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AbstractÐIn recent years, there has been growing interest in algorithms inspired by the observation of natural phenomena to define

computational procedures that can solve complex problems. In this article, we describe a distributed heuristic algorithm that was

inspired by the observation of the behavior of ant colonies, and we propose its use for the Quadratic Assignment Problem. The results

obtained in solving several classical instances of the problem are compared with those obtained from other evolutionary heuristics to

evaluate the quality of the proposed system.
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1 INTRODUCTION

THE Quadratic Assignment Problem (QAP) of order n
consists of looking for the best allocation of n activities

facilities to n locations, where the terms activity and
location should be considered in their most general sense.
It was first formulated in [11] and since then it has been
recognized as a model of many different real situations;
applications have been described concerning planning of
buildings in university campuses, arrangement of depart-
ments in hospitals, minimization of the total wire length in
electronic circuits, ordering of correlated data in magnetic
tapes, and others [2].

Mathematically, the problem is defined by three matrices
of dimension n� n:

1. D � �dih� � matrix of the distances (between loca-
tion i and location h);

2. F � �fjk� � matrix of the flows (between activity j
and activity k); and

3. C � �cij� � matrix of the linear assignment costs (of
activity j to location i).

Normally, matrices D and F are integer-valued
matrices, while the linear assignment cost cij of activity
j to location i is usually ignored since it does not make
a significant contribution to the complexity of solving
the problem.

Under these hypotheses, a permutation � : i! ��i� can
be interpreted as a particular assignment of activity j � ��i�
to location i �i � 1; . . . ; n�.

The cost of transferring data (or materials, etc.,
depending on the problem in question) between two
activities can be expressed as the product of the distance

between the locations to which the activities are

assigned by the flow between the two activities,

dih � f��i���h�.
To solve the QAP, one must thus find a permutation

� of the indices (1; 2; . . . ; n), which minimizes the total

assignment cost:

min z �
Xn

i;h�1

dih � f������h�: �1�

The problem can be reformulated to show the quadratic

nature of the objective function: Solving the problem means

identifying a permutation matrix X of dimension n� n
(whose elements xij are 1 if activity j is assigned to location i

and 0 in the other cases) such that:

zQAP � min z �
Xn

i;j�1

Xn

h;k�1

dihfjkxijxhk �2�

subject to the following constraintsXn

i�1

xij � 1 �j � 1; . . . ; n�; �3�

Xn

j�1

xij � 1 �i � 1; . . . ; n�; �4�

xij 2 0; 1 �i; j � 1; . . . ; n�; �5�

which identify the matrix X as belonging to set � of the

permutation matrices of order n.
As the QAP is a generalization of the Traveling Salesman

Problem (TSP), it is also an NP-complete problem [20].
The techniques that can be used to find the optimal

solution are limited to branch and bound and cutting

planes methods; with current hardware, problems of

order greater than 25 cannot be solved in an acceptable

time [3].
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For this reason, many heuristic algorithms have been
proposed in recent years which, although not ensuring that
the solution found is the best one, give good results in an
acceptable computation time [17].

In this article, we propose the use of a new heuristic
procedure, improving over an algorithm originally devel-
oped for the TSP, which shows the emergence of global
properties following the mutual interaction among many
elementary agents [4], [5], [8]. In particular, we are
interested in the distribution of search activity among
agents which can only perform very simple actions, so
that we can easily parallelize the computational effort (see
[14] for a discussion on the effectiveness of parallelization
for the QAP).

Our work was inspired by research on the behavior
of ant colonies [7] , where one of the problems of
interest is to understand how ants, which are almost
blind animals with very simple individual capacities,
can, when they act together in a colony, find the shortest
route between two points (e.g., the ant's nest and a
source of food).

