

An Introduction to
Computational Learning Theory

Copyrighted Material

An Introduction to
Computational Learning Theory

Michael J. Kearns

Umesh V. Vazirani

The MIT Press

Cambridge, Massachusetts

London, England

Copyrighted Material

@1994 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any
form by any electronic or mechanical means (including photocopying,
recording, or information storage and retrieval) without permission in
writing from the publisher.

This book was typeset by the authors and was printed and bound in
the United States of America.

Library of Congress Cataloging-in-Publication Data

Kearns, Michael J.
An introduction to computational learning theory / Michael J.

Kearns, Umesh V. Vazira.ni.

p. cm.
Includes bibHographical references and index.
ISDN 0-262-11193-4
1. Machine learning. 2. Artificial intelligence. 3. Algorithms.

4. Neura.l networks. I. Vaziral1i, Umesh Virkuma.r. II. Title.
Q325.5.K44 1994
006.3-dc20 94-16588

CIP

109876

Copyrighted Material

Contents

Preface xi

1 The Probably Approximately Correct Learning Model 1

1.1 A Rectangle Learning Game 1

1.2 A General Model 6

1 .2 . 1 Definition of the PAC Model 7

1.2.2 Representation Size and Instance Dimension 12

1.3 Learning Boolean Conjunctions 16

1.4 Intractability of Learning 3-Term DNF Formulae 18

1.5 Using 3-CNF Formulae to A void Intractability 22

1.6 Exercises 26

1.7 Bibliographic Notes 28

2 Occam '8 Razor 31

2.1 Occam Learning and Succinctness 33

Copyrighted Material

vi Contents

2.2 Improving the Sample Size for Learning Conjunctions 37

2.3 Learning Conjunctions with Few Relevant Variables 38

2.4 Learning Decision Lists 42

2.5 Exercises 44

2.6 Bibliographic Notes 46

3 The Vapnik-Chervonenkis Dimension 49

3.1 When Can Infinite Classes Be Learned with a Finite Sample? 49

3.2 The Vapnik-Chervonenkis Dimension 50

3.3 Examples of the VC Dimension 5 1

3.4 A Polynomial Bound on l11c(8)1 54

3.5 A Polynomial Bound on the Sample Size for PAC Learning 57

3.5.1 The Importance of f-Nets 57

3.5.2 A Small f-Net from Random Sampling 59

3.6 Sample Size Lower Bounds 62

3.7 An Application to Neural Networks 64

3.8 Exercises 67

3.9 Bibliographic Notes 70

4 Weak and Strong Learning 13

4.1 A Relaxed Definition of Learning? 73

4.2 Boosting the Confidence 76

Copyrighted Material

Contents vii

4.3 Boosting the Accuracy 78

4.3.1 A Modest Accuracy Boosting Procedure 79

4.3.2 Error Analysis for the Modest Procedure 81

4.3.3 A Recursive Accuracy Boosting Algorithm 85

4.3.4 Bounding the Depth of the Recursion 88

4.3.5 Analysis of Filtering Efficiency 89

4.3.6 Finishing Up 96

4.4 Exercises 101

4.5 Bibliographic Notes 102

5 Learning in the Presence of Noise 103

5.1 The Classification Noise Model 104

5.2 An Algorithm for Learning Conjunctions from Statistics 106

5.3 The Statistical Query Learning Model 108

5.4 Simulating Statistical Queries in the Presence of Noise 111

5.4.1 A Nice Decomposition of Px. 112

5.4.2 Solving for an Estimate of Px. 114

5.4.3 Guessing and Verifying the Noise Rate 115

5.4.4 Description of the Simulation Algorithm 117

5.5 Exercises 119

5.6 Bibliographic Notes 121

Copyrighted Material

viii Contents

6 Inherent Unpredictability 123

6.1 Representation Dependent and Independent Hardness 123

6.2 The Discrete Cube Root Problem 124

6.2.1 The Difficulty of Discrete Cube Roots 126

6.2.2 Discrete Cube Roots as a Learning Problem 128

6.3 Small Boolean Circuits Are Inherently Unpredictable 131

6.4 Reducing the Depth of Inherently Unpredictable Circuits 133

6.4.1 Expanding the Input 135

6.5 A General Method and Its Application to Neural Networks 139

6.6 Exercises 140

6.7 Bibliographic Notes 141

7 Reducibility in PAC Learning 143

7.1 Reducing DNF to Monotone DNF 144

7.2 A General Method for Reducibility 147

7.3 Reducing Boolean Formulae to Finite Automata 149

7.4 Exercises 153

7.5 Bibliographic Notes 154

8 Learning Finite Automata by Experimentation 155

8.1 Active and Passive Learning 155

8.2 Exact Learning Using Queries 158

Copyrighted Material

Contents ix

8.3 Exact Learning of Finite Automata 160

8.3.1 Access Strings and Distinguishing Strings 160

8.3.2 An Efficiently Computable State Partition 162

8.3.3 The Tentative Hypothesis it 164

8.3.4 Using a Counterexample 166

8.3.5 The Algorithm for Learning Finite Automata 169

8.3.6 Running Time Analysis 171

8.4 Learning without a Reset 174

8.4.1 Using a Homing Sequence to Learn 176

8.4.2 Building a Homing Sequence Using Oversized Gen-
eralized Classification Trees 178

8.4.3 The No-Reset Algorithm 181

8.4.4 Making Sure L(1 Builds Generalized Classification
Trees 182

8.5 Exercises 185

8.6 Bibliographic Notes 186

9 Appendix: Some Tools for Probabilistic Analysis 189

9.1 The Union Bound 189

9.2 Markov's Inequality 189

9.3 Chernoff Bounds 190

Copyrighted Material

x

Bibliography

Index

Copyrighted Material

Contents

193

205

Preface

In the Fall term of 1990, we jointly taught a graduate seminar in com­
putational learning theory in the computer science department of the
University of California at Berkeley. The material that is presented here
has its origins in that course, both in content and exposition. Rather
than attempt to give an exhaustive overview of this rapidly expanding
and changing area of research, we have tried to carefully select fundamen­
tal topics that demonstrate important principles that may be applicable
in a wider setting than the one examined here. In the technical sec­
tions, we have tried to emphasize intuition whenever possible, while still
providing precise arguments.

The book is intended for researchers and students in artificial intelli­
gence, neural networks, theoretical computer science and statistics, and

anyone else interested in mathematical models of learning. It is appro­
priate for use as the central text in a specialized seminar course, or as
a supplemental text in a broader course that perhaps also studies the
viewpoints taken by artificial intelligence and neural networks. While
Chapter 1 lays a common foundation for all the subsequent material, the
later chapters are essentially self-contained and may be read selectively
and in any order. Exercises are provided at the end of each chapter.

Some brief comments on the expected background of the reader are
appropriate here. Familiarity with some basic tools of the formal analysis
of algorithms is necessary, as is familiarity with only the most elemen­
tary notions of complexity theory, such as NP-completeness. For the

Copyrighted Material

xii Preface

reader unfamiliar with these topics, the books of Cormen, Leiserson and
llivest [27], Garey and Johnson [38] and Aho, Hopcroft and Ullman (2)
provide classic background reading. Some background in probability the­
ory and statistics is desirable but not necessary. In an Appendix in Chap­
ter 9 we have gathered in one place the simple tools of probability theory
that we will invoke repeatedly throughout our study.

We are deeply indebted to many colleagues for the advice , feedback
and support they gave to us during the writing of this book. We are
especially grateful to Ron llivest of M.I.T. for using preliminary versions
of the book for two years as a text in his machine learning course. The
comments that resulted from this course were invaluable, and we thank
Jay Alsam of M.LT. for improving several derivations.

We give warm thanks to Dana Angluin of Yale for a detailed critique of

a preliminary version . We incorporated practically all of her suggestions ,
and they greatly improved the presentation. We are very grateful to Les

Valiant of Harvard for his many comments and continuing support of the

project.

For many suggested improvements and discussions of the material,
we thank Scott Decatur of Harvard, John Denker of Bell Labs, Sally

Goldman of Washington University, David Haussler of U.C. Santa Cruz,
Esther Levin of Bell Labs, Marina Meila of M.I. T., Fernando Pereira of
Bell Labs, Stuart Russell of V.C. Berkeley, Rob Schapire of Bell Labs,

Donna Slonim of M.I.T., and Manfred Warmuth of U.C. Santa Cruz.
Thanks to Danuta Sowinska-Khan and the Art Department of Bell Labs
for their preparation of the figures.

We give warm thanks to Terry Ehling of The MIT Press for bringing
this project to fruition, and for her enthusiastic support from beginning
to end.

Copyrighted Material

An Introduction to
Computational Learning Theory

Copyrighted Material

1

The Probably Approximately
Correct Learning Model

1.1 A Rectangle Learning Game

Consider a simple one-player learning game. The object of the game is to
learn an unknown axis-aligned rectangle R - that is, a rectangle in the
Euclidean plane �2 whose sides are parallel with the coordinate axes. We
shall call R the target rectangle. The player receives information about
R only through the following process: every so often, a random point p
is chosen in the plane according to some fixed probability distribution V.
The player is given the point p together with a label indicating whether p
is contained in R (a positive example) or not contained in R (a negative
example). Figure 1.1 shows the unknown rectangular region R along with
a sample of positive and negative examples.

The goal of the player is to use as few examples as possible, and as
little computation as possible, to pick a hypothesis rectangle R' which
is a close approximation to R. Informally, the player's knowledge of R
is tested by picking a new point at random from the same probability
distribution V, and checking whether the player can correctly decide
whether the point falls inside or outside of R. Formally, we measure the

Copyrighted Material

2 Chapter 1

y
e-

e- e+ e-

e+

R

x
e-

Figure 1.1: The target rectangle R in the plane along with a sample of
positive and negative examples.

error of R' as the probability that a randomly chosen point from V falls
in the region RAR', where RAR' = (R - R') u (R' - R).

To motivate the rectangle learning game, consider a slightly more
concrete scenario that can be expressed as an instance of the game. Sup­
pose that we wanted to learn the concept of "men of medium build".
Assume that a man is of medium build if his height and weight both lie
in some prescribed ranges - for instance, if his height is between five
feet six inches and six feet, and his weight is between 150 pounds and
200 pounds. Then each man's build can be represented by a point in
the Euclidean plane, and the concept of medium build is represented by
an axis-aligned rectangular region of the plane. Thus, during an initial
training phase, the learner is told for each new man he meets whether
that man is of medium build or not. Over this period, the learner must
form some model or hypothesis of the concept of medium build.

Now assume that the learner encounters every man in his city with

Copyrighted Material

Probably Approximately Correct Learning 3

equal probability. Even under this assumption, the corresponding points
in the plane may not be uniformly distributed (since not all heights and
weights are equally likely, and height and weight may be highly dependent
quantities), but will instead obey some fixed distribution V which may be
quite difficult to characterize. For this reason, in our learning game, we
allow the distribution V to be arbitrary, but we assume that it is fixed,
and that each example is drawn independently from this distribution.
(Note that once we allow V to be arbitrary, we no longer need to assume
that the learner encounters every man in his city with equal probability.)
To evaluate the hypothesis of the learner, we are simply evaluating its
success in classifying the build of men in future encounters, still assuming
that men are encountered according to the same probability distribution
as during the training phase.

There is a simple and efficient strategy for the player of the rectangle
learning game. The strategy is to request a "sufficiently large" number
m of random examples, then choose as the hypothesis the axis-aligned
rectangle R' which gives the tightest fit to the positive examples (that
is, that rectangle with the smallest area that includes all of the positive
examples and none olthe negative examples) . If no positive examples are
drawn, then R' = 0. Figure 1.2 shows the tightest-fit rectangle defined
by the sample shown in Figure 1.1.

We will now show that for any target rectangle R and any distribution
V, and for any small values f and 5 (0 < f, 5 � 1/2), for a suitably chosen
value of the sample size m we can assert that with probability at least
1- 6, the tightest-fit rectangle has error at most f with respect to R and
V.

First observe that the tightest-fit rectangle R' is always contained in
the target rectangle R (that is, R' � R and so RAR' = R - R'). We can
express the difference R - R' as the union of four rectangular strips. For
instance, the topmost of these strips, which is shaded and denoted T' in
Figure 1.3, is the region above the upper boundary of R' extended to the
left and right, but below the upper boundary of R. Note that there is
some overlap between these four rectangular strips at the corners. Now

Copyrighted Material

4 Cha.pter 1

y
e-

+

e- e+ e-+

1.-______ ... +
R'

R

x e-

Figure 1.2: The tightest-fit rectangle R' defined by the sample.

if we can guarantee that the weight under V of each strip (that is, the
probability with respect to V of falling in the strip) is at most £/4, then
we can conclude that the error of R' is at most 4«(./4) = E. (Here we have
erred on the side of pessimism by counting each overlap region twice.)

Let us analyze the weight of the top strip T'. Define T to be the
rectangular strip along the inside top of R which encloses exactly weight
£/4 under V (thus, we sweep the top edge of R downwards until we have
swept out weight t/4; see Figure 1.3). Clearly, T' has weight exceeding
t/4 under V if and only if T' includes T (which it does not in Figure
1.3). Furthermore, T' includes T if and only if no point in T appears in
the sample S - since if S does contain a point PET, this point has
a positive label since it is contained in R, and then by definition of the
tightest fit, the hypothesis rectangle R! must extend upwards into T to
cover p.

By the definition of T, the probability that a single draw from the
distribution V misses the region T is exactly 1 - £/4. Therefore the

Copyrighted Material

Probably Approximately Correct Learning 5

y
.-

}T'

.- + .-

�-------..+
R'

R

x .-

Figure 1.3: Analysis of the error contributed by the top shaded strip T'.
The strip T has weight exactly e/4 under 1).

probability that m independent draws from 1) all miss the region T is
exactly (1 - f/4)m. Here we are using the fact that the probability of a
conjunction of independent events is simply the product of the probabili­

ties of the individual events. The same analysis holds for the other three
rectangular regions of R - R', so by the union bound, the probability
that any of the four strips of R - R' has weight greater than e/4 is at
most 4(1 - f./4)m. By the union bound, we mean the fact that if A and
B are any two events (that is, subsets of a probability space) , then

Pr[A U BJ :5 Pr[A1 + Pr(B).

Thus, the probability that one of the four error strips has weight exceed­
ing e/4 is at most four times the probability that a fixed error strip has
weight exceeding e/4.

Provided that we choose m to satisfy 4(1 - f/4)m :5 c, then with
probability 1 - c over the m random examples, the weight of the error

Copyrighted Material

6 Chapter 1

region R - R' will be bounded bye, as claimed . Using the inequality

(which we shall appeal to frequently in our studies) we see that any value
of m satisfying 4e-Em/4 $; � also satisfies the previous condition. Dividing
by 4 and taking natural logarithms of both sid,es gives -em/4 $; In(�/4),
or equivalently m;::: (4/e)ln(4/�).

In summary, provided our tightest�fit algorithm takes a sample of at
least (4/e) In(4/6) examples to form its hypothesis rectangle R', we can
assert that with probability at least 1-�, R' will misclassify a new point

(drawn according to the same distribution from which the sample was
chosen) with probability at most e.

A few brief comments are appropriate. First, note that the analysis

really does hold for any fixed probability distribution. We only needed
the independence of successive points to obtain our bound . Second , the
sample size bound behaves as we might expect, in that as we increase
our demands on the hypothesis rectangle - that is, as we ask for greater
accuracy by decreasing e or greater confidence by decreasing 6 - our
algorithm requires more examples to meet those demands. Finally, the
algorithm we have analyzed is efficient: the required sample size is a
slowly growing function of l/e and l/� (linear and logarithmic, respec­
tively) , and once the sample is given, the computation of the tightest-fit
hypothesis can be carried out rapidly.

1.2 A General Model

In this section, we introduce the model of learning that will be the central
object for most of our study: the Probably Approximately Correct
or PAC model of learning. There are a number of features of the rectan�
gle learning game and its solution that are essential to the PAC model ,
and bear highlighting before we dive into the general definitions .

Copyrighted Material

Probably Approximately Correct Learning 7

• The goal of the learning game is to learn an unknown target set, but
the target set is not arbitrary. Instead, there is a known and rather
strong constraint on the target set - it is a rectangle in the plane
whose sides are parallel to the axes.

• Learning occurs in a probabilistic setting. Examples of the target
rectangle are drawn randomly in the plane according to a fixed
probability distribution which is unknown and unconstrained.

• The hypothesis of the learner is evaluated relative to the same prob­
abilistic setting in which the training takes place, and we allow hy­
potheses that are only approximations to the target. The tightest­
fit strategy might not find the target rectangle exactly, but will find
one with only a small probability of disagreement with the target.

• We are interested in a solution that is efficient: not many examples
are required to obtain small error with high confidence, and we can
process those examples rapidly.

We wish to state a general model of learning from examples that
shares and formalizes the properties we have listed. We begin by devel­
oping and motivating the necessary definitions.

1.2.1 Definition of the PAC Model

Let X be a set called the instance space. We think of X as being a
set of encodings of instances or objects in the learner's world. In our
rectangle game, the instance space X was simply the set of all points in
the Euclidean plane �2. As another example, in a character recognition
application, the instance space might consist of all 2-dimensional arrays
of binary pixels of a given width and height.

A concept over X is just a subset c � X of the instance space. In
the rectangle game, the concepts were axis-aligned rectangular regions.

Copyrighted Material

8 Chapter 1

Continuing our character recognition example, a natural concept might
be the set of all pixel arrays that are representations of the letter "An
(assuming that every pixel array either represents an "A", or fails to
represent an "A").

A concept can thus be thought of as the set of all instances that
positive ly exemplify some simple or interesting rule. We can equivalently
define a concept to be a boolean mapping c: X -+ {O, I}, with c(x) = 1
indicating that x is a positive example of c and c(x) = 0 indicating that
x is a negative example. For this reason, we also sometimes call X the
input space.

A concept class C over X is a collection of concepts over X. In the
rectangle game, the target rectangle was chosen from the class C of all
axis-aligned rectangles . Ideally, we are interested in concept classes that
are sufficiently expressive for fairly general knowledge representation. As
an example in a logic-based setting, suppose we have a set Xl," " xn
of n boolean variables, and let X be the set of all assignments to these
variables (that is, X = {o,l}n). Suppose we consider concepts cover
{o,l}n whose positive examples are exactly the satisfying assignments
of some boolean formulae Ie over Xl, . • • ,Xn. Then we might define an
interesting concept class C by considering only those boolean formulae Ie
that meet some natural syntactic constraints, such as being in disjunctive
normal form (DNF) and having a small number of terms.

In our model, a learning algorithm will have access to positive and
negative examples of an unknown target concept c, chosen from a
known concept class C. The learning algorithm will be judged by its
ability to identify a hypothesis concept that can accurately classify in­
stances as positive or negative examples of c. Before specifying the learn­
ing protocol further, it is important to note that in our model, learning
algorithms "know" the target class C, in the sense that the designer of the
learning algorithm is guaranteed that the target concept will be chosen
from C (but must design the algorithm to work for any c E C).

Let 'D be any fixed probability distribution over the instance space X.

Copyrighted Material

Probably Approximately Correct Learning 9

x

Figure 1.4: Venn diagram of two concepts, with symmetric difference
shaded.

We will refer to V as the target distribution. If h is any concept over
X, then the distribution V provides a natural measure of error between
h and the target concept c: namely, we define

error(h) = Pr:tEV[C{X) :I hex)].

Here we regard the concepts c and h as boolean functions, and we have
introduced a notational convention that we shall use frequently: the sub­
script x E V to Pr[·) indicates that the probability is taken with respect
to the random draw of x according to V. Note that error(h) has an im­
plicit dependence on c and V that we will usually omit for brevity when
no confusion will result .

A useful alternative way to view error(h) is represented in Figure 1.4.
Here we view the concepts c and h as sets rather than as functions, and
we have drawn an abstract Venn diagram showing the positive examples
of c and h, which of course lie within the entire instance space X. Then
error{h) is simply the probability with respect to V that an instance is
drawn falling in the shaded region.

Let EX(c, V) be a procedure (we will sometimes call it an oracle) that

Copyrighted Material

10 Chapter 1

runs in unit time, and on each call returns a labeled example (x, c(x»,
where x is drawn randomly and independently according to 'D. A learning
algorithm will have access to this oracle when learning the target concept
c E C. Ideally, the learning algorithm will satisfy three properties:

• The number of calls to EX (c, 'D) is small, in the sense that it is
bounded by a fixed polynomial in some parameters to be specified
shortly.

• The amount of computation performed is small.

• The algorithm outputs a hypothesis concept h such that error (h)
is small.

Note that the number of calls made by a learning algorithm to EX(c, 'D)
is bounded by the running time of the learning algorithm.

We are now ready to give the definition of Probably Approximately
Correct learning. We designate it as our preliminary definition, since we
shall soon make some important additions to it.

Definition 1 (The PAC Model, Preliminary Definition) Let C be a con­
cept class over X. We say that C is PAC learnable if there exists an
algorithm L with the following property: for every concept c E C, for ev­
ery distribution V on X, and for all 0 < E < 1/2 and 0 < D < 1/2, if L is
given access to EX(c, 'D) and inputs f and 6, then with probability at least
1- D, L outputs a hypothesis concept h E C satisfying error (h) � E. This
probability is taken over the random examples drawn by calls to EX(c, 'D),
and any internal randomization of L.

1/ L runs in time polynomial in 1/ E and 1/ S, we say that C is effi­
ciently PAC learnable. We will sometimes refer to the input E as the
error parameter, and the input 6 as the confidence parameter.

Copyrighted Material

Probably Approximately Correct Learning 11

The hypothesis h E C of the PAC learning algorithm is thus "ap­
proximately correct" with high probability, hence the name Probably
Approximately Correct learning.

Two important comments regarding the PAC learning model are now
in order. First, the error and confidence parameters E and 6 control the
two types of failure to which a learning algorithm in the PAC model
is inevitably susceptible. The error parameter E is necessary since, for
example, there may be only a negligible probability that a small random
sample will distinguish between two competing hypotheses that differ
on only one improbable point in the instance space. The confidence
parameter 6 is necessary since the learning algorithm may occasionally
be extremely unlucky, and draw a terribly "unrepresentative" sample of
the target concept - for instance , a sample consisting only of repeated
draws of the same instance despite the fact that the distribution is spread
evenly over all instances. The best we can hope for is that the probability
of both types of failure can be made arbitrarily small at a modest cost.

Second, notice that we demand that a PAC learning algorithm per­
form well with respect to any distribution V. This strong requirement
is moderated by the fact that we only evaluate the hypothesis of the
learning algorithm with respect to the same distribution V. For exam­
ple, in the rectangle learning game discussed earlier, this means that if
the distribution gives negligible weight to some parts of the Euclidean
plane, then the learner does not have to be very careful in learning the
boundary of the target rectangle in that region .

Definition 1, then , is our tentative definition of PAC learning, which
will be the model forming the bulk of our studies. As previously men­
tioned, we shall make a couple of important refinements to this definition

before we begin the serious investigation. Before doing so, however, we
pause to note that we have already proven our first result in this model.

Recall that our algorithm for the rectangle learning game required the
ability to store real numbers and perform basic operations on them, such
as comparisons. In the following theorem, and throughout our study,
whenever necessary we will assume a model of computation that allows

Copyrighted Material

12 Chapter 1

storage of a single real number in a single memory location, and that
charges one unit of computation time for a basic arithmetic operation
(addition , multiplication or division) on two real numbers .

Theorem 1.1 The concept class 01 axis-aligned rectangles over the Eu­
clidean plane �2 is efficiently PA C learnable.

1.2.2 Representation Size and Instance
Dimension

An important issue was swept under the rug in our definition of PAC
learning. This is the fundamental distinction between a concept (which
is just a set or a boolean function) and its representation (which is a
symbolic encoding of that set or function). Consider a class of concepts
defined by the satisfying assignments of boolean formulae. A concept
from this class - that is, the set of satisfying assignments for some
boolean formula I - can be represented by the formula I, by a truth
table, or by another boolean formula I' that is logically equivalent to I.
Although all of these are representations of the same underlying concept,
they may differ radically in representational size.

For instance, it is not hard to prove that for all n, the boolean parity
function l(xlI ... , xn) = Xl Ea··· Ea Xn (where E9 denotes the exclusive-or
operation) can be computed by a circuit of 1\, V and., gates whose size is
bounded by a fixed polynomial in n, but to represent this same function
as a disjunctive normal form (abbreviated DNF) formula requires size ex­
ponential in n. As another example, in high-dimensional Euclidean space
!Rn, we may choose to represent a convex polytope either by specifying
its vertices, or by specifying linear equations for its faces, and these two
representation schemes can differ exponentially in size.

In each of these examples, we are fixing some representation scheme
- that is, a precise method for encoding concepts - and then examining

Copyrighted Material

Probably Approximately Correct Learning 13

the size of the encoding for various concepts. Other natural representa­
tion schemes that the reader may be familiar with include decision trees
and neural networks. As with boolean formulae, in these representation
schemes there is an obvious mapping from the representation (a decision
tree or a neural network) to the set or boolean function that is being
represented. There is also a natural measure of the size of a given repre­
sentation in the scheme (for instance, the number of nodes in the decision
tree or the number of weights in a neural network).

Since a PAC learning algorithm only sees examples of the functional
(that is, input-output) behavior of the target concept, it has absolutely
no information about which, if any, of the many possible representations
is actually being used to represent the target concept in reality. However,
it matters greatly which representation the algorithm chooses for its hy­
pothesis, since the time to write this representation down is obviously a
lower bound on the running time of the algorithm.

Formally speaking, a representation scheme for a concept class
C is a function 'R : E* C, where E is a finite alphabet of symbols.
(In cases where we need to use real numbers to represent concepts, such
as axis-aligned rectangles, we allow 'R : (E U lR)* C.) We call any
string u E E* such that n(u) = c a representation of c (under n).
Note that there may be many representations of a concept c under the
representation scheme n.

To capture the notion of representation size, we assume that associ­
ated with 'R there is a mapping size : E* --. N that assigns a natural
number size(h) to each representation h E E*. Note that we allow size(·)
to be any such mappingj results obtained under a particular definition
for size(·) will be meaningful only if this definition is natural. Perhaps
the most realistic setting, however, is that in which E = {O, I} (thus,
we have a binary encoding of concepts) and we define size(h) to be the
length of h in bits. (For representations using real numbers, it is often
natural to charge one unit of size for each real number.) Although we
will use other definitions of size when binary representations are inconve­
nient, our definition of size (.) will always be within a polynomial factor

Copyrighted Material

14 Cha.pter 1

of the binary string length definition. For example, we can define the size
of a decision tree to be the number of nodes in the tree, which is always
within a polynomial factor of the length of the binary string needed to
encode the tree in any reasonable encoding method.

So far our notion of size is applicable only to representations (that is,
to strings h E E*). We would like to extend this definition to measure
the size of a target concept c E C. Since the learning algorithm has access
only to the input-output behavior of c, in the worst case it must assume
that the simplest possible mechanism is generating this behavior. Thus,
we define size(c) to be size(c) = min'R(u}=c{size(o)} . In other words,
size(c) is the size of the smallest representation of the concept c in the
underlying representation scheme 'R.. Intuitively, the larger size(c) is, the
more "complex" the concept c is with respect to the chosen representation
scheme. Thus it is natural to modify our notion of learning to allow more
computation time for learning more complex concepts, and we shall do
this shortly.

For a concept class C, we shall refer to the representation class C
to indicate that we have in mind some fixed representation scheme 'R. for
C. In fact, we will usually define the concept classes we study by their
representation scheme. For instance, we will shortly examine the concept
class in which each concept is the set of satisfying assignments of some
conjunction of boolean variables. Thus, each concept can be represented
by a list of the variables in the associated conjunction.

It is often convenient to also introduce some notion of size or dimen­
sion for the elements of the instance space. For example, if the instance
space Xn is the n-dimensional Euclidean space inn, then each example
is specified by n real numbers, and so it is natural to say that the size
of the examples is n. The same comments apply to the instance space
Xn = {o, 1}n. It turns out that these are the only two instance spaces
that we will ever need to consider in our studies, and in the spirit of
asymptotic analysis we will want to regard the instance space dimension
n as a parameter of the learning problem (for example, to allow us to
study the problem of learning axis-aligned rectangles in �n in time poly-

Copyrighted Material

Probably Approximately Correct Learning 15

nomial in n) . Now if we let Cn be the class of concepts over Xn, and write
X = Un�lXn and C = Un�lCn' then X and C define an infinite family of
learning problems of increasing dimension.

To incorporate the notions of target concept size and instance space
dimension into our model , we make the following refined definition of
PAC learning:

Definition 2 (The PAC Model, Modified Definition) Let Cn be a rep­
resentation class over Xn (where Xn is either {o,l}n or n-dimensional
Euclidean space 3ln), and let X = Un�lXn and C = Un�lCn' The modi­
fied definition of PAC learning is the same as the preliminary definition
(Definition 1), except that now we allow the learning algorithm time poly­
nomial in n and size(c) (as well as l/E and 1/6 as before) when learning
a target concept c e Cn•

Since in our studies Xn will always be either {O, l}n or n-dimensional
Euclidean space, the value n is implicit in the instances returned by
EX(c, V). We assume that the learner is provided with the value size(c)
as an input. (However, see Exercise 1.5.)

We emphasize that while the target concept may have many possible
representations in the chosen scheme, we only allow the learning algo­
rithm time polynomial in the size of the smallest such representation.
This provides a worst-case guarantee over the possible representations of
c, and is consistent with the fact that the learning algorithm has no idea
which representation is being used for c, having only functional informa­
tion about c.

Finally, we note that for several concept classes the natural definition
of size (c) is already bounded by a polynomial in n, and thus we really
seek an algorithm running in time polynomial in just n. For instance, if
we look at the representation class of all DNF formulae with at most 3
terms, any such formula has length at most 3n, so polynomial dependence

Copyrighted Material

16 Chapter 1

on the size of the target formula is the same as polynomial dependence
on n.

1.3 Learning Boolean Conjunctions

We now give our second result in the PAC model, showing that con­

junctions of boolean literals are efficiently PAC learnable . Here the
instance space is Xn = {o,l}n. Each a E Xn is interpreted as an assign­
ment to the n boolean variables Xl! • . . , Xn, and we use the notation ai to
indicate the ith bit of a. Let the representation class Cn be the class of
all conjunctions of literals over Xl, • • • ,Xn (a literal is either a variable
Xi or its negation Xi)' Thus the conjunction Xl A X3 A X4 represents the
set {a E {O, I}n : al = 1, aa = 0, a4 = I}. It is natural to define the
size of a conjunction to be the number of literals in that conjunction.
Then clearly size(c) � 2n for any conjunction c E Cn. (We also note
that a standard binary encod ing of any conjunction c E en has length
O(n logn).) Thus for this problem, we seek an algorithm that runs in
time polynomial in n, 1/f. and 1/0.

Theorem 1.2 The representation class of conjunctions of boolean liter­
als is efficiently PA C learnable.

Proof: The algorithm we propose begins with the hypothesis conjunc-
tion

h = Xl A Xl A . • . A xn A xn•
Note that initially h has no satisfying assignments. The algorithm simply
ignores any negati ve examples returned by EX(c, V). Let (a, I) be a
positive example returned by EX(c, V) . In response to such a positive
example, our algorithm updates h as fol lows: for each i, if � = 0, we
delete Xi from h, and if ai = I, we delete Xi from h. Thus, our algorithm
deletes any literal that "contradicts" the positive data.

Copyrighted Material

Probably Approximately Correct Learning 17

For the analysis, note that the set of literals appearing in h at any
time always contains the set of literals appearing in the target concept
c. This is because we begin with h containing all literals, and a literal
is only deleted from h when it is set to 0 in a positive examplej such a
literal clearly cannot appear in c. The fact that the literals of h always
include those of c implies that h will never err on a negative example of
c (that is, h is more specific than c).

Thus, consider a literal z that occurs in h but not in c. Then z causes
h to err only on those positive examples of c in which z = OJ also note
that it is exactly such positive examples that would have caused our
algorithm to delete z from h. Let p(z) denote the total probability of
such instances under the distribution V, that is,

p(z) = PrOEV[c(a) = 1 A z is 0 in a].

Since every error of h can be "blamed" on at least one literal z of h, by
the union bound we have error (h) :$ EZEhP(Z). We say that a literal
is bad if p(z) � E/2n. If h contains no bad literals, then error(h) �
EZEhP(Z) :S 2n(E/2n) = E. We now upper bound the probability that a
bad literal will appear in h.

For any fixed bad literal z, the probability that this literal is not
deleted from h after m calls of our algorithm to EX (c, V) is at most
(1 - E/2n)m, because the probability the literal z is deleted by a single
call to EX(c,1) is p(z) (which is at least E/2n for a bad literal) . From
this we may conclude that the probability that there is some bad literal
that is not deleted from h after m calls is at most 2n(l- E/2n)m, where
we have used the union bound over the 2n possible literals.

Thus to complete our analysis we simply need to solve for the value
of m satisfying 2n(1 - E/2n)m � 6, where 1 - 6 is the desired confi­
dence. Using the inequality 1 - x � e-s, it suffices to pick m such that
2ne-mE/2n � 6, which yields m � (2n/E)(ln(2n) + In(1/6» .

Thus, if our algorithm takes at least this number of examples, then
with probability at least 1 - 6 the resulting conjunction h will have error

Copyrighted Material

18 Chapter 1

at most f with respect to c and V. Since the algorithm takes linear time to
process each example , the running time is bounded by mn, and hence is
bounded by a polynomial in n, l/f and l/b, as required. O(Theorem 1.2)

1.4 Intractability of Learning 3-Term
DNF Formulae

We next show that a slight generalization of the representation class of
boolean conjunctions results in an intractable PAC learning problem.
More precisely, we show that the class of disjunctions of three boolean
conjunctions (known as 3-term disjunctive normal form (DNF) for­
mulae) is not efficiently PAC learnable unless every problem in NP can
be efficiently solved in a worst-case sense by a randomized algorithm -
that is, unless for every language A in NP there is a randomized algo­
rithm taking as input any string 0 and a parameter 6 E [0, I), and that
with probability at least 1 - 6 correctly determines whether 0 E A in
time polynomial in the length of 0 and l/b. The probability here is
taken only with respect to the coin flips of the randomized algorithm. In
technical language, our hardness result for 3-term DNF is based on the
widely believed assumption that RP '# N P.

The representation class Cn of 3-term DNF formulae is the set of all
disjunctions Tl VT2 V T3, where each Tt is a conjunction of literals over the
boolean variables Xl," " Xn• We define the size of such a representation
to be sum of the number of literals appearing in each term (which is
always bounded by a fixed polynomial in the length of the bit string
needed to represent the 3-term DNF in a standard encoding) . Then
size(c) $ 6n for any concept C E Cn because there are at most 2n literals
in each of the three terms. Thus, an efficient learning algorithm for this

problem is required to run in time polynomial in n, l/f and 1/6.

Theorem 1.3 If RP '# NP, the representation class of 9-term DNF

Copyrighted Material

Probably Approximately Correct Learning 19

formulae is not efficiently PA C learnable.

Proof: The high-level idea of the proof is to reduce an NP-complete
language A (to be specified shortly) to the problem of PAC learning 3-
term DNF formulae. More precisely, the reduction will efficiently map
any string �, for which we wish to determine membership in A, to a
set So of labeled examples. The cardinality ISol will be bounded by a

polynomial in the string length I�I. We will show that given a PAC
learning algorithm L for 3-term DNF formulae, we can run Lon 80, in a
manner to be described, to determine (with high probability) if � belongs
to A or not .

The key property we desire of the mapping of Q to So. is that � E A
if and only if 80 is consistent with some concept c E C. The notion
of a concept being consistent with a sample will recur frequently in our
studies.

Definition 3 Let S = {(Xl! b1), ... , (xm, bm)} be any labeled set oj in­
stances, where each Xi E X and each bi E {O, 1}. Let c be a concept
over X. Then we say that c is consistent with 8 (or equivalently, 8 is
consistent with c) if for aliI::; i ::; m, C(Xi) = bi.

Before detailing our choice for the NP-complete language A and the
mapping of � to So, just suppose for now that we have managed to
arrange things so that a E A if and only if 80 is consistent with some
concept in C. We now show how a PAC learning algorithm L for C can
be used to determine if there exists a concept in C that is consistent with
80 (and thus whether a E A) with high probability. This is achieved by
the following general method: we set the error parameter f. = 1/(2180.1)
(where ISol denotes the number of labeled pairs in So), and answer each
request of L for a random labeled example by choosing a pair (Xi, bi)
uniformly at random from So. Note that if there is a concept c E C
consistent with 80, then this simulation emulates the oracle EX(c, V),
where V is uniform over the (multiset of) instances appearing in 80, In

Copyrighted Material

20 Cha.pter 1

this c ase , by our choice of e, we have g uaranteed that any h ypothesis h
with error less that e must in fact be consistent with So, for if h errs on
even a single example in SOl its error with respect to c and 1) is at least
I/ 1So l = 2e > E. On the other hand , if the re is no concept in C consistent
with So , L cannot possibly find one . Thus we can simply check the
output of L for consistency with So to determine with confidence 1 - 6
if there exists a consistent concept in C.

Combined with the assumed mapping of a string a to a set So, we
thus can determine (with probability at least 1 - 6) the membership of
a in A by simulating the PAC learning algorithm on Sa. This general
method of using a PAC learning algorithm to determine the existence of
a concept that is consistent with a labeled sample is quite common in
the computational learning theory literature, and the main effort comes
in choosing the right NP-complete language A, and finding the desired
mapping from instances a of A to sets of labeled examples Sa, which we
now undertake.

To demonstrate the intractability of learning 3-term DNF formulae,
the NP-complete language A that we shall use is Graph 3-Coloring:

The Graph 3-Coloring Problem. Given as input an undirected graph
G = (V, E) with vertex set V = { I , . . . , n} and edge set E � V x V,
determine if there is an assignment of a color to each element of V such
that at most 3 different colors are used , and for every edge (i, j) E E,
vertex i and vertex j are assigned different colors.

We now describe the desired mapping from an instance G = (V, E)
of Graph 3-Coloring to a set Sa of labeled examples. Sa will consist of a
set Sl; of positively labeled examples and a set Sa of negatively labeled
examples , so Sa = Sl; U Sa . For each 1 S i S n, Sl; wi l l contain the
labeled example (v(i) , I) , where v(i) E {O, I }" is the vector with a 0 in the
ith position and l 's everywhere else. These examples intuitively encode
the vertices of G. For each edge (i, j) E E, the set Sa will contain the
labeled example (e{i , j) , 0) , where e(i, j) E {O, l }" is the vector with O's
in the ith and jth positions , and l 's everywhere else. Figure 1 .5 shows

Copyrighted Material

Probably Approximately Correct Learning

B

Graph G

s + G
< 0 1 1 1 1 1 , 1 > < 0 0 1 1 1 1 , 0 >
< 1 0 1 1 1 1 , 1 > < 0 1 1 0 1 1 , 0 >
< 1 1 0 1 1 1 , 1 > < 0 1 1 1 0 1 , 0 >
< 1 1 1 0 1 1 , 1 > < 1 0 0 1 1 1 , 0 >

< 1 1 1 1 0 1 , 1 > < 1 0 1 1 1 O. 0 >
< 1 1 1 1 1 0, 1 > < 1 1 0 1 1 0, 0 >

< 1 1 1 1 0 0, 0 >

T R = X2 1\ X3 1\ X4 1\ Xs

T B = Xl 1\ X3 1\ Xs
Tv = Xl 1\ x2 1\ x4 1\ Xs 1\ xa

21

Figure 1 .5: A graph G with a legal 9.coloring, the associated sample, and
the terms defined by the coloring.

an example of a graph G along with the resulting sets S/i and Sa . The
figure also shows a lega1 3-coloring of G, with R, B and Y denoting red,
blue and yellow.

