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Abstract
The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain
connectivity and function and their variability in healthy adults. This review summarizes the data
acquisition plans being implemented by a consortium of HCP investigators who will study a
population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities
along with extensive behavioral and genetic data. The imaging modalities will include diffusion
imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted
MRI for structural and myelin mapping, plus combined magnetoencephalography and
electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data
quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine
and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T
scanner, and improved MR pulse sequences.
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Introduction
Recent advances in neuroimaging, including many that are discussed in this special issue,
have made it feasible to examine human brain connectivity systematically and across the
whole brain in large numbers of individual subjects. Progress in the nascent field of
connectomics led NIH in 2009 to announce a Request for Applications for the Human
Connectome Project (HCP), with an overarching objective of studying human brain
connectivity and its variability in healthy adults. In September, 2010, grants were awarded
to two consortia (http://www.neuroscienceblueprint.nih.gov/connectome/). One is a 5-year
grant to a consortium of ten institutions in the United States and Europe, led by Washington
University and the University of Minnesota (the ‘WU-Minn HCP Consortium’). This
consortium aims to study brain connectivity and function with a genetically-informative
design in 1200 individuals using four MR-based modalities plus MEG and EEG. Behavioral
and genetic data will also be acquired from these subjects. The second is a 3-year grant to a
consortium led by Harvard/MGH and UCLA to develop an advanced MR scanner for
diffusion imaging.

A deeper understanding of human brain connectivity and its variability will provide valuable
insights into what makes us uniquely human and what accounts for the great diversity of
behavioral capacities and repertoires in healthy adults. It will provide a critical baseline of
knowledge for future studies of brain connectivity during development and aging and in
myriad neurodevelopmental, neuropsychiatric and neurological disorders. Also, the data
acquisition strategies and analysis methods developed under the auspices of the HCP will be
freely shared and will benefit many other projects. Increasing both the commonality and the
sensitivity of methods used to characterize human brain connectivity across different studies
will enhance our ability to detect subtle links between genetics, human brain connectivity
patterns, and behavioral variation.

Despite their great promise, all of the modalities that can be applied to in vivo human
connectomics currently have serious limitations in their sensitivity, accuracy, and resolution
(Van Essen and Ugurbil, 2012). Hence, during Phase I of the grant (until the summer of
2012) the WU-Minn HCP consortium is making a major effort to improve the methods of
data acquisition and analysis. This includes a new 3T MRI scanner designed to improve the
quality and resolution of connectivity data, as well as a new 7T scanner, both of which will
capitalize on major improvement in MR pulse sequences. This initial phase will be followed
by a 3-year period of data acquisition from the main cohort (Phase II). The combination of
methods refinement followed by extensive data acquisition makes the HCP a unique
enterprise compared to several other large-scale imaging efforts that are also underway (see
Discussion).

This review focuses on the data acquisition aspects of the HCP, given their critical
importance for the endeavor. After a brief overview of the HCP objectives, we describe the
subject cohort and behavioral measures, followed by the hardware configuration and data
acquisition strategies for each of the main imaging modalities. Already there have been
significant methodological advances that provide grounds for optimism about the data
quality that will be attainable. Approaching near-optimal solutions will be very challenging
given the large number of factors and parameters needing evaluation. We provide examples
of our general approach to this problem.

Overview of the HCP
Fig. 1 provides a high-level view of our plans for data acquisition in Phase II of the project.
Data will be acquired from 1200 subjects, comprising young adult sibships of average size
3–4, including twins and their non-twin siblings. Each subject will spend 2 days at WashU
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for behavioral assessment, blood draw for eventual genotyping, and multiple MR scanning
sessions (4 sessions, with 3 lasting 1 h). The WashU scans will be carried out using a
customized 3T Connectome Scanner adapted from a Siemens Skyra (Siemens AG, Erlanger,
Germany); a subset of 200 subjects will also be scanned at UMinn using a new 7T scanner
(MR hardware section). On both the 3T and 7T systems, the MR scans will use advanced
pulse sequences to acquire dMRI, R-fMRI, and T-fMRI, plus T1w and T2w anatomical
scans. T-fMRI scans will include a range of tasks aimed at providing broad coverage of the
brain and identifying as many functionally distinct domains and cortical parcels as possible.

A subset of 100 subjects will also be studied with combined MEG/EEG at St. Louis
University (SLU); if possible, some of these will be in the group also scanned at 7T. MEG
and EEG provide much better temporal resolution (milliseconds instead of seconds) but
lower spatial resolution than MR (MEG/EEG section).

The behavioral measures will span a broad range in the domains of cognition, emotion,
perception, and motor function (Behavioral measures section). They will be drawn mainly
from the NIH Toolbox but will be supplemented by a number of complementary additional
measures. Blood samples from all subjects will be used for genotyping in year 5, at which
time full-genome sequencing may be affordable (Genetics section).

Extensive efforts to refine many aspects of data analysis are underway for each modality, as
will be discussed in future publications. Another major thrust is to implement a robust and
user-friendly informatics platform to support data management and data mining (Marcus et
al., 2011).

In principle, it would be valuable to collect data from additional noninvasive0020imaging
modalities (e.g., PET and NIRS). However, given overall budget constraints this would
require reducing the total number of subjects studied. The strategy we adopted reflects a
trade-off and balance between (i) acquiring as much information as is feasible using multiple
modalities related to brain connectivity and function, and (ii) having a subject population
sufficiently large to systematically explore the neurobiological and genetic bases of
individual variability in brain circuitry and behavioral phenotype.