The explanation lies in how the ants transmit
information on the path followed: Each of them when
it moves deposits a substance, called pheromone, which
can be detected by the other ants. While an ant with no
information moves essentially at random, an ant which
follows a path already followed by others is tempted to
follow the already marked path (and the probability of
this occurring depends on the intensity of the trace
perceived), in turn leaving new pheromone which is
added to that already existing. The emerging collective
effect is a form of autocatalytic or positive feedback
behavior, in that the more ants follow a particular
path, the more attractive this path becomes for the next
ants which should meet it. The process is characterized
by a positive feedback; in fact, the probability with
which an ant chooses a path increases with the number
of ants which have already chosen the same path. The
final result is that nearly all the ants will choose to
follow the shortest path, even if each ant's decision
always remains probabilistic (that is, they can also
explore new paths).

The algorithm, which we will define in the next section,
is inspired by the observations made on ant colonies and
is thus called the Ant System. A description of the original
version of this method, and of its experimental results
when applied to the Traveling Salesman Problem, can be
found in [8].

2 THE ANT SYSTEM

In this section, we introduce a new heuristic (henceforth
called the Ant System) for the QAP which uses some
characteristics of behavior shown in reality by ant
colonies, defining a system of artificial ªants.º The Ant
System presented in this paper represents an improve-
ment of the algorithm described in [8], from which it
differs in several structural elements. Specifically, the Ant
System algorithm is designed to be a metaheuristic to
guide global search by means of an updating of a global
memory structure that represents the ªknowledgeº

acquired by the system during the history of the search.
Two problem-specific modules are supposed to be used in
conjunction with the global search: local search and lower
bounds. Local search is useful in order to focus global
search in the space of local optima so as to increase the
computational efficiency of the overall process, while
lower bounding is a structural component of the Ant
Search, as detailed in the following.

More in detail, in the Ant System, each artificial ªantº is
an agent with the following characteristics:

1. when it chooses to assign activity j to location i, it
leaves a substance, called trace (the equivalent of the
pheromone) �ij on the coupling (i; j);

2. it chooses the location to which a given activity is to
be assigned with a probability, which is a function
of the ªpotential goodnessº �ij of the coupling (i; j)
and of the quantity of trace present on the coupling
itself; and

3. to construct a complete permutation, locations and
activities already coupled are inhibited until all
activities have been assigned.

This heuristic uses a population of m agents which
construct solutions step by step, assigning an activity to
each location. When all the ants have constructed their
permutations, the best assignments are rewarded so as to
encourage the identification of ever better solutions in the
next cycles.

To satisfy the requirement that the ants assign each
activity to a different location, we associate a data structure,
called a tabu list, to each ant. This memorizes the activities
already used and stops the ant assigning them to a new
location before a cycle is complete (which thus identifies a
permutation). Once the permutation is completed, the tabu
list is emptied and the ant is free to choose its own
couplings again. Let us define tabuk a vector containing the
tabu list for the kth ant and tabuk(s) as the sth element of
the tabu list for the kth ant (the activity occupying the sth
location in the assignment made by the kth ant).

We now see how to introduce a method to calculate the
ªpotential goodnessº �ij of an assignment and, thus, the
initial assignment (when there is no trace); the initial
situation will then be modified by the experience acquired
by the population via the trace.

The basic idea is to exploit the information given by an
effective lower bound to the completion of the problem
solution and use it as an indicator of the expected
proficiency of a particular pairing. The goodness �ij of an
assignment can, in fact, be estimated as the inverse of the
lower bound obtained considering that pairing.

For the particular case of the QAP, several lower bounds
have been proposed [19]. The best known one and, among
those we tested, the one that had the best effectiveness/
computational cost ratio, is the Gilmore and Lawler bound
(independently presented by Gilmore [10] and Lawler [13]).
The bound is obtained by computing a value zGL as

zGL � min z �
Xn

i;j�1

�min
Xn

h;k�1

dihfjkxhk�xij; �6�
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where the minimum is computed subject to constraints
(3), (4), and (5). This corresponds to solving n2 linear
assignment problems for defining the costs of the terms
in brackets, and one further linear assignment for
obtaining the GL bound. Obviously, zGL � zQAP. Using
the same bounding strategy, it is also possible to obtain a
lower bound to the value of the completion of a partial
assignment. In fact, suppose that the index set � �
f1; 2; . . . ; ng is partitioned into two subsets �1 and �2,
corresponding to the indices of the already assigned
facilities and to the indices of the still unassigned
facilities, respectively.

