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In this paper, we discuss the eigenspectra of networks with community structure. It is shown that in many
cases, the spectrum of eigenvalues of the adjacency matrix of a network with community structure gives a clear
indication of the number of communities in the network. In particular, for a network with N nodes and Nc

communities, there will typically be Nc eigenvalues that are significantly larger than the magnitudes of all the
other �N−Nc� eigenvalues. We discuss this property as well as its use and limitations for determining Nc.
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I. INTRODUCTION

Many real complex networks are characterized by the
presence of community structure; i.e., there are groups of
network nodes that have relatively stronger relationship with
nodes in their own group than with nodes outside. Such
structures can have significant influence on the functional
characteristics of the network. There has been considerable
research on developing techniques for finding community
structure �1–3�, and this continues to be an active area of
research. Many community finding algorithms are based on
the concept of modularity �4–7�, which divides a network
into communities by maximizing this quantity.

Spectral properties of the Laplacian matrix of networks
with communities have also been studied quite intensively.
These properties can be used to detect community structure
in complex networks �8,9�. There has been work that uses
synchronization dynamics to find community structure and
relate it to the spectral information of the Laplacian matrix
�10,11�. The eigenspectra of undirected “real-world” net-
works without community structure has been studied in Refs.
�12,13�. Here, by eigenspectrum of a network we mean the
spectrum of its adjacency matrix. Farkas et al. �12� studied
the spectral density of the sparse uncorrelated random
graphs, the small-world graph and the scale-free graph, and
their deviation from the well know semicircle law �14,15�.
Goh et al. �13� analyzed the eigenspectra and eigenvectors of
the evolving Barabasi-Albert scale-free networks �16–18�.
Random uncorrelated graphs have been used by physicists to
study various physical phenomenon, and much work has
been done exploring the spectral properties of such matrices
�19�.

To our knowledge, the eigenspectra of networks, directed
or undirected, with community structure has gained little or
no attention. The objective of this paper is to study the spec-
tral properties of network adjacency matrix with community
structure. In particular, we propose a method for finding the
number of communities in a network from the eigenspectrum
of the network adjacency matrix.

Any given network can be represented by its adjacency
matrix A. In the case of unweighted networks treated here,
Aij =1 if there is a link from node j to node i, and Aij =0

otherwise, where i , j=1,2 , . . . ,N, and N is the number of
network nodes. In the case of directed �undirected� networks,
in general, Aij�Aji�Aij =Aji�. Our interest is primarily in the
case, where N is large and A is sparse. As we shall show, the
eigenspectrum of the adjacency matrix of a network with
communities has the interesting property that it has multiple
eigenvalues that are well separated from the rest of the ei-
genvalues. Our main point in this paper is that in many cases,
the number of such eigenvalues often gives a clear indication
of the number of communities in the network.

The organization of this paper is as follows. As back-
ground, in Sec. II, we discuss the pattern formed by plots in
the complex plane of the eigenvalues of the adjacency matrix
of a network with no communities, illustrating the generic
occurrence of a cloud of �N−1� eigenvalues of magnitude
substantially less than the maximum eigenvalue, which is
real and positive. Section III discusses the eigenspectra of
networks with communities. We show how the number of
communities can be obtained from the eigenspectra of the
network adjacency matrix. In Sec. IV, we apply our method
to some real-world networks. In Sec. V, we discuss the limi-
tations of our method.

II. EIGENVALUE SPECTRA OF NETWORKS WITHOUT
COMMUNITIES

A. Perron-Frobenius eigenvalue

The Perron-Frobenius theorem for matrices with non-
negative entries implies that the eigenvalue of A of largest
magnitude, here denoted ��, is real and positive �20�. As an
example, Fig. 1�a� shows a plot of the location of all the
eigenvalues of the adjacency matrix of a N=500 node
Erdos-Renyi directed network with �din�= �dout�=20, where
� . . . � denotes the average over all nodes �i=1,2 ,3 , . . . ,500�
and din

i �dout
i � denotes the number of incoming �outgoing� net-

work links at node i �these numbers are also called the in
degree �out degree� of node i�. Note that since every out link
originating from a node is also an in link for some other
node, we necessarily have �din�= �dout�; thus, we use the no-
tation �d� to denote both �din� and �dout�. For the example in
Fig. 1�a�, we have taken din and dout at a node to be uncor-
related. By uncorrelated in/out degrees, we mean that the
joint in-degree/out-degree probability distribution function

P̃�din ,dout�, giving the probability of �din ,dout� at a randomly
chosen node, factors*sanjeevk@umd.edu
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P̃�din,dout� = Pin�din�Pout�dout� , �1�

and, as a consequence, �dindout�= �din��dout�= �d�2.
We see in Fig. 1�a� that there is a single real positive

eigenvalue ���20, while all the other 499 eigenvalues fall
in a circular cloud centered approximately at the origin and
entirely enclosed within a radius denoted �0, of about 4,
which is substantially less than the maximum eigenvalue
���20. Thus, there is a large gap between the Perron-
Frobenius eigenvalue �� and the other eigenvalues. Assum-
ing that, aside from the in-degree/out-degree correlation at a
node, the network correlations are otherwise random, the
mean-field approximation to �� is �see Ref. �21��

�� �
�dindout�

�d�
. �2�

For an uncorrelated case, i.e., �dindout�= �d�2, as in Fig. 1, the
mean-field approximation to �� is ����d�, in agreement
with the numerically found value. On the other hand, as
shown in Sec. II B, the root-mean-square radius of the cloud
has an upper bound given by �d�1/2, thus, explaining the
separation of �� from the other eigenvalues. Figure 1�b� is a
plot similar to that in Fig. 1�a�, but for the case of a scale-
free network with degree distribution as in Eq. �1� with
Pin�d�= Pout�d��d−2.5; as for the case illustrated in Fig. 1�a�,
the network is again randomly connected with N=500,
�d�=20. Again, we see a strong separation between the
Perron-Frobenius eigenvalue and the cloud formed by the
other 499 eigenvalues.

