenever possible, while still 
providing precise arguments. 

The book is intended for researchers and students in artificial intelli­
gence, neural networks, theoretical computer science and statistics, and 

anyone else interested in mathematical models of learning. It is appro­
priate for use as the central text in a specialized seminar course, or as 
a supplemental text in a broader course that perhaps also studies the 
viewpoints taken by artificial intelligence and neural networks. While 
Chapter 1 lays a common foundation for all the subsequent material, the 
later chapters are essentially self-contained and may be read selectively 
and in any order. Exercises are provided at the end of each chapter. 

Some brief comments on the expected background of the reader are 
appropriate here. Familiarity with some basic tools of the formal analysis 
of algorithms is necessary, as is familiarity with only the most elemen­
tary notions of complexity theory, such as NP-completeness. For the 
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reader unfamiliar with these topics, the books of Cormen, Leiserson and 
llivest [27], Garey and Johnson [38] and Aho, Hopcroft and Ullman (2) 
provide classic background reading. Some background in probability the­
ory and statistics is desirable but not necessary. In an Appendix in Chap­
ter 9 we have gathered in one place the simple tools of probability theory 
that we will invoke repeatedly throughout our study. 

We are deeply indebted to many colleagues for the advice , feedback 
and support they gave to us during the writing of this book. We are 
especially grateful to Ron llivest of M.I.T. for using preliminary versions 
of the book for two years as a text in his machine learning course. The 
comments that resulted from this course were invaluable, and we thank 
Jay Alsam of M.LT. for improving several derivations. 

We give warm thanks to Dana Angluin of Yale for a detailed critique of 

a preliminary version . We incorporated practically all of her suggestions , 
and they greatly improved the presentation. We are very grateful to Les 

Valiant of Harvard for his many comments and continuing support of the 

project. 

For many suggested improvements and discussions of the material, 
we thank Scott Decatur of Harvard, John Denker of Bell Labs, Sally 

Goldman of Washington University, David Haussler of U.C. Santa Cruz, 
Esther Levin of Bell Labs, Marina Meila of M.I. T., Fernando Pereira of 
Bell Labs, Stuart Russell of V.C. Berkeley, Rob Schapire of Bell Labs, 

Donna Slonim of M.I.T., and Manfred Warmuth of U.C. Santa Cruz. 
Thanks to Danuta Sowinska-Khan and the Art Department of Bell Labs 
for their preparation of the figures. 

We give warm thanks to Terry Ehling of The MIT Press for bringing 
this project to fruition, and for her enthusiastic support from beginning 
to end. 
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1 

The Probably Approximately 
Correct Learning Model 

1.1 A Rectangle Learning Game 

Consider a simple one-player learning game. The object of the game is to 
learn an unknown axis-aligned rectangle R - that is, a rectangle in the 
Euclidean plane �2 whose sides are parallel with the coordinate axes. We 
shall call R the target rectangle. The player receives information about 
R only through the following process: every so often, a random point p 
is chosen in the plane according to some fixed probability distribution V. 
The player is given the point p together with a label indicating whether p 
is contained in R (a positive example) or not contained in R (a negative 
example). Figure 1.1 shows the unknown rectangular region R along with 
a sample of positive and negative examples. 

The goal of the player is to use as few examples as possible, and as 
little computation as possible, to pick a hypothesis rectangle R' which 
is a close approximation to R. Informally, the player's knowledge of R 
is tested by picking a new point at random from the same probability 
distribution V, and checking whether the player can correctly decide 
whether the point falls inside or outside of R. Formally, we measure the 
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Figure 1.1: The target rectangle R in the plane along with a sample of 
positive and negative examples. 

error of R' as the probability that a randomly chosen point from V falls 
in the region RAR', where RAR' = (R - R') u (R' - R). 

To motivate the rectangle learning game, consider a slightly more 
concrete scenario that can be expressed as an instance of the game. Sup­
pose that we wanted to learn the concept of "men of medium build". 
Assume that a man is of medium build if his height and weight both lie 
in some prescribed ranges - for instance, if his height is between five 
feet six inches and six feet, and his weight is between 150 pounds and 
200 pounds. Then each man's build can be represented by a point in 
the Euclidean plane, and the concept of medium build is represented by 
an axis-aligned rectangular region of the plane. Thus, during an initial 
training phase, the learner is told for each new man he meets whether 
that man is of medium build or not. Over this period, the learner must 
form some model or hypothesis of the concept of medium build. 

Now assume that the learner encounters every man in his city with 
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Probably Approximately Correct Learning 3 

equal probability. Even under this assumption, the corresponding points 
in the plane may not be uniformly distributed (since not all heights and 
weights are equally likely, and height and weight may be highly dependent 
quantities), but will instead obey some fixed distribution V which may be 
quite difficult to characterize. For this reason, in our learning game, we 
allow the distribution V to be arbitrary, but we assume that it is fixed, 
and that each example is drawn independently from this distribution. 
(Note that once we allow V to be arbitrary, we no longer need to assume 
that the learner encounters every man in his city with equal probability.) 
To evaluate the hypothesis of the learner, we are simply evaluating its 
success in classifying the build of men in future encounters, still assuming 
that men are encountered according to the same probability distribution 
as during the training phase. 

There is a simple and efficient strategy for the player of the rectangle 
learning game. The strategy is to request a "sufficiently large" number 
m of random examples, then choose as the hypothesis the axis-aligned 
rectangle R' which gives the tightest fit to the positive examples (that 
is, that rectangle with the smallest area that includes all of the positive 
examples and none olthe negative examples) . If no positive examples are 
drawn, then R' = 0. Figure 1.2 shows the tightest-fit rectangle defined 
by the sample shown in Figure 1.1. 

We will now show that for any target rectangle R and any distribution 
V, and for any small values f and 5 (0 < f, 5 � 1/2), for a suitably chosen 
value of the sample size m we can assert that with probability at least 
1- 6, the tightest-fit rectangle has error at most f with respect to R and 
V. 

First observe that the tightest-fit rectangle R' is always contained in 
the target rectangle R (that is, R' � R and so RAR' = R - R'). We can 
express the difference R - R' as the union of four rectangular strips. For 
instance, the topmost of these strips, which is shaded and denoted T' in 
Figure 1.3, is the region above the upper boundary of R' extended to the 
left and right, but below the upper boundary of R. Note that there is 
some overlap between these four rectangular strips at the corners. Now 
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Figure 1.2: The tightest-fit rectangle R' defined by the sample. 

if we can guarantee that the weight under V of each strip (that is, the 
probability with respect to V of falling in the strip) is at most £/4, then 
we can conclude that the error of R' is at most 4«(./4) = E. (Here we have 
erred on the side of pessimism by counting each overlap region twice.) 

Let us analyze the weight of the top strip T'. Define T to be the 
rectangular strip along the inside top of R which encloses exactly weight 
£/4 under V (thus, we sweep the top edge of R downwards until we have 
swept out weight t/4; see Figure 1.3). Clearly, T' has weight exceeding 
t/4 under V if and only if T' includes T (which it does not in Figure 
1.3). Furthermore, T' includes T if and only if no point in T appears in 
the sample S - since if S does contain a point PET, this point has 
a positive label since it is contained in R, and then by definition of the 
tightest fit, the hypothesis rectangle R! must extend upwards into T to 
cover p. 

By the definition of T, the probability that a single draw from the 
distribution V misses the region T is exactly 1 - £/4. Therefore the 
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Figure 1.3: Analysis of the error contributed by the top shaded strip T'. 
The strip T has weight exactly e/4 under 1). 

probability that m independent draws from 1) all miss the region T is 
exactly (1 - f/4)m. Here we are using the fact that the probability of a 
conjunction of independent events is simply the product of the probabili­

ties of the individual events. The same analysis holds for the other three 
rectangular regions of R - R', so by the union bound, the probability 
that any of the four strips of R - R' has weight greater than e/4 is at 
most 4(1 - f./4)m. By the union bound, we mean the fact that if A and 
B are any two events (that is, subsets of a probability space) , then 

Pr[A U BJ :5 Pr[A1 + Pr(B). 

Thus, the probability that one of the four error strips has weight exceed­
ing e/4 is at most four times the probability that a fixed error strip has 
weight exceeding e/4. 

Provided that we choose m to satisfy 4(1 - f/4)m :5 c, then with 
probability 1 - c over the m random examples, the weight of the error 
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region R - R' will be bounded bye, as claimed . Using the inequality 

(which we shall appeal to frequently in our studies) we see that any value 
of m satisfying 4e-Em/4 $; � also satisfies the previous condition. Dividing 
by 4 and taking natural logarithms of both sid,es gives -em/4 $; In(�/4), 
or equivalently m;::: (4/e)ln(4/�). 

In summary, provided our tightest�fit algorithm takes a sample of at 
least (4/e) In(4/6) examples to form its hypothesis rectangle R', we can 
assert that with probability at least 1-�, R' will misclassify a new point 

(drawn according to the same distribution from which the sample was 
chosen) with probability at most e. 

A few brief comments are appropriate. First, note that the analysis 

really does hold for any fixed probability distribution. We only needed 
the independence of successive points to obtain our bound . Second , the 
sample size bound behaves as we might expect, in that as we increase 
our demands on the hypothesis rectangle - that is, as we ask for greater 
accuracy by decreasing e or greater confidence by decreasing 6 - our 
algorithm requires more examples to meet those demands. Finally, the 
algorithm we have analyzed is efficient: the required sample size is a 
slowly growing function of l/e and l/� (linear and logarithmic, respec­
tively) , and once the sample is given, the computation of the tightest-fit 
hypothesis can be carried out rapidly. 

1.2 A General Model 

In this section, we introduce the model of learning that will be the central 
object for most of our study: the Probably Approximately Correct 
or PAC model of learning. There are a number of features of the rectan� 
gle learning game and its solution that are essential to the PAC model , 
and bear highlighting before we dive into the general definitions . 
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• The goal of the learning game is to learn an unknown target set, but 
the target set is not arbitrary. Instead, there is a known and rather 
strong constraint on the target set - it is a rectangle in the plane 
whose sides are parallel to the axes. 

• Learning occurs in a probabilistic setting. Examples of the target 
rectangle are drawn randomly in the plane according to a fixed 
probability distribution which is unknown and unconstrained. 

• The hypothesis of the learner is evaluated relative to the same prob­
abilistic setting in which the training takes place, and we allow hy­
potheses that are only approximations to the target. The tightest­
fit strategy might not find the target rectangle exactly, but will find 
one with only a small probability of disagreement with the target. 

• We are interested in a solution that is efficient: not many examples 
are required to obtain small error with high confidence, and we can 
process those examples rapidly. 

We wish to state a general model of learning from examples that 
shares and formalizes the properties we have listed. We begin by devel­
oping and motivating the necessary definitions. 

1.2.1 Definition of the PAC Model 

Let X be a set called the instance space. We think of X as being a 
set of encodings of instances or objects in the learner's world. In our 
rectangle game, the instance space X was simply the set of all points in 
the Euclidean plane �2. As another example, in a character recognition 
application, the instance space might consist of all 2-dimensional arrays 
of binary pixels of a given width and height. 

A concept over X is just a subset c � X of the instance space. In 
the rectangle game, the concepts were axis-aligned rectangular regions. 
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Continuing our character recognition example, a natural concept might 
be the set of all pixel arrays that are representations of the letter "An 
(assuming that every pixel array either represents an "A", or fails to 
represent an "A"). 

A concept can thus be thought of as the set of all instances that 
positive ly exemplify some simple or interesting rule. We can equivalently 
define a concept to be a boolean mapping c: X -+ {O, I}, with c(x) = 1 
indicating that x is a positive example of c and c(x) = 0 indicating that 
x is a negative example. For this reason, we also sometimes call X the 
input space. 

A concept class C over X is a collection of concepts over X. In the 
rectangle game, the target rectangle was chosen from the class C of all 
axis-aligned rectangles . Ideally, we are interested in concept classes that 
are sufficiently expressive for fairly general knowledge representation. As 
an example in a logic-based setting, suppose we have a set Xl," " xn 
of n boolean variables, and let X be the set of all assignments to these 
variables (that is, X = {o,l}n). Suppose we consider concepts cover 
{o,l}n whose positive examples are exactly the satisfying assignments 
of some boolean formulae Ie over Xl, . • •  ,Xn. Then we might define an 
interesting concept class C by considering only those boolean formulae Ie 
that meet some natural syntactic constraints, such as being in disjunctive 
normal form (DNF) and having a small number of terms. 

In our model, a learning algorithm will have access to positive and 
negative examples of an unknown target concept c, chosen from a 
known concept class C. The learning algorithm will be judged by its 
ability to identify a hypothesis concept that can accurately classify in­
stances as positive or negative examples of c. Before specifying the learn­
ing protocol further, it is important to note that in our model, learning 
algorithms "know" the target class C, in the sense that the designer of the 
learning algorithm is guaranteed that the target concept will be chosen 
from C (but must design the algorithm to work for any c E C). 

Let 'D be any fixed probability distribution over the instance space X. 
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x 

Figure 1.4: Venn diagram of two concepts, with symmetric difference 
shaded. 

We will refer to V as the target distribution. If h is any concept over 
X, then the distribution V provides a natural measure of error between 
h and the target concept c: namely, we define 

error(h) = Pr:tEV[C{X) :I hex)]. 

Here we regard the concepts c and h as boolean functions, and we have 
introduced a notational convention that we shall use frequently: the sub­
script x E V to Pr[·) indicates that the probability is taken with respect 
to the random draw of x according to V. Note that error(h) has an im­
plicit dependence on c and V that we will usually omit for brevity when 
no confusion will result . 

A useful alternative way to view error(h) is represented in Figure 1.4. 
Here we view the concepts c and h as sets rather than as functions, and 
we have drawn an abstract Venn diagram showing the positive examples 
of c and h, which of course lie within the entire instance space X. Then 
error{h) is simply the probability with respect to V that an instance is 
drawn falling in the shaded region. 

Let EX(c, V) be a procedure (we will sometimes call it an oracle) that 
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runs in unit time, and on each call returns a labeled example (x, c(x», 
where x is drawn randomly and independently according to 'D. A learning 
algorithm will have access to this oracle when learning the target concept 
c E C. Ideally, the learning algorithm will satisfy three properties: 

• The number of calls to EX (c, 'D) is small, in the sense that it is 
bounded by a fixed polynomial in some parameters to be specified 
shortly. 

• The amount of computation performed is small. 

• The algorithm outputs a hypothesis concept h such that error (h) 
is small. 

Note that the number of calls made by a learning algorithm to EX(c, 'D) 
is bounded by the running time of the learning algorithm. 

We are now ready to give the definition of Probably Approximately 
Correct learning. We designate it as our preliminary definition, since we 
shall soon make some important additions to it. 

Definition 1 (The PAC Model, Preliminary Definition) Let C be a con­
cept class over X. We say that C is PAC learnable if there exists an 
algorithm L with the following property: for every concept c E C, for ev­
ery distribution V on X, and for all 0 < E < 1/2 and 0 < D < 1/2, if L is 
given access to EX(c, 'D) and inputs f and 6, then with probability at least 
1- D, L outputs a hypothesis concept h E  C satisfying error (h) � E. This 
probability is taken over the random examples drawn by calls to EX(c, 'D), 
and any internal randomization of L. 

1/ L runs in time polynomial in 1/ E and 1/ S, we say that C is effi­
ciently PAC learnable. We will sometimes refer to the input E as the 
error parameter, and the input 6 as the confidence parameter. 
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The hypothesis h E C of the PAC learning algorithm is thus "ap­
proximately correct" with high probability, hence the name Probably 
Approximately Correct learning. 

Two important comments regarding the PAC learning model are now 
in order. First, the error and confidence parameters E and 6 control the 
two types of failure to which a learning algorithm in the PAC model 
is inevitably susceptible. The error parameter E is necessary since, for 
example, there may be only a negligible probability that a small random 
sample will distinguish between two competing hypotheses that differ 
on only one improbable point in the instance space. The confidence 
parameter 6 is necessary since the learning algorithm may occasionally 
be extremely unlucky, and draw a terribly "unrepresentative" sample of 
the target concept - for instance , a sample consisting only of repeated 
draws of the same instance despite the fact that the distribution is spread 
evenly over all instances. The best we can hope for is that the probability 
of both types of failure can be made arbitrarily small at a modest cost. 

Second, notice that we demand that a PAC learning algorithm per­
form well with respect to any distribution V. This strong requirement 
is moderated by the fact that we only evaluate the hypothesis of the 
learning algorithm with respect to the same distribution V. For exam­
ple, in the rectangle learning game discussed earlier, this means that if 
the distribution gives negligible weight to some parts of the Euclidean 
plane, then the learner does not have to be very careful in learning the 
boundary of the target rectangle in that region . 

Definition 1, then , is our tentative definition of PAC learning, which 
will be the model forming the bulk of our studies. As previously men­
tioned, we shall make a couple of important refinements to this definition 

before we begin the serious investigation. Before doing so, however, we 
pause to note that we have already proven our first result in this model. 

Recall that our algorithm for the rectangle learning game required the 
ability to store real numbers and perform basic operations on them, such 
as comparisons. In the following theorem, and throughout our study, 
whenever necessary we will assume a model of computation that allows 
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storage of a single real number in a single memory location, and that 
charges one unit of computation time for a basic arithmetic operation 
(addition , multiplication or division) on two real numbers . 

Theorem 1.1 The concept class 01 axis-aligned rectangles over the Eu­
clidean plane �2 is efficiently PA C learnable. 

1.2.2 Representation Size and Instance 
Dimension 

An important issue was swept under the rug in our definition of PAC 
learning. This is the fundamental distinction between a concept (which 
is just a set or a boolean function) and its representation (which is a 
symbolic encoding of that set or function). Consider a class of concepts 
defined by the satisfying assignments of boolean formulae. A concept 
from this class - that is, the set of satisfying assignments for some 
boolean formula I - can be represented by the formula I, by a truth 
table, or by another boolean formula I' that is logically equivalent to I. 
Although all of these are representations of the same underlying concept, 
they may differ radically in representational size. 

For instance, it is not hard to prove that for all n, the boolean parity 
function l(xlI ... , xn) = Xl Ea··· Ea Xn (where E9 denotes the exclusive-or 
operation) can be computed by a circuit of 1\, V and., gates whose size is 
bounded by a fixed polynomial in n, but to represent this same function 
as a disjunctive normal form (abbreviated DNF) formula requires size ex­
ponential in n. As another example, in high-dimensional Euclidean space 
!Rn, we may choose to represent a convex polytope either by specifying 
its vertices, or by specifying linear equations for its faces, and these two 
representation schemes can differ exponentially in size. 

In each of these examples, we are fixing some representation scheme 
- that is, a precise method for encoding concepts - and then examining 
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the size of the encoding for various concepts. Other natural representa­
tion schemes that the reader may be familiar with include decision trees 
and neural networks. As with boolean formulae, in these representation 
schemes there is an obvious mapping from the representation (a decision 
tree or a neural network) to the set or boolean function that is being 
represented. There is also a natural measure of the size of a given repre­
sentation in the scheme (for instance, the number of nodes in the decision 
tree or the number of weights in a neural network). 

Since a PAC learning algorithm only sees examples of the functional 
(that is, input-output) behavior of the target concept, it has absolutely 
no information about which, if any, of the many possible representations 
is actually being used to represent the target concept in reality. However, 
it matters greatly which representation the algorithm chooses for its hy­
pothesis, since the time to write this representation down is obviously a 
lower bound on the running time of the algorithm. 

Formally speaking, a representation scheme for a concept class 
C is a function 'R : E* .... C, where E is a finite alphabet of symbols. 
(In cases where we need to use real numbers to represent concepts, such 
as axis-aligned rectangles, we allow 'R : (E U lR)* .... C.) We call any 
string u E E* such that n(u) = c a representation of c (under n). 
Note that there may be many representations of a concept c under the 
representation scheme n. 

To capture the notion of representation size, we assume that associ­
ated with 'R there is a mapping size : E* --. N that assigns a natural 
number size(h) to each representation h E E*. Note that we allow size(·) 
to be any such mappingj results obtained under a particular definition 
for size(·) will be meaningful only if this definition is natural. Perhaps 
the most realistic setting, however, is that in which E = {O, I} (thus, 
we have a binary encoding of concepts) and we define size(h) to be the 
length of h in bits. (For representations using real numbers, it is often 
natural to charge one unit of size for each real number.) Although we 
will use other definitions of size when binary representations are inconve­
nient, our definition of size ( .) will always be within a polynomial factor 
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of the binary string length definition. For example, we can define the size 
of a decision tree to be the number of nodes in the tree, which is always 
within a polynomial factor of the length of the binary string needed to 
encode the tree in any reasonable encoding method. 

So far our notion of size is applicable only to representations (that is, 
to strings h E E*). We would like to extend this definition to measure 
the size of a target concept c E C. Since the learning algorithm has access 
only to the input-output behavior of c, in the worst case it must assume 
that the simplest possible mechanism is generating this behavior. Thus, 
we define size(c) to be size(c) = min'R(u}=c{size(o)} . In other words, 
size(c) is the size of the smallest representation of the concept c in the 
underlying representation scheme 'R.. Intuitively, the larger size(c) is, the 
more "complex" the concept c is with respect to the chosen representation 
scheme. Thus it is natural to modify our notion of learning to allow more 
computation time for learning more complex concepts, and we shall do 
this shortly. 

For a concept class C, we shall refer to the representation class C 
to indicate that we have in mind some fixed representation scheme 'R. for 
C. In fact, we will usually define the concept classes we study by their 
representation scheme. For instance, we will shortly examine the concept 
class in which each concept is the set of satisfying assignments of some 
conjunction of boolean variables. Thus, each concept can be represented 
by a list of the variables in the associated conjunction. 

It is often convenient to also introduce some notion of size or dimen­
sion for the elements of the instance space. For example, if the instance 
space Xn is the n-dimensional Euclidean space inn, then each example 
is specified by n real numbers, and so it is natural to say that the size 
of the examples is n. The same comments apply to the instance space 
Xn = {o, 1}n. It turns out that these are the only two instance spaces 
that we will ever need to consider in our studies, and in the spirit of 
asymptotic analysis we will want to regard the instance space dimension 
n as a parameter of the learning problem (for example, to allow us to 
study the problem of learning axis-aligned rectangles in �n in time poly-
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nomial in n) . Now if we let Cn be the class of concepts over Xn, and write 
X = Un�lXn and C = Un�lCn' then X and C define an infinite family of 
learning problems of increasing dimension. 

To incorporate the notions of target concept size and instance space 
dimension into our model , we make the following refined definition of 
PAC learning: 

Definition 2 (The PAC Model, Modified Definition) Let Cn be a rep­
resentation class over Xn (where Xn is either {o,l}n or n-dimensional 
Euclidean space 3ln), and let X = Un�lXn and C = Un�lCn' The modi­
fied definition of PAC learning is the same as the preliminary definition 
(Definition 1), except that now we allow the learning algorithm time poly­
nomial in n and size(c) (as well as l/E and 1/6 as before) when learning 
a target concept c e Cn• 

Since in our studies Xn will always be either {O, l}n or n-dimensional 
Euclidean space, the value n is implicit in the instances returned by 
EX(c, V). We assume that the learner is provided with the value size(c) 
as an input. (However, see Exercise 1.5.) 

We emphasize that while the target concept may have many possible 
representations in the chosen scheme, we only allow the learning algo­
rithm time polynomial in the size of the smallest such representation. 
This provides a worst-case guarantee over the possible representations of 
c, and is consistent with the fact that the learning algorithm has no idea 
which representation is being used for c, having only functional informa­
tion about c. 

Finally, we note that for several concept classes the natural definition 
of size ( c) is already bounded by a polynomial in n, and thus we really 
seek an algorithm running in time polynomial in just n. For instance, if 
we look at the representation class of all DNF formulae with at most 3 
terms, any such formula has length at most 3n, so polynomial dependence 

Copyrighted Material 



16 Chapter 1 

on the size of the target formula is the same as polynomial dependence 
on n. 

1.3 Learning Boolean Conjunctions 

We now give our second result in the PAC model, showing that con­

junctions of boolean literals are efficiently PAC learnable . Here the 
instance space is Xn = {o,l}n. Each a E Xn is interpreted as an assign­
ment to the n boolean variables Xl! • . .  , Xn, and we use the notation ai to 
indicate the ith bit of a. Let the representation class Cn be the class of 
all conjunctions of literals over Xl, • • •  ,Xn (a literal is either a variable 
Xi or its negation Xi)' Thus the conjunction Xl A X3 A X4 represents the 
set {a E {O, I}n : al = 1, aa = 0, a4 = I}. It is natural to define the 
size of a conjunction to be the number of literals in that conjunction. 
Then clearly size(c) � 2n for any conjunction c E Cn. (We also note 
that a standard binary encod ing of any conjunction c E en has length 
O(n logn).) Thus for this problem, we seek an algorithm that runs in 
time polynomial in n, 1/f. and 1/0. 

Theorem 1.2 The representation class of conjunctions of boolean liter­
als is efficiently PA C learnable. 

Proof: The algorithm we propose begins with the hypothesis conjunc-
tion 

h = Xl A Xl A . • .  A xn A xn• 
Note that initially h has no satisfying assignments. The algorithm simply 
ignores any negati ve examples returned by EX(c, V). Let (a, I) be a 
positive example returned by EX(c, V) . In response to such a positive 
example, our algorithm updates h as fol lows: for each i, if � = 0, we 
delete Xi from h, and if ai = I, we delete Xi from h. Thus, our algorithm 
deletes any literal that "contradicts" the positive data. 
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For the analysis, note that the set of literals appearing in h at any 
time always contains the set of literals appearing in the target concept 
c. This is because we begin with h containing all literals, and a literal 
is only deleted from h when it is set to 0 in a positive examplej such a 
literal clearly cannot appear in c. The fact that the literals of h always 
include those of c implies that h will never err on a negative example of 
c (that is, h is more specific than c). 

Thus, consider a literal z that occurs in h but not in c. Then z causes 
h to err only on those positive examples of c in which z = OJ also note 
that it is exactly such positive examples that would have caused our 
algorithm to delete z from h. Let p( z) denote the total probability of 
such instances under the distribution V, that is, 

p(z) = PrOEV[c(a) = 1 A z is 0 in a]. 

Since every error of h can be "blamed" on at least one literal z of h, by 
the union bound we have error (h) :$ EZEhP(Z). We say that a literal 
is bad if p(z) � E/2n. If h contains no bad literals, then error(h) � 
EZEhP(Z) :S 2n(E/2n) = E. We now upper bound the probability that a 
bad literal will appear in h. 

For any fixed bad literal z, the probability that this literal is not 
deleted from h after m calls of our algorithm to EX (c, V) is at most 
(1 - E/2n)m, because the probability the literal z is deleted by a single 
call to EX(c,1) is p(z) (which is at least E/2n for a bad literal) .  From 
this we may conclude that the probability that there is some bad literal 
that is not deleted from h after m calls is at most 2n(l- E/2n)m, where 
we have used the union bound over the 2n possible literals. 

Thus to complete our analysis we simply need to solve for the value 
of m satisfying 2n(1 - E/2n)m � 6, where 1 - 6 is the desired confi­
dence. Using the inequality 1 - x � e-s, it suffices to pick m such that 
2ne-mE/2n � 6, which yields m � (2n/E)(ln(2n) + In(1/6» . 

Thus, if our algorithm takes at least this number of examples, then 
with probability at least 1 - 6 the resulting conjunction h will have error 
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at most f with respect to c and V. Since the algorithm takes linear time to 
process each example , the running time is bounded by mn, and hence is 
bounded by a polynomial in n, l/f and l/b, as required. O(Theorem 1.2) 

1.4 Intractability of Learning 3-Term 
DNF Formulae 

We next show that a slight generalization of the representation class of 
boolean conjunctions results in an intractable PAC learning problem. 
More precisely, we show that the class of disjunctions of three boolean 
conjunctions (known as 3-term disjunctive normal form (DNF) for­
mulae) is not efficiently PAC learnable unless every problem in NP can 
be efficiently solved in a worst-case sense by a randomized algorithm -
that is, unless for every language A in NP there is a randomized algo­
rithm taking as input any string 0 and a parameter 6 E [0, I), and that 
with probability at least 1 - 6 correctly determines whether 0 E A in 
time polynomial in the length of 0 and l/b. The probability here is 
taken only with respect to the coin flips of the randomized algorithm. In 
technical language, our hardness result for 3-term DNF is based on the 
widely believed assumption that RP '# N P. 

The representation class Cn of 3-term DNF formulae is the set of all 
disjunctions Tl VT2 V T3, where each Tt is a conjunction of literals over the 
boolean variables Xl," " Xn• We define the size of such a representation 
to be sum of the number of literals appearing in each term (which is 
always bounded by a fixed polynomial in the length of the bit string 
needed to represent the 3-term DNF in a standard encoding) . Then 
size(c) $ 6n for any concept C E Cn because there are at most 2n literals 
in each of the three terms. Thus, an efficient learning algorithm for this 

problem is required to run in time polynomial in n, l/f and 1/6. 

Theorem 1.3 If RP '# NP, the representation class of 9-term DNF 
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formulae is not efficiently PA C learnable. 

Proof: The high-level idea of the proof is to reduce an NP-complete 
language A (to be specified shortly) to the problem of PAC learning 3-
term DNF formulae. More precisely, the reduction will efficiently map 
any string �, for which we wish to determine membership in A, to a 
set So of labeled examples. The cardinality ISol will be bounded by a 

polynomial in the string length I�I. We will show that given a PAC 
learning algorithm L for 3-term DNF formulae, we can run Lon 80, in a 
manner to be described, to determine (with high probability) if � belongs 
to A or not . 

The key property we desire of the mapping of Q to So. is that � E A 
if and only if 80 is consistent with some concept c E C. The notion 
of a concept being consistent with a sample will recur frequently in our 
studies. 

Definition 3 Let S = {(Xl! b1), ... , (xm, bm)} be any labeled set oj in­
stances, where each Xi E X and each bi E {O, 1}. Let c be a concept 
over X. Then we say that c is consistent with 8 (or equivalently, 8 is 
consistent with c) if for aliI::; i ::; m, C(Xi) = bi. 

Before detailing our choice for the NP-complete language A and the 
mapping of � to So, just suppose for now that we have managed to 
arrange things so that a E A if and only if 80 is consistent with some 
concept in C. We now show how a PAC learning algorithm L for C can 
be used to determine if there exists a concept in C that is consistent with 
80 (and thus whether a E A) with high probability. This is achieved by 
the following general method: we set the error parameter f. = 1/(2180.1) 
(where ISol denotes the number of labeled pairs in So), and answer each 
request of L for a random labeled example by choosing a pair (Xi, bi) 
uniformly at random from So. Note that if there is a concept c E C 
consistent with 80, then this simulation emulates the oracle EX(c, V), 
where V is uniform over the (multiset of) instances appearing in 80, In 
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this c ase ,  by our choice of e, we have g uaranteed that any h ypothesis h 
with error less that e must in fact be consistent with So, for if h errs on 
even a single example in SOl its error with respect to c and 1) is at least 
I/ 1So l  = 2e > E. On the other hand , if the re is no concept in C consistent 
with So , L cannot possibly find one . Thus we can simply check the 
output of L for consistency with So to determine with confidence 1 - 6 
if there exists a consistent concept in C. 

Combined with the assumed mapping of a string a to a set So, we 
thus can determine (with probability at least 1 - 6) the membership of 
a in A by simulating the PAC learning algorithm on Sa. This general 
method of using a PAC learning algorithm to determine the existence of 
a concept that is consistent with a labeled sample is quite common in 
the computational learning theory literature, and the main effort comes 
in choosing the right NP-complete language A, and finding the desired 
mapping from instances a of A to sets of labeled examples Sa, which we 
now undertake. 

To demonstrate the intractability of learning 3-term DNF formulae, 
the NP-complete language A that we shall use is Graph 3-Coloring: 

The Graph 3-Coloring Problem. Given as input an undirected graph 
G = (V, E) with vertex set V = { I ,  . . . , n} and edge set E � V x V, 
determine if there is an assignment of a color to each element of V such 
that at most 3 different colors are used , and for every edge (i, j) E E, 
vertex i and vertex j are assigned different colors. 

We now describe the desired mapping from an instance G = (V, E) 
of Graph 3-Coloring to a set Sa of labeled examples. Sa will consist of a 
set Sl; of positively labeled examples and a set Sa of negatively labeled 
examples , so Sa = Sl; U Sa . For each 1 S i S  n, Sl; wi l l contain the 
labeled example (v(i) , I ) ,  where v(i) E {O, I }" is the vector with a 0 in the 
ith position and l 's everywhere else. These examples intuitively encode 
the vertices of G. For each edge (i, j) E E, the set Sa will contain the 
labeled example (e{i , j) ,  0) , where e(i, j) E {O, l }" is the vector with O's 
in the ith and jth positions , and l 's everywhere else. Figure 1 .5 shows 
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B 

Graph G 

s +  G 
< 0 1 1 1 1 1 , 1 >  < 0 0 1 1 1 1 , 0 > 
< 1 0 1 1 1 1 ,  1 > < 0 1  1 0 1  1 , 0 > 
< 1 1 0 1 1 1 , 1 >  < 0 1 1 1 0 1 , 0 >  
< 1 1  1 0 1 1 ,  1 > < 1 0 0 1  1 1 , 0 >  

< 1 1 1 1 0 1 ,  1 > < 1 0 1 1 1 O. 0 > 
< 1 1 1 1 1 0, 1 > < 1 1 0 1 1 0, 0 > 

< 1 1 1 1 0 0, 0 > 

T R = X2 1\ X3 1\ X4 1\ Xs 

T B = Xl 1\ X3 1\ Xs 
Tv = Xl 1\ x2 1\ x4 1\ Xs 1\ xa 

21 

Figure 1 .5: A graph G with a legal 9.coloring, the associated sample, and 
the terms defined by the coloring. 

an example of a graph G along with the resulting sets S/i and Sa . The 
figure also shows a lega1 3-coloring of G, with R, B and Y denoting red, 
blue and yellow. 

We now argue that G is 3-colorable if and only if Sa is consistent 
with some 3-term DNF formula. First, suppose G is 3-colorable and fix a 
3-coloring of G. Let R be the set of all vertices colored red, and let T R be 
the conjunction of all variables in Xl , . • .  , Xn whose index does not appear 
in R (see Figure 1 .5). Then for each i E R, v(i) must satisfy TR because 
the variable Xi does not appear in TR• Furthermore, no e(i, j) E Sa can 
satisfy TR because since both i and j cannot be colored red, one of Xi 
and x; must appear in TR• We can define terms that are satisfied by 
the non-blue and non-yellow v( i) in a similar fashion, with no negative 
examples being accepted by any term. 

For the other direction , suppose that the formula TR V TB V Ty is 
consistent with Sa. Define a coloring of G as follows: the color of vertex i 
is red if v(i) satisfies TR, blue if v(i) satisfies TB, and yellow if v(i) satisfies 
Ty (we break ties arbitrarily if v{i) satisfies more than one term) . Since 
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the formula is consistent with Sa, every v(i) must satisfy some term, and 
so every vertex must be assigned a color by this process. We now argue 
that it is a legal 3-coloring. To see this, note that if i and j (i =F j) are 
assigned the same color (say red) , then both v(i) and v(j) satisfy TR• 
Since the ith bit of v(i) is 0 and the ith bit of v(j) is 1 ,  it follows that 
neither Xi nor Xi can appear in TR• Since v(j) and e(i, j) differ only in 
their ith bits, if v(j) satisfies TR then so does e( i, j), implying e( i, j) ¢ Sa 
and hence (i, j) ¢ E. O(Theorem 1 .3) 

Thus, we see that 3-term DNF formulae are not efficiently PAC learn­
able under the assumption that NP-complete problems cannot be solved 
with high probability by a probabilistic polynomial-time algorithm (tech­
nically, under the assumption RP =F NP) .  With some more elaborate 
technical gymnastics, the same statement can in fact be made for 2-term 
DNF formulae , and for k-term DNF formulae for any constant k � 2. 

However, note that our reduction relied critically on our demand in 
the definition of PAC learning that the learning algorithm output a hy­
pothesis from the same representation class from which the target for­
mula is drawn - we used each term of the hypothesis 3-term formula to 
define a color class in the graph. In the next section we shall see that 
this demand is in fact necessary for this intractability result, since its 
removal permits an efficient learning algorithm for this same class. This 
will motivate our final modification of the definition of PAC learning. 