We now argue that G is 3-colorable if and only if Sa is consistent
with some 3-term DNF formula. First, suppose G is 3-colorable and fix a
3-coloring of G. Let R be the set of all vertices colored red, and let T R be
the conjunction of all variables in Xl , . • . , Xn whose index does not appear
in R (see Figure 1 .5). Then for each i E R, v(i) must satisfy TR because
the variable Xi does not appear in TR• Furthermore, no e(i, j) E Sa can
satisfy TR because since both i and j cannot be colored red, one of Xi
and x; must appear in TR• We can define terms that are satisfied by
the non-blue and non-yellow v(i) in a similar fashion, with no negative
examples being accepted by any term.

For the other direction , suppose that the formula TR V TB V Ty is
consistent with Sa. Define a coloring of G as follows: the color of vertex i
is red if v(i) satisfies TR, blue if v(i) satisfies TB, and yellow if v(i) satisfies
Ty (we break ties arbitrarily if v{i) satisfies more than one term) . Since

Copyrighted Material

22 Cha.pter 1

the formula is consistent with Sa, every v(i) must satisfy some term, and
so every vertex must be assigned a color by this process. We now argue
that it is a legal 3-coloring. To see this, note that if i and j (i =F j) are
assigned the same color (say red) , then both v(i) and v(j) satisfy TR•
Since the ith bit of v(i) is 0 and the ith bit of v(j) is 1 , it follows that
neither Xi nor Xi can appear in TR• Since v(j) and e(i, j) differ only in
their ith bits, if v(j) satisfies TR then so does e(i, j), implying e(i, j) ¢ Sa
and hence (i, j) ¢ E. O(Theorem 1 .3)

Thus, we see that 3-term DNF formulae are not efficiently PAC learn­
able under the assumption that NP-complete problems cannot be solved
with high probability by a probabilistic polynomial-time algorithm (tech­
nically, under the assumption RP =F NP) . With some more elaborate
technical gymnastics, the same statement can in fact be made for 2-term
DNF formulae , and for k-term DNF formulae for any constant k � 2.

However, note that our reduction relied critically on our demand in
the definition of PAC learning that the learning algorithm output a hy­
pothesis from the same representation class from which the target for­
mula is drawn - we used each term of the hypothesis 3-term formula to
define a color class in the graph. In the next section we shall see that
this demand is in fact necessary for this intractability result, since its
removal permits an efficient learning algorithm for this same class. This
will motivate our final modification of the definition of PAC learning.

1 . 5 Using 3-CNF Formulae t o Avoid
Intractability

We conclude this chapter by showing that if we allow the learning algo­
rithm to output a more expressive hypothesis representation, then the
class of 3-term DNF formulae is efficiently PAC learnable. In combi­
nation with Theorem 1 .3, this motivates our final modification to the
definition of PAC learning.

Copyrighted Material

Probably Approximately Correct Learning 23

We can use the fact that for boolean algebra, V distributes over 1\
(that is, (u 1\ v) V (w 1\ x) = (u V w) 1\ (u V x) 1\ (v V w) 1\ (v V x) for
boolean variables u, v, w, x) to represent any 3-term D NF formula over
Xl , • • · , xn by an equivalent conjunctive normal form (CNF) formulae over
Xl, • • . , Xn in which each clause contains at most 3 literals (we will call
such formulae 3-CNF formulae) :

1\ (u V v V w) .

Here the conjunction is over all clauses choosing one literal from each
term.

We can reduce the problem of PAC learning 3-CNF formulae to the
problem of PAC learning conjunctions, for which we already have an
efficient algorithm. The high-level idea is as follows: given an oracle
for random examples of an unknown 3-CNF formula, there is a simple
and efficient method by which we can transform each positive or negative
example into a corresponding positive or negative example of an unknown
conjunction (over a larger set of variables) . We then give the transformed
examples to the learning algorithm for conjunctions that we have already
described in Section 1 .3. The hypothesis output by the learning algorithm
for conjunctions can then be transformed into a good hypothesis for the
unknown 3-CNF formula.

To describe the desired transformation of examples, we regard a 3-
CNF formula as a conjunction over a new and larger variable set. For
every triple of literals u, v, w over the original variable set Xb " " Xn t
the new variable set contains a variable Yu,v,w whose value is defined by
Yu,v,w = u V v V w. Note that when u = v = w, then Yu,1J,W = u, so all
of the original variables are present in the new set. Also, note that the
number of new variables Yu,1J,W is (2n)3 = O(n3) .

Thus for any assignment a E {O, l }n to the original variables X l , • . . , Xn ,
we can in time O(n3) compute the corresponding assignment a' to the
Dew variables {Yu.,v,w } ' Furthermore, it should be clear that any 3-CNF
formula c over Xl , • • • , Xn is equivalent to a simple conjunction c' over the

Copyrighted Material

24 Chapter 1

new variables (just replace any clause (u V v V w) by an occurrence of
the new variable Yu,v,w) . Thus, we can run our algorithm for conjunc­
tions from Section 1 .3, expanding each assignment to Xl , • • • , X" that is
a positive example of the unknown 3-CNF formula into an assignment
for the Yu,v,w , and giving this expanded assignment to the algorithm as a
positive example of an unknown conjunction over the Yu,tJ,w ' We can then
convert the resulting hypothesis conjunction h' over the Yu,v,w back to a
3-CNF h in the obvious way, by expanding an occurrence of the variable
Yu,v,w to the clause (u V v V w) .

Formally, we must argue that if c and V are the target 3-CNF for­
mula and distribution over {O, I }", and d and V' are the corresponding
conjunction over the Yu,tJ,w and induced distribution over assignments a'
to the Yu,v,w , then if h' has error less than f with respect to d and V', h
has error less than f with respect to c and V. This is most easily seen by
noting that our transformation of instances is one-to-one: if al is mapped
to a� and a2 is mapped to a� , then al :f:. a2 implies a� :f:. a� . Thus each
vector a' on which h' differs from d has a unique preimage a on which h
differs from c, and the weight of a under V is exactly that of a' under V'.
It is worth noting, however, that our reduction is exploiting the fact that
our conjunctions learning algorithm works for any distribution V, as the
distribution is "distorted" by the transformation. For example, even if V
was the uniform distribution over {O, l }n , V' would not be uniform over
the transformed assignments a' .

We have just given an example of a reduction between two learn­
ing problems. A general notion of reducibility in PAC learning will be
formalized and studied in Chapter 7.

We have proven:

Theorem 1.4 The representation class of 9-CNF formulae is efficiently
PA C learnable.

Thus, because we have already shown that any 3-term DNF formula

Copyrighted Material

Probably Approxima.tely Correct Learning 25

can be written as 8. 3-CNF formul8., we can PAC learn 3-term DNF for­
mul8.e if we a.llow the hypothesis to be represented as a 3-CNF formula,
but not if we insist that it be represented as a 3-term DNF formula!
The same statement holds for any constant k � 2 for k-term DNF for­
mulae and k-CNF formulae . This demonstrates an important principle
that often appears in le8.rning theory: even for a fixed concept class from

which target concepts are chosen, the choice of hypothesis representation
C8.n sometimes mean the difference between efficient algorithms and in­
tr8.ctability. The specific cause of intract8.bility here is worth noting: the
problem of just predicting the classification of new examples of a 3-term
DNF formula is tractable (we can use 8. 3-CNF formula for this purpose),
but expressing the prediction rule in a particular form (namely, 3-term
DNF formulae) is hard.

This state of affairs motivates us to generalize our basic definition
one more time, to allow the learning algorithm to use a more expressive
hypothesis representation than is strictly required to represent the tar­
get concept. After all, we would not have wanted to close the book on
the learnability of 3-term DNF formulae after our initial intractability
result just because we were constrained by an artificial definition that
insisted that learning algorithms use some particular hypothesis repre­
sentation. Thus our final modification to the definition of PAC learning
lets the hypothesis representation used be a parameter of the PAC learn­
ing problem.

Definition 4 (The PAC Model, Final Definition) If C is a concept class
over X and 'H. is a representation class over X J we will say that C is
(efficiently) PAC learnable using 'If if our basic definition of PA C

learning (Definition 2) is met by an algorithm that is now allowed to
output a hypothesis from 'If. Here we are implicitly assuming that 'H. is
at least as expressive as C I and so there is a representation in 'H. of every
function in C . We will refer to 'If as the hypothesis class of the PA C
learning algorithm.

While for the reasons a.lready discussed we do not want to place un-

Copyrighted Material

26 Cha.pter 1

necessary restrictions on 11, neither do we want to leave 11 entirely uncon­
strained. In particular, it would be senseless to study a model of learning
in which the learning algorithm is constrained to run in polynomial time,
but the hypotheses output by this learning algorithm could not even be
evaluated in polynomial time. This motivates the following definition.

Definition 5 We say that the repres entation class 11 is polynomially
evaluatable if there is an algorithm that on input any instance x E Xn
and any representation h E lln, outputs the value hex) in time polynomial
in n and size(h) .

Throughout our study, we will always be implicitly assuming that
PAC learning algorithms use polynomially evaluatable hypothesis classes.
Using our new language, our original definition was for PAC learning C us­
ing C, and now we shall simply say that C is efficiently PAC learnable
to mean that C is efficiently PAC learnable using 11 for some polynomially
evaluatable hypothesis class ?-t.

The main results of this chapter are summarized in our new language
by the following theorem.

Theorem 1 . 5 The representation class of 1-term DNF formulae (con­
junctions) is efficiently PA C learnable using 1-term DNF formulae. For
any constant k � 2, the representation class of k - term DNF formu­

lae is not efficiently PA C learnable using k -term DNF formulae (unless
RP = NP j, but is efficiently PAC learnable using k-CNF formulae.

1 . 6 Exercises

1 .1 . Generalize the algorithm for the rectangle learning game to prove
that if Cn is the class of all axis-aligned hyperrectangles in n-dimensional
Euclidean space �n , then C is efficiently PAC learnable.

Copyrighted Material

Probably Approximately Correct Learning 27

1 .2 . Let f(·) be an integer-valued function, and assume that there does
not exist a randomized algorithm taking as input a graph G and a pa­

rameter 0 < 6 :5 1 that runs in time polynomial in 1/6 and the size of
G, and that with probability at least 1 - 6 outputs "no" if G is not k­
colorable and outputs an f(k)-coloring of G otherwise . Then show that
for some k � 3, k-term DNF formulae are not efficiently PAC learnable
using f(k)-term DNF formulae.

1 .3. Consider the following two-oracle variant of the PAC model : when
c E C is the target concept, there are separate and arbitrary distributions
vt over only the positive examples of c and V; over only the negative
examples of c. The learning algorithm now has access to two oracles
EX(c, vt) and EX(c, V;) that return a random positive example or
a random negative example in unit time. For error parameter f, the
learning algorithm must find a hypothesis satisfying Pr:t:E'Dt [h(x) = O} :5
e and Pr:t:E'D';- [hex) = I} :5 f. Thus, the learning algorithm may now
explicitly request either a positive or negative example, but must find a
hypothesis with small error on both distributions .

Let C be any concept class and 1{ be any hypothesis class. Let ho
and hI be representations of the identically 0 and identically 1 functions ,

respectively. Prove that C is efficiently PAC learnable using 1{ in the
original one-oracle model if and only if C is efficiently PAC learnable
using 1{ U {ho, h. } in the two-oracle model.

1 .4. Let C be any concept class and 1{ be any hypothesis class. Let ho
and hl be representations of the identically 0 and identically 1 functions,
respectively. Show that if there is a randomized algorithm for efficiently
PAC learning C using 'H, then there is a deterministic algorithm for
efficiently PAC learning C using 11 U {ho , h. } .

1 .5. In Definition 2, we modified the PAC model to allow the learning
algorithm time polynomial in n and size(c) , and also provided the value
size(c) as input. Prove that this input is actually unnecessary: if there is
an efficient PAC learning algorithm for C that is given size(c) as input,
then there is an efficient PAC learning algorithm for C that is not given

Copyrighted Material

28 Chapter 1

this input.

1 . 7 Bibliographic Notes

The PAC model was defined in the seminal paper of L.G. Valiant [92] ,
and was elaborated upon in his two subsequent papers [91 , 93) . Much
of this book is devoted to results in this probabilistic model. Papers by
Haussler [45, 46, 47, 44J and Kearns, Li, Pitt and Valiant [59] describe
some results in the PAC model from an artificial intelligence perspective.

In addition to defining the model, Valiant's original paper (92J pro­
posed and analyzed the algorithm for PAC learning boolean conjunctions
that we presented in Section 1 .3. The informal rectangle game which
began our study was formally analyzed in the PAC model in another im­
portant paper due to Blumer, Ehrenfeucht, Haussler and Warmuth {221 ,
whose main results are the topic of Chapter 3.

The importance of hypothesis representation was first explored by
Pitt and Valiant [71} . They showed that k-term DNF is not efficiently
PAC learnable using a hypothesis class of k-term DNF, but is efficiently
PAC learnable using k-CNF. The general techniques we outlined in Sec­
tion 1 .4 have been used to obtain representation-dependent hardness the­
orems for many classes, including various neural network architectures
(Blum and Rivest [16, 20] , Judd [53]) . Intractability results for PAC
learning neural networks that do not rely on hypothesis class restrictions
will be given in Chapter 6. The earliest intractability results for learning
that can be translated into the PAC model are those for deterministic
finite automata due to Gold [40] , who showed that the problem of find­
ing the smallest finite state machine consistent with a labeled sample is
NP-hard. This result was dramatically improved to obtain a hardness
result for even approximating the smallest machine by Pitt and War­
muth [72) . In Chapter 6 we shall give even stronger hardness results for
PAC learning finite automata.

Copyrighted Material

Probably Approximately Correct Learning 29

Since Valiant introduced the PAC model , there have been a dizzy­
ing number of extensions and variants proposed in the computational
learning theory. Some of these variants leave what is efficiently learn­
able essentially unchanged, and were introduced primarily for technical
convenience. Others are explicitly designed to change the PAC model
in a significant way, for example by providing the learner with more
power or a weaker learning criterion. Later we shall study some of these
variants. The paper of Haussler, Kearns, Littlestone and Warmuth [49]
contains many theorems giving equivalences and relationships between
some of the different models in the literature. For instance, the solutions
to Exercises 1 .3, 1 .4 and 1 .5 are contained in this paper. Exercise 1 . 1
is from the Blumer et al. paper !221 , and Exercise 1 .2 is from Pitt and
Valiant [71] .

Copyrighted Material

2

Occam's Razor

The PAC model introduced in Chapter 1 defined learning directly in
terms of the predictive power of the hypothesis output by the learning
algorithm. It was possible to apply this measure of success to a learning
algorithm because we made the assumption that the instances are drawn
independently from a fixed probability distribution V, and then measured
predictive power with respect to this same distribution .

In this chapter, we' consider a rather different definition of learning
that makes no assumptions about how the instances in a labeled sample
are chosen. (We still assume that the labels are generated by a target
concept chosen from a known class.) Instead of measuring the predictive
power of a hypothesis , the new definition judges the hypothesis by how
succinctly it explains the observed data (a labeled sample). The crucial
difference between PAC learning and the new definition is that in PAC
learning, the random sample drawn by the learning algorithm is intended
only as an aid for reaching an accurate model of some external process
(the target concept and distribution), while in the new definition we are
concerned only with the fixed sample before us, and not any external
process.

This new definition will be called Occam learning, because it for­
malizes a principle that was first expounded by the theologian William

Copyrighted Material

32 Chapter 2

of Occam, and which has since become a central doctrine of scientific
methodolog y. The principle is often referred to as Occam's Razor to in­
dicate that overly complex scientific theories should be subjected to a
simplifying knife.

If we equate "simplicity" with representational succinctness, then an­
other way to interpret Occam's principle is that learning is the act of
finding a pattern in the observed data that facilitates a compact repre­
sentation or compression of this data. In our simple concept learning
setting, succinctness is measured by the size of the representation of the
hypothesis concept . Equivalently, we can measure succinctness by the
cardinality of the hypothesis class used by the algorithm, for if this class
is small then a typical hypothesis from the class can be represented by
a short binary string, and if this class is large then a typical hypothesis
must be represented by a long string. Thus an algorithm is an Occam
algorithm if it finds a short hypothesis consistent with the observed data.

Despite its long and illustrious history in the philosophy of science
and its extreme generality, there is something unsatisfying about the
notion of an Occam algorithm . After all, the primary goal of science
(or more generally, of the learning process) is to formulate theories that
accurately predict future observations, not just to succinctly represent
past observations. In this chapter, we will prove that when restricted to
the probabilistic setting of the PAC model, Occam algorithms do indeed
have predictive power. This provides a formal justification of the Occam
principle , albeit in a restricted setting.

Thus, under appropriate conditions, any algorithm that always finds
a succinct hypothesis that is consistent with a given input sample is
automatically a PAC learning algorithm. In addition to the philosophical
interpretation we have just discussed , this reduction- of PAC learning
to Occam learning provides a new method of designing PAC learning
algorithms.

Copyrighted Material

Occam's Razor

2.1 Occam Learning and Succinctness

33

As in Chapter 1, let X = Un>lXn be the instance space, let C = Un>lCn
be the target concept class,-and let 1l = Un>llln be the hypothesis
representation class. In this chapter we will assume, unless explicitly
stated otherwise, that the hypothesis representation scheme of 1l uses a
binary alphabet, and we define size(h) to be the length of the bit string
h. Also, recall that for a concept c E C, size(c) denotes the size of the
smallest representation of c in 1l.

Let c E Cn denote the target concept. A labeled sample S of cardi­
nality m is a set of pairs:

An Occam algorithm L takes as input a labeled sample S, and outputs
a "short" hypothesis h that is consistent with S. By consistent we mean
that h(Xi) = C(Xi) for each i, and by "short" we mean that size(h) is a
sufficiently slowly growing function of n, size (c) and m. This is formalized
in the follow ing definition .

Definition 6 Let a � 0 and 0 :5 {3 < 1 be constants. L is an (a, {3)­
Occam algorithm for C using 1l if on input a sample S of cardinality
m labeled according to C E Cn, L outputs a hypothesis h E 1l such that:

• h is consistent with S .

• size(h) � (n· size(c))Qm.B.

We say that L is an efficient (a, {3)-Occam algorithm if its running time
is bounded by a polynomial in n, m and size(c).

In what sense is the output h of an Occam algorithm succinct? First
let us assume that m > > n, so that the above bound can be effectively

Copyrighted Material

34 Chapter 2

simplified to size(h) < mfJ for some {3 < 1. Since the hypothesis h is
consistent with the sample S, h allows us to reconstruct the m labels
C(Xl} = h(xd, .. . , c(xm) = h(xm) given only the unlabeled sequence of
instances x}, . . . ,Xm. Thus the m bits c(xd, ... , c(xm} have been effec-
tively compressed into a much shorter string h of length at most mfJ.
Note that the requirement {3 < 1 is quite weak, since a consistent hy­
pothesis of length O(mn) can always be achieved by simply storing the
sample S in a table (at a cost of n + 1 bits per labeled example) and
giving an arbitrary (say negative) answer for instances that are not in
the table. We would certainly not expect such a hypothesis to have any
predictive power.

Let us also observe that even in the case m < < n, the shortest con­
sistent hypothesis in 1i may in fact be the target concept, and so we
must allow size(h) to depend at least linearly on size(c). The definition
of succinctness above is considerably more liberal than this in terms of
the allowed dependence on n, and also allows a generous dependence on
the number of examples m. We will see cases where this makes it easier
to efficiently find a consistent hypothesis - by contrast, computing the
shortest hypothesis consistent with the data is often a computationally
hard problem.

The next theorem, which is the main result of this chapter, states that
any efficient Occam algorithm is also an efficient PAC learning algorithm.

Theorem 2.1 (Occam's Razor) Let L be an efficient (a,{3)-Occam al­
gorithm for C using 1i. Let V be the target distribution over the instance
space X, let c E Cn be the target concept, and 0 < €, 0 :5 1. Then there is
a constant a > 0 such that if L is given as input a random sample S of
m examples drawn from EX(c, V), where m satisfies

m � a (; IOg � + (n' SU:(C»Q»)�)

then with probability at least 1-0 the output h of L satisfies error(h) $ f.
Moreover, L runs in time polynomial in n, size(c), l/f and 1/0.

Copyrighted Material

Occam's Razor 35

Notice that as f3 tends to 1, the exponent in the bound for m tends
to infinity. This corresponds with our intuition that as the length of the
hypothesis approaches that of the data itself, the predictive power of the
hypothesis is diminishing.

For the applications we give later, it turns out to be most conve­
nient to state and prove Theorem 2.1 in a slightly more general form,
in which we measure representational succinctness by the cardinality of
the hypothesis class rather than by the bit length size(h}. We then prove
Theorem 2.1 as a special case. To make this precise, let 11.n = Um�l1ln,m.
Consider a learning algorithm for C using 11. that on input a labeled sam­
ple S of cardinality m outputs a hypothesis from 11.n•m• The following
theorem shows that if \1ln•m \ is small enough, then the hypothesis output
by L has small error with high confidence.

Theorem 2.2 (Occam IS Razor, Cardinality Version) Let C be a concept
class and 11. a representation class. Let L be an algorithm such that for
any n and any c E Cn, if L is given as input a sample S of m labeled
examples of c, then L runs in time polynomial in n, m and size(c), and
outputs an h E 11.n•m that is consistent with S. Then there is a constant
b > 0 such that for any n, any distribution 'D over Xn, and any target
concept C E en, if L is given as input a random sample from EX(c, 'D) of
m examples, where I 11.n•m I satisfies

1
log l1ln•m l � bEm - log "6

(or equivalently, where m satisfies m � (1/bE)(log l11.n•ml + log{1/6»)
then L is guaranteed to find a hypothesis h E 11.n that with probability at
least 1 - 6 obeys error (h) � E.

Note that here we do not necessarily claim that L is an efficient PAC
learning algorithm. In order for the theorem to apply, we must (if pos­
sible) pick m large enough so that bEm dominates log l11.n•ml. Moreover,
since the running time of L has a polynomial dependence on m, in order

Copyrighted Material

36 Chapter 2

to assert that L is an efficient PAC algorithm, we also have to bound m
by some polynomial in n, size(c), lIe and l/f>. The proof of Theorem 2.1
relies on the fact that in the case of an (a, ,B)-Occam algorithm, log l?tn,ml
grows only as mP, and therefore given any e, this is smaller than bem for
a small value of m.

We first give a proof of Theorem 2.2.

Proof: We say that a hypothesis hE ?tn,m is bad if e1Tor(h) > e, where
the error is of course measured with respect to the target concept c and
and the target distribution 1>. Then by the independence of the random
examples, the probability that a fixed bad hypothesis h is consistent
with a randomly drawn sample of m examples from EX(c,1» is at most
(1 - e)m. Using the union bound, this implies that if?t' s; ?tR,m is
the set of all bad hypotheses in ?tn,m, then the probability that some
hypothesis in ?t' is consistent with a random sample of size m is at most
11-l'I(I- e)m. We want this to be at most f>j since l?t'l � l?tn.ml we get a
stronger condition if we solve for l?tn.m/(l- e)m � 0. Taking logarithms,
we obtain log l'Hn.ml � mlog(l/{l - e» -log(l/«5). Using the fact that
log(l/(l - e)) = a(e), we get the statement of the theorem.

O(Theorem 2.2)

We now prove Theorem 2.1:

Proof: Let 'Hn•m denote the set of all possible hypothesis represen­

tations that the (�,.8)-Occam algorithm L might output when given as
input a labeled sample S of cardinality m. Since L is an (a, .B)-Occam
algorithm, every such hypothesis has bit length at most (n· size(c)}QmP,
thus implying that l1-ln.ml � 2(n.,i,e(c»OmtJ• By Theorem 2.2, the output
of L has error at most E with confidence at least 1 - «5 provided

1
log l?tn.m/ � bem -log 6'

Transposing, we want m such that
1 1 I

m � be log l?tn,m/ + be log 6

Copyrighted Material

Occam's Razor 37

The above condition can be satisfied by picking m such that both m �
(2/bf) log l'Hn,ml and m � (2/bf) 10g(1/o} hold. Choosing a = 2/b yields
the statement of the theorem. O(Theorem 2.1)

2.2 Improving the Sample Size for
Learning Conjunctions

As an easy warm-up to some more interesting applications of Occam 's
Razor, we first return to the problem of PAC learning conjunctions of
boolean literals, and apply Theorem 2.2 to slightly improve the sam­
ple size bound (and therefore the running time bound) of the learning
algorithm we presented for this problem in Section 1.3.

Thus as in Section 1.3, we let Xn = {o,l}n. Each a E {o,l}n is
interpreted as an assignment to the n boolean variables Xl, • • • , xn• Let
en be the class of conjunctions of literals over Xl, ••• ,Xn• Recall that our
learning algorithm started with a hypothesis that is the conjunction of all
the 2n literals. Given as input a set of m labeled examples, the algorithm
ignored negative examples, and on each positive example (a,l), the al­

gorithm deleted any literal z such that z = 0 in a. Note that this ensures
that upon receiving the positive example a, the hypothesis is updated
to be consistent with this example. Furthermore, any future deletions
will not alter this consistency, since deletions can only increase the set
of positive examples of the hypothesis. Finally, recall that we already
argued in Section 1.3 that this algorithm never misclassifies any negative
example of the target conjunction c. Thus, if we run the algorithm on
an arbitrary sample S of labeled examples of some target conjunction, it
always outputs a hypothesis conjunction that is consistent with S, and
thus it is an Occam algorithm . Note that in this simple example, size(h)
(or equivalently, log l'Hn.mD depends only on n and not on m or size(c).

Now the number of conjunctions over Xl," " Xn is bounded by 3n
(each variable occurs positively or negatively or is absent entirely) , so

Copyrighted Material

38 Chapter 2

applying Theorem 2.2, we see that O«l/e) log(l/o) + n/e) examples are
sufficient to guarantee that the hypothesis output by the learning algo­
rithm has error less than e with confidence at least 1 - O. This is an
improvement by a logarithmic factor over the bound given in Chapter 1.

2.3 Learning Conjunctions with Few
Relevant Variables

Despite the efficiency of our algorithm for PAC learning boolean con­
junctions , we can still imagine improvements. Let us define size (c) be
the number of literals appearing in the target conjunction c. Notice that
size(c) � n, but the size of the sample drawn by our learning algorithm
for conjunctions is proportional to n independent of how small size (c)
might be. In this section, we give a new algor ithm that reduces the num­
ber of examples to nearly size (c) . It can be argued that it is often realistic
to assume that size (c) « n, since we typically describe an object by
describing only a few attributes out of a large list of potential attributes.

Even though we greatly improve the sample size for the case of small
size(c), we should point out that the running time of the new learning
algorithm still grows with n, since the instances are of length n, and the
algorithm must take enough time to read each instance. An interesting
feature of the new algorithm is that it makes use of the negative examples,
unlike our previous algorithm for learning conjunctions.

In order to describe the new algorithm, we need to introduce a com­
binatorial problem and a well-known algorithm for its approximate solu­
tion. This approximation algorithm has many applications in computa­
tional learning theory.

The Set Cover Problem. Given as input a collection S of subsets of
U = {l, . . . , m}, find a su bcollection T S; S such that ITI is minimized,

Copyrighted Material

Occam's Razor 39

and the sets in T form a cover of U:
Ut=U.

tET

We assume, of course, that the entire collection S is itself a cover. For any
instance S of the Set Cover Problem, we let opt(S) denote the number
of sets in a minimum cardinality cover.

Finding an optimal cover is a well-known NP-hard problem. However,
there is an efficient greedy heuristic that is guaranteed to find a cover 'R
of cardinality at most O(opt(S) log m).

The greedy heuristic initializes 'R to be the empty collection. It first
adds to 'R the set 8· from S with the largest cardinality, and then updates
S by replacing each set 8 in S by s - 8·. It then repeats the process of
choosing the remaining set of largest cardinality and updating S until all
the elements of {1, ... , m} are covered by 'R.

The greedy heuristic is based on the following fact: let U· � U. Then
there is always a set t in S such that Itnu·1 � IU·l/opt(S). To see why
this is true, just observe that U· has a cover of size at most opt(S) (since
U does), and at least one of the sets in the optimal cover must cover a
1/ opt (S) fraction of U·.

Let Ui � U denote the set of elements still not covered after i steps
of the greedy heuristic. Then

IUi+l1 � IUil- o;�l) = lUi l (1- oP
:
(S»

) .

So by induction on i:

lu,l:<; (1- op
i(sS m.

Choosing i � opt(S) log m suffices to drive this upper bound below 1.
Thus all the elements of U are covered after the algorithm has chosen
opt(S) logm sets.

Copyrighted Material

40 Chapter 2

We now return to the problem of PAC learning conjunctions with few
relevant variables. We shall describe our new algorithm as an Occam
algorithm and apply Theorem 2.2 to obtain the required sample size
for PAC learning. Thus, given a sample S of m examples of a target
conjunction, the new Occam algorithm starts by applying our original
conjunctions algorithm - which uses only the positive examples - to
S in order to produce a hypothesis conjunction h. This conjunction will
have the property that it is consistent with S, since the old algorithm
was indeed an Occam algorithm. The new algorithm will then use the
negative examples in S to exclude several additional literals from h in
a manner described below, to compute a new hypothesis conjunction hi
containing at most size (c) log m of the literals appearing in h. This new
smaller hypothesis will still be consistent with S, and so the sample size
bound for PAC learning can be derived from Theorem 2.2.

Recall that excluding literals from h does not affect consistency with
the positive examples in S, since the set of positive examples of h only
grows as we delete literals. However, the new algorithm has to carefully
choose which literals of h it excludes in order to ensure that the hypothesis
is still consistent with all the negative examples in S. To do this, we cast
the problem as an instance of the Set Cover Problem and apply the greedy
algorithm.

For each literal z appearing in h, we can identify a subset N6 � S
of the negative examples in S. with the property that inclusion of z in
the hypothesis conjunction is sufficient to guarantee consistency with N,.
The set N: is just those negative examples in (a,O) E S for which the
value of z is 0 in a. Thus, we can think of the inclusion of z in our
hypothesis conjunction as "covering" the set N, of negative examples. If
we have a collection of N, that covers all the negative examples of S, and
each z appears in h, then the conjunction hi of this collection will still
form a hypothesis consistent with S.

Our goal is thus reduced to covering the set of all negative exam­
ples in S with the minimum number of the sets N,. Applying the greedy
heuristic to this problem, and noting that among the literals of h, a cover

Copyrighted Material

Occam's Razor 41

of size(c) sets exists (since the literals that occur in the target conjunc­
tion must form a cover) , we get a cover of size size(c) logm; in other
words, our hypothesis class 1tn•m is the set of all conjunctions of at most
size(c) logm literals. Using the fact that a conjunction of f literals over n
variables can be encoded using flog n bits , and setting f = size (c) log m,
we get a bound of size(c) log m logn on the number of bits needed to
represent our hypothesis , and thus l1tn,ml ::; 2,ize(c}Jogmlogn. Apply-
ing the condition m = O«1/f) log l1tn•mD required by Theorem 2.2,
we obtain the constraint m � cl«1/f)size(c)logmlogn) for some con­
stant Cl > O. It is easily verified that this is satisfied provided m �
Cl{{l/f)size(c) log n log(size(c) logn». Thus , the overall sample size re­
quired by the new algorithm is

> (11 1 size (c) logn(log size(c) + IOglOgn») m _ Cl - og - + .
f 6 f

Note that this bound has a fllightly superlinear dependence on size (c),
but only an approximately logarithmic dependence on the total number
of variables n.

In fact, a slight modification of this algorithm that we shall now
sketch quite briefly gives a better bound. The basic idea behind the
modification is that rather than running the greedy cover heuristic until
the hypothesis covers all of the negative examples, we shall run it only
until the hypothesis misclassifies fewer than fm/2 negative examples.
Thus, our resulting hypothesis will be almost but not quite consistent
with its input sample, where the degree of consistency is controlled by
the desired error bound f.

For the analysis, observe that now the halting condition for the greedy
heuristic is (1 - l/size(c»im < (f/2)m instead of (1 - l/size(c))im <
1 as before; here we are using the correspondence between opt(S) in
the covering problem and size(c) in the PAC learning problem. Thus,
we halt with a hypothesis of i = size(c) 10g(2/£) literals instead of i =
size (c) log m literals. This gives a smaller hypothesis class cardinality of
2,ize(c) log(2/£) log n •

Copyrighted Material

42 Chapter 2

Now we just need a lemma stating that the probability that a fixed
conjunction h such that error(h) � € is consistent with at least a frac­
tion 1 - €/2 of m random examples is bounded by some exponentially
decreasing function of m (that is, we need the analogue of the bound
(1 - f)m on the probability that a hypothesis of error greater than f is

completely consistent with the sample). It turns out that we can state a
bound of e-tm/16 on this probability, and this is discussed in the section
on Chernoff Bounds in the Appendix of Chapter 9. For our immediate
problem, given this bound we can now apply the same arguments as those
in the proof of Theorem 2.2, and by solving 2.tize(c)log(2Mlogne-Em/16 =5 6
we obtain a sample size bound of

> (11 1 size(c) log(2/f) IOgn)
m _ Cl - og"£ + .

f () f

2.4 Learning Decision Lists

Our final application of Occam learning is to an algorithm for PAC learn­
ing decision lists over the boolean variables Xl." " Xn. A decision list
may be thought of as an ordered sequence of if-then-else statements.
The sequence of conditions in the decision list are tested in order, and

the answer associated with the first satisfied condition is output.

Formally, a k-decision list over the boolean variables Xl," • ,Xn is
an ordered sequence L = (CI, bl), . . . , (CI' b,) and a bit b, in which each Ci
is a conjunction of at most k literals over XlJ • • . , Xn, and each bi E {O, I}.
For any input a E {o,l}n, the value L(a) is defined to be bi, where j
is the smallest index satisfying Cj (a) = 1; if no such index exists, then
L(a) ::;:: b. Thus, b is the "default" value in case a falls off the end of the
list. We call bi the bit associated with the condition Ci. Figure 2.1 shows

an example of a 2-decision list along with its evaluation on a particular
input.

First let us consider the expressive power of k-decision lists. We

Copyrighted Material

Occam's Razor 43

List L

1

o 1 1 o 1 o
t

L (011011) = 1

Figure 2.1: A 2-decision list and the path followed by an input. Evalua­
tion starts at the leftmost item and continues to the right until the first
condition is satisfied, at which point the binary value below becomes the
final result of the evaluation.

observe that if a concept c can be represented as a k-decision list, then
so can ""Ie (simply complement the values of the bi) . Clearly, any k­
DNF formula can be represented as a k-decision list of the same length
(choose an arbitrary order in which to evaluate the terms of the k-DNF,
setting all the bi to 1 and the default b to 0). Since k-decision lists are
closed under complementation, they can also represent k-CNF formulae.
Furthermore, in Exercise 2.1 we demonstrate that for each k there exist
functions that can be represented by a k-decision list, but not by either
a k-DNF or a k-CNF formula. Thus, k-decision lists strictly generalize
these classes.

Theorem 2.3 For any fixed k 2: 1, the representation class of k-decision
lists is efficiently PA C learnable.

Proof: We give an Occam algorithm and apply Theorem 2.2. We
present the algorithm for 1-decision lists; the problem for general k can
easily be reduced to this problem, exactly as the k-CNF PAC learning
problem was reduced to the problem of PAC learning conjunctions in
Chapter 1.

Copyrighted Material

44 Chapter 2

Given an input sample 8 of m examples of some 1-decision list, our
Occam algorithm starts with the empty decision list as its hypothesis.
In each step, it finds some literal z such that the set 8/1 � 8, which we
define to be the set of examples (positive or negative) in which z in set
to I, is both non-empty and has the property that it contains either only
positive examples of the target concept, or only negative examples. We
call such a z a useful literal. The algorithm then adds this literal (with the
associated bit 1 if Sz contained only positive examples, and the associated
bit 0 if 8a contained only negative examples) as the last condition in the
current hypothesis decision list, updates 8 to be 8 - 8/1, and iterates the

process until S = 0 and therefore all examples are correctly classified by
the hypothesis decision list.

To prove that the algorithm always succeeds in finding a consistent
hypothesis, it suffices to show that it always succeeds in finding a useful

literal z at each step as long as 8 ¥: 0. But this is true because the target
decision correctly classifies every element of 8, and so the first condition
z in the target decision list such that 8/1 is non-empty is a useful literal.

Since any decision list on n variables can be encoded in O(n log n)
bits, we can apply Theorem 2.2 to obtain a sample size bound of m �
cl({1/f)(log(1/6)+n log n)) for PAC learning. Since the Occam algoritbm
clearly runs in time polynomial in m, we have efficient PAC learning .

O(Theorem 2.3)

2.5 Exercises

2.1. Show that for each k, there exists a function that can be represented
as a k-decision list, but not by a k-CNF or k-DNF formula.

2.2. A decision tree is similar to a 1-decision list, except now we allow
the (single-literal) decision conditions to be placed in a binary tree, with
the decision bits placed only at the leaves . To evaluate such a tree T
on input a E {O, 1 }n, we simply follow the path through T defined by

Copyrighted Material

Occa.m's Razor 45

starting at the root of T and evaluating the literal at each node on input
a, going left if the evaluation yields 0 and right if it yields 1. The value
T(a) is the bit value stored at the leaf reached by this path. Figure 2.2
shows an example of a decision tree along with its evaluation on an input.

We define the rank of a decision tree T recursively as follows: the
rank of a tree consisting of a single node is O. If the ranks of T's left
subtrees and right subtrees are TL and TR respectively, then if rL = rR
the rank of Tis rL + Ii otherwise, it is max(rLI TR). The rank is a measure
of how "unbalanced" the tree is.

Compute the rank of the decision tree given in Figure 2.2, and show
that the class of functions computed by rank r decision trees is included

in the class of functions computed by r-decision lists. Thus, for any fixed
r we can efficiently PAC learn rank r decision trees.

2.3. Let e be any concept class. Show that if e is efficiently PAC learn­
able, then for some constants 0 � I and fJ < 1 there is an (0, fJ)-Occam
algorithm for e. Hint: construct an appropriate simulation of the PAC
learning algorithm L in which the accuracy parameter depends on the
degree of the polynomial running time of L.

2.4. Recall that following our final definition of PAC learning (Defini­
tion 4), we emphasized the importance of restricting our attention to
PAC learning algorithms that use polynomially evaluatable hypothesis
classes 1l (see Definition 5). Suppose that we consider relaxing this re­

striction, and let 1l be the class of all Turing machines (not necessarily
polynomial time) - thus, the output of the learning algorithm can be
any program. Show that if en is the class of all boolean circuits of size
at most pen) for some fixed polynomial p(.), then C is efficiently PAC
learnable using?t. Argue that your solution shows that this relaxation
trivializes the model of learning.

Copyrighted Material

46 Chapter 2

TreeT

1

1 o o 1

t
T(10010110) = 0

Figure 2.2: A decision tree and the path followed by an input.

2.6 Bibliographic Notes

The notion of Occam learning as we have formalized it and our main
theorems stating that Occam learning implies PAC learning are due to
Blumer, Ehrenfeucht, Haussler and Warmuth [21]. There is a converse to
Theorem 2.1 which establishes that C is PAC learnable if and only if there
is an Occam algorithm for C. This was the topic of Exercise 2.3, whose
intended solution is due to Board and Pitt (231. A considerably stronger
converse is a consequence of the equivalence between weak and strong
PAC learning due to Schapire [84, 85] (see also the work of Freund (35, 36]

Copyrighted Material

Occam '8 Razor 47

and Helmbold and Warmuth [52]). We shall study this equivalence in
Chapter 4.