In networks that are undirected �i.e., Aij =Aji�, all eigen-
values are real, but a similar result still often applies. All the
non-Perron-Frobenius eigenvalues lie in an interval approxi-
mately centered at zero with root-mean-square radius which,
as shown in next section, scales no stronger than �d�1/2, and
��−�0 can be large. As can be seen from Eq. �2�,

�� �
�d2�
�d�

�3�

for undirected networks. Note that �d2�
�d� � �d� �by the Schwartz

inequality�. References �12,13� have also given some results

concerning separation between the largest eigenvalue and the
bulk of eigenvalue cloud for certain undirected networks.

B. Size of the cloud of non-Perron-Frobenius
eigenvalues

In the case of undirected Erdos-Renyi networks, the semi-
circle law predicts the size of the eigenvalue cloud as
�2	Np�1− p� �12�, where p is the probability of connection
between two nodes. The distribution of eigenvalues in the
cloud in this case is symmetric. For undirected scale-free
networks, the spectral density deviates from the semicircle
law. It resembles a symmetric triangle-like distribution with
power-law tail of the density of the eigenvalues �12,13�.

For any given network, directed or undirected, we now
show that the root-mean-square radius of the cloud of non-
Perron-Frobenius eigenvalues has an upper bound given by
�d�1/2, independent of whether the degrees are correlated or
not. Since A has entries either 1 or 0 for the edges, the trace
of ATA, where AT is the transpose of A, is equal to the total
number of directed edges, say M, in the network,

Tr�ATA� = M . �4�

The matrix A can be expressed in Schur decomposition form
�22� as

A = UQU�, �5�

where U is a unitary matrix and U� denotes its conjugate
transpose. Q is an upper triangular matrix, which can be
written as D+T, where D is a diagonal matrix with the ei-
genvalues of A being the diagonal entries, and T is a strictly
upper triangular matrix. From this, since A is real,

A� = AT = UQ�U�. �6�

Thus, for Tr�ATA�, we obtain

Tr�ATA� = Tr�UQ�U�UQU�� = Tr�Q�Q� , �7�

where we have used the fact that trace is invariant under a
similarity transformation and U is unitary.

In Eq. �7�, Tr�Q�Q� is equal to Tr�T�T�+
k=1
N ��k�2. Since

Tr�T�T� is real and positive, Eq. �4� yields
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FIG. 1. �Color online� Plots of the real and imaginary parts of the adjacency matrix eigenvalues for computer-generated directed networks
with no community structure. The largest eigenvalue �� can be seen outside the cloud of the rest of the eigenvalues. �a� Erdos-Renyi network
with N=500, �d�=20. �b� scale-free network with N=500, �=2.5, and �d�=20.
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k=1

N

��k�2 � M . �8�

For large N,

���k�2�k�1 � �M − ��
2�/N , �9�

where � . . . �k�1 denotes the average over all eigenvalues with
�1��� not included. The equality holds when the network is
undirected. Since, in large sparse networks, M ��� and
M =N�d�, we get an upper bound on the root-mean-square
radius of the eigenvalue cloud as

���k�2�k�1
1/2 � �M/N�1/2 = �d�1/2. �10�

Figure 2 shows a plot of the largest eigenvalue �� and the
actual radius of the cloud �0, with changing network sizes
for random computer-generated, directed, and in/out-degree-
uncorrelated networks. Plots for both Erdos-Renyi and scale-
free networks are shown. Figure 2�a� is for the case where
�d�=20 is held constant as N increases. Figure 2�b� is for the
case where �d� /N=1 /20 is held fixed as N increases. The
upper solid lines in Figs. 2�a� and 2�b� correspond to �d�,
while the lower ones correspond to �d�1/2. We see that

����d� for uncorrelated directed networks, in agreement
with Eq. �2�. The actual radius of the cloud �not the root-
mean-square radius�, on the other hand, for this particular
case of uncorrelated directed networks is approximately
equal to �d�1/2. Thus, we see that, for the cases shown, the
largest eigenvalue is well separated from the cloud of the rest
of the eigenvalues, and, as the average degree of the network
increases, the separation between them increases. Figure 3
shows a similar plot for undirected networks. In this case
too, we see the large separation between �� and �0. All scale-
free networks considered in Figs. 2 and 3 have degree distri-
bution Pin�d�= Pout�d��d−�, with the exponent �=2.5.

We note that, although we have only presented illustrative
numerical results for random networks, we have also con-
ducted extensive tests for networks with other structures
�e.g., assortative and disassortative networks� obtaining simi-
lar results.