1 . 5  Using 3-CNF Formulae t o  Avoid 
Intractability 

We conclude this chapter by showing that if we allow the learning algo­
rithm to output a more expressive hypothesis representation, then the 
class of 3-term DNF formulae is efficiently PAC learnable. In combi­
nation with Theorem 1 .3, this motivates our final modification to the 
definition of PAC learning. 
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We can use the fact that for boolean algebra, V distributes over 1\ 
(that is, (u 1\ v) V (w 1\ x) = (u V w) 1\ (u V x) 1\ (v V w) 1\ (v V x) for 
boolean variables u, v, w, x) to represent any 3-term D NF formula over 
Xl , • •  · ,  xn by an equivalent conjunctive normal form (CNF) formulae over 
Xl, • • .  , Xn in which each clause contains at most 3 literals (we will call 
such formulae 3-CNF formulae) :  

1\ (u V v V w) .  

Here the conjunction is  over all clauses choosing one literal from each 
term. 

We can reduce the problem of PAC learning 3-CNF formulae to the 
problem of PAC learning conjunctions, for which we already have an 
efficient algorithm. The high-level idea is as follows: given an oracle 
for random examples of an unknown 3-CNF formula, there is a simple 
and efficient method by which we can transform each positive or negative 
example into a corresponding positive or negative example of an unknown 
conjunction (over a larger set of variables) . We then give the transformed 
examples to the learning algorithm for conjunctions that we have already 
described in Section 1 .3. The hypothesis output by the learning algorithm 
for conjunctions can then be transformed into a good hypothesis for the 
unknown 3-CNF formula. 

To describe the desired transformation of examples, we regard a 3-
CNF formula as a conjunction over a new and larger variable set. For 
every triple of literals u, v, w over the original variable set Xb " "  Xn t 
the new variable set contains a variable Yu,v,w whose value is defined by 
Yu,v,w = u V v V w. Note that when u = v = w, then Yu,1J,W = u, so all 
of the original variables are present in the new set. Also, note that the 
number of new variables Yu,1J,W is (2n)3 = O(n3) .  

Thus for any assignment a E {O, l }n to the original variables X l ,  • . .  , Xn , 
we can in time O( n3) compute the corresponding assignment a' to the 
Dew variables {Yu.,v,w } '  Furthermore, it should be clear that any 3-CNF 
formula c over Xl , • • •  , Xn is equivalent to a simple conjunction c' over the 
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new variables (just replace any clause (u V v V w) by an occurrence of 
the new variable Yu,v,w) .  Thus, we can run our algorithm for conjunc­
tions from Section 1 .3, expanding each assignment to Xl , • • •  , X" that is 
a positive example of the unknown 3-CNF formula into an assignment 
for the Yu,v,w , and giving this expanded assignment to the algorithm as a 
positive example of an unknown conjunction over the Yu,tJ,w ' We can then 
convert the resulting hypothesis conjunction h' over the Yu,v,w back to a 
3-CNF h in the obvious way, by expanding an occurrence of the variable 
Yu,v,w to the clause (u V v V w) . 

Formally, we must argue that if c and V are the target 3-CNF for­
mula and distribution over {O, I }",  and d and V' are the corresponding 
conjunction over the Yu,tJ,w and induced distribution over assignments a' 
to the Yu,v,w , then if h' has error less than f with respect to d and V', h 
has error less than f with respect to c and V. This is most easily seen by 
noting that our transformation of instances is one-to-one: if al is mapped 
to a� and a2 is mapped to a� , then al :f:. a2 implies a� :f:. a� . Thus each 
vector a' on which h' differs from d has a unique preimage a on which h 
differs from c, and the weight of a under V is exactly that of a' under V'. 
It is worth noting, however, that our reduction is exploiting the fact that 
our conjunctions learning algorithm works for any distribution V, as the 
distribution is "distorted" by the transformation. For example, even if V 
was the uniform distribution over {O, l }n ,  V' would not be uniform over 
the transformed assignments a' . 

We have just given an example of a reduction between two learn­
ing problems. A general notion of reducibility in PAC learning will be 
formalized and studied in Chapter 7. 

We have proven: 

Theorem 1.4 The representation class of 9-CNF formulae is efficiently 
PA C learnable. 

Thus, because we have already shown that any 3-term DNF formula 
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can be written as 8. 3-CNF formul8., we can PAC learn 3-term DNF for­
mul8.e if we a.llow the hypothesis to be represented as a 3-CNF formula, 
but not if we insist that it be represented as a 3-term DNF formula! 
The same statement holds for any constant k � 2 for k-term DNF for­
mulae and k-CNF formulae . This demonstrates an important principle 
that often appears in le8.rning theory: even for a fixed concept class from 

which target concepts are chosen, the choice of hypothesis representation 
C8.n sometimes mean the difference between efficient algorithms and in­
tr8.ctability. The specific cause of intract8.bility here is worth noting: the 
problem of just predicting the classification of new examples of a 3-term 
DNF formula is tractable (we can use 8. 3-CNF formula for this purpose), 
but expressing the prediction rule in a particular form (namely, 3-term 
DNF formulae) is hard. 

This state of affairs motivates us to generalize our basic definition 
one more time, to allow the learning algorithm to use a more expressive 
hypothesis representation than is strictly required to represent the tar­
get concept. After all, we would not have wanted to close the book on 
the learnability of 3-term DNF formulae after our initial intractability 
result just because we were constrained by an artificial definition that 
insisted that learning algorithms use some particular hypothesis repre­
sentation. Thus our final modification to the definition of PAC learning 
lets the hypothesis representation used be a parameter of the PAC learn­
ing problem. 

Definition 4 (The PAC Model, Final Definition) If C is a concept class 
over X and 'H. is a representation class over X J we will say that C is 
(efficiently) PAC learnable using 'If if our basic definition of PA C 

learning (Definition 2) is met by an algorithm that is now allowed to 
output a hypothesis from 'If. Here we are implicitly assuming that 'H. is 
at least as expressive as C I and so there is a representation in 'H. of every 
function in C .  We will refer to 'If as the hypothesis class of the PA C 
learning algorithm. 

While for the reasons a.lready discussed we do not want to place un-
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necessary restrictions on 11, neither do we want to leave 11 entirely uncon­
strained. In particular, it would be senseless to study a model of learning 
in which the learning algorithm is constrained to run in polynomial time, 
but the hypotheses output by this learning algorithm could not even be 
evaluated in polynomial time. This motivates the following definition. 

Definition 5 We say that the repres entation class 11 is polynomially 
evaluatable if there is an algorithm that on input any instance x E Xn 
and any representation h E  lln, outputs the value hex) in time polynomial 
in n and size(h) . 

Throughout our study, we will always be implicitly assuming that 
PAC learning algorithms use polynomially evaluatable hypothesis classes. 
Using our new language, our original definition was for PAC learning C us­
ing C, and now we shall simply say that C is efficiently PAC learnable 
to mean that C is efficiently PAC learnable using 11 for some polynomially 
evaluatable hypothesis class ?-t. 

The main results of this chapter are summarized in our new language 
by the following theorem. 

Theorem 1 . 5  The representation class of 1-term DNF formulae (con­
junctions) is efficiently PA C learnable using 1-term DNF formulae. For 
any constant k � 2, the representation class of k - term DNF formu­

lae is not efficiently PA C learnable using k -term DNF formulae (unless 
RP = NP j, but is efficiently PAC learnable using k-CNF formulae. 

1 . 6  Exercises 

1 .1 .  Generalize the algorithm for the rectangle learning game to prove 
that if Cn is the class of all axis-aligned hyperrectangles in n-dimensional 
Euclidean space �n , then C is efficiently PAC learnable. 
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1 .2 .  Let f(·) be an integer-valued function, and assume that there does 
not exist a randomized algorithm taking as input a graph G and a pa­

rameter 0 < 6 :5 1 that runs in time polynomial in 1/6 and the size of 
G, and that with probability at least 1 - 6 outputs "no" if G is not k­
colorable and outputs an f(k)-coloring of G otherwise . Then show that 
for some k � 3, k-term DNF formulae are not efficiently PAC learnable 
using f(k)-term DNF formulae. 

1 .3. Consider the following two-oracle variant of the PAC model : when 
c E C is the target concept, there are separate and arbitrary distributions 
vt over only the positive examples of c and V; over only the negative 
examples of c. The learning algorithm now has access to two oracles 
EX(c, vt) and EX(c, V;) that return a random positive example or 
a random negative example in unit time. For error parameter f, the 
learning algorithm must find a hypothesis satisfying Pr:t:E'Dt [h(x) = O} :5 
e and Pr:t:E'D';- [hex) = I} :5 f. Thus, the learning algorithm may now 
explicitly request either a positive or negative example, but must find a 
hypothesis with small error on both distributions . 

Let C be any concept class and 1{ be any hypothesis class. Let ho 
and hI be representations of the identically 0 and identically 1 functions , 

respectively. Prove that C is efficiently PAC learnable using 1{ in the 
original one-oracle model if and only if C is efficiently PAC learnable 
using 1{ U {ho, h. } in the two-oracle model. 

1 .4. Let C be any concept class and 1{ be any hypothesis class. Let ho 
and hl be representations of the identically 0 and identically 1 functions, 
respectively. Show that if there is a randomized algorithm for efficiently 
PAC learning C using 'H, then there is a deterministic algorithm for 
efficiently PAC learning C using 11 U {ho ,  h. } .  

1 .5. In  Definition 2, we modified the PAC model to  allow the learning 
algorithm time polynomial in n and size(c) ,  and also provided the value 
size(c) as input. Prove that this input is actually unnecessary: if there is 
an efficient PAC learning algorithm for C that is given size(c) as input, 
then there is an efficient PAC learning algorithm for C that is not given 
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this input. 

1 . 7  Bibliographic Notes 

The PAC model was defined in the seminal paper of L.G. Valiant [92] , 
and was elaborated upon in his two subsequent papers [91 ,  93) . Much 
of this book is devoted to results in this probabilistic model. Papers by 
Haussler [45, 46, 47, 44J and Kearns, Li, Pitt and Valiant [59] describe 
some results in the PAC model from an artificial intelligence perspective. 

In addition to defining the model, Valiant's original paper (92J pro­
posed and analyzed the algorithm for PAC learning boolean conjunctions 
that we presented in Section 1 .3. The informal rectangle game which 
began our study was formally analyzed in the PAC model in another im­
portant paper due to Blumer, Ehrenfeucht, Haussler and Warmuth {221 , 
whose main results are the topic of Chapter 3.  

The importance of hypothesis representation was first explored by 
Pitt and Valiant [71} . They showed that k-term DNF is not efficiently 
PAC learnable using a hypothesis class of k-term DNF, but is efficiently 
PAC learnable using k-CNF. The general techniques we outlined in Sec­
tion 1 .4 have been used to obtain representation-dependent hardness the­
orems for many classes, including various neural network architectures 
(Blum and Rivest [16, 20] , Judd [53]) .  Intractability results for PAC 
learning neural networks that do not rely on hypothesis class restrictions 
will be given in Chapter 6. The earliest intractability results for learning 
that can be translated into the PAC model are those for deterministic 
finite automata due to Gold [40] , who showed that the problem of find­
ing the smallest finite state machine consistent with a labeled sample is 
NP-hard. This result was dramatically improved to obtain a hardness 
result for even approximating the smallest machine by Pitt and War­
muth [72) . In Chapter 6 we shall give even stronger hardness results for 
PAC learning finite automata. 
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Since Valiant introduced the PAC model , there have been a dizzy­
ing number of extensions and variants proposed in the computational 
learning theory. Some of these variants leave what is efficiently learn­
able essentially unchanged, and were introduced primarily for technical 
convenience. Others are explicitly designed to change the PAC model 
in a significant way, for example by providing the learner with more 
power or a weaker learning criterion. Later we shall study some of these 
variants. The paper of Haussler, Kearns, Littlestone and Warmuth [49] 
contains many theorems giving equivalences and relationships between 
some of the different models in the literature. For instance, the solutions 
to Exercises 1 .3, 1 .4 and 1 .5 are contained in this paper. Exercise 1 . 1  
is from the Blumer et al. paper !221 , and Exercise 1 .2 is from Pitt and 
Valiant [71] . 
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Occam's Razor 

The PAC model introduced in Chapter 1 defined learning directly in 
terms of the predictive power of the hypothesis output by the learning 
algorithm. It was possible to apply this measure of success to a learning 
algorithm because we made the assumption that the instances are drawn 
independently from a fixed probability distribution V, and then measured 
predictive power with respect to this same distribution . 

In this chapter, we' consider a rather different definition of learning 
that makes no assumptions about how the instances in a labeled sample 
are chosen. (We still assume that the labels are generated by a target 
concept chosen from a known class.) Instead of measuring the predictive 
power of a hypothesis , the new definition judges the hypothesis by how 
succinctly it explains the observed data (a labeled sample). The crucial 
difference between PAC learning and the new definition is that in PAC 
learning, the random sample drawn by the learning algorithm is intended 
only as an aid for reaching an accurate model of some external process 
(the target concept and distribution), while in the new definition we are 
concerned only with the fixed sample before us, and not any external 
process. 

This new definition will be called Occam learning, because it for­
malizes a principle that was first expounded by the theologian William 
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of Occam, and which has since become a central doctrine of scientific 
methodolog y. The principle is often referred to as Occam's Razor to in­
dicate that overly complex scientific theories should be subjected to a 
simplifying knife. 

If we equate "simplicity" with representational succinctness, then an­
other way to interpret Occam's principle is that learning is the act of 
finding a pattern in the observed data that facilitates a compact repre­
sentation or compression of this data. In our simple concept learning 
setting, succinctness is measured by the size of the representation of the 
hypothesis concept . Equivalently, we can measure succinctness by the 
cardinality of the hypothesis class used by the algorithm, for if this class 
is small then a typical hypothesis from the class can be represented by 
a short binary string, and if this class is large then a typical hypothesis 
must be represented by a long string. Thus an algorithm is an Occam 
algorithm if it finds a short hypothesis consistent with the observed data. 

Despite its long and illustrious history in the philosophy of science 
and its extreme generality, there is something unsatisfying about the 
notion of an Occam algorithm . After all, the primary goal of science 
(or more generally, of the learning process) is to formulate theories that 
accurately predict future observations, not just to succinctly represent 
past observations. In this chapter, we will prove that when restricted to 
the probabilistic setting of the PAC model, Occam algorithms do indeed 
have predictive power. This provides a formal justification of the Occam 
principle , albeit in a restricted setting. 

Thus, under appropriate conditions, any algorithm that always finds 
a succinct hypothesis that is consistent with a given input sample is 
automatically a PAC learning algorithm. In addition to the philosophical 
interpretation we have just discussed , this reduction- of PAC learning 
to Occam learning provides a new method of designing PAC learning 
algorithms. 
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2.1 Occam Learning and Succinctness 

33 

As in Chapter 1, let X = Un>lXn be the instance space, let C = Un>lCn 
be the target concept class,-and let 1l = Un>llln be the hypothesis 
representation class. In this chapter we will assume, unless explicitly 
stated otherwise, that the hypothesis representation scheme of 1l uses a 
binary alphabet, and we define size(h) to be the length of the bit string 
h. Also, recall that for a concept c E C, size(c) denotes the size of the 
smallest representation of c in 1l. 

Let c E Cn denote the target concept. A labeled sample S of cardi­
nality m is a set of pairs: 

An Occam algorithm L takes as input a labeled sample S, and outputs 
a "short" hypothesis h that is consistent with S. By consistent we mean 
that h(Xi) = C(Xi) for each i, and by "short" we mean that size(h) is a 
sufficiently slowly growing function of n, size ( c) and m. This is formalized 
in the follow ing definition . 

Definition 6 Let a � 0 and 0 :5 {3 < 1 be constants. L is an (a, {3)­
Occam algorithm for C using 1l if on input a sample S of cardinality 
m labeled according to C E Cn, L outputs a hypothesis h E 1l such that: 

• h is consistent with S . 

• size(h) � (n· size(c))Qm.B. 

We say that L is an efficient (a, {3)-Occam algorithm if its running time 
is bounded by a polynomial in n, m and size(c). 

In what sense is the output h of an Occam algorithm succinct? First 
let us assume that m > > n, so that the above bound can be effectively 
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simplified to size( h) < mfJ for some {3 < 1. Since the hypothesis h is 
consistent with the sample S, h allows us to reconstruct the m labels 
C(Xl} = h(xd, .. . , c(xm) = h(xm) given only the unlabeled sequence of 
instances x}, . . . ,Xm. Thus the m bits c(xd, ... , c(xm} have been effec-
tively compressed into a much shorter string h of length at most mfJ. 
Note that the requirement {3 < 1 is quite weak, since a consistent hy­
pothesis of length O(mn) can always be achieved by simply storing the 
sample S in a table (at a cost of n + 1 bits per labeled example) and 
giving an arbitrary (say negative) answer for instances that are not in 
the table. We would certainly not expect such a hypothesis to have any 
predictive power. 

Let us also observe that even in the case m < < n, the shortest con­
sistent hypothesis in 1i may in fact be the target concept, and so we 
must allow size(h) to depend at least linearly on size(c). The definition 
of succinctness above is considerably more liberal than this in terms of 
the allowed dependence on n, and also allows a generous dependence on 
the number of examples m. We will see cases where this makes it easier 
to efficiently find a consistent hypothesis - by contrast, computing the 
shortest hypothesis consistent with the data is often a computationally 
hard problem. 

The next theorem, which is the main result of this chapter, states that 
any efficient Occam algorithm is also an efficient PAC learning algorithm. 

Theorem 2.1 (Occam's Razor) Let L be an efficient (a,{3)-Occam al­
gorithm for C using 1i. Let V be the target distribution over the instance 
space X, let c E Cn be the target concept, and 0 < €, 0 :5 1. Then there is 
a constant a > 0 such that if L is given as input a random sample S of 
m examples drawn from EX(c, V), where m satisfies 

m � a (; IOg � + (n' SU:(C»Q»)�) 

then with probability at least 1-0 the output h of L satisfies error(h) $ f. 
Moreover, L runs in time polynomial in n, size(c), l/f and 1/0. 
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Notice that as f3 tends to 1, the exponent in the bound for m tends 
to infinity. This corresponds with our intuition that as the length of the 
hypothesis approaches that of the data itself, the predictive power of the 
hypothesis is diminishing. 

For the applications we give later, it turns out to be most conve­
nient to state and prove Theorem 2.1 in a slightly more general form, 
in which we measure representational succinctness by the cardinality of 
the hypothesis class rather than by the bit length size(h}. We then prove 
Theorem 2.1 as a special case. To make this precise, let 11.n = Um�l1ln,m. 
Consider a learning algorithm for C using 11. that on input a labeled sam­
ple S of cardinality m outputs a hypothesis from 11.n•m• The following 
theorem shows that if \1ln•m \ is small enough, then the hypothesis output 
by L has small error with high confidence. 

Theorem 2.2 (Occam IS Razor, Cardinality Version) Let C be a concept 
class and 11. a representation class. Let L be an algorithm such that for 
any n and any c E Cn, if L is given as input a sample S of m labeled 
examples of c, then L runs in time polynomial in n, m and size(c), and 
outputs an h E 11.n•m that is consistent with S. Then there is a constant 
b > 0 such that for any n, any distribution 'D over Xn, and any target 
concept C E en, if L is given as input a random sample from EX(c, 'D) of 
m examples, where I 11.n•m I satisfies 

1 
log l1ln•m l � bEm - log "6 

(or equivalently, where m satisfies m � (1/bE)(log l11.n•ml + log{1/6») 
then L is guaranteed to find a hypothesis h E 11.n that with probability at 
least 1 - 6 obeys error (h) � E. 

Note that here we do not necessarily claim that L is an efficient PAC 
learning algorithm. In order for the theorem to apply, we must (if pos­
sible) pick m large enough so that bEm dominates log l11.n•ml. Moreover, 
since the running time of L has a polynomial dependence on m, in order 
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to assert that L is an efficient PAC algorithm, we also have to bound m 
by some polynomial in n, size(c), lIe and l/f>. The proof of Theorem 2.1 
relies on the fact that in the case of an (a, ,B)-Occam algorithm, log l?tn,ml 
grows only as mP, and therefore given any e, this is smaller than bem for 
a small value of m. 

We first give a proof of Theorem 2.2. 

Proof: We say that a hypothesis hE ?tn,m is bad if e1Tor(h) > e, where 
the error is of course measured with respect to the target concept c and 
and the target distribution 1>. Then by the independence of the random 
examples, the probability that a fixed bad hypothesis h is consistent 
with a randomly drawn sample of m examples from EX(c,1» is at most 
(1 - e)m. Using the union bound, this implies that if?t' s; ?tR,m is 
the set of all bad hypotheses in ?tn,m, then the probability that some 
hypothesis in ?t' is consistent with a random sample of size m is at most 
11-l'I(I- e)m. We want this to be at most f>j since l?t'l � l?tn.ml we get a 
stronger condition if we solve for l?tn.m/(l- e)m � 0. Taking logarithms, 
we obtain log l'Hn.ml � mlog(l/{l - e» -log(l/«5). Using the fact that 
log(l/(l - e)) = a(e), we get the statement of the theorem. 

O(Theorem 2.2) 

We now prove Theorem 2.1: 

Proof: Let 'Hn•m denote the set of all possible hypothesis represen­

tations that the (�,.8)-Occam algorithm L might output when given as 
input a labeled sample S of cardinality m. Since L is an (a, .B)-Occam 
algorithm, every such hypothesis has bit length at most (n· size(c)}QmP, 
thus implying that l1-ln.ml � 2(n.,i,e(c»OmtJ• By Theorem 2.2, the output 
of L has error at most E with confidence at least 1 - «5 provided 

1 
log l?tn.m/ � bem -log 6' 

Transposing, we want m such that 
1 1 I 

m � be log l?tn,m/ + be log 6 
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The above condition can be satisfied by picking m such that both m � 
(2/bf) log l'Hn,ml and m � (2/bf) 10g(1/o} hold. Choosing a = 2/b yields 
the statement of the theorem. O(Theorem 2.1) 

2.2 Improving the Sample Size for 
Learning Conjunctions 

As an easy warm-up to some more interesting applications of Occam 's 
Razor, we first return to the problem of PAC learning conjunctions of 
boolean literals, and apply Theorem 2.2 to slightly improve the sam­
ple size bound (and therefore the running time bound) of the learning 
algorithm we presented for this problem in Section 1.3. 

Thus as in Section 1.3, we let Xn = {o,l}n. Each a E {o,l}n is 
interpreted as an assignment to the n boolean variables Xl, • • •  , xn• Let 
en be the class of conjunctions of literals over Xl, ••• ,Xn• Recall that our 
learning algorithm started with a hypothesis that is the conjunction of all 
the 2n literals. Given as input a set of m labeled examples, the algorithm 
ignored negative examples, and on each positive example (a,l), the al­

gorithm deleted any literal z such that z = 0 in a. Note that this ensures 
that upon receiving the positive example a, the hypothesis is updated 
to be consistent with this example. Furthermore, any future deletions 
will not alter this consistency, since deletions can only increase the set 
of positive examples of the hypothesis. Finally, recall that we already 
argued in Section 1.3 that this algorithm never misclassifies any negative 
example of the target conjunction c. Thus, if we run the algorithm on 
an arbitrary sample S of labeled examples of some target conjunction, it 
always outputs a hypothesis conjunction that is consistent with S, and 
thus it is an Occam algorithm . Note that in this simple example, size(h) 
(or equivalently, log l'Hn.mD depends only on n and not on m or size(c). 

Now the number of conjunctions over Xl," " Xn is bounded by 3n 
(each variable occurs positively or negatively or is absent entirely) , so 
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applying Theorem 2.2, we see that O«l/e) log(l/o) + n/e) examples are 
sufficient to guarantee that the hypothesis output by the learning algo­
rithm has error less than e with confidence at least 1 - O. This is an 
improvement by a logarithmic factor over the bound given in Chapter 1. 

2.3 Learning Conjunctions with Few 
Relevant Variables 

Despite the efficiency of our algorithm for PAC learning boolean con­
junctions , we can still imagine improvements. Let us define size (c) be 
the number of literals appearing in the target conjunction c. Notice that 
size(c) � n, but the size of the sample drawn by our learning algorithm 
for conjunctions is proportional to n independent of how small size (c) 
might be. In this section, we give a new algor ithm that reduces the num­
ber of examples to nearly size (c) . It can be argued that it is often realistic 
to assume that size (c) « n, since we typically describe an object by 
describing only a few attributes out of a large list of potential attributes. 

Even though we greatly improve the sample size for the case of small 
size(c), we should point out that the running time of the new learning 
algorithm still grows with n, since the instances are of length n, and the 
algorithm must take enough time to read each instance. An interesting 
feature of the new algorithm is that it makes use of the negative examples, 
unlike our previous algorithm for learning conjunctions. 

In order to describe the new algorithm, we need to introduce a com­
binatorial problem and a well-known algorithm for its approximate solu­
tion. This approximation algorithm has many applications in computa­
tional learning theory. 

The Set Cover Problem. Given as input a collection S of subsets of 
U = {l, . . . , m}, find a su bcollection T S; S such that ITI is minimized, 
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and the sets in T form a cover of U: 
Ut=U. 

tET 

We assume, of course, that the entire collection S is itself a cover. For any 
instance S of the Set Cover Problem, we let opt(S) denote the number 
of sets in a minimum cardinality cover. 

Finding an optimal cover is a well-known NP-hard problem. However, 
there is an efficient greedy heuristic that is guaranteed to find a cover 'R 
of cardinality at most O(opt(S) log m). 

The greedy heuristic initializes 'R to be the empty collection. It first 
adds to 'R the set 8· from S with the largest cardinality, and then updates 
S by replacing each set 8 in S by s - 8·. It then repeats the process of 
choosing the remaining set of largest cardinality and updating S until all 
the elements of {1, ... , m} are covered by 'R. 

The greedy heuristic is based on the following fact: let U· � U. Then 
there is always a set t in S such that Itnu·1 � IU·l/opt(S). To see why 
this is true, just observe that U· has a cover of size at most opt(S) (since 
U does ), and at least one of the sets in the optimal cover must cover a 
1/ opt (S) fraction of U·. 

Let Ui � U denote the set of elements still not covered after i steps 
of the greedy heuristic. Then 

IUi+l1 � IUil- o;�l) = lUi l (1- oP
:
(S»

) . 

So by induction on i: 

lu,l:<; (1- op
i(sS m. 

Choosing i � opt(S) log m suffices to drive this upper bound below 1. 
Thus all the elements of U are covered after the algorithm has chosen 
opt(S) logm sets. 
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We now return to the problem of PAC learning conjunctions with few 
relevant variables. We shall describe our new algorithm as an Occam 
algorithm and apply Theorem 2.2 to obtain the required sample size 
for PAC learning. Thus, given a sample S of m examples of a target 
conjunction, the new Occam algorithm starts by applying our original 
conjunctions algorithm - which uses only the positive examples - to 
S in order to produce a hypothesis conjunction h. This conjunction will 
have the property that it is consistent with S, since the old algorithm 
was indeed an Occam algorithm. The new algorithm will then use the 
negative examples in S to exclude several additional literals from h in 
a manner described below, to compute a new hypothesis conjunction hi 
containing at most size ( c) log m of the literals appearing in h. This new 
smaller hypothesis will still be consistent with S, and so the sample size 
bound for PAC learning can be derived from Theorem 2.2. 

Recall that excluding literals from h does not affect consistency with 
the positive examples in S, since the set of positive examples of h only 
grows as we delete literals. However, the new algorithm has to carefully 
choose which literals of h it excludes in order to ensure that the hypothesis 
is still consistent with all the negative examples in S. To do this, we cast 
the problem as an instance of the Set Cover Problem and apply the greedy 
algorithm. 

For each literal z appearing in h, we can identify a subset N6 � S 
of the negative examples in S. with the property that inclusion of z in 
the hypothesis conjunction is sufficient to guarantee consistency with N,. 
The set N: is just those negative examples in (a,O) E S for which the 
value of z is 0 in a. Thus, we can think of the inclusion of z in our 
hypothesis conjunction as "covering" the set N, of negative examples. If 
we have a collection of N, that covers all the negative examples of S, and 
each z appears in h, then the conjunction hi of this collection will still 
form a hypothesis consistent with S. 

Our goal is thus reduced to covering the set of all negative exam­
ples in S with the minimum number of the sets N,. Applying the greedy 
heuristic to this problem, and noting that among the literals of h, a cover 
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of size(c) sets exists (since the literals that occur in the target conjunc­
tion must form a cover) , we get a cover of size size(c) logm; in other 
words, our hypothesis class 1tn•m is the set of all conjunctions of at most 
size(c) logm literals. Using the fact that a conjunction of f literals over n 
variables can be encoded using flog n bits , and setting f = size ( c) log m, 
we get a bound of size(c) log m logn on the number of bits needed to 
represent our hypothesis , and thus l1tn,ml ::; 2,ize(c}Jogmlogn. Apply-
ing the condition m = O«1/f) log l1tn•mD required by Theorem 2.2, 
we obtain the constraint m � cl«1/f)size(c)logmlogn) for some con­
stant Cl > O. It is easily verified that this is satisfied provided m � 
Cl{{l/f)size(c) log n log(size(c) logn». Thus , the overall sample size re­
quired by the new algorithm is 

> (11 1 size (c) logn(log size(c) + IOglOgn» ) m _ Cl - og - + . 
f 6 f 

Note that this bound has a fllightly superlinear dependence on size (c), 
but only an approximately logarithmic dependence on the total number 
of variables n. 

In fact, a slight modification of this algorithm that we shall now 
sketch quite briefly gives a better bound. The basic idea behind the 
modification is that rather than running the greedy cover heuristic until 
the hypothesis covers all of the negative examples, we shall run it only 
until the hypothesis misclassifies fewer than fm/2 negative examples. 
Thus, our resulting hypothesis will be almost but not quite consistent 
with its input sample, where the degree of consistency is controlled by 
the desired error bound f. 

For the analysis, observe that now the halting condition for the greedy 
heuristic is (1 - l/size(c»im < (f/2)m instead of (1 - l/size(c))im < 
1 as before; here we are using the correspondence between opt(S) in 
the covering problem and size(c) in the PAC learning problem. Thus, 
we halt with a hypothesis of i = size(c) 10g(2/£) literals instead of i = 
size ( c) log m literals. This gives a smaller hypothesis class cardinality of 
2,ize(c) log(2/£) log n • 
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Now we just need a lemma stating that the probability that a fixed 
conjunction h such that error(h) � € is consistent with at least a frac­
tion 1 - €/2 of m random examples is bounded by some exponentially 
decreasing function of m (that is, we need the analogue of the bound 
(1 - f)m on the probability that a hypothesis of error greater than f is 

completely consistent with the sample). It turns out that we can state a 
bound of e-tm/16 on this probability, and this is discussed in the section 
on Chernoff Bounds in the Appendix of Chapter 9. For our immediate 
problem, given this bound we can now apply the same arguments as those 
in the proof of Theorem 2.2, and by solving 2.tize(c)log(2Mlogne-Em/16 =5 6 
we obtain a sample size bound of 

> (11 1 size(c) log(2/f) IOgn) 
m _ Cl - og"£ + . 

f () f 

2.4 Learning Decision Lists 

Our final application of Occam learning is to an algorithm for PAC learn­
ing decision lists over the boolean variables Xl." " Xn. A decision list 
may be thought of as an ordered sequence of if-then-else statements. 
The sequence of conditions in the decision list are tested in order, and 

the answer associated with the first satisfied condition is output. 

Formally, a k-decision list over the boolean variables Xl," • ,Xn is 
an ordered sequence L = (CI, bl), . . . , (CI' b,) and a bit b, in which each Ci 
is a conjunction of at most k literals over XlJ • • .  , Xn, and each bi E {O, I}. 
For any input a E {o,l}n, the value L(a) is defined to be bi, where j 
is the smallest index satisfying Cj (a) = 1; if no such index exists, then 
L(a) ::;:: b. Thus, b is the "default" value in case a falls off the end of the 
list. We call bi the bit associated with the condition Ci. Figure 2.1 shows 

an example of a 2-decision list along with its evaluation on a particular 
input. 

First let us consider the expressive power of k-decision lists. We 
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List L 

1 

o 1 1 o 1 o 
t 

L (011011) = 1 

Figure 2.1: A 2-decision list and the path followed by an input. Evalua­
tion starts at the leftmost item and continues to the right until the first 
condition is satisfied, at which point the binary value below becomes the 
final result of the evaluation. 

observe that if a concept c can be represented as a k-decision list, then 
so can ""Ie (simply complement the values of the bi) . Clearly, any k­
DNF formula can be represented as a k-decision list of the same length 
(choose an arbitrary order in which to evaluate the terms of the k-DNF, 
setting all the bi to 1 and the default b to 0). Since k-decision lists are 
closed under complementation, they can also represent k-CNF formulae. 
Furthermore, in Exercise 2.1 we demonstrate that for each k there exist 
functions that can be represented by a k-decision list, but not by either 
a k-DNF or a k-CNF formula. Thus, k-decision lists strictly generalize 
these classes. 

Theorem 2.3 For any fixed k 2: 1, the representation class of k-decision 
lists is efficiently PA C learnable. 

Proof: We give an Occam algorithm and apply Theorem 2.2. We 
present the algorithm for 1-decision lists; the problem for general k can 
easily be reduced to this problem, exactly as the k-CNF PAC learning 
problem was reduced to the problem of PAC learning conjunctions in 
Chapter 1. 
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Given an input sample 8 of m examples of some 1-decision list, our 
Occam algorithm starts with the empty decision list as its hypothesis. 
In each step, it finds some literal z such that the set 8/1 � 8, which we 
define to be the set of examples (positive or negative) in which z in set 
to I, is both non-empty and has the property that it contains either only 
positive examples of the target concept, or only negative examples. We 
call such a z a useful literal. The algorithm then adds this literal (with the 
associated bit 1 if Sz contained only positive examples, and the associated 
bit 0 if 8a contained only negative examples) as the last condition in the 
current hypothesis decision list, updates 8 to be 8 - 8/1, and iterates the 

process until S = 0 and therefore all examples are correctly classified by 
the hypothesis decision list. 

To prove that the algorithm always succeeds in finding a consistent 
hypothesis, it suffices to show that it always succeeds in finding a useful 

literal z at each step as long as 8 ¥: 0. But this is true because the target 
decision correctly classifies every element of 8, and so the first condition 
z in the target decision list such that 8/1 is non-empty is a useful literal. 

Since any decision list on n variables can be encoded in O( n log n) 
bits, we can apply Theorem 2.2 to obtain a sample size bound of m � 
cl({1/f)(log(1/6)+n log n)) for PAC learning. Since the Occam algoritbm 
clearly runs in time polynomial in m, we have efficient PAC learning . 

O(Theorem 2.3) 

2.5 Exercises 

2.1. Show that for each k, there exists a function that can be represented 
as a k-decision list, but not by a k-CNF or k-DNF formula. 

2.2. A decision tree is similar to a 1-decision list, except now we allow 
the (single-literal) decision conditions to be placed in a binary tree, with 
the decision bits placed only at the leaves . To evaluate such a tree T 
on input a E {O, 1 }n, we simply follow the path through T defined by 
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starting at the root of T and evaluating the literal at each node on input 
a, going left if the evaluation yields 0 and right if it yields 1. The value 
T(a) is the bit value stored at the leaf reached by this path. Figure 2.2 
shows an example of a decision tree along with its evaluation on an input. 

We define the rank of a decision tree T recursively as follows: the 
rank of a tree consisting of a single node is O. If the ranks of T's left 
subtrees and right subtrees are TL and TR respectively, then if rL = rR 
the rank of Tis rL + Ii otherwise, it is max(rLI TR). The rank is a measure 
of how "unbalanced" the tree is. 

Compute the rank of the decision tree given in Figure 2.2, and show 
that the class of functions computed by rank r decision trees is included 

in the class of functions computed by r-decision lists. Thus, for any fixed 
r we can efficiently PAC learn rank r decision trees. 

2.3. Let e be any concept class. Show that if e is efficiently PAC learn­
able, then for some constants 0 � I and fJ < 1 there is an (0, fJ)-Occam 
algorithm for e. Hint: construct an appropriate simulation of the PAC 
learning algorithm L in which the accuracy parameter depends on the 
degree of the polynomial running time of L. 

2.4. Recall that following our final definition of PAC learning (Defini­
tion 4), we emphasized the importance of restricting our attention to 
PAC learning algorithms that use polynomially evaluatable hypothesis 
classes 1l (see Definition 5). Suppose that we consider relaxing this re­

striction, and let 1l be the class of all Turing machines (not necessarily 
polynomial time) - thus, the output of the learning algorithm can be 
any program. Show that if en is the class of all boolean circuits of size 
at most pen) for some fixed polynomial p(.), then C is efficiently PAC 
learnable using?t. Argue that your solution shows that this relaxation 
trivializes the model of learning. 
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TreeT 

1 

1 o o 1 

t 
T(10010110) = 0 

Figure 2.2: A decision tree and the path followed by an input. 

