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Abstract

Random graph null models have found widespread application in diverse research communi-
ties analyzing network datasets, including social, information, and economic networks, as well
as food webs, protein-protein interactions, and neuronal networks. The most popular family
of random graph null models, called configuration models, are defined as uniform distributions
over a space of graphs with a fixed degree sequence. Commonly, properties of an empirical net-
work are compared to properties of an ensemble of graphs from a configuration model in order
to quantify whether empirical network properties are meaningful or whether they are instead a
common consequence of the particular degree sequence. In this work we study the subtle but
important decisions underlying the specification of a configuration model, and investigate the
role these choices play in graph sampling procedures and a suite of applications. We place par-
ticular emphasis on the importance of specifying the appropriate graph labeling—stub-labeled
or vertex-labeled—under which to consider a null model, a choice that closely connects the study
of random graphs to the study of random contingency tables. We show that the choice of graph
labeling is inconsequential for studies of simple graphs, but can have a significant impact on anal-
yses of multigraphs or graphs with self-loops. The importance of these choices is demonstrated
through a series of three in-depth vignettes, analyzing three different network datasets under
many different configuration models and observing substantial differences in study conclusions
under different models. We argue that in each case, only one of the possible configuration mod-
els is appropriate. While our work focuses on undirected static networks, it aims to guide the
study of directed networks, dynamic networks, and all other network contexts that are suitably
studied through the lens of random graph null models.

1 Introduction

A configuration model is a uniform distribution over graphs with a specific degree sequence. For
researchers studying network data, it is common to employ a configuration model as a degree-
preserving null model that holds fixed the degree sequence of an empirical graph while randomizing
all other structure. In other domains, researchers study the properties of graph algorithms, dy-
namical models, or optimization routines on “realistic” graphs by sampling random graphs from a
configuration model with an empirically relevant degree sequence.

There is a tendency in the literatures of graph mining, machine learning, and network science
to think of and study one configuration model—the configuration model—without specifying or
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reflecting upon the defining properties of the space of graphs over which the uniform distribution
is considered. As a consequence, misunderstandings have developed within a number of domain
sciences surrounding the configuration model, at times because discussions refer to uniform distribu-
tions over subtly but importantly different spaces of graphs. In this paper, we clarify the differences
between eight commonly arising graph spaces and their corresponding uniform distributions, aiming
to provide an orderly review and guide for the diverse fields of study where configuration models
have found application.

In some circumstances, differences between particular graph spaces are asymptotically small
in the limit of large and sparse graphs with restricted degree sequences. However, as we will
demonstrate, not all differences between graph spaces are asymptotically small, and perhaps more
importantly, a great deal of modern graph analysis is performed on graphs that are well short of
fulfilling these asymptotic promises.

We begin by reviewing eight common graph spaces over which one might seek a uniform dis-
tribution. These spaces can be organized according to the answers to three binary questions,
which we describe in Section 1.5. We then provide a detailed overview of the subtleties involved
in uniformly sampling from these different spaces in Sections 2 and 3, primarily through correctly
specified Markov chains. After establishing formal sampling results we then turn to a series of three
vignettes in Section 5 that illustrate the scientific importance of choosing the correct graph space
as a null model. In particular, we argue that the common default choice of studying configuration
models over stub-labeled graphs (where each half-edge is labeled) is an inappropriate choice for
most analyses of non-simple graphs. Importantly, we demonstrate that this choice of null model
leads to different conclusions than more appropriate null models based on vertex-labeled graphs.

1.1 Basic definitions

Recall the basic definition of a graph as an ordered pair G = (V,E), consisting of a vertex set
V and an edge set E ⊆ V × V . The edge set E is understood to be a simple set, but if E is
a multiset (where a vertex pair (u, v) can appear several times in E) then the graph is instead
called a multigraph. Depending on the context, a graph or multigraph may allow or disallow the
presence of self-loops (edges of the form (u, u), connecting a vertex to itself). A graph is also often
represented as a |V | × |V | adjacency matrix, such that the (i, j)th entry wij is equal to the number
of edges between vertices i and j. For undirected graphs, as considered here, the adjacency matrix
is symmetric.

The choices to allow or disallow self-loops or multiedges are the first two choices in specifying a
configuration model’s graph space. In order to be precise about the properties of each graph space,
we briefly review four definitions. First, a simple graph is a graph without self-loops or multiedges.
Second, there is no established name in the literature for a graph allowing self-loops but without
multiedges, so we refer to such a graph plainly as a loopy graph. In the literature, multigraphs are
sometimes taken to have self-loops or not; we adopt the more conventional name multigraph to refer
specifically to multigraphs without self-loops, and use loopy multigraph to refer to a multigraph that
allows self-loops (also sometimes called a pseudograph). See Figure 1(d) for a diagram illustrating
the basic relationships between these graph spaces.

1.2 Vertex- and stub-labeled graph spaces

A graph G = (V,E) consists of two sets: a vertex set V and an edge set E. These sets can be
unlabeled or labeled, motivating the following definitions that will be used throughout the paper.
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Definition 1 (Vertex-labeled graph). A vertex-labeled graph is a graph in which each vertex has a
distinct label.

For vertex-labeled graphs, there is a bijection between graphs and adjacency matrices, i.e. each
vertex-labeled graph can be uniquely identified by its adjacency matrix and vice versa.

Definition 2 (Stub-labeled graph). A stub-labeled graph is a graph in which each half-edge (stub)
has a distinct label, and thus each edge has a pair of distinct labels.

Note that a stub-labeled graph also has implicitly labeled vertices, since each vertex is distinctly
labeled by the set of labeled stubs attached to it. However, in contrast with vertex-labeled graphs,
there is not a bijection between stub-labeled graphs and adjacency matrices, i.e. multiple stub-
labeled graphs can correspond to the same adjacency matrix. An unlabeled graph is a graph in which
neither edges nor vertices are labeled. An unlabeled graph can be thought of as an isomorphism
class in a space of labeled graphs, where there exists a set of labeled graphs that all correspond to
the same unlabeled graph. Similarly, there exists a set of stub-labeled graphs which correspond to
the same vertex-labeled graph, motivating the following definition.

Definition 3 (Stub-isormorphism). A stub-isomorphism equivalence class is the set of all stub-
labeled graphs which, upon removal of stub labels, results in the same vertex-labeled graph. Equiva-
lently, a stub-isomorphism class is the set of all stub-labeled graphs which are represented by the same
adjacency matrix. Two graphs in the same stub-isomorphism class are said to be stub-isomorphic.

For the space of simple graphs with a given degree sequence {ki}i∈V , where ki is the degree
of node i—and only for simple graphs, as we shall see—the number of stub-isomorphic graphs
corresponding to a given vertex-labeled graph is a constant that depends only on the degree sequence
(which is fixed). As a result, each vertex-labeled graph appears the same number of times in the
space of stub-labeled graphs, and hence, the uniform distributions over both spaces are equivalent
in most practical contexts where analyses ignore explicit stub labels. On the other hand, for non-
simple graphs with loops and/or multiedges, this is not the case, and the choice of labeling can
radically change the space of graphs, and thereby, a resulting/downstream/derivative analysis.

We visualize the differently labeled spaces for an example degree sequence, {2, 2, 1, 1}, in Figure
1(b-d). In the vertex-labeled space, half the graphs (3 of 6) have self-loops and only a third of the
graphs (2 of 6) are simple; in the stub-labeled space, the majority of the graphs (8 of 15) are simple.
As we will show in Section 4, self-loops and multiedges are always more common in vertex-labeled
graphs, and for many degree sequences they are vastly more common. Uniform distributions over
these differently labeled spaces can therefore produce wildly different answers to straightforward
questions. For example, if one asks, “What fraction of graphs with the given degree sequence form
a single connected component?”for this degree sequence, the answer varies considerably—1/4, 2/6,
or 8/15—depending on the space.

1.3 A brief history of stubs

Stub-labeled graphs arise naturally as the result of a stub matching process that takes a specified
degree sequence {ki}i∈V and generates a graph using the following randomized process. Each vertex
i is assigned exactly ki stubs, i.e. half-edges. Then, pairs of stubs are chosen uniformly at random
and connected until there are no remaining unpaired stubs. This process, which only requires
that the total number of stubs be even, creates a loopy multigraph with exactly the specified
degree sequence. Due to the fact that stubs are chosen uniformly at random, this stub-matching
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Figure 1: Graph spaces. (a) Nested and overlapping graph spaces, defined by allowing or pro-
hibiting self loops or multiedges. (b-d) For the degree sequence {ki} = {2, 2, 1, 1}, the (b) set of
graph isomorphism classes, (c) set of vertex-labeled graphs, and (d) set of stub-labeled graphs.
For the two simple graphs in panel (c), they are both “stub-isomorphic” to the same number of
stub-labeled graphs in panel (d), in particular, to exactly

∏
i ki! = 4 graphs. However, the sizes of

the stub-isomorphism classes differ for graphs with self-loops or multiedges, illustrating why vertex-
and stub-labeled spaces may not be treated as equivalent.

procedure (also called the pairing model [17]) samples uniformly from the space of stub-labeled
loopy multigraphs, as discussed further in Section 3.1.

Stub matching was first introduced by Bollobás [19] as a method for enumerating the number
of vertex-labeled simple graphs with certain degree sequences [11, 12]. Although stub matching
draws from the space of stub-labeled loopy multigraphs, Bollobás assumed that the degrees of
all vertices did not grow too quickly, relative to the size of the graph, and then showed that the
number of stub-labeled graphs with self-loops and/or multiedges was asymptotically small relative
to the number of stub-labeled simple graphs. By the fact that every vertex-labeled simple graph is
stub-isomorphic to exactly

∏
i ki! stub-labeled graphs (see Section 4 and Figure 1(c-d)), Bollobás

provided an asymptotically tight estimate (for large graphs) of the number of vertex-labeled simple
graphs. Of note, Bollobás called each stub-labeled graph a configuration, the origin of the name
configuration model for these uniform distributions.

Bollobás’ analysis contains two subtleties that are major sources of confusion about configu-
ration models. First, as noted above, every vertex-labeled simple graph is isomorphic to a fixed
number of stub-labeled simple graphs (e.g. this number is four in Figure 1), but the same cannot
be said for graphs with self-loops or multiedges. Second, many analyses assume conditions on the
degree sequence (e.g., adequately bounded growth) under which the number of non-simple graphs
is asymptotically small relative the number of simple graphs, but for any finite degree sequence the
number of non-simple graphs can represent a substantial fraction of the graph space. The math-
ematical literature is almost always precise regarding these two points. However, as configuration
model random graphs have spread into diverse fields due to waves of interest in graph analysis and
network science methods, these points have often caused confusion in the broader literature, as
we discuss below. We hope that this work helps mark a turning point in that confusion. In the
remainder of this introduction, we briefly survey the history of different applications of fixed-degree-
sequence random graph null models, and then summarize the concrete decisions that underlie the
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choices of different configuration model null models.

1.4 A brief history of applications of random graphs with fixed degree sequence

The practice of comparing an observation to a randomized null model has its origins in R. A. Fisher’s
foundational work on randomization for hypothesis testing [49]. Random graph null models extend
this practice to the space of graphs. They allow comparisons between properties of real-world
graphs and properties of graphs drawn at random from a graph space, ultimately allowing us to
quantify what is surprising and what is expected. However, as with any hypothesis test, the choice
of randomized null model directly affects the conclusions that can be drawn from the test. For this
reason, the classic but overly simplistic Erdős-Rényi random graph model, in which each possible
edge exists independently with probability p, or its near equivalent, in which a fixed number of
edges are placed between random pairs of nodes, are usually avoided. Compared to an Erdős-Rényi
null model, often any real-world network appears rich in structure by comparison. Instead, due to
the fact that many key properties of networks are strongly constrained by the distribution of vertex
degrees [18, 23, 30, 76, 110], it is far more common and appropriate to use as a null model a space
of graphs in which the degrees of all the vertices are fixed, but where the edges are otherwise placed
between vertices uniformly at random. This family of degree-preserving random graph models,
which we call configuration models throughout this paper, have been discovered independently and
used as null models in sociology, ecology, systems biology, combinatorics, statistics, and network
science, spanning over 80 years of applied research. We detail some of this rich history here.