The predictive power of Occam algorithms continues to hold for sev­
eral variants of the PAC model and for more general notions of hypothesis
complexity. These include models for PAC learning in the presence of
various types of errors (Angluin and Laird [10], Kearns and Li [57, 55]),
learning probabilistic concepts (Kearns and Schapire [61, 85]), and func­
tion learning (Natarajan [70]). In Chapter 3 we will consider a very gen­
eral notion of hypothesis complexity, the Vapnik-Chervonenkis dimension
(Vapnik [941; Blumer, Ehrenfeucht, Haussler and Warmuth [22]), and we
again prove the predictive power of algorithms finding a consistent hy­
pothesis with limited complexity. The predictive power of Occam algo­
rithms in a setting where the examples are not independent but obey a
Markovian constraint is examined by Aldous and Vazirani [3].

The algorithm for learning conjunctions with few relevant literals
is due to Haussler [45}, who also provides a lucid discussion of Occam
learning and inductive bias from the artificial intelligence perspective.
The analysis of the greedy set cover approximation algorithm is due to
Chvatal [26] . The modification of the covering algorithm to only nearly
cover the sample is due to M. Warmuth. The problem of learning when
there are many irrelevant variables present has also been carefully exam­
ined by Littlestone [65, 66] and Blum [17] in on-line models of learning.
The decision list learning algorithm is due to Rivest [78] , and Exercise
2.2 is due to A. Blum (see also the paper Ehrenfeucht and Haussler [32]).

Relationships between various measures of hypothesis complexity and
generalization ability have been proposed and examined in a a large and
fascinating literature that predates the PAC model results given here.
Two dominant theories along these lines are the structural risk mini­
mization of Vapnik [94] and the minimum description length principle
of Rissanen [77}. The papers of Quinlan and Rivest [75} and DeSantis,
Markowsky and Wegman [29] examine variants of the minimum descrip­
tion length principle from a computational learning theory viewpoint.
It has frequently been observed that the minimum description length

Copyrighted Material

48 Chapter 2

criterion has a Bayesian interpretation in which representational length
determines the prior distribution. This viewpoint is further explored in
the paper of Evans, Rajagopalan and Vazirani [34), where the notion of
an Occam algorithm is generalized to arbitrary stochastic processes.

Copyrighted Material

3

The Vapnik-Chervonenkis
Dimension

3.1 When Can Infinite Classes Be
Learned with a Finite Sample?

In this chapter, we consider the following question: How many random
examples does a learning algorithm need to draw before it has sufficient
information to learn an unknown target concept chosen from the concept
class C? We should emphasize that we will temporarily ignore issues
of computational efficiency while studying this question (or equivalently,
we assume that the learning algorithm has infinite computing power to
process the finite random sample it has drawn) . We first note that the
results of the previous chapter can be used to give such a bound in the
case that C is a concept class of finite cardinality. If the learning algorithm
simply draws a random sample of O«l/e) 10g(ICI/6)) examples, and finds
any h E C consistent with these examples (say, by exhaustive search) ,
then Theorem 2.2 guarantees that h will meet the PAC model criteria.
Notice that this bound is not meaningful if C has infinite cardinality.
Are there any non-trivial infinite concept classes that are learnable from
a finite sample?

Copyrighted Material

50 Chapter 3

Actually, our PAC learning algorithm for axis-aligned rectangles in
the Euclidean plane given in Section 1.1 is an example of such a class.
In the analysis of that PAC learning algorithm, we made critical use of
the fact that axis-aligned rectangles have simple boundaries: the target
rectangle is always completely specified by four real numbers that indicate
the locations of the four bounding edges, and this allowed us to partition
the error of the tightest-fit hypothesis into four simple rectilinear regions.
It is tempting to say that the "complexity" of this concept class is four,
because the boundary of any concept in the class can be described by
four real numbers.

In this chapter, we are interested in a general measure of complexity

for concept classes of infinite cardinality. We would like this measure
to play the same role in the sample complexity of PAC learning infinite
classes that the quantity log lei (which we saw in Chapter 2 was closely
related to the size of representations) plays in the sample complexity
of PAC learning finite classes. We will define a purely combinatorial
measure of concept class complexity known as the Vapnik-Chervonenkis
dimension, a measure that assigns to each concept class C a single number
that characterizes the sample size needed to PAC learn C.

3.2 The Vapnik-Chervonenkis Dimension

For the remainder of this chapter, C will be a concept class over instance
space X, and both C and X may be infinite. The first thing we will need
is a way to discuss the behavior of C when attention is restricted to a
finite set of points S � X.

Definition 7 For any concept class C over X, and any S � X I

Ilc(S) = {en S: c E C}.

Copyrighted Material

The Vapnik-Chervonenkis Dimension 51

Equivalently, if S = {Xl,' .. , xm} then we can think of fle(S) as the set
of vectors fie(S) � {O,l}m defined by

fie(S) = {(C(Xl),"" c(xm}) : c E C}.

Thus, llc(S) is the set of all the behaviors or dichotomies on S that
are induced or realized by C. We will use the descriptions of llc(S) as
a collection of subsets of S and as a set of vectors interchangeably.

Definition 8 If lle(S) = {o,l}m (where m = lSI), then we say that S
is shattered by C. Thus, S is shattered by C if C realizes all possible
dichotomies of S.

Now we are ready for our key definition.

Definition 9 The Vapnik-Chervonenkis (VC) dimension ofC, de­
noted as VGD(C), is the cardinality d of the largest set S shattered by C.
If arbitrarily large finite sets can be shattered by C, then VGD(C) = 00.

3.3 Examples of the VC Dimension

Let us consider a few natural geometric concept classes, and informally
calculate their VC dimension. It is important to emphasize the nature of
the existential and universal quantifiers in the definition of VC dimension:
in order to show that the VC dimension of a class is at least d, we must
simply find some shattered set of size d. In order to show that the VC
dimension is at most d, we must show that no set of size d+ 1 is shattered.
For this reason, proving upper bounds on the VC dimension is usually
considerably more difficult than proving lower bounds. The following
examples are not meant to be precise proofs of the stated bounds on

Copyrighted Material

52

III
+
• •

+
•

Figure 3.1: A dichotomy unrealizable by intervals.

Chapter 3

the VC dimension, but are simply illustrative exercises to provide some
practice thinking about the VC dimension.

Intervals of the real line. For this concept class, any set of two
points can be shattered, so the VC Dimension is at least two, but no
set of three points can be shattered: label the three points as shown in
Figure 3.1, a labeling which cannot be induced by any interval. Thus the
VC dimension for this class is two.

Linear half spaces in the plane. For this concept class, any three
points that are not collinear can be shattered. F igure 3 .2(a) shows how
one dichotomy out of the possible 8 dichotomies can be realized by a
halfspacej the reader can easily verify that the remaining 7 dichotomies
can be realized by halfspaces. To see that no set of four points can
be shattered, we consider two cases. In the first case (shown in Figure
3.2(b», all four points lie on the convex hull defined by the four points. In
this case, if we label one "diagonal" pair positive and the other "diagonal"
pair negative as shown in Figure 3.2(b), no halfspace can induce this
labeling . In the second case (shown in Figure 3.2(c)), three of the four
points define the convex hull of the four points, and if we label the interior
point negative and the hull points positive, again no half space can induce
the dichotomy. Thus the VC dimension here is three. In general, for
halfspaces in �d, the VC dimension is d + 1.

Axis-aligned rectangles in the plane. For this concept class, we
can shatter the four points shown in Figure 3.3{a) , where we have again
indicated how a single dichotomy can be realized and left the remainder
to the reader. However, not all sets of four points can be shattered, as
indicated by the unrealizable dichotomy shown in Figure 3.3(b). Still, the
existence of a single shattered set of size four is sufficient to lower bound

Copyrighted Material

The Vapnik-Chervonenkis Dimension 53

(b) (c) +
•

+ +
• •

•

+
• • •

+
•

Figure 3.2: (a) A dichotomy and its realization by a hal/space, with the
shaded region indicating the positive side. (b) and (c) Dichotomies unre­
alizable by hal/spaces.

(a) (b) (c) +
+ •

.-
• + +

• •

.+

-. -. +.
-+ .+ • •

+.

Figure 3.3: (a) A dichotomy and its realization by an axis-aligned rect­
angle. (b) and (c) Dichotomies unrealizable by axis-aligned rectangles.

the VC dimension. Now for any set of five points in the plane, there
must be some point that is neither the extreme left, right, top or bottom
point of the five (see Figure 3.3(c». If we label this non-extremal point

negative and the remaining four extremal point positive, no rectangle can
realize the dichotomy. Thus the VC dimension is four.

Copyrighted Material

54 Chapter 3

+

+

Figure 3.4: (a) Realizing a dichotomy with a polygon when there are fewer
positive labels. (b) When there are fewer negative labels.

Convex polygons in the plane. For convex d-gons in the plane ,
the VC dimension is 2d + 1. For the lower bound , we can induce any
labeling of any 2d + 1 points on a circle using a d-gon as follows: if there
are more negative labels than positive labels, use the positive points as
the vertices as shown in Figure 3.4(a) . Otherwise , use tangents to the
negative points as edges as shown in Figure 3.4(b). For the upper bound,
it can be shown that choosing the points to lie on a circle does in fact
maximize the number of points that can be shattered, and we can force
d + 1 sides using 2d + 2 points on a circle by alternating positive and
negative labels.

3.4 A Polynomial Bound on IIIc(S)\

Definition 10 For any natural number m we define

IIc(m) = max{IIIc(S)1 : lSI = m}.

Copyrighted Material

The Vapnik-Chervonenkis Dimension 55

The function De(m) can be thought of as a measure of the complexity
of C: the faster this function grows, the more behaviors on sets of m
points that can be realized by C as m increases. Now clearly, if C does
not have finite VC dimension, then Dc(m) = 2m for all m since we can
shatter arbitrarily large finite sets. In this section, we prove a surprising
and beautiful result, namely that despite the fact that we might naively
expect De(m) to grow as rapidly as an exponential function of m, it is
actually bounded by a polynomial in m of degree d, where d is the VC
dimension of C. In other words, depending on whether the VC dimension
is finite or infinite, the function Dc{m) is either eventually polynomial or
forever exponential. For the more interesting and typical case of finite
VC d imension , we shall eventually translate the polynomial upper bound
on IIe(m) into an upper bound on the sample complexity of PAC learning
that is linear in d.

We begin by proving that IIe(m) is bounded by the function �d(m)
defined below. We then show a polynomial bound on �cf(m).

Definition 11 For any natural numbers m and d, the function �d(m)
is defined inductively by

�cf(m) = 4>d(m - 1) + 4>d-l(m - 1)
with initial conditions �d(O) = �o(m) = 1.

Lemma 3.1 If VCD(C) = d, then for any m, lle{m) $ �d(m).

Proof: By induction on both d and m. For the base cases, the lemma
is easily established when d = 0 and m is arbitrary, and when m = 0
and d is arbitrary. We assume for induction that for all m', d' such that
m' $ m and d' $ d and at least one of the two inequalities is strict, we
have nc(m') $ cp",(m'). We now show that this inductive assumption
establishes the desired statement for d and m.

Copyrighted Material

56 Chapter 3

Given any set S of size m, let xES be a distinguished point. Let us
first compute Inc(S - {x})I. This is e88Y since by induction (note that
S - {x} is a set of size m - 1) we have Inc(s - {x}) 1 � 4>d(m - 1).

The difference between nc(S) and nc(S-{x}) is that pairs of distinct
sets in ne(S) that differ only on their labeling of x are identified (that
is, merged) in ne (S - {x}). Thus let us define

C' = {c E ne(S): x ¢ c,cU {x} E ne(S)}.

Then IC'I counts the number of pairs of sets in nc(S) that are collapsed
to a single representative in nc(S - {x}). Note that C' = I1c,(S - {x})
because C' consists only of subsets of S - {x}. This yields the simple
equality

Inc(S)1 = Inc(S - {x})1 + Inc'(S - {x})I·

We now show that VCD(C') $ d - 1. To see this, let S' � S - {x}
be shattered by Ct. Then S' U {x} is shattered by C. Thus we must
have IS'I � d - 1. Now by induction we have IC'I = Inc'(S - {x})1 :5
cf?d-l(m - 1).

Our total count is thus bounded by cf?d(m-l)+cf?d_l(m-l) = cf?d(m),
as desired. D(Lemma 3.1)

Proof: By induction; the base cases are easy to check. For the induc­
tion step, we have:

cf?d(m) - cf?d(m - 1) + cf?d-l(m - 1)
_ t (m � 1) + E (m � 1) i=O 7. i=O 7.

-
�[(

m ; 1

)
+
(7�nl

- �(7)

Copyrighted Material

The Vapnik-Chervonenkis Dimension 57

where the second equality is by induction and we define (��l) = 0 for
the third equality. O(Lemma 3.2)

Now for m � d, �d(m) = 2m. For m > d, since 0 � dIm � 1, we may
write:

Dividing both sides by (;k)d yields

which is polynomial in m for fixed d, giving us the promised polynomial
bound for the case m > d.

3.5 A Polynomial Bound on the Sample
Size for PAC Learning

3.5.1 The Importance of €-Nets

Let us now fix the target concept c E C, and define the class of error
regions with respect to c and C by �(c) = {c6d : c' E C}. It is easy
to show that VCD(C) = VCD(.6 (c». To see this, for any set S we can
map each element d E nc(S) to d .6(c n S) E nA{c)(S). Since this is a
bijective mapping of llc(S) to llA{c)(S), IllA(c)(S)1 = Inc(S)I. Since this
holds for any set S, VCD(C) = VCD(.6(c» follows.

We may further refine the definition of .6(c) to consider only those
error regions with weight at least f under the fixed target distribution V.
Thus, let .6(c) = {r E �(c) : PrzE'P[x E rJ ;::: fl. We can now make the
following important definition:

Copyrighted Material

58 Chapter 3

Definition 12 For any e > 0, we say that a set S is an e-net for A(e)
if every region in A(c} is lihit" by a point in 8, that is, if for every
r E A(c) we have S n r :f: 0.

An e-net for A(e) is thus a set that hits all of the e-heavy regions of
A(c}. As an example, suppose X is the closed interval [0,1] and let V be
the uniform density on X. Suppose that C consists of all closed intervals
on [0,1] as well as the empty set 0, and that the target concept e = 0.
Then A(c) is again the set of all closed intervals on fO, 1]. For any interval
I under the uniform density, Pr�E1)[x E I] is just the length of I. Any
interval whose probability is greater than e will have length greater than
e, so the set of all points ki, for natural numbers 1 � k � r1/el, is an

f-net for A(e).

The notion of e-nets has actually been implicit in some of our earlier
analyses, in particular those of Occam's Razor in Chapter 2. The im­
portant property of f-nets is that if the sample 8 drawn by a learning
algorithm forms an f-net for A(e), and the learning algorithm outputs
a hypothesis h E C that is consistent with 8, then this hypothesis must
have error less than f: since eAh E A(e) was not hit by S (otherwise
h would not be consistent with 8), and S is an f-net for A(e), we must

have eAh ¢ A(c) and therefore error(h) � e.

Thus if we can bound the probability that the random sample 8 fails
to form an f-net for A(e), then we have bounded the probability that

a hypothesis consistent with 8 has error greater than e. For the case
of finite C, the analysis of Occam 's Razor obtained such a bound by a
simple counting argument that we sketch again here in our new notation:
for any fixed error region eAh E AE(e), the probability that we fail to hit
eAh in m random examples is at most (1 - e)m. Thus the probability
that we fail to hit some eAh E A(e) is bounded above by IA(c)l(l- e)m t

which in turn is bounded by ICI(l - e)m.

Alternatively, we can carry out the above analysis replacing ICI by
cI>d(IXl). This follows immediately from the fact that C = llc(X) and

Copyrighted Material

The Vapnik�Chervonenkis Dimension 59

Lemma 3.1. This gives us a bound of iPd(lXI)(I- f)m on the probability
of failing to draw an f-net for A(c). However, this does not represent any
progress over the state of affairs in which we began this chapter, since
if X is infinite then iPd(IXI) is infinite as well. Ideally, we would like to
carry out a similar analysis that instead of considering the entire domain
X considers only the small random subset 8 observed by the learning
algorithm.

3.5.2 A Small e-Net from Random Sampling

We now show that if we draw a small set of examples from the oracle
EX(c, V), then they form an f-net with high probability. The impor­
tant property is that the size of the required sample depends on the VC
dimension d and f and 6, but is independent of lei and IXI. From the
preceding discussion, this will immediately lead to an upper bound on
the number of examples required for PAC learning that depends only on
these same quantities.

Suppose that we draw a multiset 81 of m random examples from V,
and let A denote the event that the elements of 81 fail to form an f-net
for A(e) . Clearly, our goal is to upper bound the probability of event
A. If event A occurs, then by the definition of f-nets, 81 misses some
region r E 6(c). Let us fix this missed region r, and suppose we now
draw an additional multiset 82 of m random examples from V. Since
each element of 82 has probability at least f of hitting r, if m = O(l/f)
the probability 82 hits r at least em/2 times is at least 1/2 by Markov's
inequality (see the Appendix in Chapter 9).

If we let B be the combined event over the random draws of 81 and
82 that A occurs on the draw of 81 (so 81 is not an f-net) and 82 has
at least fm/2 hits in a region of A,(c) that is missed by 811 then we
have argued that Pr[BIA) � 1/2. Since the definition of event B already
requires that event A occurs on 81, we also have Pr[B) = Pr(BIA]Pr[A],
so 2Pr[B1 � Pr{A).

Copyrighted Material

60 Chapter 3

Thus, we can upper bound the probability of event A by upper bound­
ing the probability of event B. The principal advantage of event B over
event A for the purposes of our analysis can be described as follows .
To directly analyze the probability of event A, we must consider all re­
gions of the uncountably infinite class �E(C) that 81 might miss. To
analyze the probability of event B, we need only consider the regions of
Ila.(c)(81 U 82), This is because the occurrence of event B is equivalent
to saying that there is some r E Ila.(c) (81 U82) such that Irl � em/2 and
rn81 = 0.

To bound the probability that such an r exists, rather than drawing
81 at random and then drawing 82 at random, we can instead first draw
a multiset 8 of 2m instances at random, and then randomly divide 8
into 81 and 82, The resulting distribution of 81 and 82 is the same in
both experiments, since each draw from V is independent and identically
distributed. Now once 8 is drawn and fixed (but before it is divided ran­
domly into 81 and 82), we may also fix a region r E Ila.(c)(8) satisfying
Irl � em/2. For this fixed 8 and fixed r, we now analyze the probability
(with respect only to the random partitioning of 8 into 81 and 82) that
r n 81 = 0. We will then obtain a bound on the probability of event B
by summing over all possible fixed r E lla.(c)(8) and applying the union
bound.

Our problem is now reduc�d to the following simple combinatorial
experiment: we have 2m balls (the multiset 8), each colored red or blue,
with exactly i � em/2 red balls (these are the instances of 8 that fall in
r). We divide these balls randomly into two groups of equal size 81 and
82, and we are interested in bounding the probability that all P of the
red balls fall in 82 (that is, the probability that r n 81 = 0).

Equivalently, we can first divide 2m uncolored balls into 81 and 82,
and then randomly choose i of the balls to be marked red, the rest being
marked blue. Then the probability that all i of the red marks fall on
balls 82 is exactly (';}/e;a) - this is simply the number of ways we can
choose the l red marks in 82 divided by the number of ways the l red

Copyrighted Material

The Vapnik-Chervonenkis Dimension 61

marks can be chosen without constraints. But (7)/e�) :5 1/2t. This is
because

('�) _ nl-I (m - i) i-I (1) 1
e�) - i=O (2m - i) :5 nt=o 2" = 2t"

Thus, for any fixed 8 and r E IT6.(c)(8) satisfying ITI � fm/2, the
probability that the random partitioning of 8 results in r n 81 = 0 is
at most 2-Em/2. The probability that this occurs for some r E n6.(c)(8)
satisfying ITI � fm/2 (and thus Pr{Bl) is at most

Ill6.(c)(S)12-Sf :5 ITI6(c)(8)12-'P :5 Illc(S)12-T

$ 4}d(2m)2-SP :5 (2�m) d 2-T.

Finally, PrlA] :5 2Pr[B] $ 2(2em/d)d2-Em/2, which is less than D for

m = 0 (!lOg! + � log !) . f 6 f f
We have proved the main result of this chapter:

Theorem 3.3 Let C be any concept class of VC dimension d. Let L
be any algorithm that takes as input a set 8 of m labeled examples of a
concept in C, and produces as output a concept h E C that is consistent
with S. Then L is a PA C learning algorithm for C provided it is given a
random sample ofm examples from EX(c, V), where m obeys

m � Co (! log! + � log !)
f 6 f f

for some constant Co > O.

Recall that in Chapter 1, we saw that for computational reasons there
may sometimes be a great advantage in using a hypothesis class 1l that
is more powerful than the class C from which the target is chosen. The
reader can verify that the same proof used to establish Theorem 3.3 can
be used to prove the following analogue:

Copyrighted Material

62 Chapter 3

Theorem 3.4 Let C be any concept class. Let H be any representation
class of VO dimension d. Let L be any algorithm that takes as input a
set S of m labeled examples of a concept in C, and produces as output a
concept h E H that is consistent with S. Then L is a PA C learning algo­
rithm for C using H provided it is given a random sample of m examples
from EX (c, V), where m obeys

(1 1 d 1)
m � Co -log - + -log -

e b e e

for some constant Co > O.

Thus, to obtain an algorithm for PAC learning C using H, we take
a number of examples on the order of the VC dimension of H (which is
at least as large as the VC dimension of C if 11. ::) C). This shows that
while we may reduce our computation time by choosing a more powerful
hypothesis representation, we may also increase the number of examples
required .

3.6 Sample Size Lower Bounds

We now show that the upper bound on the sample complexity of PAC
learning given by Theorem 3.3 is tight within a factor of O(log lie) (ig­
noring the dependence on b). First we show a lower bound of O(d) on
the number of examples required for PAC learning using a fairly simple
argument, then we present a refined argument that improves the bound
to O(d/e}.

Theorem 3.5 Any algorithm for PAC learning a concept class of Vapnik­
Ohervonenkis dimension d must use O(d/e) examples in the worst case.

Proof: Consider a concept class C such that VCD(C) = d. Let S =
{Xl, ... ,Xd} be shattered by C. To show a lower bound, we construct a

Copyrighted Material

Tbe Vapnik-Cbervonenkis Dimension 63

particular distribution that forces any PAC learning algorithm to take
many examples. Thus, let '0 give probability lid to each point in S, and
probability 0 to points not in S. For this distribution, we can assume
without loss of generality that C = I1c(S) (that is, X = S), so C is a
finite class and ICI = 2d.

Note that we have arranged things so that for all of the 2d possible
binary labelings of the points in S, there is exactly one concept in C that
induces this labeling. Thus, choosing the target concept c randomly from
C is equivalent to flipping a fair coin d times to determine the labeling
induced by c on S.

Now let L be any PAC learning algorithm for C. Set the error pa­

rameter e $; 1/8, and consider running L when the target concept C E C
is chosen randomly and the input distribution is 'O. Suppose that after
drawing m < d examples from EX(c, D), L has drawn m' $; m differ­

ent instances; without loss of generality, let these be Xl,' • • ,Xm" Then
from the above observations, it is clear that the problem of predicting the
correct label of any unseen instance Xi for j > m' is equivalent to pre­
dicting the outcome of a fair coin, since each label of con S is determined
by an independent coin flip. Thus the expected error (over the random
choice of c and the sample of points) of L's hypothesis is (d - m')/2d,
and by Markov's inequality (see the Appendix in Chapter 9) is at least
(d - m')/4d with probability at least 1/2. For m = d/2 we obtain that

the error of L's hypothesis is at least 1/8 with probability at least 1/2
(over the random choice of c and the sample) . Since this shows that L
must fail when c is chosen randomly, there must certainly be some fixed
target concept on which L fails, thus giving the O(d) sample complexity
lower bound.

To refine this argument to get a lower bound that incorporates e, we
simply scale the above coin flipping construction to a region of the distri­
bution that is small but still too large to be "ignored" by the algorithm.
Thus, we modify '0 to let the distinguished instance Xl have probability
1 - 8f under V (we are essentially "giving" this instance along with its
correct label to L), and let X2,." ,Xd each have probability 8f/(d -1)

Copyrighted Material

64 Chapter 3

under V (this is the coin flipping region). Now by simply scaling our
previous calculation to the coin flipping region, the expected error of L
after seeing at most d/2 different instances is at least (1/8}8e = e with
probability at least 1/2. But it is not difficult to show that now draw­
ing d/2 different points requires Oed/e) examples, because our problem
is reduced to obtaining d/2 "successes" in independent trials, each with
probability of success only 4€. O(Theorem 3.5)

3.7 An Application to Neural Networks

We conclude this chapter by giving a useful general lemma that bounds
VOD(C) when each concept in the class C is actually a composition of
simpler concepts. Such classes arise frequently - for instance, a DNF
formulae is simply a (very constrained) composition of boolean conjunc­
tions (the constraint being that we can only compute disjunctions of
conjunctions). After giving this lemma, we then apply it to obtain upper
bounds on the sample size required for PAC learning neural networks.

To formalize a general notion of concept composition, let G be a
layered directed acyclic graph. By this we mean that the nodes of G
can be partitioned into layers, and the directed edges of G go only from a
node at layer l to a node at layer l + 1. We let n be the number of nodes
at layer 0, and we assume that all of these have indegree O. We think of
these n layer 0 nodes as being the inputs to the graph. We also assume
that there is only a single node of outdegree 0 at the highest level of the
graph, and we think of this node as being the output node of the graph.
All internal (that is, non-input) nodes have the same indegree r, and we
let s denote the number of internal nodes. Figure 3.5 shows an example
of such a layered graph with n = 8, s = 8 and r = 3.

Now let C be a concept class over r-dimensional Euclidean space Rr.
Suppose we take such a layered graph G, and we label each internal
(that is, non-input) node Ni with a concept C; E C. Then such a labeled

Copyrighted Material

The Va.pnik-Chervonenkis Dimension 65

Figure 3.5: A layered directed acyclic graph.

graph represents a concept over n-dimensional Euclidean space !RR in
the obvious way: if we label each of the n input nodes at layer 0 with
a real number, then starting with layer 1 we can compute the value at
each node Ni by applying the concept ct labeling node Ni to the values

computed at the nodes feeding Nj• (Note that although concepts in Care
defined over lRr, the input values feeding nodes at level 2 and higher will
actually only be from {O, 1 y.) The output of the entire labeled graph is
the binary value computed at the output node . We will call the class of

all concepts over lRR that can be obtained by labeling G with concepts
from C the G-composition of C, which we denote CG.

Theorem 3.6 Let G be a layered directed acyclic graph with n input
nodes and s � 2 internal nodes, each of indegree r. Let C be a concept
class over!Rr of VO dimension d, and let CG be the G-composition ofC.
Then VOD(CG) � 2ds log(es).

Proof: The idea is to first bound the function "cGCm). Let us fix any

Copyrighted Material

66 Chapter 3

set S of m input vectors Xl, ... , Xm € �n to the graph G (thus, each Xi
determines a complete setting of the n input nodes of G). For this fixed
input set S, if we now also label each node in G with a concept from
C, then for each Xi we have completely determined the binary values
that will be computed at every node of G when the input is Xi' Let
us call the collection of all the values computed at each node, for each
Xi E S, a computation of G on S. Thus, a computation can be represented
by labeling each internal node with the vector in {O,l}m of the values
computed at that node on the m vectors in S. Then the set of all poss ible
computations of G on S is obtained by ranging over all possible choices
of labels from C for the nodes of G. Note that two computations of G on
S differ if and only if the value computed at some node on some input
from 8 differs in the two computations. Clearly, IIlco(8)1 is bounded
by the total number of possible computations of G on 8, which we shall
denote Tco (S).

To bound Tco(S), let G' be the subgraph obtained by removing the
output node No from G. Let Tco' (8) denote the total number of com­
putations of G' on S. Each fixed computation of G' can be extended to
at most llc (m) computations of G, because fixing the computation of G'
determines for each 1 :5 i :5 m the input Yi € {O,lY that is fed to No
when Xi is fed to G, and at most llc(m) labelings of Yll"" Ym can be
obtained at No by varying the choice of concept from C placed at No.
Thus we obtain that for any S, Tco(S) :5 Tco'(S) x llc(m), and a simple
inductive argument establishes

Illco(S)1 :5 Tco(S) :5 (llc(m»' :5 (e;y"
where the second inequality comes from the polynomial bound on the
llc(m) given in Section 3.4. Since S was arbitrary, this bound in fact
holds for llco (m).

Thus in order for Ca to shatter m points, the inequality (em/ d)d, � 2m
must hold. Conversely, if (em/d)d, < 2m for some m, then m is an upper
bound on VOD(Ca). It is easy to verify that this latter inequality holds
for m = 2ds log(es) provided s � 2. O(Theorem 3.6)

Copyrighted Material

The Vapnik-Chervonenkis Dimension 67

To apply Theorem 3.6 to the problem of PAC learning neural net­
works, we simply let the function at each node in the graph G be a
linear threshold function. If the indegree is r, such a function is de­
fined by real weights WI, • • • , Wr E !R and a threshold 9 E !R. On inputs
Xl, . • • , Xr E !R the function outputs 1 if Ei=l WiXi � 9, and outputs 0
otherwise. We call G the underlying architecture of the neural network.

Now as we mentioned in Section 3.3, it is known that the VC dimen­
sion of the class of linear threshold on r inputs is r + 1. By Theorem 3.6
we find that the Vapnik-Chervonenkis of the class of neural networks
with architecture G is at most 2(r s + s) loge es), and combined with The­
orem 3.3, we obtain:

Theorem 3.7 Let G be any directed acyclic graph, and let Cc be the class
of neural networks on an architecture G with indegree rand s internal
nodes. Then the number of examples required to learn Cc is

O
(1 1 1 (r 8 + s) log 8 1 1)

- og-+ og- .
f D E f

3.8 Exercises

3.1. Compute the VC dimension of the class of boolean conjunctions of
literals over {o,I}n.
3.2. Consider the concept class over the Euclidean plane !R2 consisting
of the interior regions of circles; thus, the positive examples of each con­
cept form a disk in the plane. Compute the VC dimension of this class.
Compute the VC dimension of the class of interiors of triangles in the
plane.

3.3. Show that there is no I-decision list over {O, I}n computing the
exclusive-or function Xl $ X2' Then show that the VC dimension of

Copyrighted Material

68 Chapter 3

I-decision lists over {o,l}n is S(n}, and that the VC dimension of k­
decision lists is 9(nk). Hint: show that I-decision lists over {O, l}n com­
pute linearly separable functions (halfspaces). You may use the fact that
the VC dimension of halfspaces over �n is linear in n.

3.4. Let Pd.k be the class of concepts over � defined by convex polytopes
with k sides j thus, each the positive examples of each concept in Pd.k are
defined by the convex intersection of k half spaces in !ld. Give the best
upper and lower bounds that you can on VCD(Pd•k}. You may use the
fact that the VC dimension of halfspaces over � is linear in d.

3.5. Let C be any concept class of va dimension d over X, and let V
be any distribution over X. Suppose we are given access to a source of
random (unlabeled) instances drawn according to V, and also access to
an oracle that for any labeled sample of points will return "Yes" if there
is a concept in C that is consistent with the labeled sample, and will
return "No" otherwise. Describe an algorithm that on input any finite
set of instances S � X and any e, � > 0 will output either the answer
"Yes, S in an e-net for C with respect to V", or the answer "No, S is
not an e/4-net for C with respect to V". Moreover, the algorithm must
give a correct answer with probability at least 1 - 6. The algorithm need
not be efficient. (The quantity e/4 in the "No" condition can in fact be
replaced by ae for any fixed constant a < 1, giving an arbitrarily refined
test .)
3.6. Prove that the bound of �d(m) on llc{m) is tight: that is, for any
concept class C of VC dimension d and any m, there exists a set S of m
points such that Illc(S)1 = �d(m).

3.7. In this exercise we consider the two-oracle model of PAC learning
defined in Exercise 1.3 of Chapter 1. We say that a concept class C is
PAC learnable from positive examples alone if it is PAC learnable
by an algorithm that only draws from the oracle EX (c, Vi) when learning
target concept c E C (the hypothesis must still meet the two-sided error
criterion) . We have already seen in Chapter 1 that boolean conjunctions
are efficiently PAC learnable from positive examples alone. This exercise

Copyrighted Material

The Vapnik-Chervonenkis Dimension 69

ignores computational considerations, and concentrates on the number
of examples required for learning from positive examples alone.

We say that a subclass C' � C has unique negative examples if
for every c E C', there is an instance Xc E X such that Xc ¢ c but Xc E d
for every other d E C'. We define the unique negative dimension of
the class C, UND(C), to be the cardinality of the largest subclass C' that
has unique negative examples.

Prove that any algorithm learning C from positive examples alone
(regardless of computation time or the hypothesis class used) requires
n(UND(C)je) positive examples.

Then prove that O(UND(C)jf) positive examples are sufficient for
learning from positive examples alone by the following steps. Consider
the algorithm that takes a sample S of positive examples of the target
concept and returns the hypothesis

h = mineS) = n c. C cEC:S!;c

Note that h may not be contained in C, and also that this algorithm will
never err on a negative example of the target concept .

First show that if on random samples S of size diE (where d -
UND(C) from EX(c, Vt) , the expected error of minc (S) with respect to
1): exceeds f, then there must exist a set S· � c of size d/ f + 1 with the
property that for a fraction at least e of the x E S·, x ¢ mine (S· - {x}) .
Then show that this implies that UND(C) > d, a contradiction.

Thus, 9(UND(C)/E) positive examples are necessary and sufficient for
learning from positive examples alone, and the unique negative dimension
plays a role analogous to the Vapnik-Chervonenkis dimension for this
model of learning.

Copyrighted Material

3.9 Bibliographic Notes

The classic paper on the VC dimension, and the one in which the main
elements of the proof of Theorem 3.3 are first introduced, is by Vapnik
and Chervonenkis [95] . These ideas were introduced into the computa­
tional learning theory literature and elaborated upon in the influential
work of Blumer, Ehrenfeucht, Haussler and Warmuth (22) . Vapnik has
also written an excellent book (94) that greatly extends the original ideas
into a theory known as structural risk minimization .

The VC dimension and its attendant theorems have been influential
in the neural network and artificial intelligence machine learning commu­
nities. The calculation of the VC dimension of neural networks is due to
Baum and Haussler [13} , and Abu-Mostafa [1] and Tesauro and Cohn [89)
examine VC dimension issues from a neural network perspective. Haus­
sler [45] examines the VC dimension as a form of inductive bias from an
artificial intelligence viewpoint.

The value of the VC dimension as a measure of the sample complex­
ity of learning transcends the PAC model; many authors have shown
that the VC dimension provides upper or lower bounds on the resources
required for learning in many models. These include on-line models of
learning (Haussler, Littlestone and Warmuth [51] ; Maass and 'lUran [69] ;
Littlestone [66]) , models of query learning (Maass and Thran [69]) ; and
many others.

The va dimension has also been generalized to give combinatorial
complexity measures that characterize the sample complexity of learning
in various extensions of the PAC model. Perhaps the most general work
along these lines in the computational learning theory literature has been
undertaken by Haussler [48] , who draws on work in statistics, notably the
work of Pollard [74] and of Dudley [31] . Haussler's general framework is
examined carefully in the context of learning probabilistic concept by
Kearns and Schapire [61) , who prove that a certain generalization of the
VC dimension provides a lower bound on sample size for learning in this

Copyrighted Material

The Vapnik-Chervonenkis Dimension 71

model, and by Alon et at [4] , who give an upper bound.

The VC dimension and its generalizations are only one of the many
ways that computational learning theory and statistics attempt to quan­
tify the behavior of learning curves, that is, the error of the hypothesis
as a function of the number of examples seen. For instance, among the
many alternative methods of analysis are theories based on tools from
information theory and statistical physics [50, 86] .

The O(d/t.) sample size lower bound is due to Ehrenfeucht et aI. [33} ,
who also give the solution to Exercise 3.3. Exercise 3.7 is due to Gereb­
Graus [391 .

Copyrighted Material

4

Weak and Strong Learning

4.1 A Relaxed Definition of Learning?

There are two parameters that quantify and control the performance of
a PAC learning algorithm - the error parameter f and the confidence
parameter C. The smaller the values of these parameters, the stronger
the guarantee on the quality of the hypothesis output by the learning al­
gorithm. In our definition of PAC learning, we demanded that a learning
algorithm be able to achieve arbitrarily small values for e and C, and that
the running time be polynomially bounded in 1/ e and 1/ C (as well as n
and size(c».

Suppose that instead of a PAC learning algorithm, we had in our pos­
session a weaker but perhaps still useful algorithm L that could achieve
the PAC criteria not for any e and 6 but only for some fixed, constant
values Eo and Co. Thus , for any target concept c E C and any distribution
V, L manages to find a hypothesis h that with probability at least 1- Co
satisfied error(h) � eo, and now L runs in time polynomial in just n and
size(c). Is there any way we could use L as a subroutine to obtain an
improved algorithm L' that achieved the PAC criteria any values for €
and 6?

Copyrighted Material

74 Chapter 4

In this chapter, we show that the answer to this question is positive in
the strongest possible sense: even an efficient algorithm whose hypotheses
are only slightly better than "random guessing" can be used to obtain an
efficient algorithm meeting the definition of PAC learning . By slightly
better than random guessing, we mean hypotheses that correctly classify
an instance with probability just exceeding 1/2. Note that if all we
desired was the ability to correctly classify instances with probability
exactly 1/2, we could always accomplish this by skipping the learning
process altogether, and simply flipping a fair coin to classify each new
instance ! Thus, a hypothesis of error strictly less than 1/2 is the least
nontrivial criterion we could ask a learning algorithm to meet.

More precisely, let C be a concept class , and let L be an algorithm that
is given access to EX(c, V) for target concept c E Cn and distribution
'D. We say that L is a weak PAC learning algorithm for C using
11 if there are fixed polynomials p(.,.) and q(.,.) such that L outputs a
hypothesis h E 11 that with probability at least 1/q(n, size(c») satisfies
error(h} S 1/2 - l/p(n, size(c)). Thus, with only inverse polynomial
confidence, L outputs a hypothesis whose predictive ability has only an
inverse polynomial advantage over 1/2.

With this definition, we can now more formally verify that weak PAC
learning really is the weakest demand we could place on an algorithm in
the PAC setting without trivializing the learning problem. For instance,
over the boolean domain to, l}n we can always obtain error bounded by
1/2 -1 / e(n) for some exponentially growing function e(n) just by taking a
small random sample S of the target concept, and letting our hypothesis
be the randomized mapping that classifies an instance according to S if
the instance appears in S, and otherwise flips a fair coin to classify the
instance. Note that in polynomial time, we could not even detect that
this hypothesis gave a slight predictive advantage over random guessing .

Thus, our definition demands that the hypothesis of a weak PAC
learning algorithm achieve the least nontrivial generalization from the
sample - that is, the least ability to predict the label of instances outside
the observed sample. Furthermore, in keeping with our notion that n

Copyrighted Material

Weak and Strong Learning 75

and size(c) are natural measures of the complexity of the target concept,
we even allow the confidence and the advantage of the hypothesis over
random guessing to diminish to 0 as the complexity of the target concept
increases .

We will sometimes refer to our original definition of PAC learning
as strong PAC learning to distinguish it from this new notion. The
somewhat surprising main result of this chapter is that if C is efficiently
weakly PAC learnable, then C is efficiently strongly PAC learnable.

We prove the equivalence of weak and strong learning by providing an
explicit and efficient transformation of a weak PAC learning algorithm
into a strong PAC learning.algorithm . If f and D are the desired error and
confidence parameters for the strong learning algorithm, the overhead in
running time of this transformation is a surprisingly slowly growing func­
tion of l/f and l/D. The transformation for achieving greater confidence
(that is, reducing D) is entirely straightforward, as we shall see momen­
tarily. The transformation for reducing the error is much more involved,
and forms the bulk of this chapter.