Similarly, suppose that the index set � � f1; 2; . . . ; ng is
partitioned into two subsets �1 and �2, corresponding to
the indices of the already assigned locations and to the
indices of the still unassigned locations, respectively. Then,
(2) can be rewritten as:

zQAP � min z �
X

i;h2�1

X
i;h2�1

dihfjkxhkxij

�
X

i;h2�1

X
i;h2�2

djhfjkxijxhk

�
X

i;h2�2

X
j;k2�1

dihfjkxijxhk

�
X

i;h2�2

X
j;k2�2

dihfjkxijxhk:

�20�

Notice that the first term of the objective function is
now a known constant, z1, and the fourth term is a
reduced QAP instance to which (6) can be applied to
obtain a bound z4. A lower bound z23 to the value of the
second and third terms can be obtained [2] by solving an
assignment problem defined over a cost matrix
��lm�; l 2 �2;m 2 �2, where:

�lm �
X
i2�1

X
j2�1

�dilfjm � dlifmj�: �7�

A lower bound to the completion cost of a partial
assignment can be thus computed as:

zLB � z1 � z23 � z4: �8�
On the basis of these results, to compute the attractive-

ness of a coupling �i; j�; i 2 �2; j 2 �2, we simply compute
(8) for a partial assignment where, apart from the already
specified couplings, we also tentatively locate facility i
in location j. Therefore, we tentatively set:
�1 � �1 [ fig;�1 � �1 [ fjg;�2 � �2 n �1 and �2 � �2 n
�1; compute zLB accordingly, and set �ij � zLB.

As an example, we consider Nugent's problem of
order 5 [18] a problem arising in a hospital layout
location context, with the distance D and flow F matrices
shown below:

D �

0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0

F �

0 5 2 4 1
5 0 3 0 2
2 3 0 0 0
4 0 0 0 5
1 2 0 5 0

The following execution trace shows how a solution
is constructed. Assume for simplicity that solutions are

constructed assigning facilities to locations of increasing
indices, that is, first the facility to assign to location 1
is chosen, then the facility to assign to location 2, and
so on. The construction goes on as follows. At the
root node, no facility is assigned, so there are five
possible assignments of facilities to location 1, whose
costs are:

1. z1 � 0; z12 � 32; z4 � 22
2. z1 � 0; z12 � 24; z4 � 28
3. z1 � 0; z12 � 10; z4 � 43
4. z1 � 0; z12 � 18; z4 � 32
5. z1 � 0; z12 � 18; z4 � 33

The corresponding five lower bounds are therefore:

zLB � 54 52 53 50 51

The choice goes to assigning facility 4 to location 1.
At the second level, one needs to define the assignment

to location 2. Being one facility assigned, only four
possibilities remain, whose costs are:

1. z1 � 8; z12 � 32; z4 � 10
2. z1 � 0; z12 � 56; z4 � 6
3. z1 � 0; z12 � 42; z4 � 18
5. z1 � 10; z12 � 16; z4 � 24

The corresponding four lower bounds are therefore:

zLB � 50 62 60 50

The choice goes to assigning facility 1 to location 2.
At the third level, one needs to define the assignment to

location 3. The three remaining possibilities have the
following costs:

2. z1 � 28; z12 � 46; z4 � 0
3. z1 � 16; z12 � 50; z4 � 4
4. z1 � 22; z12 � 22; z4 � 6

The corresponding three lower bounds are therefore:

zLB � 74 70 50

Facility 5 is thus chosen for location 3. The two remaining
assignments are then considered explicitly, i.e., without
going through lower bound computations.

One can thus find the complete permutation: Facility
4 is assigned to location 1, facility 1 to location 2, and so
on, obtaining the permutations (4, 1, 5, 2, 3) of cost
equal to 50. This happens to be the optimal cost for this
trivial problem but, moving to more challenging in-
stances, there is obviously no guarantee that the
optimum will be found at the end of the construction
of the first solution.