Null models in sociology: chance sociograms, 1930s. In 1934 Jacob Moreno initiated the quan-
titative study of social networks through his influential book Who Shall Survive? [98]. Soon there-
after, in 1938, Moreno and Jennings published Statistics of Social Configurations, which introduced
statistics to social network analysis through the use of so-called chance sociograms, i.e. randomly
sampled adjacency matrices with fixed out-degrees (i.e. one fixed margin) [99]. Moreno and Jen-
nings argued that in order to establish the statistical significance of an analysis, one should compare
an observed social network with a network constructed through a chance experiment.1 Moreno and
Jennings demonstrated their procedure by studying a population of 26 children at the New York
State Training School for Girls in Hudson, NY. The children were surveyed for their three preferred
dining partners, creating a directed network of dining partner preferences. This observed network
was compared to a small set of seven manually randomized directed graphs restricted such that
each vertex had three outgoing edges and no multiedges (as in the observed network). Moreno and
Jennings contrasted their empirical graph with their small ensemble of graphs drawn from their
null model, and concluded that some observed network features were statistically significant while
others were not. While our focus in this work is on undirected (as opposed to directed) configura-
tion models, directed configuration models are discussed briefly in Section 3.2. Another significant
early use of a random graph null model in sociology is contained in Davis and Leinhardt’s work
testing Homans’ structural theory of social hierarchy from the 1950’s [63]. The study tested the
theory by studying social network subgraph frequencies [34], contrasting empirical frequencies with
those of an Erdős-Rényi random graph null model.

1Moreno and Jennings in fact frequently used the word “configurations” to describe their chance sociograms, several
decades before Bollobás’ work: “Study of the findings of sociometric tests showed that the resulting configurations,
in order to be compared with one another, were in need of some common reference base from which to measure the
deviations. It appeared that the most logical ground for establishing such a reference could be secured by ascertaining
the characteristics of typical configurations produced by chance balloting for a similar size population with a like
number of choices.” That said, the term configuration model is generally accepted to stem from Bollobás’ usage of
the word.
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Null models in ecology: species co-occurrence patterns, 1970s. A configuration model arose
independently in ecology when, in 1975, Jared Diamond published an analysis of bird species co-
occurrence on the islands of the Bismarck Archipelago and argued that, based on the patterns of
species presence and absence observed across the islands, the presence of some species precluded the
presence of others [41]. In 1979, Connor and Simberloff argued that the patterns themselves were
not sufficient evidence for such conclusions; they argued that a null model of randomly assigned
species to islands, in which the number of species per island and number of islands per species
are exactly preserved, should be used to assess the possibility that the empirical patterns are
the result of random chance [31]. In other words, Connor and Simberloff argued that observed
patterns should be compared against a null model, and in particular against a degree-preserving
configuration model, based on the observed presence/absence matrix. This methodological debate
has continued for over 40 years regarding both the correct null model and appropriate test statistics
for quantifying patterns of species presence/absence patterns (see [56] for a partial review).

Many contributions to the ongoing ecological discussion have been made in the years since.
In 1987, Wilson contributed a fixed marginal null model, which required that any matrix in the
ensemble have the same number of sites per species and species per site as the observed data,
corresponding directly to an undirected bipartite configuration model with fixed degrees [128].2

Wilson’s 1987 fixed marginal null model assembled the network via a stub matching procedure. He
found that often, the stub matching was unable to finish without creating a double edge, and so
he found better success rates by using a heuristic nearly equivalent to the Havel-Hakimi algorithm
[61, 60] (though Wilson states that he was unable to find any proof in the literature of his method).
This debate illustrates the disconnect between the ecology and mathematics literatures at the time.

Null models for tables: matrix counting and contingency tables, 1970s - 1990s. Contingency
tables are rectangular matrices with integer entries, representing a tabulation of entities along
two dimensions, e.g. the number of college graduates by major and institution. These tables,
when viewed as adjacency matrices, characterize an undirected bipartite multigraph. There are
straightforward analogous connections between the binary tables in ecology and the more general
(non-binary) contingency tables studied in statistics [27]. As in the network literature, contingency
table analyses often involve asking whether table properties are interesting compared to random
tables with the same row and column totals (the same marginal totals). An initial focus of this
literature was on enumerating the number of matrices with fixed marginals [52, 40]. Compared to
presence/absence matrices, where the entries are restricted to be either 0 or 1, analyzing adjacency
matrices corresponding to contingency tables is much more straightforward. Many direct sampling
procedures have been proposed [105], as well as procedures which exactly characterize the null
distribution of tables with fixed marginals and do not rely on sampling (see [125, 1] for reviews of
these methods).

Null models in systems biology: network motifs, 2000s. As the large-scale study of both genetic
regulatory networks and neuronal networks emerged in the early 2000s, lengthy debates were held
in the literature regarding the choices of (and technical means for sampling from) null models. The
debate on genetic regulatory networks began with a study by Milo et al. that found specific network
motifs (regulatory patterns) that were more frequent than expected in a configuration model null
model [95, 64]. Soon after that work was published, King issued a commentary that called attention
to choices in the design of the random graph sampling algorithms in these works, noting that they
did not sample uniformly from any graph spaces of reasonable interest [69]. A series of responses
by the original authors led to corrected algorithms for sampling from the stub-labeled spaces of

2A bipartite network is a network where edges only occur between two distinct sets of vertices. For example,
a plant-pollinator network contains both plants and insects as vertices and edges connecting pollinating insects to
plants, and no edges between pairs of insects or pairs of plants.

6



random graphs with fixed degree sequences [94, 65]. It is worth mentioning that other work on
configuration model null models of genetic regulatory networks, using correct sampling techniques,
was also being conducted in parallel to the above controversy [85].

A parallel debate in the literature on neuronal networks noted that the study of network motifs
in neuronal networks [95, 93] involving comparisons between observed structures and configuration
model random graphs was flawed at a deeper conceptual level, as it overlooked the role of spatial
structure in brains [5]. A series of published exchanges followed [92, 6], leading to the study of
specific spatial network null models for studying brain networks [115]. A similar adaptation, known
as distance modularity [82], has recently been introduced to the broader literature on network
community detection.

Other applications of configuration model random graph null models include studies of patterns
in the structure of the Internet [86], food webs [118], academic career trajectories [84], the dynamics
of social contagion [24], opinion dynamics [127], and economic network effects [120]. As we discuss
at length in Section 5.3, these null models also underlie all community detection methods based on
modularity maximization [103]. Across these diverse applications as well as the earlier literatures,
different applications have tended to employ slightly different null models, and these variations make
it very difficult to compare and contrast findings. In the next subsection we introduce a sequence
of concrete choices that formalize the decisions underlying the choice of a graph space, and hence a
configuration model. Consequences of these decisions are discussed at length in Section 5 through
a series of application vignettes.

1.5 Choosing a graph space

It is often impossible to unambiguously identify an empirical graph as coming from a particular
space of graphs; additional knowledge about the system that produced the graph is almost always
required. For example, as shown in Figure 1, simple graphs are a subset of the other graph spaces,
and thus a given simple graph may plausibly lie within any of the spaces, defined by the presence
or absence of self-loops, multiedges, and stub-labels. Therefore, in order to choose the appropriate
graph space for a null model, we introduce three questions about the graph and the system that
produced it.

Question 1: Are there self-loops in the graph? For example, a citation network consist-
ing of papers (as vertices) and their citation relationships (as edges) cannot have self-loops since a
single paper can never cite itself. On the other hand, a network of authors (as vertices) and their
citation relationships (as edges) may very well have self-loops since authors can, and do, cite their
own work. Note that an observed network of authors and their citations ought to reside within a
graph space allowing self-loops, even if a particular observed network has no self-loops. However,
in some cases, the method of data collection or recording itself may preclude self-loops—even if a
self-loop would be reasonable and interpretable—and in such cases, the relevant graph space should
not include self-loops.

Question 2: Are there multiedges in the graph? For example, a network of contacts
among barn swallows—analyzed in Section 5.2—in which each edge represents an observed inter-
action between a pair of birds, may have multiedges corresponding to multiple observations of
an interaction between the same pair of birds. On the other hand, a protein-protein interaction
network, in which two proteins are connected if they interact, cannot ever have a multiedge since
interactions in this context are conceptually boolean. Note that an observed network may reside
within a graph space allowing multiedges, even if a particular observed network has no multiedges.
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Figure 2: Choosing a graph space. Three questions must be answered in order to correctly
choose a configuration model graph space. Questions 1 and 2 address whether the graph has, or
could possibly have, self-loops and multiedges. If the space permits self-loops, multiedges, or both,
then Question 3 addresses whether the space is vertex-labeled or stub-labeled. These questions are
explained in detail in the text, Section 1.5.

However, as in Question 1, in some cases, the method of data collection or recording itself may
preclude multiedges—even if a multiedge would be reasonable and interpretable—and in such cases,
the relevant graph space should not include multiedges.

If the answers to the first two questions are both no, then the space of simple graphs is the
appropriate space. For the purposes of sampling from a simple configuration model, there is then
no meaningful difference between vertex- and stub-labeled spaces. One need only to ensure that
the graph sampling algorithm correctly samples from the space of simple graphs (a non-trivial
task further discussed in Section 2), due to the fact that any ensemble of vertex-labeled simple
graphs can easily be converted into an ensemble of stub-labeled simple graphs, and vice versa (see
Section 4 for further discussion). However, if the answer to either of the previous questions was
yes, indicating that the graph space contains self-loops, multiedges, or both, we pose a key third
question.

Question 3: Is the graph space stub-labeled or vertex-labeled? Consider a pair of
vertices connected by two edges. If swapping the edges so that they cross, as shown in Figure 2,
produces a distinct graph, the space is stub-labeled. Alternatively, if crossing the edges either
produces a graph with the same interpretation or produces a nonsensical graph, the space is vertex-
labeled.

There are a number of instances where a graph should be treated as vertex-labeled rather than
stub-labeled. For example, if the stubs are ordered (e.g. temporally) in a way that would make
swapping nonsensical, the space of graphs is vertex-labeled in spite of the fact that the stubs have
identities. Such a situation is commonly encountered when studying a telephone network (also
called a call detail record or CDR), where edges represent phone calls between individuals. If a
pair of individuals are recorded sharing two phone calls, it is meaningless to consider the crossed
graph that connects the stub associated with the first call and the first individual to the stub
associated with the second call and the second individual, as this swap represents a graph that
could never have been observed. See Section 5.2 for a concrete exploration of these differences. If,
on the other hand, the crossed edges and parallel edges as shown in Figure 2 are distinguishable and
plausible, the space of graphs should be stub-labeled. For example, in a network of intermarriages
between families or villages, an edge may correspond to an individual from one village marrying an
individual from another village. Here, different sets of marital pairings are meaningful and distinct,
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indicating that the graph space is stub-labeled.
One alternative approach to answering Question 3 involves considering the adjacency matrix

of the graph. For a vertex-labeled space, each graph corresponds to a single, unique adjacency
matrix, and each adjacency matrix corresponds to a single, unique vertex-labeled graph. On the
other hand, multiple stub-labeled graphs have identical adjacency matrices, and a valid adjacency
matrix corresponds to a stub-isomorphism class of stub-labeled graphs, as shown in Figure 1. Thus,
Question 3 may be answered by considering whether the adjacency matrices corresponding to the
graph space are unique and distinct objects, or whether repeated adjacency matrices are allowed
in the ensemble.

Answers to the first two questions in this section fully specify whether the graph space is simple,
loopy, multigraph, or loopy multigraph, and the answer to the third question determines whether
the space is stub-labeled or vertex-labeled. Since, for the purposes of sampling simple graphs or
analyzing network properties that are functions of the adjacency matrix, there is no practical dif-
ference stub-labeled and vertex-labeled spaces, we may often treat these as equivalent and focus on
the seven distinct and non-interchangeable spaces of graphs just described.

Organization. In Section 2 we describe space-specific Markov chain Monte Carlo algorithms
that provably generate uniform samples from the graph spaces discussed above. Alternative meth-
ods for sampling random graph null models are discussed in Section 3, and related questions about
counting the number of graphs in a given graph space are covered in Section 4. Section 5 employs
the samplers from Section 2, examining the questions and decisions outlined in this introduction
in the context of three separate applications of configuration model null models to study empirical
network structure. Readers whose primary interest is understanding the practical consequences of
configuration model choices are invited to skip Sections 2–4 and go directly to Section 5, though
the earlier sections establish the procedures employed therein.