An important consequence of the construction used to prove the
equivalence is that it shows that any class that is efficiently PAC learnable
is in fact efficiently PAC learnable with specific upper bounds on the re­
quired resources. For example, using the construction we can prove that
if a concept class is efficiently PAC learnable, then it is efficiently PAC
learnable by an algorithm whose required memory is (of course) bounded
by a polynomial in nand size(c) , but by an only polylogarthmic function
of l/f. (By this we mean polynomial in 10g(1/£).) When contrasted with
the lower bound of 0(1/£) on the number of examples required for PAC
learning given by Theorem 3.5 (ignoring for now the dependence on all
quantities other than f), this shows that there are no concept classes for
which efficient PAC learnability requires that the entire sample be con­
tained in memory at one time - there is always another algorithm that
"forgets" most of the sample .

Another consequence of the construction is that if C is efficiently PAC

Copyrighted Material

76 Chapter 4

learnable, then there is an efficient algorithm taking a sample of m labeled
examples of any c E C, and finding a consistent hypothesis whose size is
polynomial in size(c) but only polylogarithmic in m. This gives a strong
converse to the results on Occam's Razor presented in Chapter 2.

These and several other interesting consequences of the construction
are explored in the exercises at the end of the chapter.

4.2 Boosting the Confidence

We begin our proof of the equivalence of weak and strong learning with
the easy part: namely, showing that we can efficiently boost the con­
fidence of a learning algorithm from an inverse polynomial to a value
arbitrarily close to 1. Without loss of generality, and for simplicity in the
following argument, let us fix a value t for the error parameter, and sup­
pose we have an algorithm L such that for any target concept C E C and
any distribution V, L outputs h such that error (h) :5 t with probability
only at least 60 = l/q(n, size(c» for some fixed polynomial q(., .) .

We now show that if we are willing to tolerate the slightly higher
hypothesis error t + 'Y (for'Y > 0 arbitrarily small), then we can achieve
arbitrarily high confidence 1 - 0 (that is, arbitrarily small confidence
parameter 6).

Our new algorithm L' will simulate algorithm L a total of k times
(where k will be determined shortly), using an independent sample from
EX(c, V) for each simulation . Let hI," " hie denote the hypotheses out­
put by L on these k runs. Then because the simulations are independent,
the probability that all of hi, ... ,hie have error larger than t is at most
(1- 60)k. Solving (1- Do)k :5 6/2 yields k � {1/60} In(2/6) for our choice
of k.

The remaining task of L' can now be expressed as follows: given the
hypotheses hit .. . ,hie, and assuming that at least one has error bounded

Copyrighted Material

Weak and Strong Learning 77

by E, output one which has error at most f. + 'Y with probability at least
1- {) /2 . This is easily accomplished by drawing a sufficiently large sample
of labeled examples S from EX(c, V), and choosing the hi that makes
the fewest mistakes on S. We will choose S large enough so that with
confidence at least 1 - 6/2, the empirical error of each hj on S is within
'Y/2 of its true value error(hj) with respect to c and V. This will ensure
that with confidence 1 - 0/2 the hypothesis that is output has error at
most f. + 'Y.

For any fixed hypothesis h;, whether hj makes a mistake on a ran­
domly drawn example from EX(c, V) can be regarded as a biased coin
flip with probability of heads equal to error(hi). By the Chernoff bounds
discussed in the Appendix in Chapter 9 the empirical error of h; on S
is an estimate for error(h;) that is accurate to within an additive factor
of 'Y /2 with confidence at least 1 - 0/2k provided that the number of
examples m in S satisfies m � (eo/'Y2) log(2k/0) for some appropriate
constant eo > O.

Now by the union bound , the probability that any of the k hypotheses
has empirical error on S deviating from its true error by more than 'Y /2
is at most k(0/2k) = 0/2. Note that we have arranged things so that the
total failure probability - the probability that we fail to get at least one
hypothesis of error less than f out of the k runs of L, plus the probability
that we fail to choose a hypothesis of error less than E + 'Y - is at most

0/2 + fJ/2 = 6.

In summary, the algorithm to boost the confidence from l/q(n, size(c»)
to 1 - fJ (at the expense of an additive factor of 'Y in the error) is:

• Run L a total of k = f{l/q(n, size(c») In(2/0)1 times to obtain hy­

potheses hll"" hk .

• Choose a sample S of size (eo/'Y2) log(2k/6) from EX(c, V), and output

the hi that makes fewest mistakes on S.

It is easily verified that the running time is polynomial in n, size(c),

Copyrighted Material

78 Chapter 4

10g(1/6) , l/f and 1/'Y. To eliminate the parameter 'Y from this argument,
if £ is our desired error bound, we can make each run of L using the

smaller value f' = £/2 as the error parameter given to L, and then set

'Y = £/2.

4.3 Boosting the Accuracy

We now turn to the harder problem of decreasing the error. Let us
assume for now that we are given an algorithm L for C that with high
probability outputs a hypothesis with error at most {3 < 1/2, where {3 is
fixed for the moment. We would like to transform L into an algorithm
that with high probability outputs a hypothesis with error at most f,
where 0 $ f < {3 is any given error parameter. We will eventually
substitute the value 1/2 - l/p(n, size(c)) for {3 in accordance with the
definition of weak learning.

It should be readily apparent that the problem of boosting the ac­
curacy is much harder than the problem of confidence boosting. In the
confidence boosting problem, the available learning algorithm did man­
age to output an acceptable hypothesis (that is, one with the desired error
bound f) with probability l/q(n, size(c», so a small pool of independent
hypotheses contained an acceptable hypothesis with high probability, and
thus confidence boosting involved simply identifying a good hypothesis
from the small pool. In contrast , we are now faced with the situation
where the available learning algorithm might always output a hypothesis
with an unacceptably high error (that is, error larger than f) .

At first glance , this might make our stated goal seem impossible to
achieve. The key to obtaining the result lies in the fact that even though
the available learning algorithm L may output hypotheses with unaccept­
ably large error {3, it is guaranteed to do so for any distribution on the
input space. The idea will be to run L many times, not only on the target
distribution V, but also on other related probability distributions which

Copyrighted Material

Weak and Strong Learning 79

somehow "focus the attention" of L on regions in which the hypotheses
of previous runs perform poorly. For example, after running L once to
obtain a hypothesis h of error at most fj with respect to V, we could then
run L again, but only giving L those inputs from V on which h errs -

the intuition being that the second run of L is forced to learn something
"new" . While this idea does not quite work , a variation of it will, and
the many hypotheses output by L on multiple runs will be judiciously
combined to yield a new hypothesis with error at most f on the original
distribution V.

We will present the accuracy boosting construction in two parts.
First, we define and analyze a simple and modest accuracy boosting pro­
cedure. Given a learning algorithm L that outputs hypotheses of error
at most fJ, this procedure uses L as a subroutine and outputs hypotheses
of error at most g(fj) < P, for some function g(fj) that we will specify
shortly. To do this, the procedure defines a sequence of three probability
distributions on the input space . It then invokes L three times on these
three distributions to obtain three hypotheses hI, h2 and h3• These hy­
potheses are combined into the single function h that takes the majority
vote of hl' h2 and h3 and which forms the output of the procedure. The
hypothesis h is guaranteed to have error at most g(fj), which still may
be much larger than the desired value f.

In the second and more complex part of the construction, we use this
modest boosting procedure repeatedly in a recursive fashion in order to
drive the error down to f.

4.3.1 A Modest Accuracy Boosting Procedure

Throughout this section, we shall assume c E C is the target concept, V
is the target distribution, and L is an algorithm that with high proba­
bility outp�ts hypotheses with error at most fj < 1/2 when given access
to EX(c, V). When there is ambiguity about the distribution, we use
error'D(h) to explicitly indicate the error of h with respect to c and V.

Copyrighted Material

80 Chapter 4

Our modest accuracy boosting procedure operates as follows. To
begin, algorithm L is invoked on the oracle EX(c, V). We let hi denote
the hypothesis output by L.

Now we run L again, but this time on a new distribution. Intuitively,
this second distribution is designed to extract new information about the
target concept - information that was absent in hl' More precisely, the
new distribution 'D2 is created by filtering 'D with respect to the first
hypothesis hI'

Distribution 'D2 is defined as follows: to sample from EX(c, 'D2), we
first flip a fair coin. If the outcome is heads, we draw labeled examples
from EX(c, 'D) until an example (x, c(x» is drawn such that h1(x) =
c(x) and output (x, c(x)). If the outcome is tails, then we draw labeled
examples from EX(c, 'D) until an example (x, c(x») is drawn such that
hl(x):F c(x) and output (x,c(x»).

Thus, 'D2 is essentially 1) normalized to give weight exactly 1/2 to
those instances on which hl errs; the relative weight of two such instances,
however, is unaltered, as is the relative weight of two instances on which
hi is correct. V2 is constructed so that hi has no advantage over random
guessing: that is, errort>2(hl) = 1/2 > p. Thus, invoking L on EX(c, V2)
yields a hypothesis h2 which gives us "new information" about c, that is,
information not contained in hi' In particular, we must have hi :F h2•

It is important to note that we can sample from EX(C,1)2) given
access to EX(c, V), and that the expected number of calls we need to
EX(c, 'D) to simulate a single call to EX(c, 'D2) becomes large only if
errort>(hl) � 0 or errort>(hl) � 1. Roughly speaking, neither of these
is a major problem since if errort>(hl) � 0 then hI already has error
significantly smaller than {3, and errort>(h1) � 1 > {3 cannot happen if L
meets its guarantee when run on EX(c, V). However, we shall rigorously
handle the issue of the efficiency of filtering later, and for now we simply
assume we can sample EX (c, 'D2) in unit time.

For the third simulation of L, we create a third distribution 1)3 by

Copyrighted Material

Weak and Strong Learning 81

again filtering V, this time with respect to both hI and h2• In order to
sample from EX{c, Va), we draw labeled examples from EX(c, V) until
an example (x,c{x)) is drawn such that ht{x) :F h2{x) , and then output
(x, c{x») . Invoking L on EX(c, Va) yields a hypothesis ha which once
again gives gives "new information" about c, this time on those inputs
such that ht and h2 disagree. We again defer analysis of how efficiently we
can sample EX(c, V3), and for now we assume we can sample EX(c, Va)
in unit time.

Finally, the output of the modest accuracy boosting procedure is h =
majority(hlt h2' h3); by this we mean that hex) = 1 if and only if at
least 2 out of 3 of ht(x), h2(X) and h3(X) are 1. Let us introduce the
notation /31 = error'D(ht), /32 = error'D2(h2) and /33 = error'D3(h3)· Our
goal now is to argue that even though Pl,/32 and P3 may all be as large
as p, error'D(h) is significantly smaller than p.

4.3.2 Error Analysis for the Modest Procedure

Before embarking on the specifics of this argument, it will be helpful to
introduce a technical fact that we shall use repeatedly. Throughout the
chapter, we will need to map the probability of an event with respect to
V2 back to its probability with respect to V. More precisely, consider
any instance x. By the definition of V2, given the value of V2[xj (the
weight of x under V2), the weight V [x] is completely determined by
whether ht{x) = c{x) or h1{x) :F c{x). Thus, if h1{x) = c(x) then
1>[x) = 2{1 - Pt)V2(x]. To see this, note that the transformation of V
to 1>2 changes the total weight of the instances where hI{x) = c(x) from
1- /31 to 1/2, or viewed in reverse, an instance x such that hl(X) = c(x)
and V2[x] = P must have had weight 2(1 - /3t)p under V. Similarly, if
ht{x) ::/: c(x) then V[x] = 2/3tV2{XJ. More generally, for any set S � X
we can write

Pr�E'D[x E S] = 2(1- Pt)Pr�E'D2[hl(X) = c(x) 1\ XES]

+2,atPr�E'D2[hl(X) ::/: c(x) 1\ XES]. (4.1)

Copyrighted Material

82 Chapter 4

In what follows, we will repeatedly obtain expressions for probabilities
over 'D by first decomposing those probabilities over 'D2 into their hI = c
and h1 '# c components, and then obtaining the probability with respect
to'D via Equation 4.1.

We now embark on the analysis of the error of the hypothesis found
by the modest accuracy boosting procedure. The following lemma gives
an upper bound of g({3) = 3{32 - 2{33 on this error with respect to the
original distribution 'D. The function g({3) is important to all of the
ensuing analysis, so we pause to note two important facts. First, for any
o !5 (3 < 1/2 we have g({3) < {3, and g(1/2} = 1/2. Second, g({3) has a
well-defined inverse g-1(0) obeying g-1(0) > 0 for 0 !5 0 < 1/2.

Lemma 4.1 Let g({3) = 3{32 - 2{33. Let the distributions 'D, 'D2 and
Va be as defined above, and let hit h2 and h3 satisfy errorv(h1) !5 (3,
errorp2(h2) � (3, and errorpa(h3) � (3. Then if h = majority(h1l h21 ha) ,
errorv(h) � g(/3).

Proof: We will show in stages that the error of h is maximized when
/3i = /3 for all i, that is, when each hi has the maximum allowed error
with respect to its corresponding distribution. The bound of g({3) on the
error of h with respect to 'D will then follow quite easily.

For the purposes of analysis, we will decompose the errors of h into
two mutually exclusive types. The first type of error is on those inputs
where both hI and h2 already make an error. Note that the output of ha is
irrelevant in this case, since the majority is already determined by hI and
h21 and this majority gives the incorrect label. The second type of error
is on those inputs where h1 and h2 disagree. In this case, the hypothesis
h3 gets to cast the deciding vote for the majority, and therefore h makes
an error if and only if h3 does. This yields:

errorv(h) = Pr%E'D[h1(x) '# c(x) A h2(X) ¥: c(x)J
+Pr%E'D[ha(x) '# c(x)lh1(x) ¥: h2(x)]Pr:rE'D[hl(x) ¥: h2(x)]

Copyrighted Material

Weak and Strong Learning 83

= Pr:l:Et>[h1(x) ¥ C(x) A h2(X) ¥ c(X)J

+,83Pr:rEt>[h1(x) =F h2(X)} (4.2)

The last equality comes from the fact that choosing randomly from 1>
conditioned on h1(x) =F h2(X) is the same as choosing from 1>3, since this
is exactly the definition of 1>3.

Our goal now is to use Equation (4.2) to obtain an upper bound on
errort>(h) that is first an algebraic expression over the ,8i, and eventually
over only,8. From this expression it will be a simple matter to bound
errort>{h) by g(/1).

To begin with, it is clear from Equation (4.2) that errort>(h) is max­
imized when ,83 = ,8, because no other term in the equation depends on
1>3 and h3• This gives

errort> (h) 5 Pr:rEt>[h1(x) ¥ c(x) A h2(X) :f: c(x)]

+,8PrzEt>[h1(x) =F h2(x)) (4.3)

It remains to analyze the two probabilities involving ht and h2 in
Inequality 4.3. We can represent the distributions 1> and 1>2 as shown in
Figure 4.1. Distribution 1>2 can be partitioned into two equal parts as
shown: one corresponding to those inputs x where ht(x) = c(x) and the
other corresponding to h1(x) ¥ c(x). As shown, let ')'1 and ')'2 respectively
be the error of h2 on each of these parts, that is,

and
')'2 = PrSEt>2(h1(x) ¥ c(x) A h2(X) =F c(x)J.

Clearly we have ')'1 + ')'2 = ,82.

Using the expression for ')'1 and using Equation 4.1 to go back to V,
we may write

Copyrighted Material

84

r T O�I -----r, ------�J��, -----4
I , I I I I I ,
I , "
I , I ,
I I I I I I I I I I ' ,

02 It-' __ -Ir_'Y.;...1-t.-+t--.;;;'Y2;..-1+--_---1
112

Cha.pter 4

Figure 4.1: The mapping of distribution 1) to distribution 1)2. The region
hI = c "shrinks" /rom weight 1- PI > 1/2 under 1) to weight exactly 1/2
under 1)2, while the region hI ::f:. c "expands" from weight PI < 1/2 under
1) to weight exactly 1/2 under 1)2'

Also note (see Figure 4.1) that

Pr�Et>a[hl(X) ::f:. c(x) A h2(X) = c(x)J = 1/2 - '12

and thus by Equation 4.1

Using Equations (4.4) and (4.5) and the fact that

Pr:l:Et>[h1(x) ::f:. h2(X») =

we get

Pr:l:Et>[h1(x) = c(x) A h2(x) ::f:. c(x)J

+Pr:l:Et>[h1(x) ::f:. c(x) A h2(x) = c(x)1

Copyrighted Material

Weak and Strong Learning 85

Now using the expression for 12 and again using Equation 4.1 to go
back to V, we may write

Substituting Equations (4.6) and (4.7) into Inequality (4.3), we get :

error1>(h) :5 2Pl12 + P(2(1- PI)"!l + 2Pl(1/2 -12))
- {JI{J(l - 211) + 2{J112(l - {J) + 211{J·

The last equality can be easily verified algebraically. The coefficient of
PI in this expression is {J(1 - 211) + 212(1 - {J), which is non-negative
because {J,12 2: 0 and {J,11 < 1/2. Thus the error of h is maximized if
{JI = {J, the maximum allowed value for {JI. This, along with some more
algebra, allows the expression for the error of h to be further simplified
to

error1>(h) :5 {J2 + 2{J{l - P)(11 + 12)'
This is maximized if 11 + 12 = {J2 is set to its maximum value p. This
yields

as desired. O{Lemma 4.1)

4.3.3 A Recursive Accuracy Boosting Algorithm

So far, we have only given a procedure that drives the error down from
{J to g{{J). We now consider the larger problem , where we are given a
learning algorithm L with an error bound of only 1/2 -1/p(n, size{c)) for
some polynomial p(" .) and we wish to construct a new learning algorithm
whose error bound can be made as small as any input e. The basic idea
for tackling this problem is quite simple: we will just invoke the modest
accuracy boosting mechanism recursively, until the desired error bound
is obtained.

Copyrighted Material

86 Chapter 4

Let us be a little more precise. Suppose we are given a desired error
bound e. If we had in our possession a learning algorithm L whose
hypotheses were guaranteed to have error bounded by g-l(f) (which is
larger than f), then we have already shown how we could make three
calls to L using filtered distributions to obtain a hypothesis with error
g(g-l(e» = e, and we would be done. However, we may not have such an
L available . But if we only had an L whose error bound was g-l(g-l(e»,
then we could apply our boosting procedure once to improve the error
bound to g(g-l(g-l(e») = g-l(e), then again a second time to get the
error down to e. Since we regard € as an input parameter, and we must
run in time polynomial in llf, a primary concern with such an approach
is how deeply we must nest such recursive calls as a function of f.

The tentative description of the recursive algorithm follows; we will
shortly make some small but important modifications. The algorithm
takes two arguments as input: a desired error bound a (we discuss the
confidence parameter 6 momentarily) , and an oracle EX(c, V') for exam·
pies. As before, L denotes the assumed weak learning algorithm, and we
will use L(EX(c, V'» to denote the hypothesis returned by an invocation
of L using the oracle EX(c, V').
Algorithm Strong-Learn(a,EX(c, V'»:

• If a � 1/2 -l/p(n, size(c)) then return L(EX (c, V'». In this case,
the error parameter a for this call to Strong-Learn can already
be achieved by the weak PAC learning algorithm L.

• {3 +- g-I(O'). Here {3 is the error we require from the level of
recursion below us if we are to achieve error o'.

• Let V� and V� be obtained by filtering V' as described in the modest
boosting procedure.

• hi +- Strong-Learn({3, EX(c, V')).

• h2 +- Strong-Learn({3, EX(c, V�)).

Copyrighted Material

Weak and Strong Learning 87

• h3 +- Strong-Learn(,B, EX(c, Va)) .
• h +- majority(hlt h2' h3)'

• Return h.

Throughout the coming analysis, it will be helpful to think about the
execution of this recursive algorithm as a ternary tree. Each node of the
tree is labeled by two quantities: a (possibly filtered) oracle for random
examples of the target concept, and a desired error bound for this node.
The root of the tree is labeled by the oracle EX(c, V) (where c is the
target concept and V is the target distribution) and by the final desired
error bound t. Now any node labeled by EX(c, V') and a has either three
children or is a leaf, as we now describe.

If the label a < 1/2 - l/p(n, size(c)) then the desired error bound
for this node is still too small to be obtained by invocation of the weak
learning algorithm L. In this case, the three children will be labeled by
the oracles EX(c, V'), EX(c, V�) and EX(c, V�) as specified by our mod­
est accuracy boosting procedure, and all three children will be labeled
by the larger error bound of (J = g-l(a). This can be interpreted as a
request from the parent node to its children for hypotheses of error at
most (J on the filtered distributions, for if these are supplied by the chil­
dren then the parent can take the majority and fulfill its desired error
bound of a. Thus, these three children correspond to a recursive call by
our algorithm.

If, on the other hand, a � 1/2 -1/p(n, size(c)) then the desired error
bound for this node can be immediately satisfied by a call to the weak
learning algorithm L using the oracle EX(c, V'). Then this node will be
a leaf, and corresponds to a base case of the recursion.

Note that in this ternary tree, the oracle labeling any node is actually
implemented by making calls to the oracle of its parent, which in turn is
implemented by making calls to the oracle of its parent, and so on to the
root node with oracle EX(c, V).

Copyrighted Material

88 Chapter 4

To simplify the analysis of our recursive algorithm, we will defer until
later the issue of the dependence on the confidence parameter. More pre­
cisely, in addition to an examples oracle EX{c, 1)') and an error parameter
a, our algorithm really should also be taking a confidence parameter 6,
which is our allowed probability of failing to output a hypothesis of error
bounded by a with respect to c and V'. Now in our algorithm, there will
many steps at which the algorithm could potentially fail locally, thereby
causing a global failure to output a good hypothesis. For instance, if any
call to the weak algorithm L fails, or any recursive call of our algorithm
fails, we may fail to find a good hypothesis. But for now, we will simply
assume that all such steps succeed and analyze the complexity and cor­
rectness of the algorithm under this assumption. In other words, for now
we will simply ignore the confidence parameter 6. Towards the end of
the analysis, it will be easy to reintroduce 6 and the possibility of failed
steps by giving a bound N on the total number of possible places the
algorithm could fail in any execution, and allocating probability at most
6/ N to each of these.

We begin the analysis by bounding the maximum depth of the ternary
recursion tree induced by the execution of algorithm Strong-Learn.

4.3.4 Bounding the Depth of the Recursion

Let B{E,p(n, size(c») denote the depth (that is, the longest path from
the root to a leaf) of the execution tree whose root is labeled by the oracle
EX{c, V) and error parameter E when the given weak learning algorithm
has a 1/2 - l/p{n, size{c» error bound. Thus, B(E,p(n, size(c») is the
maximum nesting depth of the recursive calls to the procedure Strong­
Learn. It is considerably less than the total number of invocations of
Strong-Learn (which is the total number of nodes in the execution tree) ,
but its analysis will lead to a bound on this total as well.

Lemma 4.2
B(E,p(n, size(c») = O(1ogp(n , size(c» + 10glog(I/E».

Copyrighted Material

Weak and Strong Learning 89

Proof: To prove this lemma, we first argue that the number of recursive
calls to Strong-Learn needed to drive the error from its largest value of
1/2 - l/p(n, size(c» down to 1/4 is O(1ogp(n, size(c))). In other words,
the depth of any subtree of the execution tree whose error parameter
label is 1/4 or larger is O(logp(n, size(c»).

To see this, consider any node with a desired error bound of 13 > 1/4.
The distance of this value to 1/2 is just 1/2 - fJ, and the distance to
1/2 of the desired error bound of the node's parent is the larger value
1/2 - g(fJ). We wish to argue that this distance is actually moving away
from 1/2 by a constant multiplicative factor with each invocation of the
modest boosting procedure. This is because

1/2 - g(fJ) = 1/2 - 3fJ2 + 2fJ3 = (1/2 - fJ)(l + 2fJ - 2fJ2).

It is easy to show using basic calculus that for fJ � 1/4, the second fac­
tor is at least 11/8. Thus a single invocation of the modest boosting
procedure increases the distance of the error bound from 1/2 by a multi­
plicative factor of 11/8. Thus, logu/s(p(n, size(c))/4) levels of recursion
suffice to drive the error bound down to 1/4.

For fJ � 1/4, things are even better: the error bound decreases at
a doubly exponential rate! To see this, now we simply look at the rate
at which the error itself decreases, and we see that in one step 13 is
replaced by g(fJ) = 3fJ2 - 2fJ3 � 3fJ2. Therefore in k steps the error is
at most (1/3)(313)210• Since f3 � 1/4, this is at most (3/4)210• Solving for
(3/4)210 � t, we find that k � eolog log(l/t) suffices for some constant

eo > O. D(Lemma 4.2)

4.3.5 Analysis of Filtering Efficiency

We are now ready to tackle one of the main issues we have been avoiding
so far: how do we bound the time required to obtain examples from
the filtered distributions at each node of the recursion tree given that
in reality we have direct access only to the root oracle EX(c, V)? It

Copyrighted Material

90 Chapter 4

turns out that in order to obtain such a bound, we will need to modify
algorithm Strong-Learn slightly.

Recall that there were two types of filtering performed at any node in
the execution tree labeled by oracle EX (c, V') and error parameter a: the
filtered oracle EX (c, V2) was implemented by filtering V' with respect to
the hypothesis hI returned by the child labeled by EX (c, V') and g-l(a).
With probability 1/2, this involved waiting for an example (x, c(x») such
that hl(x) ':f: c(x). The expected waiting time is l/errorv,(hl), which is
unacceptably large if errorv1(h.) is small.

To handle this situation, we simply add a test to make sure that
errorv,(hl) is not "too small" before we attempt to make a recursive
call with the filtered oracle EX (c, V�). More precisely, after recursively
calling Strong-Learn on f3 = g-l(a) and EX (c, V') to obtain hll we
draw a sufficiently large number m of random examples from EX (c, V')
and use this sample to obtain an empirical estimate el for errorv,(hd.
The sample size m will be sufficiently large to ensure that

errorv,(h1) - a/3 ::; el =5 errorv,(h1) + a/3.

Thus our estimate is accurate within an additive error of a/3. Although
we shall not compute the required sample size precisely, it is bounded by
an inverse polynomial in a, and it is a straightforward exercise to derive
it using the Chernoff bounds described in the Appendix in Chapter 9.

Now if el =5 2a/3, then we know errorp,(hd =5 a, and we can already
return hI without performing the recursive calls. Otherwise, if fl > 2a/3,
then we know errorv,(h1) � a/3, and therefore the expected number of
calls to the oracle EX (c, V') needed to simulate one call to the filtered
oracle EX(c, V2) is at most 3/a.

Bounding the expected number of calls to EX (c, V') to implement
one call to the filtered oracle EX (c, V�) is more involved, and again in­
volves a modification to algorithm Strong-Learn. Let h2 denote the
hypothesis returned by the recursive call using oracle EX(c, V;) and er­
ror parameter f3 = g-l(a). Then before making the recursive call to

Copyrighted Material

Weak and Strong Learning 91

Strong-Learn with oracle EX(c, V�) and error parameter (J, we sample
from EX(c, V') to obtain an estimate e2 for error'D,(h2). We take enough
examples so that e2 is accurate to within additive error r, where we de­
fine T = « 1 - 2{3)/8) . a. Again the required sample size can be easily
derived using Chernoff bounds, and is bounded by an inverse polynomial
in r.

Now if e2 � a - T then we know we have already reached our goal
of error1>,(h2) � a, and we can simply ignore hh not make the third
recursive call, and return h2• On the other hand, if e2 > a - r then we
know error1>,(h2) � a- 2r, and we will prove below that this (along with
the fact that error1>,(h1) � a/3) implies Pr�E1>,(hl(X) 1: h2(X») � a/24.
Thus the expected number of calls to EX (c, V') needed to simulate one
call to EX (c, V�) is at most 24/ a, and we can safely proceed with the
recursive call.

Before verifying this claim, we present the modified algorithm just
outlined.

Algorithm Strong-Learn(a,EX(c, V'»:

• If a � 1/2 - l/p(n, size(c» then return L(EX(c, V'».

• {J +- g-l(a).

• Let V� and V� be obtained by filtering V' as described in the modest
boosting procedure.

• hI +- Strong-Learn({3, EX(c, V'».

• Compute an estimate el for error1>,(hI) that is accurate within
additive error a/3.

• If el � 2a/3 then return hI'

• h2 +- Strong-Learn(p, EX(c, V�».

Copyrighted Material

92 Cha.pter 4

• Compute an estimate f, for error']), (h2) that is accurate within
additive error 7' = « 1 - 2fJ)/8) . a.

• If e2 :::; 0'. - 7' then return h2 •

• h3 +- Strong-Learn(fJ, EX(c, V�».

• h +- majority(hl ! h2 ' h3) '

• Return h.

Lemma 4.3 Let a node of the execution tree be labeled by oracle EX (c, V')
and error bound a, and let fJ = g-l (a) . Let hi be the hypothesis returned
by the child labeled with EX (c, V') and fJ, and let h2 be the hypothesis re�
turned by the child labeled with EX(c, V�) and fJ. Let 7' = « 1 - 2{3)/8) ·a.
Then if error,]), (hI) ;::: 0:/3 and error']), (h2) ;::: 0: - 27',

Prze']), [h1 (x) :/: h2 (x)1 ;::: 0:/24 .

Proof: Let us define

as was done in the proof of Lemma 4 . 1 . Note that if we have an upper
bound on 'Y2 that is strictly less than 1/2, then we have a lower bound
on

PrzE'])� [hl (X) =/: c(x) A h, (x) = c(x)] = 1/2 - "12

that is strictly greater than O. Furthermore, we can translate this this
latter probability back to Vi to obtain a lower bound on

Prze']), [h1 (x) =/: c(x) " h2 (X) = c(x)J

and this finally is a lower bound on Prze']), [h1 (x) =/: h2(x)1.

We will now prove that subject to the condition error1)l (h,) ;::: 0'. - 2r,
'Y2 is at most 7/16 < 1/2. To do this, we maximize 'Y2 subject to the
condition erroTp, (h,) � 0: - 27'.

Copyrighted Material

Weak and Strong Learning 93

For the purposes of this maximization , we can assume that erroT1>, (hd
and errOr1>� (h2) are as large as possible (which is {3, the error parameter
given to the recursive calls that compute hI and h2} , as shown in Figure
4.2. This is because for any fixed values of errorv, (h1) and errorv; (h2) , if
we "added" a region of error to hI or h2 it could only increase the region
of their common errors , and thus the value of '1'2.

Thus we set errorp, (hl) = errorp� (h2} = {3 and hence

Prtl:ep� [hl (X} = c(x) " h2 (X) 1= c(x)] = '1'1 = (3 - '1'2. (4.9)

Now by decomposing erroT1>, (h2) into its hI = c and h2 1= c components,
and using Equation (4.1) to translate Equations (4.8) and (4.9) back to
V', we write

errorp, (h2) = 2{3'1'2 + 2(1 - (3)((3 - "(2)
= 2"(2(2{3 - 1) + 2{3 - 2{32. (4.10)

Also, under the constraint that erroT1>, (h2) � a - 2r we have

error1>, (h2) � a - 2r
- a(1 - (1 - 2(3)/4)

- g({3)(1 - (1 - 2(3)/4)
_ (3{32 - 2(33)(3 + 2(3)/4. (4. 1 1)

Putting Equations (4. 10) and (4.1 1) together and mUltiplying both
by 4, we obtain

Thus

8'1'2(2{3 - 1) ?: (-8P + 17p2 - 4p4) = P(2{3 - 1) (8 - P - 2p2) .

Therefore, since (2{3 - 1) < 0,

12 � {3/8(8 - (3 - 2(32).

Copyrighted Material

94

I
D ' I

I
I
I
I
I
I
I

a' '
2 1

h, = c

I
I
I
I
I
,
'- � ,

\

h, :f; c
w

, � I r- J I I
. ,

I
I J J

I I ,
I I I

I . , I
I I I (1.12 1 ,

I
1/2

•
- 112 ·12 -I

h2 :f; C

Chapter 4

Figure 4.2: The mapping of distribution V' to distribution V�, with maxi­

mum error P for hi and h2 . The current goal is to lower bound the shaded

region, which is the weight under V' of the compound event hI ::/= c and

h2 = c (which implies the desired event hI ::/= h2).

Some basic calculus shows that the maximum value of this expression in
the range P E [0, 1/2] occurs at P = 1/2, and is 7/16. This completes the
proof of the claimed bound on 1'2 subject to the constraint error'D'(h2) �
a - 2r.

Now since 1'2 :::; 7/16, we have that

We now translate this probability back to V', but must be a little careful
in doing so, since the assumption that Pt = errorzy(h1) was the maximum
value f3 was valid only for the purposes of maximizing 1'2 . Thus by
Equation 4 .1 , we write

Under our assumption PI � a/3, we finally obtain

Copyrighted Material

Weak and Strong Learning 95

88 promised. O(Lemma 4.3)

The following lemma summarizes our bounds on the number of ex­
pected calls to EX (c, V') needed to simulate the two filtered distributions.

Lemma 4.4 Let a node of the execution tree be labeled by oracle EX (c, V')
and error bound o. Then the expected number of examples that must be
drawn from EX(c, V') to simulate a single draw from EX(c, V�) is at
most 3/0, and the expected number of examples that must be drawn from
EX(c, VI) to simulate a single draw from EX(c, VD is at most 24/0 .

We now invoke the bounds of Lemma 4.4 repeatedly in order to obtain
a bound on how many calls to the root oracle EX(c, V) are required to
simulate a single draw from an oracle labeling a node at depth i in the
execution tree. To simulate one call to an oracle at the first level of
recursion (the children of the root, where the error bound is g-l (e», we
need at most 24/f calls to EX(c, V)j to simulate one call to an oracle
at the second level of recursion (where the error bound is g-l (g-l (e)) =

g-2(e» , we need at most 24/g-1 (e} calls to the first level of recursion,
each of which in turn require 24f calls to EX(c, V). By similar reasoning,
a call to an oracle at the ith level of the execution tree requires at most

calls to EX(c, V) in expectation.

To bound this expression, recall that g(f3) = 3f32 - 2f33 � 3f32. We
first prove by induction on i that g-i (e) � (fl/2')/3. For the base case,

since g(x) � 3x2 we have x � Vg(x)/3, or setting x = g-l (e) , g-l (e) �

ve/3 � �/3 as desired. Inductively, we write g-i(e) = g-l (g-(i-l) (f» �
g-1(e1/21-1 /3) � « fl/2i-1 /3)/3)1/2 = (e1/2')/3. Therefore

(2f4) (9-��f») . . . (g-(i:�)(f») � (:2) C�;2) C�;4) ' " Cl�:-l)
Copyrighted Material

96 Cbapter 4

72i
- e1+1/2+1/4+···+1/21- 1

72ie1/2'- 1
- £2

S;
72'(3g-(i- l)(e))

f2

S;
72' · 3(3g-i(e)2)

£2
9 · 72i(g-i(f»2

- £2

We have shown:

Lemma 4.5 Let the root 0/ the execution tree be labeled by the oracle
EX(c, V) and error bound f. Then the expected number oj examples that
must be drawn from EX(c, V) to simulate a single draw /rom an oracle
labeling a node 0/ the execution tree at depth i is bounded by

4.3.6 Finishing Up

9 . 72i(g-i (e» 2
e2

We are now almost ready to bound the sample complexity and running
time of Strong-Learn(e, EX(c, V», but before doing so must address
one final piece of unfinished business, which is the handling of the con­
fidence parameter b. Recall that to simplify the analysis so far, we have
assumed that many steps in the algorithm that may in fact have some
probability of failure (such as estimating the error of an intermediate
hypothesis, or a call to the weak learning algorithm, or a recursive call
with some error bound) are always successful. Now we must remove this
assumption, and it is straightforward to do this by "dividing" up our

Copyrighted Material

Weak and Strong Learning 97

desired global confidence parameter 0 into many small pieces, one for
each possible failure. Recall that we have already given a bound on the
recursion depth B = B{f, p{n, size{c», thus giving a bound of at most
38 nodes in the execution tree. (Remember that B bounds the recur­
sion depth under the assumption that there are no failures, and therefore
does not depend on 6). Now for any node in the execution tree, there
are five local steps that may result in a failure we wish to guard against:
the estimation of the errors of error1Y{h1) and error'D� (h2) to sufficient
accuracy, and the three recursive calls. Thus, each of these steps will be
carried out using confidence parameter 6' = 6/{5 · 38), resulting in overall
probability of failure at most o.

Throughout the remainder of this section, we will use the shorthand
notation B = B{E,p(n, size (c») for the execution tree depth which we
have already bounded, and let 6' = 6/(5 · 3B) . Note that by Lemma 4.2,
any quantity that is bounded by an exponential function of B is bounded
by O(p(n, size(c» log(l/E» .

Let T{E, 6, n, size{c» be the expected running time of the invocation
of algorithm Strong-Learn(f, 0, EX(c, V», let M(E, 6, n, size(c» be the
expected total number of examples drawn from the oracle EX (c, V) by
this invocation, and let U(f, 6, n, size(c» be the time required to evalu­
ate the final hypothesis returned by this invocation. Let teo, n, size(c» ,
m(6, n, size (c» and 11.(6, n, size(c» be the analogous quantities for the
invocation of the weak learning algorithm L(6, EX (c, V» .

We start by bounding the time required to evaluate a hypothesis
returned by Strong-Learn(f, 6, EXCc, V».

Lemma 4.6
U(f, 0, n, size(c» = 0{38

• 'U{o', n, size(c»)

which is polynomial in l/f, 1/0, n, and size(c) .

Proof: The hypothesis returned by Strong-Learn exactly mirrors the
structure of the execution tree: it is a ternary tree of height B, whose

Copyrighted Material

98 Chapter 4

internal nodes are majority functions, and whose leaves are hypotheses
returned by calls to the weak learning algorithm L. The total time taken
to evaluate all the hypotheses at the leaves is 0(3B · u(o', n, size(c») . This
is because there are at most 3B leaves, and each leaf of the execution tree
is an invocation of L with confidence parameter 6'. The time taken to
evaluate the majorities at the internal nodes is dominated by this bound.
O(Lemma 4.6)

We now bound the expected number of examples M(e, 6, n, size(c» .

Lemma 4.7

M(e, 6, n, size (c)) = 0 (2��B (m(6', n, size(c» + p2 (n, size (c» log :,))
which is polynomial in lie, 1/6, n, and size(c) .

Proof: Strong-Learn(e, 6, EX (c, 1)) invokes the weak learning algo­
rithm L at most 3B times. Each such invocation requires m(()' , n, size (c»
filtered examples, since each time L is called it is with confidence pa­
rameter 6'. We have already shown in Lemma 4.5 that to obtain one
filtered example at depth B in the execution tree, Strong-Learn is
expected to draw at most 9 . 72B(g-B(e))2 /e2 � 9 · 72B /e2 examples
from the oracle EX(c, 1) . Therefore 3B(9 · 72B /t2)m(6', n, size(c» =

0« 216B /e2)m(o' , n, size(c») examples suffice to implement the filtered
oracles at the execution tree leaves.

In addition, Strong-Learn draws samples at each node of the ex­
ecution tree in order to estimate the quality of the hypotheses hI and
h2 • Recall that at the ith level of the execution tree, the desired error
bound is a = g-i(t), and the desired error bound for the i + 1st level is
[3 = g-l (a) . The estimate for the error of hI at level i must have additive
error bounded by a/3, and the estimate for the error of h2 at level i must
have additive error bounded by T = « 1 - 2[3)/8) . a. Since T < a/3,
the number of examples required to accurately estimate the error of h2

Copyrighted Material

Weak and Strong Learning 99

dominates the sample size required to estimate the error of hI ! so we will
limit our attention to this dominating term.