In the Ant System, the permutation is constructed
probabilistically, using the Monte Carlo method, on the
basis both of the �ij values and of the values of the
�ij variables, representing the trace levels. We define,
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in fact, �ij�t� 1� as the trace intensity (pheromone in
the case of real ants) associated to the location i-
facility j coupling.

The population has m ants, with k the generic ant
�k � 1; . . . ;m�. The probability that the kth ant assigns
facility j to location i is given by:

pk
ij�t� �

���ij�t� � �1 ÿ ����ijP
r=2tabuk

����ir�t� � �1ÿ����ir� if j =2 tabuk

0 otherwise:

8<: �9�

with 0 � � � 1.
In constructing the permutation, we start from the

location of index 1 and we assign a facility to it by
choosing probabilistically from all the available facilities;
at the second step, we assign to the second location a
facility by choosing probabilistically among those that
were not already assigned, and so on. The procedure is
repeated for all n locations. The solution construction is
repeated m times, as many times as there are ants in
the population.

The parameter � allows the user to define the relative
importance of the trace �ij�t� with respect to the desirability
�ij. Thus, the probability pk

ij�t� is a compromise between the
desirability of a coupling (as indicated by the lower bound
to the cost of a solution containing that assignment) and the
trace intensity (if there was already a high ªpassageº of ants
on coupling (i; j), then this coupling is probably very
desirable).

Trail levels are updated after all the ants have con-
structed their solutions. The update is made according to
the following:

�ij�t� 1� � ��ij�t� ���ij; �10�
where � is a coefficient that represents the trace's persistence
(1ÿ � represents the evaporation) and:

��ij �
Xm
k�1

��k
ij ; �11�

��k
ij being the quantity of trace left on the coupling (i; j) by

the kth ant at the end of the construction of its permutation.
The trace's initial intensity, �ij�0�, can be set to a small and
positive arbitrary value.

The coefficient � must be fixed to a value <1 to avoid an
unlimited accumulation of trace. Concerning the quantity of
trace left by the ants, different choices for the calculation of
��k

ij determine the realization of slightly different algo-
rithms. In the current version of the Ant System, ��k

ij is
given by the value Q=Lk if the kth ant has chosen coupling
(i; j), and by the value 0 otherwise: Q is the current upper
bound, i.e., the best solution found at the current iteration,
while Lk is the value of the objective function obtained by
the kth ant.

In this way, the best solutions (with a corresponding
low Lk value) must be characterized by more trace on
the couplings which determine low values of the
objective function.

The basic algorithm, which uses the calculation of the
bounds and which we will indicate by AS, is the following:

1. t:=0

Initialize the trace matrix

Calculate the upper and lower bounds

for the whole problem and the

desirabilities �ij

Put m ants on node 1

2. For k :� 1 to m
Repeat {for each location}

Choose, with probability given by

equation (9), the facility to assign

from those not yet assigned.

Put the chosen facility in the tabu

list of the k-th ant

Until the tabu list is full

{this cycle is repeated n times}

End-for

For k:=1 to m

Carry the solution to its local

optimum and compute Lk

{the local search procedure is

described at the end of this section}

Update the best permutation found

End-for

3. For each coupling (i; j) calculate ��ij

according to equation (11)

Update the trace matrix according

to equation (10)

4. If not (END_TEST)

Empty the tabu lists of all the ants

goto 2

Else

Print the best permutation and STOP

The END_TEST is usually made either on a maximum
number of iterations (steps from 2 to 5) or on a maximum
CPU time allowed.

The algorithm's performance depends on the values of
parameters � (trace persistence coefficient), � (importance
of the trace), and m (number of ants). An experimental
analysis for parameters setting will be presented in
Section 3.