2.6 Bibliographic Notes 

The notion of Occam learning as we have formalized it and our main 
theorems stating that Occam learning implies PAC learning are due to 
Blumer, Ehrenfeucht, Haussler and Warmuth [21]. There is a converse to 
Theorem 2.1 which establishes that C is PAC learnable if and only if there 
is an Occam algorithm for C. This was the topic of Exercise 2.3, whose 
intended solution is due to Board and Pitt (231. A considerably stronger 
converse is a consequence of the equivalence between weak and strong 
PAC learning due to Schapire [84, 85] (see also the work of Freund (35, 36] 
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and Helmbold and Warmuth [52]). We shall study this equivalence in 
Chapter 4. 

The predictive power of Occam algorithms continues to hold for sev­
eral variants of the PAC model and for more general notions of hypothesis 
complexity. These include models for PAC learning in the presence of 
various types of errors (Angluin and Laird [10], Kearns and Li [57, 55]), 
learning probabilistic concepts (Kearns and Schapire [61, 85]), and func­
tion learning (Natarajan [70]). In Chapter 3 we will consider a very gen­
eral notion of hypothesis complexity, the Vapnik-Chervonenkis dimension 
(Vapnik [941; Blumer, Ehrenfeucht, Haussler and Warmuth [22]), and we 
again prove the predictive power of algorithms finding a consistent hy­
pothesis with limited complexity. The predictive power of Occam algo­
rithms in a setting where the examples are not independent but obey a 
Markovian constraint is examined by Aldous and Vazirani [3]. 

The algorithm for learning conjunctions with few relevant literals 
is due to Haussler [45}, who also provides a lucid discussion of Occam 
learning and inductive bias from the artificial intelligence perspective. 
The analysis of the greedy set cover approximation algorithm is due to 
Chvatal [26] . The modification of the covering algorithm to only nearly 
cover the sample is due to M. Warmuth. The problem of learning when 
there are many irrelevant variables present has also been carefully exam­
ined by Littlestone [65, 66] and Blum [17] in on-line models of learning. 
The decision list learning algorithm is due to Rivest [78] , and Exercise 
2.2 is due to A. Blum (see also the paper Ehrenfeucht and Haussler [32]). 

Relationships between various measures of hypothesis complexity and 
generalization ability have been proposed and examined in a a large and 
fascinating literature that predates the PAC model results given here. 
Two dominant theories along these lines are the structural risk mini­
mization of Vapnik [94] and the minimum description length principle 
of Rissanen [77}. The papers of Quinlan and Rivest [75} and DeSantis, 
Markowsky and Wegman [29] examine variants of the minimum descrip­
tion length principle from a computational learning theory viewpoint. 
It has frequently been observed that the minimum description length 
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criterion has a Bayesian interpretation in which representational length 
determines the prior distribution. This viewpoint is further explored in 
the paper of Evans, Rajagopalan and Vazirani [34), where the notion of 
an Occam algorithm is generalized to arbitrary stochastic processes. 

Copyrighted Material 



 

3 

The Vapnik-Chervonenkis 
Dimension 

3.1 When Can Infinite Classes Be 
Learned with a Finite Sample? 

In this chapter, we consider the following question: How many random 
examples does a learning algorithm need to draw before it has sufficient 
information to learn an unknown target concept chosen from the concept 
class C? We should emphasize that we will temporarily ignore issues 
of computational efficiency while studying this question (or equivalently, 
we assume that the learning algorithm has infinite computing power to 
process the finite random sample it has drawn) .  We first note that the 
results of the previous chapter can be used to give such a bound in the 
case that C is a concept class of finite cardinality. If the learning algorithm 
simply draws a random sample of O«l/e) 10g(ICI/6)) examples, and finds 
any h E C consistent with these examples (say, by exhaustive search) , 
then Theorem 2.2 guarantees that h will meet the PAC model criteria. 
Notice that this bound is not meaningful if C has infinite cardinality. 
Are there any non-trivial infinite concept classes that are learnable from 
a finite sample? 
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Actually, our PAC learning algorithm for axis-aligned rectangles in 
the Euclidean plane given in Section 1.1 is an example of such a class. 
In the analysis of that PAC learning algorithm, we made critical use of 
the fact that axis-aligned rectangles have simple boundaries: the target 
rectangle is always completely specified by four real numbers that indicate 
the locations of the four bounding edges, and this allowed us to partition 
the error of the tightest-fit hypothesis into four simple rectilinear regions. 
It is tempting to say that the "complexity" of this concept class is four, 
because the boundary of any concept in the class can be described by 
four real numbers. 

In this chapter, we are interested in a general measure of complexity 

for concept classes of infinite cardinality. We would like this measure 
to play the same role in the sample complexity of PAC learning infinite 
classes that the quantity log lei (which we saw in Chapter 2 was closely 
related to the size of representations) plays in the sample complexity 
of PAC learning finite classes. We will define a purely combinatorial 
measure of concept class complexity known as the Vapnik-Chervonenkis 
dimension, a measure that assigns to each concept class C a single number 
that characterizes the sample size needed to PAC learn C. 

3.2 The Vapnik-Chervonenkis Dimension 

For the remainder of this chapter, C will be a concept class over instance 
space X, and both C and X may be infinite. The first thing we will need 
is a way to discuss the behavior of C when attention is restricted to a 
finite set of points S � X. 

Definition 7 For any concept class C over X, and any S � X I 

Ilc(S) = {en S: c E C}. 
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Equivalently, if S = {Xl,' .. , xm} then we can think of fle(S) as the set 
of vectors fie(S) � {O,l}m defined by 

fie(S) = {(C(Xl),"" c(xm}) : c E C}. 

Thus, llc(S) is the set of all the behaviors or dichotomies on S that 
are induced or realized by C. We will use the descriptions of llc(S) as 
a collection of subsets of S and as a set of vectors interchangeably. 

Definition 8 If lle(S) = {o,l}m (where m = lSI), then we say that S 
is shattered by C. Thus, S is shattered by C if C realizes all possible 
dichotomies of S. 

Now we are ready for our key definition. 

Definition 9 The Vapnik-Chervonenkis (VC) dimension ofC, de­
noted as VGD(C), is the cardinality d of the largest set S shattered by C. 
If arbitrarily large finite sets can be shattered by C, then VGD(C) = 00. 

3.3 Examples of the VC Dimension 

Let us consider a few natural geometric concept classes, and informally 
calculate their VC dimension. It is important to emphasize the nature of 
the existential and universal quantifiers in the definition of VC dimension: 
in order to show that the VC dimension of a class is at least d, we must 
simply find some shattered set of size d. In order to show that the VC 
dimension is at most d, we must show that no set of size d+ 1 is shattered. 
For this reason, proving upper bounds on the VC dimension is usually 
considerably more difficult than proving lower bounds. The following 
examples are not meant to be precise proofs of the stated bounds on 
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Figure 3.1: A dichotomy unrealizable by intervals. 

Chapter 3 

the VC dimension, but are simply illustrative exercises to provide some 
practice thinking about the VC dimension. 

Intervals of the real line. For this concept class, any set of two 
points can be shattered, so the VC Dimension is at least two, but no 
set of three points can be shattered: label the three points as shown in 
Figure 3.1, a labeling which cannot be induced by any interval. Thus the 
VC dimension for this class is two. 

Linear half spaces in the plane. For this concept class, any three 
points that are not collinear can be shattered. F igure 3 .2(a) shows how 
one dichotomy out of the possible 8 dichotomies can be realized by a 
halfspacej the reader can easily verify that the remaining 7 dichotomies 
can be realized by halfspaces. To see that no set of four points can 
be shattered, we consider two cases. In the first case (shown in Figure 
3.2(b», all four points lie on the convex hull defined by the four points. In 
this case, if we label one "diagonal" pair positive and the other "diagonal" 
pair negative as shown in Figure 3.2(b), no halfspace can induce this 
labeling . In the second case (shown in Figure 3.2(c)), three of the four 
points define the convex hull of the four points, and if we label the interior 
point negative and the hull points positive, again no half space can induce 
the dichotomy. Thus the VC dimension here is three. In general, for 
halfspaces in �d, the VC dimension is d + 1. 

Axis-aligned rectangles in the plane. For this concept class, we 
can shatter the four points shown in Figure 3.3{a) ,  where we have again 
indicated how a single dichotomy can be realized and left the remainder 
to the reader. However, not all sets of four points can be shattered, as 
indicated by the unrealizable dichotomy shown in Figure 3.3(b). Still, the 
existence of a single shattered set of size four is sufficient to lower bound 
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Figure 3.2: (a) A dichotomy and its realization by a hal/space, with the 
shaded region indicating the positive side. (b) and (c) Dichotomies unre­
alizable by hal/spaces. 
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Figure 3.3: (a) A dichotomy and its realization by an axis-aligned rect­
angle. (b) and (c) Dichotomies unrealizable by axis-aligned rectangles. 

the VC dimension. Now for any set of five points in the plane, there 
must be some point that is neither the extreme left, right, top or bottom 
point of the five (see Figure 3.3(c». If we label this non-extremal point 

negative and the remaining four extremal point positive, no rectangle can 
realize the dichotomy. Thus the VC dimension is four. 
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+ 

+ 

Figure 3.4: (a) Realizing a dichotomy with a polygon when there are fewer 
positive labels. (b) When there are fewer negative labels. 

Convex polygons in the plane. For convex d-gons in the plane , 
the VC dimension is 2d + 1. For the lower bound , we can induce any 
labeling of any 2d + 1 points on a circle using a d-gon as follows: if there 
are more negative labels than positive labels, use the positive points as 
the vertices as shown in Figure 3.4(a) . Otherwise , use tangents to the 
negative points as edges as shown in Figure 3.4(b). For the upper bound, 
it can be shown that choosing the points to lie on a circle does in fact 
maximize the number of points that can be shattered, and we can force 
d + 1 sides using 2d + 2 points on a circle by alternating positive and 
negative labels. 

3.4 A Polynomial Bound on IIIc(S)\ 

Definition 10 For any natural number m we define 

IIc(m) = max{IIIc(S)1 : lSI = m}. 
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The function De(m) can be thought of as a measure of the complexity 
of C: the faster this function grows, the more behaviors on sets of m 
points that can be realized by C as m increases. Now clearly, if C does 
not have finite VC dimension, then Dc( m) = 2m for all m since we can 
shatter arbitrarily large finite sets. In this section, we prove a surprising 
and beautiful result, namely that despite the fact that we might naively 
expect De(m) to grow as rapidly as an exponential function of m, it is 
actually bounded by a polynomial in m of degree d, where d is the VC 
dimension of C. In other words, depending on whether the VC dimension 
is finite or infinite, the function Dc{m) is either eventually polynomial or 
forever exponential. For the more interesting and typical case of finite 
VC d imension , we shall eventually translate the polynomial upper bound 
on IIe(m) into an upper bound on the sample complexity of PAC learning 
that is linear in d. 

We begin by proving that IIe(m) is bounded by the function �d(m) 
defined below. We then show a polynomial bound on �cf(m). 

Definition 11 For any natural numbers m and d, the function �d(m) 
is defined inductively by 

�cf(m) = 4>d(m - 1) + 4>d-l(m - 1) 
with initial conditions �d(O) = �o(m) = 1. 

Lemma 3.1 If VCD(C) = d, then for any m, lle{m) $ �d(m). 

Proof: By induction on both d and m. For the base cases, the lemma 
is easily established when d = 0 and m is arbitrary, and when m = 0 
and d is arbitrary. We assume for induction that for all m', d' such that 
m' $ m and d' $ d and at least one of the two inequalities is strict, we 
have nc(m') $ cp",(m'). We now show that this inductive assumption 
establishes the desired statement for d and m. 
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Given any set S of size m, let xES be a distinguished point. Let us 
first compute Inc(S - {x})I. This is e88Y since by induction (note that 
S - {x} is a set of size m - 1) we have Inc(s - {x}) 1 � 4>d(m - 1). 

The difference between nc(S) and nc(S-{x}) is that pairs of distinct 
sets in ne( S) that differ only on their labeling of x are identified (that 
is, merged) in ne (S - {x}). Thus let us define 

C' = {c E ne(S): x ¢ c,cU {x} E ne(S)}. 

Then IC'I counts the number of pairs of sets in nc(S) that are collapsed 
to a single representative in nc(S - {x}). Note that C' = I1c,(S - {x}) 
because C' consists only of subsets of S - {x}. This yields the simple 
equality 

Inc(S)1 = Inc(S - {x})1 + Inc'(S - {x})I· 

We now show that VCD(C') $ d - 1. To see this, let S' � S - {x} 
be shattered by Ct. Then S' U {x} is shattered by C. Thus we must 
have IS'I � d - 1. Now by induction we have IC'I = Inc'(S - {x})1 :5 
cf?d-l(m - 1). 

Our total count is thus bounded by cf?d(m-l)+cf?d_l(m-l) = cf?d(m), 
as desired. D(Lemma 3.1) 

Proof: By induction; the base cases are easy to check. For the induc­
tion step, we have: 

cf?d(m) - cf?d(m - 1) + cf?d-l(m - 1) 
_ t (m � 1) + E (m � 1) i=O 7. i=O 7. 

-
�[(

m ; 1

)
+
(7�nl 

- �(7) 
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where the second equality is by induction and we define (��l) = 0 for 
the third equality. O(Lemma 3.2) 

Now for m � d, �d(m) = 2m. For m > d, since 0 � dIm � 1, we may 
write: 

Dividing both sides by (;k)d yields 

which is polynomial in m for fixed d, giving us the promised polynomial 
bound for the case m > d. 

3.5 A Polynomial Bound on the Sample 
Size for PAC Learning 

3.5.1 The Importance of €-Nets 

Let us now fix the target concept c E C, and define the class of error 
regions with respect to c and C by �(c) = {c6d : c' E C}. It is easy 
to show that VCD(C) = VCD(.6 (c». To see this, for any set S we can 
map each element d E nc(S) to d .6(c n S) E nA{c)(S). Since this is a 
bijective mapping of llc(S) to llA{c)(S), IllA(c)(S)1 = Inc(S)I. Since this 
holds for any set S, VCD(C) = VCD(.6(c» follows. 

We may further refine the definition of .6(c) to consider only those 
error regions with weight at least f under the fixed target distribution V. 
Thus, let .6(c) = {r E �(c) : PrzE'P[x E rJ ;::: fl. We can now make the 
following important definition: 
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Definition 12 For any e > 0, we say that a set S is an e-net for A(e) 
if every region in A(c} is lihit" by a point in 8, that is, if for every 
r E A(c) we have S n r :f: 0. 

An e-net for A(e) is thus a set that hits all of the e-heavy regions of 
A(c}. As an example, suppose X is the closed interval [0,1] and let V be 
the uniform density on X. Suppose that C consists of all closed intervals 
on [0,1] as well as the empty set 0, and that the target concept e = 0. 
Then A(c) is again the set of all closed intervals on fO, 1]. For any interval 
I under the uniform density, Pr�E1)[x E I] is just the length of I. Any 
interval whose probability is greater than e will have length greater than 
e, so the set of all points ki, for natural numbers 1 � k � r1/el, is an 

f-net for A(e). 

The notion of e-nets has actually been implicit in some of our earlier 
analyses, in particular those of Occam's Razor in Chapter 2. The im­
portant property of f-nets is that if the sample 8 drawn by a learning 
algorithm forms an f-net for A(e), and the learning algorithm outputs 
a hypothesis h E C that is consistent with 8, then this hypothesis must 
have error less than f: since eAh E A(e) was not hit by S (otherwise 
h would not be consistent with 8), and S is an f-net for A(e), we must 

have eAh ¢ A(c) and therefore error(h) � e. 

Thus if we can bound the probability that the random sample 8 fails 
to form an f-net for A(e), then we have bounded the probability that 

a hypothesis consistent with 8 has error greater than e. For the case 
of finite C, the analysis of Occam 's Razor obtained such a bound by a 
simple counting argument that we sketch again here in our new notation: 
for any fixed error region eAh E AE(e), the probability that we fail to hit 
eAh in m random examples is at most (1 - e)m. Thus the probability 
that we fail to hit some eAh E A(e) is bounded above by IA(c)l(l- e)m t 

which in turn is bounded by ICI(l - e)m. 

Alternatively, we can carry out the above analysis replacing ICI by 
cI>d(IXl). This follows immediately from the fact that C = llc(X) and 
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Lemma 3.1. This gives us a bound of iPd(lXI)(I- f)m on the probability 
of failing to draw an f-net for A(c). However, this does not represent any 
progress over the state of affairs in which we began this chapter, since 
if X is infinite then iPd(IXI) is infinite as well. Ideally, we would like to 
carry out a similar analysis that instead of considering the entire domain 
X considers only the small random subset 8 observed by the learning 
algorithm. 

3.5.2 A Small e-Net from Random Sampling 

We now show that if we draw a small set of examples from the oracle 
EX(c, V), then they form an f-net with high probability. The impor­
tant property is that the size of the required sample depends on the VC 
dimension d and f and 6, but is independent of lei and IXI. From the 
preceding discussion, this will immediately lead to an upper bound on 
the number of examples required for PAC learning that depends only on 
these same quantities. 

Suppose that we draw a multiset 81 of m random examples from V, 
and let A denote the event that the elements of 81 fail to form an f-net 
for A(e) . Clearly, our goal is to upper bound the probability of event 
A. If event A occurs, then by the definition of f-nets, 81 misses some 
region r E 6(c). Let us fix this missed region r, and suppose we now 
draw an additional multiset 82 of m random examples from V. Since 
each element of 82 has probability at least f of hitting r, if m = O(l/f) 
the probability 82 hits r at least em/2 times is at least 1/2 by Markov's 
inequality (see the Appendix in Chapter 9). 

If we let B be the combined event over the random draws of 81 and 
82 that A occurs on the draw of 81 (so 81 is not an f-net) and 82 has 
at least fm/2 hits in a region of A,(c) that is missed by 811 then we 
have argued that Pr[BIA) � 1/2. Since the definition of event B already 
requires that event A occurs on 81, we also have Pr[B) = Pr(BIA]Pr[A], 
so 2Pr[B1 � Pr{A). 
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Thus, we can upper bound the probability of event A by upper bound­
ing the probability of event B. The principal advantage of event B over 
event A for the purposes of our analysis can be described as follows . 
To directly analyze the probability of event A, we must consider all re­
gions of the uncountably infinite class �E(C) that 81 might miss. To 
analyze the probability of event B, we need only consider the regions of 
Ila.(c)(81 U 82), This is because the occurrence of event B is equivalent 
to saying that there is some r E Ila.(c) (81 U82) such that Irl � em/2 and 
rn81 = 0. 

To bound the probability that such an r exists, rather than drawing 
81 at random and then drawing 82 at random, we can instead first draw 
a multiset 8 of 2m instances at random, and then randomly divide 8 
into 81 and 82, The resulting distribution of 81 and 82 is the same in 
both experiments, since each draw from V is independent and identically 
distributed. Now once 8 is drawn and fixed (but before it is divided ran­
domly into 81 and 82), we may also fix a region r E Ila.(c)(8) satisfying 
Irl � em/2. For this fixed 8 and fixed r, we now analyze the probability 
(with respect only to the random partitioning of 8 into 81 and 82) that 
r n 81 = 0. We will then obtain a bound on the probability of event B 
by summing over all possible fixed r E lla.(c)(8) and applying the union 
bound. 

Our problem is now reduc�d to the following simple combinatorial 
experiment: we have 2m balls (the multiset 8), each colored red or blue, 
with exactly i � em/2 red balls (these are the instances of 8 that fall in 
r). We divide these balls randomly into two groups of equal size 81 and 
82, and we are interested in bounding the probability that all P of the 
red balls fall in 82 (that is, the probability that r n 81 = 0). 

Equivalently, we can first divide 2m uncolored balls into 81 and 82, 
and then randomly choose i of the balls to be marked red, the rest being 
marked blue. Then the probability that all i of the red marks fall on 
balls 82 is exactly (';}/e;a) - this is simply the number of ways we can 
choose the l red marks in 82 divided by the number of ways the l red 
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marks can be chosen without constraints. But (7)/e�) :5 1/2t. This is 
because 

('�) _ nl-I (m - i) i-I (1) 1 
e�) - i=O (2m - i) :5 nt=o 2" = 2t" 

Thus, for any fixed 8 and r E IT6.(c)(8) satisfying ITI � fm/2, the 
probability that the random partitioning of 8 results in r n 81 = 0 is 
at most 2-Em/2. The probability that this occurs for some r E n6.(c)(8) 
satisfying ITI � fm/2 (and thus Pr{Bl) is at most 

Ill6.(c)(S)12-Sf :5 ITI6(c)(8)12-'P :5 Illc(S)12-T 

$ 4}d(2m)2-SP :5 (2�m) d 2-T. 

Finally, PrlA] :5 2Pr[B] $ 2(2em/d)d2-Em/2, which is less than D for 

m = 0 (!lOg! + � log !) . f 6 f f 
We have proved the main result of this chapter: 

Theorem 3.3 Let C be any concept class of VC dimension d. Let L 
be any algorithm that takes as input a set 8 of m labeled examples of a 
concept in C, and produces as output a concept h E C that is consistent 
with S. Then L is a PA C learning algorithm for C provided it is given a 
random sample ofm examples from EX(c, V), where m obeys 

m � Co (! log! + � log !) 
f 6 f f 

for some constant Co > O. 

Recall that in Chapter 1, we saw that for computational reasons there 
may sometimes be a great advantage in using a hypothesis class 1l that 
is more powerful than the class C from which the target is chosen. The 
reader can verify that the same proof used to establish Theorem 3.3 can 
be used to prove the following analogue: 
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Theorem 3.4 Let C be any concept class. Let H be any representation 
class of VO dimension d. Let L be any algorithm that takes as input a 
set S of m labeled examples of a concept in C, and produces as output a 
concept h E H that is consistent with S. Then L is a PA C learning algo­
rithm for C using H provided it is given a random sample of m examples 
from EX (c, V), where m obeys 

(1 1 d 1) 
m � Co -log - + -log -

e b e e 

for some constant Co > O. 

Thus, to obtain an algorithm for PAC learning C using H, we take 
a number of examples on the order of the VC dimension of H (which is 
at least as large as the VC dimension of C if 11. ::) C). This shows that 
while we may reduce our computation time by choosing a more powerful 
hypothesis representation, we may also increase the number of examples 
required . 

3.6 Sample Size Lower Bounds 

We now show that the upper bound on the sample complexity of PAC 
learning given by Theorem 3.3 is tight within a factor of O(log lie) (ig­
noring the dependence on b). First we show a lower bound of O( d) on 
the number of examples required for PAC learning using a fairly simple 
argument, then we present a refined argument that improves the bound 
to O(d/e}. 

Theorem 3.5 Any algorithm for PAC learning a concept class of Vapnik­
Ohervonenkis dimension d must use O(d/e) examples in the worst case. 

Proof: Consider a concept class C such that VCD(C) = d. Let S = 
{Xl, ... ,Xd} be shattered by C. To show a lower bound, we construct a 
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particular distribution that forces any PAC learning algorithm to take 
many examples. Thus, let '0 give probability lid to each point in S, and 
probability 0 to points not in S. For this distribution, we can assume 
without loss of generality that C = I1c(S) (that is, X = S), so C is a 
finite class and ICI = 2d. 

Note that we have arranged things so that for all of the 2d possible 
binary labelings of the points in S, there is exactly one concept in C that 
induces this labeling. Thus, choosing the target concept c randomly from 
C is equivalent to flipping a fair coin d times to determine the labeling 
induced by c on S. 

Now let L be any PAC learning algorithm for C. Set the error pa­

rameter e $; 1/8, and consider running L when the target concept C E C 
is chosen randomly and the input distribution is 'O. Suppose that after 
drawing m < d examples from EX(c, D), L has drawn m' $; m differ­

ent instances; without loss of generality, let these be Xl,' • •  ,Xm" Then 
from the above observations, it is clear that the problem of predicting the 
correct label of any unseen instance Xi for j > m' is equivalent to pre­
dicting the outcome of a fair coin, since each label of con S is determined 
by an independent coin flip. Thus the expected error (over the random 
choice of c and the sample of points) of L's hypothesis is (d - m')/2d, 
and by Markov's inequality (see the Appendix in Chapter 9) is at least 
(d - m')/4d with probability at least 1/2. For m = d/2 we obtain that 

the error of L's hypothesis is at least 1/8 with probability at least 1/2 
(over the random choice of c and the sample) . Since this shows that L 
must fail when c is chosen randomly, there must certainly be some fixed 
target concept on which L fails, thus giving the O( d) sample complexity 
lower bound. 

To refine this argument to get a lower bound that incorporates e, we 
simply scale the above coin flipping construction to a region of the distri­
bution that is small but still too large to be "ignored" by the algorithm. 
Thus, we modify '0 to let the distinguished instance Xl have probability 
1 - 8f under V (we are essentially "giving" this instance along with its 
correct label to L), and let X2,." ,Xd each have probability 8f/(d -1) 
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under V (this is the coin flipping region). Now by simply scaling our 
previous calculation to the coin flipping region, the expected error of L 
after seeing at most d/2 different instances is at least (1/8}8e = e with 
probability at least 1/2. But it is not difficult to show that now draw­
ing d/2 different points requires Oed/e) examples, because our problem 
is reduced to obtaining d/2 "successes" in independent trials, each with 
probability of success only 4€. O(Theorem 3.5) 

3.7 An Application to Neural Networks 

We conclude this chapter by giving a useful general lemma that bounds 
VOD(C) when each concept in the class C is actually a composition of 
simpler concepts. Such classes arise frequently - for instance, a DNF 
formulae is simply a (very constrained) composition of boolean conjunc­
tions (the constraint being that we can only compute disjunctions of 
conjunctions). After giving this lemma, we then apply it to obtain upper 
bounds on the sample size required for PAC learning neural networks. 

To formalize a general notion of concept composition, let G be a 
layered directed acyclic graph. By this we mean that the nodes of G 
can be partitioned into layers, and the directed edges of G go only from a 
node at layer l to a node at layer l + 1. We let n be the number of nodes 
at layer 0, and we assume that all of these have indegree O. We think of 
these n layer 0 nodes as being the inputs to the graph. We also assume 
that there is only a single node of outdegree 0 at the highest level of the 
graph, and we think of this node as being the output node of the graph. 
All internal (that is, non-input) nodes have the same indegree r, and we 
let s denote the number of internal nodes. Figure 3.5 shows an example 
of such a layered graph with n = 8, s = 8 and r = 3. 

Now let C be a concept class over r-dimensional Euclidean space Rr. 
Suppose we take such a layered graph G, and we label each internal 
(that is, non-input) node Ni with a concept C; E C. Then such a labeled 
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Figure 3.5: A layered directed acyclic graph. 

graph represents a concept over n-dimensional Euclidean space !RR in 
the obvious way: if we label each of the n input nodes at layer 0 with 
a real number, then starting with layer 1 we can compute the value at 
each node Ni by applying the concept ct labeling node Ni to the values 

computed at the nodes feeding Nj• (Note that although concepts in Care 
defined over lRr, the input values feeding nodes at level 2 and higher will 
actually only be from {O, 1 y.) The output of the entire labeled graph is 
the binary value computed at the output node . We will call the class of 

all concepts over lRR that can be obtained by labeling G with concepts 
from C the G-composition of C, which we denote CG. 

Theorem 3.6 Let G be a layered directed acyclic graph with n input 
nodes and s � 2 internal nodes, each of indegree r. Let C be a concept 
class over!Rr of VO dimension d, and let CG be the G-composition ofC. 
Then VOD(CG) � 2ds log(es). 

Proof: The idea is to first bound the function "cGCm). Let us fix any 
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set S of m input vectors Xl, ... , Xm € �n to the graph G (thus, each Xi 
determines a complete setting of the n input nodes of G). For this fixed 
input set S, if we now also label each node in G with a concept from 
C, then for each Xi we have completely determined the binary values 
that will be computed at every node of G when the input is Xi' Let 
us call the collection of all the values computed at each node, for each 
Xi E S, a computation of G on S. Thus, a computation can be represented 
by labeling each internal node with the vector in {O,l}m of the values 
computed at that node on the m vectors in S. Then the set of all poss ible 
computations of G on S is obtained by ranging over all possible choices 
of labels from C for the nodes of G. Note that two computations of G on 
S differ if and only if the value computed at some node on some input 
from 8 differs in the two computations. Clearly, IIlco(8)1 is bounded 
by the total number of possible computations of G on 8, which we shall 
denote Tco (S). 

To bound Tco(S), let G' be the subgraph obtained by removing the 
output node No from G. Let Tco' (8) denote the total number of com­
putations of G' on S. Each fixed computation of G' can be extended to 
at most llc (m) computations of G, because fixing the computation of G' 
determines for each 1 :5 i :5 m the input Yi € {O,lY that is fed to No 
when Xi is fed to G, and at most llc(m) labelings of Yll"" Ym can be 
obtained at No by varying the choice of concept from C placed at No. 
Thus we obtain that for any S, Tco(S) :5 Tco'(S) x llc(m), and a simple 
inductive argument establishes 

Illco(S)1 :5 Tco(S) :5 (llc(m»' :5 (e;y" 
where the second inequality comes from the polynomial bound on the 
llc(m) given in Section 3.4. Since S was arbitrary, this bound in fact 
holds for llco (m). 

Thus in order for Ca to shatter m points, the inequality (em/ d)d, � 2m 
must hold. Conversely, if (em/d)d, < 2m for some m, then m is an upper 
bound on VOD(Ca). It is easy to verify that this latter inequality holds 
for m = 2ds log(es) provided s � 2. O(Theorem 3.6) 
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To apply Theorem 3.6 to the problem of PAC learning neural net­
works, we simply let the function at each node in the graph G be a 
linear threshold function. If the indegree is r, such a function is de­
fined by real weights WI, • • •  , Wr E !R and a threshold 9 E !R. On inputs 
Xl, . • •  , Xr E !R the function outputs 1 if Ei=l WiXi � 9, and outputs 0 
otherwise. We call G the underlying architecture of the neural network. 

Now as we mentioned in Section 3.3, it is known that the VC dimen­
sion of the class of linear threshold on r inputs is r + 1. By Theorem 3.6 
we find that the Vapnik-Chervonenkis of the class of neural networks 
with architecture G is at most 2( r s + s) loge es), and combined with The­
orem 3.3, we obtain: 

Theorem 3.7 Let G be any directed acyclic graph, and let Cc be the class 
of neural networks on an architecture G with indegree rand s internal 
nodes. Then the number of examples required to learn Cc is 

O 
(1 1 1 (r 8 + s) log 8 1 1 ) 

- og-+ og- . 
f D E f 

3.8 Exercises 

3.1. Compute the VC dimension of the class of boolean conjunctions of 
literals over {o,I}n. 
3.2. Consider the concept class over the Euclidean plane !R2 consisting 
of the interior regions of circles; thus, the positive examples of each con­
cept form a disk in the plane. Compute the VC dimension of this class. 
Compute the VC dimension of the class of interiors of triangles in the 
plane. 

3.3. Show that there is no I-decision list over {O, I}n computing the 
exclusive-or function Xl $ X2' Then show that the VC dimension of 
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I-decision lists over {o,l}n is S(n}, and that the VC dimension of k­
decision lists is 9(nk). Hint: show that I-decision lists over {O, l}n com­
pute linearly separable functions (halfspaces). You may use the fact that 
the VC dimension of halfspaces over �n is linear in n. 

3.4. Let Pd.k be the class of concepts over � defined by convex polytopes 
with k sides j thus, each the positive examples of each concept in Pd.k are 
defined by the convex intersection of k half spaces in !ld. Give the best 
upper and lower bounds that you can on VCD(Pd•k}. You may use the 
fact that the VC dimension of halfspaces over � is linear in d. 

3.5. Let C be any concept class of va dimension d over X, and let V 
be any distribution over X. Suppose we are given access to a source of 
random (unlabeled) instances drawn according to V, and also access to 
an oracle that for any labeled sample of points will return "Yes" if there 
is a concept in C that is consistent with the labeled sample, and will 
return "No" otherwise. Describe an algorithm that on input any finite 
set of instances S � X and any e, � > 0 will output either the answer 
"Yes, S in an e-net for C with respect to V", or the answer "No, S is 
not an e/4-net for C with respect to V". Moreover, the algorithm must 
give a correct answer with probability at least 1 - 6. The algorithm need 
not be efficient. (The quantity e/4 in the "No" condition can in fact be 
replaced by ae for any fixed constant a < 1, giving an arbitrarily refined 
test . )  
3.6. Prove that the bound of �d(m) on llc{m) is tight: that is, for any 
concept class C of VC dimension d and any m, there exists a set S of m 
points such that Illc(S)1 = �d(m). 

3.7. In this exercise we consider the two-oracle model of PAC learning 
defined in Exercise 1.3 of Chapter 1. We say that a concept class C is 
PAC learnable from positive examples alone if it is PAC learnable 
by an algorithm that only draws from the oracle EX (c, Vi) when learning 
target concept c E C (the hypothesis must still meet the two-sided error 
criterion) .  We have already seen in Chapter 1 that boolean conjunctions 
are efficiently PAC learnable from positive examples alone. This exercise 
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ignores computational considerations, and concentrates on the number 
of examples required for learning from positive examples alone. 

We say that a subclass C' � C has unique negative examples if 
for every c E C', there is an instance Xc E X such that Xc ¢ c but Xc E d 
for every other d E C'. We define the unique negative dimension of 
the class C, UND(C), to be the cardinality of the largest subclass C' that 
has unique negative examples. 

Prove that any algorithm learning C from positive examples alone 
(regardless of computation time or the hypothesis class used) requires 
n( UND(C)je) positive examples. 

Then prove that O( UND(C)jf) positive examples are sufficient for 
learning from positive examples alone by the following steps. Consider 
the algorithm that takes a sample S of positive examples of the target 
concept and returns the hypothesis 

h = mineS) = n c. C cEC:S!;c 

Note that h may not be  contained in C, and also that this algorithm will 
never err on a negative example of the target concept . 

First show that if on random samples S of size diE (where d -
UND(C) from EX(c, Vt) ,  the expected error of minc (S) with respect to 
1): exceeds f, then there must exist a set S· � c of size d/ f + 1 with the 
property that for a fraction at least e of the x E S·, x ¢ mine (S· - {x} ) .  
Then show that this implies that UND(C) > d, a contradiction. 

Thus, 9( UND(C)/E) positive examples are necessary and sufficient for 
learning from positive examples alone, and the unique negative dimension 
plays a role analogous to the Vapnik-Chervonenkis dimension for this 
model of learning. 
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The classic paper on the VC dimension, and the one in which the main 
elements of the proof of Theorem 3.3 are first introduced, is by Vapnik 
and Chervonenkis [95] . These ideas were introduced into the computa­
tional learning theory literature and elaborated upon in the influential 
work of Blumer, Ehrenfeucht, Haussler and Warmuth (22) . Vapnik has 
also written an excellent book (94) that greatly extends the original ideas 
into a theory known as structural risk minimization . 

The VC dimension and its attendant theorems have been influential 
in the neural network and artificial intelligence machine learning commu­
nities. The calculation of the VC dimension of neural networks is due to 
Baum and Haussler [13} , and Abu-Mostafa [1] and Tesauro and Cohn [89) 
examine VC dimension issues from a neural network perspective. Haus­
sler [45] examines the VC dimension as a form of inductive bias from an 
artificial intelligence viewpoint. 

The value of the VC dimension as a measure of the sample complex­
ity of learning transcends the PAC model; many authors have shown 
that the VC dimension provides upper or lower bounds on the resources 
required for learning in many models. These include on-line models of 
learning (Haussler, Littlestone and Warmuth [51] ; Maass and 'lUran [69] ; 
Littlestone [66] ) ,  models of query learning (Maass and Thran [69] ) ;  and 
many others. 

The va dimension has also been generalized to give combinatorial 
complexity measures that characterize the sample complexity of learning 
in various extensions of the PAC model. Perhaps the most general work 
along these lines in the computational learning theory literature has been 
undertaken by Haussler [48] , who draws on work in statistics, notably the 
work of Pollard [74] and of Dudley [31] . Haussler's general framework is 
examined carefully in the context of learning probabilistic concept by 
Kearns and Schapire [61 ) ,  who prove that a certain generalization of the 
VC dimension provides a lower bound on sample size for learning in this 
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model, and by Alon et at [4] , who give an upper bound. 

The VC dimension and its generalizations are only one of the many 
ways that computational learning theory and statistics attempt to quan­
tify the behavior of learning curves, that is, the error of the hypothesis 
as a function of the number of examples seen. For instance, among the 
many alternative methods of analysis are theories based on tools from 
information theory and statistical physics [50, 86] . 