2 Markov chain Monte Carlo Sampling

In this section we establish theoretical justifications for the use of Markov chain Monte Carlo
(MCMC) methods to uniformly sample from graph spaces with a fixed degree sequence, with specific
considerations for multiedges, self-loops, and vertex- or stub-labeling. In all methods presented in
this section, a Markov chain over the desired space of graphs is designed to have a stationary
distribution that is uniform over the entire space. We emphasize key differences between sampling
stub-labeled and vertex-labeled graph spaces, and furnish pseudocode for all the MCMC sampling
algorithms that we analyze.3

We begin by reviewing the double edge swap Markov chain method for sampling stub-labeled
loopy multigraphs, the easiest space for understanding the validity of the sampling procedure.
We outline the three sufficient conditions (regularity, aperiodicity, connectivity) that combine to
establish that random double edge swaps on stub-labeled loopy multigraphs have a unique and
uniform stationary distribution. The corresponding lemmas and theorems are then reported, with
references provided for known proofs, for stub-labeled simple graphs and stub-labeled multigraphs
(without loops).

Following the treatment of stub-labeled graph spaces, we then characterize Markov chains with
stationary distributions that are uniform over vertex-labeled graph spaces. These chains have not
previously been described, though they are closely related to existing methods for sampling the

3Implementations in Python are available at http://danlarremore.com/configurationmodels
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Figure 3: Double edge swaps. Double edge swaps alter a graph’s structure without changing the
degree sequence. Each pair of edges may be swapped in two different ways: (left) (u, v), (x, y)  
(u, x), (v, y) and (right) (u, v), (y, x) (u, y), (v, x).

space of contingency tables with fixed marginals [125], a problem from the statistics literature and
discussed in the introduction.

Sampling from spaces of loopy graphs (without multiedges) is not discussed in this section.
Such spaces lack certain key properties necessary for sampling methods involving double edge swap
routines to succeed. We elaborate on this matter in Section 3, where we also discuss other methods
for graph sampling, including alternative Markov chains as well as direct sampling techniques.

2.1 Edge swap Markov chains

First developed for bipartite simple graphs [14] and directed simple graphs [109], Markov chain
traversals of graph spaces are popular ways to sample from a variety of graph spaces [91, 6, 101].
If the Markov chain is constructed so that the stationary distribution of the chain is the uniform
distribution over the desired graph space, samples taken from this chain at sufficiently spaced
intervals (see the discussion of mixing times in Section 2.5) can be treated as independent uniform
samples from the space.

The fundamental gadget underlying the approach is a randomized way of generating new graphs
from existing graphs. Seemingly rediscovered multiple times [60, 111, 101, 16], the most popular
way to alter a graph without changing the degree sequence is the double edge swap, first suggested
by Petersen in 1891 [107], and depicted in Figure 2.1. Let {u1, ..., uku} denote the set of edge
stubs for a vertex u with degree ku. Across the literature, double edge swaps are also sometimes
referred to as degree-preserving rewirings [21, 122], checkerboard swaps4 [117, 56, 6], or alternating
rectangles [109].

Definition 4 (Double Edge Swap, stub-labeled). A stub-labeled double edge swap replaces a pair
of stub-labeled edges (ui, vj) and (xp, yq) with stub-labeled edges (ui, xp) and (vj , yq).

Explicitly labeling stubs emphasizes that the stub-labeled double edge swap differs from its
vertex-labeled version. That said, the notation of tracking stubs is largely unnecessary as the
exact labels of stubs can be inferred in context and standard network analyses (of assortativ-
ity, modularity, etc.) do not consider stub labels. For a pair of edges (u, v) and (x, y) there are
two possible swaps, as shown in Figure 2.1. As a shorthand, we denote these possible swaps as
(u, v), (x, y) (u, x), (v, y) and (u, v), (y, x) (u, y), (v, x).

In contrast to arbitrary edge rewires [20], double edge swaps preserve the degree distribution of
the graph. Notice, however, that some double edge swaps can create self-loops, e.g. (u, x), (u, y) 
(u, u), (x, y), as well as multiedges, e.g. when any produced edge replicates an existing edge. The

4Checkerboard swaps are frequently implemented by selecting 4 vertices at random [6] while double edge swaps
choose 2 edges at random. We focus on selecting edges at random as it is more efficient on sparse graphs.
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way such swaps are handled has important consequences for the stationary distribution of the
Markov chain.

Many of the properties of the double edge swap can be understood as graphical properties of
the graph of graphs, the state diagram of the Markov chain in the space of graphs. We construct
the graph of graphs associated with a degree sequence by letting each graph with the specified
degree sequence be a vertex and connecting two vertices (i.e. graphs) with an edge if one double
edge swap can transform one graph into the other. We use G(k) or G to generically denote a graph
of graphs with a specified degree sequence k = {ki}i∈V . Throughout the text we only consider
graph spaces with a given degree sequence, and as a consequence we almost always suppress the
degree sequence k from the notation, denoting a graph of graphs as simply G. With a few simple
yet crucial modifications, sampling graphs using a random walk on G creates a Markov chain with
a stationary distribution that is uniform over a desired graph space with a given degree sequence.

The statements in the following sections can be stated either in the language of Markov chains
or in the language of graph properties of G. To prove that samples from the Markov chain asymp-
totically obey a uniform distribution over a space of graphs, we show that by correctly specifying
state transition probabilities, the chain satisfies three conditions:

(i) that the transition matrix of the chain is doubly stochastic (G is regular5),

(ii) that the chain is irreducible (equivalently, G is strongly connected6),

(iii) and that the chain is aperiodic (G is aperiodic7).

The regularity of G implies that the stationary distribution is uniform. A Markov chain that is
both irreducible and aperiodic (G is connected and aperiodic) is said to be ergodic. This property
guarantees that there is an unique stationary distribution that fully describes the long term behavior
of the chain. Aperiodicity of G is often immediate and is particularly important if one wishes
to subsample a Markov chain, a common strategy where only an infrequent set of samples (less
sequentially correlated than the full set of samples) is retained. Once regularity and aperiodicity are
established for loopy multigraphs, we show that with the appropriate modifications to transition
probabilities, these properties also hold for the graph of graphs associated with any subspace of
loopy multigraphs with a fixed degree sequence, whether vertex-labeled or stub-labeled.that ensure
regularity and aperiodicity are true for any subspace of loopy multigraphs with a fixed degree
sequence, whether vertex or stub-labeled. In contrast, connectivity of G (the irreducibility of the
Markov chain) is not always guaranteed, and requires a non-trivial proof for many graph spaces,
but is critical to ensuring that all possible graphs are sampled.

2.2 Markov chains on stub-labeled loopy multigraphs

We begin by considering the simplest graph space for constructing and analyzing double edge swaps,
Gstubl,m , where stub denotes stub-labeled, m denotes an allowance for multiedges, and l denotes an

allowance for loops. Further, let M = 1
2

∑
i∈V ki denote the total number of edges in any graph in

the graph space.

Definition 5 (Graph of loopy multigraphs, stub-labeled). For some predefined degree sequence
k = {ki}, the graph of stub-labeled loopy multigraphs Gstubl,m = {Vstubl,m , Estubl,m } is a directed graph,

5A weighted directed graph is regular if every vertex has the same total out-degree weight and total in-degree
weight. For unweighted graphs, regularity implies all vertices have equal degree.

6A graph is strongly connected if every vertex can be reached from any other vertex.
7A graph is aperiodic if the greatest common divisor of the lengths of all cycles in the graph is one.
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where the vertex set Vstubl,m is the set of all stub-labeled loopy multigraphs with degree sequence k

and there is a directed edge (G1 → G2) ∈ Estubl,m iff there exists a stub-labeled double edge swap that

transforms G1 ∈ Vstubl,m into G2 ∈ Vstubl,m .

For the space of loopy multigraphs, all edges in the graph of graphs Gstubl,m are reciprocated: any
double edge swap of distinct edges leads to a graph in the space and the double edge swap on
(u, v), (x, y)  (u, x), (v, y) can be undone by the “reciprocal” double edge swap (u, x), (v, y)  
(u, v), (x, y). Note however, that double edge swaps in other spaces are not necessarily reciprocated
by the same number of swaps.

We now show the three necessary conditions: that Gstubl,m is regular, connected and aperiodic.

Lemma 1. Gstubl,m is a regular graph.

Proof. For each graph Gj ∈ Vstubl,m there are
(
M
2

)
pairs of edges and M(M − 1) possible double

edge swaps that each correspond to a unique graph-graph transition edge into and out of Gj . We
immediately see that Gstubl,m is M(M − 1) regular, where each vertex has M(M − 1) incoming and
outgoing edges.

Next, the following lemma, first proved by [43] and largely provided by Newman in [101], gives
connectivity for stub-labeled loopy multigraphs with any specified degree sequence.

Lemma 2. Gstubl,m is a strongly connected graph.

Proof. First, we note that it is possible to permute stub labels using double edge swaps: for a graph
Gi ∈ Vstubl,m with vertex u with degree at least 2 (vertices with degree 1 have only a single possible
stub labeling), a double edge swap (ui, ak), (b`, uj) (ui, b`), (uj , ak) swaps two labeled stubs of u.
Since double edge swaps allow for pairwise swaps of stubs, all possible stub-labelings within a given
stub-isomorphism class of graphs are connected within Gstubl,m (or any other stub-labeled space we
discuss). The remainder of the proof therefore only requires showing that every stub-isomorphism
class is connected to every other.

To complete the proof, we drop stub labels and will show how to construct a path from any
G1 = (V1, E1) ∈ Gstubl,m to any non-isomorphic G2 = (V2, E2) ∈ Gstubl,m such that each step in the path
creates and does not eliminate, edges in E2. Let ε1,2 = |E∗1 \ E∗2 |, where the asterisks denote that
the stub labels have been dropped from the edge sets. Since ε1,2 = 0 if and only if G1 is isomorphic
to G2, it suffices to show that for any non-isomorphic graphs G1 and G2 there exists a neighbor of
G1, G3, with ε3,2 ≤ ε1,2 − 1.

Since ε1,2 > 0 there exists (u, v) ∈ E∗2 \ E∗1 . However, since the degrees of u and v are, respec-
tively, the same in both G1 and G2, there must be edges (u, x) and (v, y) in E∗1 \ E∗2 . Performing
the double edge swap (u, x), (v, y) (u, v), (x, y) creates a graph G3 with edge (u, v) and thus with
ε3,2 ≤ ε1,2 − 1. Since ε1,2 is finite, a repeated application of this argument eventually produces a
path, and therefore Gstubl,m is connected.

Lemma 3. Gstubl,m is an aperiodic graph.

Proof. If G ∈ Vstubl,m has only a single edge, Gstubl,m is trivially aperiodic since |Vstubl,m | = 1. If G has

two edges (u, v) and (x, y) then Gstubl,m contains both a cycle of length 2 (because all transitions are
reciprocated) and also a cycle of length 3: (u, v), (x, y)  (u, x), (v, y) followed by (u, x), (y, v)  
(u, y), (x, v) and (u, y), (v, x)  (u, v), (x, y). The greatest common divisor of the cycle lengths 2
and 3 is 1, and therefore Gstubl,m is aperiodic.
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The following theorem assembles the above properties to establish the desired uniformity of the
MCMC sampler.

Theorem 1. A random walk on Gstubl,m is ergodic and has a uniform stationary distribution.

Proof. Since Gstubl,m is strongly connected (Lemma 2) and aperiodic (Lemma 3) random walks on

Gstubl,m are ergodic. Since Gstubl,m is also regular (Lemma 1) it has the unique stationary distribution

~1
|Vstub

l,m |
.

Thus, we conclude that a Markov chain defined as a random walk on Gstubl,m in fact samples from
the uniform distribution of stub-labeled loopy multigraphs, as desired. A similar MCMC approach
can sample the other graph spaces under analysis here, though the proofs are slightly more involved.

2.3 Markov chains on other stub-labeled graph spaces

We now show that with some care it is possible to construct Markov chains defined over the
other stub-labeled graph spaces we have discussed such that their stationary distributions are also
uniform. We establish this uniformity by deriving state transitions that ensure the chains are
regular, connected, and aperiodic. Our results here apply to spaces of either simple graphs or
multigraphs with a given degree sequence. The space of loopy graphs (without multiedges) with a
given degree sequence is not connected by double edge swaps for all degree sequences and so we do
not discuss it here; see Section 3 for more details on that space.