One can calculate an estimate of the complexity of the
Ant System algorithm. After the initializations of complex-
ity O�n3�; as it implies the solution of a linear assignment
problem, one must choose which facility will be assigned to
the currently considered location: Probabilities are calcu-
lated according to (9) and the choice in probability is made
between the facilities not yet assigned; the whole has
complexity O�n2�. To construct an entire permutation, one
must thus perform O�n3� operations. Each complete
iteration (m ants) thus requires a number of operations,
O�m � n3�. When all the ants have constructed their solution,
the trace matrix must be updated: O�n2� operations are
required for this updating. The total complexity of an
iteration of the algorithm is thus O�m � n3�.

As is the case for most constructive heuristics (see, for
example, GRASP [15]) for the Ant System, efficiency
improvements also can be achieved by using a local
search procedure as a standard element of the overall
algorithm. We thus designed a two-phase algorithm. The
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first phase constructs solutions one element after the

other, following the ant path. When an ant has con-

structed its basic permutation, a second phase of local

search (see step 2) is activated and the trace is then added

to the common data structure.
The local search procedure we implemented is a simple

deterministic procedure. The cost of all possible exchanges

is evaluated starting from the permutation obtained by the

ant and choosing the exchange which most improves the

objective function (see [21] for an efficient implementation

of the variation due to an exchange).
The local search procedure is then the following:

Change:=true

While (change=true) do

Explore the neighborhood of solution

s(k) constructed by ant k and save the

best adjacent solution s'(k)

If f(s'(k))<f(s(k))

then s(k):= s'(k)

else change:=false

End-while

The complete exploration of the neighborhood of a

solution requires a number of operations O�n2�: In fact, the

neighborhood consists of n�nÿ 1�=2 permutations which

can be obtained with exchanges of pairs of elements and

evaluating the cost variation, once initialized the relevant

data structures, requires a constant operation time [21]; the

local search step, for medium-large problems, could become

rather onerous in terms of computation time.

3 EXPERIMENTAL RESULTS

The algorithm presented in this paper was coded in Fortran

77 and tested on a Pentium 166 MHz machine, running

under DOS. The computational testing of the new algo-

rithm was carried out by applying the code to standard test

problems from the literature and comparing the results to

those of an established heuristic running under identical

experimental conditions.
Before comparing our code, we had to identify a good

parameter setting. As a complete analysis of the model

which suggests the optimum values of the parameters in

each situation has not been developed, we performed

several simulations, testing the algorithm on five different

problems with various values of the control parameters �

(importance of the trace) and � (trace persistence coeffi-

cient). We also studied how the number m of ants can

influence the overall performance.
The problems chosen for the purpose of setting the

algorithm parameters were: the Nugent problems [18] of

dimension from 15 to 30, the Elshafei problem ([9]) of

dimension 19, and a Krarup problem of dimension 30

([12]). The optimal solution is known for all these

problems up to dimension 20 while, for the two larger

ones (Nugent 30 and Krarup 30), the best solutions found

in the literature, as reported by Burkard et al. [3], were

considered for the comparison.

We tested various values for each parameter (in a
cúteris paribus framework) on five different simulations
for each choice.

T h e v a l u e s t e s t e d w e r e : � � 0:3; 0:5; 0:9 a n d
� � 0:7; 0:9; 0:95; 0:99. We kept � � 0:5; � = 0.9 as default
values.

As well as solving the problems, we were also
interested in studying the behavior of the ant population
with regard to a possible ªstagnation,º a situation in
which all the ants reconstruct the same solution; this
situation indicates that the system has stopped exploring
new possibilities and that the best solution found up to
that point will probably not be improved any further.
With some parameter values it was observed that, after
many cycles, all the ants made the same couplings despite
the algorithm's stochastic nature: This behavior is due to
a much greater trace level on some couplings than on
others. From this high trace level, it follows that the
probability that an ant chooses a new coupling is very
low and, thus, stagnation is produced.

The value 0.9 for � (independent of the other para-
meters) quickly led the ant population to stagnation
around the suboptimum solutions. With parameter � at
value 0.5, good solutions were found for all the problems
(about 0 to 3 percent away from the best solution known),
without observing stagnation of the population: This
means that, at each cycle, new solutions belonging to a
promising subset were tried.