The O(d/t.) sample size lower bound is due to Ehrenfeucht et aI. [33} , 
who also give the solution to Exercise 3.3. Exercise 3.7 is due to Gereb­
Graus [391 . 
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4 

Weak and Strong Learning 

4.1 A Relaxed Definition of Learning? 

There are two parameters that quantify and control the performance of 
a PAC learning algorithm - the error parameter f and the confidence 
parameter C. The smaller the values of these parameters, the stronger 
the guarantee on the quality of the hypothesis output by the learning al­
gorithm. In our definition of PAC learning, we demanded that a learning 
algorithm be able to achieve arbitrarily small values for e and C, and that 
the running time be polynomially bounded in 1/ e and 1/ C (as well as n 
and size(c». 

Suppose that instead of a PAC learning algorithm, we had in our pos­
session a weaker but perhaps still useful algorithm L that could achieve 
the PAC criteria not for any e and 6 but only for some fixed, constant 
values Eo and Co. Thus , for any target concept c E C and any distribution 
V, L manages to find a hypothesis h that with probability at least 1- Co 
satisfied error(h) � eo, and now L runs in time polynomial in just n and 
size(c). Is there any way we could use L as a subroutine to obtain an 
improved algorithm L' that achieved the PAC criteria any values for € 
and 6? 
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In this chapter, we show that the answer to this question is positive in 
the strongest possible sense: even an efficient algorithm whose hypotheses 
are only slightly better than "random guessing" can be used to obtain an 
efficient algorithm meeting the definition of PAC learning . By slightly 
better than random guessing, we mean hypotheses that correctly classify 
an instance with probability just exceeding 1/2. Note that if all we 
desired was the ability to correctly classify instances with probability 
exactly 1/2, we could always accomplish this by skipping the learning 
process altogether, and simply flipping a fair coin to classify each new 
instance ! Thus, a hypothesis of error strictly less than 1/2 is the least 
nontrivial criterion we could ask a learning algorithm to meet. 

More precisely, let C be a concept class , and let L be an algorithm that 
is given access to EX(c, V) for target concept c E Cn and distribution 
'D. We say that L is a weak PAC learning algorithm for C using 
11 if there are fixed polynomials p(.,.) and q(.,.) such that L outputs a 
hypothesis h E 11 that with probability at least 1/q(n, size(c») satisfies 
error(h} S 1/2 - l/p(n, size(c)). Thus, with only inverse polynomial 
confidence, L outputs a hypothesis whose predictive ability has only an 
inverse polynomial advantage over 1/2. 

With this definition, we can now more formally verify that weak PAC 
learning really is the weakest demand we could place on an algorithm in 
the PAC setting without trivializing the learning problem. For instance, 
over the boolean domain to, l}n we can always obtain error bounded by 
1/2 -1 / e( n) for some exponentially growing function e( n) just by taking a 
small random sample S of the target concept, and letting our hypothesis 
be the randomized mapping that classifies an instance according to S if 
the instance appears in S, and otherwise flips a fair coin to classify the 
instance. Note that in polynomial time, we could not even detect that 
this hypothesis gave a slight predictive advantage over random guessing . 

Thus, our definition demands that the hypothesis of a weak PAC 
learning algorithm achieve the least nontrivial generalization from the 
sample - that is, the least ability to predict the label of instances outside 
the observed sample. Furthermore, in keeping with our notion that n 
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and size(c) are natural measures of the complexity of the target concept, 
we even allow the confidence and the advantage of the hypothesis over 
random guessing to diminish to 0 as the complexity of the target concept 
increases . 

We will sometimes refer to our original definition of PAC learning 
as strong PAC learning to distinguish it from this new notion. The 
somewhat surprising main result of this chapter is that if C is efficiently 
weakly PAC learnable, then C is efficiently strongly PAC learnable. 

We prove the equivalence of weak and strong learning by providing an 
explicit and efficient transformation of a weak PAC learning algorithm 
into a strong PAC learning.algorithm . If f and D are the desired error and 
confidence parameters for the strong learning algorithm, the overhead in 
running time of this transformation is a surprisingly slowly growing func­
tion of l/f and l/D. The transformation for achieving greater confidence 
(that is, reducing D) is entirely straightforward, as we shall see momen­
tarily. The transformation for reducing the error is much more involved, 
and forms the bulk of this chapter. 

An important consequence of the construction used to prove the 
equivalence is that it shows that any class that is efficiently PAC learnable 
is in fact efficiently PAC learnable with specific upper bounds on the re­
quired resources. For example, using the construction we can prove that 
if a concept class is efficiently PAC learnable, then it is efficiently PAC 
learnable by an algorithm whose required memory is (of course) bounded 
by a polynomial in nand size(c) , but by an only polylogarthmic function 
of l/f. (By this we mean polynomial in 10g(1/£).) When contrasted with 
the lower bound of 0(1/£) on the number of examples required for PAC 
learning given by Theorem 3.5 (ignoring for now the dependence on all 
quantities other than f), this shows that there are no concept classes for 
which efficient PAC learnability requires that the entire sample be con­
tained in memory at one time - there is always another algorithm that 
"forgets" most of the sample . 

Another consequence of the construction is that if C is efficiently PAC 
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learnable, then there is an efficient algorithm taking a sample of m labeled 
examples of any c E C, and finding a consistent hypothesis whose size is 
polynomial in size(c) but only polylogarithmic in m. This gives a strong 
converse to the results on Occam's Razor presented in Chapter 2. 

These and several other interesting consequences of the construction 
are explored in the exercises at the end of the chapter. 

4.2 Boosting the Confidence 

We begin our proof of the equivalence of weak and strong learning with 
the easy part: namely, showing that we can efficiently boost the con­
fidence of a learning algorithm from an inverse polynomial to a value 
arbitrarily close to 1. Without loss of generality, and for simplicity in the 
following argument, let us fix a value t for the error parameter, and sup­
pose we have an algorithm L such that for any target concept C E C and 
any distribution V, L outputs h such that error (h) :5 t with probability 
only at least 60 = l/q(n, size(c» for some fixed polynomial q(., .) . 

We now show that if we are willing to tolerate the slightly higher 
hypothesis error t + 'Y (for'Y > 0 arbitrarily small), then we can achieve 
arbitrarily high confidence 1 - 0 (that is, arbitrarily small confidence 
parameter 6). 

Our new algorithm L' will simulate algorithm L a total of k times 
(where k will be determined shortly), using an independent sample from 
EX(c, V) for each simulation . Let hI," " hie denote the hypotheses out­
put by L on these k runs. Then because the simulations are independent, 
the probability that all of hi, ... ,hie have error larger than t is at most 
(1- 60)k. Solving (1- Do)k :5 6/2 yields k � {1/60} In(2/6) for our choice 
of k. 

The remaining task of L' can now be expressed as follows: given the 
hypotheses hit .. . ,hie, and assuming that at least one has error bounded 
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by E, output one which has error at most f. + 'Y with probability at least 
1- {) /2 . This is easily accomplished by drawing a sufficiently large sample 
of labeled examples S from EX(c, V), and choosing the hi that makes 
the fewest mistakes on S. We will choose S large enough so that with 
confidence at least 1 - 6/2, the empirical error of each hj on S is within 
'Y/2 of its true value error(hj) with respect to c and V. This will ensure 
that with confidence 1 - 0/2 the hypothesis that is output has error at 
most f. + 'Y. 

For any fixed hypothesis h;, whether hj makes a mistake on a ran­
domly drawn example from EX(c, V) can be regarded as a biased coin 
flip with probability of heads equal to error(hi). By the Chernoff bounds 
discussed in the Appendix in Chapter 9 the empirical error of h; on S 
is an estimate for error(h;) that is accurate to within an additive factor 
of 'Y /2 with confidence at least 1 - 0/2k provided that the number of 
examples m in S satisfies m � (eo/'Y2) log(2k/0) for some appropriate 
constant eo > O. 

Now by the union bound , the probability that any of the k hypotheses 
has empirical error on S deviating from its true error by more than 'Y /2 
is at most k(0/2k) = 0/2. Note that we have arranged things so that the 
total failure probability - the probability that we fail to get at least one 
hypothesis of error less than f out of the k runs of L, plus the probability 
that we fail to choose a hypothesis of error less than E + 'Y - is at most 

0/2 + fJ/2 = 6. 

In summary, the algorithm to boost the confidence from l/q(n, size(c») 
to 1 - fJ (at the expense of an additive factor of 'Y in the error) is: 

• Run L a total of k = f{l/q(n, size(c») In(2/0)1 times to obtain hy­

potheses hll"" hk . 

• Choose a sample S of size (eo/'Y2) log(2k/6) from EX(c, V), and output 

the hi that makes fewest mistakes on S. 

It is easily verified that the running time is polynomial in n, size(c), 
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10g(1/6) , l/f and 1/'Y. To eliminate the parameter 'Y from this argument, 
if £ is our desired error bound, we can make each run of L using the 

smaller value f' = £/2 as the error parameter given to L, and then set 

'Y = £/2. 

4.3 Boosting the Accuracy 

We now turn to the harder problem of decreasing the error. Let us 
assume for now that we are given an algorithm L for C that with high 
probability outputs a hypothesis with error at most {3 < 1/2, where {3 is 
fixed for the moment. We would like to transform L into an algorithm 
that with high probability outputs a hypothesis with error at most f, 
where 0 $ f < {3 is any given error parameter. We will eventually 
substitute the value 1/2 - l/p(n, size(c)) for {3 in accordance with the 
definition of weak learning. 

It should be readily apparent that the problem of boosting the ac­
curacy is much harder than the problem of confidence boosting. In the 
confidence boosting problem, the available learning algorithm did man­
age to output an acceptable hypothesis (that is, one with the desired error 
bound f) with probability l/q(n, size(c», so a small pool of independent 
hypotheses contained an acceptable hypothesis with high probability, and 
thus confidence boosting involved simply identifying a good hypothesis 
from the small pool. In contrast , we are now faced with the situation 
where the available learning algorithm might always output a hypothesis 
with an unacceptably high error (that is, error larger than f) . 

At first glance , this might make our stated goal seem impossible to 
achieve. The key to obtaining the result lies in the fact that even though 
the available learning algorithm L may output hypotheses with unaccept­
ably large error {3, it is guaranteed to do so for any distribution on the 
input space. The idea will be to run L many times, not only on the target 
distribution V, but also on other related probability distributions which 
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somehow "focus the attention" of L on regions in which the hypotheses 
of previous runs perform poorly. For example, after running L once to 
obtain a hypothesis h of error at most fj with respect to V, we could then 
run L again, but only giving L those inputs from V on which h errs -

the intuition being that the second run of L is forced to learn something 
"new" . While this idea does not quite work , a variation of it will, and 
the many hypotheses output by L on multiple runs will be judiciously 
combined to yield a new hypothesis with error at most f on the original 
distribution V. 

We will present the accuracy boosting construction in two parts. 
First, we define and analyze a simple and modest accuracy boosting pro­
cedure. Given a learning algorithm L that outputs hypotheses of error 
at most fJ, this procedure uses L as a subroutine and outputs hypotheses 
of error at most g(fj) < P, for some function g(fj) that we will specify 
shortly. To do this, the procedure defines a sequence of three probability 
distributions on the input space . It then invokes L three times on these 
three distributions to obtain three hypotheses hI, h2 and h3• These hy­
potheses are combined into the single function h that takes the majority 
vote of hl' h2 and h3 and which forms the output of the procedure. The 
hypothesis h is guaranteed to have error at most g(fj), which still may 
be much larger than the desired value f. 

In the second and more complex part of the construction, we use this 
modest boosting procedure repeatedly in a recursive fashion in order to 
drive the error down to f. 

4.3.1 A Modest Accuracy Boosting Procedure 

Throughout this section, we shall assume c E C is the target concept, V 
is the target distribution, and L is an algorithm that with high proba­
bility outp�ts hypotheses with error at most fj < 1/2 when given access 
to EX(c, V). When there is ambiguity about the distribution, we use 
error'D(h) to explicitly indicate the error of h with respect to c and V. 
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Our modest accuracy boosting procedure operates as follows. To 
begin, algorithm L is invoked on the oracle EX(c, V). We let hi denote 
the hypothesis output by L. 

Now we run L again, but this time on a new distribution. Intuitively, 
this second distribution is designed to extract new information about the 
target concept - information that was absent in hl' More precisely, the 
new distribution 'D2 is created by filtering 'D with respect to the first 
hypothesis hI' 

Distribution 'D2 is defined as follows: to sample from EX(c, 'D2), we 
first flip a fair coin. If the outcome is heads, we draw labeled examples 
from EX(c, 'D) until an example (x, c(x» is drawn such that h1(x) = 
c(x) and output (x, c(x)). If the outcome is tails, then we draw labeled 
examples from EX(c, 'D) until an example (x, c(x») is drawn such that 
hl(x):F c(x) and output (x,c(x»). 

Thus, 'D2 is essentially 1) normalized to give weight exactly 1/2 to 
those instances on which hl errs; the relative weight of two such instances, 
however, is unaltered, as is the relative weight of two instances on which 
hi is correct. V2 is constructed so that hi has no advantage over random 
guessing: that is, errort>2(hl) = 1/2 > p. Thus, invoking L on EX(c, V2) 
yields a hypothesis h2 which gives us "new information" about c, that is, 
information not contained in hi' In particular, we must have hi :F h2• 

It is important to note that we can sample from EX(C,1)2) given 
access to EX(c, V), and that the expected number of calls we need to 
EX(c, 'D) to simulate a single call to EX(c, 'D2) becomes large only if 
errort>(hl) � 0 or errort>(hl) � 1. Roughly speaking, neither of these 
is a major problem since if errort>(hl) � 0 then hI already has error 
significantly smaller than {3, and errort>(h1) � 1 > {3 cannot happen if L 
meets its guarantee when run on EX(c, V). However, we shall rigorously 
handle the issue of the efficiency of filtering later, and for now we simply 
assume we can sample EX (c, 'D2) in unit time. 

For the third simulation of L, we create a third distribution 1)3 by 
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again filtering V, this time with respect to both hI and h2• In order to 
sample from EX{c, Va), we draw labeled examples from EX(c, V) until 
an example (x,c{x)) is drawn such that ht{x) :F h2{x) , and then output 
(x, c{x») . Invoking L on EX(c, Va) yields a hypothesis ha which once 
again gives gives "new information" about c, this time on those inputs 
such that ht and h2 disagree. We again defer analysis of how efficiently we 
can sample EX(c, V3), and for now we assume we can sample EX(c, Va) 
in unit time. 

Finally, the output of the modest accuracy boosting procedure is h = 
majority(hlt h2' h3); by this we mean that hex) = 1 if and only if at 
least 2 out of 3 of ht(x), h2(X) and h3(X) are 1. Let us introduce the 
notation /31 = error'D(ht), /32 = error'D2(h2) and /33 = error'D3(h3)· Our 
goal now is to argue that even though Pl,/32 and P3 may all be as large 
as p, error'D(h) is significantly smaller than p. 

4.3.2 Error Analysis for the Modest Procedure 

Before embarking on the specifics of this argument, it will be helpful to 
introduce a technical fact that we shall use repeatedly. Throughout the 
chapter, we will need to map the probability of an event with respect to 
V2 back to its probability with respect to V. More precisely, consider 
any instance x. By the definition of V2, given the value of V2[xj (the 
weight of x under V2), the weight V [x] is completely determined by 
whether ht{x) = c{x) or h1{x) :F c{x). Thus, if h1{x) = c(x) then 
1>[x) = 2{1 - Pt)V2(x]. To see this, note that the transformation of V 
to 1>2 changes the total weight of the instances where hI{x) = c(x) from 
1- /31 to 1/2, or viewed in reverse, an instance x such that hl(X) = c(x) 
and V2[x] = P must have had weight 2(1 - /3t)p under V. Similarly, if 
ht{x) ::/: c(x) then V[x] = 2/3tV2{XJ. More generally, for any set S � X 
we can write 

Pr�E'D[x E S] = 2(1- Pt)Pr�E'D2[hl(X) = c(x) 1\ XES] 

+2,atPr�E'D2[hl(X) ::/: c(x) 1\ XES]. (4.1) 
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In what follows, we will repeatedly obtain expressions for probabilities 
over 'D by first decomposing those probabilities over 'D2 into their hI = c 
and h1 '# c components, and then obtaining the probability with respect 
to'D via Equation 4.1. 

We now embark on the analysis of the error of the hypothesis found 
by the modest accuracy boosting procedure. The following lemma gives 
an upper bound of g({3) = 3{32 - 2{33 on this error with respect to the 
original distribution 'D. The function g({3) is important to all of the 
ensuing analysis, so we pause to note two important facts. First, for any 
o !5 (3 < 1/2 we have g({3) < {3, and g(1/2} = 1/2. Second, g({3) has a 
well-defined inverse g-1(0) obeying g-1(0) > 0 for 0 !5 0 < 1/2. 

Lemma 4.1 Let g({3) = 3{32 - 2{33. Let the distributions 'D, 'D2 and 
Va be as defined above, and let hit h2 and h3 satisfy errorv(h1) !5 (3, 
errorp2(h2) � (3, and errorpa(h3) � (3. Then if h = majority(h1l h21 ha) , 
errorv(h) � g(/3). 

Proof: We will show in stages that the error of h is maximized when 
/3i = /3 for all i, that is, when each hi has the maximum allowed error 
with respect to its corresponding distribution. The bound of g({3) on the 
error of h with respect to 'D will then follow quite easily. 

For the purposes of analysis, we will decompose the errors of h into 
two mutually exclusive types. The first type of error is on those inputs 
where both hI and h2 already make an error. Note that the output of ha is 
irrelevant in this case, since the majority is already determined by hI and 
h21 and this majority gives the incorrect label. The second type of error 
is on those inputs where h1 and h2 disagree. In this case, the hypothesis 
h3 gets to cast the deciding vote for the majority, and therefore h makes 
an error if and only if h3 does. This yields: 

errorv(h) = Pr%E'D[h1(x) '# c(x) A h2(X) ¥: c(x)J 
+Pr%E'D[ha(x) '# c(x)lh1(x) ¥: h2(x)]Pr:rE'D[hl(x) ¥: h2(x)] 
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= Pr:l:Et>[h1(x) ¥ C(x) A h2(X) ¥ c(X)J 

+,83Pr:rEt>[h1(x) =F h2(X)} (4.2) 

The last equality comes from the fact that choosing randomly from 1> 
conditioned on h1(x) =F h2(X) is the same as choosing from 1>3, since this 
is exactly the definition of 1>3. 

Our goal now is to use Equation (4.2) to obtain an upper bound on 
errort>(h) that is first an algebraic expression over the ,8i, and eventually 
over only,8. From this expression it will be a simple matter to bound 
errort>{h) by g(/1). 

To begin with, it is clear from Equation (4.2) that errort>(h) is max­
imized when ,83 = ,8, because no other term in the equation depends on 
1>3 and h3• This gives 

errort> (h) 5 Pr:rEt>[h1(x) ¥ c(x) A h2(X) :f: c(x)] 

+,8PrzEt>[h1(x) =F h2(x)) (4.3) 

It remains to analyze the two probabilities involving ht and h2 in 
Inequality 4.3. We can represent the distributions 1> and 1>2 as shown in 
Figure 4.1. Distribution 1>2 can be partitioned into two equal parts as 
shown: one corresponding to those inputs x where ht(x) = c(x) and the 
other corresponding to h1(x) ¥ c(x). As shown, let ')'1 and ')'2 respectively 
be the error of h2 on each of these parts, that is, 

and 
')'2 = PrSEt>2(h1(x) ¥ c(x) A h2(X) =F c(x)J. 

Clearly we have ')'1 + ')'2 = ,82. 

Using the expression for ')'1 and using Equation 4.1 to go back to V, 
we may write 
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Figure 4.1: The mapping of distribution 1) to distribution 1)2. The region 
hI = c "shrinks" /rom weight 1- PI > 1/2 under 1) to weight exactly 1/2 
under 1)2, while the region hI ::f:. c "expands" from weight PI < 1/2 under 
1) to weight exactly 1/2 under 1)2' 

Also note (see Figure 4.1) that 

Pr�Et>a[hl(X) ::f:. c(x) A h2(X) = c(x)J = 1/2 - '12 

and thus by Equation 4.1 

Using Equations (4.4) and (4.5) and the fact that 

Pr:l:Et>[h1(x) ::f:. h2(X») = 

we get 

Pr:l:Et>[h1(x) = c(x) A h2(x) ::f:. c(x)J 

+Pr:l:Et>[h1(x) ::f:. c(x) A h2(x) = c(x)1 
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Now using the expression for 12 and again using Equation 4.1 to go 
back to V, we may write 

Substituting Equations (4.6) and (4.7) into Inequality (4.3), we get : 

error1>(h) :5 2Pl12 + P(2(1- PI)"!l + 2Pl(1/2 -12)) 
- {JI{J(l - 211) + 2{J112(l - {J) + 211{J· 

The last equality can be easily verified algebraically. The coefficient of 
PI in this expression is {J(1 - 211) + 212(1 - {J), which is non-negative 
because {J,12 2: 0 and {J,11 < 1/2. Thus the error of h is maximized if 
{JI = {J, the maximum allowed value for {JI. This, along with some more 
algebra, allows the expression for the error of h to be further simplified 
to 

error1>(h) :5 {J2 + 2{J{l - P)(11 + 12)' 
This is maximized if 11 + 12 = {J2 is set to its maximum value p. This 
yields 

as desired. O{Lemma 4.1) 

4.3.3 A Recursive Accuracy Boosting Algorithm 

So far, we have only given a procedure that drives the error down from 
{J to g{{J). We now consider the larger problem , where we are given a 
learning algorithm L with an error bound of only 1/2 -1/p(n, size{c)) for 
some polynomial p( " .) and we wish to construct a new learning algorithm 
whose error bound can be made as small as any input e. The basic idea 
for tackling this problem is quite simple: we will just invoke the modest 
accuracy boosting mechanism recursively, until the desired error bound 
is obtained. 
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Let us be a little more precise. Suppose we are given a desired error 
bound e. If we had in our possession a learning algorithm L whose 
hypotheses were guaranteed to have error bounded by g-l(f) (which is 
larger than f), then we have already shown how we could make three 
calls to L using filtered distributions to obtain a hypothesis with error 
g(g-l(e» = e, and we would be done. However, we may not have such an 
L available . But if we only had an L whose error bound was g-l(g-l(e», 
then we could apply our boosting procedure once to improve the error 
bound to g(g-l(g-l(e») = g-l(e), then again a second time to get the 
error down to e. Since we regard € as an input parameter, and we must 
run in time polynomial in llf, a primary concern with such an approach 
is how deeply we must nest such recursive calls as a function of f. 

The tentative description of the recursive algorithm follows; we will 
shortly make some small but important modifications. The algorithm 
takes two arguments as input: a desired error bound a (we discuss the 
confidence parameter 6 momentarily) ,  and an oracle EX(c, V') for exam· 
pies. As before, L denotes the assumed weak learning algorithm, and we 
will use L(EX(c, V'» to denote the hypothesis returned by an invocation 
of L using the oracle EX(c, V'). 
Algorithm Strong-Learn(a,EX(c, V'»: 

• If a � 1/2 -l/p(n, size(c)) then return L(EX (c, V'». In this case, 
the error parameter a for this call to Strong-Learn can already 
be achieved by the weak PAC learning algorithm L. 

• {3 +- g-I(O'). Here {3 is the error we require from the level of 
recursion below us if we are to achieve error o'. 

• Let V� and V� be obtained by filtering V' as described in the modest 
boosting procedure. 

• hi +- Strong-Learn({3, EX(c, V')). 

• h2 +- Strong-Learn({3, EX(c, V�)). 
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• h3 +- Strong-Learn(,B, EX(c, Va)) . 
• h +- majority(hlt h2' h3)' 

• Return h. 

Throughout the coming analysis, it will be helpful to think about the 
execution of this recursive algorithm as a ternary tree. Each node of the 
tree is labeled by two quantities: a (possibly filtered) oracle for random 
examples of the target concept, and a desired error bound for this node. 
The root of the tree is labeled by the oracle EX(c, V) (where c is the 
target concept and V is the target distribution) and by the final desired 
error bound t. Now any node labeled by EX(c, V') and a has either three 
children or is a leaf, as we now describe. 

If the label a < 1/2 - l/p(n, size(c)) then the desired error bound 
for this node is still too small to be obtained by invocation of the weak 
learning algorithm L. In this case, the three children will be labeled by 
the oracles EX(c, V'), EX(c, V�) and EX(c, V�) as specified by our mod­
est accuracy boosting procedure, and all three children will be labeled 
by the larger error bound of (J = g-l(a). This can be interpreted as a 
request from the parent node to its children for hypotheses of error at 
most (J on the filtered distributions, for if these are supplied by the chil­
dren then the parent can take the majority and fulfill its desired error 
bound of a. Thus, these three children correspond to a recursive call by 
our algorithm. 

If, on the other hand, a � 1/2 -1/p(n, size(c)) then the desired error 
bound for this node can be immediately satisfied by a call to the weak 
learning algorithm L using the oracle EX(c, V'). Then this node will be 
a leaf, and corresponds to a base case of the recursion. 

Note that in this ternary tree, the oracle labeling any node is actually 
implemented by making calls to the oracle of its parent, which in turn is 
implemented by making calls to the oracle of its parent, and so on to the 
root node with oracle EX(c, V). 
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To simplify the analysis of our recursive algorithm, we will defer until 
later the issue of the dependence on the confidence parameter. More pre­
cisely, in addition to an examples oracle EX{c, 1)') and an error parameter 
a, our algorithm really should also be taking a confidence parameter 6, 
which is our allowed probability of failing to output a hypothesis of error 
bounded by a with respect to c and V'. Now in our algorithm, there will 
many steps at which the algorithm could potentially fail locally, thereby 
causing a global failure to output a good hypothesis. For instance, if any 
call to the weak algorithm L fails, or any recursive call of our algorithm 
fails, we may fail to find a good hypothesis. But for now, we will simply 
assume that all such steps succeed and analyze the complexity and cor­
rectness of the algorithm under this assumption. In other words, for now 
we will simply ignore the confidence parameter 6. Towards the end of 
the analysis, it will be easy to reintroduce 6 and the possibility of failed 
steps by giving a bound N on the total number of possible places the 
algorithm could fail in any execution, and allocating probability at most 
6/ N to each of these. 

We begin the analysis by bounding the maximum depth of the ternary 
recursion tree induced by the execution of algorithm Strong-Learn. 

4.3.4 Bounding the Depth of the Recursion 

Let B{E,p(n, size(c») denote the depth (that is, the longest path from 
the root to a leaf) of the execution tree whose root is labeled by the oracle 
EX{c, V) and error parameter E when the given weak learning algorithm 
has a 1/2 - l/p{n, size{c» error bound. Thus, B(E,p(n, size(c») is the 
maximum nesting depth of the recursive calls to the procedure Strong­
Learn. It is considerably less than the total number of invocations of 
Strong-Learn (which is the total number of nodes in the execution tree) , 
but its analysis will lead to a bound on this total as well. 

Lemma 4.2 
B(E,p(n, size(c») = O(1ogp(n , size(c» + 10glog(I/E». 
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Proof: To prove this lemma, we first argue that the number of recursive 
calls to Strong-Learn needed to drive the error from its largest value of 
1/2 - l/p(n, size(c» down to 1/4 is O(1ogp(n, size(c))). In other words, 
the depth of any subtree of the execution tree whose error parameter 
label is 1/4 or larger is O(logp(n, size(c»). 

To see this, consider any node with a desired error bound of 13 > 1/4. 
The distance of this value to 1/2 is just 1/2 - fJ, and the distance to 
1/2 of the desired error bound of the node's parent is the larger value 
1/2 - g(fJ). We wish to argue that this distance is actually moving away 
from 1/2 by a constant multiplicative factor with each invocation of the 
modest boosting procedure. This is because 

1/2 - g(fJ) = 1/2 - 3fJ2 + 2fJ3 = (1/2 - fJ)(l + 2fJ - 2fJ2). 

It is easy to show using basic calculus that for fJ � 1/4, the second fac­
tor is at least 11/8. Thus a single invocation of the modest boosting 
procedure increases the distance of the error bound from 1/2 by a multi­
plicative factor of 11/8. Thus, logu/s(p(n, size(c))/4) levels of recursion 
suffice to drive the error bound down to 1/4. 

For fJ � 1/4, things are even better: the error bound decreases at 
a doubly exponential rate! To see this, now we simply look at the rate 
at which the error itself decreases, and we see that in one step 13 is 
replaced by g(fJ) = 3fJ2 - 2fJ3 � 3fJ2. Therefore in k steps the error is 
at most (1/3)(313)210• Since f3 � 1/4, this is at most (3/4)210• Solving for 
(3/4)210 � t, we find that k � eolog log(l/t) suffices for some constant 

eo > O. D(Lemma 4.2) 

4.3.5 Analysis of Filtering Efficiency 

We are now ready to tackle one of the main issues we have been avoiding 
so far: how do we bound the time required to obtain examples from 
the filtered distributions at each node of the recursion tree given that 
in reality we have direct access only to the root oracle EX(c, V)? It 
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turns out that in order to obtain such a bound, we will need to modify 
algorithm Strong-Learn slightly. 

Recall that there were two types of filtering performed at any node in 
the execution tree labeled by oracle EX (c, V') and error parameter a: the 
filtered oracle EX (c, V2) was implemented by filtering V' with respect to 
the hypothesis hI returned by the child labeled by EX (c, V') and g-l(a). 
With probability 1/2, this involved waiting for an example (x, c(x») such 
that hl(x) ':f: c(x). The expected waiting time is l/errorv,(hl), which is 
unacceptably large if errorv1(h.) is small. 

To handle this situation, we simply add a test to make sure that 
errorv,(hl) is not "too small" before we attempt to make a recursive 
call with the filtered oracle EX (c, V�). More precisely, after recursively 
calling Strong-Learn on f3 = g-l(a) and EX (c, V') to obtain hll we 
draw a sufficiently large number m of random examples from EX (c, V') 
and use this sample to obtain an empirical estimate el for errorv,(hd. 
The sample size m will be sufficiently large to ensure that 

errorv,(h1) - a/3 ::; el =5 errorv,(h1) + a/3. 

Thus our estimate is accurate within an additive error of a/3. Although 
we shall not compute the required sample size precisely, it is bounded by 
an inverse polynomial in a, and it is a straightforward exercise to derive 
it using the Chernoff bounds described in the Appendix in Chapter 9. 

Now if el =5 2a/3, then we know errorp,(hd =5 a, and we can already 
return hI without performing the recursive calls. Otherwise, if fl > 2a/3, 
then we know errorv,(h1) � a/3, and therefore the expected number of 
calls to the oracle EX (c, V') needed to simulate one call to the filtered 
oracle EX(c, V2) is at most 3/a. 

Bounding the expected number of calls to EX (c, V') to implement 
one call to the filtered oracle EX (c, V�) is more involved, and again in­
volves a modification to algorithm Strong-Learn. Let h2 denote the 
hypothesis returned by the recursive call using oracle EX(c, V;) and er­
ror parameter f3 = g-l(a). Then before making the recursive call to 
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Strong-Learn with oracle EX(c, V�) and error parameter (J, we sample 
from EX(c, V') to obtain an estimate e2 for error'D,(h2). We take enough 
examples so that e2 is accurate to within additive error r, where we de­
fine T = « 1  - 2{3)/8) . a. Again the required sample size can be easily 
derived using Chernoff bounds, and is bounded by an inverse polynomial 
in r. 

Now if e2 � a - T then we know we have already reached our goal 
of error1>,(h2) � a, and we can simply ignore hh not make the third 
recursive call, and return h2• On the other hand, if e2 > a - r then we 
know error1>,(h2) � a- 2r, and we will prove below that this (along with 
the fact that error1>,(h1) � a/3) implies Pr�E1>,(hl(X) 1: h2(X») � a/24. 
Thus the expected number of calls to EX (c, V') needed to simulate one 
call to EX (c, V�) is at most 24/ a, and we can safely proceed with the 
recursive call. 

Before verifying this claim, we present the modified algorithm just 
outlined. 

Algorithm Strong-Learn(a,EX(c, V'»: 

• If a � 1/2 - l/p(n, size(c» then return L(EX(c, V'». 

• {J +- g-l(a). 

• Let V� and V� be obtained by filtering V' as described in the modest 
boosting procedure. 

• hI +- Strong-Learn({3, EX(c, V'». 

• Compute an estimate el for error1>,(hI) that is accurate within 
additive error a/3. 

• If el � 2a/3 then return hI' 

• h2 +- Strong-Learn(p, EX(c, V�». 
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• Compute an estimate f, for error']), (h2) that is accurate within 
additive error 7' = « 1  - 2fJ)/8) . a. 

• If e2 :::; 0'. - 7'  then return h2 • 

• h3 +- Strong-Learn(fJ, EX(c, V�». 

• h +- majority(hl ! h2 ' h3) ' 

• Return h. 

Lemma 4.3 Let a node of the execution tree be labeled by oracle EX (c, V') 
and error bound a, and let fJ = g-l (a) . Let hi be the hypothesis returned 
by the child labeled with EX (c, V') and fJ, and let h2 be the hypothesis re� 
turned by the child labeled with EX(c, V�) and fJ. Let 7' = « 1  - 2{3)/8) ·a. 
Then if error,]), (hI ) ;::: 0:/3 and error']), (h2) ;::: 0: - 27', 

Prze']), [h1 (x) :/: h2 (x)1 ;::: 0:/24 . 

Proof: Let us define 

as was done in the proof of Lemma 4 . 1 .  Note that if we have an upper 
bound on 'Y2 that is strictly less than 1/2, then we have a lower bound 
on 

PrzE'])� [hl (X) =/: c(x) A h, (x) = c(x)] = 1/2 - "12 

that is strictly greater than O. Furthermore, we can translate this this 
latter probability back to Vi to obtain a lower bound on 

Prze']), [h1 (x) =/: c(x) " h2 (X) = c(x)J 

and this finally is a lower bound on Prze']), [h1 (x) =/: h2(x)1. 

We will now prove that subject to the condition error1)l (h,) ;::: 0'. - 2r, 
'Y2 is at most 7/16 < 1/2. To do this, we maximize 'Y2 subject to the 
condition erroTp, (h,) � 0: - 27'. 
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For the purposes of this maximization , we can assume that erroT1>, (hd 
and errOr1>� (h2) are as large as possible (which is {3, the error parameter 
given to the recursive calls that compute hI and h2} , as shown in Figure 
4.2. This is because for any fixed values of errorv, (h1 ) and errorv; (h2) ,  if 
we "added" a region of error to hI or h2 it could only increase the region 
of their common errors , and thus the value of '1'2. 

Thus we set errorp, (hl) = errorp� (h2} = {3 and hence 

Prtl:ep� [hl (X} = c(x) " h2 (X) 1= c(x)] = '1'1 = (3 - '1'2. (4.9) 

Now by decomposing erroT1>, (h2) into its hI = c and h2 1= c components, 
and using Equation (4.1)  to translate Equations (4.8) and (4.9) back to 
V', we write 

errorp, (h2) = 2{3'1'2 + 2(1 - (3)((3 - "(2) 
= 2"(2(2{3 - 1)  + 2{3 - 2{32. (4.10) 

Also, under the constraint that erroT1>, (h2) � a - 2r we have 

error1>, (h2) � a - 2r 
- a(1 - (1 - 2(3)/4) 

- g({3)(1 - (1 - 2(3)/4) 
_ (3{32 - 2(33)(3 + 2(3)/4. (4. 1 1 )  

Putting Equations (4. 10) and (4.1 1)  together and mUltiplying both 
by 4, we obtain 

Thus 

8'1'2(2{3 - 1) ?: (-8P + 17p2 - 4p4) = P(2{3 - 1) (8 - P - 2p2) .  

Therefore, since (2{3 - 1) < 0, 

12 � {3/8(8 - (3 - 2(32). 
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Figure 4.2: The mapping of distribution V' to distribution V�, with maxi­

mum error P for hi and h2 . The current goal is to lower bound the shaded 

region, which is the weight under V' of the compound event hI ::/= c and 

h2 = c (which implies the desired event hI ::/= h2). 

Some basic calculus shows that the maximum value of this expression in 
the range P E [0, 1/2] occurs at P = 1/2, and is 7/16. This completes the 
proof of the claimed bound on 1'2 subject to the constraint error'D'(h2) � 
a - 2r. 