Definition 6 (Graph of multigraphs and graph of simple graphs, stub-labeled). For a degree
sequence k = {ki}, the graph of stub-labeled simple graphs Gstubs = {Vstubs , Estubs } is a directed graph

of simple graphs. For distinct Gi and Gj in Vstubs , a directed edge (Gi → Gj) is in Estubs if and only
if there exists a double edge swap that transforms Gi into Gj; for any double edge swap that would
transform Gi to a graph Gj that is not in Vstubs , there instead exists a directed self-loop Gi → Gi.
The graph of stub-labeled multigraphs Gstubm is defined similarly for multigraphs, with subscripts of
m where appropriate.

A critical difference between the definitions of Gstubs and Gstubm compared with the earlier defi-
nition of Gstubl,m is the inclusion of directed self-loops Gi → Gi for each swap that would leave the
space. This modification essentially employs the “swap and hold” [6] (also called “trial swap” [91])
method to ensure the graph of graphs is regular.8

Indeed, we will now show that Gstubs and Gstubm are both regular and both aperiodic. As a result,
extending Theorem 1 only requires space-specific proofs of connectivity, which we provide.

Lemma 4. Gstubs and Gstubm are regular graphs.

Proof. As in Lemma 1, a graph Gi in either space has
(
M
2

)
pairs of edges, which correspond with

M(M − 1) possible double edge swaps. Notice that any possible swap from Gi to another graph
Gj in the space is reciprocated, while any swap that would go to a graph outside of the space
corresponds with an incoming self-loop as constructed in the definition of Gstubs and Gstubm . Thus,
any graph Gi in either of these two spaces has in-degree and out-degree M(M − 1).

8In spaces featuring graphs without self-loops, each graph will have exactly
∑

i∈V
(
ki
2

)
swaps that could create

self-loops; thus regularity is preserved if swaps that create self-loops either resample the current graph or are all
ignored as possible swaps. There is a computational benefit from ignoring self-loop-creating edge swaps (as opposed
to resampling the current graph), but it is likely small for most degree sequences.
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Lemma 5. Gstubs and Gstubm are aperiodic graphs.

Proof. If there are any self-loops in the graph of graphs (where self-loops correspond to rejected
swaps) and the graph of graphs is also connected then it is aperiodic. Meanwhile, if the graph of
graphs does not have any rejected swaps (e.g. when maxi∈V ki < 2), then it has the exact same
structure as Gstubl,m and is thus aperiodic by Lemma 3.

Before proving connectivity of the graph of graphs in the next lemma, we note that the proofs of
Lemmas 4 and 5 are easily and directly applied to any subspace of stub-labeled loopy multigraphs
with fixed degree sequence (e.g., subspaces of graphs consisting of a single connected component, or
subspaces with a constrained number of triangle motifs). However, despite the fact that regularity
and aperiodicity are easy to establish for the graphs of graphs corresponding to such subspaces,
proofs of their connectivity, if they are possible at all, require more complicated and subspace-
specific constructions, and are considerably more involved. In fact, as noted above, for loopy
graphs (without multiedges) connectivity does not hold for all degree sequences; see Section 3.
Below we establish the connectivity of Gstubm and Gstubs for any given degree sequence.

Lemma 6. Gstubm is a strongly connected graph.

Proof. The proof that Gstubl,m is connected (Lemma 2) can be adjusted very slightly for the absence
of self-loops. In the proof of Lemma 2, if the two edges being considered for a double edge swap
share an endpoint vertex then rewiring (u, x) and (v, x) creates the desired edge (u, v) but also
the self-loop (x, x), and thus is not a valid swap as it would not stay within the space of loop-free
multigraphs. But since x has two edges contained in E1 \E2 and x has the same degree in both the
graph G2 and G1, there must exist at least one edge (x, z) ∈ E2 \E1, where z 6= u, z 6= v. Rewiring
(u, v) and (x, z) in G2 produces a neighboring graph G3 with edge (u, x) and thus ε1,3 ≤ ε1,2−1.

Lemma 7. Gstubs is a strongly connected graph.

We do not provide a proof here as this result has been proven independently many times: in
1962 [13], stated without proof in 1973 [42], proved twice in the same monograph but by different
authors in 1981 [44, 122], in 1994 [16], and most recently in 2010 [129].

Theorem 2. A random walk on Gstubm or Gstubs is ergodic and has a uniform stationary distribution.

Proof. Being regular (by Lemma 4), connected (by Lemmas 6 and 7), and aperiodic (by Lemma 5)
graphs, random walks on Gstubm and Gstubs are ergodic and have the unique stationary distributions
~1

|Vstub
m | and ~1

|Vstub
s | respectively.

We conclude this subsection on sampling stub-labeled graph spaces with pseudocode for a
uniform sampling algorithm. The important distinction between this algorithm and most incorrect
algorithms (see Section 3.1 for a further discussion of sampling algorithms known to be non-uniform)
is that incorrect algorithms have a tendency to overlook the resampling step.9

9Implementations in Python are available at http://danlarremore.com/configurationmodels
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Algorithm 1 stub-labeled MCMC

Require: initial graph G0, graph space (simple, multigraph, or loopy multigraph)
Ensure: sequence of graphs Gi

for i < number of graphs to sample do
choose two edges at random
randomly choose one of the two possible swaps
if edge swap would leave graph space then

resample current graph: Gi ← Gi−1
else

swap the chosen edges, producing Gi
end if

end for

2.4 Markov chains on vertex-labeled spaces

For any analysis of simple graph null models, sampling from the vertex-labeled space is equiva-
lent to sampling from the stub-labeled space: the two distributions are proportional within stub-
isomorphism classes (see Section 4 for details on this conversion). For non-simple graphs, the
vertex-labeled and stub-labeled spaces are no longer cleanly proportional, but we show it is pos-
sible to adapt the double edge swap MCMC procedures to uniformly sample vertex-labeled graph
spaces. We begin with the following definition, closely related to the double edge swap defined for
stub-labeled spaces.

Definition 7 (Double edge swap, vertex-labeled). A vertex-labeled double edge swap replaces pair
of edges (u, v) and (x, y) with edges (u, x) and (v, y).

As in the stub-labeled setting, the vertex-labeled double edge swap leads to a Markov chain on
the graph of vertex-labeled graphs, which we generically denote with Gvert (in contrast with Gstub).
In any graph space, stub-labeled double edge swaps map onto vertex-labeled double edge swaps
simply by ignoring the stub-labeling: a vertex-labeled graph of graphs Gvert can be created by
treating stub-isomorphic graphs within Gstub as a single graph in Gvert. This construction of Gvert
gives definitions for Gvertl,m , Gvertm , and Gverts as agglomerated, weighted, and directed, versions of the

stub-labeled graphs of graphs Gstubl,m , Gstubm , and Gstubs , respectively. As a result, they immediately
inherit the strong connectivity and aperiodicity properties of their respective stub-labeled spaces,
as follows.

Lemma 8. Gvertl,m , Gvertm , and Gverts are strongly connected.

Proof. Each of the vertex-labeled graph of graphs can be created by repeatedly combining ver-
tices from the analogous stub-labeled graph of graphs until all stub-permutations of the same
vertex-labeled graph have been combined together. Since iteratively combining vertices preserves
connectivity, Gvertl,m , Gvertm , and Gverts inherit strong connectivity from Gstubl,m , Gvertm , and Gstubs .

Lemma 9. Gverts , Gvertm , and Gvertl,m are aperiodic graphs.

Proof. For any fixed degree sequence, the proofs of Lemmas 3 and 5 either apply directly, and
thereby establish aperiodicity, or the proofs of Lemmas 3 and 5 do not apply because they necessi-
tated double edge swaps between two graphs in the same stub-isomorphism class. However, even in
this case, the double edge swap between graphs in the same stub-isomorphism class implies there
is a self-loop in the graph of graphs, and the graph of graphs is thus aperiodic.
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a b

Figure 4: Transition probabilities for uniform sampling. The graph of vertex-labeled loopy
multigraphs Gvertl,m ({2, 1, 1}) contains two possible graphs G1 and G2. (a) A random walk on this

graph of graphs has Pr(G1 → G2) = 1 but Pr(G2 → G1) = 1
2 and therefore its corresponding

Markov chain will not have a uniform stationary distribution since the graph of graphs is not regular.
(b) If transition probabilities are modified such that each graph has equal in-degree weight and out-
degree weight (i.e. transition mass), and these weights are equal to each other, the corresponding
Markov chain will have a uniform stationary distribution and will therefore sample each graph with
equal probability.

While connectivity and aperiodicity of vertex-labeled graphs of graphs follow directly from the
properties of the stub-labeled spaces, regularity is more complicated. The analysis of stub-labeled
graphs of graphs relied on the fact that each swap had a unique reciprocal swap. This reciprocity
is not present in vertex-labeled graphs of graphs. For example, consider Gvertl,m on a degree sequence

as simple as {2, 1, 1}. As shown in Figure 2.4(a), the graph of graphs Gvertl,m ({2, 1, 1}) contains
only two possible graphs: G1 (with self-loop (x, x) and edge (u, v)) and G2 (with two adjacent
edges (u, x) and (v, x)). Every swap originating in G1 creates G2 (both swaps of (x, x) and (u, v)
create (u, x) and (v, x)), but only one of the two possible swaps originating in G2 reaches G1

((u, x), (v, x) (u, v), (x, x) corresponds to G2 → G1 while (u, x), (x, v) (u, x), (x, v) corresponds
to G2 → G2). If unaltered, a random walk on Gvertl,m ({2, 1, 1}) has the non-uniform stationary

distribution (Pr(G1) = 1
3 , P r(G2) = 2

3). Restoring the regularity of Gvertl,m ({2, 1, 1}), as in Figure

2.4(b), is achieved by rejecting the swap G1 → G2 with probability 1
2 and instead looping back to

G1. Figure 2.4 shows a difficulty arising from self-loops; vertex-labeled swaps of multiedges suffer
a similar problem with a similar resolution. As we will show, an extra layer of rejection sampling
suffices to restore the uniform stationary distribution for any vertex-labeled graph.

There are two natural ways to implement rejection sampling for vertex-labeled graphs, which
we provide in Algorithms 2 and 3. The simpler of the two approaches, Algorithm 2, employs a
rejection sampling that gives all swaps Gi → Gj , i 6= j, probability 1

M(M−1) . The following lemma
demonstrates that Algorithm 2 achieves this uniform probability on all possible swaps.

Lemma 10. A Markov chain defined by a random walk on Gvertl,m , Gvertm , or Gverts with transition
probabilities given by Algorithm 2 has a doubly stochastic transition matrix.

Proof. Algorithm 2 randomly selects two edges e1 and e2 and also selects one of the two possible
ways to swap e1 and e2. The goal is to make all swaps equally probable. If e1 or e2 is a self-loop
then the potential swap is rejected with probability 1

2 . If not rejected, then if both edges connect
the same vertices (i.e. e1 = e2), the swap is made with probability 2

we1 (we1−1)
, and otherwise the

swap is made with probability 1
we1we2

. If no swap is made the current graph is resampled by the

chain. To see that these rejection probabilities give all swaps an equal overall probability of success,
consider the following table of double edge swaps cases, which presents the form of each possible
swap, the number of such possible swaps, and the acceptance probabilities used by Algorithm 2.
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swaps on 4 vertices swaps on 3 vertices

swaps on 2 vertices

swaps on 1 vertex

Figure 5: Possible double edge swaps for Algorithms 2 and 3. Algorithms 2 and 3 can be
understood by examining the probabilities of each double edge swap that is possible for a given
graph. The diagram’s labeled transitions give the number of possible double edge swaps that
transition between each graph, organized by the number of unique vertices involved, where wij are
the edge multiplicities in the originating graph. Uniform sampling of a graph space can be achieved
by down-sampling transitions to be equal in both directions.

e1, e2  e3, e4 # possible Pr(perform swap)
stub-labeled swaps if e1 or e2 is a self-loop if e1 = e2 if e1 6= e2

(u, v), (x, y) (u, x), (v, y) wuvwxy – – 1/(wuvwxy)
(u, x), (x, v) (u, v), (x, x) wuxwxv – – 1/(wuxwxv)
(x, x), (u, v) (u, x), (x, v) 2wxxwuv 1/2 – 1/(wxxwuv)
(u, u), (x, x) (u, x), (u, x) 2wuuwxx 1/2 – 1/(wuuwxx)
(u, x), (u, x) (u, u), (x, x)

(
wux

2

)
– 1/

(
wux

2

)
–

On a pair of edges containing a self-loop, both swaps result in the same edges post-swap, giving
a factor of 2 to the number of possible swaps of that type. Notice also that multiplying the factors
in a given row results in the same overall transition mass, 1, for each row. Thus, every swap is
equally likely with probability 1

M(M−1) and the transition matrix is doubly stochastic.