Note that T � (1/{4p(n, size{c»» a because

1 - 2f3 > (1 _ 2 (! _ 1)) = --:-_2---,-.,....,... - 2 p(n, size(c» p{n, size{c»

due to the base case of the recursion. Using Lemma 4.5 and Chernoff
bounds , the number of filtered examples required for the tests at level i
is thus

which is
o ((p2(n, size(c)) log :,) 7�B)

since i � B. Since the number of internal nodes is bounded by 38 , this
gives an overall bound for the internal node tests of

Combining the bounds for the leaves and internal nodes gives the stated
overall bound. O(Lemma 4.7)

We now bound T(f, 6, n, size(c)) , the expected running time .

Lemma 4.8

T(e, 6) =

o (6!�B (m(6', n, size(c) + (p2(n, size(c» log :,) B . u(6', fl., size(c))
+3B • t(6', n, size(c»)

which is polynomial in l/f, 1/6, n, and size(c) .

Copyrighted Material

100 Chapter 4

Proof: The running time of Strong-Learn may be decomposed into
two parts. First, there is time spent at the leaves of the recursion, in the
invocations to the weak learning algorithm L. The time for each call to
L is at m ost teo', n, size(c» , and the number of such calls is at most 3B,
giving a total of 3B • teo', n, size(c».

The remainder of the running time of can b e ascribed to the examples
drawn from EXCc, V) and their subsequent passage from the root down
to a n ode in the execution tree. In its passage down the execution tree,
an instance may be given as input t o at most B hypotheses (one per
n ode passed) , where each such hyp othesis is being used to implement a
filtered distributi on.

From the fact that evaluating a hypothesis takes at most time 0(38
•

u(o', n, size(c») (the m ost expensive hypothesis to evaluate is the final
root hypothesis) , and the fact that the expected total number of examples
drawn is

o (2:�B (m(o', n, size(c)) + p2
(n, size(c)) log ;,))

we obtain the stated total time. D(Lemma 4 .8)

N ow it is a simple exercise t o show that the polynomial bounds on
the expected values of the sample size and running time can instead
be expressed as p olynomial bounds that hold with high probability, by
allotting a fraction of the confidence parameter 6 to the small probability
that the sample size or running time are excessively large. Combining
Lemmas 4.6, 4.7 and 4.8, we obtain our main result:

Theorem 4.9 Let C be any concept class and 'H any hypothesis class.
Then if C is efficiently weakly PA C learnable using 'H, C is efficiently
strongly PA C learnable using a hypothesis class of ternary majority trees
with leaves from 11.

Copyrighted Material

Weak and Strong Learning 101

4.4 Exercises

4. 1 . Use our transformation of a weak PAC learning algorithm to a
strong PAC learning algorithm to show that for any concept class C, if
C is efficiently PAC learnable, then it is efficiently PAC learnable by an
algorithm that:

• requires a sample of size at most 1/E2 'Pl (n, size (c) , log(l/e) , log(l/h» j

• runs in time at most 1/f.2 • P2(n, size(c) , log(l/f.) , log(l/o»j

• uses memory at most P3 (n, size (c) , log(l/f.), log(l/o»j

• outputs hypotheses of size at most P4(n, size(c) , log(l/E» that can
be evaluated in time at most ps(n, size(c) , log(l/f»

for some fixed polynomials Pl I P2 , P3 , P4 , PS .
4.2. Use our transformation of a weak PAC learning algorithm to a
strong PAC learning algorithm to show that for any concept class C, if
C is efficiently PAC learnable, then there is an efficient algorithm that,
given 0 < 0 ::;; 1 and a sample S of m examples of c E Cn, outputs with
probability at least 1 - 0 a hypothesis h that is consistent with S such
that size(h) $ p(n, size (c) , log m} for some polynomial p.

4.3. We say that an algorithm L in the PAC setting is a group PAC
learning algorithm for C if there exists a polynomial p(. , .) such for
any target concept c E Cn and any distribution, when L is given access
to EX(c, V) it outputs a hypothesis h : xp(n,.ize(c» -+ {O, I} that with
probability 1 - 0 satisfies

and

PrsEt>p(.... ue(c)) [h(S) = OI (V'x E S)c(x) = 1] ::;; f.

PrsEt>pc i.zeCC)) [h(S) = 1 1 (V'x E S)c(x) = OJ ::;; f

Copyrighted Material

102 Chapter 4

Thus, the hypothesis output by L must be given a large (but still only
polynomial size) collection of random examples that are either all positive
or all negative , in which case it accurately determines which is the case.

Prove that for any concept class C, C is efficiently group PAC learnable
if and only if it is efficiently weakly PAC learnable .

4.5 Bibliographic Notes

The equivalence of weak and strong learning was proved by Schapire [84,
85] , and the proof given in this chapter is due to him. Exercises 4. 1 and
4.2 are also due to Schapire, and his paper explores many other fasci­
nating consequences of the construction. Alternative boosting methods
have been given by Freund [35, 36) . In Freund's construction, the strong
learning algorithm 's hypothesis is simply a majority of many hypotheses
obtained from filtered runs of the weak learning algorithm.

Experimental results on neural network learning based on boosting
ideas are reported by Drucker, Schapire and Simard [30] . Goldman,
Kearns and Schapire [42} examine the sample size required for weak learn­
ing, showing that it can be considerably less than for strong learning in
some cases. Helmbold and Warumth [52} study various properties of the
weak learning model and its relationship to sample compression and Oc­
cam learning. Boneh and Lipton [24] examine conditions under which
boosting can be performed with respect to special distributions , and De­
catur and Aslam [12} show that weak learning is still equivalent to strong
learning in a restricted version of the PAC model known as statistical
query learning, which will be the focus of our study in Chapter 5. Ex­
ercise 4.3 is from a paper by Kearns and Valiant [60] , which also first
introduced the notion of weak learning.

Copyrighted Material

5

Learning in the Presence of Noise

In order to obtain a clean and simple starting point for a theoretical
study of learning, many unrealistic assumptions were made in defining
the PAC model. One of the most unjustified of these assumptions is that
learning algorithms have access to a noise-free oracle for examples of the
target concept. In reality, we need learning algorithms with at least some
tolerance for the occasional mislabeled example.

In this chapter we investigate a generalization of the PAC model in
which the examples received by the learning algorithm are corrupted
with classification noise. This is random and essentially "white" noise
affecting only the label of each example. (Learning in the presence of this
type of noise implies learning in some slightly more realistic models, and
more adversarial error models have also been examined in the literature;
see the Bibliographic Notes at the end of the chapter.) In this setting
we will see that much of the theory developed so far is preserved even in
the presence of such noise. For instance, all of the classes we have shown
to be efficiently PAC learnable remain so even with a classification noise
rate approaching the information-theoretic barrier of 1/2.

To show this, we will actually introduce another new model, called
learning from statistical queries. This model is a specialization of the
PAC model in which we restrict the learning algorithm to form its hy­
pothesis solely on the basis of estimates of probabilities. We will then

Copyrighted Material

104 Cha.pter 5

give a theorem stating that any class efficiently learnable from statistical
queries can be efficiently learned in the presence of classification noise.
While we show that conjunctions of literals can be efficiently learned
from statistical queries (and thus in the presence of classification noise),
we leave it to the reader (in the exercises) to verify that all of the other
efficient PAC learning algorithms we have given have efficient statistical
query analogues .

5.1 The Classification Noise Model

In the classification noise model, a PAC learning algorithm will now
be given access to a modified and noisy oracle for examples, denoted
EX'bN(C, 'D). Here c E C and 'D are the target concept and distribu­
tion, and 0 � 1] < 1/2 is a new parameter called the classification
noise rate. This new oracle behaves in the following manner: as with
EX(c, 'D), a random input x E X is drawn according to the distribution

'D, Then with probability 1-1], the labeled example (x, c(x») is returned
to the learning algorithm, but with probability 1], the (incorrectly) la­
beled example (x, -,c(x)) is returned, where -,c(x) is the complement of
the binary value c(x). Despite the classification noise in the examples
received, the goal of the learner remains that of finding a good approx­
imation h to the target concept c with respect to the distribution 'D,
Thus, on inputs f and b and given access to EX'bN(C, 'D), the learning
algorithm is said to succeed if with probability at least 1 - b it outputs
a hypothesis h satisfying error(h) == PrZ€1>[c(x) =F hex)] � f.

Although the criterion for success remains unchanged in the noisy
model, we do need to modify the definition of efficient learning. Note
that if we allow the noise rate 1] to equal 1/2, then PAC learning becomes
impossible in any amount of computation time, because every label seen
by the algorithm is the outcome of an unbiased coin flip, and conveys
no information about the target concept. Similarly, as the noise rate
approaches 1/2, the labels provided by the noisy oracle are providing

Copyrighted Material

Learning in the Presence of Noise 105

less and less information about the target concept. Thus we see there
is a need to allow the learning algorithm more oracle calls and more
computation time as the noise rate approaches 1/2.

We also need to specify what knowledge the learning algorithm has, if
any, about the value of the noise rate 7]. For simplicity we will assume that
the learning algorithm is provided with an upper bound 1/2 > 7]0 2: 7]
on the noise rate. (This assumption can in fact be removed; see Exercise
5.4.) The new notion of efficiency can then be formalized by allowing the
learning algorithm's running time to depend on the quantify 1/(1 - 27]0),
which increases as the upper bound 710 approaches 1/2. (Making rigorous
the informal arguments used here to argue that this dependence is needed
is the topic of Exercise 5.5.)

Definition 13 (PAC Learning in the Presence of Classification Noise)
Let C be a concept class and let 1£ be a representation class over X. We
say that C is PAC learnable using 1£ in the presence of classifi­
cation noise if there exists an algorithm L with the foliowing property:
for any concept c E C, any distribution V on X, any 0 � 7] < 1/2, and
any 0 < f < 1, 0 < 6 < I, and 'Tlo (where 'fI � 'flo < 1/2), if L is given
access to EXbN(C, V) and inputs f., 6 and 710, then with probability at least
1-6, L outputs a hypothesis concept hE 1£ satisfying error(h) � f. This
probability is taken over the randomization in the calls to EXbN(C, V),
and any internal randomization of L.

If L runs in time polynomial in n, 1/f., 1/6 and 1/(1 - 27]0) we say
that C is efficiently PAC learnable using 1£ in the presence of
classification noise.

Before proceeding further, let us convince ourselves with some con­
crete examples that learning in this apparently more difficult model really
does require some new ideas. Recall that one of the first PAC learning
algorithms we gave in Chapter 1 was for the class of boolean conjunctions
of literals. The algorithm initializes the hypothesis to be the conjunc­
tion of all 2n literals over Xl, • • • , X,u and deletes any literal that appears

Copyrighted Material

106 Chapter 5

negated in a positive example of the target conjunction (the negative
examples received are ignored) . The problem with using this same algo­
rithm in the classification noise setting is obvious and fatal. With the
noisy oracle, the algorithm may actually be given a negative example
of the target conjunction as a positively labeled example, resulting in
unwarranted and costly deletions of literals. For instance, suppose that
the target conjunction c contains at least one unnegated literal, say Xl.
Then the vector of all O's is a negative example of the target. However,
if this single vector has significant weight under 1>, say weight "'I, then
there is probability "'111 that the learning algorithm will receive the vector
of all O's as a negatively labeled example from EX'bN(C,1», causing the
deletion of all unnegated literals from the hypothesis.

Similarly, consider our algorithm from Chapter 1 for PAC learning
axis-aligned rectangles in the real plane. This algorithm takes a suf­
ficiently large sample of random examples of the target rectangle, and
chooses as its hypothesis the most specific (smallest area) rectangle that
includes all of the positive examples but none of the negative examples.
But such a rectangle may not even exist for a sample from the noisy
oracle EX'bN{C,1» .

5.2 An Algorithm for Learning
Conjunctions from Statistics

Intuitively, the problem with our conjunctions learning algorithm in the
classification noise setting is that the algorithm will make drastic and irre­
versible changes to the hypothesis on the basis of a single example. In the
noisy setting, where every individual example received from EX'bN(C, V)
is suspect since its label could be the result of an error, it seems natu­
ral to seek algorithms that instead form their hypotheses based on the
properties of large samples, or that learn from statistics.

As an example, consider the following rather different algorithm for

Copyrighted Material

Learning in the Presence of Noise 107

PAC learning boolean conjunctions (still in the original noise-free set­
ting). For each literal z over the boolean input variables Xl," " Xn,
denote by Po(z) the probability that z is set to 0 in a random instance
drawn according to the distribution V. If Po(z) is extremely small, then
we can intuitively "ignore" z, since it is almost always set to 1 (satisfied)
with respect to V. We define P01(Z) to be the probability that a random
instance from V fails to satisfy z, but does satisfy (that is, is a positive
example of) the target conjunction c. Note that for any literal appearing
in c, POl(Z) = O. IfpOl(Z) is large, then we would like to avoid including z
in our hypothesis conjunction, since there is a reasonable chance of draw­
ing a positive example of c in which z is O. We say that z is significant
if Po(z) � elBn and harmful if Pol(Z) � elBn. Note that since we always
have POl(Z) :5 Po(z), any harmful literal is also significant.

We now argue that if h is the conjunction of all the significant literals
that are not harmful, then h has error less than e with respect to c
and V. First we consider Pra€1>{c(a) = 0/\ h(a) = 1]. Note that the
event c(a) = 0/\ h(a) = 1 occurs only when there is some literal z
appearing in c that does not appear in h, and z is set to 0 in a. Since h
contains all the significant literals that are not harmful, and c contains
no harmful literals, any such literal z must not be significant. Then we
have that PraE1>[C(a) = 0/\ h(a) = 1] is at most the probability that
some insignificant literal is 0 in a, which by the union bound is at most
2n(eIBn) = e14. To bound Pra€1>[c(a) = l/\h(a) = OJ, we simply observe
that the event c(a) = 1/\ heal = 0 occurs only when there is some literal
z not appearing in c but appearing in hi and z is set to 0 in a. Since h
contains no harmful literals, we have that PraE1>[C(a) = 1/\ heal = 01 is
bounded by the probability that some harmful literal is set to 0 in a but
c(a) = 1, which by the union bound is at most 2n(eI8n) = f./4. Thus
error(h) :5 el4 + el4 = e/2.

The above analysis immediately suggests an efficient algorithm for
PAC learning conjunctions (in our original noise-free model) . The proba­
bilities Po(z) for each literal z can be estimated using EX(c, V) by draw­
ing a sufficiently large set of examples and computing the fraction of

Copyrighted Material

108 Chapter 5

inputs on which z is set to O. Similarly, the probabilities P01(Z) can be
estimated by drawing a sufficiently large set of examples and computing
the fraction on which z is set to 0 and the label is 1. Note that while
we cannot exactly determine which literals are harmful and which are
significant (since we can only estimate the Po(z) and P01(Z», we have
left enough room to maneuver in the preceding analysis that accurate
estimates are sufficient. For instance, it can be verified using Chernoff
bounds (see the Appendix in Chapter 9) that if our algorithm takes a suf­
ficiently large (but still only polynomial in n, lie and 1/8) sample for its
estimates, and chooses as its hypothesis h the conjunction of all literals
z such that the resulting estimate Po(z) for Po(z) satifies po(z) � el8n,
but the estimate P01(Z) for POl(Z) satifies P01(Z) � E/2n, and the sample
size is sufficient to make our estimates Po(z) and Pol(Z) within an addi­
tive error of el8n of their true values, then with probability 1 - 8, h will
satisfy error(h) � e.

A nice property of this new algorithm is that it forms its hypothesis
solely on the basis of estimates of a small number of probabilities (namely,
the Po(z) and POl (z». Of course, at this point all we have shown is another
efficient algorithm for PAC learning conjunctions . The feeling that this
algorithm is somehow more robust to classification noise than our original
algorithm is nothing more than an intuition. We now generalize and
formalize the notion of PAC learning solely on the basis of probability
estimates. This is most easily done by introducing yet another model
of learning. We then proceed to verify our intuition by showing that
efficient learning in the new model automatically implies efficient PAC
learning in the presence of classification noise.

5.3 The Statistical Query Learning
Model

OUf new learning model can be viewed as placing a restriction on the
way in which a PAC learning algorithm can use the random examples

Copyrighted Material

Lea.rning in the Presence of Noise 109

it receives from the oracle EX (c, V). Let C be a concept class over X.
In the statistical query model, if c E C is the target concept and V is
the target distribution, then we replace the usual PAC oracle EX(c, V)
with an oracle STAT(c, V) that accepts statistical queries of the form
(X, '1"). Here X is a mapping X : X x {O, l} -t {O,l} and 0 < '1" :5 1.
We think of X as a function that maps a labeled example (x, c(x») of
the target concept to 0 or 1, indicating either the presence or absence
of some property in (x, c(x»). For instance, in our new algorithm for
PAC learning conjunctions we took a large random sample, and for each
(a, c(a)) in the sample we computed the predicate x,(a, c(a» that is 1 if
and only if the literal z is 0 in a but c(a) = O. This predicate corresponds
to the probability POl(Z), that is, POl(Z) = Prae:v[x,(a, c(a» = IJ.

In general, for a fixed target concept c E C and distribution V, let us
define

P" = Pr:tE:V [X(X, c(x» = IJ.
We interpret a statistical query (X, '1") as a request for the value Px:
However, on input (X, '1") the oracle STAT(c, V) will not return exactly
P", but only an approximation. More precisely, the output of STAT(c, V)
on input query (X, r) is allowed to be any value P" satisfying Px - r :5
F" :5 Px + '1". Thus, the output of STAT(c, V) is simply any estimate of
p)(that is accurate within additive error r. We assume that each query
to STAT(c, V) takes unit time.

We call r the tolerance of the statistical query, and the choice of
both X and '1" are left to the learning algorithm (modulo some important
restrictions discussed momentarily). For instance, in our conjunctions ex­
ample, recall that by the analysis of the last section it suffices to estimate
the probabilities POl(Z) = Px� to within tolerance '1" = fJBn.

At this point , it should be clear that given access to the oracle EX(c, V),
it is a simple matter to simulate the behavior of the oracle STAT(c, V) on
a query (x,r) with probability at least 1-6. We just draw from EX(c, V)
a sufficient number of random labeled examples (x, c(x)}, and use the
fraction of the examples for which x(x, c(x» = 1 as our estimate p)(of

Copyrighted Material

110 Chapter 5

P'X' Now by Chernoff bounds, the number of calls to EX(c, V) required
will be polynomial in 1fT and log(1/6) , and the time required will be
polynomial in the time required to evaluate X, and in 1fT and log(1/6).
To ensure that efficient algorithms for learning using STAT(c, V) can
be efficiently simulated using EX(c, V), we must place some natural re­
strictions on T (namely, that it is an inverse polynomial in the learning
problem parameters) and on X (namely, that it can be evaluated in poly­
nomial time). Thus we require that algorithms only ask STAT(c, V) for
estimates of sufficiently "simple" probabilities, with sufficiently coarse
tolerance. This is done in the following definition, which formalizes the
model of learning from statistical queries. The intuition that algorithms
with access to STAT(c, V) can be efficiently simulated given access to
EX(c, V) is then formalized in greater detail as Theorem 5.1 below.

Definition 14 (The Statistical Query Model) Let C be a concept class
and let 11. be a representation class over X . We say that C is efficiently
learnable from statistical queries using 11. if there exists a learning
algorithm L and polynomials p(., . , .), q(., " .) and r(·, ., .) with the follow­
ing property: for any c E C, for any distribution V over X, and for any
0 < E < 1/2, if L is given access to STAT(c, V) and input E, then

• For every query (X, T) made by L, the predicate X can be evaluated
in time q(l/E, n, size(c)), and 1fT is bounded by r(l/E, n, size(c».

• L will halt in time bounded by pellE, n, size(c».

• L will output a hypothesis h E 11. that satisfies error(h) � E.

Notice that the confidence parameter 6 has disappeared from this
definition. Recall that this parameter guarded against the small but
nonzero probability that an extremely unrepresentative sample is drawn
from EX(c, V) in the PAC learning model. Since EX(c, V) has now been
replaced by the oracle STAT(c, V), whose behavior is completely deter­
mined modulo the query tolerance T, there is no need for 6. Of course,

Copyrighted Material

Learning in the Presence of Noise 111

we could allow a certain failure probability for the case of randomized
learning algorithms, but choose not to for the sake of simplicity, since we
will only examine deterministic algorithms.

The following theorem verifies that we have defined the statistical
query model in a way that ensures efficient simulation in the PAC model.
Its proof is the subject of Exercise 5.6. Thus, we have found a model that
specializes the PAC model in a way that allows learning algorithms to
estimate probabilities, but to do nothing else.

Theorem 5.1 Let C be a concept class and 11 be a representation class
over X. Then if C is efficiently learnable from statistical queries using
11, C is efficiently PAC learnable using 11.

In the following section we will show a much more interesting and
useful result: any class that is efficiently learnable from statistical queries
is in fact efficiently PAC learnable even in the presence of classification
noise. Before this, however, we pause to note that by the analysis of
Section 5.2, we already have our first positive result in the statistical
query model:

Theorem 5.2 The representation class of conjunctions of literals is ef­
ficiently learnable from statistical queries.

5.4 Simulating Statistical Queries in the
Presence of Noise

Let us fix the target concept c E C and the distribution V, and suppose
we are given a statistical query (X, 7"). We now give an efficient method
for obtaining an accurate estimate of

Px = Pr%E1>[X(X, c(x» = 1]

Copyrighted Material

112 Chapter 5

given access only to the noisy examples oracle EX'bN(C, V). We will then
show how this method can be used to efficiently simulate any statistical
query learning algorithm in the presence of classification noise.

5.4.1 A Nice Decomposition of Px

The key idea behind obtai ning the desired expression for P" is to define
a partition of the input space X into two disjoint regions Xl and X2
as follows: Xl consists of all those points x E X such that X(x, 0) :F
X(x,1), and X2 consists of all those points x E X such that X(x,O) ::;::
X(x,1). Thus, Xl is the set of all inputs such that the label "matters"
in determining the value of X, and X2 is the set of all inputs such that
the label is irrelevant in determining the value of x. Note that Xl and
X2 are disjoint and Xl U X2 = X.

Having defined the regions Xl and X2, we can now define the induced
distributions on these regions. Thus, we let PI = Pr:tE1>[X E Xl] and
P2 ::;:: Pr:tE1>(X E X2] (note that PI + P2 = 1), and we define VI over Xl
by letting

P [S] Pr:tE1>(x E S]
rZE1>l x E = -,;;.;:.;;...:.....-.....:.

PI
for any subset S � Xl. Thus, 1'1 is just V restricted to Xl. Similarly,
we define 1'2 over X2 by letting

P [S] _ Pr:r:E1>[X E S]
r:r:E1>2 x E - -=-=---...:. P2

for any subset S � X2•

For convenience, let us introduce the shorthand notation PrEx(c,1»H
and PrEXlw(c,1»H to denote probabilities over pairs (x, b) E X x {O, I}
drawn from the subscripting oracle. We will now derive an expression
for P" = PrEX(c,1»[X = 1] (we have omitted the arguments x, b to X for
brevity) involving only the quantities

11,PlJ PrEXtW(C,1>l)[X = 1], PrEX�m(c,1»((X = 1) A (x E X2)].

Copyrighted Material

Learning in the Presence of Noise 113

Looking ahead, we will then show that an accurate guess for T/ can be
made and verified given only the upper bound T/o, and that the latter three
probabilities can in fact be estimated from the noisy oracle EX'lJN(c, V).

To derive the desired expression for P')(I we may write:

P')(- PrEX(c,2»[X = 1]
- PrEX(c,2»[(X = 1) A (x E Xl)) + PrEX(c,2»[(X = 1) A (x E X2)]
- PrEX(c,2»[x E X1]PrEX(c,2»[X = llx E Xl}

+PrEX(c,2»[(X = 1) A (x E X2))

- P1PrEX(c,2>1)[X = 11 + PrEXtw(c,2»[(X = 1) A (x E X2)] (5.1)

where to obtain the final equality we have used the fact that for x E X2,
we may replace the correct label by a noisy label without changing the
probability that X = 1.

Note that since X is always dependent on the label in region Xb we
also have:

PrEXbN(C,2>l}[X = 1] = (1 - T/)PrEX(C,Vl)[X = I} + T/PrEX(C,2>l)[X = O}
- (1 - T/)PrEX(c,vt}[X = 1]

+T/(1 - PrEX(C,2>l)[X = 1])
= T/ + (1 - 2T/)PrEX(c,Vl)[X = 1J.

Solving for PrEX(C,2>l)[X = 1) and substituting into Equation 5.1, we
obtain:

As promised, we now show that the probabilities

PI! PrEXbN(C,Vl)[X = 11, PrEXtW(c,V) [(X = 1) A (x E X2)]
appearing in Equation (5.2) can in fact be estimated from the noisy oracle

EX'bN(C, V). In a later section we return to the issue of estimating the

noise rate .

Copyrighted Material

114 Chapter 5

First, note that it is easy to estimate Pl using only calls to EX'bN(C, 1):
we simply take many noisy examples (x, b) from EX'bN(C, 1), ignore the
provided label h, and test whether X(x,O) =F X(x, 1). If so, then x E Xl,
otherwise x E X2• Thus for a large enough sample, the fraction of the x
falling in Xl will be a good estimate for PI by Chernoff bounds. The fact
that the labels are noisy does not bother us, since membership in Xl is
a property of the input x alone.

Next, PrEX" (C,'Dl)[X = 1] can be estimated from EX'bN(C, V). Note
that we do not

clZ'ave direct access to the subscripting oracle, since it is
defined with respect to VI and not V. Instead, we simply sample pairs
(x,b) returned by EX'bN(C, V) and use only those inputs x that fall in Xl
(using the membership test X(x,O) =F X(x,I». For such x, we compute
X(x, b) (using the noisy label b given with x) and use the fraction of times
X(x, b) = 1 as our estimate.

Finally, note that we can estimate PrEX�7N(C,'D)(X = 1) " (x E X2)]
from EX'bN(C, V) because we have a membership test for X2, and this
probability is already defined directly with repsect to the noisy oracle.

5.4.2 Solving for an Estimate of P'X.

Equation (5.2) has the desired .form, being a simple algebraic expression
for Px. in terms of ." and the probabilities that we have already argued
can be accurately and efficiently estimated from EX'bN(C,1). Assuming
that we have "sufficiently accurate" estimates for all of the quantities on
the right hand side of Equation (5.2), we can use the estimates to solve
for an accurate estimate of PJ('

Of course, in order to use this method to obtain an estimate of PJ(
that is accurate within the desired additive error T, we may need to
estimate the probabilities on the right hand side of Equation (5.2) with
an additive accuracy r that is slightly smaller than T. For instance, for
any A, BE [O,ll and A, iJ E [0,1] that satisfy A - T' :5 A :5 A + r and

Copyrighted Material

Learning in the Presence of Noise 115

B - r' � iJ � B + r' for some r' E [0, I], we have AB - 2r' � AB �
AB + 3r'. Thus if we are using the product of the estimates A and iJ to
estimate the product AB within additive error r, then r' = r /3 suffices.
However, Equation (5.2) is more complex than a single product, and thus
we need to make r' even smaller to prevent the accumulation of too much
error when solving for P". It turns out that the choice r' = r /27 will
suffices; this comes from the fact that the right hand side of Equation
(5.2) can be multiplied out to obtain a sum of three terms, with each
term being a product of at most three factors. Thus if every estimated
factor has additive error at most r/27, then each estimated product will
have error at most 3(3r /27} = r /3, and the estimated sum will have
error at most r, as desired. As we shall now see, however, we need to
guess ", with even greater accuracy.

5.4.3 Guessing and Verifying the Noise Rate

The main issue that remains unresolved is that when estimating the
right hand side of Equation (5.2) to solve for P", we do not know the
exact value of TJ, but have only the upper bound 'I/O. This is handled by
simulating the statistical query algorithm (let us denote this algorithm
by L) f1/2A1 times, where A E (0,1] is a quantity in our control that
will be determined by the analysis. The ith time L is simulated (for
i = 0,1,2, ... , fl/2A 1-1), we substitute the guess r, = iA for TJ whenever
solving for a probability P" using Equation (5.2). Eventually we will
choose the best of the 1/2A hypotheses output by L on these many
simulations as our final hypothesis.

Note that for some value of i, the guess i} = iA satisfies

TJ - A � r, � TJ + A.
We would now like to derive conditions on A that will ensure that for
this i we have

1 1 1

1 - 2", - r min � 1 _ 2r,
�

1 _ 211 + r min'

Copyrighted Material

(5.3)

116 Ohapter 5

Here Tmin will be a quantity smaller than any of the tolerances T needed
by L (but still an inverse polynomial in the learning problem parameters).
Like the estimates for the probabilities discussed in the last section, this
will ensure that on this ith run of L, our guess 1/(1 - 2q) for the factor
1/(1 - 21]) in Equation (5.2) will be sufficiently close to let us solve for
P" within the desired T.

Now we know

1 < 1 < 1
.

1 - 2(11- A) - 1 - 2q - 1 - 2(11 + A)
Taking the leftmost inequality of this equation, we see that the leftmost
inequality of Equation (5.3) will be satisfied if we have

1 1 -- -Tmin< • 1-21] -1-2(1]-A)
Solving for constraints on A gives:

or

1 1 - 211 + 2� $ --.-} ---
1-2" - Tmin

1 2� $ i - (1 - 21]).
1-2" - Tmin

If we set x = 1/(1 - 21]) we obtain

1 2�$ ---
x - Tmin

or, if we further define f(x) = l/x,

1

x

2A $ f(x - Tmin) - f(x).

The right hand side of this inequality suggests analysis via the derivative
of f· Now f'(x) = -1/x2 and we may write f(X-Tmln) � f(X)+CoTmin/X2
for some constant Co > 0, giving

A
< CoTmin = CoTmin(l_ 2)2
- 2X2 2 11 .

Copyrighted Material

Learning in the Presence of Noise 117

An identical analysis gives a similar bound on A for achieving the
rightmost inequality in Equation (5.3). Thus we see that to ensure that

our additive error in guessing the value of the factor 1/(1 - 21]) in Equa­
tion (5.2) is smaller than Tmin, we should make sure that the "resolution"
A of our successive guesses for 1] is smaller than CoTmin/(2(1-21])2). Since
we only have the upper bound 1]0, we will instead use the smaller value

A = CoTmin/(2(1 - 21]0)2).

The preceding analysis shows that when A is properly chosen then on
one of the simulations L our guess fj will be sufficiently close to 1], and on
this run L must output a hypothesis h such that error(h) :5 e. We must
still give some way of verifying which simulation was the good one. This is
a straightforward matter. Let ho, • . . , hrl/2Al-l be the hypotheses output
by L on the r1/2Al simulations. If we define 'Yi = PrEX1m(c,'V)[hi(X) =1=
b) (this is the probability hi disagrees with the label provided by the
noisy oracle), then 'Yi = (1 - 71)error(hi) + 1](1 - error(hi» = 1] + (1 -
271)error(hi), and 'Yi - 'Yj = (1 - 21])(error(hi) - error(hj». This shows
that if we estimate all of the 'Yi to within an additive error of e/(2(1-21]»
(which is easily done, since 'Yi is defined with respect to the noisy oracle)
and choose as our final hypothesis that hi whose associated estimate
1i is smallest, then error(h) :5 € with high probability. Again, having
only the upper bound 710 we can instead use the smaller additive error of
E/(l - 2710).

5.4.4 Description of the Simulation Algorithm

We are finally ready to give a detailed outline of the overall simulation,
followed by the main result of this chapter.
Algorithm Simuiate-SQ(E, a, 1]0):

• Tmin � 1/(4r(1/E1 n, size(c»), where r(l/e, n, size(c» is the polyno­
mial bound on the inverse tolerance for all queries of the statistical

query algorithm L.

Copyrighted Material

118 Chapter 5

• � +- eormin/(2(1 - 21JO)2) •

• For i = 0 to rl/2� 1 - 1:

- f] +- i�.
- Simulate the statistical query algorithm L with accuracy pa-

rameter f and using f] as the guessed noise rate. More precisely,

for every statistical query (X, r) made by L:
* Randomly sample from the noisy oracle EX'bN(c, V) to

compute estimates PI for Pl = Pr EX(c,l')[x E Xl], q for

q = PrEXtw(c,l't)[X == 1] and f for

r = PrEXbN(C,l')[(X = 1) " (x E X2»).

Here Xl, X2 is the partition of X defined by X. These es­
timates should be accurate (with high probability) within
an additive error of r' = r /27.

* Px +- Pl(ii-r,)/(l- 2f]) +r. This is the estimated solution
of Equation (5.2).

* Return P'X. to L.
- Let hi be the hypothesis returned by the ith simulation of L .

• For i = 0 to r1/2� 1-1, let "Yi = PrEXbN(c,l')[hi(x) ::J b]. Randomly

sample from EX'lm(c, V) to obtain estimates 1'i that are accurate
within additive error f/{2{1 - 21Jo», and output the hi with the
smallest 1'i'

The only details missing from our analysis of this simulation is its
dependence on the confidence parameter 6, and of course, a precise bound
on the number of examples from EXdN(C, V) required by the simulation.
The handling of 6 is the standard one used in Section 4.3.6 when proving
the equivalence of weak and strong learning . Namely, in any execution
of Simulate-SQ there are many places in which we need to randomly
sample to accurately estimate some probability, and there is always some
small probability that we fail to get an accurate estimate. If N is the

Copyrighted Material

Learning in the Presence of Noise 119

number of such estimates, we can simply allocate probability of failure
6/ N to each and apply the union bound to bound our total probability
of failure, and we can always use the running time of L as a crude bound
on N. Finally, although we have been careful to argue that for every
estimate we can tolerate an additive error that is polynomial in E, T min
and (1 - 27]0) (and thus that a polynomial sample suffices by Chernoff
bounds) , we leave it to the reader (Exercise 5.7) to give precise bounds,
and to in fact improve the simulation sample bounds in certain natural
cases by drawing a single initial sample from EX'bN(C, 1) from which all
probabilities can be estimated throughout the simulation.

The statement of our main result follows.

Theorem 5.3 Let C be a concept class and let 1-£ be a representation
class over X. Then if C is efficiently learnable from statistical queries
using 1-£, C is efficiently PAC learnable using 1-£ in the presence of clas­
sification noise.

From Theorems 5.2 and 5.3, we have:

Corollary 5.4 The representation class of conjunctions of literals is ef­
ficiently PAC learnable in the presence of classification noise.

We leave it to the reader in the exercises to verify that the other
classes for which we have provided PAC learning algorithms also have
statistical query algorithms, and thus are learnable in the presence of
classification noise.

5.5 Exercises

5.1. Show that the representation class of decision lists is efficiently
learnable from statistical queries.

Copyrighted Material

120 Chapter 5

5.2. Show that there is a statistical query model analogue to the effi:­
cient algorithm given in Section 2.3 for learning conjunctions with few
relevant literals. Show that this statistical query algorithm can be ef­
ficiently simulated in the classification noise model using a number of
calls to EX'bN(C, 'D) whose de pendence on the number of literals size(c)
is polynomial, but whose dependence on the total number of variables n
is only logarithmic.

5.3. Conside r the va riant of the statistical query model in which the
learning algorithm , in addition to the oracle STAT(c, 'D), is also given
access to unlabeled random draws from the target distribution 'D. Ar­
gue that Theorem 5.3 still holds for this variant, then show that the
concept class of axis-aligned rectangles in !RR can be efficiently learned
in this variant (and thus is efficiently PAC learnable in the presence of
classification noise) .
5.4. Show that if there is an efficient algorithm for PAC learning in the
presence of classification noise by an algorithm that is given a noise rate
upper bound 1'/0 (1/2 > 1'/0 � 1/ � 0) and whose running time depends
polynomiallyon 1/(1 - 21/0), then there is an an efficient algorithm that
is given no information about the noise rate and whose running time
depends polynomially on 1/(1 - 27]).
5.5. Give the weakest conditions you can on a concept class C that imply
that any algorithm for PAC learning C in the presence of classification
noise must have a sample complexity that depends at least linearly on
1/(1 - 27]).
5.6. Prove Theorem 5.1.
5.7. Give the best sample size bounds you can for the simulation of a
statistical query algorithm in the presence of classification noise given in
Section 5.4.4. Now suppose further that the statistical query algorithm
always chooses its queries X from some restricted class Q of functions
from X x {O,l} to {O, l}. Give a modified simulation with imp roved
sample size bounds that depend on log IQI (in the case of finite Q) and

Copyrighted Material

Learning in the Presence of Noise 121

VCD(Q) .

5.6 Bibliographic Notes

The classification noise variant of the PAC model was introduced by An­
gluin and Laird (101) who proved that boolean conjunctions are efficiently
PAC learnable in the presence of classification noise. Their paper also
contains several useful and general results on learning with noise, as does
the book of Laird (631 . Prior to the introduction of the statistical query
model, algorithms for PAC learning with classification noise were given
by Sakakibara [821 and Kearns and Schapire [61 , 85) , who examine a
model of learning probabilistic concepts, in which the noise rate can be
regarded as dependent on the instance.

The statistical query model and the theorems given for it in this
chapter are due to Kearns [56) , who also establishes that the statistical
query model is strictly weaker than the PAC model, and gives lower
bounds on the number of statistical queries that must be made in terms
of the VC dimension. The paper also examines some apparently less
benign noise models in which the statistical query results given here still
hold. Exercises 5.1, 5.2, 5.3, 5.6 and 5 .7 are also from the paper of Kearns.
The relationship between the statistical query model and other models of
robust learning is examined by Decatur (28) , and Decatur and Aslam {12}
establish the equivalence of weak and strong learning in the statistical
query model. A recent paper has given a complete characterization of
the number of queries required for learning in the statistical query model
(Blum et a1. (18)) .

In addition to the classification noise model, several other variants of
the PAC model have been introduced to model errors in the data. These
include PAC learning in the presence of malicious errors (Valiant [93) ;
Kearns and Li {57]) ,and a model of errors in which there is noise in the
inputs but not in the labels (Shackelford and Volper [87})i Goldman and

Copyrighted Material

122 Chapter 5

Sloan [41] ; Sloan [88l) . The book of Laird (63] contains a nice overview
of several error models. Littlestone examines a model of errors in on-line
learning 167J .

Copyrighted Material

6

Inherent Unpredictability

6.1 Representation Dependent and

Independent Hardness

Recall that in Chapter 1, we proved that some particular concept classes
are hard to PAC learn if we place certain restrictions on the hypothesis
class used by the learning algorithm. More precisely, it was shown that if
RP::j:: NP, then there is no polynomial-time algorithm for PAC learning
k-term DNF using k-term DNF. However, we then went on to show that
k-term DNF is efficiently PAC learnable if the algorithm is allowed to
output a hypothesis from the more expressive class of kCNF formulae.

These results raise an interesting and fundamental question regarding
the PAC learning model: are there classes of concepts that are hard to
PAC learn, not because of hypothesis class restrictions, but because of
the inherent computational difficulty of prediction - that is, regardless
of the hypothesis class 1t used by a learning algori�hm? More precisely,
we are interested in the existence of concept classes C in which the VC
dimension of Cn is polynomial in n (and thus by the results of Chapter 3,
there is no in/ormation-theoretic barrier to fast learning - a sample of
polynomial size is sufficient to determine a good hypothesis) , yet C is not

Copyrighted Material

124 Cha.pter 6

efficiently PAC learnable using any polynomially evaluatable hypothesis
class 11. In fact, by the equivalence of weak and strong learning proved
in Chapter I, we may as well strengthen this last condition and ask
that C be not even weakly learnable using any polynomially evaluatable
hypothesis class. We shall informally refer to a class C meeting these con­
ditions as inherently unpredictable, since despite the fact that a small
sample contains sufficient information to determine a good hypothesis, a
polynomial time algorithm cannot even find a hypothesis beating a fair
coin. Such a class would be hard to learn for different and arguably more
meaningful reasons than the class of k-term DNF, for which the hardness
results of Chapter 1 are essentially the consequence of a perhaps artificial
syntactic restriction on the hypothesis representation.