Now since 1'2 :::; 7/16,  we have that 

We now translate this probability back to V', but must be a little careful 
in doing so, since the assumption that Pt = errorzy(h1 ) was the maximum 
value f3 was valid only for the purposes of maximizing 1'2 . Thus by 
Equation 4 .1 ,  we write 

Under our assumption PI � a/3, we finally obtain 
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88 promised. O(Lemma 4.3) 

The following lemma summarizes our bounds on the number of ex­
pected calls to EX (c, V') needed to simulate the two filtered distributions. 

Lemma 4.4 Let a node of the execution tree be labeled by oracle EX (c, V') 
and error bound o. Then the expected number of examples that must be 
drawn from EX(c, V') to simulate a single draw from EX(c, V�) is at 
most 3/0, and the expected number of examples that must be drawn from 
EX(c, VI) to simulate a single draw from EX(c, VD is at most 24/0 . 

We now invoke the bounds of Lemma 4.4 repeatedly in order to obtain 
a bound on how many calls to the root oracle EX(c, V) are required to 
simulate a single draw from an oracle labeling a node at depth i in the 
execution tree. To simulate one call to an oracle at the first level of 
recursion (the children of the root, where the error bound is g-l (e», we 
need at most 24/f calls to EX(c, V)j to simulate one call to an oracle 
at the second level of recursion (where the error bound is g-l (g-l (e) )  = 

g-2(e» , we need at most 24/g-1 (e} calls to the first level of recursion, 
each of which in turn require 24f calls to EX(c, V). By similar reasoning, 
a call to an oracle at the ith level of the execution tree requires at most 

calls to EX(c, V) in expectation. 

To bound this expression, recall that g(f3) = 3f32 - 2f33 � 3f32. We 
first prove by induction on i that g-i (e) � (fl/2' )/3. For the base case, 

since g(x) � 3x2 we have x � Vg(x)/3, or setting x = g-l (e) , g-l (e) � 

ve/3 � �/3 as desired. Inductively, we write g-i(e) = g-l (g-(i-l) (f» � 
g-1(e1/21-1 /3) � « fl/2i-1 /3)/3)1/2 = (e1/2' )/3. Therefore 

(2f4) (9-��f» ) . . .  (g-(i:�)(f» ) � (:2) C�;2) C�;4) ' "  Cl�:-l ) 
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72i 
- e1+1/2+1/4+···+1/21- 1 

72ie1/2'- 1  
- £2 

S; 
72'(3g-(i- l )(  e)) 

f2 

S; 
72' · 3(3g-i(e)2) 

£2 
9 · 72i(g-i(f»2 

- £2 

We have shown: 

Lemma 4.5 Let the root 0/ the execution tree be labeled by the oracle 
EX(c, V) and error bound f. Then the expected number oj examples that 
must be drawn from EX(c, V) to simulate a single draw /rom an oracle 
labeling a node 0/ the execution tree at depth i is bounded by 

4.3.6 Finishing Up 

9 . 72i(g-i (e» 2 
e2 

We are now almost ready to bound the sample complexity and running 
time of Strong-Learn(e, EX(c, V», but before doing so must address 
one final piece of unfinished business, which is the handling of the con­
fidence parameter b. Recall that to simplify the analysis so far, we have 
assumed that many steps in the algorithm that may in fact have some 
probability of failure (such as estimating the error of an intermediate 
hypothesis, or a call to the weak learning algorithm, or a recursive call 
with some error bound) are always successful. Now we must remove this 
assumption, and it is straightforward to do this by "dividing" up our 
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desired global confidence parameter 0 into many small pieces, one for 
each possible failure. Recall that we have already given a bound on the 
recursion depth B = B{f, p{n, size{c», thus giving a bound of at most 
38 nodes in the execution tree. (Remember that B bounds the recur­
sion depth under the assumption that there are no failures, and therefore 
does not depend on 6). Now for any node in the execution tree, there 
are five local steps that may result in a failure we wish to guard against: 
the estimation of the errors of error1Y{h1 ) and error'D� (h2 ) to sufficient 
accuracy, and the three recursive calls. Thus, each of these steps will be 
carried out using confidence parameter 6' = 6/{5 · 38),  resulting in overall 
probability of failure at most o. 

Throughout the remainder of this section, we will use the shorthand 
notation B = B{E,p(n, size (c») for the execution tree depth which we 
have already bounded, and let 6' = 6/(5 · 3B) .  Note that by Lemma 4.2, 
any quantity that is bounded by an exponential function of B is bounded 
by O(p(n, size(c» log(l/E» . 

Let T{E, 6, n, size{c» be the expected running time of the invocation 
of algorithm Strong-Learn(f, 0, EX(c, V», let M(E, 6, n, size(c» be the 
expected total number of examples drawn from the oracle EX (c, V) by 
this invocation, and let U(f, 6, n, size(c» be the time required to evalu­
ate the final hypothesis returned by this invocation. Let teo, n, size(c» , 
m(6, n, size (c» and 11.(6, n, size(c» be the analogous quantities for the 
invocation of the weak learning algorithm L( 6, EX (c, V» . 

We start by bounding the time required to evaluate a hypothesis 
returned by Strong-Learn(f, 6, EXCc, V». 

Lemma 4.6 
U(f, 0, n, size(c» = 0{38 

• 'U{o', n, size(c» ) 

which is polynomial in l/f, 1/0, n, and size(c) . 

Proof: The hypothesis returned by Strong-Learn exactly mirrors the 
structure of the execution tree: it is a ternary tree of height B, whose 
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internal nodes are majority functions, and whose leaves are hypotheses 
returned by calls to the weak learning algorithm L. The total time taken 
to evaluate all the hypotheses at the leaves is 0(3B · u(o', n, size(c» ) . This 
is because there are at most 3B leaves, and each leaf of the execution tree 
is an invocation of L with confidence parameter 6'. The time taken to 
evaluate the majorities at the internal nodes is dominated by this bound. 
O(Lemma 4.6) 

We now bound the expected number of examples M(e, 6, n, size(c» .  

Lemma 4.7 

M(e, 6, n, size (c)) = 0 (2��B (m(6', n, size(c» + p2 (n, size (c» log :,) ) 
which is polynomial in lie, 1/6, n, and size(c) . 

Proof: Strong-Learn(e, 6, EX (c, 1) )  invokes the weak learning algo­
rithm L at most 3B times. Each such invocation requires m( ()' , n, size ( c» 
filtered examples, since each time L is called it is with confidence pa­
rameter 6'. We have already shown in Lemma 4.5 that to obtain one 
filtered example at depth B in the execution tree, Strong-Learn is 
expected to draw at most 9 . 72B(g-B(e))2 /e2 � 9 · 72B /e2 examples 
from the oracle EX(c, 1) . Therefore 3B(9 · 72B /t2)m(6', n, size(c» = 

0« 216B /e2)m(o' ,  n, size(c») examples suffice to implement the filtered 
oracles at the execution tree leaves. 

In addition, Strong-Learn draws samples at each node of the ex­
ecution tree in order to estimate the quality of the hypotheses hI and 
h2 • Recall that at the ith level of the execution tree, the desired error 
bound is a = g-i(t), and the desired error bound for the i + 1st level is 
[3 = g-l (a) . The estimate for the error of hI at level i must have additive 
error bounded by a/3, and the estimate for the error of h2 at level i must 
have additive error bounded by T = « 1  - 2[3)/8) . a. Since T < a/3, 
the number of examples required to accurately estimate the error of h2 
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dominates the sample size required to estimate the error of hI ! so we will 
limit our attention to this dominating term. 

Note that T � (1/{4p(n, size{c»» a because 

1 - 2f3 > (1 _ 2 (! _ 1 ) ) = --:-_2---,-.,....,... - 2 p(n, size(c» p{n, size{c» 

due to the base case of the recursion. Using Lemma 4.5 and Chernoff 
bounds , the number of filtered examples required for the tests at level i 
is thus 

which is 
o ( (p2(n, size(c) ) log :, ) 7�B ) 

since i � B. Since the number of internal nodes is bounded by 38 , this 
gives an overall bound for the internal node tests of 

Combining the bounds for the leaves and internal nodes gives the stated 
overall bound. O(Lemma 4.7) 

We now bound T(f, 6, n, size(c)) ,  the expected running time . 

Lemma 4.8 

T(e, 6) = 

o (6!�B (m(6', n, size(c) + (p2(n, size(c» log :, ) B . u(6', fl., size(c) ) 
+3B • t(6', n, size(c») 

which is polynomial in l/f, 1/6, n, and size(c) . 
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Proof: The running time of Strong-Learn may be decomposed into 
two parts. First, there is time spent at the leaves of the recursion, in the 
invocations to the weak learning algorithm L. The time for each call to 
L is at m ost teo', n, size(c» , and the number of such calls is at most 3B, 
giving a total of 3B • teo', n, size(c».  

The remainder of the running time of can b e  ascribed to the examples 
drawn from EXCc, V) and their subsequent passage from the root down 
to a n ode in the execution tree. In its passage down the execution tree, 
an instance may be given as input t o  at most B hypotheses ( one per 
n ode passed) , where each such hyp othesis is being used to implement a 
filtered distributi on. 

From the fact that evaluating a hypothesis takes at most time 0(38 
• 

u(o', n, size(c» ) (the m ost expensive hypothesis to evaluate is the final 
root hypothesis) , and the fact that the expected total number of examples 
drawn is 

o (2:�B (m(o', n, size(c)) + p2
(n, size(c))  log ;,) ) 

we obtain the stated total time. D(Lemma 4 .8) 

N ow it is a simple exercise t o  show that the polynomial bounds on 
the expected values of the sample size and running time can instead 
be expressed as p olynomial bounds that hold with high probability, by 
allotting a fraction of the confidence parameter 6 to the small probability 
that the sample size or running time are excessively large. Combining 
Lemmas 4.6, 4.7 and 4.8, we obtain our main result: 

Theorem 4.9 Let C be any concept class and 'H any hypothesis class. 
Then if C is efficiently weakly PA C learnable using 'H, C is efficiently 
strongly PA C learnable using a hypothesis class of ternary majority trees 
with leaves from 11. 
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4.4 Exercises 

4. 1 .  Use our transformation of a weak PAC learning algorithm to a 
strong PAC learning algorithm to show that for any concept class C, if 
C is efficiently PAC learnable, then it is efficiently PAC learnable by an 
algorithm that: 

• requires a sample of size at most 1/E2 'Pl (n, size (c) , log(l/e) , log(l/h» j 

• runs in time at most 1/f.2 • P2(n, size(c) ,  log(l/f.) , log(l/o»j 

• uses memory at most P3 (n, size (c) , log(l/f.), log(l/o»j 

• outputs hypotheses of size at most P4(n, size(c) , log(l/E» that can 
be evaluated in time at most ps(n, size(c) , log(l/f» 

for some fixed polynomials Pl I P2 , P3 , P4 , PS .  
4.2.  Use our transformation of  a weak PAC learning algorithm to a 
strong PAC learning algorithm to show that for any concept class C, if 
C is efficiently PAC learnable, then there is an efficient algorithm that, 
given 0 < 0 ::;; 1 and a sample S of m examples of c E Cn, outputs with 
probability at least 1 - 0 a hypothesis h that is consistent with S such 
that size(h) $ p(n, size (c) , log m} for some polynomial p. 

4.3. We say that an algorithm L in the PAC setting is a group PAC 
learning algorithm for C if there exists a polynomial p(. , .) such for 
any target concept c E Cn and any distribution, when L is given access 
to EX(c, V) it outputs a hypothesis h : xp(n,.ize(c» -+ {O, I}  that with 
probability 1 - 0 satisfies 

and 

PrsEt>p( .... ue(c)) [h(S) = OI (V'x E S)c(x) = 1] ::;; f. 

PrsEt>pc .... i.zeCC)) [h(S) = 1 1 (V'x E S)c(x) = OJ ::;; f 
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Thus, the hypothesis output by L must be given a large (but still only 
polynomial size) collection of random examples that are either all positive 
or all negative , in which case it accurately determines which is the case. 

Prove that for any concept class C, C is efficiently group PAC learnable 
if and only if it is efficiently weakly PAC learnable . 

4.5 Bibliographic Notes 

The equivalence of weak and strong learning was proved by Schapire [84, 
85] , and the proof given in this chapter is due to him. Exercises 4. 1 and 
4.2 are also due to Schapire, and his paper explores many other fasci­
nating consequences of the construction. Alternative boosting methods 
have been given by Freund [35, 36) . In Freund's construction, the strong 
learning algorithm 's hypothesis is simply a majority of many hypotheses 
obtained from filtered runs of the weak learning algorithm. 

Experimental results on neural network learning based on boosting 
ideas are reported by Drucker, Schapire and Simard [30] . Goldman, 
Kearns and Schapire [42} examine the sample size required for weak learn­
ing, showing that it can be considerably less than for strong learning in 
some cases. Helmbold and Warumth [52} study various properties of the 
weak learning model and its relationship to sample compression and Oc­
cam learning. Boneh and Lipton [24] examine conditions under which 
boosting can be performed with respect to special distributions , and De­
catur and Aslam [ 12} show that weak learning is still equivalent to strong 
learning in a restricted version of the PAC model known as statistical 
query learning, which will be the focus of our study in Chapter 5. Ex­
ercise 4.3 is from a paper by Kearns and Valiant [60] , which also first 
introduced the notion of weak learning. 
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5 

Learning in the Presence of Noise 

In order to obtain a clean and simple starting point for a theoretical 
study of learning, many unrealistic assumptions were made in defining 
the PAC model. One of the most unjustified of these assumptions is that 
learning algorithms have access to a noise-free oracle for examples of the 
target concept. In reality, we need learning algorithms with at least some 
tolerance for the occasional mislabeled example. 

In this chapter we investigate a generalization of the PAC model in 
which the examples received by the learning algorithm are corrupted 
with classification noise. This is random and essentially "white" noise 
affecting only the label of each example. (Learning in the presence of this 
type of noise implies learning in some slightly more realistic models, and 
more adversarial error models have also been examined in the literature; 
see the Bibliographic Notes at the end of the chapter.) In this setting 
we will see that much of the theory developed so far is preserved even in 
the presence of such noise. For instance, all of the classes we have shown 
to be efficiently PAC learnable remain so even with a classification noise 
rate approaching the information-theoretic barrier of 1/2. 

To show this, we will actually introduce another new model, called 
learning from statistical queries. This model is a specialization of the 
PAC model in which we restrict the learning algorithm to form its hy­
pothesis solely on the basis of estimates of probabilities. We will then 
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give a theorem stating that any class efficiently learnable from statistical 
queries can be efficiently learned in the presence of classification noise. 
While we show that conjunctions of literals can be efficiently learned 
from statistical queries (and thus in the presence of classification noise), 
we leave it to the reader (in the exercises) to verify that all of the other 
efficient PAC learning algorithms we have given have efficient statistical 
query analogues . 

5.1 The Classification Noise Model 

In the classification noise model, a PAC learning algorithm will now 
be given access to a modified and noisy oracle for examples, denoted 
EX'bN(C, 'D). Here c E C and 'D are the target concept and distribu­
tion, and 0 � 1] < 1/2 is a new parameter called the classification 
noise rate. This new oracle behaves in the following manner: as with 
EX(c, 'D), a random input x E X is drawn according to the distribution 

'D, Then with probability 1-1], the labeled example (x, c(x» ) is returned 
to the learning algorithm, but with probability 1], the (incorrectly) la­
beled example (x, -,c(x)) is returned, where -,c(x) is the complement of 
the binary value c(x). Despite the classification noise in the examples 
received, the goal of the learner remains that of finding a good approx­
imation h to the target concept c with respect to the distribution 'D, 
Thus, on inputs f and b and given access to EX'bN(C, 'D), the learning 
algorithm is said to succeed if with probability at least 1 - b it outputs 
a hypothesis h satisfying error(h) == PrZ€1>[c(x) =F hex)] � f. 

Although the criterion for success remains unchanged in the noisy 
model, we do need to modify the definition of efficient learning. Note 
that if we allow the noise rate 1] to equal 1/2, then PAC learning becomes 
impossible in any amount of computation time, because every label seen 
by the algorithm is the outcome of an unbiased coin flip, and conveys 
no information about the target concept. Similarly, as the noise rate 
approaches 1/2, the labels provided by the noisy oracle are providing 
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less and less information about the target concept. Thus we see there 
is a need to allow the learning algorithm more oracle calls and more 
computation time as the noise rate approaches 1/2. 

We also need to specify what knowledge the learning algorithm has, if 
any, about the value of the noise rate 7]. For simplicity we will assume that 
the learning algorithm is provided with an upper bound 1/2 > 7]0 2: 7] 
on the noise rate. (This assumption can in fact be removed; see Exercise 
5.4.) The new notion of efficiency can then be formalized by allowing the 
learning algorithm's running time to depend on the quantify 1/(1 - 27]0), 
which increases as the upper bound 710 approaches 1/2. (Making rigorous 
the informal arguments used here to argue that this dependence is needed 
is the topic of Exercise 5.5.) 

Definition 13 (PAC Learning in the Presence of Classification Noise) 
Let C be a concept class and let 1£ be a representation class over X. We 
say that C is PAC learnable using 1£ in the presence of classifi­
cation noise if there exists an algorithm L with the foliowing property: 
for any concept c E C, any distribution V on X, any 0 � 7] < 1/2, and 
any 0 < f < 1, 0 < 6 < I, and 'Tlo (where 'fI � 'flo < 1/2), if L is given 
access to EXbN(C, V) and inputs f., 6 and 710, then with probability at least 
1-6, L outputs a hypothesis concept hE 1£ satisfying error(h) � f. This 
probability is taken over the randomization in the calls to EXbN(C, V), 
and any internal randomization of L. 

If L runs in time polynomial in n, 1/f., 1/6 and 1/(1 - 27]0) we say 
that C is efficiently PAC learnable using 1£ in the presence of 
classification noise. 

Before proceeding further, let us convince ourselves with some con­
crete examples that learning in this apparently more difficult model really 
does require some new ideas. Recall that one of the first PAC learning 
algorithms we gave in Chapter 1 was for the class of boolean conjunctions 
of literals. The algorithm initializes the hypothesis to be the conjunc­
tion of all 2n literals over Xl, • • •  , X,u and deletes any literal that appears 
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negated in a positive example of the target conjunction (the negative 
examples received are ignored) . The problem with using this same algo­
rithm in the classification noise setting is obvious and fatal. With the 
noisy oracle, the algorithm may actually be given a negative example 
of the target conjunction as a positively labeled example, resulting in 
unwarranted and costly deletions of literals. For instance, suppose that 
the target conjunction c contains at least one unnegated literal, say Xl. 
Then the vector of all O's is a negative example of the target. However, 
if this single vector has significant weight under 1>, say weight "'I, then 
there is probability "'111 that the learning algorithm will receive the vector 
of all O's as a negatively labeled example from EX'bN(C,1», causing the 
deletion of all unnegated literals from the hypothesis. 

Similarly, consider our algorithm from Chapter 1 for PAC learning 
axis-aligned rectangles in the real plane. This algorithm takes a suf­
ficiently large sample of random examples of the target rectangle, and 
chooses as its hypothesis the most specific (smallest area) rectangle that 
includes all of the positive examples but none of the negative examples. 
But such a rectangle may not even exist for a sample from the noisy 
oracle EX'bN{C,1» . 

5.2 An Algorithm for Learning 
Conjunctions from Statistics 

Intuitively, the problem with our conjunctions learning algorithm in the 
classification noise setting is that the algorithm will make drastic and irre­
versible changes to the hypothesis on the basis of a single example. In the 
noisy setting, where every individual example received from EX'bN(C, V) 
is suspect since its label could be the result of an error, it seems natu­
ral to seek algorithms that instead form their hypotheses based on the 
properties of large samples, or that learn from statistics. 

As an example, consider the following rather different algorithm for 
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PAC learning boolean conjunctions (still in the original noise-free set­
ting). For each literal z over the boolean input variables Xl," " Xn, 
denote by Po(z) the probability that z is set to 0 in a random instance 
drawn according to the distribution V. If Po(z) is extremely small, then 
we can intuitively "ignore" z, since it is almost always set to 1 (satisfied) 
with respect to V. We define P01(Z) to be the probability that a random 
instance from V fails to satisfy z, but does satisfy (that is, is a positive 
example of) the target conjunction c. Note that for any literal appearing 
in c, POl(Z) = O. IfpOl(Z) is large, then we would like to avoid including z 
in our hypothesis conjunction, since there is a reasonable chance of draw­
ing a positive example of c in which z is O. We say that z is significant 
if Po(z) � elBn and harmful if Pol(Z) � elBn. Note that since we always 
have POl(Z) :5 Po(z), any harmful literal is also significant. 

We now argue that if h is the conjunction of all the significant literals 
that are not harmful, then h has error less than e with respect to c 
and V. First we consider Pra€1>{c(a) = 0/\ h(a) = 1]. Note that the 
event c(a) = 0/\ h(a) = 1 occurs only when there is some literal z 
appearing in c that does not appear in h, and z is set to 0 in a. Since h 
contains all the significant literals that are not harmful, and c contains 
no harmful literals, any such literal z must not be significant. Then we 
have that PraE1>[C(a) = 0/\ h(a) = 1] is at most the probability that 
some insignificant literal is 0 in a, which by the union bound is at most 
2n(eIBn) = e14. To bound Pra€1>[c(a) = l/\h(a) = OJ, we simply observe 
that the event c(a) = 1/\ heal = 0 occurs only when there is some literal 
z not appearing in c but appearing in hi and z is set to 0 in a. Since h 
contains no harmful literals, we have that PraE1>[C(a) = 1/\ heal = 01 is 
bounded by the probability that some harmful literal is set to 0 in a but 
c(a) = 1, which by the union bound is at most 2n(eI8n) = f./4. Thus 
error(h) :5 el4 + el4 = e/2. 

The above analysis immediately suggests an efficient algorithm for 
PAC learning conjunctions (in our original noise-free model) .  The proba­
bilities Po(z) for each literal z can be estimated using EX(c, V) by draw­
ing a sufficiently large set of examples and computing the fraction of 

Copyrighted Material 



108 Chapter 5 

inputs on which z is set to O. Similarly, the probabilities P01(Z) can be 
estimated by drawing a sufficiently large set of examples and computing 
the fraction on which z is set to 0 and the label is 1. Note that while 
we cannot exactly determine which literals are harmful and which are 
significant (since we can only estimate the Po(z) and P01(Z», we have 
left enough room to maneuver in the preceding analysis that accurate 
estimates are sufficient. For instance, it can be verified using Chernoff 
bounds (see the Appendix in Chapter 9) that if our algorithm takes a suf­
ficiently large (but still only polynomial in n, lie and 1/8) sample for its 
estimates, and chooses as its hypothesis h the conjunction of all literals 
z such that the resulting estimate Po(z) for Po(z) satifies po(z) � el8n, 
but the estimate P01(Z) for POl(Z) satifies P01(Z) � E/2n, and the sample 
size is sufficient to make our estimates Po(z) and Pol(Z) within an addi­
tive error of el8n of their true values, then with probability 1 - 8, h will 
satisfy error(h) � e. 

A nice property of this new algorithm is that it forms its hypothesis 
solely on the basis of estimates of a small number of probabilities (namely, 
the Po(z) and POl (z». Of course, at this point all we have shown is another 
efficient algorithm for PAC learning conjunctions . The feeling that this 
algorithm is somehow more robust to classification noise than our original 
algorithm is nothing more than an intuition. We now generalize and 
formalize the notion of PAC learning solely on the basis of probability 
estimates. This is most easily done by introducing yet another model 
of learning. We then proceed to verify our intuition by showing that 
efficient learning in the new model automatically implies efficient PAC 
learning in the presence of classification noise. 

5.3 The Statistical Query Learning 
Model 

OUf new learning model can be viewed as placing a restriction on the 
way in which a PAC learning algorithm can use the random examples 
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it receives from the oracle EX (c, V). Let C be a concept class over X. 
In the statistical query model, if c E C is the target concept and V is 
the target distribution, then we replace the usual PAC oracle EX(c, V) 
with an oracle STAT(c, V) that accepts statistical queries of the form 
(X, '1"). Here X is a mapping X : X x {O, l} -t {O,l} and 0 < '1" :5 1. 
We think of X as a function that maps a labeled example (x, c(x») of 
the target concept to 0 or 1, indicating either the presence or absence 
of some property in (x, c(x»). For instance, in our new algorithm for 
PAC learning conjunctions we took a large random sample, and for each 
(a, c(a)) in the sample we computed the predicate x,(a, c(a» that is 1 if 
and only if the literal z is 0 in a but c( a) = O. This predicate corresponds 
to the probability POl(Z), that is, POl(Z) = Prae:v[x,(a, c(a» = IJ. 

In general, for a fixed target concept c E C and distribution V, let us 
define 

P" = Pr:tE:V [X(X, c(x» = IJ. 
We interpret a statistical query (X, '1") as a request for the value Px: 
However, on input (X, '1") the oracle STAT(c, V) will not return exactly 
P", but only an approximation. More precisely, the output of STAT(c, V) 
on input query (X, r) is allowed to be any value P" satisfying Px - r :5 
F" :5 Px + '1". Thus, the output of STAT(c, V) is simply any estimate of 
p)( that is accurate within additive error r. We assume that each query 
to STAT(c, V) takes unit time. 

We call r the tolerance of the statistical query, and the choice of 
both X and '1" are left to the learning algorithm (modulo some important 
restrictions discussed momentarily). For instance, in our conjunctions ex­
ample, recall that by the analysis of the last section it suffices to estimate 
the probabilities POl(Z) = Px� to within tolerance '1" = fJBn. 

At this point , it should be clear that given access to the oracle EX(c, V), 
it is a simple matter to simulate the behavior of the oracle STAT(c, V) on 
a query (x,r) with probability at least 1-6. We just draw from EX(c, V) 
a sufficient number of random labeled examples (x, c(x)}, and use the 
fraction of the examples for which x(x, c(x» = 1 as our estimate p)( of 
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P'X' Now by Chernoff bounds, the number of calls to EX(c, V) required 
will be polynomial in 1fT and log(1/6) , and the time required will be 
polynomial in the time required to evaluate X, and in 1fT and log(1/6). 
To ensure that efficient algorithms for learning using STAT(c, V) can 
be efficiently simulated using EX(c, V), we must place some natural re­
strictions on T (namely, that it is an inverse polynomial in the learning 
problem parameters) and on X (namely, that it can be evaluated in poly­
nomial time). Thus we require that algorithms only ask STAT(c, V) for 
estimates of sufficiently "simple" probabilities, with sufficiently coarse 
tolerance. This is done in the following definition, which formalizes the 
model of learning from statistical queries. The intuition that algorithms 
with access to STAT(c, V) can be efficiently simulated given access to 
EX(c, V) is then formalized in greater detail as Theorem 5.1 below. 

Definition 14 (The Statistical Query Model) Let C be a concept class 
and let 11. be a representation class over X . We say that C is efficiently 
learnable from statistical queries using 11. if there exists a learning 
algorithm L and polynomials p(., . , .), q(., " .) and r(·, ., .) with the follow­
ing property: for any c E C, for any distribution V over X, and for any 
0 <  E < 1/2, if L is given access to STAT(c, V) and input E, then 

• For every query (X, T) made by L, the predicate X can be evaluated 
in time q(l/E, n, size(c)), and 1fT is bounded by r(l/E, n, size(c». 

• L will halt in time bounded by pellE, n, size(c». 

• L will output a hypothesis h E 11. that satisfies error(h) � E. 

Notice that the confidence parameter 6 has disappeared from this 
definition. Recall that this parameter guarded against the small but 
nonzero probability that an extremely unrepresentative sample is drawn 
from EX(c, V) in the PAC learning model. Since EX(c, V) has now been 
replaced by the oracle STAT(c, V), whose behavior is completely deter­
mined modulo the query tolerance T, there is no need for 6. Of course, 
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we could allow a certain failure probability for the case of randomized 
learning algorithms, but choose not to for the sake of simplicity, since we 
will only examine deterministic algorithms. 

The following theorem verifies that we have defined the statistical 
query model in a way that ensures efficient simulation in the PAC model. 
Its proof is the subject of Exercise 5.6. Thus, we have found a model that 
specializes the PAC model in a way that allows learning algorithms to 
estimate probabilities, but to do nothing else. 

Theorem 5.1 Let C be a concept class and 11 be a representation class 
over X. Then if C is efficiently learnable from statistical queries using 
11, C is efficiently PAC learnable using 11. 

In the following section we will show a much more interesting and 
useful result: any class that is efficiently learnable from statistical queries 
is in fact efficiently PAC learnable even in the presence of classification 
noise. Before this, however, we pause to note that by the analysis of 
Section 5.2, we already have our first positive result in the statistical 
query model: 

Theorem 5.2 The representation class of conjunctions of literals is ef­
ficiently learnable from statistical queries. 

5.4 Simulating Statistical Queries in the 
Presence of Noise 

Let us fix the target concept c E C and the distribution V, and suppose 
we are given a statistical query (X, 7"). We now give an efficient method 
for obtaining an accurate estimate of 

Px = Pr%E1>[X(X, c(x» = 1] 
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given access only to the noisy examples oracle EX'bN(C, V). We will then 
show how this method can be used to efficiently simulate any statistical 
query learning algorithm in the presence of classification noise. 

5.4.1 A Nice Decomposition of Px 

The key idea behind obtai ning the desired expression for P" is to define 
a partition of the input space X into two disjoint regions Xl and X2 
as follows: Xl consists of all those points x E X such that X( x, 0) :F 
X(x,1), and X2 consists of all those points x E X such that X(x,O) ::;:: 
X(x,1). Thus, Xl is the set of all inputs such that the label "matters" 
in determining the value of X, and X2 is the set of all inputs such that 
the label is irrelevant in determining the value of x. Note that Xl and 
X2 are disjoint and Xl U X2 = X. 

Having defined the regions Xl and X2, we can now define the induced 
distributions on these regions. Thus, we let PI = Pr:tE1>[X E Xl] and 
P2 ::;:: Pr:tE1>(X E X2] (note that PI + P2 = 1), and we define VI over Xl 
by letting 

P [ S] Pr:tE1>(x E S] 
rZE1>l x E = -,;;.;:.;;...:.....-.....:. 

PI 
for any subset S � Xl. Thus, 1'1 is just V restricted to Xl. Similarly, 
we define 1'2 over X2 by letting 

P [ S] _ Pr:r:E1>[X E S] 
r:r:E1>2 x E - -=-=---...:. P2 

for any subset S � X2• 

For convenience, let us introduce the shorthand notation PrEx(c,1»H 
and PrEXlw(c,1»H to denote probabilities over pairs (x, b) E X x {O, I} 
drawn from the subscripting oracle. We will now derive an expression 
for P" = PrEX(c,1»[X = 1] (we have omitted the arguments x, b to X for 
brevity) involving only the quantities 

11,PlJ PrEXtW(C,1>l)[X = 1], PrEX�m(c,1»((X = 1) A (x E X2)]. 
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Looking ahead, we will then show that an accurate guess for T/ can be 
made and verified given only the upper bound T/o, and that the latter three 
probabilities can in fact be estimated from the noisy oracle EX'lJN(c, V). 

To derive the desired expression for P')(I we may write: 

P')( - PrEX(c,2»[X = 1] 
- PrEX(c,2»[(X = 1) A (x E Xl)) + PrEX(c,2»[(X = 1) A (x E X2)] 
- PrEX(c,2»[x E X1]PrEX(c,2»[X = llx E Xl} 

+PrEX(c,2»[(X = 1) A (x E X2)) 

- P1PrEX(c,2>1)[X = 11 + PrEXtw(c,2»[(X = 1) A (x E X2)] (5.1) 

where to obtain the final equality we have used the fact that for x E X2, 
we may replace the correct label by a noisy label without changing the 
probability that X = 1. 

Note that since X is always dependent on the label in region Xb we 
also have: 

PrEXbN(C,2>l}[X = 1] = (1 - T/)PrEX(C,Vl)[X = I} + T/PrEX(C,2>l)[X = O} 
- (1 - T/)PrEX(c,vt}[X = 1] 

+T/(1 - PrEX(C,2>l)[X = 1]) 
= T/ + (1 - 2T/)PrEX(c,Vl)[X = 1J. 

Solving for PrEX(C,2>l)[X = 1) and substituting into Equation 5.1, we 
obtain: 

As promised, we now show that the probabilities 

PI! PrEXbN(C,Vl)[X = 11, PrEXtW(c,V) [(X = 1) A (x E X2)] 
appearing in Equation (5.2) can in fact be estimated from the noisy oracle 

EX'bN(C, V). In a later section we return to the issue of estimating the 

noise rate . 
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First, note that it is easy to estimate Pl using only calls to EX'bN(C, 1): 
we simply take many noisy examples (x, b) from EX'bN(C, 1), ignore the 
provided label h, and test whether X(x,O) =F X(x, 1). If so, then x E Xl, 
otherwise x E X2• Thus for a large enough sample, the fraction of the x 
falling in Xl will be a good estimate for PI by Chernoff bounds. The fact 
that the labels are noisy does not bother us, since membership in Xl is 
a property of the input x alone. 

Next, PrEX" (C,'Dl)[X = 1] can be estimated from EX'bN(C, V). Note 
that we do not 

clZ'ave direct access to the subscripting oracle, since it is 
defined with respect to VI and not V. Instead, we simply sample pairs 
(x,b) returned by EX'bN(C, V) and use only those inputs x that fall in Xl 
(using the membership test X(x,O) =F X(x,I». For such x, we compute 
X(x, b) (using the noisy label b given with x) and use the fraction of times 
X(x, b) = 1 as our estimate. 

Finally, note that we can estimate PrEX�7N(C,'D)(X = 1) " (x E X2)] 
from EX'bN(C, V) because we have a membership test for X2, and this 
probability is already defined directly with repsect to the noisy oracle. 

5.4.2 Solving for an Estimate of P'X. 

Equation (5.2) has the desired .form, being a simple algebraic expression 
for Px. in terms of ." and the probabilities that we have already argued 
can be accurately and efficiently estimated from EX'bN(C,1). Assuming 
that we have "sufficiently accurate" estimates for all of the quantities on 
the right hand side of Equation (5.2), we can use the estimates to solve 
for an accurate estimate of PJ(' 

Of course, in order to use this method to obtain an estimate of PJ( 
that is accurate within the desired additive error T, we may need to 
estimate the probabilities on the right hand side of Equation (5.2) with 
an additive accuracy r that is slightly smaller than T. For instance, for 
any A, BE [O,ll and A, iJ E [0,1] that satisfy A - T' :5 A :5 A + r and 
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B - r' � iJ � B + r' for some r' E [0, I], we have AB - 2r' � AB � 
AB + 3r'. Thus if we are using the product of the estimates A and iJ to 
estimate the product AB within additive error r, then r' = r /3 suffices. 
However, Equation (5.2) is more complex than a single product, and thus 
we need to make r' even smaller to prevent the accumulation of too much 
error when solving for P". It turns out that the choice r' = r /27 will 
suffices; this comes from the fact that the right hand side of Equation 
(5.2) can be multiplied out to obtain a sum of three terms, with each 
term being a product of at most three factors. Thus if every estimated 
factor has additive error at most r/27, then each estimated product will 
have error at most 3(3r /27} = r /3, and the estimated sum will have 
error at most r, as desired. As we shall now see, however, we need to 
guess ", with even greater accuracy. 

5.4.3 Guessing and Verifying the Noise Rate 

The main issue that remains unresolved is that when estimating the 
right hand side of Equation (5.2) to solve for P", we do not know the 
exact value of TJ, but have only the upper bound 'I/O. This is handled by 
simulating the statistical query algorithm (let us denote this algorithm 
by L) f1/2A1 times, where A E (0,1] is a quantity in our control that 
will be determined by the analysis. The ith time L is simulated (for 
i = 0,1,2, ... , fl/2A 1-1), we substitute the guess r, = iA for TJ whenever 
solving for a probability P" using Equation (5.2). Eventually we will 
choose the best of the 1/2A hypotheses output by L on these many 
simulations as our final hypothesis. 

Note that for some value of i, the guess i} = iA satisfies 

TJ - A � r, � TJ + A. 
We would now like to derive conditions on A that will ensure that for 
this i we have 

1 1 1 

1 - 2", - r min � 1 _ 2r, 
� 

1 _ 211 + r min' 
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Here Tmin will be a quantity smaller than any of the tolerances T needed 
by L (but still an inverse polynomial in the learning problem parameters). 
Like the estimates for the probabilities discussed in the last section, this 
will ensure that on this ith run of L, our guess 1/(1 - 2q) for the factor 
1/(1 - 21]) in Equation (5.2) will be sufficiently close to let us solve for 
P" within the desired T. 

Now we know 

1 < 1 < 1 
. 