As a direct result of Lemma 10, the sum of edge weights directed to any graph in G with these
transition probabilities equals one. Algorithm 2 can be understood as changing general double edge
swap stub-labeled spaces into double edge swap vertex-labeled spaces for any subspace of loopy
multigraphs with a fixed degree sequence. Assembling Lemmas 8, 9 and 10 gives the following
theorem.

Theorem 3. A Markov chain on Gvertl,m , Gvertm , or Gverts with transition probabilities given by Algo-
rithm 2 is ergodic and has a uniform stationary distribution.

Proof. Lemma 10 gives that ~1
|Vl,m| ,

~1
|Vm| , and ~1

|Vs| are the respective stationary distributions; strong

connectivity (Lemma 8) and aperiodicity (Lemma 9) give that the Markov chain is ergodic.

We conclude this subsection on sampling vertex-labeled graph spaces with pseudocode for the
uniform sampling algorithm, Algorithm 2, used in the above proofs. A more efficient but more
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Algorithm 2 vertex-labeled MCMC

Require: initial graph G0, graph space (simple, multigraph, or loopy multigraph)
Ensure: sequence of graphs Gi

for i < 0 number of graphs to sample do
choose two distinct edges e1 and e2 uniformly at random
randomly choose one of the two possible swaps
if edge swap would leave the graph space then

resample current graph: Gi ← Gi−1
else
P ← 1
if e1 and e2 are copies of the same multi-edge then
P ← 2P

we1 (we2−1)
else
P ← P

we1we2

end if
if e1 or e2 are a self-loop then
P ← 1

2P
end if
if Unif(0, 1) < P then

swap chosen edges to produce Gi
else

resample current graph: Gi ← Gi−1
end if

end if
end for

complicated approach is given in Algorithm 3 in an appendix. This more efficient algorithm achieves
regularity by computing both the forward and reverse probabilities of any given double edge edge
swap according to the cases in Figure 2.4. It then down-samples (rejects) the higher probability
swap to have the same probability as the lower probability swap. For example, in Algorithm 3 a
double edge swap of the edges (u, v) and (x, y) (on distinct vertices u, v, x, y) to form (u, y) and
(x, v) is accepted with probability min(1,

wuywxv

wuvwxy
), whereas Algorithm 2 accepts this swap with

probability 1
wuvwxy

. While Algorithm 3 requires calculating these forward and reverse probabilities
for each swap, we observe empirically that it mixes substantially faster on degree sequences with
higher degrees.

2.5 Mixing times

As discussed in the previous section, a MCMC sampler based on double edge swaps will eventually
sample from Gstubl,m , Gstubm , Gstubs , Gvertl,m , Gvertm and Gverts uniformly. A natural question, and one of
practical importance, is how many swaps it takes before a sample from the Markov chain is negligibly
correlated with the starting graph. This question is usually studied in the language of mixing time,
the number of steps in a Markov chain required to produce a sample a prescribed distance from
the stationary distribution of the chain [79]. A Markov chain on a graph space is said to be rapidly
mixing if the mixing time can be expressed as a polynomial in the number of vertices. Empirical
investigations tend to support the notion that the mixing times of edge swap MCMC samplers tend
to be reasonable and not prohibitive [94, 101]. Theoretical investigations have identified various
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conditions on the degree sequence k which rigorously support these observations [32, 58]. However,
the case of general k is yet to be fully understood. Ultimately, when considering the potential effect
of mixing times, it is important to gauge the risk of a slow mixing time (and thus a biased sampler),
against errors associated with uniformly sampling from an inappropriate space, as is often the case
with stub-matching.

As first demonstrated in [113], the most common argument to derive mixing time bounds
uses a multicommodity flow argument, and the most common focus has been on regular simple
graphs and regular directed graphs. Thus far, rapid mixing has been proved for double edge swap
MCMC methods on simple graphs with regular degree sequences [32], regular directed graphs [57],
and half-regular and almost half-regular bipartite graphs [90, 47]. Beyond regular graphs, there
are bounds based on the minimum and maximum degrees, which give polynomial mixing in time
O(k14maxM

9(M log(M)−log ε)) if 3 ≤ kmax ≤ 1
4

√
M [58].A loosely related set of investigations shows

that while the shortest paths in Gverts can be approximated to within a factor of 7/4, finding the
shortest path is NP-hard [16, 46].

Mixing time results for non-simple graphs are, by comparison, poorly developed. While stub-
and vertex-labeled spaces have different transition probabilities and different structures, recall that
vertex-labeled graphs of graphs can be created by repeatedly merging vertices in the corresponding
stub-labeled graph of graphs. As a result, the total diameter of a vertex-labeled graph of graphs
Gvert is necessarily always smaller than the corresponding stub-labeled graph of graphs Gstub, but
the additional layer of rejection sampling in vertex-labeled MCMC chains may lead mixing times
to be large for degree sequences where multiedges and self-loops are more common. Determining
the conditions, if any exist, in which the smaller diameter of vertex-labeled spaces corresponds to
faster mixing times is an interesting open question.

3 Other sampling methods and other null models

Edge swap Markov chains are not the only means of sampling from configuration models, nor are
configuration models the most appropriate random graph null model for all analyses. In this section
we briefly review other techniques for sampling configuration models, as well as other random graph
null models that have been usefully employed in other contexts. Very little is known about the
adaptation of the methods in this section to vertex-labeled graph spaces, but such adaptations are
discussed when known.

3.1 Direct sampling and other sampling methods

Edge swap Markov chain methods work by randomly manipulating an initial graph to produce a new
graph, with the idea being that the stationary distribution of this random process is designed to be
uniform over the graph space. In contrast, “direct” methods sample the same space by constructing
one graph at a time without any dependence on previous samples. Sampling uniformly from graph
spaces is closely related to enumerating the number of graphs in a given space, a task commonly
known as graph enumeration [10] (see Section 4 for more on these connections).

The stub-matching procedure pioneered by Bollobás [19], also called the pairing model and dis-
cussed in Section 1.3, is an example of a direct method for sampling the space of loopy multigraphs
with a given degree sequence. Stub matching begins with a prescribed number of half edges or stubs
attached to each vertex in an otherwise empty graph and then randomly joins pairs of unmatched
stubs to form a graph. The graph created by this procedure is a uniform sample from the space of
stub-labeled loopy multigraphs.
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For more restricted graph spaces, i.e. those that omit self-loops and/or multiedges, stub match-
ing must be adapted. Early work on directly sampling simple graphs with specified degree se-
qeuences focused on regular graphs [89], with later results giving approximately uniform sampling
for more general degree sequences [10]. The simplest adaptation of stub matching for restricted
graph spaces, e.g. for simple graphs, is to use rejection sampling: complete a stub-matching proce-
dure, and if the resulting graph is not in the graph space, reject the sample. This process is repeated
until a simple an admissible graph is returned. Using rejection sampling, an unrejected graph is a
proper uniform sample from the graph space. Unfortunately, rejection sampling for simple graphs
can take exponential time—exponential in the size of the graph—for some degree sequences with
degrees that increase in the size of the graph. In contrast to rejection sampling, a more efficient
approach is to apply sequential importance sampling [17], where edges are possibly rejected dur-
ing the construction process (rather than waiting until the end to reject the output graph). The
basic idea behind sequential importance sampling is to guide the matching process by rejecting
edges that push the stub-matching process toward overrepresented simple graphs. Interestingly, a
sequential importance sampling technique whereby each edge is rejected with a probability

kikj
4M is

sufficient to approximately sample uniformly for graph spaces where the max degree kmax obeys
kmax = O(M1/4−τ ) for some τ > 0 [10], but this asymptotic statement does not furnish any clear
guarantees for an empirical graph of a fixed size.

Other modifications to stub matching exist, usually posed in the context of creating simple
graphs, and each with a mix of desirable and undesirable properties. One approach freely matches
stubs, which may create a self-loop or multiedge, but such an edge is immediately removed via a
double edge swap [78]. In contrast to rejection or importance sampling, this loop and multiedge
rewiring approach ensures that a graph from the desired space is produced by each full run of the
algorithm, which may dramatically improve the rate at which samples are produced. However, it
unfortunately biases the sampling in ways that are not yet described or understood. Other methods
knowingly generate biased simple graphs via constrained stub-matching, and each sample’s relative
probability is calculated in order to perform a posteriori bias corrections that reweight the samples
to guarantee uniformity [37]. Again, there do not yet exist bounds on the convergence of such
methods to the uniform distribution desired. More exotic direct sampling procedures include the
so-called Go with the Winners algorithm [3] applied to graph generation [94]. This method employs
stub-matching on a collection of graphs in parallel, replacing failed attempts to create simple graphs
with cloned copies of non-failed attempts, eventually producing a set of admissible graphs. Finally,
it is possible to define an alternative Markov chain based on perfect matchings to uniformly sample
regular simple graphs [66]; this method can be adapted to non-regular degree sequences but without
efficiency guarantees.

Constructive procedures for determining whether a given degree sequence is graphical (that there
exists a simple graph with the given degree sequence [53]), notably the Havel-Hakimi algorithm
[61, 59], are highly non-uniform direct sampling procedures. The Havel-Hakimi algorithm is useful
as a starting point for MCMC methods in contexts where one starts with a degree sequence but
no corresponding simple graph—Havel-Hakimi is guaranteed to efficiently produce a simple graph,
which one can then use as the initial state of a MCMC method.

3.2 Markov chains for sampling other spaces

Markov chains other than “double edge swap” chains can be used to traverse other graph spaces
with specified degree sequences, notably spaces of connected graphs, spaces of loopy graphs (without
multiedges), and spaces of directed graphs.
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reversing a directed triangle 3 edge swapconnectivity preserving edge swapa b c

Figure 6: Other varieties of edge swaps. In addition to the double-edge swap, a number of
other edge swaps have been used to construct MCMC samplers of specific spaces. These auxiliary
swap routines are necessary to ensure the underlying graph of graphs associated with the chain is
connected. (a) Markov chains on directed graph spaces require an additional swap that reverses
a directed triangle. (b) The k-Flipper swap for k = 3, swapping the endpoints of length-3 paths,
preserves connectivity spaces of connected graphs. (c) Swaps involving more than 2 edges enable
sampling graph spaces with more complicated constraints.

Loopy graphs (without multiedges). Sampling methods based on the double edge swap Markov
chain discussed in Section 2 are unfortunately not sufficient for sampling uniformly from the space
of loopy graphs with a specified degree sequence. The main challenge to sampling is that for certain
degree sequences the double edge swap Markov chain does not connect the entire space of loopy
graphs. For example, the degree sequence {2, 2, 2} in the space of loopy graphs admits both a
triangle graph and a graph consisting of 3 self-loops, but on both graphs it is easy to see that any
proposed double edge swaps would create a multiedge. Thus the two graphs in the space are not
connected by any sequence of double edge swaps that remain in the space of loopy graphs, and this
lack of connectivity applies to both the stub- and vertex-labeled spaces. Characterizing the degree
sequences for which the space of loopy graphs is connected is a surprisingly complicated task, as
addressed in recent work [104]. That work notes that if the Markov chain is modified to occasionally
employ a three-edge triangle-loop swap (the swap (u, u), (v, v), (w,w) (u, v), (v, w), (w, u) and the
reciprocal swap (u, v), (v, w), (w, u) (u, u), (v, v), (w,w)), a basic modification of Algorithm 1 and
Algorithm 2 suffices to sample uniformly from these spaces; see [104] for more details.

Connected graphs. Many real-world graphs are connected, either by design (e.g. the architecture
of the Internet [86]) or by virtue of how they were measured (using snowball sampling [55] or other
traversal techniques). It is known that double edge swaps can rewire any connected graph to any
other with the same degree sequence [122, 16]. Therefore, if one correctly rejects swaps that would
leave the space of connected graphs then Theorems 2 and 3 would apply. Thus, we can conclude that
there exists a double edge swap MCMC sampler of connected graphs whose stationary distribution
is the uniform distribution over connected graphs with a prescribed degree sequence. However,
there is no computationally expedient way to certify connectivity10 of the resulting graph for a
proposed swap. A useful heuristic solution is to only check connectivity after completing a longer
sequence of swaps [54, 126].