Study subjects
A key objective is to understand inter-individual variability of brain circuits, including its
genetic bases and its relation to behavior, rather than merely aiming to determine the
average, or typical connectivity in healthy adults. This will be achieved by sampling 300–
400 young adult sibships of average size 3–4, with most of these sibships including a MZ or
DZ twin pair. All subjects will be between 22 and 35 years old, an age range chosen to
represent healthy adults beyond the age of major neurodevelopmental changes and before
the onset of neurodegenerative changes. While the HCP will be cross-sectional, many
participants will be drawn from ongoing longitudinal studies (Sartor et al., 2011; Edens et
al., 2010); they will have extensive previous assessments, particularly with respect to history
of the presence or absence of emotional and behavioral problems. This will allow us to
recruit a sample of relatively healthy individuals free of a prior history of significant
psychiatric or neurological illnesses. Our goal is to capture a broad range of variability in
healthy individuals with respect to behavioral, ethnic, and socioeconomic diversity. We will
define ‘healthy’ broadly, to avoid having an unduly narrow ‘supernormal’ case series that
might not be representative of the population at large. We will exclude sibships with
individuals having severe neurodevelopmental disorders (e.g. autism), documented
neuropsychiatric disorders (e.g. schizophrenia or severe recurrent depression) or neurologic
disorders (e.g. Parkinson's disease), but will include individuals who are smokers, are
overweight, or have a history of heavy drinking or recreational drug use without having
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experienced severe symptoms (Supplemental Table S1 lists the full set of inclusion and
exclusion criteria under consideration). This strategy will enable future connectivity studies
on psychiatric patients, many of whom smoke, are overweight, or have subclinical substance
use behaviors, to be compared to connectivity data on HCP ‘healthy individuals’ having
similar profiles. Twins born prior to 34 weeks gestation and non-twins born prior to 37
weeks gestation will be excluded. This acknowledges the higher incidence of prematurity in
twins and focuses on exclusion of individuals born very prematurely. Our initial screening
will include a detailed questionnaire developed explicitly for the HCP to determine presence
or absence of the inclusion/exclusion criteria. This will be followed by an additional
extensive, reliable, and valid psychiatric interview, the Semi-Structured Assessment for the
Genetics of Alcoholism (SSAGA, Bucholz et al., 1994), to confirm the absence of
significant psychiatric illness. This will also allow us to include information about
subthreshold psychiatric symptoms in the database, as analyses of such data may be of
interest to many researchers.

The utility of twin pairs in furthering our understanding of the causes of human variation
extends beyond estimating the contribution of genetic differences to individual variation (for
classic early studies, see Eaves, 1982 and Martin et al., 1997; for a discussion of statistical
analysis approaches, see Neale and Cardon, 1992). MZ twinning occurs randomly, so MZ
twin pairs should capture the full range of genetic variability in a population. These twin
pairs are genetically nearly identical; while they may share many aspects of rearing history
and socioeconomic background, they also have within-pair variance due to differences in
environmental exposures, stochastic processes and measurement error. Accordingly,
assessment of MZ twin pairs on its own is valuable in three distinct respects. (i) It provides a
within-pair contrast for effects of environmental exposure or physical or physiologic state
(e.g. in pairs discordant for smoking, overweight/obesity, or diabetes). (ii) It provides a
lower-bound estimate of the test–retest reliability of various HCP measures. (It is a lower
bound because it reflects only genetic effects plus environmental effects shared by the twin
pairs; however, it is especially valuable in experiments that for technical reasons are non-
repeatable.) (iii) It provides an estimate of the covariance structure of multiple measures that
is uncontaminated by individual-specific stochastic and measurement error effects.

Dizygotic twin pairs are as genetically related as ordinary full siblings, but they share their
childhood environment to a much greater extent than do siblings of different ages. When
added to MZ twin data, DZ twin data thus allow estimation of the extent to which genotype,
shared environment, and non-shared influences each contribute to variation in traits. In
multivariate analysis, this extends to understanding why traits A and B co-vary. The
inclusion of additional siblings along with twins provides a further increase in statistical
power for resolving genetic and environmental influences (Posthuma and Boomsma, 2000).
These basic applications may be elaborated to test for genotype × environment interaction
effects, where genetic influences are modified as a function of environmental exposure or
experimental manipulation; conditional effects (e.g. how smoking status may affect
connectivity patterns); and to test for certain strong directional models (event A leads to
event B, rather than vice versa) (Neale and Cardon, 1992).

Genetics
Participants will provide blood samples that will be used to create cell-lines and for DNA
extraction, with these resources available to other qualified investigators. In the final year of
the project, we will genotype samples from all study participants. The genotyping method
will be chosen from those available at that time, with the goal of obtaining the maximum
amount of data given budgetary constraints; this may include full-genome sequencing. HCP
genetic data will allow investigators to look for the effects of specific genetic variants (as
identified in powerful large-scale genome-wide association studies of clinical or behavioral
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phenotypes) on brain connectivity patterns in healthy adults. As one example, it will be
interesting to see whether differences in brain connectivity patterns are associated with
genetic variants that contribute to the risk of developing Alzheimer's disease later in life
(e.g. ApoE e4). The HCP data may also enable direct discovery of gene variants that affect
brain connectivity patterns, especially if the HCP core protocol is replicated across multiple
studies worldwide. Overall, our use of a twin-family study paradigm to analyze individual
variation in brain connectivity will facilitate progress in understanding the genetic bases of
individual differences in connectivity, and their covariation with normal behavior.