C. Shape of the cloud of non-Perron-Frobenius eigenvalues

For a network with zero or few number of bidirected
edges, the cloud of non-Perron-Frobenius eigenvalues is cir-
cular. Here, by a bidirected edge we mean a pair of directed
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FIG. 2. Plot of the largest eigenvalue �� and the actual radius �0 of the eigenvalue cloud for networks with no communities versus the
number of nodes in the network. All networks are directed with no degree correlations. �a� Erdos-Renyi and scale-free networks with
constant degree �d�=20. �b� Erdos-Renyi and scale-free networks with degree increasing in proportion to N such that �d� /N=0.05. In plots
�a� and �b�, the data points for Erdos-Renyi and scale-free networks overlap.
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FIG. 3. Plot of the largest eigenvalue and the actual radius of the cloud for networks with no communities versus the number of nodes
in the network. All networks are undirected. �a� Erdos-Renyi and scale-free networks with constant degree �d�=20. �b� Erdos-Renyi and
scale-free networks with �d� /N=0.05.
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edges corresponding to Aij =Aji=1 for nodes i and j. How-
ever, for a network where the number of bidirected edges is
comparable to M, numerical computations show that the
cloud shape becomes elliptical. In the limiting case where we
have all bidirected edges, i.e., the case of undirected net-
works �Aij =Aji�, the cloud collapses to a line interval on the
real axis. This transition from circle to ellipse to line interval
can be understood by considering the trace of A2, which is
equal to the sum of the squares of the eigenvalues of A.
Topologically, the trace of A2 is equal to the number of di-
rected cycles of length two, which in turn equals twice the
number of bidirected edges in the network. Thus,



k=1

N


�Re��k��2 − �Im��k��2� = 2Mb. �11�

where Mb is the number of bidirected edges in the network.
In the above equation, we have used the fact that complex
eigenvalues occur in conjugate pairs. Now for the networks
with no self-loops, �Re��k��= �Im��k��=0, since Tr�A�=0.
Thus, for Mb���

2, the difference in the spread of real and
imaginary parts of the eigenvalues in the cloud is given by

�2�Re��k��k�1 − �2�Im��k��k�1 �
2Mb

N
, �12�

where �2� . � denotes the variance of the corresponding en-
tries. The size of the term on the right-hand side of Eq. �12�
determines the ellipticity of the eigenvalue cloud for net-
works with zero or very small number of self loops. Thus,
the ellipticity of the eigenvalue cloud measures the number
of pairs of nodes in the network that have direct mutual
relationship with each other �i.e., are joined by bidirected
links�. In the normalize form, for the large sparse networks,
we can write the ellipticity of the eigenvalue cloud as

2Mb

M ,
which has the property that 0�

2Mb

M �1.
In general, the distribution of eigenvalues in the cloud of

non-Perron-Frobenius need not be symmetric and the cloud
may be asymmetric. This happens when the odd moments
�M j , j=3,5 ,7 , . . .� of the graph spectral density are nonzero,
where

M j =
1

N


k=1

N

�k
j =

1

N
Tr�Aj� . �13�

Topologically, Tr�Aj� counts the number of j-hop closed
paths in the network. Farkas et al. �12� considered the case of
undirected small-world networks in which M3 is high be-
cause of the high value of clustering �density of graph tri-
angles�. Accordingly, they find high skewness in the spectral
density of the small-world graphs.

III. NETWORKS WITH COMMUNITIES

In order to see how the phenomenon of Fig. 1 �i.e., the
appearance of �� well outside the cloud of other eigenvalues�
is affected by the presence of community structure, we give
several numerical examples in Sec. III B. Analytical results,
describing the behavior of largest eigenvalues observed in

Sec. III B, are given in Sec. III C. Before presenting our
numerical results in Sec. III B, we give our method of gen-
erating directed networks with community structure.

A. Generating directed networks with communities

In our numerical experiments in Sec. III B, we consider
two types of networks. One of them is the Erdos-Renyi-type
directed network with communities with random placement
of both within community and between community links.
The second type of network is the scale-free network with
communities with power-law degree distribution. To gener-
ate Erdos-Renyi-type directed networks with communities,
we divide the N nodes in the network into the desired num-
ber of communities, say Nc. Communities could have equal
or unequal number of nodes as required. Elements Aij of the
adjacency matrix, corresponding to links between nodes
within the same community, are set to 1 with some chosen
probability �else they are zero�, while elements correspond-
ing to links between nodes in different communities are
made 1 with some other smaller probability. By changing
these probabilities, we can tune the strength of community
structure and the average degree in the network.