A more expedient approach for sampling connected simple graphs with a given degree sequence
follows from a Markov chain defined by a different swap: a k-Flipper Markov chain in a given
graph space selects length-k paths uniformly at random (typically employed with k = 3, see Figure
6(b)) and swaps the endpoints of the path [83]. This swap clearly results in a graph that has the
same connectivity before and after the swap. What is less clear is that a chain utilizing this swap
does not necessarily explore the full space of connected graphs with a specified degree sequence; a
chain occasionally utilizing a small additional swap (dubbed the bowtie swap) is required to ensure

10Checking connectivity can be done in O(
√
|V |) time with each change to the graph [45].

21



that the graph of graphs is connected, and thus samples the entire space of connected graphs [48].
This chain has a uniform stationary distribution, and some mixing time results are known under
mild assumptions [48]. Of note, k-Flipper techniques cannot be extended (in any obvious way) to
graph spaces that allow self-loops as a k-Flipper swap is unable to ever create a self-loop. Studies
of the space of connected graphs have been focused on simple graphs, and it is an open question
to understand what role the choice of stub-labeling vs. vertex-labeling has in studies of connected
multigraphs.

Directed graphs. Sampling directed graphs using edge swap Markov chains introduces new
subtleties that are not present when sampling undirected graphs. Most importantly, a directed
graph has two separate degree sequences, the in-degree sequence and out-degree sequence, and
one may wish to fix either or both of these. The two sequences are coupled because the sum of
the graph’s in-degree must equal the sum of its out-degrees. Furthermore, in order for a graph
of directed graphs to be connected under edge swaps, a directed triangle reversal swap is needed,
Figure 6(a), which reverses the direction of a three-edge cycle [70, 109, 73]. In this work we do
not delve into contrasting stub-labeling and vertex-labeling in uniform distributions over directed
graphs with fixed degree sequences, leaving it as future work.

3.3 Other distributions over graph spaces

Lastly, we note other varieties of distributions over graph spaces that are sometimes employed as
null models. Most of these models depart from configuration models in that the constraint to an
exact degree sequence k = {ki}i∈V is relaxed. Often these models exhibit specified well-studied
degree sequences in expectation.

The random graph model most closely related to configuration models is the Chung-Lu model
[28]. Rather than being specified by a fixed degree sequence, the Chung-Lu model is parametrized
by a sequence of expected degrees, and for most well-behaved degree sequences the model correctly
samples graphs with these expected degrees.

In the context of producing simple graphs, one can also generate a graph via stub-matching and
then remove all self-loops and/or multiedges that have been generated, a procedure called the erased
configuration model or Molloy-Reed configuration model [97]. Deleting an edge necessarily changes
the degree sequence, and thus this technique will not sample only graphs with the specified degree
sequence. For sufficiently bounded degree sequences, it has been shown that asymptotically there
will be only O(1) such deletions in large graphs [97]. Thus, when the degree sequence lacks large
degrees and for applications robust to a small number of edge deletions, the erased configuration
model may provide a suitable approximation to the uniform distribution over simple graphs.

A separate and significant literature on random graph null models studies ensembles of graphs
that are the result of random growth processes. The Price model [35, 36], also known as the
preferential attachment model [8], generates random graphs with heavy-tailed degree sequences
(though many other generative processes also generate such degree sequences [96, 29]). Graphs
generated by the Price model have very different structural properties than graphs generated by
configuration models with the same expected degree sequence: asymptotically almost surely, graphs
generated by the Price model are somewhere dense, while for the corresponding degree sequences,
graphs generated by the erased configuration model (or Chung-Lu model) are nowhere dense (and
in fact have bounded expansion, a stronger property) with high probability [38]. In other words,
graphs that are common under one model are extremely rare under the other, and vice versa. Other
network growth processes include uniform growth [22], again resulting in graphs with properties
different from graphs grown under the Price model. For empirical graphs that may have resulted
from a growth process, comparing the properties of the graph to the properties of an ensemble of
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random graphs generated from a growth model may be appropriate.
Many null models other than configuration models are sampled using Markov chains. For

example, Markov chains can be constructed to sample graphs with fixed degree-degree correlations,
specifically by specifying each sampled graph to have a fixed joint degree-degree matrix11 [4, 116, 33];
direct sampling methods exist for this space as well [9]. There is a non-trivial relationship between
graphs with fixed degree-degree matrices and connected graphs: connectivity imposes constraints on
a degree-degree matrix, e.g. a connected graph of more than three vertices cannot have any degree-
one–degree-one connections. Swaps that involve more edges (e.g. Figure 6(c)) can be tailored to
satisfy more complex constraints such as a fixed number of triangles or fixed component sizes [121].

Exponential random graph models (ERGMs) furnish non-uniform distributions over graph spaces
that increase the relative probability of observing certain structural properties, and are typically
sampled using Markov chain methods [114], though the mixing times of these chains are sometimes
known to be very poor [15, 26]. ERGMs generally focus on simple graphs, though some recent
work has extended ERGMs to multigraphs [39, 72, 25]; identifying differences between ERGMs
specified in vertex-labeled vs. stub-labeled spaces is an open question. A different non-uniform
triadic closure Markov Chain, related to the Strauss model (a specific ERGM) [119], has also been
proposed and studied for its abilities to replicate empirical subgraph frequencies in social networks
[123].

Lastly, there is an enormous literature on models of community structure in networks. The most
prominent such model is the stochastic block model [62], which generalized the affiliation model [51].
The stochastic block model has also been adapted to model overlapping (mixed-membership) com-
munity structure [2], community structure in bipartite networks [75], and hierarchical community
structure [106]. Other related graph null models include the degree-corrected stochastic block model
[68] and the block two-level Erdős-Rényi (BTER) model [71]. The degree-corrected stochastic block
model merges the stochastic block model with techniques from the Chung-Lu model to target an
expected degree sequence.

4 Graph enumeration

Graph enumeration—counting the number of graphs within a space—relates directly to the uniform
sampling problems discussed in this paper. Given a vertex-labeled graph G, we can calculate the
number of stub-labeled graphs that are isomorphic to G, highlighting the difference in size and
composition between stub- and vertex-labeled spaces, as shown, for example, in Figure 1.

By efficiently enumerating this correspondence, it is possible to use a simple re-weighting scheme
to convert a uniform sample taken from one graph space to a uniform sample under another graph
space. While theoretically sound, this approach can fail dramatically in practice for many graph
spaces. Graphs that are frequent in one distribution can be enormously different from the graphs
that are frequent under the other distribution, meaning that unreasonably large sample sizes are
required to overcome biases; see Section 5.1 for an illustration of this with an empirical degree
sequence from a collaboration network.

Labeled graph spaces. The correspondence between vertex-labeled and stub-labeled graph enu-
merations is straightforward. For a vertex-labeled graph G = (V,E) with a degree sequence
k = {ki}, we define qsimple(G) as the number of stub-labeled simple graphs that correspond to
a vertex-labeled simple graph G. The set of ki stubs for vertex i can be arranged in ki! unique

11A degree-degree matrix is a matrix C where entry Ck,k′ denotes the number of edges between vertices of degree
k and vertices of degree k′. A graph with a given degree-degree matrix also has a fixed degree sequence, which can
be easily reconstructed from the degree-degree matrix [116].
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permutations, and this simple counting argument applied to the entire vertex set shows that:

qsimple(G) =
n∏
i=1

ki!. (1)

This count depends only on the degree sequence {ki} and not any other property of G. In other
words, for a fixed degree sequence we see that each graph G in the vertex-labeled space has the
same number of stub-labeled graphs that correspond to it. Notice that this is true of the two simple
graphs examples in Figure 1(c,d). As a result, for simple graphs—and only for simple graphs—the
relative sizes of the the isomorphism classes are the same in the vertex-labeled and stub-labeled
spaces. Thus, an ensemble of random vertex-labeled simple graphs can be converted into a sample
of stub-labeled simple graphs by randomly assigning stub-labels to each graph in the ensemble, and
an ensemble of stub-labeled simple graphs can be regarded as a sample of vertex-labeled simple
graphs by simply ignoring stub labels.

For graphs with multiedges or self-loops, it is still possible to count the number of stub-labeled
graphs that correspond to each vertex-labeled graph, but now the multiplicity depends on more
than just the degree sequence. The quantities are derived by adjusting qsimple(G), the numerator
in each quantity, for the number of identical configurations involving multiedges and/or self-loops.
Let wij be the integer number of edges between vertices i and j. For a single self-loop wii = 1,
again counting the number of edges. The multiplicities for each space are then as follows:

qloopy(G) = qsimple(G)× 1∏n
i=1wii!(2

wii)
(2)

qmulti(G) = qsimple(G)× 1∏
i<j wij !

(3)

qloopy multi(G) = qsimple(G)× 1∏n
i=1wii!(2

wii)
× 1∏

i<j wij !
. (4)

The conversion factors in the equations above can be enormous, illustrating that, as stated
above, the graphs that are prevalent in one distribution can be extremely different from those
that are prevalent in the other distribution. As a result, a conversion between stub-labeled and
vertex-labeled spaces is an infeasible approach to sampling from the less easily sampled space.

Unlabeled graph spaces. For any enumeration related to the space of unlabeled graphs (iso-
morphism classes, see Figure 1(b), efficient counting is unfortunately infeasible. Let psimple(G) be
the number of vertex-labeled simple graphs that correspond to an unlabeled graph G. It is well
known that psimple(G) = n!/|Aut(G)|, where |Aut(G)| is the size of the automorphism group of G,
i.e. the number of distinguishable vertex graph labelings. Determining |Aut(G)| is polynomial-time
equivalent to determining if two vertex-labeled graphs in the group are isomorphic [88], making it as
computationally difficult as the famous graph isomorphism problem [7], for which the best known
algorithm is quasipolynomial. Enumerating the size of the isomorphism class for loopy graphs,
multigraphs, and loopy multigraphs is at least as hard. Thus, there are no known practical and
efficient means of transferring between unlabeled and labeled graph spaces.

This reasoning also tells us that any sampling method that could produce a uniform sample
from the space of unlabeled graphs G with a specified degree sequence would furnish a way to count
|Aut(G)|, and thus must take at least quasipolynomial time (unless graph isomorphism is in the
complexity class P). It is therefore unlikely that the uniform distribution over unlabeled graphs will
see a polynomial time direct sampler, or a Markov chain sampler with a polynomial mixing time.
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5 Applications

In this section we use three real-world examples that demonstrate how a configuration model can be
used as a null model, employing the sampling procedures outlined in Section 2, and how the choice
of graph space can have substantial impact on hypothesis tests and scientific conclusions. The first
example studies a graph of collaborations among researchers to show that the choice of null model
graph space greatly impacts null distributions of degree correlations, leading to varying conclusions
about the meaning of the observed degree correlation in the network. The second example studies
a graph of interactions among barn swallows to show that the choice between vertex-labeled and
stub-labeled spaces is non-trivial and directly impacts conclusions about the underlying animal
behavior. Finally, the third example uses a graph of social support in South Indian villages to
demonstrate that the vertex clusters found by modularity maximization, a popular community
detection method traditionally based on the stub-labeled loopy multigraph configuration model,
are sensitive to the choice of underlying graph space. Together, these examples illustrate the
practical differences between graph spaces and show how the methods presented in this paper can
be applied.

5.1 Degree assortativity in a collaboration network

Degree assortativity measures the extent to which pairs of connected vertices tend to have similar
degrees. This degree-degree correlation is an easily computable and single-valued summary of edge
patterns in a graph, and it has been used to shed light on the organizational differences between
broad categories of social, biological, and technological networks [100, 101]. It is most commonly
computed as the Pearson correlation between degrees of vertices that are connected in the network.
It is defined as

r =

1
M

∑
(u,v)∈E kukv − µ2k

σ2k
, (5)

where µk and σ2k are the mean and standard deviation of the vertex degrees across stubs in the
network. Positive degree-degree correlations (r > 0) are commonly interpreted as degree assorta-
tivity, while negative correlations (r < 0) are interpreted as degree disassortativity, but meaningful
interpretations of r require that we first quantify the possibility that degree-degree correlations are
solely a consequence of the specific degree sequence (see, for example, structural disassortativity de-
scribed in [18]). In this application of configuration models, we show that not only does the choice
of graph space dramatically shift the null distribution of degree-degree correlations, but that it can
even affect the sign of the expected value of the correlation and effectively invert the conclusions
drawn from hypothesis tests.