Behavioral measures
HCP's behavioral measures will provide important phenotypic data to compare with brain
imaging and genetics. Our goal is to cover as many domains of behavior as feasible within
2–3 h of testing outside of the scanner. Our base set of assessment tools will be the NIH
Toolbox, which is being developed as a brief, well-validated assessment of the domains of
cognition, emotion, motor function and sensation that can be used with healthy individuals
from childhood through older age (see http://www.nihtoolbox.org). This will include
domains of cognition (verbal IQ, working memory, executive function, attention, language,
and processing speed), emotion (negative affect, positive affect, stress and coping, and
social relationships), motor function (locomotion, dexterity, strength, and endurance), and
sensation (hearing, taste, touch and smell). To facilitate cross-project comparisons, we plan
to incorporate additional measures similar or identical to those used by other large-scale data
acquisition projects measuring brain function, structure, and connectivity that are non-
overlapping with the NIH-Toolbox measures. These include measures of attention, episodic
memory, visual spatial processing, and emotional face processing as used by Gur et al.
(2010); the Achenbach Adult Self Report (Achenbach et al., 2005), as used in the NKI-
Rockland project (http://fcon_1000.projects.nitrc.org/indi/pro/nki.html); and a variant of
matrix reasoning as a measure of fluid intelligence and the NEO-FFI-60 measure of
personality (McCrae and Costa, 2004), as used in a study on cognitive aging (R. Buckner,
personal communication). Finally, we plan to include the Farnsworth test of color vision, the
Mars test of visual contrast sensitivity, the EVA test of visual acuity, and a measure of
impulsivity (delay discounting) (Estle et al., 2006). Supplemental Table S2 lists all measures
we plan to acquire (Toolbox and non-Toolbox).

The broad spectrum of behavioral information acquired from all HCP subjects will enable
many types of comparison and correlation between behavior and brain connectivity
(functional, structural, and electrophysiological). For example, behavioral measures can be
used to identify factors or eigenvectors of common variability across subjects, which are
then correlated with measures of connectivity. This can be done within a cognitive domain,
as in working memory (e.g. Hampson et al., 2006), or across domains and connectivity
patterns, as in comparing motor behavior to measures of connectivity across networks such
as motor and attention (Carter et al., 2010). An alternative strategy is to test whether specific
patterns of brain connectivity co-vary in a meaningful way with behavioral measures. For
example, some studies have emphasized a correlation with global measures of connectivity
(Chiang et al., 2009; van den Heuvel et al., 2009). It will be important to explore how
behavioral performance relates to a variety of connectivity measures, including: ‘dense
connectome’ representations at the level of voxels and surface vertices; ‘parcellated
connectome’ representations of connectivity between cortical and subcortical parcels
defined anatomically and/or functionally; different approaches for estimating the
connectivities themselves (e.g., “functional” vs. “effective” connectivity measures (Friston
et al., 2003)); and graph-theoretical representations at the level of brain networks and
subnetworks (Bullmore and Sporns, 2009). Accordingly, it is important that the HCP
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informatics platform provides access to connectivity data at each major level of analysis,
including voxelwise time-course data (Marcus et al., 2011).

MR hardware
To obtain the best possible MR data quality while scanning many subjects for the HCP, we
decided to pursue a dual path involving customized 3T and 7T scanners. 3T systems are the
more mature and robust platforms, compatible with the need to scan a large number of
subjects. 7T systems offer advantages, especially for the resting and task-based fMRI
studies, but also for diffusion-based techniques if sufficiently short echo times can be
achieved for diffusion weighting. However, 7T platforms are less mature and more
challenging to work with, and are thus incompatible with an ambitious data collection
strategy. Accordingly, our plan is to scan all 1200 subjects at 3T, and 200 of them also at
7T. Both scanners will be modified to improve performance compared to what is available
on a standard platform. There is also a possibility of imaging some HCP subjects using a
new 10.5T whole body scanner that the CMRR at UMinn is building through support from a
separate NIH grant. However, whether the HCP is able to scan at this ultrahigh field will
depend on when the system becomes operational and key scanning protocols implemented.

New Connectome 3T scanner
Our design for the Connectome 3T MRI scanner took into consideration issues of reliability,
subject comfort, and potential risks inherent in new hardware development. Unique features
of the Connectome 3T involve the gradients and the RF-receive hardware. Diffusion
imaging (dMRI) benefits from high gradient amplitudes that can shorten the diffusion
encoding period and thus increase SNR. Multichannel receive capability is critical to parallel
imaging techniques that are being developed in this project to significantly reduce whole
brain data acquisition times both for fMRI and for dMRI (see below).

We considered several options for achieving gradient amplitudes higher than the 40 mT/m
available on standard Siemens 3T scanners. Over the range from 40 mT/m to 300 mT/m the
SNR gains depend nonlinearly on the b-value as well as the gradient strength. Fig. 2
demonstrates simulated SNR values achievable with a Stejskal–Tanner pulsed gradient

diffusion sequence modeled assuming infinite slew gradients. Due to the sequence's G2 
non-linear dependence of b-value, stronger gradients (G) do not proportionately reduce
pulse width (Tp) or the minimum possible echo time (TE) on which SNR is dependent.1 The
relative SNR (normalized to 100% for 300 mT/m) depends on the b-value. However, even
for very ambitious b values (104 s/mm2), 100 mT/m maximum gradient strength provides
~70% of the SNR achievable relative to a 300 mT/m maximum.