1 - 2(11- A) - 1 - 2q - 1 - 2(11 + A) 
Taking the leftmost inequality of this equation, we see that the leftmost 
inequality of Equation (5.3) will be satisfied if we have 

1 1 -- -Tmin< • 1-21] -1-2(1]-A) 
Solving for constraints on A gives: 

or 

1 1 - 211 + 2� $ --.-} ---
1-2" - Tmin 

1 2� $ i - (1 - 21]). 
1-2" - Tmin 

If we set x = 1/(1 - 21]) we obtain 

1 2�$ ---
x - Tmin 

or, if we further define f(x) = l/x, 

1 

x 

2A $ f(x - Tmin) - f(x). 

The right hand side of this inequality suggests analysis via the derivative 
of f· Now f'(x) = -1/x2 and we may write f(X-Tmln) � f(X)+CoTmin/X2 
for some constant Co > 0, giving 

A 
< CoTmin = CoTmin(l_ 2 )2 
- 2X2 2 11 . 
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An identical analysis gives a similar bound on A for achieving the 
rightmost inequality in Equation (5.3). Thus we see that to ensure that 

our additive error in guessing the value of the factor 1/(1 - 21]) in Equa­
tion (5.2) is smaller than Tmin, we should make sure that the "resolution" 
A of our successive guesses for 1] is smaller than CoTmin/(2(1-21])2). Since 
we only have the upper bound 1]0, we will instead use the smaller value 

A = CoTmin/(2(1 - 21]0)2). 

The preceding analysis shows that when A is properly chosen then on 
one of the simulations L our guess fj will be sufficiently close to 1], and on 
this run L must output a hypothesis h such that error(h) :5 e. We must 
still give some way of verifying which simulation was the good one. This is 
a straightforward matter. Let ho, • . .  , hrl/2Al-l be the hypotheses output 
by L on the r1/2Al simulations. If we define 'Yi = PrEX1m(c,'V)[hi(X) =1= 
b) (this is the probability hi disagrees with the label provided by the 
noisy oracle), then 'Yi = (1 - 71)error(hi) + 1](1 - error(hi» = 1] + (1 -
271)error(hi), and 'Yi - 'Yj = (1 - 21])(error(hi) - error(hj». This shows 
that if we estimate all of the 'Yi to within an additive error of e/(2(1-21]» 
(which is easily done, since 'Yi is defined with respect to the noisy oracle) 
and choose as our final hypothesis that hi whose associated estimate 
1i is smallest, then error(h) :5 € with high probability. Again, having 
only the upper bound 710 we can instead use the smaller additive error of 
E/(l - 2710). 

5.4.4 Description of the Simulation Algorithm 

We are finally ready to give a detailed outline of the overall simulation, 
followed by the main result of this chapter. 
Algorithm Simuiate-SQ(E, a, 1]0): 

• Tmin � 1/(4r(1/E1 n, size(c»), where r(l/e, n, size(c» is the polyno­
mial bound on the inverse tolerance for all queries of the statistical 

query algorithm L. 
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• � +- eormin/(2(1 - 21JO)2) • 

• For i = 0 to rl/2� 1 - 1: 

- f] +- i�. 
- Simulate the statistical query algorithm L with accuracy pa-

rameter f and using f] as the guessed noise rate. More precisely, 

for every statistical query (X, r) made by L: 
* Randomly sample from the noisy oracle EX'bN(c, V) to 

compute estimates PI for Pl = Pr EX(c,l')[x E Xl], q for 

q = PrEXtw(c,l't)[X == 1] and f for 

r = PrEXbN(C,l')[(X = 1) " (x E X2»). 

Here Xl, X2 is the partition of X defined by X. These es­
timates should be accurate (with high probability) within 
an additive error of r' = r /27. 

* Px +- Pl(ii-r,)/(l- 2f]) +r. This is the estimated solution 
of Equation (5.2). 

* Return P'X. to L. 
- Let hi be the hypothesis returned by the ith simulation of L . 

• For i = 0 to r1/2� 1-1, let "Yi = PrEXbN(c,l')[hi(x) ::J b]. Randomly 

sample from EX'lm(c, V) to obtain estimates 1'i that are accurate 
within additive error f/{2{1 - 21Jo», and output the hi with the 
smallest 1'i' 

The only details missing from our analysis of this simulation is its 
dependence on the confidence parameter 6, and of course, a precise bound 
on the number of examples from EXdN(C, V) required by the simulation. 
The handling of 6 is the standard one used in Section 4.3.6 when proving 
the equivalence of weak and strong learning . Namely, in any execution 
of Simulate-SQ there are many places in which we need to randomly 
sample to accurately estimate some probability, and there is always some 
small probability that we fail to get an accurate estimate. If N is the 
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number of such estimates, we can simply allocate probability of failure 
6/ N to each and apply the union bound to bound our total probability 
of failure, and we can always use the running time of L as a crude bound 
on N. Finally, although we have been careful to argue that for every 
estimate we can tolerate an additive error that is polynomial in E, T min 
and (1 - 27]0) (and thus that a polynomial sample suffices by Chernoff 
bounds) , we leave it to the reader (Exercise 5.7) to give precise bounds, 
and to in fact improve the simulation sample bounds in certain natural 
cases by drawing a single initial sample from EX'bN(C, 1) from which all 
probabilities can be estimated throughout the simulation. 

The statement of our main result follows. 

Theorem 5.3 Let C be a concept class and let 1-£ be a representation 
class over X. Then if C is efficiently learnable from statistical queries 
using 1-£, C is efficiently PAC learnable using 1-£ in the presence of clas­
sification noise. 

From Theorems 5.2 and 5.3, we have: 

Corollary 5.4 The representation class of conjunctions of literals is ef­
ficiently PAC learnable in the presence of classification noise. 

We leave it to the reader in the exercises to verify that the other 
classes for which we have provided PAC learning algorithms also have 
statistical query algorithms, and thus are learnable in the presence of 
classification noise. 

5.5 Exercises 

5.1. Show that the representation class of decision lists is efficiently 
learnable from statistical queries. 
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5.2. Show that there is a statistical query model analogue to the effi:­
cient algorithm given in Section 2.3 for learning conjunctions with few 
relevant literals. Show that this statistical query algorithm can be ef­
ficiently simulated in the classification noise model using a number of 
calls to EX'bN(C, 'D) whose de pendence on the number of literals size(c) 
is polynomial, but whose dependence on the total number of variables n 
is only logarithmic. 

5.3. Conside r the va riant of the statistical query model in which the 
learning algorithm , in addition to the oracle STAT(c, 'D), is also given 
access to unlabeled random draws from the target distribution 'D. Ar­
gue that Theorem 5.3 still holds for this variant, then show that the 
concept class of axis-aligned rectangles in !RR can be efficiently learned 
in this variant (and thus is efficiently PAC learnable in the presence of 
classification noise) . 
5.4. Show that if there is an efficient algorithm for PAC learning in the 
presence of classification noise by an algorithm that is given a noise rate 
upper bound 1'/0 (1/2 > 1'/0 � 1/ � 0) and whose running time depends 
polynomiallyon 1/(1 - 21/0), then there is an an efficient algorithm that 
is given no information about the noise rate and whose running time 
depends polynomially on 1/(1 - 27]). 
5.5. Give the weakest conditions you can on a concept class C that imply 
that any algorithm for PAC learning C in the presence of classification 
noise must have a sample complexity that depends at least linearly on 
1/(1 - 27]). 
5.6. Prove Theorem 5.1. 
5.7. Give the best sample size bounds you can for the simulation of a 
statistical query algorithm in the presence of classification noise given in 
Section 5.4.4. Now suppose further that the statistical query algorithm 
always chooses its queries X from some restricted class Q of functions 
from X x {O,l} to {O, l}. Give a modified simulation with imp roved 
sample size bounds that depend on log IQI (in the case of finite Q) and 
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VCD(Q) . 

5.6 Bibliographic Notes 
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of several error models. Littlestone examines a model of errors in on-line 
learning 167J . 
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6 

Inherent Unpredictability 

6.1 Representation Dependent and 

Independent Hardness 

Recall that in Chapter 1, we proved that some particular concept classes 
are hard to PAC learn if we place certain restrictions on the hypothesis 
class used by the learning algorithm. More precisely, it was shown that if 
RP::j:: NP, then there is no polynomial-time algorithm for PAC learning 
k-term DNF using k-term DNF. However, we then went on to show that 
k-term DNF is efficiently PAC learnable if the algorithm is allowed to 
output a hypothesis from the more expressive class of kCNF formulae. 

These results raise an interesting and fundamental question regarding 
the PAC learning model: are there classes of concepts that are hard to 
PAC learn, not because of hypothesis class restrictions, but because of 
the inherent computational difficulty of prediction - that is, regardless 
of the hypothesis class 1t used by a learning algori�hm? More precisely, 
we are interested in the existence of concept classes C in which the VC 
dimension of Cn is polynomial in n (and thus by the results of Chapter 3, 
there is no in/ormation-theoretic barrier to fast learning - a sample of 
polynomial size is sufficient to determine a good hypothesis) , yet C is not 
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efficiently PAC learnable using any polynomially evaluatable hypothesis 
class 11. In fact, by the equivalence of weak and strong learning proved 
in Chapter I, we may as well strengthen this last condition and ask 
that C be not even weakly learnable using any polynomially evaluatable 
hypothesis class. We shall informally refer to a class C meeting these con­
ditions as inherently unpredictable, since despite the fact that a small 
sample contains sufficient information to determine a good hypothesis, a 
polynomial time algorithm cannot even find a hypothesis beating a fair 
coin. Such a class would be hard to learn for different and arguably more 
meaningful reasons than the class of k-term DNF, for which the hardness 
results of Chapter 1 are essentially the consequence of a perhaps artificial 
syntactic restriction on the hypothesis representation. 

In this chapter and the next, we will prove not only that inherently 
unpredictable classes exist, but furthermore that several rather natural 
classes of concepts are inherently unpredictable. These results will also 
demonstrate an interesting connection between hardness results for PAC 
learning and constructions in the field of public-key cryptography, where 
the necessary tools for our results were first developed. 

6.2 The Discrete Cube Root Problem 

Our proofs of inherent unpredictability will rely on some unproven com­
putational assumptions that have become widely accepted as standard 
working assumptions in cryptography and computational complexity. In 
fact, since the P = NP quest ion is a fundamental unresolved problem in 
complexity theory, we cannot hope to prove inherent unpredictability for 
any polynomially evaluatable class without some complexity assumption. 
This is because for any polynomially evaluatable class 1(., the problem of 
determining , on input any labeled sample S, whether there is a hypothe­
sis h E 11 consistent with S is in NP (because given any witness h E 'H we 
can verify consistency with S in polynomial time). If P = NP, then such 
a consistent hypothesis can be computed in polynomial time ,  and thus by 
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Occam's Razor (Theorem 2.1) the concept class is PAC learnable. Thus , 

in the same way that the hardness of PAC learning k·term DNF using 
k-term DNF relied on the complexity-theoretic assumption RP :f: NP I 

and therefore on the assumed intractability of particular computational 
problems such as graph coloring, we must expect any theorem stating 
that a concept class is inherently unpredictable to rely on the assumed 
intractability of some specific computational problem. We now propose a 
candidate problem for our purposes, which will require a brief digression 
into number theory. 

Let N = pq be the product of two prime natural numbers p and q 
of approximately equal length. Factoring numbers of this form is widely 
believed to be computationally intractable, even in the case where the 
primes p and q are chosen randomly and we only ask the factoring al­
gorithm to succeed with some non-negligible probability. Let !N{X) :::: 

x3 mod N, and consider the problem of inverting !N(X) - that is, the 
problem of computing x on inputs N and !N(X) (but not given p and q!). 

In order to make this problem well-defined, we first need to arrange 
things so that fN(X) is in fact a bijection (permutation). Before doing 
so let us review some elementary number theory. The natural numbers 
in {I,···, N -1} that are relatively prime with N (two natural numbers 
are relatively prime if their greatest common divisor is 1) form a group 
under the operation of multiplication modulo N. This group is denoted 
by ZN, and the order of this group, which we denote by cp(N) = IZNI, 
is cp(N) = (p - 1)(q - 1). Returning to the question of whether !N(X) 

is a bijection: we claim that if 3 does not divide cp(N), then !N(X) is a 
permutation of ZN' 

To see this, let d satisfy 3d = 1 mod cp(N). Such a d exists because the 
grea.test common divisor of 3 and cp(N) is 1, and so by Euclid's theorem 
there are integers c and d such that cp( N)c + 3d = 1. In fact, d can 
be efficiently computed using Euclid's extended greatest common divisor 
algorithm. Now we claim that the inverse function f"Nl(y) of fN{X) is 
simply the mapping f"N1(y) = yd mod N: since 3d = 1 mod r.p(N) means 
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3d = k<p(N) + 1 for some natural number k, we have 

(fN(X»d mod N - (x3 mod N)d mod N 
_ X3d mod N 
_ xk''P(N)+l mod N 

_ (X'P(N»)kX mod N. 

Chapter 6 

But a well-known theorem of Euler states that any element of a group 
raised to the order of the group is equal to the group's identity element, 
giving (X'P(N»)k = lk mod N = 1 mod N and thus (fN(x))d = x mod N 
as desired. In the sequel we will refer to d as the inverting exponent for 
N. The existence of this inverse mapping fN1(y) establishes that fN(X) 

is indeed a bijection. 

We can now formally define our problem. 

Discrete Cube Root Problem. Two primes p and q are chosen such 
that 3 does not divide <p(N) = (p - l)(q - 1), where N = p. q. Then 
x E Ziv is chosen. An algorithm for the Discrete Cube Root Problem is 
given as input both Nand y = fN(X), and must output x. 

Note that the length of the input to this problem is O(log N) - not 
N. So a polynomial time algorithm for this problem must run in time 
polynomial in log N. We now discuss the computational difficulty of the 
Discrete Cube Root Problem, leading to a formal assumption about its 
intractability that is widely believed. 

6.2.1 The Difficulty of Discrete Cube Roots 

Notice that the Discrete Cube Root Problem would be easy to solve in 
polynomial time if the prime factors p and q of N were also provided 
as part of the input along with Nand y. We could simply compute 
the inverting exponent d for N from p and q using Euclid's algorithm, 
and then compute fi/(Y) = yd mod N = x mod N. We would have 

Copyrighted Material 



Inherent Unpredictability 127 

to be a little careful in computing yd mod N efficiently, since we have 
time only polynomial in log N, whereas d is of the order of N. There is a 
standard trick for computing yd mod N by repeatedly squaring y modulo 
N which we will describe in detail in Section 6.3. One consequence of this 
observation is that for each fixed N of length n bits there is a boolean 
circuit of size polynomial in n that computes cube roots modulo N -
the circuit simply has the inverting exponent d for N "hard-wired", and 
then performs the required exponentiation on the input y. 

How hard is computing cube roots when the prime factors of N are 
not part of the input, which is the way we have defined the Discrete 
Cube Root Problem? The obvious method - namely, to first factor N 
to obtain p and q, compute d from p and q using Euclid's algorithm, and 
then efficiently compute cube roots via exponentiation as outlined above 
- runs into the widely known and computationally difficult problem of 
factoring integers. Although computing cube roots has not been proved 
to be as hard as factoring, the security of the well-known RSA public key 
cryptosystem is based on the assumption that the Discrete Cube Root 
Problem is intractable. 

We now formally state our intracability assumption for the Discrete 
Cube Root Problem, which is an assumption on the average-case diffi­
culty: 

The Discrete Cube Root Assumption states that for every poly­
nomial p(.), there is no algorithm that runs in time p(n), and that on 
input Nand y = !N(X) (where N is an n-bit number that is the prod­
uct of two randomly chosen primes p and q such that 3 does not divide 
tp(N) = (p - l)(q -1), and x is chosen randomly in ZN) outputs x with 
probability exceeding l/p(n). The probability is taken over the random 
draws of p and q and x, and any internal randomization of the algorithm. 

The fact that extensive efforts have not yielded any efficient algorithm 
or even a heuristic for computing discrete cube roots means that any PAC 
learning problem that is proved intractable under the Discrete Cube Root 
Assumption is, at least for all practical purposes, not learnable given our 
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current understanding of number-theoretic computation. 

6.2.2 Discrete Cube Roots as a Learning Problem 

Suppose we are given a random N, and Y = !N(X) for a random x e ZN' 
and we want to compute x from these inputs. The Discrete Cube Root 
Assumption asserts that this is a difficult problem. But now suppose that 
in addition to these two inputs, we had access to many already solved 
"examples" for the given N. That is, suppose we are also given a sample 

where each Yi E Ziv is chosen randomly. Then does the problem of 
computing x become any easier? 

The answer to this question is no, because since we are already given 
N, we can generate such random pairs efficiently ourselves by picking 
a random Xi e ZN and obtaining the pair (fN(Xi), Xi). By setting 
Yi = !N(X.) (and thus Xi = !N1(Yi», and remembering that !N is a 
bijection on Ziv, we see that these pairs have the same distribution as 
those (y., fN1(Yi» generated by first picking a random number Yi e Ziv 
and then computing fN1(Yi). 

In our study so far, we have viewed the learning problem as that of 
using a training sample of random examples to find a hypothesis that 
has small error with respect to the target function and distribution. An 
equivalent view of the learning problem is that of using the training sam­
ple to predict the target function's output on a new randomly chosen 

input from the domain . If we choose our target function to be INi for 
some N, the input domain to be ZN, the input distribution to be uni­
form on Ziv, then under the Discrete Cube Root Assumption we have a 
computationally hard learning problem . 

Before we cast this hard learning problem in the PAC model, let 
us first formalize it a little further. For every natural number n, let 
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the class :Fn consist of all the inverse functions !NI for the functions 
IN(x) = X3 mod N, where N = pq is n bits long and is the product of two 
primes p and q such that 3 is relatively prime with cp(N) = (P-l)(q-l). 
Let INl e :Fn be the target function, and let the learning algorithm be 
given access to a source of random input-output pairs of !Ni, where the 
input distribution is uniform on ZN' (Note that this hard distribution 
depends on the target function IN1; in particular, it is not same as the 
uniform distribution on {o,l}n.) The goal of the learning algorithm is to 
discover in time polynomial in n a hypothesis function h that agrees with 

INI even on only l/p(n) of the distribution for some fixed polynomial 
p(.). If an algorithm A exists for this problem, it is easy to see that the 
Discrete Cube Root Assumption is false: given Nand y as input , we first 
set y aside and use N to generate examples of !i/ with respect to the 
uniform distribution on ZN as described above. We use these examples 
to simulate algorithm A, and then use the hypothesis h output by A to 
compute !NI(y). Then for a random input y, we get the correct value for 
IN1(y) with probability at least l/p(n), thus contradicting the Discrete 
Cube Root Assumption. 

We have already informally argued (and again, we will provide details 
in Section 6.3) that each function in :Fn can be computed by a boolean 
circuit whose size polynomial in n. On the other hand, :F is hard to learn 
in this PAC-like setting for multivalued functions (under the Discrete 
Cube Root Assumption) . We emphasize that this negative result does 
not place any restriction on the form of the hypothesis h output by the 
learning algorithm - the only requirement is that the hypothesis can be 
evaluated in polynomial time . This requirement is obviously necessary in 
the argument just given, since the last step in using the learning algorithm 
to solve an instance y of the Discrete Cube Root Problem is to evaluate 
the hypothesis on y. 

The only aspect of our learning problem that keeps it from sitting 
squarely in the PAC model is that our function class :F is a class of 
multivalued functions, not a class of boolean functions. Indeed, it is easy 
to see that we could not hope for such a strong negative result for a 
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boolean function class, since for any boolean function we can always find 
a hypothesis whose error is bounded by 1/2 with respect to any input 
distribution (by simply using the randomized hypothesis that flips a fair 
coin to predict each label) , whereas the Discrete Cube Root Assumption 
implies that for :F, even achieving error bounded by 1 - IIp(n) for any 
polynomial p(.) is intractable. 

However, there is an easy fix that yields a true PAC learning prob­
lem. The idea is simple: we regard each output bit of the function fi/ 
as a concept (boolean function). If there is an algorithm that can be 
used to learn each of these output bits with high accuracy, then we can 
reconstruct all of the output bits with high accuracy. 

More precisely, for each multivalued function t;/ , we define n boolean 
functions fN.�, 1 :5 i :5 n, where for any y E Z;." fNJ�(Y) is defined to 
be the ith bit of fN1(y). Now we let Cn be the boolean function class 
obtained by including fN.� in Cn for all INl E :Fn and all 1 :5 i :5 n. 

Theorem 6.1 Under the Discrete Cube Root Assumption, the concept 
class C is not efficiently PA G learnable (using any polynomially evaluat­
able hypothesis class). 

Proof: Suppose for contradiction that C was PAC learnable in poly­

nomial time by algorithm A. Then given Discrete Cube Root Problem 
inputs Nand y, as before we can efficiently generate random examples 
for each of the n functions INI� by choosing x' randomly from Z;." setting 
y' 

= IN(X'), letting the example for INI� be (y', xD , where x� denotes the 
ith bit of x'. We thus run n separate simulations of A, one for each fN�' 
setting the error parameter € to be 1/n2 in each simulation. Now we c�n 
use the n hypotheses output by A to reconstruct all the bits of fN1(y) 
and by the union bound, the probability that all the bits are correct 
is at least 1 - lin, contradicting the Discrete Cube Root Assumption. 
D(Theorem 6.1) 
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6.3 Small Boolean Circuits Are 

Inherently Unpredictable 
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One of the basic goals of learning theory is to understand how the compu­
tational effort required to learn a concept class scales with the computa­
tional effort required to evaluate the functions in the concept class. Thus 
we are not simply interested in whether there exist inherently unpre­
dictable concept classes (and by Theorem 6.1, we now know that under 
there do, at least under the Discrete Cube Root Assumption) ,  but in how 
"computationally simple" such classes could be. Obviously there are lim­
its to how simple a hard-to-Iearn concept class can be. For instance, we 
already know that if every concept in a class can be computed by a 3-
term DNF formula, then that class cannot be inherently unpredictable, 
because we can use the hypothesis class of 3CNF, for which there is a 
cubic time PAC learning algorithm. 

Therefore, to further understand the implications of the inherent un­
predictability result for the concept class C in Theorem 6.1, we must 
provide an upper bound on the resources required to evaluate a concept 
in C. We have already argued briefly that polynomial size boolean cir­
cuits suffice, but we now describe these circuits more precisely in order 
to pave the way to a refined construction and a considerably stronger 
hardness result in the next section. 

Let us first rigorously define what we mean by a boolean circuit . 
A boolean circuit over {O, l}n is a directed acyclic graph in which each 
vertex has indeg r ee (or fan-in) either 0,1, or 2, and unbounded outdegree 
(or fan-out) . Each vertex of indegree 0 is labeled with one of the input 
variables Xlt • • •  ,X". Each vertex of indegree 1 is labeled by the symbol 
-', and each vertex of indegree 2 is labeled by one of the symbols V and 
A. The r e is a single designated output vertex of outdegree O. When 
the n input vertices are assigned boolean values , the graph computes a 
boolean function on {O, I}" in the obvious way. When we refer to the 
class of polynomial size boolean circuits, we mean the concept class 

Copyrighted Material 



132 Chapter 6 

C in which each concept c E Cn is computed by a boolean circuit with 
at most p( n) vertices, for some fixed polynomial p(.). In the following 
analysis, we are implicitly choosing the polynomial p(.) large enough to 
perform the required computations. 

The circuit to compute the multivalued function INI E Fn (from 
which we can easily extract circuits for the boolean functions IN,� e 
Cn) will have the inverting exponent d for N "hard-wired". Therefore, 
the circuit only needs to compute yd mod N. The trick for doing this 
efficiently (since d may be as large as n bits long, and we have already 
observed that we do not have time to multiply y by itself d times) ,  is 
to first generate large powers of y by repeated squaring modulo N, and 
then combine these to obtain yd mod N. 

The repeated squaring of y mod N yields the sequence of LlogdJ + 1 
numbers 

2 4 N 8 d 16 d N 2lloldJ d N y mod N,y mod N,y mod , y mo N,y mo , . . . , y mo 

using l10gdJ + 1 sequential multiplications of n bit numbers. It is impor­
tant to take the result so far mod N at each step to prevent the numbers 
from becoming too long. 

Now the appropriate elements of this sequence - exactly those corre­
sponding to the l's in the binary representation of d - can be multiplied 
together modulo N to obtain yd mod N. This takes at most an addi­
tional l10g d J + 1 sequential multiplications. Since the multiplication of 
two O(n)-bit numbers can be implemented using circuits whose size is 
polynomial in n, and we need to perform only O(llog dJ) = O(n) multi­
plications, the entire circuit for computing yd mod N has size polynomial 
in n. 

Since we have just shown that the class of polynomial size circuits 
contains our hard class C, we immediately obtain the following result. 

Theorem 6.2 Under the Discrete Cube Root Assumption, the represen­
tation class 01 polynomial size boolean circuits is not efficiently PAC 
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learnable (using any polynomially evaluatable hypothesis class) . 

6.4 Reducing the Depth of Inherently 
Unpredictable Circuits 
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Theorem 6.2 gives us our first hardness result for PAC learning a natural 
concept class that does not rely on artificial restrictions on the learning 
algorithm's hypothesis class. However, there is a sense in which it is the 
weakest such hardness result possible - after all, we cannot really hope 
to learn a class more powerful than polynomial size circuits in polynomial 
time . 

In this section we will refine our construction of circuits that are hard 
to PAC learn in order to show that even very simple concept classes, 

such as the class of all boolean functions computed by shallow (that is, 
log-depth) polynomial size circuits, are inherently unpredictable . Fur­
thermore, in Chapter 7, we will develop a notion of reducibility among 
learning problems that, combined with our refined hardness result for log­

depth circuits, allows us to prove the inherent unpredictability of other 
important concept classes, such as the class of all concepts computed by 
deterministic finite automata. 

Let us begin by analyzing the depth of the circuit we have proposed for 
computing the function INl E Fn. The circuit used the trick of repeated 
squaring llogdJ + 1 = e(n) times, and therefore the depth of the circuit 
is 9(n). Furthermore, no shallower circuit for computing ytl mod N from 
the input y is known. 

Our goal is to prove that even circuits whose size is polynomial in 
n but whose depth (longest path from an input vertex to the output 
vertex) is at most O(logn) are hard to learn. More precisely, the class 
of log-depth, polynomial size boolean circuits is the concept class 
C in which each concept c e Cn is computed by a boolean circuit with 
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at most p( n) vertices and depth at most k log n, for some fixed constant 
k (independent of n) and some fixed polynomial p(.). In the following 
analysis, we are implicitly choosing the constant k and the polynomial 
p(.) large enough to perform the required computations. 

While the restriction to log-depth circuits may at first seem somewhat 
arbitrary, it is well-known that the class of log-depth, polynomial size 

circuits computes essentially the same functions as the rather natural 
class of polynomial size boolean formulae. (By this we mean that 
there exists a polynomial p(.) such that every log-depth circuit of size s 
can be represented as a boolean formula of size at most p( s) , and every 
boolean formula of size s can be represented by a log-depth circuit of 
size at most pes); see Exercise 6.2.) A boolean formula over {o,l}n 
is simply a well-formed expression over a logical - language containing 
symbols for the usual boolean connectives V, ",..." the symbols "(" and 
")" for indicating order of evaluation, and symbols for the boolean input 
variables Xl, • •  " Xn• Such an expression computes a boolean function 
over to, l}n in the obvious way. A convenient alternative representation 
for a boolean formula is a boolean circuit in which the underlying graph 
must be a tree: at the root (output) node of this tree, we place the 
outermost connective of the boolean formula; inductively, the left and 
right subtrees of the root are the trees for the left and right subexpressions 
joined by the outermost connective in the formula. Figure 6.1 shows an 
example formula and the corresponding tree. 

When we refer to the class of polynomial size boolean formulae, we 
actually mean the family in which each formula over to, l}n is an expres­
sion of at most pen) symbols for some fixed polynomial p(.), where again 
we will implicitly choose the polynomial p(.) large enough to perform the 
required computations. 

Intuitively, one primary difference between boolean formulae (log­

depth circuits) and general boolean circuits is that if the same logical 
subexpression E(Xl, . . . , xn} is needed many times, in a formula we may 
have to duplicate the expression with each use, while in a circuit we may 
simply increase the fan-out of the subcircuit computing E(XlI"" xn) 
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Tree forf: 

Figure 6.1: A boolean formula and its tree circuit representation. 

and get the repetition for free. Thus, there may be some functions that 
can be computed by a small boolean circuit, but require a much larger 
boolean formula (although the existence of such functions remains an 
important open question), and we might wonder if it is these functions 
that cause the inherent unpredictability of small boolean circuits. We 
now show a negative answer to this question. 

6.4.1 Expanding the Input 

To show that shallow circuits are hard to learn, we shall modify each 
function iNl E :Fn by providing additional inputs that make the compu­
tation of i'Nl(y) = yd mod N possible using a shallow circuit, but that 
do not alter the difficulty of learning. In order to argue that learning 
remains hard, we will have to choose different hard input distributions. 

The motivating idea behind the modification is actually quite simple. 

Suppose that knowing only the product N and a value y, we are watching 
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someone who also knows the decrypting exponent d for N perform the 
computation of yd mod N by the trick of repeated squaring of y, followed 
by multiplication of the appropriate square powers. If the entire compu­
tation is performed before us, then we can in fact learn the value of d 
from this computation, since the square powers of y multiplied together 
to obtain yd mod N correspond exactly to the binary representation of 
d, and we will have learned something we cannot obviously compute ef­
ficiently ourselves. However, if the party knowing d only computes the 
square powers in front of us, and then multiplies the appropriate powers 
together privately, then we have definitely not learned anything new: we 
could have efficiently computed these square powers of yourselves. In 
this way, the party knowing d can reduce the amount of private compu­
tation to the bare minimum, without compromising the secrecy of d. In 
the following analysis, it is this private computation that corresponds to 
the circuit complexity of the target functions, which is reduced by this 
trick. 

More precisely, for each INl with inverting exponent d, let us define 
a new function gil that is a mapping from (ZN)llogdJ+1 to ZN' For any 
y E ZN we define 

-I( d N 2 d 2 LioldJ ) tl -I ( ) gN Y mo , Y mo N, . . .  , y .mod N = y mod N = J N Y' 

Thus, g,/ is essentially the same function as [;/ with one important 
difference: g,i is provided with an "expanded input" in which the suc­
cessive square powers of the original input yare already computed. Note 
that the length of the inputs to g'il is O(10g2 N) = O(n2) bits rather 
than the O(log N) = O(n) bits of input for INl, but is still polynomial in 
n. Furthermore, gli is simply the inverse of the vector-valued function 

() ( 3 d N 6 d N 3·2L1oldJ ) gN X = X mo , x rno , ... , x mod N 

Thus, vectors in (ZN)t1ogdJ+1 that are not of the successive square form 
are not in the range of gN, and therefore gIl will be defined to be the 
special value * on such vectors. 
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The first important property we need of g;/ is that, like fi/ I it is hard 
to compute gil if the inverting exponent d for N is unknown. More pre� 
cisely, if we let N be the product of two randomly chosen n/2-bit primes 
p and q such that 3 does not divide !p( N) = (p - 1) (q - 1), and we choose 
y randomly in ZN' then under the Discrete Cube Root Assumption it is 
hard to compute gll(y mod N, y2 mod N, ... ,y2ll0ldJ mod N) on inputs 
Nand 

( d N 2 d N 2llolldJ 
d 

) y mo ,y mo , ... y mo N. 
Otherwise, given inputs Nand y E ZN for the Discrete Cube Root Pro� 
lem, a polynomial time procedure could compute the required powers of 
y modulo N by repeated squaring, thus obtaining the expanded input 
required for gil, and then invoke the procedure for computing gIl to 
compute IN1(y). This would violate the Discrete Cube Root Assump­
tion. 

The second important property is that, unlike INl, 
-l( d N 2 d N 2lloldJ ) 9N Y mo ,y mo , ... y mod N 

can be computed by a shallow circuit that has d hard-wired. This circuit 
simply multiplies together the appropriate powers of y that are provided 
in the input sequence. Again, the numbers to be multiplied together are 
those powers y2i mod N such that the ith bit of d is 1, as in the circuit 

for IN1). 
The problem of multiplying at most n numbers modulo N is a well­

studied one and is known as the problem of iterated products. A naive 

implementation would mUltiply the desired numbers in pairs, and then 

the results in pairs, and so on, to get a circuit that is binary tree in 
which each internal node is a multiplication and each of the at most n 

leaves is one of the numbers to be multiplied. The depth of this tree is at 
most log n. Unfortunately, since each internal node of the tree must be 

implemented by a multiplication circuit for two n-bit numbers, and this 

in itself requires circuit depth O(logn), the final depth of this proposed 

circuit would be O(10g2 n) rather than O(logn). However, there is a 

sophisticated circuit construction due to Beame, Cook and Hoover (see 
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the Bibliographic Notes at the end of the chapter) that is beyond the 
scope of our investigation, but that provides circuits for iterated product 
of total depth only O(1ogn) , as desired. 

As with the functions INt, the functions gl/ are not boolean but 
multivalued. The definition of the associated boolean function (concept) 
class C' is completely analogous to the definition of the concept class C 
for the li/: for each function g;/ and each 1 � i � n, we define the 
concept giV�i E Cn2 to be the ith output bit of giVl• 

Now given Discrete Cube Root Problem inputs Nand y, in the same 
way that a PAC learning algorithm for C could be used to obtain accurate 
approximations for all the output bits of INl, a PAC learning algorithm 
A for C' can be used to obtain accurate approximations for all the output 
bits of giV1: we can set aside y and first  generate random examples of giVt 

by choosing x' randomly in Ziv, setting y' = IN(x'), and computing the 
successive square powers. Setting 

, (' d N (')2 d N (')2lI0,dJ d N) 
z = y mo , y mo , ... , y mo 

we can compute the random example (z', gN1(Z'»). The bits of x' are the 
boolean labels for the n functions giV� on the expanded input and can 
be used in n separate simulations of A. As with the argument for the 
IN.�, the n hypotheses output by A can then be used to compute fN1(y), 
contradicting the Discrete Cube Root Assumption. Notice that the hard 
distribution for the function gN� is not the uniform distribution over the 

input space (Ziv)LlogdJ+l but uniform over only those inputs that have 
the appropriate successive square form. 

Since we have argued above that the concepts in C' are contained in 
the class of log-depth circuits, we have proved the following theorem: 

Theorem 6.3 Under the Discrete Cube Root Assumption, the represen­
tation class 01 polynomial size, log-depth boolean circuits (or equivalently, 
the class oj polynomial size booleanjormulae) is not efficiently PAC learn­
able (using any polynomially evaluatable hypothesis class). 
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6.5 A General Method and Its 
Application to Neural Networks 
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We conclude this chapter by observing that en route to proving that the 
class of polynomial size boolean formulae is not efficiently PAC learnable, 
we in fact identified a general property of representation classes that 
renders them inherently unpredictable. In particular, the only special 
property we required of boolean formulae was their ability to efficiently 
compute the iterated product of a list of numbers . By formalizing this 
ability as a general property of representation classes, we will also be able 
to prove the inherent unpredictability of polynomial size neural networks. 

Definition 15 Let C be a representation class. We say that C computes 
iterated products if there exists a fixed polynomial p(.) such that for 
any natural number N of n hits and any 1 $ i $ n, there is a concept 
c E Cn2 (thus, c has n2 inputs) such that size(c) :5 p(n) , and for any 
ZI, • • •  , Zn E ZNl c(Zlt ... , zn) is the ith bit in the binary representation 
of the product Zl • • •  Zn mod N. 

Armed with this definition, by arguments identical to those used to 
derive Theorem 6.3, we obtain : 

Theorem 6.4 Let C be any representation class that computes iterated 
products. Then under the Discrete Cube Root Assumption, C is not ef­
ficiently PAC learnable (using any poiynomially evaluatable hypothesis 
class). 

Recall that in Section 3.7 we demonstrated that the number of exam­
ples required to PAC learn any class of neural networks scaled only poly­
nomially with the number of parameters required to specify the networks. 
This result ignored computational considerations, and concentrated just 
on the sample complexity of PAC learning. We now apply Theorem 6.4 to 
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show that the computational considerations are rather formidable. Our 
result relies on the following lemma due to J. Reif, whose proof is beyond 
the scope of our investigation (see the Bibliographic Notes at the end of 
the chapter). 

Lemma 6.5 (Reif) There is fixed polynomial p(.) and an infinite family 
of directed acyclic graphs (architectures) G = {Gn2}n�1 such that each 
Gn2 has n' boolean inputs and at most p(n) nodes, and for any natural 
number N of n bits there is an assignment of linear threshold functions to 
each node in Gn2 such that the resulting neural network computes iterated 
products modulo N. Furthermore, the depth of Gn2 is a fixed constant 
independent of n. 