To generate scale-free directed networks with community
structure, we again start by dividing the nodes into the de-
sired number of communities. For making connection be-
tween nodes in the same community, we generate power-law
degree distribution P�d��d−� for both the in degrees and the
out degrees of the nodes in the community. Say the kth com-
munity has Nk nodes. We generate Nk numbers using the
formula �23�

b�m + m0 − 1�−1/��−1�, �14�

for m=1,2 ,3 , . . . ,Nk. Here, the constants b and m0 deter-
mine the maximum degree and node averaged degree. We
randomly assign these Nk numbers to the Nk nodes in com-
munity k and call these assigned numbers the target within
community in degree of the corresponding node i. We denote
this number ti,in

k . We then repeat the random assignment of
these numbers and call the result the target within commu-
nity out degree of node i, ti,out

k . Note that ti,in
k and ti,out

k are
assigned independently at random, so that they are uncorre-
lated. From these target degree sequences, we obtain the
�i , j�th entry of the adjacency matrix A, where i and j are in
community k, by setting Ai,j =1 with probability

pij
k =

1

Mk
ti,in
k tj,out

k , �15�

where Mk is the target number of edges between nodes in
community k. Note that Mk=
iti,in

k =
iti,out
k . Links between

communities are assigned in a similar manner. For example,
say we want to generate links pointing from nodes in com-
munity l to nodes in community k. For Nk nodes in commu-
nity k, we generate Nk numbers using Eq. �14�. We assign
these Nk numbers to nodes in community k and call them the
target in links from nodes in community l to nodes in com-
munity k, ti,in

kl for the ith node in community k. We repeat this
procedure to get target out links from nodes in community l
to nodes in community k, tj,out

kl for the jth node in community
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l. For a link from node j to node i, we then use the probabil-
ity,

pij
kl =

1

Mkl
ti,in
kl tj,out

kl , �16�

where Mkl is the target number of between community links
pointing from nodes in community l to nodes in community
k. While generating these target degrees, we choose our con-
stants b and m0 in Eq. �14� such that Mkl=
iti,in

kl �
 jtj,out
kl . We

repeat this procedure for all pairs of communities. While
assigning the target values for the number of links to each
node, we assign higher ti,in

kl and tj,out
kl to nodes with higher ti,in

k

and tj,out
l , respectively. Similarly, nodes with smaller within

community target links get smaller between community tar-
get links. Using this procedure, we get power-law distribu-
tion for both within community and between community in
degrees and out degrees.

B. Numerical results

In this section, we will verify numerically that when the
network has Nc communities, the eigenvalue plot shows Nc
eigenvalues outside the cloud of non-Perron-Frobenius
eigenvalues. We consider two cases of networks with
N=2000 nodes consisting of four communities: case �i� the
communities have different sizes; Nc=700, 600, 400, and
300; case �ii� all the communities are of equal size,
Nc=500 for each of the four communities.

For the case where the average degree of nodes in a com-
munity is proportional to the number of nodes in a commu-
nity, case �i� leads to the situation where the largest eigen-
values of communities that are “disconnected” �i.e., there are
no between community links� are nondegenerate, while for
case �ii� the largest eigenvalues will be approximately degen-
erate. Figure 4 shows the eigenvalue plot for a computer-
generated Erdos-Renyi-type network and for a scale-free net-
work for case �i�. Figure 4�a� is for the Erdos-Renyi-type
network, and Fig. 4�b� is for the scale-free network with
�=2.5 in Eq. �14�. For the Erdos-Renyi-type network used to
get the eigenvalue plot in Fig. 4�a�, the probability of con-
nection between pairs of nodes within same community was

0.04. With this, the average degree of nodes in a community
is proportional to the number of nodes in the community. For
between community edges, the probability of connection be-
tween pairs of nodes was 0.015. With these parameters, the
sum of the number of edges within all communities equals
the number of all between community edges. The average
degree of nodes in the network is �d��44. For generating
the scale-free network for the plot in Fig. 4�b�, the number of
edges within communities and between pairs of communities
was the same as the number of edges for the Erdos-Renyi-
type network described above. For within community links,
the maximum degree in the sequence from Eq. �14� was one
fifth of the total number of nodes in the community. For
between community links for a pair of communities, the
maximum degree was one tenth of the number of nodes in
the smallest community from the pair.

In both cases in Fig. 4, it is evident that there are four real
positive eigenvalues that occur outside a circular-shaped
cloud formed by the remaining 1996 non-Perron-Frobenius
eigenvalues. For comparison, we indicate by vertical dashed
lines the four largest �real� eigenvalues that would result if
the between community links of these networks were re-
moved. For the smallest community, the number of in links
�and also out links� from other communities was approxi-
mately twice the number of within community links. In this
case, we still see the perturbed largest eigenvalue of this
community outside the cloud of non-Perron-Frobenius eigen-
values.

Figure 5 shows the eigenvalue plot of a computer-
generated Erdos-Renyi-type �Fig. 5�a�� and a scale-free �Fig.
5�b�� network with �=2.5 in Eq. �14� for case �ii�. For
Erdos-Renyi-type and scale-free networks, the network gen-
eration parameters are chosen such that the nodes on an av-
erage have 20 within community in/out links and 20 in/out
links to nodes not in their community. Again, it is clearly
evident that there are four eigenvalues occurring outside the
cloud of 1996 non-Perron-Frobenius eigenvalues. If the be-
tween community links of these networks are removed, the
four eigenvalues are nearly degenerate with an average value
indicated by the vertical dashed line. In both Figs. 5�a� and
5�b�, we see that three of the eigenvalues outside the cloud
cluster tightly together, while the larger of the four eigenval-
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FIG. 4. �Color online� Plot of real and imaginary parts of eigenvalues of computer-generated directed networks with unequal-sized
communities. �a� Erdos-Renyi-type network and �b� scale-free network. The average number of within community and between community
links are equal in the two cases. We see four eigenvalues corresponding to four communities outside the cloud of rest of the eigenvalues.
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ues outside the cloud has a substantially bigger value. This
largest eigenvalue is always real and positive �by Perron-
Frobenius theorem�. The triplet of other three larger eigen-
values, in general, could have a complex-conjugate pair. Fur-
thermore, when we take the average of these four
eigenvalues, this average turns out to be very nearly equal to
the degenerate value obtained with the between community
connections removed. This observed structure will be ex-
plained further in our analysis in Sec. III C 2.