Based on these considerations, we chose a gradient configuration that can achieve a
maximum gradient strength of 100 mT/m using existing and tested hardware components.
Specifically, we are using a Siemens 3T Skyra scanner modified to include a Siemens SC72
gradient coil that has been used extensively in 7T scanners, where its maximum gradient
strength is 70 mT/m. This will be further increased to ~ 100 mT/m using gradient amplifiers

1Calculations were performed using 3T T2 for white matter, relative to b = 0 for the minimum achievable TE in a Stejskal and Tanner
spin echo sequence with one refocusing pulse. Ramp times were ignored for these calculations. The minimum δ (see diagram) was
calculated for a given b, G and d (note: Δ = δ + d) by solving 0 = b− (2π·42.58 × 10−3·G·δ)·10−3·(2δ/3 + d) where b is s/mm2, δ and
d in ms and G in mT/m. The minimum TE = 2δ + MinTE, where MinTE = minimum TE achievable with δ = 0, d = 0, which was
taken to be 15 ms based on existing sequences with partial Fourier acquisition. SNR is calculated using the biexponential diffusion
approximation and SNRμ (0.75e−bDF + 0.25e−bDS) e−(2δ+MinTE)/T2 where DF and DS are fast and slow apparent diffusion
constants, respectively, (assumed to be 0.8×10−3 and 1×10−4 mm2/s) with corresponding fractional pool sizes of 0.75 and 0.25 (taken
from Ronen et al., 2005), with d = 6 ms. White matter 3T T2 was assumed to be 70 ms (Stanisz et al., 2005).
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with higher current output, adapted from the Siemens 1.5T Aera scanner. This design entails
only low technical risk and is well suited to our HCP objectives.

Alternative available de novo designs that theoretically could approach 300 mT/m are
technically demanding and at risk of not meeting key performance characteristics (e.g. eddy
currents, nonlinearities, stability, duty cycle, safety etc.). The SC72 has excellent eddy
current performance in its standard configuration in an 82 cm bore magnet and should
perform even better in the 90 cm bore 3T magnet. The Skyra scanner has 64 receiver
channels, for use with a commercial 32-channel head coil and with customized arrays
having larger number of coils that will be designed at CMRR and explored for improved
SNR and acceleration.

7T scanner
The (new) UMinn 7T is also equipped with SC72 gradients and will have 32 channels
initially, but will be upgraded to 64 channels before 7T scanning on the main cohort
commences. The system will have third-order shims, which will improve EPI quality. RF
coils will consist of multichannel receive and transmit arrays to be built at CMRR.

MR data acquisition
Important advances in pulse sequences will benefit three MR modalities (dMRI, R-fMRI,
and T-fMRI) and are described in Pulse sequence improvements section. This description is
followed by subsections on modality-specific aspects of MR data acquisition.

Pulse sequence improvements
The primary approach to fMRI and diffusion imaging for connectivity studies involves
single shot imaging using EPI. Since its initial application, EPI scan times for whole brain
coverage have not substantially decreased. Progress in shortening the EPI acquisition time
for spatial encoding (Pruessmann et al., 1999; Sodickson et al., 1999; Griswold et al., 2002;
Liang et al., 2003) only modestly reduces acquisition time for whole brain coverage. This
modest reduction is because each slice incorporates a physiological contrast preparation
period that can equal or exceed the time employed for collecting the EPI echo train. A major
objective of the HCP is to achieve rapid whole-brain image acquisition with high spatial
resolution for both diffusion imaging and fMRI.

Our approach to reducing scan time capitalizes on the simultaneous excitation of multiple
brain slices and sharing diffusion or BOLD preparation among all slices excited. This is
accomplished with multiple receivers and multiband excitations (Larkman et al., 2001), as
developed for fMRI by the UMinn group (Moeller et al., 2010), and with SIR, involving
acquisitions of multiple slices adjacent in time but in the same echo train (Feinberg et al.,
2002). These can be combined into Multiplexed EPI (Feinberg et al., 2010). Acquiring many
slices in the time of a single EPI echo train (or marginally longer echo train when SIR is
employed) and a single contrast preparation period, permits sub-second whole brain
coverage at 2 or 3 mm isotropic resolution (Fig. 3), yielding improved resting state fMRI
results (see R-fMRI acquisition strategies section), and substantially reduced acquisition
times for dMRI. These advances will benefit both diffusion and fMRI data directly through
higher data acquisition rates, without serious losses in SNR, and indirectly, by reducing the
total number of diffusion gradient pulses per whole brain scan, allowing more time for
gradient coil cooling when very high b-values are used.

Another important technical consideration involves various distortions that can plague
subsequent analyses if not adequately corrected. Field map scans will be acquired and used
to correct fMRI images for distortions arising from magnetic field inhomogeneities. For
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dMRI, pulse sequences that traverse k space in opposite phase encoding directions will be
acquired and used to calculate and eliminate the image distortions (Andersson et al., 2003).

dMRI strategies
The MR hardware and pulse sequence developments described above have significant
implications for the diffusion imaging strategies to be used by the HCP. Accelerated
imaging will enable collection of many hundreds or even thousands of diffusion-encoded
data points per voxel. The customized gradient coils on the Connectome 3T will enable
acquisition of high b-value data while reducing the usual SNR trade-off. Because such data
have not previously been acquired in human subjects, Phase I of the HCP will entail
extensive piloting and testing by the diffusion imaging team on both 3T and 7T datasets.

We aim to identify a diffusion imaging acquisition and reconstruction protocol that will (a)
provide veridical reconstructions of fiber orientations in a physical phantom; (b) provide
high multi-orientation sensitivity and low uncertainty in regions of crossing fibers in vivo;
(c) provide high test–retest reliability over the whole brain; and (d) provide accurate
connectivity data when compared to expectations from macaque tracer studies and from
same-subject functional connectivity derived from R-fMRI (R-fMRI acquisition strategies
section). Among the many decisions that must be made, the most significant are the choice
of diffusion-encoding scheme, for maximizing orientation sensitivity, and the choice of
spatial resolution, which involves a trade-off between the accuracy of orientation peaks and
the sensitivity to crossing fibers and minor pathways. We will evaluate and compare
diffusion encoding schemes that sample k-space using single or multiple spherical shells,
with the parameters of each scheme pre-optimized. Testing on the customized 3T Skyra,
which commenced in the fall of 2011, will aim to efficiently narrow down the primary
choices using multiple criteria as described above. This will be followed by fine-tuning of
acquisition parameters.