In fact, Reif shows that Lemma 6.5 holds even when we are con­
strained to choose only weights in {O, I} for the linear threshold function 
at each node. From this lemma and Theorem 6.4, we immediately obtain: 

Theorem 6.6 Under the Discrete Cube Root Assumption, there is fixed 
polynomial p(.) and an infinite family of directed acyclic graphs (archi­
tectures) G = {Gn2 }n�l such that each Gn2 has n2 boolean inputs and 
at most p{n) nodes, the depth of Gn2 is a fixed constant independent of 
n, but the representation class Ca = Un�lCa,,2 (where Can2 is the class 

of all neural networks over Rn2 with underlying architecture Gn2) is not 
efficiently PAC learnable (using any polynomially evaluatable hypothesis 
class). This holds even if we restrict the networks in Ca 2 to have only 
binary weights. 

" 

6.6 Exercises 

6.1. In this problem we consider the problem of computing discrete square 
roots rather than cube roots. 
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First , show that if  N = pq is the product of two primes p and q, 
and a = x2 mod N for some x E Z'N, then there is a y E  Z'N such that 
a = y2 mod N and y =f x mod N and y :f: -x mod N (Hint: use the 
Chinese Remainder Theorem) . Thus, any square a modulo N has two 
"different" square roots. 

Now consider the Discrete Square Root Problem: given N that 
is the product of two n/2-bit primes, and an integer a that is the square 
modulo N of an element of Z'N, find an x E Z'N satisfying a = x2 mod N. 
Show that if there is an efficient algorithm for the Discrete Square Root 
Problem , then there is an efficient algorithm for factoring integers, and 
vice-versa. 

Thus the Discrete Square Root Problem is actually equivalent to fac­
toring. With some mild additional assumptions on the numbers to be fac­
tored, this equivalence can be preserved by the techniques of this chapter 
to show that PAC learning the classes considered is as hard as a factor­
ing problem; we chose to use discrete cube roots primarily for technical 
convenience. 

6.2. Show that there is a fixed polynomial p(.) such that every log-depth 
boolean circuit of size s can be represented as a boolean formula of size 
p(s) , and every boolean formula of size s can be represented as a log­
depth boolean circuit of size p(s) . Thus, within polynomial factors of 
size, these classes have equivalent computational power. 

6.7 Bibliographic Notes 

The first representation-independent hardness results for PAC learning 
follow from the influential paper of Goldreich, Goldwasser and Micali {43] . 
In this paper, it is shown (under a cryptographic construction) that 
polynomial-size boolean circuits are not efficiently PAC learnable, even 
if the input distribution is uniform, we only require weak learning, and 
membership queries are available (see Chapter 8) . 
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The results of this chapter are due to Kearns and Valiant [60] . The 
Discrete Cube Root Problem was first proposed as the basis for the RSA 
public-key cryptosystem, named after its inventors Rivest, ShamiI and 
Adelman (Bl ) .  The log-depth implementation of iterated products is due 
to Beame, Cook and Hoover [14] . Lemma 6.5 is due to Reif [76] . 

The Kearns and Valiant results were improved by Kharitonov [621 , 
who showed that boolean formulae remain hard to PAC learn even if the 
input distribution is uniform, and membership queries are available. The 
Kharitonov results also apply to the class of constant-depth circuits of A 
and V gates of unbounded fan-in. Interestingly (under an appropriately 
strong but still plausible assumption) , these hardness results match the 
upper bound given for this class by an elegant learning algorithm due to 
Linial, Mansour and Nisan [64J . Angluin and Kharitonov 19] use cryp­
tographic assumptions to demonstrate that membership queries cannot 
help for learning general DNF formulae. 

The use of cryptographic tools and assumptions to obtain intractabil­
ity results for learning is now fairly common in computational learning 
theory. In the reverse direction , a recent paper (Blum et al. [19J) demon­
strates how certain assumptions on the difficulty of PAC learning prob­
lems can be used to obtain cryptographic primitives such as private-key 
cryptosystems and pseudo-random bit generators. 
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Reducibility in PAC Learning 

From the positive results of Chapters 1 and 2 and the hardness results 
of Chapter 6, we now have examples, for natural and nontrivial concept 
classes, of both efficient PAC learning and inherent unpredictability. Al­

though we have certainly identified some powerful methods for obtaining 
both kinds of results - for instance, the method of finding an Occam 
algorithm for a concept class in order to show that it is efficiently PAC 
learnable , and the method of showing that a concept class can compute 
iterated products in order to demonstrate its inherent unpredictability 
- we still lack a framework that allows us to compare the relative com­
plexity of PAC learning concept classes whose actual status in the PAC 
model is uncertain. 

In this chapter, we develop a notion of reducibility for learning in the 
PAC model. In order to choose a notion of reducibility that is meaningful 
we must first state our goals. Informally, we are of course interested in a 
notion of reducibility that preserves efficient PAC learnability. Thus if a 
concept class e "reduces" to a concept class e', and C' is efficiently PAC 
learnable, then it should follow that C is also efficiently PAC learnable. 

There will be at least three uses for the reducibility we develop. First, 
if e reduces to e', and we already have an efficient learning algorithm for 
C', then the reduction immediately yields an efficient learning algorithm 
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for C. Recall that it was exactly this method that provided an efficient 
algorithm for learning kCNF from our efficient algorithm for learning 
boolean conjunctions (lCNF) in Chapter 1. Second, we can give ev­
idence for the intractability of learning a concept class C' by showing 
that another concept class C, believed to be hard to learn, reduces to C'. 
Third, if C :::> C', but we do not know if either of C and C' is efficiently 
PAC learnable, a reduction of C to C' at least proves that learning the 
subclass C' is no easier than learning C. 

We begin with a motivating example falling in the final category. 
While the PAC learnability of general disjunctive normal form (DNF) 
formulae remains unresolved so far, we use a simple reduction to demon­
strate that the monotone version of the problem is not easier than the 
unrestricted version. 

7.1 Reducing DNF to Monotone DNF 

We have informally discussed DNF formulae at many points throughout 
our studies. Formally, a general disjunctive normal form (DNF) 
formula over {O, l}n is an expression of the form c = Tl V T2 V··· V Tm, 
where each term 1i is a conjunction of literals over the boolean variables 
XIt • • •  ,Xn• Since each term can be represented using at most O( n) bits, 
we define size(c) = mn. Because a learning algorithm is always allowed 
time polynomial in n, it is fair to think of the dependence on size(c) 
as allowing the learning algorithm to also have time polynomial in the 
number of terms m. 

If we let Cn be the class of all DNF formulae over {O, l}n, note that 
Cn actually contains a representation of every possible boolean function 
over {O, l}nj however, the PAC learning problem is nevertheless "fair" in 
principle, because we measure the complexity of a function by its DNF 
representation size. Thus the learning algorithm is provided with more 
computation for more complex target functions. 
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Recall that in Chapter 1 we studied the severely restricted subclass 

of DNF formulae in which the number of terms was bounded by a fixed 
constant k (thus, size(c) = kn). We called such a formula a k-term 
DNF formula, and we proved that PAC learning such formulae is hard if 
the hypothesis class used is also k-term DNF formulae, but can be done 
efficiently if k-CNF formulae is used as the hypothesis class. However, 

since this solution required time exponential in k, it is inapplicable to 
the general problem, where the number of terms is a parameter. On 
the other hand, the inherent unpredictability methods of Chapter 6 also 
seem inapplicable, since DNF formulae do not appear up to the task 
of efficiently computing iterated products. In short , the efficient PAC 
learnability of general DNF formulae remains one of the most important 
open problems in the PAC model. Our modest goal here is to use a 
reduction to dismiss one possible source for the apparent difficulty of 
this problem - namely, the fact that the target formulae are allowed to 
have both negated and unnegated variables. 

A monotone DNF formula over {O, 1}" is simply a disjunction 
d = Tl V T2 V • • .  V T m in which each Tj is a conjunction over the boolean 
variables Xlt • • •  , Xn (but not their negations). Thus, the difference be­
tween monotone DNF and general DNF is that we forbid negated vari­
ables in the monotone case. Obviously, unlike for general DNF, it is not 
the case that every boolean function over {O, l}n can be represented as 
a monotone DNF formula. Could it be the case that there is an efficient 
PAC learning algorithm for monotone DNF formulae, yet general DNF 
formulae are inherently unpredictable? 

The answer is no. Suppose we had an efficient learning algorithm 
L' for PAC learning monotone DNF formulae using some polynomially 
evaluatable hypothesis class 'It'. We now show that L' can actually be 
used as a subroutine in an efficient PAC learning algorithm L for general 
DNF formulae. 

Let us consider a small example. Suppose that we have a general DNF 
formula over the variables XI, • . •  ,X61 say c = (Xl AxSAx6) V (Xl AX2AX4)' 
By introducing "new" variables YI, ... , Y6 but always assigning Yi = Xi, 
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we ma.y also write c as (xIAV6Ax6)V(VIAx2AX4). Now this is a monotone 
formula over the expanded variable set Xl," " X6, Vl, ... , V6i let us use d 
to denote this monotone representation of c. Note that size ( d) is not too 
much larger than size(c). 

Suppose now we are given the positive example (010110,1) of c over 
the original variables Xi. Then the expanded instance 010110 101001, 
which is the original instance followed by its bitwise complement, is a 

positive example of the monotone formula d over the expanded variable 
set consisting of the Xi and the Vi' More generally, it is easy to verify that 
if (a, c(a») is any example of c, then (a·comp(a), c(a)} is always a correct 
example of d, where comp(a) is the bitwise complement of a and · denotes 
string concatenation. It is crucial to note that this transformation of the 
instances a -+ a· comp( a) is independent of the actual target formula c, 
and can be efficiently computed from a. 

Now given access to the examples oracle EX(c, V) for a target gen­
eral DNF formula cover {O, 1}n, our algorithm L will simply simulate the 
algorithm L' for the monotone case. Each time L' requests a random ex­
ample, L will take a random labeled example (a, c(a)} of c from EX(c, V), 
and give the transformed example (a· comp(a) , c(a)} of length 2n to L'. 
Since the examples given to L' are perfectly consistent with the monotone 
formula d, algorithm L' will then produce some polynomially evaluatable 
boolean function h' over the 2n variables Xl, • • .  , Xn, VI' . . •  ,Vn that is ac­
curate with respect to the distribution V' induced on the transformed 
examples by the simulation. Note that V' may be quite different from 
V. For instance, if V was the uniform distribution on {O, 1}n, V' will not 
be the uniform distribution on {O, 1} 2n, but the uniform distribution on 
pairs a·a' E {O, 1}2n where a, a' E {O, 1}n and a' = comp(a). 

The hypothesis h of L will then be given by h(a) = h'(a·comp(a». 
It is easy to see that error'D(h) = error'D,(h'), because h(a) =F c(a) if 
and only if h'(a'comp(a) =f:. c'(a·comp(a»), and a has exactly the same 
weight under V that a· comp( a) has under V'. Also, since L' runs in time 
polynomial in size(d), and we have already pointed out that size(d) is 
not much larger than size(c), L runs in time polynomial in size(c), and 
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also in time polynomial in 2n. 

We have shown : 

Theorem 7.1 If the representation class of general DNF formulae is 
efficiently PAC learnable, then the representation class of monotone DNF 
formulae is efficiently PA C learnable. 

7.2 A General Method for Reducibility 

We have just given a simple example of a reduction of one learning prob­
lem to another. We now give a general definition of this notion. 

Definition 16 We say that the concept class C over instance space X 
PAC-reduces to the concept class C'over instance space X' if the fol­
lowing conditions are met: 

• (Efficient Instance Transformation) There exists a mapping G : X -+ 

X' and a polynomial pO such that for every n and every x E Xn, 
G(x) E X;(n)' and G is computable in polynomial time. Thus, G 
maps instances in X of length n to instances in X' of length pen), 
and can be efficiently computed . 

• (Existence of Image Concept) There exists a polynomial q(.) such that 
for every concept c E Cn, there is a concept c' E C;(n) with the 
property that size(c') ::; q(size(c», and for all x E Xnl c(x) = 1 
if and only if c'(G(x)) = 1. Thus, for any concept c E C there 
is a concept d E C' that is not much larger than c, and whose 
behavior on the transformed instances exactly mirrors that of c on 
the original instances. 
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Note that while we insist the instance transformation be efficiently 
computable, there is no such demand on the mapping from c to di we 
only ask for its existence. Thus, it may be intractable (or even impossible) 
to compute the representation of d from the representation of c. 

Under this formalization, our reduction of DNF to monotone DNF 
was G(a) = a·comp(a) (thus, instances of length n were mapped to in­
stances of length 2n), and d was just the monotone DNF formula ob­
tained by replacing each occurrence of Xi in c with the variable Yi' 

The basic property we require of our reducibility is established by the 
following theorem. 

Theorem 7.2 Let C and C' be concept classes. Then if C PAC-reduces 
to C', and C' is efficiently PA C learnable, C is efficiently PA C learnable. 

Proof: Given a learning algorithm L' for C', we use L' to learn C in 
the obvious way: given a random example (x, c(x» of an unknown target 
concept c E C, we compute the labeled example (G(x),c(x» and give it 
to L'. If the instances x E X are drawn according to V, then the in­
stances G(x) E X' are drawn according to some induced distribution V'. 
Although we do not know the target concept c, our definition of reduction 
guarantees that the computed examples (G(x), c(x) are consistent with 
some dEC', and thus L' will output a hypothesis h' in time polynomial 
in size(c') (and thus polynomial in size(c)) that has error at most E with 
respect to V'. Our hypothesis for c becomes hex) = h'(G(x», which is 
easily seen to have at most € error with respect to V. O(Theorem 7.2) 

Another useful way of stating Theorem 7.2 is to say that if C PAC­
reduces to C', and C is inherently unpredictable then C' is inherently 
unpredictable. It is this view of our reducibility we use in the next 
section. 
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7.3 Reducing Boolean Formulae to 
Finite Automata 
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In this section, we derive the main result of this chapter, which is that 
the class of boolean formulae PAC-reduces to the class of deterministic 
finite automata. We shall show this in two parts. First, we show that the 
class of log-space 'lUring machines PAC-reduces to finite automata. Then 
we show that the class of boolean formulae PAC-reduces to log-space 
Turing machines. The main result then follows from the transitivity of 
our reducibility, which is established in Exercise 7.1. 

There is a minor technicality involved with defining concept classes 
represented by finite automata and 'lUring machines, because we nor­
mally think of these devices as accepting strings of a possibly infinite 
number of different lengths, while we have been thinking of a concept as 
being defined only over instances of some fixed length n. For the purposes 
of this chapter, however, it will suffice to define our concept classes by 
restricting our attention to the behavior of a finite automaton or 'lUring 
machine on inputs of a single common length. 

Thus, consider the concept class C in which there is a constant k (we 
will implicitly choose k as large as necessary in our analysis) such that 
every concept c E Cn over {O, l}n can be evaluated by a 'lUring machine Te 
that uses only k log n work space (thus, we assume that Te has a read-only 
input tape and a separate read/write work tape). Thus, for every c E Cn 
and every a E {O, l}n, Tc(a) = c(a). We call this the representation class 
of log-space Turing machines, and we define size(c) to be the number 
of states in the finite control of Te. Similarly, let C' be the concept class 
in which each d E C� over {O, l}n can be evaluated by a deterministic 
finite automata Me'; thus for any a E {O, l}n, c'(a) = 1 if and only if Me' 
accepts a. We call this the representation class of deterministic finite 
automata, and we define size( c') to be the number of states in Me'. We 
now show that C PAC-reduces to C'. 
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Theorem 7.3 The class of log-space Thring machines PAC-reduces to 
the class of deterministic finite automata. 

Proof: We describe for each k log n-space Turing machine T = Te 
(computing some concept c in en) a small DFA M = Me that will simulate 
T on appropriately transformed instances G(a). Intuitively (and we will 
flesh out the details momentarily), M must overcome two handicaps in 
order to simulate T. The first is that T has logarithmic work space but a 
DFA has no explicit memory. This is easily compensated for by encoding 
all the 2klogn = nk possible work tape contents of T in the state diagram 
of M, and can be done using only nlc additional size overhead in M. The 
second handicap is that T can move its read-only input head either right 
or left on the input tape, while a DFA must proceed forward (to the 
right) through its input at every transition. This can be overcome with 
the help of the instance transformation G. For any input a E {O, l}n to 
T, G(a) will simply replicate a many times: thus G(a) = aa··· a. If at 
any point T moves left on the input a, then M will simply move n - 1 
symbols forward on G(a), arriving in the next copy of a but one symbol 
to the left of its position in the former copy, thus affecting a move to the 
left. This requires a log n bit counter, which can also be encoded in the 
state diagram of M using only polynomially many states. The number 
of copies p(n) of a that must be given in G(a) is clearly bounded by the 
running time of T (since this bounds the number of possible input head 
moves by T), which is polynomial. 

To see this is more detail, consider constructing a directed graph GT 
based on the description of T. Each node of GT is labeled by a tuple 
(s, (7, i) where s is a state of the finite control of T, (7 is a binary string 
of length k logn, which we interpret as the work tape contents of T, and 
1 � i � n is interpreted as an index indicating the head position of T 
on the input tape. Then we draw a directed edge, labeled by the bit 
bE {O,l}, from the node (s,O',i) to the node (i,O",i + 1) if and only if 
T, when in state 8 with work tape contents 0' and input head position i, 
on reading a b from the input would move the input head right and go 
to state 8' with work tape contents 0" .  (Note that this can only happen 
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if q and q' differ only in the single bit at the head position .) We will 
additionally label this directed edge by an R to indicate a move to the 
right on the input. Similarly, we will label an edge from a node with 
input head index i to a node with input head index i - 1 by an L. 

Now GT is "almost" a DFA simulating T, if we allow the traversal of 
a transition labeled R or L to move the input head of GT right or left, 
respectively. But it is easy to see that we can replace each R transition 
by a finite automata that simply reads through the next n + 1 input 
bits of G(a), and each L transition by a one that reads through the next 
n - 1 bits of G(a). The resulting graph is exactly a finite automata 
whose behavior on G(a) is the same as T on a. Note that the size of this 
automata is polynomial in n and polynomial in the number of states in 
the finite control of T. D(Theorem 7.3) 

We now reduce boolean formulae to log-space Turing machines to 
complete the sequence of reductions. 

Theorem 7.4 The class oj boolean Jormulae PA C-reduces to the class 
oj log-space Thring machines. 

Proof: We show that for any boolean formula J over {O,1}n, there 
is a log-space Turing machine Tf, with a number of finite control states 
that is polynomial in size(J), that on input a computes J(a) (thus, the 
instance transformation G(a) is simply the identity transformation). We 
will actually prove the stronger result that there is a single log-space Tur­
ing machine T that takes as input a boolean formula J and an assignment 
a, and computes J(a)j the desired machine Tf can be obtained by fixing 
the formula input of T to be J. (Thus, T is universal for the class of 
boolean formulae .) 

Recall that a boolean formula can be thought of as a circuit whose 
underlying graph is a tree (see Figure 6.1 in Chapter 6 and the accom­
panying text) . Let us label each node in this tree with a unique natural 
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number that we call the name of the node. Assume without loss of gen­
erality that the formula 1 that is input to T is encoded as a list of items 
representing the tree circuit for I. Each item consists of a label indicating 
the name of a node in the binary tree for computing 1 (this label requires 
at most o (log size(f» bits, where size(f) is the number of gates in the 
tree for /), a couple of bits indicating the gate type (A, V or -') , and the 
labels of the left and right children of this gate. Now to compute J(a), 
T conducts a depth-first search of the tree using the item list. To keep 
track of the search, T only needs to store the label of the current gate, 
and a few bits indicating the current "direction" of the search (that is, 
whether we arrived at the current gate 9 from the parent of 9, the left 
child of 9, or the right child of 9). We also only ever need to store a single 
bit'll indicating the value of the computation so far. For instance, if we 
are currently at an V gate that we arrived at from the left child, and the 
value of the subfunction computed by the subtree rooted at the left child 
was 'II = 1, then there is no need to explore the right child of this gate; we 
can simply continue back up the tree and maintain the value'll = 1. On 
the other hand, if 'II = 0 then we must explore the right subtree but we 
can overwrite the value of v, since the left subtree evaluated to 0 and thus 
cannot make the current V evaluate to 1. The value of 'II returned from 
the right subtree will become the value for the current V node. Similarly, 
if the current gate is an A gate and we returned from the left child with 
'II = 0, we can simply continue up the tree with this value, bypassing the 
right subtree. Otherwise, we explore the right subtree and overwrite'll. 

D(Theorem 7.4) 

From Theorems 7.3 and 7.4 and the transitivity of our reducibility 
(see Exercise 7.1), we immediately obtain: 

Corollary 1.5 The class 01 boolean lormulae PAC-reduces to the class 
01 deterministic finite automata. 

Thus, drawing on the results of Chapter 6, we obtain: 
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Theorem 7.6 Under the discrete cube root assumption, the representa­

tion class 0/ deterministic finite automata is inherently unpredictable. 

In light of this negative result, in the next chapter we will investigate 
a natural model of learning that provides the learner more power than 
in the PAC model, and obtain an efficient learning algorithm for finite 
automata . 

7.4 Exercises 

7.1. Prove that our reducibility for PAC learning is transitive. Thus, 
for any concept classes C},C2 and C2, if C1 PAC-reduces to C2 and C2 
PAC-reduces to C3, then C1 PAC-reduces to C3• 

7.2. The concept class of half spaces in Bln is defined as fQllows: each 
concept is defined by a vector it € Bln of unit length. An input x € �n 
is a positive example of it if and only if it . x == Ef=l Ui • Xi � O. In 
the the concept class of exclusive-or of two halfspaces, each concept 
is defined by a pair (it, v) of unit vectors in �n. An input x € �n is a 
positive example of (it, iT) if either it . x � 0 and fJ· x < 0, or it· x < 0 
and v· x � 0; otherwise, x is a negative example. 

Show that the class of exclusive-or of halfspaces PAC-reduces to the 
the class of halfspaces. 

7.3. A read-once DNF formulae over to, l}n is a disjunction c = 

Tl VT2 V' .. VT m (where each 11 is a conjunction of literals over the boolean 
variables Xl," " Xn) in which every variable is restricted to appear at 
most once (whether negated or unnegated) . Show that the representation 
class of general DNF formulae in which each formula over {O, l}n has at 
most pen) terms, for some fixed polynomial p(.), PAC-reduces to the 
representation class of read-once DNF formulae. 
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Learning Finite Automata by 
Experimentation 

8.1 Active and Passive Learning 

Although our early investigation of PAC learning revealed a number of 
natural but simple classes (such as boolean conjunctions, decision lists, 
and some geometric concepts) that are efficiently PAC learnable, the 
results given in Chapters 6 and 7 present rather daunting negative evi­
dence regarding the efficient learnability of more complex classes such as 
boolean formula and finite automata. These intractability results must 
lead us to question, at least in some of its details, the model of learning 
under consideration. For instance, are there sources of information about 
the target concept that are more powerful than random examples but are 
still somehow natural , and that we should make available to the learning 
algorithm? Might our failure to model such sources partially account for 
the chasm between the hope that efficient learning should be possible 
and the intractability results we have derived? 

Perhaps the most obvious source of information that we have failed to 
model is experimentation. The PAC model is a passive model of learning, 
in the sense that the learning algorithm has absolutely no control over 

Copyrighted Material 



156 Chapter 8 

the sample of labeled examples drawn. However, it is easy to imagine 
that the ability to experiment with the target concept might be extremely 
helpful to the learner. This is what we shall demonstrate in this chapter. 
We model experimentation by giving the learner the ability to make 
membership queries: the learner, when learning the target concept c, is 
given access to an oracle that on any input x returns the correct target 
label c(x). Thus the learning algorithm may choose particular inputs and 
see their target classification rather than only passively receiving random 
labeled inputs. 

One setting where membership queries are natural is when the learner 
is assisted by a teacher. Nature, as modeled by the target distribution in 
the PAC model, is indifferent to the learner and provides only random 
examples of the target concept. Particular questions that the learner may 
have are answered only insofar as the random training sample happens to 
answer them. The teacher, on the other hand, knows the target concept 
(or perhaps has already learned an accurate approximation to it) , and is 
sufficiently patient to classify inputs of the learner's choice as positive or 
negative examples of the target. 

In this chapter we show that allowing membership queries can have a 
significant impact on the complexity of learning problems. In particular, 
we show we can learn deterministic finite automata in polynomial time 
in the augmented PAC model where the learning algorithm is given ac­
cess to an oracle for membership queries in addition to the usual oracle 
for random examples. This result will in fact follow from an efficient 
algorithm for learning finite automata in a more demanding model: ex­
act learning from membership and equivalence queries, which we define 
in the next section. Combining this positive result with the hardness 
results of Chapters 6 and 7, we conclude under the Discrete Cube Root 
Assumption, membership queries provably make the difference between 
intractability and efficient learning for finite automata. 

In the latter part of the chapter, we generalize our learning algorithm 
for finite automata to solve another natural learning problem. Imagine 
that the learner is actually a robot wandering in an unknown environment 
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which consists of 8 distinct sites. At each step the robot can move from 
its current site to a neighboring site by performing one of a small set of 
primitive operations (for example, by moving one step forward, or to the 
left) . Suppose that each site contains some information that can help the 
robot orient itself in the environment. An example of such information 
could be the color of the current site. We can actually assume without 
loss of generality that there is only a single bit of information at each 
site, because we can modify an arbitrary environment into an equivalent 
binary environment by replacing each site of the original environment by 

a "corridor" of binary-valued sites in the new environment that encode 
the value at the original site. 

The robot's goal is to derive a complete model of the observable be­
havior of its environment. More precisely, the model should predict the 
exact sequence of bits the robot would observe on any sequence of moves 
starting from its current position. A natural model of the environment 
is that of a deterministic finite state automaton. The states of the au­
tomaton correspond to the sites in the environment, and transitions cor­
respond to the primitive moves. Each state of the automaton has a single 
bit of information associated with it (namely, whether it is an accepting 
state or a rejecting state). This bit represents the bit of information at 
the corresponding site in the environment. 

We give an efficient algorithm for creating an exact model of any such 
deterministic finite state environment. The algorithm is a refinement of 
the algorithm for learning finite automata from membership queries. Let 
us briefly sketch the essential difference between these two automata 
learning problems. While the robot can actively experiment with its en­
vironment (the target automaton) , it cannot reset the automaton to a 
definite state (like the start state). However, this is precisely the ability 
that is conferred upon the learner by membership queries, since a mem­
bership query may be regarded as a reset to the start state followed by 
an execution of the query string. To prove the robot learning result we 
show how to simulate a weak reset that is effective enough to help us 
simulate the previous learning algorithm. 
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8.2 Exact Learning Using Queries 

We now introduce a model of learning called exact learning from 
membership and equivalence queries. As usual, the learning al­
gorithm is attempting to learn an unknown target concept chosen from 
some known concept class C. Unlike in the PAC model, where we were 
satisfied with a close approximation to the target concept, we will insist 
that the learning algorithm output the representation of a concept that 
is exactly equivalent to the target concept. Instead of random examples 
as in the PAC model, however, the learner now has access to oracles 
answering the following two types of queries: 

• Membership Queries: On a membership query, the learning algo­
rithm may select any instance x and receive the correct classifica­
tion c(x) . 

• Equivalence Queries: On an equivalence query, the learning algo­
rithm submits a hypothesis concept h E C. If hex) = c(x) for all 
x then the learner has succeeded in exactly identifying the target. 
Otherwise, in response to the query the learner receives an instance 
x such that hex) =I- c(x). Such an instance is called a counterex­
ample. We make no assumptions on the process generating the 
counterexamples. For instance, they may be chosen in a manner 
designed to be confusing to the learning algorithm. 

Definition 17 We say that the representation class C is efficiently ex­
actly learnable from membership and equivalence queries if there 
is a fixed polynomial p(., .) and an algorithm L with access to membership 
and equivalence query oracles such that for any target concept c E Cn, L 
outputs in time p(size(c), n) a concept h E C such that h(x) = c(x) for 
all instances x. 

Note that we have assumed that concepts are defined only over in­
stances of a single common length n (such as in the case of boolean for-
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mulae over {o,l}n). This is clearly not the case for a finite automaton, 

which may accept strings of any length . To apply the definition of exact 
learning from queries to finite automata, we could simply restrict our 
attention to finite automata accepting strings of only a single length, as 
was done in deriving the hardness results in Chapter 7 (such a restriction 
only makes the hardness result stronger) . But it turns out we can give 
an efficient algorithm without this restriction, provided we make a minor 
but necessary modification to the definition. For finite automata, if the 
counterexamples given by the equivalence oracle can be arbitrarily long, 
it is natural that for our new definition should allow the running time 
of the learning algorithm to depend on the length of these counterexam­
ples (since we certainly should give the algorithm enough time to read 
the counterexamples) .  Thus, to generalize our definition to handle the 
exact learning of finite automata, in Definition 17 we simply assume that 
rather than being the exact length of all examples, the parameter n is 
a given a priori bound on the length of the longest counterexample that 
will be given to L in response to any equivalence query. (In Exercise 
8.2 we show that for any equivalence query there always exists a coun­
terexample whose length is at most polynomial in the number of states 
of the target automaton, and moreover the shortest counterexample can 
be efficiently computed given the target automaton. Thus, by providing 
sufficiently short counterexamples, a cooperative teacher can induce the 
exact learning algorithm for finite automata to run in time polynomial 
in the number of target states.) 

At first glance, it might appear that equivalence queries are an unreal­
istically strong source of information to provide to the learner. However, 
it can be shown (see Exercise 8.1) that any representation class that is 
efficiently exactly learnable from membership and equivalence queries is 
also efficiently PAC learnable with membership queries. By this 
we mean that it is efficiently learnable in the PAC model, provided the 
learning algorithm is provided with membership queries in addition to 
the usual oracle EX(c, V) for random examples. All other aspects of 
the PAC model, including the success criterion of finding a hypothesis 
with error less than e with respect to the target concept and distribution, 
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remain intact. 

8.3 Exact Learning of Finite Automata 

Over the next several sections, we will gradually develop and analyze 
an algorithm for efficiently exactly learning deterministic finite automata 
from membership and equivalence queries. We will keep the development 
at a fairly high level to emphasize the intuition behind the algorithm, 
but will eventually provide a complete and precise description of the 
algorithm in Section 8.3.5. 

Let M be the target automaton, and assume without loss of generality 
that M is minimized (that is, it has the fewest states among all automata 
accepting the same language) . We define size(M) to be the number of 
states of M. 

The key idea of the algorithm is to attempt to continually discover 
new states of M. By new states we mean states exhibiting behavior that 
is demonstrably different from the states discovered so far. The algorithm 
runs in phases. In each phase, the algorithm constructs a tentative hy­
pothesis automaton M whose states are the currently discovered states 
of M. It then makes an equivalence query on M. The counterexam­
ple from this equivalence query allows the algorithm to use membership 
queries to discover a new state of M. When all the states of M have 
been discovered, we will have M = M. 

8.3.1 Access Strings and Distinguishing Strings 

How can the learning algorithm discover information about the states of 
M? The algorithm will maintain a set S conSisting of at most size( M) 
state access strings, and a set D of distinguishing strings: 
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• (Access) Each string 8 E 8, when executed from the start state of M, 
leads to a unique state of M that we denote MIs]. 

• (Distinguishability) For each pair of strings s, s' E 8 such that s # s', 
there is a distinguishing string d E D such that one of sd and s'd 
reaches an accepting state of M, and the other reaches a reject­
ing state of M. (That is, exactly one of M(sd1 and Mls'd] is an 
accepting state.) 

We shall refer to the states {M[s] : s E 8} as the known states of 
M, since we know how to access them from the start state. Notice that 
all these known states must be distinct . This is because for each pair 
of strings 8, s' E 8, there is a string d in D that witnesses the fact that 
starting from states MIs] and M[s'1 and executing d leads to different 
final states. The goal of the learning algorithm is to discover all the states 
of M by finding size(M) access strings , together a with distinguishing 
string for every pair of access strings. The task of reconstructing the 
actual transitions of M from this information is quite straightforward (as 
we shall see) . 

In the algorithm , the current sets 8 and D of access and distinguish­
ing strings will be maintained in a convenient data structure, a binary 
classification tree. Each internal node is labeled by a string in D, and 
each leaf is labeled by a string in 8. The tree is constructed by plac­
ing at the root any string d from D that distinguishes two strings in 8, 
and placing in the left subtree of the root all strings s E S such that 
sd is rejected by M, and in the right subtree all s E 8 such that sd is 
accepted. This induces a nontrivial partition of 8 (since d distinguishes 
some pair of strings in 8), and we simply recurse at each subtree un­
til each string in 8 is at its own leaf. Then any pair of access strings 
s, s' E S are distinguished by the string labeling their least common an­
cestor in the classification tree. Our algorithm will dynamically maintain 
a classification tree representation of 8 and D. 

OUf algorithm will make sure that the distinguishing string that labels 
the root of the classification tree is always the empty string A. This will 
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Figure 8.1: (a) Finite automaton counting the number 011 's in the input 
3 mod 4. (b) A classification tree lor this automaton. 

ensure that all the access strings to accepting states will lie in the right 
subtree and the access strings to rejecting states in the left subtree. The 
algorithm will also arrange that A is one of the access strings. This 
ensures that we can access the start state of the automaton. 

Figure 8.1{a) shows a finite automaton that will form the basis of a 
running example. This automaton accepts an input string if and only 

if the number of l's in the string is 3 modulo 4. Figure 8.1(b) shows a 
classification tree for this automaton, with access strings {A, 110, 1101} 
and distinguishing strings {'\, I}. 

8.3.2 An Efficiently Computable State Partition 

Now suppose we are given a new string s' that is not in the current 
access string set S, but that M[s'] = M[s} for some access string 8 E 
S. Then we can efficiently determine 8 from s' by sifting s' down our 
classification tree using membership queries: starting at the root, if we 
are at an internal node labeled by the distinguishing string d, we make 
a membership query on the string s'd and go to the left or right subtree 
as indicated by the query answer (left on reject, right on accept) . We 
continue in this manner to reach a leaf , which must be labeled by s. 
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1 

Figure 8.2: Partition induced by the classification tree in Figure 8.1. 

More importantly, even if M[s'} ¥- M[s) for all S E S, sifting s' down 
the classification tree still defines a path to a leaf, and this path depends 
only on M[s'1. In other words, for any strings s' and s", if M[s'J = M[s"1 
then sifting 8' and sIt defines exactly the same path down the classification 
tree. Thus, the classification tree induces a partition on the states of M, 
and each equivalence class of this partition contains exactly one state 
M[s} such that s E S, which we will consider the representative element 
for the equivalence class. 

Sifting can be efficiently implemented, and the number of membership 
queries for a sift operation is bounded by the depth of the classification 
tree. 

Figure 8.2 shows the partition of the automaton of Figure 8.1(a) that 
is induced by the classification tree of Figure 8. 1Cb) . The known or 
representative state in each equivalence class has been shaded. Note that 
the access string for a known state may not be the shortest string reaching 
that state. For example, in Figures 8.1 and 8.2, we have the access string 
110 even though the shorter string 11 accesses the same state. 
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8.3.3 The Tentative Hypothesis M 

We are now in a position to describe the construction of a hypothesis 
automaton if, whose states can be thought of as the known states of 
M (that is, states for which there are access strings in the leaves of the 
current classification tree). If all the states of M have been discovered 
then it will turn out that M = M. Otherwise, the counterexample from 
the equivalence query on M will be used to discover a new state (that is, 
access string) of M. 

We first define if algorithmically and then provide some insight into 
its structure. Given the classification tree, it is easy to construct if 
using equivalence queries. We identify (label) the states of M with the 
access strings in the classification tree. For each access string (state) 8 

and symbol b, the destination state of the b-transition out of state 8 is 
just the access string that results from sifting sb down the classification 
tree. 