C. Perturbation theory

As verified numerically in the section above, when the
network has Nc communities, the eigenvalue plot shows Nc
eigenvalues outside the cloud formed by the rest of the ei-
genvalues. In order to understand this, consider the simple
limiting case of a directed network with multiple communi-
ties, where all the links exist within the communities, and
there are no links between communities. In this case, with
the proper labeling of the nodes, the adjacency matrix shows
block-diagonal structure �i.e., there are Nc blocks along the
matrix diagonal with Aij �0 for �i , j� not in a block�. Thus,
the eigenvalues of the adjacency matrix are simply the union
of the eigenvalues of the individual blocks. Hence, a plot of
the real and imaginary parts of the eigenvalues of the adja-
cency matrix then has the largest eigenvalues of each of the
communities outside the cloud of its other eigenvalues. In
addition, these eigenvalues outside their community clouds
are all positive and real. In the case where the smallest com-
munity Perron-Frobenius eigenvalue exceeds the largest of
the radii of the community clouds, the adjacency matrix of
the whole network will have Nc Perron-Frobenius eigenval-
ues outside the aggregate cloud formed by the individual
community clouds. Furthermore, we claim that when links
between communities are added, provided that the number of
added links is not too great, the eigenspectrum still shows
that the number of eigenvalues outside the cloud corresponds
to the number of communities Nc.

In order to analytically address the above claim, we will
use the perturbation theory by considering links between
communities as a perturbation to the adjacency matrices of
originally disconnected communities. First we consider the

case of networks that have nondegenerate largest eigenvalues
of disconnected communities, which corresponds to case �i�
in Sec. III B. Following that, we consider networks that have
degenerate �or nearly degenerate� largest eigenvalues of dis-
connected communities, which corresponds to case �ii� in
Sec. III B.

1. Nondegenerate case

In this section, we analyze the case of networks that have
nondegenerate largest eigenvalues of disconnected commu-
nities. We will show that the largest eigenvalues of the dis-
connected communities have lowest nonzero perturbative
correction of second order when the addition of between
community links is treated as a perturbation.

Consider the case of networks that have Nc unequal-sized
communities, each having unequal �i.e., nondegenerate� larg-
est eigenvalues when the communities are disconnected. Let
A denote the adjacency matrix of such a network. With
proper labeling of the nodes, the matrix A will have block
matrix structure with Nc�Nc number of blocks. Blocks on
the diagonal correspond to the adjacency matrices of the in-
dividual communities, while the off-diagonal blocks corre-
spond to the perturbation �connections between communi-
ties�. Let us denote by �I ,J� the block of A �Fig. 6�. When
I=J, the block is the adjacency matrix of community I, while
if I�J then A�I,J� corresponds to the block of the adjacency
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FIG. 5. �Color online� Plot of the real and imaginary parts of the eigenvalues of the adjacency matrix of computer-generated directed
networks with four equal-sized communities. The four largest eigenvalues can be seen outside the cloud formed by the rest of the
eigenvalues. �a� Erdos-Renyi-type network and �b� scale-free network.

FIG. 6. Adjacency matrix in block matrix form.
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matrix in which links pointing from community J to commu-
nity I are stored. Now, let us write A as

A = A0 + 	A , �17�

where A0 is a matrix whose diagonal block elements are the
diagonal block elements of A and whose off-diagonal block
elements are zero. 	A is a matrix with zeros on its diagonal
blocks and with off-diagonal block elements being the off-
diagonal blocks of A. For the case where between commu-
nity connections are sufficiently sparser than within commu-
nity link, we regard 	A as a perturbation to A0.

We denote the Nc nondegenerate largest eigenvalues of A0
by ��k, where k=1,2 , . . . ,Nc. Let Uk be the right eigenvector
of A0, corresponding to the eigenvalue ��k, where entries in
Uk are zero except for those elements corresponding to com-
munity k in A0. Write the perturbations of Uk and ��k due to
	A in Eq. �17�, as

Uk� = Uk + 	Uk,1 + 	Uk,2, �18�

��k� = ��k + 	��k,1 + 	��k,2, �19�

where the subscripts 1 and 2 denote first- and second-order
corrections. Letting Vk denote the left eigenvector of A0, cor-
responding to the eigenvalue ��k, and multiplying
AUk�=��k� Uk� from the left by Vk, we obtain

	��k,1 + 	��k,2 = Vk	A	Uk,1, �20�

where we have made use of Vk	AUk=0, which follows from
the facts that 	A is zero on its diagonal blocks, while both Vk
and Uk are nonzero only for their entries corresponding to
community k. Since we assume 	A to be small, the right-
hand side of Eq. �20� is of second order and, hence, 	��k,1 is
zero. Therefore, the lowest nonzero correction to the largest
eigenvalues is of second order,

	��k,2 = Vk	A	Uk,1. �21�

This shows that the largest eigenvalues of disconnected com-
munities that have nondegenerate largest eigenvalues are per-
turbed more weakly than the perturbation applied.