In conjunction with data acquisition improvements, we are performing extensive evaluation
and optimization of diffusion imaging reconstruction methods. The availability of high
resolution and high SNR data will open up new possibilities. For example, we are extending
multi-fiber fitting algorithms to account for (i) more complex fiber architectures, such as
fanning and bending fibers and (ii) more complex data types, such as multi-q-shell or
Cartesian acquisitions (Aganj et al., 2010). These new techniques will be evaluated against
established techniques such as compartment modeling (Behrens et al., 2007), spherical
deconvolution (Tournier et al., 2004), and Diffusion Spectrum Imaging reconstructions
(Wedeen et al., 2008).

R-fMRI acquisition strategies
As illustrated already (Pulse sequence improvements section), important advances in pulse
sequences have emerged from early HCP efforts. This includes combining two EPI
accelerations that in combination markedly reduce TR (Feinberg et al., 2010). The reduction
in TR (to less than a half second, i.e., much less than T1) decreases the SNR in each
individual fMRI image, but with respect to final time series statistics, the increased number
of timepoints more than compensates for this. The expected overall SNR change is a gain of
10–15%. However, for high-dimensional multiple regressions (such as that implicit in a
high-dimensional functional parcellation using independent component analysis), we found
an increase in effective SNR of 60% when reducing TR from 2.5 s to 0.4 s, because of the
importance of the temporal degrees of freedom in such analysis. A similar gain (and for
similar reasons) may occur in some network modeling analyses, such as those involving
partial correlation (Smith et al., 2011) to estimate ‘direct’ network connections.
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Additional increases in acceleration factors are anticipated, but they are likely to yield
diminishing returns, because distortions and reconstruction artifacts may increase, while the
temporal sampling becomes much faster than useful temporal information available in the
(hemodynamically blurred) fMRI timeseries. On the other hand, there may be additional
valuable gains, including an improved ability to model and remove physiological artifacts
(Glover et al., 2000) including head motion (Power et al., 2012); improved ability to model
nonstationarities (temporal variation) in the network structure (Chang and Glover, 2010);
improvement in estimating higher-order statistics for network modeling (Shimizu et al.,
2006); and richer modeling of the temporal dynamics of R-fMRI fluctuations and in the
interactions between different functional areas (Smith et al., 2012).

As with dMRI, the effort to optimize R-fMRI acquisition parameters for Phase II data
acquisition will require choices among many competing factors that will differ for 3T and
7T scanners. It will entail careful choice of pulse sequence parameters along with ‘standard’
parameters such as spatial and temporal resolution, echo-time (TE), bandwidth, MB and SIR
slice acceleration factors, and within-slice parallel acceleration factor (which have different
effects on g-factors and the use of partial-k-space). The interdependencies can be complex,
and the choices for single parameters can involve tradeoffs. For example, one TE might give
better overall SNR, whereas a different value might show better signal localization in tissue
vs. local larger veins. A key objective will be to achieve sub-second TR while minimizing
EPI distortion and dropout, and maximizing SNR and spatial resolution. Endpoints by which
the results will be judged will include maximization of the number of functional parcels that
can be reproducibly distinguished from one another, as well as the reproducibility of the
network connections (between these parcels) that are then estimated. These R-fMRI
distinctions can also be related to functional distinctions (Smith et al., 2009). Other
decisions involve different kinds of tradeoffs: for example, the longer the imaging session
the better, from the point of view of imaging data quality and the ability to sample dynamics
of functional connectivity. However, this must be balanced against subjects' compliance and
load, given the many modalities of data acquisition.

T-fMRI acquisition strategies
Our primary goals in including task-related fMRI measures (T-fMRI) are to (i) help identify
as many “nodes” (functionally distinct brain parcels) as possible that can guide, validate, and
interpret the results of the connectivity analyses that will be conducted on R-fMRI and
dMRI data; (ii) provide task-activation data that can be combined with MEG data to better
understand information flow within networks; (iii) allow comparison of network
connectivity in a task context to connectivity results generated using R-fMRI; and (iv) to
understand the relative utility of T-fMRI and R-fMRI in predicting individual differences in
behavior and genetic influences. To accomplish these goals, we are developing a battery of
tasks that can identify node locations in as wide a range of neural systems as feasible within
realistic time constraints (~60 min in Phase II). In Phase I, we are piloting a larger number
of tasks than we anticipate being able to use in Phase II. We will compare the sensitivity,
reliability and brain coverage afforded by these tasks to arrive at a final T-fMRI battery that
balances optimizing the psychometric properties of the activation measures (i.e., high
reliability and sensitivity are necessary for individual difference and genetic analyses) with
behavioral validity and interpretability. Phase I piloting includes measures of visual-motor
processes (retinotopy, motor strip mapping, biological and non-biological motion), as well
as a range of cognitive (working memory, episodic memory, language, attention, stimulus
category representations) and affective/social processes (emotion recognition, reward and
punishment based decision making, and social cognition). When possible, we are piloting
tasks that allow us to assess multiple networks simultaneously. For example, we have
developed a working memory task that uses different categories of stimuli. This enables
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collapsing across stimulus type to identify working memory related networks, and separately
collapsing across memory loads to identify brain regions that respond differentially to
different stimulus types. In choosing tasks to pilot in Phase 1, we emphasized ones with
existing evidence of suitability as localizers in individual subjects, or evidence for their
reliability across subjects or within subjects across time. We also emphasized paradigms
suitable for optimized blocked designs to achieve maximum efficiency. Supplemental Table
S3 lists the tasks currently being piloted.