M can be thought of as an automaton whose states are a subset of 
the states of M, but with transitions that are possibly quite different 
than those of M. Imagine a state diagram of M in which the transi­
tions are represented by dashed lines, and the states are grouped by the 
equivalence classes defined by the current classification tree. (See Figure 
8.3(a), in which M is the four-state automaton shown, with its transitions 
represented by dashed lines. The states of M are partitioned into two 
classes of two states each.) Now let us shade each known state M[s] for 
8 € S. JThe shaded states of M in Figure 8.3(a) are the known states.) 
Then M will be defined only on those states of M that are shaded, and 
each equivalence class of M has exactly one such shaded state. The 
transitions of M, which will be represented by bold lines, are defined 
as follows: for b € {O, I}, the bold b-transition leaving the shaded state 
M[s] is obtained simply by taking M's dashed b-transition leaving M[s] 
and redirecting it from its current destination state to the unique shaded 
state of the equivalence class of the destination state in M. (See Figure 
8.3(a).) For example, in Figure 8.3(a) , the dashed O-transition of the left 
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Figure 8.3: (a) Embedded hypothesis defined by a partition of a target au­
tomaton into two equivalence classes. 7ransitions of the target automaton 
M are dashed, tmnsitions of the hypothesis if defined by the partition 
and the shaded known states are bold. (b) The resulting hypothesis if 
extmcted. 

shaded state stays in the same equivalence class of states; thus, the bold 
O-transition of the left shaded state becomes a self-loop. Similarly, the 
dashed I-transition of the right shaded state goes to the left equivalence 
class; thus, the bold I-transition of the right shaded state also goes to the 
left equivalence class, but is redirected to the left shaded state. Notice 
that in the case when all the states of M are shaded, if = M. 

We should point out a common point of confusion about if: if 
might look very different from M and it might accept a totally different 
language than that accepted by M. So it is a mistake to think of if 
as an approximation to the target automaton M (unless they have the 
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same number of states , in which case M = M). A related point is 
that the learning algorithm makes progress by increasing the number of 
access strings or leaves in the classification tree. The tentative hypothesis 
automaton M facilitates this increase in the number of leaves in the 
classification tree. 

8.3.4 Using a Counterexample 

We now show how we can use a string 1 that is a counterexample to 
the equivalence of M and M in order to discover a new state of M, thus 
allowing the classification tree to be updated . The conceptual idea is to 
simulate the behavior of both M and M in parallel on the string 1 (that 
is , follow both the dashed trajectory and the bold trajectory dictated by 
1) in order to discover the first point at which the two trajectories diverge 
to different equivalence classes of states . At this point of divergence, the 
dashed and bold transitions must take place from two different states in 
the same equivalence class, thus providing us with access to a new state 
in this equivalence class. 

To make this precise, we first recall our assumption that the root of 
the classification tree is labeled by the empty string A, and that one of 
the access strings is A (both of these conditions will be easily arranged 
by our algorithm in its initialization step). The first condition implies 
that no equivalence class of M contains both an accepting and a rejecting 
state. The second condition implies that in the embedding of M in M, 
the start states of the two automata coincide, and thus the machines 
are usynchronized" at the start of any string. So the dashed and bold 
trajectories determined by the counterexample 1 begin in a common 
equivalence class (in fact, in the same state) and end up in different 
equivalence classes (since exactly one of M and M accepts 1). 

Let M[s] denote the state reached by following the transitions of AI on 
string Sj this is just the final destination of the bold trajectory determined 
by 8. Let 1. denote the ith symbol of 1 and let 1[i] denote the prefix of 1 
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of length i, that is '1[i1 = '11 . . .  'Yi· Let 1 :5 i :5 hi be the first index such 
that the equivalence class of M['Y[ill differs from that of MhliJ1 (thus, 
the two trajectories have diverged for the first time) . See Figure 8.4. 

By the choice of j, we know that Mbli - 111 and Mbli - 1]] are in 
the same equivalence class, yet the dashed transition from Mb[j - 111 
and the bold transition from Mbli -I]) on the symbol 'Y; led to different 
equivalence classes. This means that Mbli - 111 and Mbli - 1)] are 
actually different states in the same equivalence class. Since the only 
shaded (known) state in this class is M['Yli - 1)], and recalling that the 
access strings discovered so far reach only the shaded states, Mbli -In 
is a new state with access string 'Yli - 1]. 

To distinguish Mbli - 1]] from all previously discovered states (that 
is, to place this state in its own equivalence class), we only need to 
distinguish M['Yli -I]] and M['1li -I]] from each other (that is, to "split" 
the current equivalence class to which they both belong) . The correct 
distinguishing string simply expresses the fact that the 'Y; transitions from 
Mbli - Ill in M and from MbU -1]] in M lead to different equivalence 
classes, namely, the equivalence classes of M!'Yli]] and M!'Y[jJ]. If d is 
the string distinguishing the equiValence classes of M['Ylill and Mbli}], 
then the correct distinguishing string for Mbli - 1]] and Mbli - 1]] is 

'Y;d. 

It should be clear that the task of updating the classification tree by 
processing a counterexample string can be carried out efficiently using 
membership queries. This involves determining the equivalence class of 
each prefix of the counterexample string by sifting it down the current 
classification tree, as well as tracing its path in the hypothesis automaton 
M, which is known explicitly. 
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Figure 8.4: The trajectories in the target automaton (dashed transitions, 
unshaded states) and the hypothesis automaton (bold transitions, shaded 
states) traced by a counterexample. From each shaded state on the bold 
trajectory, the dashed transition of the target automaton (which may be 
different from the bold transition) is shown for completeness. 

To sum up, as long as the number of leaves of the classification tree 
is smaller than size(M) , the hypothesis automaton if is necessarily dif­
ferent from M. Therefore an equivalence query must return some coun­
terexample string "I which we can use to update the classification tree 
by adding a new leaf node. Eventually the classification tree will have 
size(M) leaf nodes, each accessing a different state of M, and at this 
point M = M. 
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8.3.5 The Algorithm for Learning Finite 
Automata 

169 

We can now describe our algorithm for learning finite automata in some 
detail. We start by describing the subroutine Sift. This subroutine takes 
as input a string 8 and the current classification tree T, and outputs the 
access string in T of the equivalence class of M[s), the state of M accessed 
by 8. 

Procedure Sift{s, T): 

• Initialization: set the current node to be the root node of T. 

• Main Loop: 

- Let d be the distinguishing string at the current node in the 
tree. 

- Make a membership query on sd. If ad iR accepted by M, 
update the current node to be the right child of the current 
node. Otherwise, update the current node to be the left child 
of the current node. 

- If the current node is a leaf node, then return the access string 
stored at this leaf. Otherwise, repeat the Main Loop. 

Next, we describe the procedure for constructing the hypothesis au­
tomaton AI that is defined by the current classification tree T. 

Procedure Tentative-Hypothesis{T): 

• For each access string (leaf) of T, create a state in M that is labeled 
by that access string. Let the start state of M be the state .A. 

• For each access state a of M and each b E {O, I}, compute the 
b--transition out of state s in M as follows: 
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- 8' +- Sift(8b, T). 
- Direct the b-transition out of state 8 to state 8'. 

• Return M. 

Next we describe the procedure Update-Tree, which takes as argu­
ments the current classification tree T and a counterexample string 'Y to 
the hypothesis automaton if defined by T. The procedure finds a new 
access string, and updates T by adding a new leaf node labeled with the 
new access string. 

Procedure Update-Tree('Y, T): 

• For each prefix 'Y{i) of 'Y: 

- 8; +- Sift( 'Y(i] , T). 

- Let Sj = Mh[ill. 
• Let j be the least i such that 8j :f; h 

• Replace the node labeled with the access string 8j-l in T with an 
internal node with two leaf nodes. One leaf node is labeled with the 
access string 8j-l and the other with the new access string 'Yli -1]. 
The newly created internal node is labeled with the distinguishing 
string 'rjd, where d is the correct distinguishing string for 8j and 8j 
(d can be obtained from T) . 

We are now ready to describe the overall algorithm for learning finite 
automata: 

Algorithm Learn-Automaton: 

• Initialization: 

- Do a membership query on the string A to determine whether 
the start state of M is accepting or rejecting. 
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- Construct a hypothesis automaton that consists simply of this 

single (accepting or rejecting) state with self-loops for both the 
o and 1 transitions. 

- Perform an equivalence query on this automaton; let the coun­
terexample string be 'Y. 

- Initialize the classification tree T to have a root labeled with 
the distinguishing string ,\ and two leaves labeled with access 
strings ,\ and 'Y . 

• Main Loop: 

- Let T be the current classification tree. 

- M � Tentative-Hypothesis(T). 

- Make an equivalence query on M. If it is equivalent to the 
target then output £1 and halt. Otherwise, let 'Y be the coun­
terexample string. 

- Update-'J.ree(T, 'Y). 

- Repeat Main Loop. 

In Figure 8.5, we show the evolution of the hypothesis £1 and the 
classification tree 88 the algorithm is executed on the target automaton 
first shown in Figure 8.1. 

8.3.6 Running Time Analysis 

The number of times the Main Loop of algorithm Learn-Automaton 
is executed is exactly size(M) . This is because, as we have already ar­
gued, each iteration discovers a new state of M in the form of an access 
string, and when all states are discovered then !VI = M. Each execu­
tion of the Main Loop of Learn-Automaton makes a call to proce­
dure Tentative-Hypothesis to compute £1, and each such call invokes 
O( size( M» sifting operations. Also, each execution of the Main Loop of 
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Learn-Automaton requires the processing of a single counterexample 
by procedure Update-Tree. A counterexample of length n requires at 
most n sifting operations . Therefore, we have size(M) Main Loop exe­
cutions, each of which requires O(size(M) + n) sifting operations, where 
n is the length of the longest counterexample. It is easy to see that the 
running time of our algorithm is dominated by the sifting operations, and 
that sifting is a O(size(M») operation . We have thus derived the first of 
the two main results of this chapter: 

Theorem 8.1 The representation class of deterministic finite automata 
is efficiently exactly learnable from membership and equivalence queries. 

It is worth noting that as a corollary to our analysis of the learning 
algorithm, we can give an alternative derivation of the well-known Myhill­
Nerode theorem, which states that for any regular language L there is a 
unique automaton of minimum size accepting L. First observe that the 
learning algorithm only gets information about the language L accepted 
by the target automaton M, and so if two different target automata Ml 
and M2 accept the same language L then the learning algorithm must 
produce the same output automaton M. On the other hand, we showed 
that output automaton M is identical to the target automaton, assuming 
only that the target automaton is a minimum state automaton. It follows 
that the minimum state automaton accepting L is unique. 
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Figure 8.5: Sample execution of algorithm Learn-Automaton on the 
3 mod 4 counter target automaton. In the first column, we show the 
target automaton with the partition defined by the classification tree of 
the previous row, along with the shaded known states. The second column 
shows the hypothesis Nt defined by the partition to its left; the states 
oj Nt are also labeled by their access string. Every equivalence query 
on Nt is answered by the same repeated counterexample (1101,1) until 
Nt = M. The third column shows the prefix ')'(j - 1] of')' = 1101 on 
which a difference of equivalence classes is first detected, and the fourth 
column shows the classification tree at each step. 
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8.4 Learning without a Reset 

In this section, we strengthen the result from the previous section and 
give an efficient algorithm for learning deterministic finite automata from 
equivalence queries and membership queries without resets. By this we 
mean that the membership oracle does not reset M to its start state be­
fore each membership querYi instead it simply starts processing the next 
query string from its current state. Thus the answer to the query string 
"(i which follows a sequence of queries "(1, • • •  , "(i-l indicates whether 
M["(l . . . "(i-l"(i) is an accepting or rejecting state. As stated in the intro­
duction, we will assume without loss of generality that each of the query 
strings "(i is only a single-bit query. 

We need to be a little careful in specifying the goal of the learner in 
this new setting. The problem arises from the fact that the target au­
tomaton M may contain components from which the learning algorithm 
can never escape once they are entered, and thus might not be able to 
explore the rest of the a.utomaton. For simplicity, we shall finesse this 
problem by simply assuming that M is strongly connected: that is, 
there is a directed path between every pair of states in M. In the more 
general case, the automaton would eventually get trapped in a strongly 
connected component. In this case the learning algorithm would end up 
with an accurate model of this strongly connected component. 

In keeping with the idea that the learner's goal is to model its en­
vironment from its current position, we shall also modify the oracle for 
equivalence queries. Whenever the learning algorithm makes an equiva­
lence query on hypothesis automaton £1, this query is interpreted from 
the learning algorithm's current position. This means that if £1 is equiv­
alent to M when we define the start state of M to be the current position 
of the learning algorithm in M, then learning is complete , and if M is not 
equivalent to M from the current position, a counterexample from the 
current position is provided. Thus, a counterexample to £1 provides the 
learning algorithm with a sequence of moves 'Y such that if we execute "( 
from the current position in M, and if we execute "( from the start state 
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of M, different outputs are obtained. For brevity, we shall refer to this 
learning model for finite automata with the modified membership and 
equivalence queries as the no-reset model of exact ly learning determin­
istic finite automata from membership and equivalence queries, and to 
the original model as the reset model. Note that the no-reset model 
only makes sense in the context of learning the particular representation 
class of finite automata, whereas the original model is of more general 
interest. 

It is not difficult to see that a learning algorithm in the no-reset 
model can be simulated by an algorithm in the reset model, by making a 
membership query for each prefix of the string describing the movements 
of the no-reset learner. On the other hand, the no-reset learner does not 
seem to have the power of membership queries with resets, since it may 
not know how to return to the start state from its current position in the 
target automaton. 

We will use the notion of homing sequences to effect a kind of sim­
ulation of resets in the no-reset model, and this will allow us to modify 
our algorithm Learn-Automaton for the reset model into an efficient 
randomized a lgorithm for learning automata in the no-reset model. The 
overview of the development is as follows. We begin in Section 8.4.1 
by defining a homing sequence, and showing how we can learn in the 
no-reset model if we are given a short homing sequence for the target 
automaton. In Section 8.4.2 we prove the existence of short homing se­
quences, and we analyze the key idea of our new algorithm: simulating 
many copies of our algorithm Learn-Automaton using a possibly faulty 
homing sequence. We show that the failure of such a simulation allows 
us to improve our proposed homing sequence and restart the entire sim­
ulation. In Section 8.4.3 we give a detailed description of our algorithm 
and its analysis, and in Section 8.4.4 we return to address an assump­
tion made during the development about the many simulated copies of 
Learn-Automaton. 
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8.4. 1 Using a Homing Sequence to Learn 

Let M be the target automaton. As before we will assume that M is a 
minimum state automaton, and let size(M) be the number of states of 
M. To begin with, without loss of generality we will assume that our 
learning algorithm knows the value of size(M) j  it is a simple exercise to 
eliminate this assumption. 

For any string h, we denote by output(q, h) the output (that is, the 
complete sequence of accept/reject bits) observed by executing h from 
state q of M, and by state(q, h) the state of M reached by executing h 
from q. For any sequence h, we define 

output(h) = { output (q, h) : q E M}. 

This is just the set of all possible outputs observed by executing h as 
we range over all possible starting states q of M. Notice that if M has 
size(M) states, I output (h) I � size(M) for any sequence h. 

A homing sequence for a finite automaton M is a sequence h such 
that for any state q of M, output(q, h) uniquely determines state(q, h) : 
that is, if output (q, h) = output (q' , h) then state(q, h) = state(q' , h) . Note 
that we do not demand that q = q'j a homing sequence simply ensures 
that identical output sequences imply the same destination state, not the 
same origin. 

Let us first show the existence of short homing sequences for any 
automaton, and how a homing sequence can be used to learn in the no­
reset model, and defer the problem of finding such a sequence in the 
no-reset model to Section 8.4.2. The main idea is that any sequence h 
that is not already a homing sequence can be extended to a sequence hx 
such that I output (hx) I > l output (h) 1 for some string x of length at most 
size(M) . Since I output (h) 1 � size(M) for every string h, we will have 
the desired homing sequence after at most size(M) such extensions. 

First note that for any h and any x, I output (hx) I � 1 output (h) I .  
Now if  h i s  not a homing sequence, there exist two different states q 
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and q' of M such that output(q, h) = output(q' , h} , but state (q, h} :1= 
state(q', h}. However, there must be a distinguishing sequence d for the 
destination states state(q , h) and state(q' , h) . So now we get two distinct 
output sequences output (q, hd) :1= output (q' , hd) in place of the single 
output sequence output (q, h) = output (q', h} , and thus I output(hx) I > 
l output(h) l ·  

Returning to our learning problem, note that a homing sequence h 
provides a kind of " weak" reset for M. Although executing h does not 
always return us to the same fixed state of M, it does "orient" us within 
M, in the sense that the output observed upon executing h uniquely 
determines the resulting state. Given the homing sequence h, we can 
imagine simulating our learning algorithm Learn-Automaton for the 
reset model in the following way: each time Learn-Automaton requests 
a reset (that is, makes a membership query) , we temporarily suspend 
its execution and repeatedly execute h until some execution results in 
the specific output sequence 0'. We then resume simulation of Learn­
Automaton and in this way, before every membership query of Learn­
Automaton we return to the same fixed state of M, which we may' 

consider the "start state" . 

Unfortunately, we have no way of bounding the amount of time we 

may have to wait before executing h gives rise to the specific output 
sequence 0'. This will be addressed by simulating many copies LIS of 

Learn-Automation, one for each output sequence 0' that we have ob­
served upon executing h (that is, one for each 0' E output (h) that we have 

seen so far). At any time, at most one copy LIS will be awake. When this 

copy makes a membership query, we suspend its execution, execute h and 
obtain some output 0" ,  and then awaken (that is, resume execution of) 
the copy LIS" There are at most I output (h) I � size (M} copies, and any 

copy that terminates has exactly learned M. Each copy does at most as 

much computation as an execution of Learn-Automaton in the reset 

model, and thus the total amount of computation performed is at most 

size(M) times that of Learn-Automaton (plus a small overhead cost 

for the executions of h). Thus we have shown: 
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Lemma 8.2 There is an efficient algorithm for exactly learning deter­
ministic finite automata in the no-reset model of membership and equiva­
lence queries, provided the algorithm is also given a homing sequence for 
the target automaton as input. 

The main difficulty with the above proposal is that we must first 
somehow find a homing sequence. We now address this issue . 

8.4.2 Building a Homing Sequence Using 
Oversized Generalized Classification Trees 

The overall idea for finding a homing sequence will be to run the multi­
copy simulation suggested above using a sequence h which in fact may 
not be a homing sequence. If this simulation fails to learn M, we will 
be able to extend h to a sequence hx that is "closer" to being a homing 
sequence. 

For any sequence h, let us denote by reset(h, IT) the set of possible 
states of M we could be in if the string IT has just been observed as the 
output while executing the string h. Thus, 

reset(h, IT) = {r E M : (3q E M)state(q, h) = r, output(q, h) = IT} . 

Suppose that we use a sequence h which is not a homing sequence, and 
awaken the copy Lu only when we have just executed h and observed the 
ouput sequence IT. Then every time that Lu is awakened , M will be in 
some state in reset (h, IT) . 

As we have mentioned, our hope is to iteratively update h from failed 
attempts to learn M using the copies Lu , until we end up with a homing 
sequence, at which point we have already argued the correctness of our 
multi-copy simulation (Lemma 8.2) .  The correctness of this scheme will 
rely on the following important property of each Lu , whose proof we shall 
defer until a later section : if we use a sequence h which is not a homing 
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sequence to run the copies Lu, then each Lu either halts and outputs 
an automaton equivalent to M, or it successively constructs a series of 
larger and larger generalized classification trees. 

Structurally, a generalized classification tree looks just like the clas­
sification tree of algorithm Learn-Automaton in the reset model. The 
key property of a generalized classification tree T is that for any access 
string (leaf) of T, and any distinguishing string (internal node) d of T 
that is on the path from the root to 8, there is some state q E reset(h, O') 
that "witnesses" the claimed behavior of M on these strings. More pre­
cisely, we say that T is a generalized classification tree with respect 
to h and u if and only if for any access string 8 and distinguishing string 
d on the path from the root to 8 in T, if 8 is in the right (left, respec­
tively) subtree of d, there is a q E reset(h, O') such that state(q, sd) is 
accepting (rejecting, respectively) .  Note that a classification tree is just 
a generalized classification tree in which lreset(h, u) 1 = 1 .  

Assuming for now that each copy LIT can only either halt with a 
correct hypothesis automaton or construct successively larger generalized 
classification trees, the only way in which our simulation can fail when 
using an h that is not a homing sequence is that some copy Lu constructs 
a generalized classification tree TIT with size(M) + 1 leaves. We now 
propose and analyze a randomized scheme for using such an oversized Tu 
to find a string x such that hx is closer to being a homing sequence, in 
the sense that I output(hx) I > l output(h) l ·  

Let r E reset(h, q). Thus r is one of perhaps many states that M 
could be in when La is restarted when using the sequence h. Since M has 
only size(M) states and Tu contains size(M)+l  access strings, there must 
exist access strings Si and Sj of Tu such that state(r, 8i) = state(r, Sj) by 
the Pigeonhole Principle. Let d be the distinguishing string for Ss and 
Sj in Ta . Then since 8i and Sj lead to the same state of M from r, 
we must also have state(r, Sid) = state(r, sjd)j assume without loss of 
generality that this is an accepting state. On the other hand, since d is 
a distinguishing string for Si and 8j in Ta , there must also exist states 
Ti , rj E reset (h, q) such that exactly one of state(r. , 8.d) and state(rj, sjd) 
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Figure 8.6: Homing sequence update. 

is an accepting state, say state (ri l sid) . Now hsjd is closer to being a 
homing sequence than h, because on output q ,  h might have led us to 
either of r and Tj , but now s;d distinguishes between T and Tj (see Figure 
8.6) . 

Of course, we have no way of determining just by looking at T� which 
access strings Si and s; have the above property. Instead, we use a 
randomized scheme that chooses two leaves Ss and s; of Tq at random, 
and updates the proposed homing sequence h to be hs;d, where d is 
the distinguishing string (least common ancestor) for s. and Sj in Tq • 
We then restart the entire mUlti-copy simulation of algorithm Learn­
Automaton. 

Since we know that there is some pair 8. and 8; in Tq that can be used 
to improve h, the probability that we actually make an improvement is 
at least 1/{size(M»2. Note that even if we fail to make an improve­
ment to h, we certainly cannot make it worse because we always have 
l output(hs;d) 1 2: l output(h) l ·  
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8.4.3 The No-Reset Algorithm 

We are now prepared to give a detailed description of our algorithm for 
the no-reset model. We then provide its analysis under the assumption 
that all copies La of Learn-Automaton always maintain a generalized 
classification tree, and then return to validate this assumption in the 
following section . 

Algorithm No-Reset-Learn-Automaton: 

. h .- >'  . 

• Main Loop: 

- Execute (that is, make a membership query on) the current 
proposed homing sequence h, and let q be the output sequence 
observed. 

- If the output sequence q has not previously been observed 
after executing the current h, initialize a copy La of algorithm 
Learn-Automaton. 

- Awaken copy La and simulate its next membership query and 
all subsequent computation up to (but not including) the next 
membership query: 

* Any time La makes a equivalence query M, give this query 
to the equivalence query oracle. If it is successful, halt 
and output M (learning is complete) . If it is unsuccessful 
return the counterexample 'Y to La. 

* If the generalized classification tree Ta of copy La ever has 
size of size(M) + 1 leaves, then choose leaves St and Sj of 
TO' at random , and perform the update h .- hsjd, where d 
is the least common ancestor of St and Sj in Ta . Delete all 
copies of algorithm Learn-Automaton and restart the 
entire simulation by returning to the Main Loop. 
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For the analysis , note that No-Reset-Learn-Automaton halts only 
if learning is complete. Thus we only need to bound the running time. 
First, we observe that the number of times the tentative homing sequence 
can be improved is at most size(M) j this is because as we already ar­
gued, each improvement increases the size of the set output (h) up to a 
maximum of size(M). Improvements in the tentative homing sequence 
happen with probability at least 1/(size(M»2 each time the algorithm 
discovers an oversized classification tree. Since the simulation is simply 
restarted after each such modification to the tentative homing sequence, 
the running time of the algorithm is bounded by size(M)3 multiplied by 
the time required to build an oversized tree starting with a new tenta­
tive homing sequence. From Section 8.4. 1 ,  the latter quantity is at most 
(size(M)) times the running time of Learn-Automaton in the reset 
model. Therefore the expected running time of the new algorithm is at 
most (size(M))4  times the running time of Learn-Automaton in the 
reset model. 

8.4.4 Making Sure Lq Builds Generalized 
Classification Trees 

We now must return to an issue that we had deferred earlier: we still need 
to show that each copy L(/ has the property that even if it is awakened 
when we observe output u upon executing a string h that is not a homing 
sequence, L(/ either halts and outputs an automaton equivalent to M, or 
it successively constructs a series of larger and larger generalized classifi­
cation trees Tq . The issue here is that if h is not a homing sequence then 
each reset of L(/ puts M in an arbitrary state q E reset (h, u) . 

First, let us assume that the lack of a consistent reset state does not 
ever cause the copy Lq to abort. We will momentarily come back and 
address this assumption. In this case, the only way Lq halts is if it made 
a successful equivalence query, and therefore discovered an automaton 
equivalent to M. On the other hand, if it does not halt, then it works in 
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phases, and in each phase it adds a new leaf node to its current tree Ta ,  
which we now argue is a generalized classification tree. 

We thus have to verify that if d is a distinguishing string on the path 
from the root to the leaf s in the current tree Ta , then if S is in the 
right subtree of d there is some reset state q E reset(h, (1) such that 
the state(q, sd) is an accepting state , and if S is in the left subtree of d 
there is some reset state q E reset(h, (1) such that the state(q, sd) is a 
rejecting state. This fact is established by proving that for every such 
(s, d) pair there is a witness in the membership query history of La -
that is, La must have at some point performed the membership query 
sd, and that the current tree Ta is consistent with the answer given to 
that membership query. 

Recall that Ta is modified only by a call to Update-Tree(TIT '  ')') for 
some counterexample string 'Y. Let us denote the updated tree by T�. We 
will show that if all (s, d) pairs of Ta were witnessed, then this continues 
to be true of T;. Since we update TO' by adding a single access string 
')'(j - 11 and a single distinguishing string ')'jd, we must only verify that 
there are witnesses for pairs that involve one of these two strings. 

There are only two access strings in T; whose path from the root 
passes through the new internal node labeled ')'jd - namely, ')'(j - 11 and 
s, where s is the access string reached by sifting ')'(j - 11 down TIT (see 
Section 8.3.4). Of these, the pair (')'(j - 1] , ')'jd) was witnessed by the 
membership query ')'(j - Ibjd = ')'[ild which was made while doing a 
sift operation on the string ')'[i] (while processing the counterexample ')') . 
The pair (s, 'Yjd) was witnessed by the membership query s')'jd which was 
performed to determine the destination state for the ')';-transition out of 
the state s in the tentative hypothesis automaton AI. To see this more 
clearly, recall that determining this transition involved sifting s')'j down 
Ta, and that d is one of the distinguishing strings on the path from the 
root to access string S in Ta . 

Lastly, we must witness every remaining new pair b(j - 1], d') of T; 
for all of the distinguishing strings d' =F ')' - i d on the path from the 
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root to 'Y(j - 1] . Note that all such d' were present in the tree TO'. All 
these pairs were witnessed while sifting the string 'Yli - I} down TIT to 
determine its equivalence class. 

As our final detail, we have to consider the possibility that LO' may 
abort since the answers to the membership queries can be inconsistent be­
cause there is no consistent reset state. We will show that (with one small 
exception which is easily fixed) La never checks the answers to member­
ship queries for consistency. First observe that LIT makes membership 
queries in two places: one is to fill in the transitions of the hypothe­
sis automaton M. Notice that even if the answers to all these queries 
were arbitrary, they would not cause La to abort , they would just re­
sult in incorrect transitions for M. The other place where the algorithm 
makes membership queries is while processing the counterexample string 
'Y. Once again incorrect answers to membership queries do not cause 
the algorithm to abort, with one small exception. Let the length of the 
counterexample string 'Y be m. Suppose that all the prefixes of 'Y up to 
')'[m - 11 reveal no difference between the equivalence class in M and 
the equivalence class in M. When the algorithm goes on to compute the 
equivalence class of ')'[m] = 'Y in M (using membership queries) , it must 
not turn out to be equal to the equivalence class of ')' in M, otherwise the 
algorithm as stated would abort. This situation is easily fixed by chang­
ing the algorithm so that if it gets this far it does not try to compute 
the equivalence class of ')', but instead uses the information that "I was 
a counterexample to directly update the generalized classification tree 
as follows: the new access string is "I[m - 1 J and the new distinguishing 
string is "1m. The correctness of the generalized classification tree is un­
changed except for the fact that the correctness of the pair s = "I[m - 11 
and d = "1m relies on the fact "I was a counterexample string after a reset 
operation , and therefore there must be some reset state q E reset(h, cr) 
such that state(q, "I) is an accepting or rejecting string as claimed by the 
counterexample. 

We have finally shown: 

Copyrighted Material 



Learning Finite Automata by Experimentation 185 

Theorem 8.3 There is a randomized algorithm that halts in expected 
polynomial time and exactly learns the representation class of determin­
istic finite automata in the no-reset learning model. 

It is easy to argue that we can alternatively state this result by saying 
that there is a randomized algorithm that takes as input 0 < 6 ::; 1, and 
that with probability at least 1 - 6, exactly learns any deterministic 
finite automata c in the no-reset model in time polynomial in log(1/6) , 
n and size (c) . Here n is again a bound on the length of the longest 
counterexample to any equivalence query. 

8.5 Exercises 

8.1 .  Show that for any repr�entation class C, if e is efliciently exactly 
learnable from membership and equivalence queries, then e is efficiently 
learnable in the PAC model with membership queries . 

8.2. Show that properties of the classification trees constructed by our 
algorithm for learning finite automata in the reset model imply that 
any two inequivalent states in any deterministic finite automata M of 8 
states have a distinguishing string of length at most 8 .  Show that for 
any equivalence query M of our algorithm, if AI :/: M then there is a 
counterexample of length 28 which can be found efficiently on input if 
and M. 

8.3. Let en be the class of monotone DNF formulae over Xl , . • •  , Xn , and 
let C = Un>lCn• Give an algorithm for efficiently exactly learning e from 
membershiP and equivalence queries. 

8.4. Consider modifying our algorithm for finite automata in the 
no-reset model so that the copy L(1 is halted only when its generalized 
classification tree T(1 has 2s leaves rather than just 8 + 1 ,  where 8 is 
the number of states in the target automaton. Note that this increases 
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the running time of the algorithm by only a constant. Show that this 
modification increases the probability that we improve our candidate 
homing sequence from 1/82 to 1/8. 

8.6 Bibliographic Notes 

The model of exact learning with membership and equivalence queries, 
and the algorithm given here for learning finite automata, is due to An­
gluin [5) . Her seminal paper inspired a tremendous amount of subsequent 
research in the model, and has yielded many positive results. These in­
clude efficient algorithms for learning the class of decision trees, due to 
Bshouty [25]; for learning conjunctions of Horn clauses, a restricted form 
of DNF formulae, due to Angluin, Frazier and Pitt [7] ; for learning a 
subclass of context-free languages accepted by counter machines, due to 
Berman and Roos [15] ; for learning read-once boolean formulae, due to 
Angluin, Hellerstein and Karpinski (8) ; for learning sparse multivariate 
polynomials, due to Schapire and Sellie [83) ; and for many other concept 
classes. The algorithm for learning monotone DNF that is the subject of 
Exercise 8.3 is due to Angluin [6] ; this paper also provides many general 
resource bounds for query learning (also see the work of Kannan (54) ) .  
The monotone DNF algorithm was subsequently extended by Angluin 
and Slonim [1 1) to tolerate certain types of errors in the query responses. 

However, there are still limitations: Angluin and Kharitonov (91 demon­
strate that for the class of DNF formulae, membership queries provide no 
additional power to the learner over the PAC model for some input dis­
tributions (under certain cryptographic assumptions) ,  and subsequently 
Kharitonov (62) greatly strengthened the hardness results we derived in 
Chapter 6 when he proved that boolean formulae cannot be efficiently 
learned from random examples and membership queries, even when the 
input distribution is uniform (again under cryptographic assumptions) . 

The extension of Angluin 's algorithm to the problem of learning finite 
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automata without a reset mechanism is due to llivest and Scbapire [801 , 
who also study learning algorithms using an alternative representation 
for finite automata based on a quantity called the diversity [79} . A recent 
paper of Freund et aI. [37] gives algorithms for learning finite automata 
on the basis of a single long walk in an average-case setting. 

There is actually a huge literature on finite automata learning prob­
lems that predates the computational learning theory work. While there 
was less explicit emphasis in this previous work on efficiency consider­
ations, there are still many efficient algorithms and other fundamental 
results in the older literature. It is far too large to survey here, but the 
book of Trakhtenbrot and Barzdin' [901 provides a thorough investiga­
tion. 
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Appendix: Some Tools for 
Probabilistic Analysis 

In this brief appendix, we state some fundamental results from probabil­
ity theory that we invoke repeatedly in our study. 

9.1 The Union Bound 

Perhaps the most basic fact we will need is what we shall call the union 
bound. It simply states that for any probability space and for any two 
events A and B over that space, Pr[A U BJ :::; Pr{A] + Pr{B]. 

9.2 Markov's Inequality 

Markov's inequality provides a coarse bound on the probability that a 
random variable deviates from it expected value: 

Theorem 9.1 (Markov's Inequality) Let X be any nonnegative random 
variable with expected value p,. Then Pr[x � kp,l $ 1/ k. 
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9.3 Chernoff Bounds 

Let Xl, . . .  , Xm denote the outcomes of m independent Bernoulli trials 
(coin flips) , with Pr(Xi = 1] = p and Pr[Xi = OJ = 1 - p. Let S = 
Xl + . . .  + Xm be the number of heads in the m coin flips. Then E[S] = 

E[Xd + . . .  + E[XmJ = pm. The Chernoff bounds given below state 
that the probability that S deviates from its mean pm by an amount l 
decreases exponentially in l: 

Theorem 9.2 Let Xl, . . .  , Xm he a sequence 0/ m independent Bernoulli 
trials, each with probability of success E[Xi] = p. Let S = Xl + . . ·+Xm be 
a random variable indicating the total number of successes, so E[S] = pm. 
Then for 0 ::; , ::; 1, the following bounds hold: 

• (Additive Form) 

and 

• (Multiplicative Form) 

Pr{S > (1 + ,,),)pmJ :s; e-mrN3 

and 

The Additive Form of the bound is usually credited to Hoeffding and 
the Multiplicative Form to Chernoff; in the computer science literature, 
both forms are often referred to by the name Chernoff hounds. 

The multiplicative form of the Chernoff bound can be restated in 
terms of the standard deviation g of the random variable S as follows: 
PrflS - E[SlI � kg] ::; 2ek2/6• To see this, first note that we have 
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(1 = Vmp(1- p) � Vpm/2. Therefore k(1 � k4pm/2 = k(V2/pm)pm. 
Substituting in the multiplicative form of the hernoff bound with 'Y = 

kV2/pm gives the above bound. 

It is sometimes convenient to consider the observed success probability 

p rather than the actual number of successes Sj p is simply 8/m. In this 
light, Theorem 9.2 tells us how rapidly the estimate p converges to p as a 
function of m. For instance, in the additive form, simply divide each side 
of the inequality inside the Pr[·) by m and we see that the probability 
that the estimate p exceeds p by more than 'Y is at most e-2m-y2. 

Our most common application of the Chernoff bounds will be to pro­
vide an upper bound on the number of trials m required to ensure that 
the estimate p is "close" to the true value p with high confidence. Es­
pecially important is the case where p is small. In this case, by "close" 
we will mean that p be within a multiplicative factor of 2 of p, that is, 
p/2 :5 p :5 2p. Let m(p, 6) be the number of trials required to ensure that 
p is within a multiplicative factor of 2 of p with confidence at least 1- 6. 
Setting 'Y = 1 in the first Multiplicative Form bound of Theorem 9.2, we 
obtain 

Pr[p > 2p) :5 e-mp/3• 
Setting'Y = 1/2 in the second Multiplicative Form bound of Theorem 9.2, 

we obtain 

Pr[p < p/2] :5 e-mp/8• 
Thus we may write 

Pr[(p > 2p) V (p < p/2)1 - Prfp > 2p) + Pr[p < p/2) 
:5 e-mp/3 + e-mp/8 
� 2e-mp/8• 

Solving 2e-mp/8 :5 6 gives that m(p, 6) � (S/p) In(2/6) suffices. The most 
important aspect of this bound is that the dependence on p is O(l/p). 

We can also bound the number of trials m required to ensure that the 
estimate p is within an additive factor of € of p (that is, p - f :5 p :5 p + €) 
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with confidence at least 1 - 6. This bound is conveniently derived from 
the additive form of the Chernoff bound, which implies that 

Prflp - pI � f) � 2e2nu2 

The right hand side is less than 6 for m = O«1/e2) In{1/6)). We will often 
apply Chernoff bounds in a rather informal manner to avoid tedious detail 
when it is clear that these details may be verified in a straightforward 
way. 
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