In this chapter and the next, we will prove not only that inherently
unpredictable classes exist, but furthermore that several rather natural
classes of concepts are inherently unpredictable. These results will also
demonstrate an interesting connection between hardness results for PAC
learning and constructions in the field of public-key cryptography, where
the necessary tools for our results were first developed.

6.2 The Discrete Cube Root Problem

Our proofs of inherent unpredictability will rely on some unproven com­
putational assumptions that have become widely accepted as standard
working assumptions in cryptography and computational complexity. In
fact, since the P = NP quest ion is a fundamental unresolved problem in
complexity theory, we cannot hope to prove inherent unpredictability for
any polynomially evaluatable class without some complexity assumption.
This is because for any polynomially evaluatable class 1(., the problem of
determining , on input any labeled sample S, whether there is a hypothe­
sis h E 11 consistent with S is in NP (because given any witness h E 'H we
can verify consistency with S in polynomial time). If P = NP, then such
a consistent hypothesis can be computed in polynomial time , and thus by

Copyrighted Material

Inherent Unpredictability 125

Occam's Razor (Theorem 2.1) the concept class is PAC learnable. Thus ,

in the same way that the hardness of PAC learning k·term DNF using
k-term DNF relied on the complexity-theoretic assumption RP :f: NP I

and therefore on the assumed intractability of particular computational
problems such as graph coloring, we must expect any theorem stating
that a concept class is inherently unpredictable to rely on the assumed
intractability of some specific computational problem. We now propose a
candidate problem for our purposes, which will require a brief digression
into number theory.

Let N = pq be the product of two prime natural numbers p and q
of approximately equal length. Factoring numbers of this form is widely
believed to be computationally intractable, even in the case where the
primes p and q are chosen randomly and we only ask the factoring al­
gorithm to succeed with some non-negligible probability. Let !N{X) ::::

x3 mod N, and consider the problem of inverting !N(X) - that is, the
problem of computing x on inputs N and !N(X) (but not given p and q!).

In order to make this problem well-defined, we first need to arrange
things so that fN(X) is in fact a bijection (permutation). Before doing
so let us review some elementary number theory. The natural numbers
in {I,···, N -1} that are relatively prime with N (two natural numbers
are relatively prime if their greatest common divisor is 1) form a group
under the operation of multiplication modulo N. This group is denoted
by ZN, and the order of this group, which we denote by cp(N) = IZNI,
is cp(N) = (p - 1)(q - 1). Returning to the question of whether !N(X)

is a bijection: we claim that if 3 does not divide cp(N), then !N(X) is a
permutation of ZN'

To see this, let d satisfy 3d = 1 mod cp(N). Such a d exists because the
grea.test common divisor of 3 and cp(N) is 1, and so by Euclid's theorem
there are integers c and d such that cp(N)c + 3d = 1. In fact, d can
be efficiently computed using Euclid's extended greatest common divisor
algorithm. Now we claim that the inverse function f"Nl(y) of fN{X) is
simply the mapping f"N1(y) = yd mod N: since 3d = 1 mod r.p(N) means

Copyrighted Material

126

3d = k<p(N) + 1 for some natural number k, we have

(fN(X»d mod N - (x3 mod N)d mod N
_ X3d mod N
_ xk''P(N)+l mod N

_ (X'P(N»)kX mod N.

Chapter 6

But a well-known theorem of Euler states that any element of a group
raised to the order of the group is equal to the group's identity element,
giving (X'P(N»)k = lk mod N = 1 mod N and thus (fN(x))d = x mod N
as desired. In the sequel we will refer to d as the inverting exponent for
N. The existence of this inverse mapping fN1(y) establishes that fN(X)

is indeed a bijection.

We can now formally define our problem.

Discrete Cube Root Problem. Two primes p and q are chosen such
that 3 does not divide <p(N) = (p - l)(q - 1), where N = p. q. Then
x E Ziv is chosen. An algorithm for the Discrete Cube Root Problem is
given as input both Nand y = fN(X), and must output x.

Note that the length of the input to this problem is O(log N) - not
N. So a polynomial time algorithm for this problem must run in time
polynomial in log N. We now discuss the computational difficulty of the
Discrete Cube Root Problem, leading to a formal assumption about its
intractability that is widely believed.

6.2.1 The Difficulty of Discrete Cube Roots

Notice that the Discrete Cube Root Problem would be easy to solve in
polynomial time if the prime factors p and q of N were also provided
as part of the input along with Nand y. We could simply compute
the inverting exponent d for N from p and q using Euclid's algorithm,
and then compute fi/(Y) = yd mod N = x mod N. We would have

Copyrighted Material

Inherent Unpredictability 127

to be a little careful in computing yd mod N efficiently, since we have
time only polynomial in log N, whereas d is of the order of N. There is a
standard trick for computing yd mod N by repeatedly squaring y modulo
N which we will describe in detail in Section 6.3. One consequence of this
observation is that for each fixed N of length n bits there is a boolean
circuit of size polynomial in n that computes cube roots modulo N -
the circuit simply has the inverting exponent d for N "hard-wired", and
then performs the required exponentiation on the input y.

How hard is computing cube roots when the prime factors of N are
not part of the input, which is the way we have defined the Discrete
Cube Root Problem? The obvious method - namely, to first factor N
to obtain p and q, compute d from p and q using Euclid's algorithm, and
then efficiently compute cube roots via exponentiation as outlined above
- runs into the widely known and computationally difficult problem of
factoring integers. Although computing cube roots has not been proved
to be as hard as factoring, the security of the well-known RSA public key
cryptosystem is based on the assumption that the Discrete Cube Root
Problem is intractable.

We now formally state our intracability assumption for the Discrete
Cube Root Problem, which is an assumption on the average-case diffi­
culty:

The Discrete Cube Root Assumption states that for every poly­
nomial p(.), there is no algorithm that runs in time p(n), and that on
input Nand y = !N(X) (where N is an n-bit number that is the prod­
uct of two randomly chosen primes p and q such that 3 does not divide
tp(N) = (p - l)(q -1), and x is chosen randomly in ZN) outputs x with
probability exceeding l/p(n). The probability is taken over the random
draws of p and q and x, and any internal randomization of the algorithm.

The fact that extensive efforts have not yielded any efficient algorithm
or even a heuristic for computing discrete cube roots means that any PAC
learning problem that is proved intractable under the Discrete Cube Root
Assumption is, at least for all practical purposes, not learnable given our

Copyrighted Material

128 Chapter 6

current understanding of number-theoretic computation.

6.2.2 Discrete Cube Roots as a Learning Problem

Suppose we are given a random N, and Y = !N(X) for a random x e ZN'
and we want to compute x from these inputs. The Discrete Cube Root
Assumption asserts that this is a difficult problem. But now suppose that
in addition to these two inputs, we had access to many already solved
"examples" for the given N. That is, suppose we are also given a sample

where each Yi E Ziv is chosen randomly. Then does the problem of
computing x become any easier?

The answer to this question is no, because since we are already given
N, we can generate such random pairs efficiently ourselves by picking
a random Xi e ZN and obtaining the pair (fN(Xi), Xi). By setting
Yi = !N(X.) (and thus Xi = !N1(Yi», and remembering that !N is a
bijection on Ziv, we see that these pairs have the same distribution as
those (y., fN1(Yi» generated by first picking a random number Yi e Ziv
and then computing fN1(Yi).

In our study so far, we have viewed the learning problem as that of
using a training sample of random examples to find a hypothesis that
has small error with respect to the target function and distribution. An
equivalent view of the learning problem is that of using the training sam­
ple to predict the target function's output on a new randomly chosen

input from the domain . If we choose our target function to be INi for
some N, the input domain to be ZN, the input distribution to be uni­
form on Ziv, then under the Discrete Cube Root Assumption we have a
computationally hard learning problem .

Before we cast this hard learning problem in the PAC model, let
us first formalize it a little further. For every natural number n, let

Copyrighted Material

Inherent Unpredictability 129

the class :Fn consist of all the inverse functions !NI for the functions
IN(x) = X3 mod N, where N = pq is n bits long and is the product of two
primes p and q such that 3 is relatively prime with cp(N) = (P-l)(q-l).
Let INl e :Fn be the target function, and let the learning algorithm be
given access to a source of random input-output pairs of !Ni, where the
input distribution is uniform on ZN' (Note that this hard distribution
depends on the target function IN1; in particular, it is not same as the
uniform distribution on {o,l}n.) The goal of the learning algorithm is to
discover in time polynomial in n a hypothesis function h that agrees with

INI even on only l/p(n) of the distribution for some fixed polynomial
p(.). If an algorithm A exists for this problem, it is easy to see that the
Discrete Cube Root Assumption is false: given Nand y as input , we first
set y aside and use N to generate examples of !i/ with respect to the
uniform distribution on ZN as described above. We use these examples
to simulate algorithm A, and then use the hypothesis h output by A to
compute !NI(y). Then for a random input y, we get the correct value for
IN1(y) with probability at least l/p(n), thus contradicting the Discrete
Cube Root Assumption.

We have already informally argued (and again, we will provide details
in Section 6.3) that each function in :Fn can be computed by a boolean
circuit whose size polynomial in n. On the other hand, :F is hard to learn
in this PAC-like setting for multivalued functions (under the Discrete
Cube Root Assumption) . We emphasize that this negative result does
not place any restriction on the form of the hypothesis h output by the
learning algorithm - the only requirement is that the hypothesis can be
evaluated in polynomial time . This requirement is obviously necessary in
the argument just given, since the last step in using the learning algorithm
to solve an instance y of the Discrete Cube Root Problem is to evaluate
the hypothesis on y.

The only aspect of our learning problem that keeps it from sitting
squarely in the PAC model is that our function class :F is a class of
multivalued functions, not a class of boolean functions. Indeed, it is easy
to see that we could not hope for such a strong negative result for a

Copyrighted Material

130 Chapter 6

boolean function class, since for any boolean function we can always find
a hypothesis whose error is bounded by 1/2 with respect to any input
distribution (by simply using the randomized hypothesis that flips a fair
coin to predict each label) , whereas the Discrete Cube Root Assumption
implies that for :F, even achieving error bounded by 1 - IIp(n) for any
polynomial p(.) is intractable.

However, there is an easy fix that yields a true PAC learning prob­
lem. The idea is simple: we regard each output bit of the function fi/
as a concept (boolean function). If there is an algorithm that can be
used to learn each of these output bits with high accuracy, then we can
reconstruct all of the output bits with high accuracy.

More precisely, for each multivalued function t;/ , we define n boolean
functions fN.�, 1 :5 i :5 n, where for any y E Z;." fNJ�(Y) is defined to
be the ith bit of fN1(y). Now we let Cn be the boolean function class
obtained by including fN.� in Cn for all INl E :Fn and all 1 :5 i :5 n.

Theorem 6.1 Under the Discrete Cube Root Assumption, the concept
class C is not efficiently PA G learnable (using any polynomially evaluat­
able hypothesis class).

Proof: Suppose for contradiction that C was PAC learnable in poly­

nomial time by algorithm A. Then given Discrete Cube Root Problem
inputs Nand y, as before we can efficiently generate random examples
for each of the n functions INI� by choosing x' randomly from Z;." setting
y'

= IN(X'), letting the example for INI� be (y', xD , where x� denotes the
ith bit of x'. We thus run n separate simulations of A, one for each fN�'
setting the error parameter € to be 1/n2 in each simulation. Now we c�n
use the n hypotheses output by A to reconstruct all the bits of fN1(y)
and by the union bound, the probability that all the bits are correct
is at least 1 - lin, contradicting the Discrete Cube Root Assumption.
D(Theorem 6.1)

Copyrighted Material

Inherent Unpredictability

6.3 Small Boolean Circuits Are

Inherently Unpredictable

131

One of the basic goals of learning theory is to understand how the compu­
tational effort required to learn a concept class scales with the computa­
tional effort required to evaluate the functions in the concept class. Thus
we are not simply interested in whether there exist inherently unpre­
dictable concept classes (and by Theorem 6.1, we now know that under
there do, at least under the Discrete Cube Root Assumption) , but in how
"computationally simple" such classes could be. Obviously there are lim­
its to how simple a hard-to-Iearn concept class can be. For instance, we
already know that if every concept in a class can be computed by a 3-
term DNF formula, then that class cannot be inherently unpredictable,
because we can use the hypothesis class of 3CNF, for which there is a
cubic time PAC learning algorithm.

Therefore, to further understand the implications of the inherent un­
predictability result for the concept class C in Theorem 6.1, we must
provide an upper bound on the resources required to evaluate a concept
in C. We have already argued briefly that polynomial size boolean cir­
cuits suffice, but we now describe these circuits more precisely in order
to pave the way to a refined construction and a considerably stronger
hardness result in the next section.

Let us first rigorously define what we mean by a boolean circuit .
A boolean circuit over {O, l}n is a directed acyclic graph in which each
vertex has indeg r ee (or fan-in) either 0,1, or 2, and unbounded outdegree
(or fan-out) . Each vertex of indegree 0 is labeled with one of the input
variables Xlt • • • ,X". Each vertex of indegree 1 is labeled by the symbol
-', and each vertex of indegree 2 is labeled by one of the symbols V and
A. The r e is a single designated output vertex of outdegree O. When
the n input vertices are assigned boolean values , the graph computes a
boolean function on {O, I}" in the obvious way. When we refer to the
class of polynomial size boolean circuits, we mean the concept class

Copyrighted Material

132 Chapter 6

C in which each concept c E Cn is computed by a boolean circuit with
at most p(n) vertices, for some fixed polynomial p(.). In the following
analysis, we are implicitly choosing the polynomial p(.) large enough to
perform the required computations.

The circuit to compute the multivalued function INI E Fn (from
which we can easily extract circuits for the boolean functions IN,� e
Cn) will have the inverting exponent d for N "hard-wired". Therefore,
the circuit only needs to compute yd mod N. The trick for doing this
efficiently (since d may be as large as n bits long, and we have already
observed that we do not have time to multiply y by itself d times) , is
to first generate large powers of y by repeated squaring modulo N, and
then combine these to obtain yd mod N.

The repeated squaring of y mod N yields the sequence of LlogdJ + 1
numbers

2 4 N 8 d 16 d N 2lloldJ d N y mod N,y mod N,y mod , y mo N,y mo , . . . , y mo

using l10gdJ + 1 sequential multiplications of n bit numbers. It is impor­
tant to take the result so far mod N at each step to prevent the numbers
from becoming too long.

Now the appropriate elements of this sequence - exactly those corre­
sponding to the l's in the binary representation of d - can be multiplied
together modulo N to obtain yd mod N. This takes at most an addi­
tional l10g d J + 1 sequential multiplications. Since the multiplication of
two O(n)-bit numbers can be implemented using circuits whose size is
polynomial in n, and we need to perform only O(llog dJ) = O(n) multi­
plications, the entire circuit for computing yd mod N has size polynomial
in n.

Since we have just shown that the class of polynomial size circuits
contains our hard class C, we immediately obtain the following result.

Theorem 6.2 Under the Discrete Cube Root Assumption, the represen­
tation class 01 polynomial size boolean circuits is not efficiently PAC

Copyrighted Material

Inherent Unpredictability

learnable (using any polynomially evaluatable hypothesis class) .

6.4 Reducing the Depth of Inherently
Unpredictable Circuits

133

Theorem 6.2 gives us our first hardness result for PAC learning a natural
concept class that does not rely on artificial restrictions on the learning
algorithm's hypothesis class. However, there is a sense in which it is the
weakest such hardness result possible - after all, we cannot really hope
to learn a class more powerful than polynomial size circuits in polynomial
time .

In this section we will refine our construction of circuits that are hard
to PAC learn in order to show that even very simple concept classes,

such as the class of all boolean functions computed by shallow (that is,
log-depth) polynomial size circuits, are inherently unpredictable . Fur­
thermore, in Chapter 7, we will develop a notion of reducibility among
learning problems that, combined with our refined hardness result for log­

depth circuits, allows us to prove the inherent unpredictability of other
important concept classes, such as the class of all concepts computed by
deterministic finite automata.

Let us begin by analyzing the depth of the circuit we have proposed for
computing the function INl E Fn. The circuit used the trick of repeated
squaring llogdJ + 1 = e(n) times, and therefore the depth of the circuit
is 9(n). Furthermore, no shallower circuit for computing ytl mod N from
the input y is known.

Our goal is to prove that even circuits whose size is polynomial in
n but whose depth (longest path from an input vertex to the output
vertex) is at most O(logn) are hard to learn. More precisely, the class
of log-depth, polynomial size boolean circuits is the concept class
C in which each concept c e Cn is computed by a boolean circuit with

Copyrighted Material

134 Chapter 6

at most p(n) vertices and depth at most k log n, for some fixed constant
k (independent of n) and some fixed polynomial p(.). In the following
analysis, we are implicitly choosing the constant k and the polynomial
p(.) large enough to perform the required computations.

While the restriction to log-depth circuits may at first seem somewhat
arbitrary, it is well-known that the class of log-depth, polynomial size

circuits computes essentially the same functions as the rather natural
class of polynomial size boolean formulae. (By this we mean that
there exists a polynomial p(.) such that every log-depth circuit of size s
can be represented as a boolean formula of size at most p(s) , and every
boolean formula of size s can be represented by a log-depth circuit of
size at most pes); see Exercise 6.2.) A boolean formula over {o,l}n
is simply a well-formed expression over a logical - language containing
symbols for the usual boolean connectives V, ",..." the symbols "(" and
")" for indicating order of evaluation, and symbols for the boolean input
variables Xl, • • " Xn• Such an expression computes a boolean function
over to, l}n in the obvious way. A convenient alternative representation
for a boolean formula is a boolean circuit in which the underlying graph
must be a tree: at the root (output) node of this tree, we place the
outermost connective of the boolean formula; inductively, the left and
right subtrees of the root are the trees for the left and right subexpressions
joined by the outermost connective in the formula. Figure 6.1 shows an
example formula and the corresponding tree.

When we refer to the class of polynomial size boolean formulae, we
actually mean the family in which each formula over to, l}n is an expres­
sion of at most pen) symbols for some fixed polynomial p(.), where again
we will implicitly choose the polynomial p(.) large enough to perform the
required computations.

Intuitively, one primary difference between boolean formulae (log­

depth circuits) and general boolean circuits is that if the same logical
subexpression E(Xl, . . . , xn} is needed many times, in a formula we may
have to duplicate the expression with each use, while in a circuit we may
simply increase the fan-out of the subcircuit computing E(XlI"" xn)

Copyrighted Material

Inherent Unpredictability 135

Tree forf:

Figure 6.1: A boolean formula and its tree circuit representation.

and get the repetition for free. Thus, there may be some functions that
can be computed by a small boolean circuit, but require a much larger
boolean formula (although the existence of such functions remains an
important open question), and we might wonder if it is these functions
that cause the inherent unpredictability of small boolean circuits. We
now show a negative answer to this question.

6.4.1 Expanding the Input

To show that shallow circuits are hard to learn, we shall modify each
function iNl E :Fn by providing additional inputs that make the compu­
tation of i'Nl(y) = yd mod N possible using a shallow circuit, but that
do not alter the difficulty of learning. In order to argue that learning
remains hard, we will have to choose different hard input distributions.

The motivating idea behind the modification is actually quite simple.

Suppose that knowing only the product N and a value y, we are watching

Copyrighted Material

136 Cha.pter 6

someone who also knows the decrypting exponent d for N perform the
computation of yd mod N by the trick of repeated squaring of y, followed
by multiplication of the appropriate square powers. If the entire compu­
tation is performed before us, then we can in fact learn the value of d
from this computation, since the square powers of y multiplied together
to obtain yd mod N correspond exactly to the binary representation of
d, and we will have learned something we cannot obviously compute ef­
ficiently ourselves. However, if the party knowing d only computes the
square powers in front of us, and then multiplies the appropriate powers
together privately, then we have definitely not learned anything new: we
could have efficiently computed these square powers of yourselves. In
this way, the party knowing d can reduce the amount of private compu­
tation to the bare minimum, without compromising the secrecy of d. In
the following analysis, it is this private computation that corresponds to
the circuit complexity of the target functions, which is reduced by this
trick.

More precisely, for each INl with inverting exponent d, let us define
a new function gil that is a mapping from (ZN)llogdJ+1 to ZN' For any
y E ZN we define

-I(d N 2 d 2 LioldJ) tl -I () gN Y mo , Y mo N, . . . , y .mod N = y mod N = J N Y'

Thus, g,/ is essentially the same function as [;/ with one important
difference: g,i is provided with an "expanded input" in which the suc­
cessive square powers of the original input yare already computed. Note
that the length of the inputs to g'il is O(10g2 N) = O(n2) bits rather
than the O(log N) = O(n) bits of input for INl, but is still polynomial in
n. Furthermore, gli is simply the inverse of the vector-valued function

() (3 d N 6 d N 3·2L1oldJ) gN X = X mo , x rno , ... , x mod N

Thus, vectors in (ZN)t1ogdJ+1 that are not of the successive square form
are not in the range of gN, and therefore gIl will be defined to be the
special value * on such vectors.

Copyrighted Material

Inherent Unpredictability 137

The first important property we need of g;/ is that, like fi/ I it is hard
to compute gil if the inverting exponent d for N is unknown. More pre�
cisely, if we let N be the product of two randomly chosen n/2-bit primes
p and q such that 3 does not divide !p(N) = (p - 1) (q - 1), and we choose
y randomly in ZN' then under the Discrete Cube Root Assumption it is
hard to compute gll(y mod N, y2 mod N, ... ,y2ll0ldJ mod N) on inputs
Nand

(d N 2 d N 2llolldJ
d

) y mo ,y mo , ... y mo N.
Otherwise, given inputs Nand y E ZN for the Discrete Cube Root Pro�
lem, a polynomial time procedure could compute the required powers of
y modulo N by repeated squaring, thus obtaining the expanded input
required for gil, and then invoke the procedure for computing gIl to
compute IN1(y). This would violate the Discrete Cube Root Assump­
tion.

The second important property is that, unlike INl,
-l(d N 2 d N 2lloldJ) 9N Y mo ,y mo , ... y mod N

can be computed by a shallow circuit that has d hard-wired. This circuit
simply multiplies together the appropriate powers of y that are provided
in the input sequence. Again, the numbers to be multiplied together are
those powers y2i mod N such that the ith bit of d is 1, as in the circuit

for IN1).
The problem of multiplying at most n numbers modulo N is a well­

studied one and is known as the problem of iterated products. A naive

implementation would mUltiply the desired numbers in pairs, and then

the results in pairs, and so on, to get a circuit that is binary tree in
which each internal node is a multiplication and each of the at most n

leaves is one of the numbers to be multiplied. The depth of this tree is at
most log n. Unfortunately, since each internal node of the tree must be

implemented by a multiplication circuit for two n-bit numbers, and this

in itself requires circuit depth O(logn), the final depth of this proposed

circuit would be O(10g2 n) rather than O(logn). However, there is a

sophisticated circuit construction due to Beame, Cook and Hoover (see

Copyrighted Material

138 Chapter 6

the Bibliographic Notes at the end of the chapter) that is beyond the
scope of our investigation, but that provides circuits for iterated product
of total depth only O(1ogn) , as desired.

As with the functions INt, the functions gl/ are not boolean but
multivalued. The definition of the associated boolean function (concept)
class C' is completely analogous to the definition of the concept class C
for the li/: for each function g;/ and each 1 � i � n, we define the
concept giV�i E Cn2 to be the ith output bit of giVl•

Now given Discrete Cube Root Problem inputs Nand y, in the same
way that a PAC learning algorithm for C could be used to obtain accurate
approximations for all the output bits of INl, a PAC learning algorithm
A for C' can be used to obtain accurate approximations for all the output
bits of giV1: we can set aside y and first generate random examples of giVt

by choosing x' randomly in Ziv, setting y' = IN(x'), and computing the
successive square powers. Setting

, (' d N (')2 d N (')2lI0,dJ d N)
z = y mo , y mo , ... , y mo

we can compute the random example (z', gN1(Z'»). The bits of x' are the
boolean labels for the n functions giV� on the expanded input and can
be used in n separate simulations of A. As with the argument for the
IN.�, the n hypotheses output by A can then be used to compute fN1(y),
contradicting the Discrete Cube Root Assumption. Notice that the hard
distribution for the function gN� is not the uniform distribution over the

input space (Ziv)LlogdJ+l but uniform over only those inputs that have
the appropriate successive square form.

Since we have argued above that the concepts in C' are contained in
the class of log-depth circuits, we have proved the following theorem:

Theorem 6.3 Under the Discrete Cube Root Assumption, the represen­
tation class 01 polynomial size, log-depth boolean circuits (or equivalently,
the class oj polynomial size booleanjormulae) is not efficiently PAC learn­
able (using any polynomially evaluatable hypothesis class).

Copyrighted Material

Inherent Unpredictability

6.5 A General Method and Its
Application to Neural Networks

139

We conclude this chapter by observing that en route to proving that the
class of polynomial size boolean formulae is not efficiently PAC learnable,
we in fact identified a general property of representation classes that
renders them inherently unpredictable. In particular, the only special
property we required of boolean formulae was their ability to efficiently
compute the iterated product of a list of numbers . By formalizing this
ability as a general property of representation classes, we will also be able
to prove the inherent unpredictability of polynomial size neural networks.

Definition 15 Let C be a representation class. We say that C computes
iterated products if there exists a fixed polynomial p(.) such that for
any natural number N of n hits and any 1 $ i $ n, there is a concept
c E Cn2 (thus, c has n2 inputs) such that size(c) :5 p(n) , and for any
ZI, • • • , Zn E ZNl c(Zlt ... , zn) is the ith bit in the binary representation
of the product Zl • • • Zn mod N.

Armed with this definition, by arguments identical to those used to
derive Theorem 6.3, we obtain :

Theorem 6.4 Let C be any representation class that computes iterated
products. Then under the Discrete Cube Root Assumption, C is not ef­
ficiently PAC learnable (using any poiynomially evaluatable hypothesis
class).

Recall that in Section 3.7 we demonstrated that the number of exam­
ples required to PAC learn any class of neural networks scaled only poly­
nomially with the number of parameters required to specify the networks.
This result ignored computational considerations, and concentrated just
on the sample complexity of PAC learning. We now apply Theorem 6.4 to

Copyrighted Material

140 Chapter 6

show that the computational considerations are rather formidable. Our
result relies on the following lemma due to J. Reif, whose proof is beyond
the scope of our investigation (see the Bibliographic Notes at the end of
the chapter).

Lemma 6.5 (Reif) There is fixed polynomial p(.) and an infinite family
of directed acyclic graphs (architectures) G = {Gn2}n�1 such that each
Gn2 has n' boolean inputs and at most p(n) nodes, and for any natural
number N of n bits there is an assignment of linear threshold functions to
each node in Gn2 such that the resulting neural network computes iterated
products modulo N. Furthermore, the depth of Gn2 is a fixed constant
independent of n.

In fact, Reif shows that Lemma 6.5 holds even when we are con­
strained to choose only weights in {O, I} for the linear threshold function
at each node. From this lemma and Theorem 6.4, we immediately obtain:

Theorem 6.6 Under the Discrete Cube Root Assumption, there is fixed
polynomial p(.) and an infinite family of directed acyclic graphs (archi­
tectures) G = {Gn2 }n�l such that each Gn2 has n2 boolean inputs and
at most p{n) nodes, the depth of Gn2 is a fixed constant independent of
n, but the representation class Ca = Un�lCa,,2 (where Can2 is the class

of all neural networks over Rn2 with underlying architecture Gn2) is not
efficiently PAC learnable (using any polynomially evaluatable hypothesis
class). This holds even if we restrict the networks in Ca 2 to have only
binary weights.

"

6.6 Exercises

6.1. In this problem we consider the problem of computing discrete square
roots rather than cube roots.

Copyrighted Material

Inherent Unpredictability 141

First , show that if N = pq is the product of two primes p and q,
and a = x2 mod N for some x E Z'N, then there is a y E Z'N such that
a = y2 mod N and y =f x mod N and y :f: -x mod N (Hint: use the
Chinese Remainder Theorem) . Thus, any square a modulo N has two
"different" square roots.

Now consider the Discrete Square Root Problem: given N that
is the product of two n/2-bit primes, and an integer a that is the square
modulo N of an element of Z'N, find an x E Z'N satisfying a = x2 mod N.
Show that if there is an efficient algorithm for the Discrete Square Root
Problem , then there is an efficient algorithm for factoring integers, and
vice-versa.

Thus the Discrete Square Root Problem is actually equivalent to fac­
toring. With some mild additional assumptions on the numbers to be fac­
tored, this equivalence can be preserved by the techniques of this chapter
to show that PAC learning the classes considered is as hard as a factor­
ing problem; we chose to use discrete cube roots primarily for technical
convenience.

6.2. Show that there is a fixed polynomial p(.) such that every log-depth
boolean circuit of size s can be represented as a boolean formula of size
p(s) , and every boolean formula of size s can be represented as a log­
depth boolean circuit of size p(s) . Thus, within polynomial factors of
size, these classes have equivalent computational power.

6.7 Bibliographic Notes

The first representation-independent hardness results for PAC learning
follow from the influential paper of Goldreich, Goldwasser and Micali {43] .
In this paper, it is shown (under a cryptographic construction) that
polynomial-size boolean circuits are not efficiently PAC learnable, even
if the input distribution is uniform, we only require weak learning, and
membership queries are available (see Chapter 8) .

Copyrighted Material

142 Chapter 6

The results of this chapter are due to Kearns and Valiant [60] . The
Discrete Cube Root Problem was first proposed as the basis for the RSA
public-key cryptosystem, named after its inventors Rivest, ShamiI and
Adelman (Bl) . The log-depth implementation of iterated products is due
to Beame, Cook and Hoover [14] . Lemma 6.5 is due to Reif [76] .

The Kearns and Valiant results were improved by Kharitonov [621 ,
who showed that boolean formulae remain hard to PAC learn even if the
input distribution is uniform, and membership queries are available. The
Kharitonov results also apply to the class of constant-depth circuits of A
and V gates of unbounded fan-in. Interestingly (under an appropriately
strong but still plausible assumption) , these hardness results match the
upper bound given for this class by an elegant learning algorithm due to
Linial, Mansour and Nisan [64J . Angluin and Kharitonov 19] use cryp­
tographic assumptions to demonstrate that membership queries cannot
help for learning general DNF formulae.

The use of cryptographic tools and assumptions to obtain intractabil­
ity results for learning is now fairly common in computational learning
theory. In the reverse direction , a recent paper (Blum et al. [19J) demon­
strates how certain assumptions on the difficulty of PAC learning prob­
lems can be used to obtain cryptographic primitives such as private-key
cryptosystems and pseudo-random bit generators.

Copyrighted Material

7

Reducibility in PAC Learning

From the positive results of Chapters 1 and 2 and the hardness results
of Chapter 6, we now have examples, for natural and nontrivial concept
classes, of both efficient PAC learning and inherent unpredictability. Al­

though we have certainly identified some powerful methods for obtaining
both kinds of results - for instance, the method of finding an Occam
algorithm for a concept class in order to show that it is efficiently PAC
learnable , and the method of showing that a concept class can compute
iterated products in order to demonstrate its inherent unpredictability
- we still lack a framework that allows us to compare the relative com­
plexity of PAC learning concept classes whose actual status in the PAC
model is uncertain.

In this chapter, we develop a notion of reducibility for learning in the
PAC model. In order to choose a notion of reducibility that is meaningful
we must first state our goals. Informally, we are of course interested in a
notion of reducibility that preserves efficient PAC learnability. Thus if a
concept class e "reduces" to a concept class e', and C' is efficiently PAC
learnable, then it should follow that C is also efficiently PAC learnable.

There will be at least three uses for the reducibility we develop. First,
if e reduces to e', and we already have an efficient learning algorithm for
C', then the reduction immediately yields an efficient learning algorithm

Copyrighted Material

144 Chapter 7

for C. Recall that it was exactly this method that provided an efficient
algorithm for learning kCNF from our efficient algorithm for learning
boolean conjunctions (lCNF) in Chapter 1. Second, we can give ev­
idence for the intractability of learning a concept class C' by showing
that another concept class C, believed to be hard to learn, reduces to C'.
Third, if C :::> C', but we do not know if either of C and C' is efficiently
PAC learnable, a reduction of C to C' at least proves that learning the
subclass C' is no easier than learning C.

We begin with a motivating example falling in the final category.
While the PAC learnability of general disjunctive normal form (DNF)
formulae remains unresolved so far, we use a simple reduction to demon­
strate that the monotone version of the problem is not easier than the
unrestricted version.

7.1 Reducing DNF to Monotone DNF

We have informally discussed DNF formulae at many points throughout
our studies. Formally, a general disjunctive normal form (DNF)
formula over {O, l}n is an expression of the form c = Tl V T2 V··· V Tm,
where each term 1i is a conjunction of literals over the boolean variables
XIt • • • ,Xn• Since each term can be represented using at most O(n) bits,
we define size(c) = mn. Because a learning algorithm is always allowed
time polynomial in n, it is fair to think of the dependence on size(c)
as allowing the learning algorithm to also have time polynomial in the
number of terms m.

If we let Cn be the class of all DNF formulae over {O, l}n, note that
Cn actually contains a representation of every possible boolean function
over {O, l}nj however, the PAC learning problem is nevertheless "fair" in
principle, because we measure the complexity of a function by its DNF
representation size. Thus the learning algorithm is provided with more
computation for more complex target functions.

Copyrighted Material

Reducibility in PAC Learning 145

Recall that in Chapter 1 we studied the severely restricted subclass

of DNF formulae in which the number of terms was bounded by a fixed
constant k (thus, size(c) = kn). We called such a formula a k-term
DNF formula, and we proved that PAC learning such formulae is hard if
the hypothesis class used is also k-term DNF formulae, but can be done
efficiently if k-CNF formulae is used as the hypothesis class. However,

since this solution required time exponential in k, it is inapplicable to
the general problem, where the number of terms is a parameter. On
the other hand, the inherent unpredictability methods of Chapter 6 also
seem inapplicable, since DNF formulae do not appear up to the task
of efficiently computing iterated products. In short , the efficient PAC
learnability of general DNF formulae remains one of the most important
open problems in the PAC model. Our modest goal here is to use a
reduction to dismiss one possible source for the apparent difficulty of
this problem - namely, the fact that the target formulae are allowed to
have both negated and unnegated variables.

A monotone DNF formula over {O, 1}" is simply a disjunction
d = Tl V T2 V • • . V T m in which each Tj is a conjunction over the boolean
variables Xlt • • • , Xn (but not their negations). Thus, the difference be­
tween monotone DNF and general DNF is that we forbid negated vari­
ables in the monotone case. Obviously, unlike for general DNF, it is not
the case that every boolean function over {O, l}n can be represented as
a monotone DNF formula. Could it be the case that there is an efficient
PAC learning algorithm for monotone DNF formulae, yet general DNF
formulae are inherently unpredictable?

The answer is no. Suppose we had an efficient learning algorithm
L' for PAC learning monotone DNF formulae using some polynomially
evaluatable hypothesis class 'It'. We now show that L' can actually be
used as a subroutine in an efficient PAC learning algorithm L for general
DNF formulae.

Let us consider a small example. Suppose that we have a general DNF
formula over the variables XI, • . • ,X61 say c = (Xl AxSAx6) V (Xl AX2AX4)'
By introducing "new" variables YI, ... , Y6 but always assigning Yi = Xi,

Copyrighted Material

146 Cha.pter 7

we ma.y also write c as (xIAV6Ax6)V(VIAx2AX4). Now this is a monotone
formula over the expanded variable set Xl," " X6, Vl, ... , V6i let us use d
to denote this monotone representation of c. Note that size (d) is not too
much larger than size(c).

Suppose now we are given the positive example (010110,1) of c over
the original variables Xi. Then the expanded instance 010110 101001,
which is the original instance followed by its bitwise complement, is a

positive example of the monotone formula d over the expanded variable
set consisting of the Xi and the Vi' More generally, it is easy to verify that
if (a, c(a») is any example of c, then (a·comp(a), c(a)} is always a correct
example of d, where comp(a) is the bitwise complement of a and · denotes
string concatenation. It is crucial to note that this transformation of the
instances a -+ a· comp(a) is independent of the actual target formula c,
and can be efficiently computed from a.

Now given access to the examples oracle EX(c, V) for a target gen­
eral DNF formula cover {O, 1}n, our algorithm L will simply simulate the
algorithm L' for the monotone case. Each time L' requests a random ex­
ample, L will take a random labeled example (a, c(a)} of c from EX(c, V),
and give the transformed example (a· comp(a) , c(a)} of length 2n to L'.
Since the examples given to L' are perfectly consistent with the monotone
formula d, algorithm L' will then produce some polynomially evaluatable
boolean function h' over the 2n variables Xl, • • . , Xn, VI' . . • ,Vn that is ac­
curate with respect to the distribution V' induced on the transformed
examples by the simulation. Note that V' may be quite different from
V. For instance, if V was the uniform distribution on {O, 1}n, V' will not
be the uniform distribution on {O, 1} 2n, but the uniform distribution on
pairs a·a' E {O, 1}2n where a, a' E {O, 1}n and a' = comp(a).

The hypothesis h of L will then be given by h(a) = h'(a·comp(a».
It is easy to see that error'D(h) = error'D,(h'), because h(a) =F c(a) if
and only if h'(a'comp(a) =f:. c'(a·comp(a»), and a has exactly the same
weight under V that a· comp(a) has under V'. Also, since L' runs in time
polynomial in size(d), and we have already pointed out that size(d) is
not much larger than size(c), L runs in time polynomial in size(c), and

Copyrighted Material

Reducibility in PAC Le&rning 147

also in time polynomial in 2n.

We have shown :

Theorem 7.1 If the representation class of general DNF formulae is
efficiently PAC learnable, then the representation class of monotone DNF
formulae is efficiently PA C learnable.

7.2 A General Method for Reducibility

We have just given a simple example of a reduction of one learning prob­
lem to another. We now give a general definition of this notion.

Definition 16 We say that the concept class C over instance space X
PAC-reduces to the concept class C'over instance space X' if the fol­
lowing conditions are met:

• (Efficient Instance Transformation) There exists a mapping G : X -+

X' and a polynomial pO such that for every n and every x E Xn,
G(x) E X;(n)' and G is computable in polynomial time. Thus, G
maps instances in X of length n to instances in X' of length pen),
and can be efficiently computed .

• (Existence of Image Concept) There exists a polynomial q(.) such that
for every concept c E Cn, there is a concept c' E C;(n) with the
property that size(c') ::; q(size(c», and for all x E Xnl c(x) = 1
if and only if c'(G(x)) = 1. Thus, for any concept c E C there
is a concept d E C' that is not much larger than c, and whose
behavior on the transformed instances exactly mirrors that of c on
the original instances.

Copyrighted Material

148 Chapter 7

Note that while we insist the instance transformation be efficiently
computable, there is no such demand on the mapping from c to di we
only ask for its existence. Thus, it may be intractable (or even impossible)
to compute the representation of d from the representation of c.

Under this formalization, our reduction of DNF to monotone DNF
was G(a) = a·comp(a) (thus, instances of length n were mapped to in­
stances of length 2n), and d was just the monotone DNF formula ob­
tained by replacing each occurrence of Xi in c with the variable Yi'

The basic property we require of our reducibility is established by the
following theorem.

Theorem 7.2 Let C and C' be concept classes. Then if C PAC-reduces
to C', and C' is efficiently PA C learnable, C is efficiently PA C learnable.