Low values of parameter � reduce the algorithm's
efficiency: It takes longer to find good solutions; the best
results were obtained for � � 0:95.

The number of ants used does not seem to have a
decisive influence on the overall performance, on condi-
tion that a quantity at least the same as the dimension
(n) of the problem is used. This agrees with results
obtained by a previous version of the Ant System
applied to the TSP [8].

With the most effective parameters (� � 0:5, � � 0:95,
m � n) the basic algorithm AS found the optimal or best
known solutions of all problems.

Table 1 gives the best known results, the Gilmore-Lawler
lower bound, the average of the objective function of 500
randomly generated solutions, and the best results given by
the Ant System in 10 minutes runs.

To evaluate the performance of the algorithm proposed,
we compared it with one of the best performing
metaheuristics so far proposed for the QAP, namely
GRASP, in the version presented by Li et al. [15]. Both
the Ant System and GRASP were run for 10 minutes on
each problem instance.

The comparative computational experiments were
carried out on problem instances taken from the QAPLIB
library [3], plus one instance (MC33), which will be
introduced in Section 4. In order to have a significant
test suite, we used all instances of the QAPLIB database
(by the time of writing of this paper) containing
problems of dimension 20 to 40: Lower dimensions
imply too easy problems, bigger dimensions lead to the
need to augment the time limit of 10 minutes in order to
have meaningful results.
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For GRASP, the parameters used were the same as

those that were used in Li et al. [14], that is, � � 0:5 and

� � 0:1, except for MaxIter, which was set to 2,048 as in

Li et al. [15].
All experiments were run on the same Pentium PC 166

MHz machine mentioned at the beginning of this section.

The results are presented in Table 2, which shows the

following columns:

. PROBL: problem identifier; an asterisk indicates
that the optimal solution for the problem is
known.

. GL: Gilmore and Lawler bound.

. OPT/BK: optimal or best known solution.

. GRASP-best: best result obtained by GRASP over
five runs of 10 minutes each.

. GRASP-%error: percentage error of the best solution
obtained by GRASP.

. GRASP-t.best: average, over five runs, of the CPU
time (in seconds) needed by GRASP to produce its
best solutions.

. ANT-best: best result obtained by the Ant System
over five runs of 10 minutes each.

. ANT-%error: percentage error of the best solution
obtained by the Ant System.

. ANT-t.best: average, over five runs, of the CPU time
(in seconds) needed by the Ant System to produce its
best solutions.

The last two rows of Table 2 present:

. AVG: Average percentage distance from the
optimum (or best known) solution computed over
all 45 problems;

. MAX: maximal percentage distance from the
optimum (or best known) solution computed over
all 45 problems.

Table 2 shows that, under the mentioned experimental

conditions, the Ant System has a better performance, in

terms of quality of the best solution found, than GRASP

on the problem tested: It finds a greater number of best

known solutions, it has a smaller average percentage

error and a smaller maximum error. On no problem did

GRASP find a solution that improved over that found by

the Ant System. Moreover, the time needed to find its

best solution is on the average slightly smaller for the

Ant System (138.99 seconds) than for GRASP (143.83

seconds), even though on individual problems GRASP

could be more efficient than the Ant System.

4 A REAL-WORLD TESTCASE

In this section, we propose a real assignment problem,

which can be modeled as QAP of order 33. The problem

is the optimum allocation of services in the offices of a

multinational company located in Milan, Italy, as

described in [16].
The offices available are clustered into units, which are

the elements of the three following buildings:

I. TOWER: A building of six identical floors, each
divided into three units, numbered from 1 to 18
(three per floor).

II. BUILDING A: A three-floor construction near to the
TOWER building, with direct pedestrian connec-
tions at the level of the first two floors (as well as the
outside passage) and with three units per floor,
numbered from 19 to 27.