Degree assortativity is common in social networks, and collaboration networks are commonly
thought to be no exception, due to collaborations between extremely productive researchers. Here
we consider a collaboration network among computational geometry researchers, where vertices
represent researchers and edges represent co-authorship on a paper or book. The data come from
the Computational Geometry Database [67] and consist of 9,072 vertices and 22,577 edges. In a
collaboration network a c-author publication induces a c-clique in the graph, because every pair
of the c co-authors will share an edge, c(c − 1)/2 edges in total from a c-author publication. A
collaboration network is naturally a multigraph since researchers often collaborate on multiple
papers together, but there are no self-loops by construction.

In Section 1.5 and Figure 2, we listed and considered three questions to guide the choice of graph
space, which we now answer in order. First, due to the construction of the collaboration graph,
the network does not allow self-loops. Second, geometers can co-author multiple papers, so the
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Figure 7: Degree assortativity of the geometers collaboration network. Distributions of
degree assortativity corresponding to configuration models over various graph spaces are shown in
grey, and the degree assortativity of the geometers collaboration graph is shown in blue. The thick
red border around the vertex-labeled multigraph panel indicates the space chosen by answering the
three guiding questions listed in Section 1.5. For the spaces of multigraphs and loopy multigraphs,
the configuration models uses the degree sequence of the multigraph collaboration network, while
for the spaces of simple graphs and loopy graphs, the configuration models uses the degree sequences
of the simplified collaboration network. Due to the fact that degree assortativity is a function of
the graph adjacency matrix, distributions of assortativity over simple graphs (top row) are identical
for both stub- and vertex-labeled spaces.

network allows for multiedges. Third, the crossing of two edges in the multigraph is nonsensical—it
is meaningless for authors A’s first paper to be a collaboration with author B’s second paper, and
vice-versa—and therefore this collaboration network should be considered to be a vertex-labeled
multigraph.

Although the collaboration network is a multigraph, a researcher might consider “simplifying”
the observed network into the space of simple graphs by removing all duplicate edges between pairs
of vertices, or equivalently thresholding all edge multiplicities at one. Although not applicable
here, if the observed graph were to contain self-loops, an analogous removal of self-loops would be
necessary to “simplify” the graph. Networks are sometimes simplified for convenience, stemming
from a desire to analyze a binary simple graph using familiar tools. Simplification may also have
a scientific basis, if, for example, the question of interest did not concern the number of relations
between a pair of vertices but only whether or not any relation existed. Regardless, we demonstrate
here that the decision to simplify can greatly impact conclusions.

Figure 7 shows distributions of degree assortatitivity over the different configuration models de-
scribed in this paper, where the correlations of the empirical graphs (the original and the simplified)
are shown as blue dashed lines, and the null distributions based on correctly sampled configuration
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models (Section 2) are shown as grey probability densities.12 Note immediately that many of the
null distributions in Figure 7 have almost no overlap in their distributional mass, illustrating two
key practical implications of null model selection. First, comparing the panels in each column
illustrates a direct impact of the inclusion or exclusion of self-loops and/or multiedges. Second,
comparing the panels in each row indicates that, although the space of vertex-labeled graphs is
nested within the space of stub-labeled graphs, the frequency at which each vertex-labeled graph
appears in the stub-labeled space is so dramatically non-uniform that the ranges of degree-degree
correlations under each null distribution appear disjoint.

Most importantly, the null distribution differences shown in Figure 7 lead to conflicting study
conclusions. All four stub-labeled configuration models—which our decision framework identify
as incorrect models—suggest that the observed collaboration graph is far more assortative than a
random graph with the same degree sequence. However, this conclusion is dramatically tempered
when using the vertex-labeled multigraph configuration model that was identified by answering the
three questions of Section 1.5. Furthermore, if one incorrectly allowed self-loops and sampled the
space of vertex-labeled loopy multigraphs one might erroneously conclude that the collaboration
network was slightly disassortative. The dramatic variation of degree-degree correlations among
null models, shown in Figure 7, highlights the importance of correctly choosing a graph space, and
avoiding the default null model of stub-labeled loopy multigraphs associated with straightforward
stub matching.

5.2 Trait assortativity in a barn swallow interaction network

Trait assortativity measures the extent to which pairs of connected vertices tend to have simi-
lar scalar-valued traits. This pairwise correlation is calculated using the same formula as degree
assortativity in Eq. (5), but with degrees replaced with trait values [100, 101]. As with degree
assortativity, measurements of trait assortativity provide clues as to how particular traits are re-
lated to the arrangement of a network’s edges. And again, as with degree assortativity, large or
small values of trait assortativity are uninterpretable without first understanding the distribution
of values which might be observed by random chance. In this application of configuration models,
we show once more that scientific conclusions are highly sensitive to the graph space chosen as a
null model, applying the methods of this paper to a multigraph of interactions among barn swallows
and a trait that quantifies the birds’ plumage color.

Past studies have shown that plumage color of the Colorado barn swallow (Hirundo rustica
erythrogaster) is associated with reproductive success [112], but it is unknown if this is due to
genetic incompatibility between birds of different colors or if it is due to the preferential mixing of
birds by color. To investigate whether there is evidence that swallows preferentially interact with
other swallows of similar color, we consider network and trait data describing a population of 17
Colorado barn swallows collected during the 2014 breeding season [81]. Each vertex in the network
represents a swallow, and each edge represents an interaction: an interaction was recorded between
bird pairs whenever their proximity tags registered a close encounter, with interactions aggregated
over 15 hours and measured across three days [80, 81]. Researchers also recorded the color of
each bird’s ventral plumage as a scalar, standardizing colors between bird sexes. To determine
whether birds of similar color interacted more than one would expect by chance, while controlling
for the fact that some birds have higher interaction counts than others, we compare the observed
assortativity by color to the distribution of assortativity values for networks with identical degrees

12Although the space of loopy graphs is not necessarily connected under double-edge swaps, it can be shown to be
connected for the degree sequence of this collaboration network, allowing the use of Algorithm 2 or 3 from Section 2;
see [104] for details.
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Figure 8: Color assortativity of the barn swallow interaction network. Null distributions
of color assortativity associated with the uniform distribution over simple graphs, stub-labeled
multigraphs, and vertex-labeled multigraphs. The vertical blue line denotes the observed assor-
tativity for the simplified (top row) original (bottom row) barn swallow networks. The thick red
border around the vertex-labeled multigraph panel indicates the space chosen by answering the
three guiding questions listed in Section 1.5. Also depicted are the (upper-tailed) p-values, i.e. the
proportion of the null distribution assortativity values that are greater than the respective ob-
served assortativity. Due to the fact that trait assortativity is a function of the graph adjacency
matrix, distributions of assortativity over simple graphs (top row) are identical for both stub- and
vertex-labeled spaces.

(i.e., interactions counts) but with their interactions randomized.
We now apply the three questions of Section 1.5 and Figure 2 to guide the choice of null

model graph space. First, due to the fact that a bird cannot interact with itself, the network
does not allow for self-loops. Second, because pairs of swallows may interact multiple times during
the data collection period, the network allows for multiedges. Third, the crossing of two edges
in the multigraph is nonsensical due to their temporal ordering—it is meaningless for bird A’s
first interaction to be paired with bird B’s second interaction, and vice-versa—and therefore this
interaction network is a vertex-labeled multigraph.

As in the previous application, a slight change in the scientific question could change the graph
space selected by the three questions. Specifically, if the researchers wished to determine whether
birds of similar color tended to ever interact with each other, the network should be “simplified”
by reducing all multiedges to single edges, creating a vertex-labeled simple graph in which an edge
is present between any pair of swallows that interacted at any point during data collection. It is
tempting to think that this simplification will not be impactful—after all, only 34% of interacting
bird pairs interacted more than once, and only 11% interacted more than twice. However, we now
show that this is not the case.

Figure 8 shows color assortativity distributions for the simple graph configuration model and for
vertex-labeled and stub-labeled multigraph configuration models, as well as p-values for the corre-
sponding one-sided hypothesis tests testing for positive color assortativity (i.e. whether swallows of
similar color preferentially interact). Thus, in each case the p-value is equal to the proportion of the
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null distribution graphs with assortativity values greater than the observed value; small p-values
are indicative that the observed assortativity is noteworthy. Once more, the choice of configura-
tion model has a substantial and significant impact on the null distributions of color assortativity.
An analysis based on simple graphs would conclude that the presence or absence of interaction
is significantly correlated with plumage color (p = 0.001). However, the related analysis based
on vertex-labeled multigraphs—the analysis identified by the three questions from Section 1.5—
concludes that there is no evidence that the number of interactions is significantly correlated with
plumage color (p = 0.852).

This application reveals another, more subtle aspect of choosing a graph space. Due to the
fact that both degree and trait assortativity are computed as a Pearson correlation, it is often
assumed that in the absence of correlations, i.e., when edges are placed at random, r = 0 [100],
and that r > 0 and r < 0 indicate assortative and disassortative mixing patterns, respectively.
However, as shown in Figures 7-8, zero is the incorrect point for comparison; the distribution of
color assortativity in Figure 8 is centered around zero for only one of the three graph spaces shown.
Moreover, the simplified network has a near-zero assortativity, indicated by the blue dashed line,
yet when compared with its null distribution from a simple configuration model, it is clear that the
interaction presence/absence (simple) network is significantly assortative by plumage color. Thus,
the choice of configuration model affects not only the scientific hypothesis being tested and its
conclusion, but also the baseline against which we should anchor our intuition for correlations in
networks.

5.3 Community detection in a South Indian village social support network

Community detection is a fundamental task of network science in which the vertices are divided
into groups (also called clusters or communities) based solely on the patterns of edges. Often,
communities are defined as groups of vertices that are more densely connected to each other than one
would expect by chance. Community detection provides a course-grained summary of the network
which enables further study of its large-scale organization and may also reveal correlations between
vertex attributes and global network structure. Partitions of vertices produced by community
detection have been used in a wide variety of applications, including studies of large-scale online
social network structure [77], evolutionary constraints of malaria parasites [74], and constructing
experimental treatment groups for randomized controlled trials on networks [124].

There are many approaches to community detection in networks [50], with one of the most
popular being modularity maximization [103]. Modularity measures the strength of community
structure in a network for a particular division of the vertices into groups, and its maximization
is based on the premise that communities are groups of vertices that are more densely linked to
each other than one would expect by chance—that is, than one would expect, were the edges of
the network arranged randomly. More precisely, modularity is the average difference between the
observed network adjacency matrix A and its expectation E[A|k], under a configuration model null
model, across all within-group edges in the network. In particular, modularity assumes a stub-
labeled loopy multigraph configuration model, for which the expected number of edges between
any two vertices i and j, with degrees ki and kj , respectively, would be Estubl,m [Aij |k] = kikj/2M .13

13Expectations over the Chung-Lu model [28] and expectations over the stub-labeled loopy multigraph configuration
model are identical under a mild assumption on the skew of the degree distribution, that maxi,j kikj/

∑
` k` ≤ 1.

Thus, for stub-labeled loopy multigraphs, either model may be used to produce the estimate kikj/2M , but as we
shall see, this is not the case for other graph spaces, for which the Chung-Lu model cannot be used.

29



The widely used modularity Q is therefore defined as

Q =
1

2M

∑
(i,j)∈E

(
Aij −

kikj
2M

)
δ(gi, gj) , (6)

where A is the network adjacency matrix, gi is the community assignment of vertex i, and δ is the
Kronecker delta which restricts the sum to within-group edges.

The null model of modularity maximization, as it is written above, is the space of stub-labeled
loopy multigraphs, yet this space is not necessarily an appropriate null model for many real-world
networks. Modularity is often used to analyze simple graphs, and this can lead to unexpected or
undesirable community partitions [87, 21]. If a simple graph is sufficiently large, sufficiently sparse,
and its degree sequence is sufficiently bounded, then the expected number of edges between two
vertices in the space of simple graphs is asymptotically the same as the expectation in the space
of stub-labeled loopy multigraphs, i.e. Es[Aij |k] ≈ kikj/2M [102] (where s denotes simple graphs).
Thus, Eq. (6) will produce asymptotically correct values for simple graphs. However, for finite
simple graphs, we lack guarantees about the accuracy of Eq. (6). The definitions and methods
introduced in this paper now enable us to estimate these expectations to arbitrary accuracy by
first identifying the correct graph space (Section 1.5) and then sampling from it appropriately
(Section 2). We now show that the choice of configuration model, and in particular the choice of a
vertex-labeled model, meaningfully changes the results of community detection.