Proof: Given a learning algorithm L' for C', we use L' to learn C in
the obvious way: given a random example (x, c(x» of an unknown target
concept c E C, we compute the labeled example (G(x),c(x» and give it
to L'. If the instances x E X are drawn according to V, then the in­
stances G(x) E X' are drawn according to some induced distribution V'.
Although we do not know the target concept c, our definition of reduction
guarantees that the computed examples (G(x), c(x) are consistent with
some dEC', and thus L' will output a hypothesis h' in time polynomial
in size(c') (and thus polynomial in size(c)) that has error at most E with
respect to V'. Our hypothesis for c becomes hex) = h'(G(x», which is
easily seen to have at most € error with respect to V. O(Theorem 7.2)

Another useful way of stating Theorem 7.2 is to say that if C PAC­
reduces to C', and C is inherently unpredictable then C' is inherently
unpredictable. It is this view of our reducibility we use in the next
section.

Copyrighted Material

Reducibility in PAC Learning

7.3 Reducing Boolean Formulae to
Finite Automata

149

In this section, we derive the main result of this chapter, which is that
the class of boolean formulae PAC-reduces to the class of deterministic
finite automata. We shall show this in two parts. First, we show that the
class of log-space 'lUring machines PAC-reduces to finite automata. Then
we show that the class of boolean formulae PAC-reduces to log-space
Turing machines. The main result then follows from the transitivity of
our reducibility, which is established in Exercise 7.1.

There is a minor technicality involved with defining concept classes
represented by finite automata and 'lUring machines, because we nor­
mally think of these devices as accepting strings of a possibly infinite
number of different lengths, while we have been thinking of a concept as
being defined only over instances of some fixed length n. For the purposes
of this chapter, however, it will suffice to define our concept classes by
restricting our attention to the behavior of a finite automaton or 'lUring
machine on inputs of a single common length.

Thus, consider the concept class C in which there is a constant k (we
will implicitly choose k as large as necessary in our analysis) such that
every concept c E Cn over {O, l}n can be evaluated by a 'lUring machine Te
that uses only k log n work space (thus, we assume that Te has a read-only
input tape and a separate read/write work tape). Thus, for every c E Cn
and every a E {O, l}n, Tc(a) = c(a). We call this the representation class
of log-space Turing machines, and we define size(c) to be the number
of states in the finite control of Te. Similarly, let C' be the concept class
in which each d E C� over {O, l}n can be evaluated by a deterministic
finite automata Me'; thus for any a E {O, l}n, c'(a) = 1 if and only if Me'
accepts a. We call this the representation class of deterministic finite
automata, and we define size(c') to be the number of states in Me'. We
now show that C PAC-reduces to C'.

Copyrighted Material

150 Cha.pter 7

Theorem 7.3 The class of log-space Thring machines PAC-reduces to
the class of deterministic finite automata.

Proof: We describe for each k log n-space Turing machine T = Te
(computing some concept c in en) a small DFA M = Me that will simulate
T on appropriately transformed instances G(a). Intuitively (and we will
flesh out the details momentarily), M must overcome two handicaps in
order to simulate T. The first is that T has logarithmic work space but a
DFA has no explicit memory. This is easily compensated for by encoding
all the 2klogn = nk possible work tape contents of T in the state diagram
of M, and can be done using only nlc additional size overhead in M. The
second handicap is that T can move its read-only input head either right
or left on the input tape, while a DFA must proceed forward (to the
right) through its input at every transition. This can be overcome with
the help of the instance transformation G. For any input a E {O, l}n to
T, G(a) will simply replicate a many times: thus G(a) = aa··· a. If at
any point T moves left on the input a, then M will simply move n - 1
symbols forward on G(a), arriving in the next copy of a but one symbol
to the left of its position in the former copy, thus affecting a move to the
left. This requires a log n bit counter, which can also be encoded in the
state diagram of M using only polynomially many states. The number
of copies p(n) of a that must be given in G(a) is clearly bounded by the
running time of T (since this bounds the number of possible input head
moves by T), which is polynomial.

To see this is more detail, consider constructing a directed graph GT
based on the description of T. Each node of GT is labeled by a tuple
(s, (7, i) where s is a state of the finite control of T, (7 is a binary string
of length k logn, which we interpret as the work tape contents of T, and
1 � i � n is interpreted as an index indicating the head position of T
on the input tape. Then we draw a directed edge, labeled by the bit
bE {O,l}, from the node (s,O',i) to the node (i,O",i + 1) if and only if
T, when in state 8 with work tape contents 0' and input head position i,
on reading a b from the input would move the input head right and go
to state 8' with work tape contents 0" . (Note that this can only happen

Copyrighted Material

Reducibility in PAC Learning 151

if q and q' differ only in the single bit at the head position .) We will
additionally label this directed edge by an R to indicate a move to the
right on the input. Similarly, we will label an edge from a node with
input head index i to a node with input head index i - 1 by an L.

Now GT is "almost" a DFA simulating T, if we allow the traversal of
a transition labeled R or L to move the input head of GT right or left,
respectively. But it is easy to see that we can replace each R transition
by a finite automata that simply reads through the next n + 1 input
bits of G(a), and each L transition by a one that reads through the next
n - 1 bits of G(a). The resulting graph is exactly a finite automata
whose behavior on G(a) is the same as T on a. Note that the size of this
automata is polynomial in n and polynomial in the number of states in
the finite control of T. D(Theorem 7.3)

We now reduce boolean formulae to log-space Turing machines to
complete the sequence of reductions.

Theorem 7.4 The class oj boolean Jormulae PA C-reduces to the class
oj log-space Thring machines.

Proof: We show that for any boolean formula J over {O,1}n, there
is a log-space Turing machine Tf, with a number of finite control states
that is polynomial in size(J), that on input a computes J(a) (thus, the
instance transformation G(a) is simply the identity transformation). We
will actually prove the stronger result that there is a single log-space Tur­
ing machine T that takes as input a boolean formula J and an assignment
a, and computes J(a)j the desired machine Tf can be obtained by fixing
the formula input of T to be J. (Thus, T is universal for the class of
boolean formulae .)

Recall that a boolean formula can be thought of as a circuit whose
underlying graph is a tree (see Figure 6.1 in Chapter 6 and the accom­
panying text) . Let us label each node in this tree with a unique natural

Copyrighted Material

152 Chapter 7

number that we call the name of the node. Assume without loss of gen­
erality that the formula 1 that is input to T is encoded as a list of items
representing the tree circuit for I. Each item consists of a label indicating
the name of a node in the binary tree for computing 1 (this label requires
at most o (log size(f» bits, where size(f) is the number of gates in the
tree for /), a couple of bits indicating the gate type (A, V or -') , and the
labels of the left and right children of this gate. Now to compute J(a),
T conducts a depth-first search of the tree using the item list. To keep
track of the search, T only needs to store the label of the current gate,
and a few bits indicating the current "direction" of the search (that is,
whether we arrived at the current gate 9 from the parent of 9, the left
child of 9, or the right child of 9). We also only ever need to store a single
bit'll indicating the value of the computation so far. For instance, if we
are currently at an V gate that we arrived at from the left child, and the
value of the subfunction computed by the subtree rooted at the left child
was 'II = 1, then there is no need to explore the right child of this gate; we
can simply continue back up the tree and maintain the value'll = 1. On
the other hand, if 'II = 0 then we must explore the right subtree but we
can overwrite the value of v, since the left subtree evaluated to 0 and thus
cannot make the current V evaluate to 1. The value of 'II returned from
the right subtree will become the value for the current V node. Similarly,
if the current gate is an A gate and we returned from the left child with
'II = 0, we can simply continue up the tree with this value, bypassing the
right subtree. Otherwise, we explore the right subtree and overwrite'll.

D(Theorem 7.4)

From Theorems 7.3 and 7.4 and the transitivity of our reducibility
(see Exercise 7.1), we immediately obtain:

Corollary 1.5 The class 01 boolean lormulae PAC-reduces to the class
01 deterministic finite automata.

Thus, drawing on the results of Chapter 6, we obtain:

Copyrighted Material

Reducibility in PAC Learning 153

Theorem 7.6 Under the discrete cube root assumption, the representa­

tion class 0/ deterministic finite automata is inherently unpredictable.

In light of this negative result, in the next chapter we will investigate
a natural model of learning that provides the learner more power than
in the PAC model, and obtain an efficient learning algorithm for finite
automata .

7.4 Exercises

7.1. Prove that our reducibility for PAC learning is transitive. Thus,
for any concept classes C},C2 and C2, if C1 PAC-reduces to C2 and C2
PAC-reduces to C3, then C1 PAC-reduces to C3•

7.2. The concept class of half spaces in Bln is defined as fQllows: each
concept is defined by a vector it € Bln of unit length. An input x € �n
is a positive example of it if and only if it . x == Ef=l Ui • Xi � O. In
the the concept class of exclusive-or of two halfspaces, each concept
is defined by a pair (it, v) of unit vectors in �n. An input x € �n is a
positive example of (it, iT) if either it . x � 0 and fJ· x < 0, or it· x < 0
and v· x � 0; otherwise, x is a negative example.

Show that the class of exclusive-or of halfspaces PAC-reduces to the
the class of halfspaces.

7.3. A read-once DNF formulae over to, l}n is a disjunction c =

Tl VT2 V' .. VT m (where each 11 is a conjunction of literals over the boolean
variables Xl," " Xn) in which every variable is restricted to appear at
most once (whether negated or unnegated) . Show that the representation
class of general DNF formulae in which each formula over {O, l}n has at
most pen) terms, for some fixed polynomial p(.), PAC-reduces to the
representation class of read-once DNF formulae.

Copyrighted Material

154 Chapter 7

7.5 Bibliographic Notes

The general definition of PAC-reducibility was developed by Pitt and
Warmuth [73], who also give the reduction of boolean formulae to finite
automata and many other interesting reductions. The reduction of gen­
eral DNF to monotone DNF is due to Kearns et a1. [58]. Such reductions
are now a standard tool of computational learning theory; the paper of
Long and Warmuth [68] gives examples for geometric concept classes.
Exercise 7.2 is due to M. Warmuth and L.G. Valiant.

Copyrighted Material

8

Learning Finite Automata by
Experimentation

8.1 Active and Passive Learning

Although our early investigation of PAC learning revealed a number of
natural but simple classes (such as boolean conjunctions, decision lists,
and some geometric concepts) that are efficiently PAC learnable, the
results given in Chapters 6 and 7 present rather daunting negative evi­
dence regarding the efficient learnability of more complex classes such as
boolean formula and finite automata. These intractability results must
lead us to question, at least in some of its details, the model of learning
under consideration. For instance, are there sources of information about
the target concept that are more powerful than random examples but are
still somehow natural , and that we should make available to the learning
algorithm? Might our failure to model such sources partially account for
the chasm between the hope that efficient learning should be possible
and the intractability results we have derived?

Perhaps the most obvious source of information that we have failed to
model is experimentation. The PAC model is a passive model of learning,
in the sense that the learning algorithm has absolutely no control over

Copyrighted Material

156 Chapter 8

the sample of labeled examples drawn. However, it is easy to imagine
that the ability to experiment with the target concept might be extremely
helpful to the learner. This is what we shall demonstrate in this chapter.
We model experimentation by giving the learner the ability to make
membership queries: the learner, when learning the target concept c, is
given access to an oracle that on any input x returns the correct target
label c(x). Thus the learning algorithm may choose particular inputs and
see their target classification rather than only passively receiving random
labeled inputs.

One setting where membership queries are natural is when the learner
is assisted by a teacher. Nature, as modeled by the target distribution in
the PAC model, is indifferent to the learner and provides only random
examples of the target concept. Particular questions that the learner may
have are answered only insofar as the random training sample happens to
answer them. The teacher, on the other hand, knows the target concept
(or perhaps has already learned an accurate approximation to it) , and is
sufficiently patient to classify inputs of the learner's choice as positive or
negative examples of the target.

In this chapter we show that allowing membership queries can have a
significant impact on the complexity of learning problems. In particular,
we show we can learn deterministic finite automata in polynomial time
in the augmented PAC model where the learning algorithm is given ac­
cess to an oracle for membership queries in addition to the usual oracle
for random examples. This result will in fact follow from an efficient
algorithm for learning finite automata in a more demanding model: ex­
act learning from membership and equivalence queries, which we define
in the next section. Combining this positive result with the hardness
results of Chapters 6 and 7, we conclude under the Discrete Cube Root
Assumption, membership queries provably make the difference between
intractability and efficient learning for finite automata.

In the latter part of the chapter, we generalize our learning algorithm
for finite automata to solve another natural learning problem. Imagine
that the learner is actually a robot wandering in an unknown environment

Copyrighted Material

Learning Finite Automata by Experimentation 157

which consists of 8 distinct sites. At each step the robot can move from
its current site to a neighboring site by performing one of a small set of
primitive operations (for example, by moving one step forward, or to the
left) . Suppose that each site contains some information that can help the
robot orient itself in the environment. An example of such information
could be the color of the current site. We can actually assume without
loss of generality that there is only a single bit of information at each
site, because we can modify an arbitrary environment into an equivalent
binary environment by replacing each site of the original environment by

a "corridor" of binary-valued sites in the new environment that encode
the value at the original site.

The robot's goal is to derive a complete model of the observable be­
havior of its environment. More precisely, the model should predict the
exact sequence of bits the robot would observe on any sequence of moves
starting from its current position. A natural model of the environment
is that of a deterministic finite state automaton. The states of the au­
tomaton correspond to the sites in the environment, and transitions cor­
respond to the primitive moves. Each state of the automaton has a single
bit of information associated with it (namely, whether it is an accepting
state or a rejecting state). This bit represents the bit of information at
the corresponding site in the environment.

We give an efficient algorithm for creating an exact model of any such
deterministic finite state environment. The algorithm is a refinement of
the algorithm for learning finite automata from membership queries. Let
us briefly sketch the essential difference between these two automata
learning problems. While the robot can actively experiment with its en­
vironment (the target automaton) , it cannot reset the automaton to a
definite state (like the start state). However, this is precisely the ability
that is conferred upon the learner by membership queries, since a mem­
bership query may be regarded as a reset to the start state followed by
an execution of the query string. To prove the robot learning result we
show how to simulate a weak reset that is effective enough to help us
simulate the previous learning algorithm.

Copyrighted Material

158 Chapter 8

8.2 Exact Learning Using Queries

We now introduce a model of learning called exact learning from
membership and equivalence queries. As usual, the learning al­
gorithm is attempting to learn an unknown target concept chosen from
some known concept class C. Unlike in the PAC model, where we were
satisfied with a close approximation to the target concept, we will insist
that the learning algorithm output the representation of a concept that
is exactly equivalent to the target concept. Instead of random examples
as in the PAC model, however, the learner now has access to oracles
answering the following two types of queries:

• Membership Queries: On a membership query, the learning algo­
rithm may select any instance x and receive the correct classifica­
tion c(x) .

• Equivalence Queries: On an equivalence query, the learning algo­
rithm submits a hypothesis concept h E C. If hex) = c(x) for all
x then the learner has succeeded in exactly identifying the target.
Otherwise, in response to the query the learner receives an instance
x such that hex) =I- c(x). Such an instance is called a counterex­
ample. We make no assumptions on the process generating the
counterexamples. For instance, they may be chosen in a manner
designed to be confusing to the learning algorithm.

Definition 17 We say that the representation class C is efficiently ex­
actly learnable from membership and equivalence queries if there
is a fixed polynomial p(., .) and an algorithm L with access to membership
and equivalence query oracles such that for any target concept c E Cn, L
outputs in time p(size(c), n) a concept h E C such that h(x) = c(x) for
all instances x.

Note that we have assumed that concepts are defined only over in­
stances of a single common length n (such as in the case of boolean for-

Copyrighted Material

Learning Finite Automata by Experimentation 159

mulae over {o,l}n). This is clearly not the case for a finite automaton,

which may accept strings of any length . To apply the definition of exact
learning from queries to finite automata, we could simply restrict our
attention to finite automata accepting strings of only a single length, as
was done in deriving the hardness results in Chapter 7 (such a restriction
only makes the hardness result stronger) . But it turns out we can give
an efficient algorithm without this restriction, provided we make a minor
but necessary modification to the definition. For finite automata, if the
counterexamples given by the equivalence oracle can be arbitrarily long,
it is natural that for our new definition should allow the running time
of the learning algorithm to depend on the length of these counterexam­
ples (since we certainly should give the algorithm enough time to read
the counterexamples) . Thus, to generalize our definition to handle the
exact learning of finite automata, in Definition 17 we simply assume that
rather than being the exact length of all examples, the parameter n is
a given a priori bound on the length of the longest counterexample that
will be given to L in response to any equivalence query. (In Exercise
8.2 we show that for any equivalence query there always exists a coun­
terexample whose length is at most polynomial in the number of states
of the target automaton, and moreover the shortest counterexample can
be efficiently computed given the target automaton. Thus, by providing
sufficiently short counterexamples, a cooperative teacher can induce the
exact learning algorithm for finite automata to run in time polynomial
in the number of target states.)

At first glance, it might appear that equivalence queries are an unreal­
istically strong source of information to provide to the learner. However,
it can be shown (see Exercise 8.1) that any representation class that is
efficiently exactly learnable from membership and equivalence queries is
also efficiently PAC learnable with membership queries. By this
we mean that it is efficiently learnable in the PAC model, provided the
learning algorithm is provided with membership queries in addition to
the usual oracle EX(c, V) for random examples. All other aspects of
the PAC model, including the success criterion of finding a hypothesis
with error less than e with respect to the target concept and distribution,

Copyrighted Material

160 Chapter 8

remain intact.

8.3 Exact Learning of Finite Automata

Over the next several sections, we will gradually develop and analyze
an algorithm for efficiently exactly learning deterministic finite automata
from membership and equivalence queries. We will keep the development
at a fairly high level to emphasize the intuition behind the algorithm,
but will eventually provide a complete and precise description of the
algorithm in Section 8.3.5.

Let M be the target automaton, and assume without loss of generality
that M is minimized (that is, it has the fewest states among all automata
accepting the same language) . We define size(M) to be the number of
states of M.

The key idea of the algorithm is to attempt to continually discover
new states of M. By new states we mean states exhibiting behavior that
is demonstrably different from the states discovered so far. The algorithm
runs in phases. In each phase, the algorithm constructs a tentative hy­
pothesis automaton M whose states are the currently discovered states
of M. It then makes an equivalence query on M. The counterexam­
ple from this equivalence query allows the algorithm to use membership
queries to discover a new state of M. When all the states of M have
been discovered, we will have M = M.

8.3.1 Access Strings and Distinguishing Strings

How can the learning algorithm discover information about the states of
M? The algorithm will maintain a set S conSisting of at most size(M)
state access strings, and a set D of distinguishing strings:

Copyrighted Material

Learning Finite Automata by Experimentation 161

• (Access) Each string 8 E 8, when executed from the start state of M,
leads to a unique state of M that we denote MIs].

• (Distinguishability) For each pair of strings s, s' E 8 such that s # s',
there is a distinguishing string d E D such that one of sd and s'd
reaches an accepting state of M, and the other reaches a reject­
ing state of M. (That is, exactly one of M(sd1 and Mls'd] is an
accepting state.)

We shall refer to the states {M[s] : s E 8} as the known states of
M, since we know how to access them from the start state. Notice that
all these known states must be distinct . This is because for each pair
of strings 8, s' E 8, there is a string d in D that witnesses the fact that
starting from states MIs] and M[s'1 and executing d leads to different
final states. The goal of the learning algorithm is to discover all the states
of M by finding size(M) access strings , together a with distinguishing
string for every pair of access strings. The task of reconstructing the
actual transitions of M from this information is quite straightforward (as
we shall see) .

In the algorithm , the current sets 8 and D of access and distinguish­
ing strings will be maintained in a convenient data structure, a binary
classification tree. Each internal node is labeled by a string in D, and
each leaf is labeled by a string in 8. The tree is constructed by plac­
ing at the root any string d from D that distinguishes two strings in 8,
and placing in the left subtree of the root all strings s E S such that
sd is rejected by M, and in the right subtree all s E 8 such that sd is
accepted. This induces a nontrivial partition of 8 (since d distinguishes
some pair of strings in 8), and we simply recurse at each subtree un­
til each string in 8 is at its own leaf. Then any pair of access strings
s, s' E S are distinguished by the string labeling their least common an­
cestor in the classification tree. Our algorithm will dynamically maintain
a classification tree representation of 8 and D.

OUf algorithm will make sure that the distinguishing string that labels
the root of the classification tree is always the empty string A. This will

Copyrighted Material

162

o o 0

1

(a)

o

Chapter 8

�101
A 110

(b)

Figure 8.1: (a) Finite automaton counting the number 011 's in the input
3 mod 4. (b) A classification tree lor this automaton.

ensure that all the access strings to accepting states will lie in the right
subtree and the access strings to rejecting states in the left subtree. The
algorithm will also arrange that A is one of the access strings. This
ensures that we can access the start state of the automaton.

Figure 8.1{a) shows a finite automaton that will form the basis of a
running example. This automaton accepts an input string if and only

if the number of l's in the string is 3 modulo 4. Figure 8.1(b) shows a
classification tree for this automaton, with access strings {A, 110, 1101}
and distinguishing strings {'\, I}.

8.3.2 An Efficiently Computable State Partition

Now suppose we are given a new string s' that is not in the current
access string set S, but that M[s'] = M[s} for some access string 8 E
S. Then we can efficiently determine 8 from s' by sifting s' down our
classification tree using membership queries: starting at the root, if we
are at an internal node labeled by the distinguishing string d, we make
a membership query on the string s'd and go to the left or right subtree
as indicated by the query answer (left on reject, right on accept) . We
continue in this manner to reach a leaf , which must be labeled by s.

Copyrighted Material

Learning Finite Automata by Experimentation 163

1

Figure 8.2: Partition induced by the classification tree in Figure 8.1.

More importantly, even if M[s'} ¥- M[s) for all S E S, sifting s' down
the classification tree still defines a path to a leaf, and this path depends
only on M[s'1. In other words, for any strings s' and s", if M[s'J = M[s"1
then sifting 8' and sIt defines exactly the same path down the classification
tree. Thus, the classification tree induces a partition on the states of M,
and each equivalence class of this partition contains exactly one state
M[s} such that s E S, which we will consider the representative element
for the equivalence class.

Sifting can be efficiently implemented, and the number of membership
queries for a sift operation is bounded by the depth of the classification
tree.

Figure 8.2 shows the partition of the automaton of Figure 8.1(a) that
is induced by the classification tree of Figure 8. 1Cb) . The known or
representative state in each equivalence class has been shaded. Note that
the access string for a known state may not be the shortest string reaching
that state. For example, in Figures 8.1 and 8.2, we have the access string
110 even though the shorter string 11 accesses the same state.

Copyrighted Material

164 Cha.pter 8

8.3.3 The Tentative Hypothesis M

We are now in a position to describe the construction of a hypothesis
automaton if, whose states can be thought of as the known states of
M (that is, states for which there are access strings in the leaves of the
current classification tree). If all the states of M have been discovered
then it will turn out that M = M. Otherwise, the counterexample from
the equivalence query on M will be used to discover a new state (that is,
access string) of M.

We first define if algorithmically and then provide some insight into
its structure. Given the classification tree, it is easy to construct if
using equivalence queries. We identify (label) the states of M with the
access strings in the classification tree. For each access string (state) 8

and symbol b, the destination state of the b-transition out of state 8 is
just the access string that results from sifting sb down the classification
tree.

M can be thought of as an automaton whose states are a subset of
the states of M, but with transitions that are possibly quite different
than those of M. Imagine a state diagram of M in which the transi­
tions are represented by dashed lines, and the states are grouped by the
equivalence classes defined by the current classification tree. (See Figure
8.3(a), in which M is the four-state automaton shown, with its transitions
represented by dashed lines. The states of M are partitioned into two
classes of two states each.) Now let us shade each known state M[s] for
8 € S. JThe shaded states of M in Figure 8.3(a) are the known states.)
Then M will be defined only on those states of M that are shaded, and
each equivalence class of M has exactly one such shaded state. The
transitions of M, which will be represented by bold lines, are defined
as follows: for b € {O, I}, the bold b-transition leaving the shaded state
M[s] is obtained simply by taking M's dashed b-transition leaving M[s]
and redirecting it from its current destination state to the unique shaded
state of the equivalence class of the destination state in M. (See Figure
8.3(a).) For example, in Figure 8.3(a) , the dashed O-transition of the left

Copyrighted Material

Learning Finite Automata by Experimentation 165

(a)

�:j
1

(b)

Figure 8.3: (a) Embedded hypothesis defined by a partition of a target au­
tomaton into two equivalence classes. 7ransitions of the target automaton
M are dashed, tmnsitions of the hypothesis if defined by the partition
and the shaded known states are bold. (b) The resulting hypothesis if
extmcted.

shaded state stays in the same equivalence class of states; thus, the bold
O-transition of the left shaded state becomes a self-loop. Similarly, the
dashed I-transition of the right shaded state goes to the left equivalence
class; thus, the bold I-transition of the right shaded state also goes to the
left equivalence class, but is redirected to the left shaded state. Notice
that in the case when all the states of M are shaded, if = M.

We should point out a common point of confusion about if: if
might look very different from M and it might accept a totally different
language than that accepted by M. So it is a mistake to think of if
as an approximation to the target automaton M (unless they have the

Copyrighted Material

166 Chapter 8

same number of states , in which case M = M). A related point is
that the learning algorithm makes progress by increasing the number of
access strings or leaves in the classification tree. The tentative hypothesis
automaton M facilitates this increase in the number of leaves in the
classification tree.

8.3.4 Using a Counterexample

We now show how we can use a string 1 that is a counterexample to
the equivalence of M and M in order to discover a new state of M, thus
allowing the classification tree to be updated . The conceptual idea is to
simulate the behavior of both M and M in parallel on the string 1 (that
is , follow both the dashed trajectory and the bold trajectory dictated by
1) in order to discover the first point at which the two trajectories diverge
to different equivalence classes of states . At this point of divergence, the
dashed and bold transitions must take place from two different states in
the same equivalence class, thus providing us with access to a new state
in this equivalence class.

To make this precise, we first recall our assumption that the root of
the classification tree is labeled by the empty string A, and that one of
the access strings is A (both of these conditions will be easily arranged
by our algorithm in its initialization step). The first condition implies
that no equivalence class of M contains both an accepting and a rejecting
state. The second condition implies that in the embedding of M in M,
the start states of the two automata coincide, and thus the machines
are usynchronized" at the start of any string. So the dashed and bold
trajectories determined by the counterexample 1 begin in a common
equivalence class (in fact, in the same state) and end up in different
equivalence classes (since exactly one of M and M accepts 1).

Let M[s] denote the state reached by following the transitions of AI on
string Sj this is just the final destination of the bold trajectory determined
by 8. Let 1. denote the ith symbol of 1 and let 1[i] denote the prefix of 1

Copyrighted Material

Learning Finite Automata by Experimentation 167

of length i, that is '1[i1 = '11 . . . 'Yi· Let 1 :5 i :5 hi be the first index such
that the equivalence class of M['Y[ill differs from that of MhliJ1 (thus,
the two trajectories have diverged for the first time) . See Figure 8.4.

By the choice of j, we know that Mbli - 111 and Mbli - 1]] are in
the same equivalence class, yet the dashed transition from Mb[j - 111
and the bold transition from Mbli -I]) on the symbol 'Y; led to different
equivalence classes. This means that Mbli - 111 and Mbli - 1)] are
actually different states in the same equivalence class. Since the only
shaded (known) state in this class is M['Yli - 1)], and recalling that the
access strings discovered so far reach only the shaded states, Mbli -In
is a new state with access string 'Yli - 1].

To distinguish Mbli - 1]] from all previously discovered states (that
is, to place this state in its own equivalence class), we only need to
distinguish M['Yli -I]] and M['1li -I]] from each other (that is, to "split"
the current equivalence class to which they both belong) . The correct
distinguishing string simply expresses the fact that the 'Y; transitions from
Mbli - Ill in M and from MbU -1]] in M lead to different equivalence
classes, namely, the equivalence classes of M!'Yli]] and M!'Y[jJ]. If d is
the string distinguishing the equiValence classes of M['Ylill and Mbli}],
then the correct distinguishing string for Mbli - 1]] and Mbli - 1]] is

'Y;d.

It should be clear that the task of updating the classification tree by
processing a counterexample string can be carried out efficiently using
membership queries. This involves determining the equivalence class of
each prefix of the counterexample string by sifting it down the current
classification tree, as well as tracing its path in the hypothesis automaton
M, which is known explicitly.

Copyrighted Material

168 Cha.pter 8

Figure 8.4: The trajectories in the target automaton (dashed transitions,
unshaded states) and the hypothesis automaton (bold transitions, shaded
states) traced by a counterexample. From each shaded state on the bold
trajectory, the dashed transition of the target automaton (which may be
different from the bold transition) is shown for completeness.

To sum up, as long as the number of leaves of the classification tree
is smaller than size(M) , the hypothesis automaton if is necessarily dif­
ferent from M. Therefore an equivalence query must return some coun­
terexample string "I which we can use to update the classification tree
by adding a new leaf node. Eventually the classification tree will have
size(M) leaf nodes, each accessing a different state of M, and at this
point M = M.

Copyrighted Material

Learning Finite Automata by Experimentation

8.3.5 The Algorithm for Learning Finite
Automata

169

We can now describe our algorithm for learning finite automata in some
detail. We start by describing the subroutine Sift. This subroutine takes
as input a string 8 and the current classification tree T, and outputs the
access string in T of the equivalence class of M[s), the state of M accessed
by 8.

Procedure Sift{s, T):

• Initialization: set the current node to be the root node of T.

• Main Loop:

- Let d be the distinguishing string at the current node in the
tree.

- Make a membership query on sd. If ad iR accepted by M,
update the current node to be the right child of the current
node. Otherwise, update the current node to be the left child
of the current node.

- If the current node is a leaf node, then return the access string
stored at this leaf. Otherwise, repeat the Main Loop.

Next, we describe the procedure for constructing the hypothesis au­
tomaton AI that is defined by the current classification tree T.

Procedure Tentative-Hypothesis{T):

• For each access string (leaf) of T, create a state in M that is labeled
by that access string. Let the start state of M be the state .A.

• For each access state a of M and each b E {O, I}, compute the
b--transition out of state s in M as follows:

Copyrighted Material

170 Ohapter 8

- 8' +- Sift(8b, T).
- Direct the b-transition out of state 8 to state 8'.

• Return M.

Next we describe the procedure Update-Tree, which takes as argu­
ments the current classification tree T and a counterexample string 'Y to
the hypothesis automaton if defined by T. The procedure finds a new
access string, and updates T by adding a new leaf node labeled with the
new access string.

Procedure Update-Tree('Y, T):

• For each prefix 'Y{i) of 'Y:

- 8; +- Sift('Y(i] , T).

- Let Sj = Mh[ill.
• Let j be the least i such that 8j :f; h

• Replace the node labeled with the access string 8j-l in T with an
internal node with two leaf nodes. One leaf node is labeled with the
access string 8j-l and the other with the new access string 'Yli -1].
The newly created internal node is labeled with the distinguishing
string 'rjd, where d is the correct distinguishing string for 8j and 8j
(d can be obtained from T) .

We are now ready to describe the overall algorithm for learning finite
automata:

Algorithm Learn-Automaton:

• Initialization:

- Do a membership query on the string A to determine whether
the start state of M is accepting or rejecting.

Copyrighted Material

Learning Finite Automata by Experimentation 171

- Construct a hypothesis automaton that consists simply of this

single (accepting or rejecting) state with self-loops for both the
o and 1 transitions.

- Perform an equivalence query on this automaton; let the coun­
terexample string be 'Y.

- Initialize the classification tree T to have a root labeled with
the distinguishing string ,\ and two leaves labeled with access
strings ,\ and 'Y .

• Main Loop:

- Let T be the current classification tree.

- M � Tentative-Hypothesis(T).

- Make an equivalence query on M. If it is equivalent to the
target then output £1 and halt. Otherwise, let 'Y be the coun­
terexample string.

- Update-'J.ree(T, 'Y).

- Repeat Main Loop.

In Figure 8.5, we show the evolution of the hypothesis £1 and the
classification tree 88 the algorithm is executed on the target automaton
first shown in Figure 8.1.

8.3.6 Running Time Analysis

The number of times the Main Loop of algorithm Learn-Automaton
is executed is exactly size(M) . This is because, as we have already ar­
gued, each iteration discovers a new state of M in the form of an access
string, and when all states are discovered then !VI = M. Each execu­
tion of the Main Loop of Learn-Automaton makes a call to proce­
dure Tentative-Hypothesis to compute £1, and each such call invokes
O(size(M» sifting operations. Also, each execution of the Main Loop of

Copyrighted Material

172 Chapter 8

Learn-Automaton requires the processing of a single counterexample
by procedure Update-Tree. A counterexample of length n requires at
most n sifting operations . Therefore, we have size(M) Main Loop exe­
cutions, each of which requires O(size(M) + n) sifting operations, where
n is the length of the longest counterexample. It is easy to see that the
running time of our algorithm is dominated by the sifting operations, and
that sifting is a O(size(M») operation . We have thus derived the first of
the two main results of this chapter:

Theorem 8.1 The representation class of deterministic finite automata
is efficiently exactly learnable from membership and equivalence queries.

It is worth noting that as a corollary to our analysis of the learning
algorithm, we can give an alternative derivation of the well-known Myhill­
Nerode theorem, which states that for any regular language L there is a
unique automaton of minimum size accepting L. First observe that the
learning algorithm only gets information about the language L accepted
by the target automaton M, and so if two different target automata Ml
and M2 accept the same language L then the learning algorithm must
produce the same output automaton M. On the other hand, we showed
that output automaton M is identical to the target automaton, assuming
only that the target automaton is a minimum state automaton. It follows
that the minimum state automaton accepting L is unique.

Copyrighted Material

Learning Finite Automata by Experimentation

M and Equivalence Classes
A

M

01 0
u·o. 0,1 0 0

�'01 1
� �101

1

173

10-1] Classification Tree

A
A. 1101

110 �'0'
A. 110

;(; 1 1101
11 110

A. 1

Figure 8.5: Sample execution of algorithm Learn-Automaton on the
3 mod 4 counter target automaton. In the first column, we show the
target automaton with the partition defined by the classification tree of
the previous row, along with the shaded known states. The second column
shows the hypothesis Nt defined by the partition to its left; the states
oj Nt are also labeled by their access string. Every equivalence query
on Nt is answered by the same repeated counterexample (1101,1) until
Nt = M. The third column shows the prefix ')'(j - 1] of')' = 1101 on
which a difference of equivalence classes is first detected, and the fourth
column shows the classification tree at each step.

Copyrighted Material

174 Chapter 8

8.4 Learning without a Reset

In this section, we strengthen the result from the previous section and
give an efficient algorithm for learning deterministic finite automata from
equivalence queries and membership queries without resets. By this we
mean that the membership oracle does not reset M to its start state be­
fore each membership querYi instead it simply starts processing the next
query string from its current state. Thus the answer to the query string
"(i which follows a sequence of queries "(1, • • • , "(i-l indicates whether
M["(l . . . "(i-l"(i) is an accepting or rejecting state. As stated in the intro­
duction, we will assume without loss of generality that each of the query
strings "(i is only a single-bit query.

We need to be a little careful in specifying the goal of the learner in
this new setting. The problem arises from the fact that the target au­
tomaton M may contain components from which the learning algorithm
can never escape once they are entered, and thus might not be able to
explore the rest of the a.utomaton. For simplicity, we shall finesse this
problem by simply assuming that M is strongly connected: that is,
there is a directed path between every pair of states in M. In the more
general case, the automaton would eventually get trapped in a strongly
connected component. In this case the learning algorithm would end up
with an accurate model of this strongly connected component.

In keeping with the idea that the learner's goal is to model its en­
vironment from its current position, we shall also modify the oracle for
equivalence queries. Whenever the learning algorithm makes an equiva­
lence query on hypothesis automaton £1, this query is interpreted from
the learning algorithm's current position. This means that if £1 is equiv­
alent to M when we define the start state of M to be the current position
of the learning algorithm in M, then learning is complete , and if M is not
equivalent to M from the current position, a counterexample from the
current position is provided. Thus, a counterexample to £1 provides the
learning algorithm with a sequence of moves 'Y such that if we execute "(
from the current position in M, and if we execute "(from the start state

Copyrighted Material

Learning Finite Automata by Experimentation 175

of M, different outputs are obtained. For brevity, we shall refer to this
learning model for finite automata with the modified membership and
equivalence queries as the no-reset model of exact ly learning determin­
istic finite automata from membership and equivalence queries, and to
the original model as the reset model. Note that the no-reset model
only makes sense in the context of learning the particular representation
class of finite automata, whereas the original model is of more general
interest.

It is not difficult to see that a learning algorithm in the no-reset
model can be simulated by an algorithm in the reset model, by making a
membership query for each prefix of the string describing the movements
of the no-reset learner. On the other hand, the no-reset learner does not
seem to have the power of membership queries with resets, since it may
not know how to return to the start state from its current position in the
target automaton.

We will use the notion of homing sequences to effect a kind of sim­
ulation of resets in the no-reset model, and this will allow us to modify
our algorithm Learn-Automaton for the reset model into an efficient
randomized a lgorithm for learning automata in the no-reset model. The
overview of the development is as follows. We begin in Section 8.4.1
by defining a homing sequence, and showing how we can learn in the
no-reset model if we are given a short homing sequence for the target
automaton. In Section 8.4.2 we prove the existence of short homing se­
quences, and we analyze the key idea of our new algorithm: simulating
many copies of our algorithm Learn-Automaton using a possibly faulty
homing sequence. We show that the failure of such a simulation allows
us to improve our proposed homing sequence and restart the entire sim­
ulation. In Section 8.4.3 we give a detailed description of our algorithm
and its analysis, and in Section 8.4.4 we return to address an assump­
tion made during the development about the many simulated copies of
Learn-Automaton.

Copyrighted Material

176 Chapter 8

8.4. 1 Using a Homing Sequence to Learn

Let M be the target automaton. As before we will assume that M is a
minimum state automaton, and let size(M) be the number of states of
M. To begin with, without loss of generality we will assume that our
learning algorithm knows the value of size(M) j it is a simple exercise to
eliminate this assumption.

For any string h, we denote by output(q, h) the output (that is, the
complete sequence of accept/reject bits) observed by executing h from
state q of M, and by state(q, h) the state of M reached by executing h
from q. For any sequence h, we define

output(h) = { output (q, h) : q E M}.

This is just the set of all possible outputs observed by executing h as
we range over all possible starting states q of M. Notice that if M has
size(M) states, I output (h) I � size(M) for any sequence h.

A homing sequence for a finite automaton M is a sequence h such
that for any state q of M, output(q, h) uniquely determines state(q, h) :
that is, if output (q, h) = output (q' , h) then state(q, h) = state(q' , h) . Note
that we do not demand that q = q'j a homing sequence simply ensures
that identical output sequences imply the same destination state, not the
same origin.

Let us first show the existence of short homing sequences for any
automaton, and how a homing sequence can be used to learn in the no­
reset model, and defer the problem of finding such a sequence in the
no-reset model to Section 8.4.2. The main idea is that any sequence h
that is not already a homing sequence can be extended to a sequence hx
such that I output (hx) I > l output (h) 1 for some string x of length at most
size(M) . Since I output (h) 1 � size(M) for every string h, we will have
the desired homing sequence after at most size(M) such extensions.

First note that for any h and any x, I output (hx) I � 1 output (h) I .
Now if h i s not a homing sequence, there exist two different states q

Copyrighted Material

Learning Finite A utomata by Experimentation 177

and q' of M such that output(q, h) = output(q' , h} , but state (q, h} :1=
state(q', h}. However, there must be a distinguishing sequence d for the
destination states state(q , h) and state(q' , h) . So now we get two distinct
output sequences output (q, hd) :1= output (q' , hd) in place of the single
output sequence output (q, h) = output (q', h} , and thus I output(hx) I >
l output(h) l ·

Returning to our learning problem, note that a homing sequence h
provides a kind of " weak" reset for M. Although executing h does not
always return us to the same fixed state of M, it does "orient" us within
M, in the sense that the output observed upon executing h uniquely
determines the resulting state. Given the homing sequence h, we can
imagine simulating our learning algorithm Learn-Automaton for the
reset model in the following way: each time Learn-Automaton requests
a reset (that is, makes a membership query) , we temporarily suspend
its execution and repeatedly execute h until some execution results in
the specific output sequence 0'. We then resume simulation of Learn­
Automaton and in this way, before every membership query of Learn­
Automaton we return to the same fixed state of M, which we may'

consider the "start state" .