First-order correction 	Uk,1 to the eigenvector Uk can be
found by again considering AUk�=��k� Uk�. Keeping terms up
to first order, we get

	Uk,1 = ���k − A0�−1	AUk, �22�

when ���k−A0� is invertible. Throughout this section, we
have assumed that the eigenvectors of A0 are normalized
such that VkUk=1, ∀k.

We tested our calculations, specifically Eq. �21�, by com-
paring with actual eigenvalues of some computer-generated
Erdos-Renyi-type directed networks with four unequal-sized
communities. In Fig. 7, we show comparison between actual
and predicted four largest eigenvalues of the network adja-
cency matrix with increasing between community links. The
networks have N=2000 with 700, 600, 400, and 300 nodes in
each community. The probability of connection between
pairs of nodes in the same community was 0.037, which
gives �d��20 for the whole network, when there are no
between community links. When there are nonzero links be-

tween communities, to get an estimate of the four perturbed
largest eigenvalues, we numerically calculate the four largest
eigenvalues of the disconnected communities and add the
lowest-order correction given by Eq. �21�. As can be seen,
our perturbation calculation predicts the four largest eigen-
values well when the number of between community links is
small. The radius of the cloud �the symbol ⋇� given in Fig. 7
is the actual radius of the disk of the non-Perron-Frobenius
eigenvalues found by numerically calculating all the eigen-
values of the network adjacency matrix. Figure 7 also shows
that when the number of between community links is large,
we can still see the actual perturbed largest eigenvalue of the
smallest community outside the cloud of the non-Perron-
Frobenius eigenvalues.

2. Degenerate case

We now consider the case of networks that have Nc ini-
tially disconnected equal-sized communities, each with N /Nc
nodes and with similar number of within community edges.
In this case, each of these disconnected communities will
have approximately equal largest eigenvalues. We denote this
approximately common eigenvalue by ��. As the perturba-
tion is applied by adding between community links, we find
that �Nc−1� of the Nc perturbed largest eigenvalues will be-
come approximately equal and smaller than the remaining
perturbed largest eigenvalue �as an example, see in Fig. 5 for
the case Nc=4�. The perturbation of these eigenvalues is such
that the mean distance of all these Nc largest eigenvalues
from their initial value is zero. The adjacency matrix A will
have block matrix structure with Nc�Nc number of blocks
of equal sizes of dimension N /Nc�N /Nc. As before, we
write A=A0+	A, with A0 and 	A being same as described in
Eq. �17�.
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FIG. 7. �Color online� Comparison of the actual and predicted
four largest eigenvalues with increasing between community edges
for Erdos-Renyi-type directed networks with four unequal-sized
communities. Squares ��, �� correspond to ��1� , circles ��, �� to
��2� , triangles ��, �� to ��3� , and diamonds ��, �� correspond to
��4� . Open symbols correspond to actual values while the filled ones
are the estimated values calculated using the second-order perturba-
tion theory. The symbol ⋇ shows the actual radius of the non-
Perron-Frobenius eigenvalue cloud. All data points are averaged
over 20 simulated networks. Error bars are smaller than the symbol
sizes. Lines are just guide for the eyes.
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Let us write a right eigenvector, say U�, of A, which cor-
responds to one of the perturbed largest eigenvalues as

U� = 
k=1

Nc 
kUk + 	U , �23�

where 
k’s are the coefficients to be determined, 	U is a
higher-order correction, and Uk denotes the right eigenvector
of the block matrix Ak, corresponding to its maximum eigen-
value. All the blocks in matrix Ak are zero except for the
diagonal block corresponding to community k. As a conse-
quence, the entries in Uk will be zero except for those ele-
ments corresponding to community k in A0. We regard 	U as
small since we regard the perturbation to be small. Note that
as in Eq. �18�, the perturbed eigenvector U� in Eq. �23� does
not have subscript k, corresponding to community k, because
we will have Nc such eigenvectors for different sets of coef-
ficients 
k. We again denote by Vk the left eigenvector of A0,
corresponding to the maximum eigenvalue of Ak, and assume
that the eigenvectors of A0 are normalized such that
VkUk=1.

Multiplying A0+	A from right by U� and from left by Vl,
and keeping terms up to the first order, we get



k�l

ylk
k = 
l���� − ��� , �24�

where ��� is the perturbed eigenvalue and ylk=Vl	AUk. For
Nc different Vl eigenvectors, we will have Nc such equations
corresponding to l=1,2 , . . . ,Nc in Eq. �24�.