III. BUILDING B: a construction with several floors,
the first three of which are available for the
company in question, detached from the pre-
vious buildings and connected to them by
footpaths. Two units are available on each usable
floor, numbered from 28 to 33. The whole is
shown in Fig. 1.
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TABLE 1
Best Known Results (Best), Gilmore-Lawler Lower Bound (GL Bound), Random Average

Value (Random), and Results Obtained by the Ant System (AS) for the Problems Examined

Fig. 1. Position of the units in the three buildings available.
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TABLE 2
Comparison of Results Obtained by GRASP and by the Ant System
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The distance matrix is made of the times (in seconds)
spent by an employee to move from location i to location
h�i; h � 1; . . . ; 33�.

For simplicity, the distances between the units on the
various floors of each building are considered as
identical, even though sometimes there are mandatory
paths which may cause small differences. The distances
are estimated on the basis of the conditions of normal
activity of the offices themselves (waiting times for the
service lifts and/or any use of alternative routes, walk-
ways, or stairs).

As ªflow between activitiesº we decided to use the
number of personal contacts necessary on average in a
week by the employees of various offices, weighted
according to the qualification of the person involved

(the employees were assigned weight 1 and the

managers weight 2), thus trying to correlate the

movements to the effective burden in terms of working

costs. The matrix of the flows between the various

activities was obtained by quali-/quantitative indications

obtained from all the managers of the various services.

The distance and flow matrices are reported in Fig. 2

and Fig. 3.
The objective function of the permutation (3, 4, 5, 14, 16,

17, 25, 26, 15, 24, 8, 9, 10, 2, 11, 1, 6, 7, 29, 31, 30, 18, 22, 23,

20, 21, 19, 27, 28, 32, 33, 12, 13) corresponding to the

current location of the offices in the units was initially

calculated: It produces a value of 438,114 man-seconds per

week (� 121.7 man-hours).
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Fig. 2. The distance matrix of the MC33 instance.
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If this datum is compared with the average value of a

random arrangement (565,541 man-seconds, calculated as

the average between 100 permutations generated at ran-

dom), one can conclude that the actual logistic situation

allows a ªsavingº of about 22.5 percent as compared to a

random allocation.
The best permutation found with the Ant System

algorithm, as reported in the last row of Table 2,

has a value of 339,416 man-seconds (� 94.3 man-

hours). This solution is 22.5 percent better than the

current logistic situation (obviously, this datum must

be taken with due care, as the current assignment

derives not only from cost considerations, but also

from other less quantifiable objectives such as
personal preferences, prestige of a location, ... ).

5 CONCLUSIONS

In this work, we presented a distributed heuristic algo-
rithm, the Ant System, applied to the Quadratic Assign-
ment Problem.

The main point in each distributed system is the
definition of the communication procedure among
agents. In our algorithm, a set of ants communicates
by modifying the problem's representation as, at each
step of the processing, each ant leaves a sign of its
activity which changes the probability with which the
decisions will be made in future. The idea is that, if an
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Fig. 3. The flow matrix of the MC33 instance.
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ant in a given state must choose between different
options and, having made a choice, that choice results as
particularly good, then in the future that choice must
appear more desirable whenever the state and the
options are the same.

The ants are given a heuristic to guide the initial steps
of the computation process when the information on the
problem structure given by the trace has not yet
accumulated. This initial heuristic then automatically
loses importance (by means of trace accumulation) when
the experience acquired by the ants, saved in the trace
matrix, grows.

The result presented in this work is, thus, about the use
of an autocatalytic process as a method for optimization and
learning. The process of an individual ant quickly con-
verges to a possibly poor solution; the interaction of many
autocatalytic processes can instead lead to convergence
toward a region of the space containing good solutions so
that very good solutions can be found by means of local
optimization (without, however, being stuck on it). In other
words, the ant population does not converge on a single
solution, but on a set of (good) solutions; the ants continue
their search to further improve the best solution found.

The results obtained showed the Ant System's compe-
titive performance on all test problems.

APPENDIX A

DISTANCE AND FLOW MATRICES FOR THE COMPANY

PROBLEM

Fig. 2. and Fig. 3 illustrate the distance and flow matrices,
respectively, for the Italian company problem.
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