Like R-fMRI, T-fMRI is likely to benefit considerably from low-TR data acquisition. For
example, improved temporal resolution should aid in discerning differences in the time
course of task activation/deactivation according to brain region and/or task (e.g., Nelson et
al., 2010). The choice of T-fMRI pulse sequence parameters along with ‘standard’
parameters such as spatial and temporal resolution will involve many of the same
considerations as for R-fMRI (R-fMRI acquisition strategies section). We will capitalize on
the improvements that are identified for R-fMRI early in Phase I by using the same
acquisitions for T-fMRI (after confirming with a subset of T-fMRI tasks that the final
acquisition protocol works well for task and not just rest). Measures for evaluating
acquisition parameters will include assessments of the robustness, spatial extent, and
reproducibility of significant task activations and deactivations.

Anatomical MRI acquisition strategies
Conventional structural MRI using T1w scans provide an essential anatomical substrate for
visualizing brain structures, generating subcortical segmentations, and reconstructing
cortical surfaces. We will also combine anatomical T1w and T2w scans, using the T1w/T2w
ratio to map myelin content across the cortical surface and thereby distinguish many
architectonic areas non-invasively (Glasser and Van Essen, 2011). This method works with
standard 3T 1 mm isotropic T1w and T2w images, but we will explore whether higher
resolution images improve architectonic delineations. Additionally at 7T, we will aim to use
a similar strategy to map cortical myelin content at 0.6 mm isotropic resolution or higher.
Myelin maps will complement other MR modalities in localizing cortical areas in individual
subjects and in providing a substrate for improved intersubject registration.

MR scan duration
To obtain the highest quality imaging data feasible for each MR modality, multiple scan
sessions are planned for each subject during the 2-day visit. The session structure currently
being piloted includes a set of structural scans (20 min total), one diffusion imaging session
(1 h), and two 1 h fMRI sessions (each 30 min resting-state followed by 30 min task-fMRI).
Participants will be asked if they are willing to undergo an additional voluntary scan session
of up to 1 h; this will be used to re-acquire data on any scans that failed to pass initial QC
and/or to carry out additional scans using advanced acquisition protocols that might be very
informative even if carried out on a modest number of individuals.

MEG/EEG
Non-invasive electrophysiological recording will be carried out in addition to MR scanning
and behavioral and genetic testing on 100 subjects (some of whom may also have MR scans
at 7T as well as 3T). MEG/EEG is complementary to fMRI in that it provides a window
onto the neurophysiological processes underling sensory, motor, and cognitive functions at a
temporal scale inaccessible to fMRI. The Blood Oxygen Level Dependent (BOLD) signal
detected in fMRI reflects neuronal activity only indirectly; owing to the temporal dynamics
of neurovascular coupling (the hemodynamic response function), peak sensitivity to neural
activity modulations is on a time scale of seconds (Hathout et al., 1999). In contrast, MEG
and EEG respectively detect external magnetic fields and scalp potentials arising from
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neuronal activity within the brain with millisecond-level temporal resolution. However, the
spatial specificity of non-invasive electrophysiology is worse than that of fMRI. Neural
sources at the brain surface may be localized with a precision on the order of a few mm, but
securely assigning responses to one of multiple simultaneously active generators requires
that they be separated by several cm (Mosher et al., 1993). Moreover, MEG sensitivity is
largest for parts of the brain within several cm of the sensors; the mesial and inferior cortical
surfaces as well as subcortical structures including thalamus and striatum are largely
inaccessible. Despite the limited spatial resolution, the richness of temporal information
obtained by MEG/EEG enables assessment of how brain rhythmical activity relates to
resting and task-evoked connectivity. All these characteristics influence how MEG and EEG
data will be integrated with T-fMRI and R-fMRI data, as well as the methods by which
cortical parcellation can be applied to these temporally dense signals.

Both R-MEG and T-MEG electrophysiology data will be acquired at SLU using the Magnes
3600 (4D Neuroimaging, San Diego, CA) equipped with 248 magnetometers, 23 MEG
reference channels (5 gradiometer, and 18 magnetometer) and 64 EEG Voltage Channels (4
bipolar, 60 monopolar). The system is installed inside a magnetically shielded room that
includes one layer of aluminum and two layers of high magnetic permeability material. The
RMS noise of the magnetometers is ~5 fT/sqrt (Hz) on average in the white noise range
(above 2 Hz). Experience gained during HCP Phase I will determine whether it will be
practical to routinely record EEG during Phase II. Prior to MEG/EEG data acquisition, the
positions of the EEG electrodes and shape of the subject's head will be mapped by marking
fiducials on the subject's skin and using a Polhemus localization system. This will enable co-
registration with anatomic MR scans performed subsequently at WashU. The MR data will
be used to create anatomic models to support MEG/EEG source reconstruction and will be
collected after the MEG/EEG recording session to avoid errors due to subject magnetization.
Subjects will complete three resting state scans followed by a set of task runs, with all data
collected in a single 2-hour session. MEG/EEG data analyses will be based on the FieldTrip
platform (Oostenveld et al., 2011).