For the case in which we have equal-sized communities
that have similar number of within and between community
links with the same degree distribution �similar perturbation
for all the communities�, all the ylk coefficients are approxi-
mately the same. Thus, to simplify our calculation and to get
qualitative results, we assume that ylk=y∀ l, k with y�0.
Equation �24� is an eigenvalue problem of the form
C
=���
 with 
= �
1 ,
2 , . . . ,
Nc

�T, and

C = y1̃Nc
+ ��� − y�1Nc

, �25�

where 1̃Nc
is a Nc�Nc matrix all of whose entries are ones,

while 1Nc
is the Nc�Nc identity matrix. The eigenvectors of

C are thus the eigenvectors of 1̃Nc
. One such eigenvector is

�111. . . .1�T corresponding to an eigenvalue of C equal to

��+ �Nc−1�y. The other Nc−1 eigenvectors of 1̃Nc
corre-

spond to the Nc−1-dimensional space of vectors
�
1 ,
2 , . . . . ,
Nc

�T such that 
i
i=0. For all these vectors,

the eigenvalue of 1̃Nc
is zero, corresponding to Nc−1 degen-

erate eigenvalues of C given by ��−y. This suggests that
there is a largest perturbed eigenvalue, approximately given
by ��+ �Nc−1�y, which is larger than the rest of the Nc−1
degenerate eigenvalues, approximately given by ��−y,
which are clumped together �as can be seen in Fig. 5 for
Nc=4�. Note that the average of the Nc perturbed eigenvalues
is �� �the unperturbed degenerate eigenvalue�. It can be
shown with simple argument that y scales no stronger than
N.

Figure 8 gives comparison between actual eigenvalues
and our calculations of this section. The networks considered

are the Erdos-Renyi-type directed networks with four equal-
sized communities. The networks have N=2000 with 500
nodes in each community. The within community link prob-
ability is 0.04, which gives �d��20 when the communities
are disconnected. The estimate of the perturbed four largest
eigenvalues was calculated by numerically finding the unper-
turbed largest eigenvalues and using the estimate of y, which
is calculated by averaging over all the 12 possible ylk’s. As
can be seen in Fig. 8, our calculations agree well with the
actual values.

Thus, our numerical results of Sec. III B seem to be quite
well explained by our perturbation results of the present sec-
tion �Sec. III C� even though the “perturbations” for the nu-
merical examples of Sec. III are not small �e.g., Figs. 4 and
5�.

D. Discussion

Based on our perturbation analysis, one might suspect that
since the unperturbed eigenvectors Uk and Vk have nonzero
element values only for their community entries, it might be
possible to use the eigenvectors of the adjacency matrix A to
obtain the communities and not just their number. In initiat-
ing our research reported here, we were originally motivated
by this possibility. However, as described below, we found
this to be problematic.

In Sec. III C 1, the eigenvectors of the matrix A, corre-
sponding to the largest eigenvalues of communities, are de-
noted by Uk�. When 	A is small, the entries in eigenvector
Uk�, that are labeled by nodes belonging to nodes in commu-
nity k, will have larger magnitude compared to entries la-
beled by nodes not in community k. For a given node i, by
comparing entries labeled by node i in eigenvectors Uk�, for
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FIG. 8. �Color online� The actual and predicted four largest
eigenvalues with increasing between community edges for Erdos-
Renyi-type directed networks with four equal-sized communities.
Squares �� for predicted, � for actual� correspond to �1. Data
points for predicted values overlap with the actual ones. The sym-
bols ⋇ show the actual radius of the non-Perron-Frobenius eigen-
value cloud. Rest of the data points correspond to to �2, �3, and �4,
which are all approximately equal. Here, the data points for pre-
dicted �2, �3, and �4 lie on top of each other and overlap with the
actual ones. All data points are averaged over 20 simulated net-
works. Error bars are smaller than the symbol sizes. Lines are just
guide for the eyes.
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k=1,2 , . . . ,Nc, we can assign node i to the group of nodes
that have the largest magnitude of the corresponding entry in
the same eigenvector.

Our experimentation with this method on some computer-
generated networks shows that the method works pretty well
when the eigenvalues of disconnected communities are non-
degenerate and the perturbation is not too large. This method
fails, however, when the maximum eigenvalues of discon-
nected communities are too close and the perturbations are
too large. When the maximum eigenvalues of disconnected
communities are nearly degenerate, an indication of the dif-
ficulty is provided by Eq. �23�, which shows that the per-
turbed eigenvector can have almost equal contribution from
all the unperturbed Uk eigenvectors �k=1,2 , . . . ,Nc�.

IV. APPLICATION TO REAL NETWORKS

We now test our prediction on two real networks for
which we show eigenvalue plots in Fig. 9. The networks
considered are the political books network �24� and the po-
litical blogs network �25�. These two examples are conve-
nient for our purpose since we naturally have the division of
the network into two major groups based on the left/liberal
or right/conservative orientation of the book or the blog. The
political books network is an undirected network. The nodes
represent books on politics available from the online retailer
Amazon.com. There is an edges between two nodes when
the same buyer�s� buys books represented by the nodes. The
Political blogs network, on the other hand, is the compilation
of network data on US political weblogs as recorded by
Adamic and Glance �25�. It is a directed network where
the edges represent hyperlinks between the weblogs on US
politics.

The total number of nodes in the political books network
is 105. We show the eigenvalue plot of the adjacency matrix
of the political books network in Fig. 9�a�. Since it is an
undirected network, the adjacency matrix is symmetric, and
all eigenvalues are consequently real. We “estimate” the size
of the eigenvalue cloud by the magnitude of the most nega-
tive eigenvalue. The vertical dashed line in Fig. 9�a� corre-
sponds to this value. Consistent with the prediction in this
paper, we see that there are two eigenvalues substantially to
the left of this dashed line ��=11.9, 11.6�.