For this investigation we analyzed a network of social support relationships in a pair of South
Indian villages collected by Power [108]. The number of edges between two members of the villages
corresponds to the number of different social supports between them. Due to the differential
meaning of each support, for a pair who share m mutual supports, there are m possible ways these
can be shared, not m!. Thus, the dataset indicates that it belongs to the space of vertex-labeled
multigraphs by answering the questions of Section 1.5: self-loops are nonsensical, multiedges exist,
and vertices are labeled but stubs are not.

In order to redefine modularity based on an arbitrary graph null model, we rewrite the expected
number of edges between two vertices of degree k and k′ as E[Ck,k′ ]/nknk′ , where nk is the number of
vertices in the network with degree k and E[Ck,k′ ] is the expected number of edges between vertices
of degrees k and k′ respectively under the specified null model. We then rewrite modularity in its
more generic form, based on E[Ck,k′ ] as

Qgeneric =
1

2M

∑
(i,j)∈E

(
Aij −

E[Cki,kj ]

nkinkj

)
δ(gi, gj) . (7)

To change the null model, we need only change the distribution of graphs over which E[Ck,k′ ] is
defined. For most graph spaces, an analytical expression for E[Ck,k′ ] is unknown, but by using
the MCMC techniques of Section 2, we can estimate E[Ck,k′ ] for any graph space discussed in this
paper. Specifically, for each sample graph, and for all degrees k and k′ in the degree sequence, we
tally the number of edges between vertices of degrees k and k′ and then average these counts over
all samples to estimate E[Ck,k′ ].

Figure 9(a) shows the non-uniform differences between E[Ck,k′ ] for the stub-labeled loopy multi-
graph and the vertex-labeled multigraph. In particular, edges between vertices with more disparate
degrees are more common under the standard stub-labeled loopy multigraph space than the vertex-
labeled multigraph space. As a result, the vertex-labeled multigraph modularity function favors
grouping connected vertices with differing degrees more than the stub-labeled loopy multigraph
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Figure 9: Choice of configuration model space impacts modularity maximization. Modu-
larity maximization was used to find communities in a social multigraph of N = 782 vertices under
two configuration null models: stub-labeled loopy multigraphs [Eq. (6)] and vertex-labeled multi-
graphs [Eq. (7)]. (a) Non-uniform differences between the two null model matrices are colored as
indicated; white space indicates that there were zero vertices of degree k. (b) Results of modularity
maximization by deterministic local search (see text), starting from identical initial partitions, but
using the two different null models, differ for the vast majority of initial partitions and number of
communities K, except the case of K = 2 communities for which 88% agreed. (c) Distributions
of normalized mutual information (NMI), which measures similarity of partitions, show differences
between the partitions found using the two null models.

modularity function. The vertex-labeled multigraph null model meaningfully changes the land-
scape of the modularity objective function, which we demonstrate by studying the behavior of two
different modularity maximizing algorithms.

The first algorithm, based on the Kernighan-Lin algorithm, begins with a random partition
of the network’s vertices into a fixed number of communities. Then, a deterministic local search
proceeds by sequentially proposing to move each vertex into each of the other communities. The
proposal that most increases or least decreases modularity is accepted and a single full iteration
is completed when every vertex has been forced to moved exactly once. The highest modularity
partition from one iteration is then used to seed the next iteration, and the algorithm exits when
a full iteration passes with no improvement.

For our investigation we recorded the final partition returned by the algorithm for K commu-
nities, where K = 2, 3, . . . , 10, beginning from 100 random initial partitions and using Eq. (6) as
the objective function. Next, starting from the same 100 initial partitions, we recorded the final
partitions using Eq. (7) as the objective function. The two objective functions produced different
final partitions from the same initial partitions in a vast majority of cases for K > 2, as shown in
Figure 9b, and these differences were substantial, as indicated by a normalized mutual information
in Figure 9c substantially below one. Additionally, we tested whether the locally maximum modu-
larity partitions of one objective function’s were also local maxima of the other function, and found
that between 9% and 19% were not, indicating that the two null models are in disagreement about
the locations of locally optimal partitions.

The second modularity maximization algorithm considered is a fully deterministic greedy algo-
rithm that begins with each vertex in a community of its own. Then, at each step of the algorithm
there is a proposal to merge every possible pair of communities, and the merger that most increases
modularity is chosen [103]. This process is repeated sequentially until the vertices are all merged
into a single community. From the resulting sequence of partitions and modularity values, we may
either select the partition with the highest modularity score or select the partition with a desired
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number of communities.
In our investigation of the village social network using this greedy algorithm, the highest mod-

ularity partition using both Eqs. (6) and (7) had 10 communities. These two maximum modularity
partitions were identical for both null models, yet partitions were identical at only 43% (335 of
782) of the agglomerative steps. Thus, while a majority of the algorithm’s agglomerative choices
differed by null model, a large fraction of partitions remained the same, and both models produced
the same optimal partition with 10 communities.

Together, these tests show that modularity maximization, a community detection method based
on a configuration model, is sensitive to the particular configuration model used in Eq. (7). While
other algorithms for modularity-based community detection may explore the modularity surfaces
using different means, the surfaces themselves are nevertheless distinct. In order to preserve in-
terpretability of modularity maximization’s results, practitioners should choose the correct graph
space from which the observed network is plausibly drawn.

6 Conclusions

Random graphs with fixed degree sequences appear across an enormous number of mathematical
and scientific domains, and, until this point, uniform distributions of such graphs have commonly
been called the configuration model. In this paper we showed that the concept of a random graph
with a fixed degree sequence can be applied to eight overlapping, yet often meaningfully different
graph spaces. We introduced three questions in Section 1.5 regarding the presence or absence of
self-loops, multiedges, and stub labels, which can be used along with contextual knowledge of a
real-world network to decide upon the most appropriate graph space.

Three applications in Section 5 highlighted the particularly important distinction between stub-
labeled and vertex-labeled spaces. In particular, the use of a stub-labeled configuration model in
place of its vertex-labeled counterpart inverted the conclusions of degree-correlation hypothesis
tests and changed the optimization landscape for community detection. Simply put, stub- and
vertex-labeled spaces are not interchangeable. Simple and non-simple configuration models are
not interchangeable either. Although there are widely known asymptotic conditions under which
the space of stub-labeled loopy multigraphs contains few graphs with self-loops or multiedges [97],
many graphs analyzed in practical contexts are simply too small or too dense to lean on these
asymptotic results.

As part of our work, we presented three Markov chain Monte Carlo sampling algorithms and
proved that they can be used to generate graphs uniformly from the eight graph spaces discussed. To
that end, pseudocode and Python implementations are provided, as used in the three applications of
Section 5. However, as with most algorithms, there are tradeoffs. While these MCMC approaches
are proven to uniformly sample from the desired graph space, rigorous mixing time bounds have
not been established, and we look forward to future mixing time investigations.

Throughout this paper we discussed and reviewed the wide and disparate history of configuration
models and their sampling techniques, drawing on literature from sociology, ecology, combinatorics,
statistics, and physics. Many results regarding configuration models have been discovered multiple
times, in part due to the deep and scattered literature, and in part due to the fact that that there
exist various names given to the same set of models, and one name given to multiple different
models. It is therefore our hope that the results and summaries in this paper help to clarify and
refine the study of configuration models, their graph spaces, and their applications.
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A Algorithm 3

This algorithm uniformly samples vertex-labeled graph spaces more efficiently than Algorithm 2
by computing both the forward and reverse probabilities of any double-edge swap according to the
cases in Figure 2.4. It then down-samples the higher probability swap to have the same probability
as the lower probability swap, accelerating mixing.
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Algorithm 3 vertex-labeled MCMC

Require: initial graph G0, graph space (simple graph, multigraph, or loopy multigraph)
Ensure: sequence of graphs Gi

for i < 0 number of graphs to sample do
choose two distinct edges (u, v) and (x, y) uniformly at random
if Unif(0, 1) < 0.5 then
u, v ← v, u

end if
if edge swap would leave the graph space then

resample current graph: Gi ← Gi−1
end if
if ∃ 4 distinct vertices in u, v, x, y then
SwapsTo← wuvwxy
SwapsFrom← (wux + 1)(wvy + 1)

else if ∃ 3 distinct vertices in u, v, x, y then
if u = v or x = y then
SwapsTo← 2wuvwxy
SwapsFrom← (wux + 1)(wvy + 1)

else
SwapsTo← wuvwxy
SwapsFrom← 2(wux + 1)(wvy + 1)

end if
else if ∃ 2 distinct vertices in u, v, x, y then

if only one of (u, v) or (x, y) is a self-loop then
Gi ← Gi−1
continue

else if both (u, v) and (x, y) are self-loops then
SwapsTo← 2wuuwxx
SwapsFrom← 1

2(wux + 2)(wux + 1)
else
SwapsTo← 1

2wuv(wuv − 1)
SwapsFrom← 2(wuu + 1)(wvv + 1)

end if
else
Gi ← Gi−1
continue

end if
P ← min(1, SwapsFromSwapsTo )
if Unif(0, 1) < P then

swap (u, v), (x, y) (u, x), (v, y) to produce Gi
else
Gi ← Gi−1

end if
end for
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[24] Damon Centola, Vı́ctor M Egúıluz, and Michael W Macy. Cascade dynamics of complex
propagation. Physica A: Statistical Mechanics and its Applications, 374(1):449–456, 2007.

[25] Arun G Chandrasekhar and Matthew O Jackson. Tractable and consistent random graph
models. Technical report, National Bureau of Economic Research, 2014.

[26] Sourav Chatterjee and Persi Diaconis. Estimating and understanding exponential random
graph models. The Annals of Statistics, 41(5):2428–2461, 2013.

[27] Yuguo Chen, Persi Diaconis, Susan P Holmes, and Jun S Liu. Sequential monte carlo
methods for statistical analysis of tables. Journal of the American Statistical Association,
100(469):109–120, 2005.

[28] Fan Chung and Linyuan Lu. The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002.

[29] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM Review, 51(4):661–703, 2009.

[30] Reuven Cohen, Daniel Ben-Avraham, and Shlomo Havlin. Percolation critical exponents in
scale-free networks. Physical Review E, 66(3):036113, 2002.

[31] Edward F Connor and Daniel Simberloff. The assembly of species communities: chance or
competition? Ecology, pages 1132–1140, 1979.

[32] Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs and a peer-
to-peer network. Combinatorics, Probability and Computing, 16(04):557–593, 2007.

36
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[90] István Miklós, Péter L Erdős, and Lajos Soukup. Towards random uniform sampling of bipar-
tite graphs with given degree sequence. The Electronic Journal of Combinatorics, 20(1):P16,
2013.

[91] István Miklós and János Podani. Randomization of presence-absence matrices: comments
and new algorithms. Ecology, 85(1):86–92, 2004.

[92] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, and Uri Alon. Response to
comment on ”network motifs: Simple building blocks of complex networks” and ”superfamilies
of evolved and designed networks”. Science, 305(5687):1107–1107, 2004.

[93] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat,
Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks. Science,
303(5663):1538–1542, 2004.

[94] Ron Milo, Nadev Kashtan, Shalev Itzkovitz, Mark EJ Newman, and Uri Alon. On the
uniform generation of random graphs with prescribed degree sequences. arXiv preprint cond-
mat/0312028, 2003.

[95] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

[96] Michael Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Internet mathematics, 1(2):226–251, 2004.

[97] Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree
sequence. Random structures & algorithms, 6(2-3):161–180, 1995.

[98] Jacob L Moreno. Who Shall Survive? Nervous and Mental Disease Publishing Co., 1934.

40



[99] Jacob L Moreno and Helen H Jennings. Statistics of social configurations. Sociometry, pages
342–374, 1938.

[100] Mark EJ Newman. Assortative mixing in networks. Physical review letters, 89(20):208701,
2002.

[101] Mark EJ Newman. Mixing patterns in networks. Physical Review E, 67(2):026126, 2003.

[102] Mark EJ Newman. Networks: an introduction. OUP Oxford, 2010.

[103] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113, 2004.

[104] Joel Nishimura. Uniform sampling graphs with self-loops and a given degree sequence.
manuscript, 2016.

[105] Michael Patefield. Algorithm AS 159: an efficient method of generating random r×c tables
with given row and column totals. Applied Statistics, pages 91–97, 1981.

[106] Tiago P Peixoto. Hierarchical block structures and high-resolution model selection in large
networks. Physical Review X, 4(1):011047, 2014.
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