The MEG/EEG task paradigms will involve tasks that activate the lateral and dorsal surface
of the brain, which are more sensitively sampled by MEG/EEG. In phase I, pilot data will be
acquired for motor processes (motor strip mapping), memory (working memory, episodic
memory), language, and attention tasks. To facilitate comparisons between T-MEG/EEG
and T-fMRI scans, the MEG/EEG task paradigms will be identical in temporal sequence to
those used for T-fMRI. Each task under consideration includes sufficient stimuli to allow
presentation of different stimuli in each run, thereby avoiding priming effects that might
otherwise interfere with subsequent T-fMRI protocols. While the temporal sequence of task
protocols will be maintained, T-MEG/EEG protocols may be extended in duration to allow
collection of enough trials to ensure adequate sensitivity. Based on the results of these pilot
studies, a subset of tasks will be chosen for inclusion in phase II.

A major emphasis of the MEG/EEG component of the HCP will be on developing novel
analysis strategies. Non-invasive electrophysiology historically has focused on averaging
responses in phase with behaviorally salient events (Dale et al., 2000). Our behavioral
protocols will support this methodology but the emphasis will be on analyses of induced
oscillatory activity, e.g., event-related time-frequency responses (Hoogenboom et al., 2006)
and event-related changes in synchrony within and across brain regions (Siegel et al., 2008).
Particular emphasis will be given to novel approaches for analyzing resting state MEG data
that require analysis pipelines (Mantini et al., 2011) different from those used for T-MEG
paradigms. Patterns of MEG resting connectivity can be studied through e.g., correlation of
band-limited power time series (de Pasquale et al., 2010) and characterizing node-pair
interactions using complex coherency (Marzetti et al., 2008). Delineation of MEG resting
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state networks based on beam-former techniques (Brookes et al., 2011) will also be
investigated.

Quality assurance
Given the richness and complexity of the datasets to be generated in Phase II of the HCP, it
is important to establish and maintain rigorous quality assurance (QA) plans and quality
control (QC) processes. Although HCP is a cross-sectional study, the three-year Phase II
data collection period and the importance of avoiding drift in ‘healthy normal’ data over
time means that many QA and QC challenges faced by longitudinal studies are relevant to
HCP. These issues include potential protocol changes, scanner equipment wear, and
differences in behavioral interviewing techniques across research staff (Whitney et al.,
1998). The HCP Phase II protocols will be fully piloted in late Phase I using adult twins/
sibships who do not meet family size criteria for participating in Phase II. We intend that the
core HCP protocol, once established, will be invariant throughout Phase II. This protocol
will be documented in Standard Operating Procedures made publicly available. Key
advances that occur over the course of the study, e.g. in pulse sequences, may be evaluated
in additional sessions while the subjects are on-site. To avoid data drift related to equipment
performance, scanner QC will be performed daily, and the stability of primary measures
associated each data type will be tracked. Many technical aspects of the quality assurance
effort are described in Marcus et al. (2011). Efforts to standardize interviewing techniques
will include selecting staff to minimize turnover; computerizing the majority of behavioral
tests to ensure standard presentation and analysis; and careful training and occasional
observation of interviews via audiotapes and two-way mirrors in our testing suite. We will
establish an atmosphere in which staff and investigators understand the importance of
standardization and are encouraged to discuss and address any issues that might impact this
objective.

Discussion
Three issues touched upon above warrant brief discussion. These include issues of (i)
limitations of in vivo imaging; (ii) advantages of twin–sibship families coupled with data
sharing limitations; and (iii) the relationship of HCP to other large-scale neuroimaging
projects.

Inherent limits of in vivo human imaging
Advances in MR scanner design and simultaneous multiplexed data acquisition described
above will allow the HCP to generate an unprecedented amount of high quality data on brain
connectivity and associated measures in healthy adults (see also Van Essen and Ugurbil,
2012). However, the ‘macro-connectome’ assessments of human brain connectivity
accessible via in vivo imaging are on a very different scale than the ‘micro-connectome’
assessments of brain connectivity at the level of single neurons, axons, dendrites, and
synapses (Akil et al., 2011). Macro-connectome approaches aim to estimate long-distance
connectivity between gray-matter regions using isotropic voxels that are currently often 2
mm (dMRI) or 3 mm (R-fMRI) for 3T and can be 1–2 mm for 7T. The HCP anticipates
reducing voxel size for both modalities and for both 3T and 7T, but the scale will remain
vastly greater than that of the constituent neuronal elements: human cerebral cortex on
average contains ~40,000 neurons and ~3 × 108 synapses per mm,2 and white matter
contains ~300,000 axons per mm2 cross-sectional area.3 Micro-connectome approaches are
currently restricted to laboratory animals and aim to reconstruct circuitry at scales yet to

2This is based on estimates of 19 billion cortical neurons (Azevedo et al., 2009), 150 trillion cortical synapses (Pakkenberg et al.,
2003), and 472 cm3 (4.7 × 104 mm3) cortical gray matter volume (Van Essen et al., 2011).
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reach 1 mm3 of brain tissue (Briggman and Denk, 2006; Smith, 2007; Lichtman et al.,
2008). Thus, a vast gulf remains between macro- and micro-connectome scales.

Twin–sibship families and data sharing
Our decision to acquire data from twins and non-twin siblings will enable analyses of the
heritability of brain circuits and will greatly increase the power of genetic analyses.
However, due to the relatively small size and localized geography of the subject population,
HCP faces some extra challenges with respect to subject confidentiality and privacy,
especially regarding sensitive data. One likely scenario is that the publicly released HCP
dataset will include all neuroimaging data and most behavioral data, along with subject sex
and age range (e.g., 5-year grouping). Information about family relationships, ethnic and
racial identity, exact age (year), and potentially sensitive behavioral measures would be
restricted to qualified investigators who agree to appropriate limits on storage and
distribution of sensitive data. The publicly released data could also include a dataset
consisting of only one individual per family, thereby allowing analyses not confounded by
unspecified family relationships.