The political blogs network is a relatively larger network
as compared to the political books network. It is a directed
network with 1224 nodes. The eigenvalues of the adjacency
matrix of this network are in general complex since this is a

directed network �Fig. 9�b��. The cloud of eigenvalues is
substantially contracted towards the real axis. For this net-
work, we have Mb=2307 and M =19022. The difference in
the spread of real and imaginary parts of eigenvalue cloud
�left-hand side of Eq. �12� with two largest eigenvalues ex-
cluded� is 2.22. Again we estimate the cloud size from the
magnitude of the most negative eigenvalue �vertical dashed
line�. The two eigenvalues of magnitudes 34.5 and 26.9, cor-
responding to the two communities, can be seen separated
from the rest of the cloud by a large amount.

In Figs. 9�a� and 9�b�, we see that there are few eigenval-
ues that lie just outside �to the right of� the vertical dashed
line. These eigenvalues lying close to the vertical dashed line
cannot be said to belong to any particular community with
any degree of certainty. For networks where the eigenvalue
cloud is symmetric, as can be seen for the computer-
generated networks considered in this paper, the size of the
cloud can be well estimated by looking at the eigenvalue of
the largest magnitude with the negative real part. However,
for many real networks, as discussed in Sec. II C, the eigen-
value cloud may not be symmetric. For the political books
network, we calculated the clustering coefficient given in
Ref. �26�, which we found to be relatively high �a value of
0.348�. For the political blogs network, we found relatively
high values of first few odd moments of the spectral density,
an order of magnitude higher, compared to the randomly
generated scale-free networks with similar degree distribu-
tion and two communities. These findings suggest that the
clouds are right skewed and should actually extend past the
vertical dashed line.

V. LIMITATIONS IN DETERMINING THE NUMBER
OF COMMUNITIES

The method we propose in this paper for finding the num-
ber of communities works best when the node average de-
grees within communities are of the same order. Limitation
to this method occurs when one or more of the communities
are much smaller compared to the largest community or
when a community has sparser within community connec-
tions compared to other communities. In particular, even in
the absence of perturbation �	A=0 in Eq. �17��, the maxi-
mum eigenvalue of the smaller community can lie inside the
cloud of non-Perron-Frobenius eigenvalues of the largest
community. This puts a limitation on the sizes of the com-
munities that can be detected using our method. For ex-
ample, in the simplest case where the in and out degrees are

(b)(a)

FIG. 9. �Color online� Plots of the real and imaginary parts of the eigenvalues of adjacency matrix of real networks. �a� Political books
network. �b� Political blogs network.
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uncorrelated and 	A=0, this happens when, �d�s� �d�l
1/2,

where �d�s is the average degree of a smaller community and
�d�l is the average degree of the largest community. In the
case of network communities, where the average degree of
nodes is proportional to the number of nodes within commu-
nities, this condition roughly translates to the statement that
when Ns�Nl

1/2, we will not be able to detect smaller com-
munities with Ns nodes when the number of nodes in one of
the largest community is Nl.

As discussed in Sec. II C, in case of networks that have
nonzero odd moments of the spectral density, the cloud of
non-Perron-Frobenius eigenvalues may not be symmetric. As
can happen in small-world networks without community
structure with large clustering, the largest eigenvalue of the
network adjacency matrix may not be well separated from
the cloud of the non-Perron-Frobenius eigenvalues �12�. In
case of networks with community structure, the skewed ei-
genvalue cloud may even overlap with the largest eigenval-
ues of the smaller communities. Thus, we may not be able to
see them well separated from the eigenvalue cloud.

VI. CONCLUSIONS

We studied the eigenspectra of adjacency matrix of large
sparse networks. The eigenspectrum gives a clear indication
of the number of “dominant” communities in the networks in
certain cases. Here, by dominant we mean the communities
whose eigenvalues lie outside the cloud of the non-Perron-
Frobenius eigenvalues. We examine the eigenvalues of the
network adjacency matrix and infer the number of commu-

nities by finding the number of eigenvalues falling outside a
typically occurring dense cloud of eigenvalues. For the ex-
ample of uncorrelated in/out degrees, we argued that there is
a large gap between the non-Perron-Frobenius eigenvalues
and the Perron-Frobenius eigenvalue. Owing to this large
gap �also seen more generally with in/out degree correlation
and assortative/disassortative networks�, we can determine
the number of communities in a network, even when the
community structure is not strong.

In this paper, we have not specified exactly the radius of
the eigenvalue cloud. While there are results on the spectral
density of the eigenvalue cloud for Erdos-Renyi and scale-
free undirected networks when the distribution of eigenval-
ues is symmetric, we still need to deal with the case when the
odd moments of the spectral density are nonzero, resulting in
an asymmetric eigenvalue distribution.

Finding the number of communities from the eigenvalue
plot could be helpful in some community finding algorithms
�as in Ref. �27��, where the number of communities is an
input to the algorithm. The method has a limitation based on
the relative sizes of the communities, and, in general, it may
miss smaller or weaker communities �Sec. V�. Further limi-
tations in determining the number of communities from the
eigenvalue plot may occur when the eigenspectra are highly
skewed because of nonzero odd moments.
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