Unfortunately, we have no way of bounding the amount of time we

may have to wait before executing h gives rise to the specific output
sequence 0'. This will be addressed by simulating many copies LIS of

Learn-Automation, one for each output sequence 0' that we have ob­
served upon executing h (that is, one for each 0' E output (h) that we have

seen so far). At any time, at most one copy LIS will be awake. When this

copy makes a membership query, we suspend its execution, execute h and
obtain some output 0" , and then awaken (that is, resume execution of)
the copy LIS" There are at most I output (h) I � size (M} copies, and any

copy that terminates has exactly learned M. Each copy does at most as

much computation as an execution of Learn-Automaton in the reset

model, and thus the total amount of computation performed is at most

size(M) times that of Learn-Automaton (plus a small overhead cost

for the executions of h). Thus we have shown:

Copyrighted Material

178 Chapter 8

Lemma 8.2 There is an efficient algorithm for exactly learning deter­
ministic finite automata in the no-reset model of membership and equiva­
lence queries, provided the algorithm is also given a homing sequence for
the target automaton as input.

The main difficulty with the above proposal is that we must first
somehow find a homing sequence. We now address this issue .

8.4.2 Building a Homing Sequence Using
Oversized Generalized Classification Trees

The overall idea for finding a homing sequence will be to run the multi­
copy simulation suggested above using a sequence h which in fact may
not be a homing sequence. If this simulation fails to learn M, we will
be able to extend h to a sequence hx that is "closer" to being a homing
sequence.

For any sequence h, let us denote by reset(h, IT) the set of possible
states of M we could be in if the string IT has just been observed as the
output while executing the string h. Thus,

reset(h, IT) = {r E M : (3q E M)state(q, h) = r, output(q, h) = IT} .

Suppose that we use a sequence h which is not a homing sequence, and
awaken the copy Lu only when we have just executed h and observed the
ouput sequence IT. Then every time that Lu is awakened , M will be in
some state in reset (h, IT) .

As we have mentioned, our hope is to iteratively update h from failed
attempts to learn M using the copies Lu , until we end up with a homing
sequence, at which point we have already argued the correctness of our
multi-copy simulation (Lemma 8.2) . The correctness of this scheme will
rely on the following important property of each Lu , whose proof we shall
defer until a later section : if we use a sequence h which is not a homing

Copyrighted Material

Learning Finite A utomata by Experimentation 179

sequence to run the copies Lu, then each Lu either halts and outputs
an automaton equivalent to M, or it successively constructs a series of
larger and larger generalized classification trees.

Structurally, a generalized classification tree looks just like the clas­
sification tree of algorithm Learn-Automaton in the reset model. The
key property of a generalized classification tree T is that for any access
string (leaf) of T, and any distinguishing string (internal node) d of T
that is on the path from the root to 8, there is some state q E reset(h, O')
that "witnesses" the claimed behavior of M on these strings. More pre­
cisely, we say that T is a generalized classification tree with respect
to h and u if and only if for any access string 8 and distinguishing string
d on the path from the root to 8 in T, if 8 is in the right (left, respec­
tively) subtree of d, there is a q E reset(h, O') such that state(q, sd) is
accepting (rejecting, respectively) . Note that a classification tree is just
a generalized classification tree in which lreset(h, u) 1 = 1 .

Assuming for now that each copy LIT can only either halt with a
correct hypothesis automaton or construct successively larger generalized
classification trees, the only way in which our simulation can fail when
using an h that is not a homing sequence is that some copy Lu constructs
a generalized classification tree TIT with size(M) + 1 leaves. We now
propose and analyze a randomized scheme for using such an oversized Tu
to find a string x such that hx is closer to being a homing sequence, in
the sense that I output(hx) I > l output(h) l ·

Let r E reset(h, q). Thus r is one of perhaps many states that M
could be in when La is restarted when using the sequence h. Since M has
only size(M) states and Tu contains size(M)+l access strings, there must
exist access strings Si and Sj of Tu such that state(r, 8i) = state(r, Sj) by
the Pigeonhole Principle. Let d be the distinguishing string for Ss and
Sj in Ta . Then since 8i and Sj lead to the same state of M from r,
we must also have state(r, Sid) = state(r, sjd)j assume without loss of
generality that this is an accepting state. On the other hand, since d is
a distinguishing string for Si and 8j in Ta , there must also exist states
Ti , rj E reset (h, q) such that exactly one of state(r. , 8.d) and state(rj, sjd)

Copyrighted Material

180 Chapter 8

Figure 8.6: Homing sequence update.

is an accepting state, say state (ri l sid) . Now hsjd is closer to being a
homing sequence than h, because on output q , h might have led us to
either of r and Tj , but now s;d distinguishes between T and Tj (see Figure
8.6) .

Of course, we have no way of determining just by looking at T� which
access strings Si and s; have the above property. Instead, we use a
randomized scheme that chooses two leaves Ss and s; of Tq at random,
and updates the proposed homing sequence h to be hs;d, where d is
the distinguishing string (least common ancestor) for s. and Sj in Tq •
We then restart the entire mUlti-copy simulation of algorithm Learn­
Automaton.

Since we know that there is some pair 8. and 8; in Tq that can be used
to improve h, the probability that we actually make an improvement is
at least 1/{size(M»2. Note that even if we fail to make an improve­
ment to h, we certainly cannot make it worse because we always have
l output(hs;d) 1 2: l output(h) l ·

Copyrighted Material

Learning Finite Au tomata by Experimentation 181

8.4.3 The No-Reset Algorithm

We are now prepared to give a detailed description of our algorithm for
the no-reset model. We then provide its analysis under the assumption
that all copies La of Learn-Automaton always maintain a generalized
classification tree, and then return to validate this assumption in the
following section .

Algorithm No-Reset-Learn-Automaton:

. h .- >' .

• Main Loop:

- Execute (that is, make a membership query on) the current
proposed homing sequence h, and let q be the output sequence
observed.

- If the output sequence q has not previously been observed
after executing the current h, initialize a copy La of algorithm
Learn-Automaton.

- Awaken copy La and simulate its next membership query and
all subsequent computation up to (but not including) the next
membership query:

* Any time La makes a equivalence query M, give this query
to the equivalence query oracle. If it is successful, halt
and output M (learning is complete) . If it is unsuccessful
return the counterexample 'Y to La.

* If the generalized classification tree Ta of copy La ever has
size of size(M) + 1 leaves, then choose leaves St and Sj of
TO' at random , and perform the update h .- hsjd, where d
is the least common ancestor of St and Sj in Ta . Delete all
copies of algorithm Learn-Automaton and restart the
entire simulation by returning to the Main Loop.

Copyrighted Material

182 Chapter 8

For the analysis , note that No-Reset-Learn-Automaton halts only
if learning is complete. Thus we only need to bound the running time.
First, we observe that the number of times the tentative homing sequence
can be improved is at most size(M) j this is because as we already ar­
gued, each improvement increases the size of the set output (h) up to a
maximum of size(M). Improvements in the tentative homing sequence
happen with probability at least 1/(size(M»2 each time the algorithm
discovers an oversized classification tree. Since the simulation is simply
restarted after each such modification to the tentative homing sequence,
the running time of the algorithm is bounded by size(M)3 multiplied by
the time required to build an oversized tree starting with a new tenta­
tive homing sequence. From Section 8.4. 1 , the latter quantity is at most
(size(M)) times the running time of Learn-Automaton in the reset
model. Therefore the expected running time of the new algorithm is at
most (size(M))4 times the running time of Learn-Automaton in the
reset model.

8.4.4 Making Sure Lq Builds Generalized
Classification Trees

We now must return to an issue that we had deferred earlier: we still need
to show that each copy L(/ has the property that even if it is awakened
when we observe output u upon executing a string h that is not a homing
sequence, L(/ either halts and outputs an automaton equivalent to M, or
it successively constructs a series of larger and larger generalized classifi­
cation trees Tq . The issue here is that if h is not a homing sequence then
each reset of L(/ puts M in an arbitrary state q E reset (h, u) .

First, let us assume that the lack of a consistent reset state does not
ever cause the copy Lq to abort. We will momentarily come back and
address this assumption. In this case, the only way Lq halts is if it made
a successful equivalence query, and therefore discovered an automaton
equivalent to M. On the other hand, if it does not halt, then it works in

Copyrighted Material

Learning Finite Automata by Experimentation 183

phases, and in each phase it adds a new leaf node to its current tree Ta ,
which we now argue is a generalized classification tree.

We thus have to verify that if d is a distinguishing string on the path
from the root to the leaf s in the current tree Ta , then if S is in the
right subtree of d there is some reset state q E reset(h, (1) such that
the state(q, sd) is an accepting state , and if S is in the left subtree of d
there is some reset state q E reset(h, (1) such that the state(q, sd) is a
rejecting state. This fact is established by proving that for every such
(s, d) pair there is a witness in the membership query history of La -
that is, La must have at some point performed the membership query
sd, and that the current tree Ta is consistent with the answer given to
that membership query.

Recall that Ta is modified only by a call to Update-Tree(TIT ' ')') for
some counterexample string 'Y. Let us denote the updated tree by T�. We
will show that if all (s, d) pairs of Ta were witnessed, then this continues
to be true of T;. Since we update TO' by adding a single access string
')'(j - 11 and a single distinguishing string ')'jd, we must only verify that
there are witnesses for pairs that involve one of these two strings.

There are only two access strings in T; whose path from the root
passes through the new internal node labeled ')'jd - namely, ')'(j - 11 and
s, where s is the access string reached by sifting ')'(j - 11 down TIT (see
Section 8.3.4). Of these, the pair (')'(j - 1] , ')'jd) was witnessed by the
membership query ')'(j - Ibjd = ')'[ild which was made while doing a
sift operation on the string ')'[i] (while processing the counterexample ')') .
The pair (s, 'Yjd) was witnessed by the membership query s')'jd which was
performed to determine the destination state for the ')';-transition out of
the state s in the tentative hypothesis automaton AI. To see this more
clearly, recall that determining this transition involved sifting s')'j down
Ta, and that d is one of the distinguishing strings on the path from the
root to access string S in Ta .

Lastly, we must witness every remaining new pair b(j - 1], d') of T;
for all of the distinguishing strings d' =F ')' - i d on the path from the

Copyrighted Material

184 Chapter 8

root to 'Y(j - 1] . Note that all such d' were present in the tree TO'. All
these pairs were witnessed while sifting the string 'Yli - I} down TIT to
determine its equivalence class.

As our final detail, we have to consider the possibility that LO' may
abort since the answers to the membership queries can be inconsistent be­
cause there is no consistent reset state. We will show that (with one small
exception which is easily fixed) La never checks the answers to member­
ship queries for consistency. First observe that LIT makes membership
queries in two places: one is to fill in the transitions of the hypothe­
sis automaton M. Notice that even if the answers to all these queries
were arbitrary, they would not cause La to abort , they would just re­
sult in incorrect transitions for M. The other place where the algorithm
makes membership queries is while processing the counterexample string
'Y. Once again incorrect answers to membership queries do not cause
the algorithm to abort, with one small exception. Let the length of the
counterexample string 'Y be m. Suppose that all the prefixes of 'Y up to
')'[m - 11 reveal no difference between the equivalence class in M and
the equivalence class in M. When the algorithm goes on to compute the
equivalence class of ')'[m] = 'Y in M (using membership queries) , it must
not turn out to be equal to the equivalence class of ')' in M, otherwise the
algorithm as stated would abort. This situation is easily fixed by chang­
ing the algorithm so that if it gets this far it does not try to compute
the equivalence class of ')', but instead uses the information that "I was
a counterexample to directly update the generalized classification tree
as follows: the new access string is "I[m - 1 J and the new distinguishing
string is "1m. The correctness of the generalized classification tree is un­
changed except for the fact that the correctness of the pair s = "I[m - 11
and d = "1m relies on the fact "I was a counterexample string after a reset
operation , and therefore there must be some reset state q E reset(h, cr)
such that state(q, "I) is an accepting or rejecting string as claimed by the
counterexample.

We have finally shown:

Copyrighted Material

Learning Finite Automata by Experimentation 185

Theorem 8.3 There is a randomized algorithm that halts in expected
polynomial time and exactly learns the representation class of determin­
istic finite automata in the no-reset learning model.

It is easy to argue that we can alternatively state this result by saying
that there is a randomized algorithm that takes as input 0 < 6 ::; 1, and
that with probability at least 1 - 6, exactly learns any deterministic
finite automata c in the no-reset model in time polynomial in log(1/6) ,
n and size (c) . Here n is again a bound on the length of the longest
counterexample to any equivalence query.

8.5 Exercises

8.1 . Show that for any repr�entation class C, if e is efliciently exactly
learnable from membership and equivalence queries, then e is efficiently
learnable in the PAC model with membership queries .

8.2. Show that properties of the classification trees constructed by our
algorithm for learning finite automata in the reset model imply that
any two inequivalent states in any deterministic finite automata M of 8
states have a distinguishing string of length at most 8 . Show that for
any equivalence query M of our algorithm, if AI :/: M then there is a
counterexample of length 28 which can be found efficiently on input if
and M.

8.3. Let en be the class of monotone DNF formulae over Xl , . • • , Xn , and
let C = Un>lCn• Give an algorithm for efficiently exactly learning e from
membershiP and equivalence queries.

8.4. Consider modifying our algorithm for finite automata in the
no-reset model so that the copy L(1 is halted only when its generalized
classification tree T(1 has 2s leaves rather than just 8 + 1 , where 8 is
the number of states in the target automaton. Note that this increases

Copyrighted Material

186 Cha.pter 8

the running time of the algorithm by only a constant. Show that this
modification increases the probability that we improve our candidate
homing sequence from 1/82 to 1/8.

8.6 Bibliographic Notes

The model of exact learning with membership and equivalence queries,
and the algorithm given here for learning finite automata, is due to An­
gluin [5) . Her seminal paper inspired a tremendous amount of subsequent
research in the model, and has yielded many positive results. These in­
clude efficient algorithms for learning the class of decision trees, due to
Bshouty [25]; for learning conjunctions of Horn clauses, a restricted form
of DNF formulae, due to Angluin, Frazier and Pitt [7] ; for learning a
subclass of context-free languages accepted by counter machines, due to
Berman and Roos [15] ; for learning read-once boolean formulae, due to
Angluin, Hellerstein and Karpinski (8) ; for learning sparse multivariate
polynomials, due to Schapire and Sellie [83) ; and for many other concept
classes. The algorithm for learning monotone DNF that is the subject of
Exercise 8.3 is due to Angluin [6] ; this paper also provides many general
resource bounds for query learning (also see the work of Kannan (54)) .
The monotone DNF algorithm was subsequently extended by Angluin
and Slonim [1 1) to tolerate certain types of errors in the query responses.

However, there are still limitations: Angluin and Kharitonov (91 demon­
strate that for the class of DNF formulae, membership queries provide no
additional power to the learner over the PAC model for some input dis­
tributions (under certain cryptographic assumptions) , and subsequently
Kharitonov (62) greatly strengthened the hardness results we derived in
Chapter 6 when he proved that boolean formulae cannot be efficiently
learned from random examples and membership queries, even when the
input distribution is uniform (again under cryptographic assumptions) .

The extension of Angluin 's algorithm to the problem of learning finite

Copyrighted Material

Learning Finite Automata by Experimentation 187

automata without a reset mechanism is due to llivest and Scbapire [801 ,
who also study learning algorithms using an alternative representation
for finite automata based on a quantity called the diversity [79} . A recent
paper of Freund et aI. [37] gives algorithms for learning finite automata
on the basis of a single long walk in an average-case setting.

There is actually a huge literature on finite automata learning prob­
lems that predates the computational learning theory work. While there
was less explicit emphasis in this previous work on efficiency consider­
ations, there are still many efficient algorithms and other fundamental
results in the older literature. It is far too large to survey here, but the
book of Trakhtenbrot and Barzdin' [901 provides a thorough investiga­
tion.

Copyrighted Material

9

Appendix: Some Tools for
Probabilistic Analysis

In this brief appendix, we state some fundamental results from probabil­
ity theory that we invoke repeatedly in our study.

9.1 The Union Bound

Perhaps the most basic fact we will need is what we shall call the union
bound. It simply states that for any probability space and for any two
events A and B over that space, Pr[A U BJ :::; Pr{A] + Pr{B].

9.2 Markov's Inequality

Markov's inequality provides a coarse bound on the probability that a
random variable deviates from it expected value:

Theorem 9.1 (Markov's Inequality) Let X be any nonnegative random
variable with expected value p,. Then Pr[x � kp,l $ 1/ k.

Copyrighted Material

190 Chapter 9

9.3 Chernoff Bounds

Let Xl, . . . , Xm denote the outcomes of m independent Bernoulli trials
(coin flips) , with Pr(Xi = 1] = p and Pr[Xi = OJ = 1 - p. Let S =
Xl + . . . + Xm be the number of heads in the m coin flips. Then E[S] =

E[Xd + . . . + E[XmJ = pm. The Chernoff bounds given below state
that the probability that S deviates from its mean pm by an amount l
decreases exponentially in l:

Theorem 9.2 Let Xl, . . . , Xm he a sequence 0/ m independent Bernoulli
trials, each with probability of success E[Xi] = p. Let S = Xl + . . ·+Xm be
a random variable indicating the total number of successes, so E[S] = pm.
Then for 0 ::; , ::; 1, the following bounds hold:

• (Additive Form)

and

• (Multiplicative Form)

Pr{S > (1 + ,,),)pmJ :s; e-mrN3

and

The Additive Form of the bound is usually credited to Hoeffding and
the Multiplicative Form to Chernoff; in the computer science literature,
both forms are often referred to by the name Chernoff hounds.

The multiplicative form of the Chernoff bound can be restated in
terms of the standard deviation g of the random variable S as follows:
PrflS - E[SlI � kg] ::; 2ek2/6• To see this, first note that we have

Copyrighted Material

Some Tools for Probabilistic Analysis 191

(1 = Vmp(1- p) � Vpm/2. Therefore k(1 � k4pm/2 = k(V2/pm)pm.
Substituting in the multiplicative form of the hernoff bound with 'Y =

kV2/pm gives the above bound.

It is sometimes convenient to consider the observed success probability

p rather than the actual number of successes Sj p is simply 8/m. In this
light, Theorem 9.2 tells us how rapidly the estimate p converges to p as a
function of m. For instance, in the additive form, simply divide each side
of the inequality inside the Pr[·) by m and we see that the probability
that the estimate p exceeds p by more than 'Y is at most e-2m-y2.

Our most common application of the Chernoff bounds will be to pro­
vide an upper bound on the number of trials m required to ensure that
the estimate p is "close" to the true value p with high confidence. Es­
pecially important is the case where p is small. In this case, by "close"
we will mean that p be within a multiplicative factor of 2 of p, that is,
p/2 :5 p :5 2p. Let m(p, 6) be the number of trials required to ensure that
p is within a multiplicative factor of 2 of p with confidence at least 1- 6.
Setting 'Y = 1 in the first Multiplicative Form bound of Theorem 9.2, we
obtain

Pr[p > 2p) :5 e-mp/3•
Setting'Y = 1/2 in the second Multiplicative Form bound of Theorem 9.2,

we obtain

Pr[p < p/2] :5 e-mp/8•
Thus we may write

Pr[(p > 2p) V (p < p/2)1 - Prfp > 2p) + Pr[p < p/2)
:5 e-mp/3 + e-mp/8
� 2e-mp/8•

Solving 2e-mp/8 :5 6 gives that m(p, 6) � (S/p) In(2/6) suffices. The most
important aspect of this bound is that the dependence on p is O(l/p).

We can also bound the number of trials m required to ensure that the
estimate p is within an additive factor of € of p (that is, p - f :5 p :5 p + €)

Copyrighted Material

192 Chapter 9

with confidence at least 1 - 6. This bound is conveniently derived from
the additive form of the Chernoff bound, which implies that

Prflp - pI � f) � 2e2nu2

The right hand side is less than 6 for m = O«1/e2) In{1/6)). We will often
apply Chernoff bounds in a rather informal manner to avoid tedious detail
when it is clear that these details may be verified in a straightforward
way.

Copyrighted Material

Bibliography

[1) Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension : Informa­
tion versus complexity in learning. Neural Computation, 1(3):312-
317, 1989.

[21 A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis 0/
Computer Algorithms. Addison-Wesley, 1974.

[3] D. Aldous and U. Vazirani. A Markovian extension of Valiant's
learning model. In Proceedings of the 31st IEEE Symposium on the
Foundations of Computer Science, pages 392-396. IEEE Computer
Society Press, Los Alamitos, CA, 1990.

[4) N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale­
sensitive dimensions, uniform convergence, and learn ability. In Pro­
ceedings of the 34th IEEE Symposium on the Foundations of Com­
puter Science, pages 292-301. IEEE Computer Society Press, Los
Alamitos, CA, 1993.

[5) D. Angluin. Learning regular sets from queries and counterexamples.
In/ormation and Computation, 75(2):87-106, 1987.

(6) D. Angluin. Queries and concept learning. Machine Learning,
2(4):319-342, 1988.

(7) D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn
clauses. Machine Learning, 9:147-164, 1992.

Copyrighted Material

194 Bibliography

[8} D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once
formulas with queries. Journal of the ACM, 40:185-210, 1993.

(9) D. Angluin and M. Kharitonov. When won't membership queries
help? In Proceedings of the 29rd ACM Symposium on the Theory of
Computing, pages 444-454. ACM Press, New York, NY, 1991.

[1O} D. Angluin and P. Laird. Learning from noisy examples. Machine
Learning, 2(4):343-370, 1988.

(11] D. Angluin and D.K. Slonim. Randomly fallible teachers: learning
monotone DNF with an incomplete membership oracle. Machine
Learning, 14:7-26, 1994.

[12] J. A. Aslam and S. E. Decatur. General bounds on statistical query
learning and PAC learning with noise via hypothesis boosting. In
Proceedings of the 95th IEEE Symposium on the Foundations of
Computer Science, pages 282-291. IEEE Computer Society Press,
Los Alamitos, CA, 1993.

[13) E. Baum and D. Haussler. What size net gives valid generalization?
Neural Computation, 1(1) : 15 1-160 , 1989.

[14] P.W. Beame, S.A. Cook, and H.J. Hoover. Log-depth circuits
for division and related problems. SIAM Journal on Computing,
15(4):994-1003, 1986.

(15] P. Berman and R. Roos. Learning one-counter languages in poly­
nomial time. In Proceedings of the 28th IEEE Symposium on the
Foundations of Computer Science, pages 61-67. IEEE Computer
Society Press, Los Alamitos, CA, 1987.

[16] A. Blum. On the computational complexity of training simple neural
networks . Master's thesis, MIT Department of Electrical Engineer­
ing and Computer Science, May 1989. Published as Laboratory for
Computer Science Technical Report MIT /LCS/TR-445, May, 1989.

Copyrighted Material

Bibliography 195

[17] A. Blum. Learning boolean functions in an infinite attribute space.
Machine Learning, 9(4):373-386, 1992.

{I8) A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and
S. Rudich. Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. In Proceedings of the 26th ACM

Symposium on the Theory of Computing. ACM Press, New York,
NY, 1994.

[19] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic prim­
itives based on hard learning problems. In Proceedings of CRYPTO,
1993.

[20] A. Blum and R. L. Rivest. Training a 3-node neural net is NP­
Complete. In David S. Touretzky, editor, Advances in Neural In­
formation Processing Systems I, pages 494-501. Morgan Kaufmann,
San Mateo, CA, 1989.

[21] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Oc­
cam's razor. Information Processing Letters, 24:377-380, 1987.

[22) A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension. Journa l of
the ACM, 36(4):929-965, 1989.

[23] R. Board and L. Pitt. On the necessity of Occam algorithms. The­
oretical Computer Science, 100:157-184 , 1992.

[24] D. Boneh and R. Lipton. Amplification of weak learning under the
uniform distribution. In Proceedings of the 6th Workshop on Com­
putational Learning Theory, pages 347-351 . ACM Press, New York,
NY, 1993.

[25} N. H. Bshouty. Exact learning via the monotone theory. In Proceed­
ings of the 94th IEEE Symposium on the Foundations of Computer
Science, pages 302-311. IEEE Computer Society Press, Los Alami­
tos, CA, 1993.

Copyrighted Material

196 Bibliography

[26] V. Chvatal. A greedy heuristic for the set covering problem. Math­
ematics 0/ Operations Research, 4(3):233-235, 1979.

(27] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts , 1990.

[281 S. E. Decatur. Statistical queries and faulty PAC oracles. In Pro­
ceedings of the 6th Workshop on Computational Learning Theory,
pages 262-268. ACM Press , New York, NY, 1993.

[29] A. DeSantis, G. Markowsky, and M. N. Wegman. Learning proba­
bilistic prediction functions. In Proceedings of the 29th IEEE Sympo­
sium on the Foundations of Computer Science, pages 110-119. IEEE
Computer Society Press, Los Alamitos, CA, 1988.

[30] H. Drucker, R. Schapire, and P. Simard. Improving performance in
neural networks using a boosting algorithm . In S.J. Hanson, J.D.
Cowan, and C.L. Giles, editors, Advances in Neural Information
Processing Systems, pages 42-49. Morgan Kaufmann, San Mateo,
CA,1992.

[31] R.M. Dudley. A course on empirical processes. Lecture Notes in
Mathematics, 1097:2-142, 1984.

[32] A. Ehrenfeucht and D. Haussler. Learning decision trees from ran­

dom examples. In Proceedings of the 1st Workshop on Computational
Learning Theory, pages 182-194. Morgan Kaufmann, San Mateo,
CA,1988.

[33] A. Ehrenfeucht , D. Haussler, M. Kearns, and L. Valiant. A gen­
eral lower bound on the number of examples needed for learning.
Information and Computation, 82(3):247-251, 1989.

[34] W. Evans, S. Raj agopalan , and U. Vazirani. Choosing a reliable
hypothesis. In Proceedings 0/ the 6th Workshop on Computational
Learning Theory, pages 269-276. ACM Press, New York, NY, 1993.

Copyrighted Material

Bibliography 197

[35] Y. Freund. Boosting a weak learning algorithm by majority. In Pro­
ceedings of the 9rd Workshop on Computational Learning Theory,
pages 202-216. Morgan Kaufmann, San Mateo, CA, 1990.

[36] Y. Freund. An improved boosting algorithm and its implications on
learning complexity. In Proceedings of the 5th Workshop on Com­
putational Learning Theory, pages 391-398. ACM Press, New York,
NY, 1992.

[37] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. Schapire, and L. Sel­
lie. Efficient learning of typical finite automata from random walks.
In Proceedings of the 25th ACM Symposium on the Theory of Com­
puting, pages 315-324. ACM Press, New York, NY, 1993.

[38] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, San Francisco, California,
1979.

[39] M. Gereb-Graus. Complexity of learning from one-sided examples.

Unpublished manuscript, Harvard University, 1989.

[40] E. M. Gold. Complexity of automaton identification from given data.
Information and Control, 37:302-320, 1978.

[41] S. Goldman and R. Sloan. The difficulty of random attribute noise .

Technical Report WUCS-91-92, Washington University Department
of Computer Science, 1991.

[42] S. A. Goldman, M. J. Kearns, and R. E. Schapire. On the sample
complexity of weak learning. In Proceedings of the 9rd Workshop on
Computational Learning Theory, pages 217-231. Morgan Kaufmann,
San Mateo, CA, 1990.

[43] O. Goldreich, S. Goldwasser, and S. Micali. How to construct ran­
dom functions. Journal of the ACM, 33(4):792-807, 1986.

[44] D. Haussler. Bias, version spaces, and Valiant's learning frame­
work. In Proceedings of the 4th International Workshop on Machine
Learning, pages 324-336. Morgan Kaufmann, San Mateo, CA, 1987.

Copyrighted Material

198 Bi bliography

[451 D. Haussler. Quantifying inductive bias: AI learning algorithms
and Valiant's learning framework. Artificial Intelligence, 36:177-
221, 1988.

[461 D. Haussler. Learning conjunctive concepts in structural domains.
Machine Learning, 4(1):7-40, 1989.

[471 D. Haussler. Probably approximately correct learning. In Proceed­

ings of the 8th National Conference on Artificial Intelligence, pages
1101-1108. Morgan Kaufmann, San Mateo, CA, 1990.

[48} D. Haussler. Decision-theoretic generalizations of the PAC model for
neural net and other learning applications. Information and Com­
putation, 100(1):78-150, 1992.

[491 D. Haussler , M. Kearns , N. Littlestone , and M. K. Warmuth . Equiv­
alence of models for polynomial learnability. Information and Com­
putation, 95(2):129-161, 1991.

[501 D. Haussler, M. Kearns, and R. E. Schapire. Bounds on the sample
complexity of Bayesian learning using information theory and the
VC dimension. Machine Learning, 14:83-113, 1994.

[51] D. Haussler, N. Littlestone , and M. K. Warmuth. Predicting {0,1}
functions on randomly drawn points . In Proceedings of the f9th
IEEE Symposium on the Foundations of Computer Science, pages
100-109. IEEE Computer Society Press, Los Alamitos, CA, 1988.

[52] D. P. Helmbold and M. K. Warmuth. Some weak learning results. In
Proceedings of the 5th Workshop on Computational Learning Theory,
pages 399-412. ACM Press, New York, NY, 1992.

[53} S. Judd. Neural Network Design and the Complexity of Learning.
MIT Press, 1990.

[54) S. Kannan. On the query complexity of learning. In Proceedings
of the Sixth Workshop on Computational Learning Theory, pages
58-66. ACM Press , New York, NY, 1993.

Copyrighted Material

Bibliography 199

(551 M. Kearns. The Computational Complexity of Machine Learning.
MIT Press, Cambridge, MA, 1990.

[56) M. Kearns. Efficient noise�tolerant learning from statistical queries.
In Proceedings of the 25th ACM Symposium on the Theory of Com�
puting, pages 392-401. ACM Press, New York, NY, 1993.

[571 M. Kearns and M. Li. Learning in the presence of malicious errors.
SIAM Journal on Computing, 22(4):807-837, 1993.

[58} M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learn ability of
boolean formulae. In Proceedings of the 19th ACM Symposium on
the Theory of Computing, pages 285-294. ACM Press, New York,
NY, 1987.

[59} M. Kearns, M. Li, L. Pitt, and L. Valiant. Recent results on boolean
concept learning. In Pat Langley, editor, Proceedings of the Fourth
International Workshop on Machine Learning, pages 337-352. Mor�
gan Kaufmann, San Mateo, CA, 1987.

[60] M. Kearns and L. G. Valiant. Cryptographic limitations on learn­
ing boolean formulae and finite automata. Journal of the ACM,
41{1}:67-95, 1994.

[61] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning
of probabilistic concepts. In Proceedings of the 31st IEEE Sympo­
sium on the Foundations of Computer Science, pages 382-391. IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[62] M. Kharitonov. Cryptographic hardness of distribution-specific
learning. In Proceedings of the 25th ACM Symposium on the Theory
of Computing, pages 372-381. ACM Press, New York, NY, 1993.

[63] P. D. Laird. Learning from Good and Bad Data. Kluwer Academic
Publishers, Boston, MA , 1988.

[64] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
Fourier transform, and learnability. In Proceedings of the 31st IEEE

Copyrighted Material

200 Bibliography

Symposium on the Foundations of Computer Science, pages 574-579.
IEEE Computer Society Press, 1989.

[65] N. Littlestone. Learning when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

[661 N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold
Learning Algorithms. PhD thesis, University of California Santa
Cruz, 1989.

(67) N. Littlestone. Redundant noisy attributes, attribute errors, and
linear threshold learning using Winnow. In Proceedings of the 4th
Workshop on Computational Learning Theory, pages 147-156. Mor­

gan Kaufmann, San Mateo, CA, 1991.

[68] P. M. Long and M. K. Warmuth. Composite geometric concepts and
polynomial predictability. In Proceedings of the 3rd Workshop on
Computational Learning Theory, pages 273-287. Morgan Kaufmann,
1990.

(691 W. Maass and G. Thran. On the complexity of learning from coun­
terexamples. In Proceedings of the 30th IEEE Symposium on the
Foundations of Computer Science, pages 262-267. IEEE Computer
Society Press, Los Alamitos, CA, 1989.

[70j B. K. Natarajan. Occam's razor for functions. In Proceedings of the
6th Workshop on Computational Learning Theory, pages 370-376.
ACM Press, New York, NY, 1993.

{71J L. Pitt and L. Valiant . Computational limitations on learning from
examples. Journal of the A CM, 35:965-984, 1988.

(721 L. Pitt and M. Warmuth. The minimum consistent DFA prob­
lem cannot be approximated within any polynomial. Journal of
the ACM, 40(1):95-142, 1993.

{73J L. Pitt and M. K. Warmuth . Prediction-preserving reducibility.
Journal of Computer and System Science, 41(3):430-467, 1990.

Copyrighted Material

Bibliography 201

(74] D. Pollard. Convergence of Stochastic Processes. Springer-Verlag,
1984.

(75) J. R. Quinlan and R. L. Rivest . Inferring decision trees using the
minimum description length principle. Information and Computa­
tion, 80(3):227-248, 1989.

[76] J. Reif. On threshold circuits and polynomial computations. In Pro­
ceedings of the 1!nd Confernce on Structure in Complexity Theory,
pages 118-125, 1987.

[77] J. Rissanen. Modeling by shortest data description. Automatica ,
14:465-471, 1978.

[78J R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229-
246, 1987.

[79] R. L. Rivest and R. E. Schapire . Diversity-based inference of finite
automata. In Proceedings 0/ the 1!8th IEEE Symposium on the Foun­
dations of Computer Science, pages 78-87. IEEE Computer Society
Press, Los Alamitos, CA, 1987.

[80] R. L. Rivest and R. E. Schapire. Inference of finite automata using
h oming sequences. Information and Computation, 103(2):299-347,
1993.

[81] R. L. Rivest, A. Shamir , and L. Adleman . A method for obtaining
digital signatures and public key cryptosytems. Communications of
the ACM, 21(2):120-126, 1978.

[821 Y. Sakakibara. Algorithmic Learning of Formal Languages and De­
cision 7rees. PhD thesis, Tokyo Institute of Technology, 1991. Inter­
national Institute for Advanced Study of Social Information Science,
Fujitsu Laboratories Ltd, Research Report IIAS-RR-91-22E.

[83] R. Schapire and L. Sellie. Learning sparse multivariate polynomials
over a field with queries and counterexamples. In Proceedings of
the 6th Workshop on Computational Learning Theory, pages 17-26.
ACM Press, New York, NY, 1993.

Copyrighted Material

202 Bi bliography

[84] R. E. Schapire . The strength of weak learn ability. Machine Learning,
5(2):197-227, 1990.

(85) R. E. Schapire. The Design and Analysis of Efficient Learning Al­
gorithms. MIT Press, Cambridge , MA, 1992.

[86] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics
of learning from examples. Physical Review, A45:6056-6091, 1992.

[87} G. Shackelford and D. Volper. Learning k-DNF with noise in the
attributes. In Proceedings of the 1st Workshop on Computational
Learning Theory, pages 97-103. Morgan Kaufmann, San Mateo, CA,
1988.

[88] R. H. Sloan. Computational Learning Theory: New Models and
Algorithms. PhD thesis, MIT, 1989. Issued as MIT/LCS/TR-448.

[89} G. Tesauro and D. Cohn. Can neural networks do better than the
Vapnik-Chervonenkis bounds? In R. Lippmann, J. Moody, and
D. Touretzky, editors, Advances in Neural Information Processing,
Vol. 9, pages 911-917. Morgan Kaufmann, San Mateo, CA, 1991.

(90) B.A. Trakhtenbrot and Ya. M. Barzdin'. Finite Automata: Behavior
and Synthesis. North-Holland, New York , 1973.

{911 L. Valiant. Deductive learning. Philosophical 7ransactions of the
Royal Society of London A, 312:441-446, 1984.

[92} L. G. Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134-1142, 1984.

[93) L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings
of the 9th International Joint Conference on Artificial Intelligence,
pages 560-566. International Joint Committee for Artificial Intelli­
gence, 1985.

[94} V. N. Vapnik. Estimation of Dependences Based on Empirical Data.
Springer-Verlag, New York, 1982.

Copyrighted Material

Bibliography 203

[951 V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of
Probability and its Applications, 16(2):264-280, 1971.

Copyrighted Material

Index

access strings 160
accuracy boosting 78
active learning 153
architecture

of a neural network 67

axis-aligned
rectangles 1,12,26,52,120

behaviors on a sample 51
boolean circuits 131
boolean formulae 134,149
boosting 76,78

cardinality of hypothesis class 32,35
Chernoff bounds 190

classification noise 103,105
classification tree 161
compositions of concepts,

VC dimension 64
compression 34

concept 7

concept class 8
confidence parameter 6 10
confidence boosting 76
conjunctions of literals

16,37,38,67,106,111,119

conjunctive normal form 22

consistent hypothesis 19
convex polygons 54,68
counterexample 158

decision lists 42,67,119
decision trees 44
dichotomy of a sample 51

dimensionality of
instance space 12

discrete cube root assumption 127
discrete cube root problem 124
discrete square root problem 140

disjunctive normal
form 18,22 ,27, 144,153

distinguishing strings 160
distribution 9

efficient learning 10
epsilon-net 57
equivalence queries 158
error of a hypothesis 9
error parameter € 10
error regions 57

exact learning 158
examples oracle 9
experimentation 153

Copyrighted Material

206

filtered distributions 80
finite automata 149,160

general PAC resource bounds 101
generalized classification tree 178
graph coloring problem 20
greedy algorithm

for set cover problem 39
group learning 101

halfspaces 52,68,153
homing sequences 176
hypothesis class 25
hypothesis concept 10

inherent unpredictability 123
input space 8
instance space 7
intervals of the real line 52
�ntractability of learning 18,123,153
Inverting exponent 126
irrelevant variables 38
iterated products 137,139

learning from
positive examples 68

learning without a reset 174
linearly separable (threshold)

functions 52,68,153
literal 16
log-depth circuits 133,149
log-space Turing machines 149
lower bounds

on sample size 62,68

Markov's inequality 189

membership queries 158

Index

memory-bounded learning 75,101
monotone disjunctive

normal form 144

neural networks 64,139
neural networks,

VC dimension 64
no-reset model 175
noise rate 104

Occam learning 33
Occam's razor 31
order of a group 125

passive learning 155
polygons, convex 54,68
polynomiallyevaluatable

hypotheses 26,45
Probably Approximately Correct

(PAC) learning model 10
public-key cryptography 124 , 127

random guessing 74
rank of a decision tree 45
read-once disjunctive

normal form 153
rectangle learning game 1

reducibility in learning 23,143
relatively prime 125

relevant variables 38
representation 12
representation class 14
representation dependent

hardness 18 , 123
representation independent

hardness 123

Copyrighted Material

Index

representation scheme 13
representation size 13
reset 157,174

sample complexity 49

set cover problem 38
shattered set 51
sifting 162

size of a representation 13
space-bounded learning 75,101

state partition 162
statistical query

learning model 108
strong learning 75
strongly connected 174

succinctness of a hypothesis 33

target concept 8
target distribution 9

tightest fit algorithm 3
tolerance of a statistical query 109

two-oracle PAC model 27,68

union bound 189

unique negative dimension 69

Vapnik-Chervonenkis
(VC) dimension 51

weak learning 74

Copyrighted Material

207