Relationship to other large-scale imaging projects
A growing number of projects are carrying out large-scale neuroimaging plus behavioral
phenotyping on different populations. A non-exhaustive list includes the Alzheimer's
Disease Neuroimaging Initiative (ADNI; http://www.adni-info.org/); the Thousand
Functional Connectomes project and International Neuroimaging Data-sharing Initiative
(INDI, http://fcon_1000.projects.nitrc.org/; Zuo et al., 2010); the IMAGEN study of
teenagers and mental health (http://www.imagen-europe.com); the AGES Reykjavik Study
of Healthy Aging (http://www.hjarta.is/english/ages); and the Rotterdam study of aging
(http://www.epib.nl/research/ergo.htm). Rather than considering each project and associated
database as an isolated silo of data, the neuroscience community should make such efforts
synergistic to the degree that practical considerations allow. Among the obvious challenges
are differences in imaging protocols and scanner hardware, differences in behavioral
measures, and different database and data mining platforms. Sharing of information about
plans and protocols while there is still flexibility may help to increase commonality in each
of these domains and thereby enhance the ability of the community to gain information and
insights from data mining that cuts across projects.

In comparison to these other endeavors, the HCP is by no means the largest in terms of the
number of subjects studied or in the aggregate amount of data to be collected. However, it is
surely the most complex in terms of the diversity of imaging modalities combined with the
richness of the behavioral and genetic information to be collected. It also will have an
informatics platform that supports an unprecedented degree of visualization and analysis
capabilities customized for data mining across all of these modalities. Finally, the HCP is
uniquely positioned to improve a variety of data acquisition methods and protocols for brain
connectivity studies. An important part of its mission is to openly share these methods as
they move from evaluation to production stages. The HCP maintains an active outreach
effort to promote awareness in the neuroscience community of the data acquisition strategies
outlined here and the informatics strategies described elsewhere (Marcus et al., 2011) and to
facilitate coordination with other large-scale neuroimaging projects.

3The human corpus callosum has 2×108 axons (Aboitiz et al., 1992) and a cross-sectional area of 570 mm2 (Rauch and Jinkins,
1996), yielding ~3.5×105 axons per mm2. Human cerebral white matter has a volume of ~700 cm3 (7×105 mm3) (Azevedo et al.,
2009; Pakkenberg et al., 2003), and ~150,000 km of aggregate axonal length (150,000–180,000 (Pakkenberg et al., 2003); 120,000
(Tang and Nyengaard, 1997)), for an average of 2.2×105 mm of axonal length per mm3 of white matter.
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dMRI diffusion imaging

DZ dizygotic

EPI echoplanar imaging

HCP Human Connectome Project, WU-Minn Consortium

INDI International Neuroimaging Data-sharing Initiative

MEG/EEG magnetoencephalography and electroencephalography

MZ monozygotic

NIRS near infrared spectroscopy

PET positron emission tomography

R-fMRI resting state fMRI

R-MEG resting state magnetoencephalography

RF radio frequency

SIR simultaneous image refocusing

SLU St. Louis University in St. Louis, MO

SNR signal-to-noise ratio

T-fMRI task-evoked fMRI

T-MEG task-evoked magnetoencephalography

T1w T1-weighted

T2w T2-weighted

TE echo time

TR repetition time

UMinn University of Minnesota

WashU Washington University in St. Louis, MO

WU-Minn Washington University and University of Minnesota

3T 3 Tesla
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Fig. 1.
Schematic summary for acquiring imaging, behavioral, and genetic data using MR and
MEG/EEG scanners at three HCP data acquisition sites. Left: Behavioral testing, blood
draws for genotyping, and scanning on a 3T Skyra will be carried out on 1200 healthy adults
at Washington University (WashU). Center: Major data acquisition modalities are indicated
in the center column; for task-fMRI and behavior, major domains are listed. Top right: A
subset of 200 subjects will be scanned on a 7T Skyra at the University of Minnesota
(UMinn). Bottom right: A subset of 100 subjects will be scanned using
magnetoencephalography (MEG) and perhaps electroencephalography (EEG) at St. Louis
University (SLU).

Van Essen et al. Page 19

Neuroimage. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Relative SNR at the central k space point in diffusion imaging with 150, 100, 70, and 40
mT/m maximum gradients relative to maximum achievable with 300 mT/m when TE is
minimized using the available gradient amplitude, calculated for white matter at different b-
values ranging from 500 to 10,000.
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Fig. 3.
The M-EPI pulse sequence compared with conventional EPI. Top left: EPI pulse sequence
generates a single slice image during each readout train, which is repeated for each slice to
scan the whole brain. The multiband technique replaces the single slice excitation pulse with
multiband (MB) pulses to excite several slices simultaneously, which are then unaliased
using array coil sensitivity profiles. As such, far fewer repeats are required to scan the whole
brain. Bottom left: Multiplexed-EPI (M-EPI) pulse sequence combines the SIR approach
with the MB technique: SIR consecutively excites s slices (s = 3 is shown in the pulse
sequence diagram with pulses in red, blue and green) and reads them out in a single echo
train, separated in time. Using MB pulses to simultaneously excite m slices instead of
exciting each single slice in the SIR approach produces the M-EPI sequence, with a “slice
acceleration” of (s × m) leading to (s × m) number of slices collected in a single echo train.
Right: Each column shows four (of 60) slices from a whole brain (2 mm isotropic
resolution) 3T data set obtained with the M-EPI technique, shown with the (s × m)
acceleration factors ranging from 4 to 12.
Adapted with permission from Feinberg et al. (2010).
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